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ABSTRACT15

In engineering analysis, propagating parametric probability boxes (p-boxes) remains a challenge16

since a computationally expensive nested solution scheme is involved. To tackle this challenge, this17

paper proposes a novel optimization-integration method to propagate parametric p-boxes, mainly18

focusing on estimating the lower and upper bounds of structural response expectation for linear19

and moderately nonlinear problems. A model-based optimization scheme, named Bayesian global20

optimization, is first introduced to explore the space of distribution parameters. Subsequently, an21

efficient numerical integration method, named unscented transform, is employed to estimate the22

response expectation with a given set of distribution parameters. Compared to existing optimization-23

integration methods, the proposed method has three advantages. First, the response expectation24
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bounds are successively estimated, allowing for the reuse of samples generated from the lower25

bound estimation in the upper bound estimation. Second, the approximation error introduced26

by the numerical integration method is considered. Third, computational efficiency in both the27

optimization and integration processes is improved. Four applications are investigated to validate28

the effectiveness of the proposed method, showing its ability to balance computational efficiency29

and accuracy when evaluating response expectation bounds.30
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INTRODUCTION34

Practical engineering problems are often rife with aleatory uncertainties that are irreducible and35

stem from random nature, such as the uncertainties in material properties, external loads, operating36

environments and etc. In many cases, the information for describing such uncertainties can be37

insufficient, ambiguous, fragmentary, or indeterminate (Beer et al. 2013). In this regard, epistemic38

uncertainties that result from a lack of knowledge or information should also be considered. Such39

mixed uncertainty can be characterized by the imprecise probability model such as the parametric40

probability box (p-box) model (Ferson and Hajagos 2004; Faes et al. 2021). For a parametric41

p-box model, aleatory uncertainty is represented by a set of probability distributions with known42

distribution types, while epistemic uncertainty is reflected by the imprecise distribution parameters43

that can be described by intervals. In order to reflect the influence of input imprecise probabilities44

on structural responses, imprecise probability propagation is of great significance in engineering45

structural analysis.46

In general, the state-of-the-art methods for propagating parametric p-boxes can be classified into47

two categories: double-loop methods and single-loop methods. As a straightforward approach, the48

double-loop method treats the epistemic and aleatory uncertainties through a nested loop structure.49

Double-loop Monte Carlo simulation (DLMCS) (Bruns and Paredis 2006) samples different sets50
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of distribution parameters in the outer loop, and for each distribution parameter set, Monte Carlo51

simulation (MCS) is performed to estimate the output of interest in the inner loop. DLMCS works52

regardless of nonlinear properties and dimensionalities of the problem at hand. However, it is quite53

computationally expensive, since both loops require a considerably large number of samples in54

order to ensure the estimation accuracy of the output of interest. Although some improved DLMCS55

methods, such as interval Monte Carlo method (Zhang et al. 2010; Zhang et al. 2012) and the56

vertex-based DLMCS (Vertex-MCS) (Xiao et al. 2016), are developed to reduce the number of57

samples in total, their scopes of application and efficiency are limited.58

To improve the computational efficiency, an outer-loop optimization can be adopted, where59

imprecise distribution parameters are treated as design variables to be optimized and the lower and60

upper bounds on the output of interest are regarded as two separate optimization objectives. In the61

inner loop, the output of interest at a certain design point can be estimated by aleatory uncertainty62

propagation methods. Take the example of capturing the bounds on a response expectation,63

numerical integration methods can be adopted in the inner loop to evaluate the response expectation64

under fixed distribution parameters. The integration of outer-loop optimization and inner-loop65

numerical integration methods can be collectively referred to as optimization-integration methods.66

Typical optimization-integration methods are the optimized parameter sampling (OPS) (Bruns and67

Paredis 2006; Bruns 2006), optimized univariate dimension-reduction method (OUDRM) (Liu et al.68

2018) and optimized sparse grid numerical integration method (OSGNI) (Liu et al. 2019). Such69

existing methods rely on gradient-based optimizers, which can easily converge to a local optimum.70

In this sense, the resulting response expectation bounds may be underestimated. Although some71

global optimization algorithms, like the genetic algorithm (Pedroni and Zio 2015), can help mitigate72

this issue, the optimization process requires a large number of objective function calls, which can be73

time-consuming when dealing with objective functions that are expensive to evaluate. In the inner74

loop, some efficient numerical integration methods, such as univariate dimension-reduction method75

(Liu et al. 2018) and sparse grid numerical integration (Liu et al. 2019), are employed. Nevertheless,76

the computational efficiency within the inner loop can be further enhanced, especially for linear77
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and moderately nonlinear problems. Additionally, existing optimization-integration methods do78

not account for the approximation error introduced by numerical integration methods, potentially79

resulting in inaccuracies in the derived response expectation bounds. Furthermore, these methods80

are unable to fully leverage the data generated by the lower or upper estimation that has already81

been performed.82

On the other hand, to alleviate the computational burden of the double-loop framework, many83

single-loop methods have been recently developed, such as the extended Monte Carlo simula-84

tion (EMCS) (Wei et al. 2014), non-intrusive imprecise stochastic simulation (NISS) (Wei et al.85

2019), non-intrusive imprecise probabilistic integration (NIPI) (Wei et al. 2021b), collaborative86

and adaptive Bayesian optimization (CABO) (Wei et al. 2021a), and parallel Bayesian quadrature87

optimization (PBQO) (Dang et al. 2022a). Note that existing single-loop methods typically rely88

on constructing an augmented uncertainty space consisting of both aleatory and epistemic uncer-89

tainties, which increases the dimensionality to be dealt with. Although some single-loop methods90

such as CABO and PBQO may require less response function calls compared with double-loop91

methods, it becomes difficult to estimate the output of interest for problems with high-dimensional92

augmented uncertainty space. Besides, EMCS and NISS are not capable for propagating parametric93

p-boxes with distribution parameters that are supported in a wide range.94

Therefore, there is still a need to develop a method for parametric p-box propagation with not95

only reasonable accuracy and efficiency, but also fine applicability. The main focus of this paper96

is on capturing the response expectation bounds that reflect the effect of epistemic uncertainty on97

the statistical characteristics of the response. A new optimization-integration method is presented98

to estimate the response expectation bounds, especially for linear and moderately nonlinear prob-99

lems. The proposed method combines two advanced and efficient strategies to greatly reduce the100

computational efforts. Specifically speaking, to facilitate the optimization process, a model-based101

optimization scheme, named Bayesian global optimization (BGO) (Jones et al. 1998), is employed.102

By using the BGO, the original expensive-to-evaluate objective function can be predicted by an103

cheap-to-evaluate Bayesian model. To consider the effects of approximation errors introduced by104
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numerical integration in estimating the response expectation, noisy Gaussian process (GP) model105

is adopted in this study. Such GP model can be updated adaptively according to an effective106

improvement strategy, so as to obtain the globally effective optima, i.e., the optimal distribution107

parameters corresponding to the response expectation bounds, with fewer computational efforts.108

When estimating response expectation on the set of distribution parameters obtained from the109

optimization process, a highly efficient numerical integration method, called unscented transform110

(UT) (Julier and Uhlmann 1997b; Wan and Van Der Merwe 2000; Jia et al. 2013), is implemented.111

UT is able to provide estimated results up to third degree of algebraic accuracy, which should112

be acceptable for linear and moderately nonlinear problems. Besides, the number of simulations113

grows only linearly with the dimension of p-box variables. It is worth mentioning that compared114

with existing optimization-integration methods, the proposed method takes into account the ap-115

proximation errors brought by UT. Moreover, the proposed method estimates the lower and upper116

response expectation bounds in a sequential manner, where the samples generated for the lower117

bound evaluation can be further reused for the upper bound evaluation to reduce unnecessary waste118

of computational efforts.119

The remaining of the paper is organized as follows: Section "Problem statement" introduces the120

mathematical formulation of the response expectation bounds considering input variables described121

by parametric p-boxes. Section "Proposed method" presents the proposed optimization-integration122

approach that combines the BGO with the UT. Section "Test examples" investigates four test123

examples to illustrate the feasibility of the proposed method. Conclusions are given in section124

"Concluding remarks".125

To enhance readability, a list of acronyms used in this paper is provided in Table 1.126

PROBLEM STATEMENT127

Consider a response function that describes the input-output relationship of a structural system128

as 𝑌 = 𝑔 (𝑿). Here, 𝑔 (·) represents a deterministic, continuous and real-valued mapping function;129

𝑿 =
{
𝑋1, 𝑋2, ..., 𝑋𝑛𝑠

}
is an 𝑛𝑠 dimensional input vector of variables, where each variable is130

characterized by a parametric p-box model; 𝑌 denotes a scalar output of interest, which is also a p-131
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box variable. Let us denote 𝜽 =
(
𝜃1, 𝜃2, ..., 𝜃𝑛𝜃

)
as 𝑛𝜃-dimensional imprecise distribution parameter132

vector. The epistemic uncertainty in 𝜽 is represented by a hyperrectangle, i.e., 𝜽 =
[
𝜽 , 𝜽

]
, where133

𝜽 =

(
𝜃1, 𝜃2, ..., 𝜃𝑛𝜃

)
denotes the lower bound and 𝜽 =

(
𝜃1, 𝜃2, ..., 𝜃𝑛𝜃

)
is the upper bound. Then,134

the joint probability density function (PDF) of 𝑿 can be represented by 𝑓 (𝒙 |𝜽). For convenience,135

all variables in 𝑿 and distribution parameters in 𝜽 are assumed to be mutually independent.136

Under the above setting, the probability distribution and any statistical moments of 𝑌 are also137

functions of 𝜽 . Taking the expectation of 𝑌 as an example, it can be written as:138

𝑚 (𝜽) =
∫
R𝑛𝑠

𝑔 (𝒙) 𝑓 (𝒙 |𝜽)d𝒙, (1)139

where 𝑚 (𝜽) represents the expectation of 𝑌 , the value of which depends on the value of 𝜽 . It140

is noted that for some practical engineering applications, the analysts may be more interested in141

obtaining the bounds on 𝑚 (𝜽) than in obtaining expressions for the response expectation function142

over the entire domain of 𝜽 . This is because the response expectation bounds enable to provide a143

possible range reflecting the effect of epistemic uncertainty on expectation of 𝑌 (Wei et al. 2021a).144

In addition, evaluating the bounds on response expectation can be much more easier than capturing145

the overall behavior of 𝑚 (𝜽) over the full domain of 𝜽 . In this regard, this paper focuses on the146

estimation of the response expectation bounds.147

The lower and upper bounds of response expectation can be obtained by finding the minimal148

and maximal values of 𝑚 (𝜽) within the hyperrectangle
[
𝜽 , 𝜽

]
, which can be expressed as:149

𝑚 = min
𝜽∈[𝜽 ,𝜽]

𝑚 (𝜽) , (2)150

151
𝑚 = max

𝜽∈[𝜽 ,𝜽]
𝑚 (𝜽) , (3)152

where 𝑚 and 𝑚 denote the lower and upper bounds of 𝑚 (𝜽), respectively. In the following, the153

optimal distribution parameter corresponding to 𝑚 is denoted as 𝜽min, and the optimal distribution154

parameter corresponding to 𝑚 is represented as 𝜽max.155
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Note that for most cases, the analytical expression of 𝑚 (𝜽) is usually difficult and even impossi-156

ble to obtain due to underlying complexity of Eq. (1). Hence, directly finding analytic solutions for157

the minimum and maximum values according to Eqs. (2)-(3) is rather difficult. Alternatively, we158

can resort to the optimization-integration method such that 𝜽 can be first searched by optimization159

and the response expectation at a certain 𝜽 found during the optimization process is then estimated160

based on a numerical integration method. Since the response function involved in Eq. (1) is161

usually a black-box function that is expensive to evaluate, a computationally efficient optimization-162

integration method that calls the response function as few as possible is highly desired. At the same163

time, such method should also enable to provide estimated response expectation bounds with ac-164

ceptable accuracy. To achieve this aim, a novel optimization-integration method will be developed165

in the following.166

PROPOSED METHOD167

In this section, a new optimization-integration method is developed to estimate the lower168

and upper bounds of 𝑚 (𝜽) with reasonable accuracy and efficiency, where 𝑚 and 𝑚 are separately169

estimated one after the other. Note that the proposed method is able to make full use of the available170

information such that data obtained from the lower bound estimation can be further reused in the171

upper bound estimation, and thus avoiding unnecessary computational effort. Specifically, a model-172

based optimization method, named Bayesian global optimization (Jones et al. 1998), is employed173

in order to explore the space of distribution parameters. At each 𝜽 found during the optimization174

process, one highly efficient numerical integration method, named unscented transform (Julier and175

Uhlmann 1997b; Wan and Van Der Merwe 2000; Jia et al. 2013), is introduced to evaluate 𝑚 (𝜽).176

Bayesian global optimization177

By making use of BGO, our basic idea is to assume a Bayesian model to 𝑚 (𝜽), and then178

update the Bayesian model successively with additional observations according to an efficient infill179

sampling criterion (Jones et al. 1998; Dang et al. 2022b). Such infill sampling criterion enables180

to fully exploit the available observations, and strike a good tradeoff between exploitation and181

exploration for the selection of the new updating observations. In the following, the Bayesian182
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model and infill sampling criterion adopted in the optimization process of proposed optimization-183

integration method are introduced in detail.184

Gaussian process model185

Following a Bayesian approach, the expensive-to-evaluate response expectation function can be186

treated with a Bayesian model. Commonly, Gaussian process (GP) model (Williams and Rasmussen187

2006) is adopted in the BGO. Note that for most realistic modeling situations, we cannot obtain188

the true value of 𝑚 (𝜽), but only a noisy version of 𝑚 (𝜽). In this regard, we assume that the noisy189

version of 𝑚 (𝜽), denoted as �̂� (𝜽), is equal to the true response expectation function 𝑚 (𝜽) plus an190

additional noise 𝜖 such that �̂� (𝜽) = 𝑚 (𝜽) + 𝜖 , where 𝜖 is assumed to follow a zero-mean Gaussian191

distribution with variance 𝜎2
𝜖 . The true response expectation 𝑚 (𝜽) is assigned a GP prior such that192

𝑚0 (𝜽) ∼ GP (𝛽 (𝜽) , 𝜅 (𝜽 , 𝜽′)), where 𝛽 (𝜽) and 𝜅 (𝜽 , 𝜽′) are the prior mean and covariance (also193

called kernel) functions, respectively. There are many different forms of prior mean and covariance194

functions, which can be found in Ref. (Williams and Rasmussen 2006). In this work, a constant195

prior mean is adopted such that 𝛽 (𝜽) = 𝛽0 and 𝛽0 ∈ R. The squared exponential kernel function196

is employed here, which can be expressed as:197

𝜅 (𝜽 , 𝜽′) = 𝜎2
0 exp

(
−1

2
(𝜽 − 𝜽′) 𝜮−1 (𝜽 − 𝜽′)T

)
, (4)198

where 𝜎2
0 denotes the overall variance; 𝜮 = diag

(
𝑙21, 𝑙

2
2, ..., 𝑙

2
𝑛𝜽

)
is a diagonal matrix and 𝑙𝑖, 𝑖 =199

1, ..., 𝑛𝜽 is the length scale in the 𝑖-th dimension. Under these settings, a total of 𝑛𝜽 + 3 free200

parameters are involved inside the GP model, which are referred to as the hyperparameters 𝝍 =201 {
𝛽0, 𝜎0, 𝜎𝜖 , 𝑙1, ..., 𝑙𝑛𝜽

}
and can be inferred from a set of observations.202

Suppose that we have obtained N noisy observations. Denote such training dataset as D =203 {
𝚯, M̂ (𝚯)

}
, where𝚯 =

{
𝜽 (1); 𝜽 (2); ...; 𝜽 (N)} is a sample matrix with size (N × 𝑛𝜃), and M̂ (𝚯) =204 {

�̂�

(
𝜽 (1)

)
, ..., �̂�

(
𝜽 (N)

)}T
is an (N × 1) response expectation vector whose components have been205

evaluated. Based on the training dataset D, the hyperparameters can be optimally determined by206
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maximizing the log marginal likelihood function (Williams and Rasmussen 2006):207

𝝍⋆ = arg max
𝝍

(
log

(
𝑝

(
M̂ (𝚯) |𝚯,𝝍

)))
, (5)208

where209

log
(
𝑝

(
M̂ (𝚯) |𝚯,𝝍

))
= −1

2

(
M̂ (𝚯) − 𝛽0

)T (
𝑲 + 𝜎2

𝜖 𝑰
)−1 (

M̂ (𝚯) − 𝛽0

)
−1

2
log

(��𝑲 + 𝜎2
𝜖 𝑰

��)−N
2

log (2𝜋) ,

(6)210

in which 𝑲 is an (N × N) covariance matrix with (𝑖, 𝑗)-th entry as 𝜅
(
𝜽 (𝑖) , 𝜽 ( 𝑗)

)
; 𝑰 is an (N × N)211

identity matrix. For more details, the interested readership may refer to Ref. (Williams and212

Rasmussen 2006).213

Once the hyperparameters are determined, a posterior distribution of 𝑚 (𝜽) can be obtained by214

conditioning on D. At a new observation 𝜽 , the posterior of 𝑚 (𝜽) follows a normal distribution215

such that 𝑚N (𝜽) ∼ N
(
𝜇N (𝜽) , 𝜎2

N (𝜽)
)
. Here, the posterior mean 𝜇N (𝜽) is employed as the216

predictor of response expectation in the optimization process, and the posterior variance 𝜎2
N (𝜽) is217

the measure of prediction uncertainty. 𝜇N (𝜽) and 𝜎2
N (𝜽) can be expressed in closed form:218

𝜇N (𝜽) = 𝛽 (𝜽) + 𝜿 (𝜽 ,𝚯)
(
𝑲 + 𝜎2

𝜖 𝑰
)−1 (

M̂ (𝚯) − 𝛽 (𝚯)
)
, (7)219

220

𝜎2
N (𝜽) = 𝜅 (𝜽 , 𝜽) − 𝜿 (𝜽 ,𝚯)

(
𝑲 + 𝜎2

𝜖 𝑰
)−1

𝜿 (𝜽 ,𝚯)T , (8)221

in which 𝜿 (𝜽 ,𝚯) is a (1 × N) covariance vector between 𝜽 and 𝚯, and its 𝑖-th component is222

𝜅

(
𝜽 , 𝜽 (𝑖)

)
; 𝛽 (𝚯) is an (N × 1) expectation vector with 𝑖-th component as 𝛽

(
𝜽 (𝑖)

)
.223

Expected improvement criterion224

To infer the response expectation bounds 𝑚 and 𝑚 from fewer training samples, an efficient225

infill sample strategy combined with the GP model is desired. Note that the aim of such strategy226

is to find the promising points where to evaluate the objective function by extracting as much as227

possible knowledge from the current posterior GP. Along this line, the expected improvement (EI)228
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criterion (Jones et al. 1998) could be a good choice. By maximizing the EI, new update points229

can be selected by exploiting the best existing solutions from the GP model and exploring the230

undeveloped design space that may contain potential optima. In this regard, here we adopt the EI231

criterion to find 𝜽min and 𝜽max that respectively corresponding to 𝑚 and 𝑚, where the lower bound232

𝑚 is estimated first and the upper bound 𝑚 is evaluated subsequently.233

EI criterion for lower bound optimization Let 𝜽⋆min = 𝑎𝑟𝑔 min1⩽ 𝑗⩽N
{
�̂�

(
𝜽 ( 𝑗)

)}
be the current234

best solution to lower expectation bound 𝑚 obtained from the training dataset D. We are aiming235

to search for a new sample point 𝜽 that enables to bring about an improvement beyond the current236

lower response expectation bound at point 𝜽⋆min. The expectation of such improvement conditional237

on 𝚯, denoted as LEI
min (𝜽), can be expressed as (Jones et al. 1998):238

LEI
min (𝜽) = E

[
max

(
𝜇N

(
𝜽⋆min

)
− 𝜇N (𝜽) , 0

)]
=


E

[
𝜇N

(
𝜽⋆min

)
− 𝜇N (𝜽)

]
, if 𝜇N (𝜽) < 𝜇N

(
𝜽⋆min

)
0, otherwise

,

(9)239

where 𝜇N
(
𝜽⋆min

)
= min1⩽ 𝑗⩽N

{
�̂�

(
𝜽 ( 𝑗)

)}
. The analytical expression of the above EI function can240

be derived as (Jones et al. 1998):241

LEI
min (𝜽) =

(
𝜇N

(
𝜽⋆min

)
− 𝜇N (𝜽)

)
Φ

©«
𝜇N

(
𝜽⋆min

)
− 𝜇N (𝜽)

𝜎N (𝜽)
ª®®¬ + 𝜎N (𝜽) 𝜙

©«
𝜇N

(
𝜽⋆min

)
− 𝜇N (𝜽)

𝜎N (𝜽)
ª®®¬ ,

(10)242

where Φ (·) and 𝜙 (·) represent the cumulative distribution function (CDF) and PDF of the standard243

normal distribution, respectively. The new sample point, denoted as 𝜽+min, is determined by244

maximizing LEI
min (𝜽), i.e.,245

𝜽+min = arg max
𝜽∈

[
𝜽 ,𝜽

] LEI
min (𝜽) . (11)246

The first term in Eq. (10) prefers the point related to smaller 𝜇N (𝜽), while the second term in Eq.247

(10) prefers the sample point that has larger prediction uncertainty 𝜎N (𝜽). Hence, a good tradeoff248

between model exploitation and exploration can be achieved by the EI criterion. Note that since249
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LEI
min (𝜽) is usually multi-modal, additional global optimization algorithms are desired to solve Eq.250

(11). Herein, one recently developed global optimization algorithm, called Equilibrium Optimizer251

(EO) algorithm (Faramarzi et al. 2020), is employed.252

A stopping criterion is required here to indicate when to stop the lower bound optimization253

scheme. One common stopping criterion is to check whether the value of maximum EI is relatively254

small or not, i.e., max
𝜽∈

[
𝜽 ,𝜽

] LEI
min (𝜽) < E𝑚, where E𝑚 denotes the stopping tolerance that is255

usually prescribed by the users based on their requirement. Since the magnitude of LEI
min (𝜽) is256

usually unknown in advance, an improved stopping criterion that measures the relative error of the257

maximal EI (Huang et al. 2006) is adopted here, such as:258

max
𝜽∈

[
𝜽 ,𝜽

] LEI
min (𝜽)

max1⩽ 𝑗⩽N �̂�

(
𝜽 ( 𝑗)

)
− min1⩽ 𝑗⩽N �̂�

(
𝜽 ( 𝑗)

) < E1, (12)259

where �̂�

(
𝜽 ( 𝑗)

)
, 1 ⩽ 𝑗 ⩽ N is the estimated expectation in the current D; the stopping tolerance260

E1 is suggested to take the magnitude of 0.1% − 1%. If Eq. (12) is not satisfied, 𝜽+min and261

the corresponding response expectation �̂�
(
𝜽+min

)
evaluated by a numerical integration method262

described in Section 4 are added to D, and then a new round of lower bound optimization is263

implemented based on the enriched D. To avoid possible premature convergence to suboptimal264

solutions, it is preferable to use a delayed judgement, i.e., to stop only when Eq. (12) is successively265

satisfied several times (e.g., three times).266

EI criterion for upper bound optimization Once the lower bound optimization scheme ends,267

the upper bound optimization starts based on the training dataset D obtained from lower bound268

optimization. In this manner, the number of update points needed for upper bound estimation can269

be reduced and the current available training data can be further reused. Similarly, let 𝜽⋆max =270

𝑎𝑟𝑔 max1⩽ 𝑗⩽N
{
�̂�

(
𝜽 ( 𝑗)

)}
be the current best solution to the upper expectation bound 𝑚 observed271

so far. Then, the location of next evaluation 𝜽 is determined by maximizing the EI over the current272
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maximum posterior response expectation 𝜇N
(
𝜽⋆max

)
= max1⩽ 𝑗⩽N

{
�̂�

(
𝜽 ( 𝑗)

)}
, i.e.,273

𝜽+max = arg max
𝜽∈

[
𝜽 ,𝜽

] LEI
max (𝜽) , (13)274

where 𝜽+max denotes the new update point associated with the upper response expectation bound.275

The corresponding EI function, denoted as LEI
max (𝜽), is defined in closed form (Dang et al. 2022b):276

LEI
max (𝜽) = E

[
max

(
𝜇N (𝜽) − 𝜇N

(
𝜽⋆max

)
, 0

)]
=

(
𝜇N (𝜽) − 𝜇N

(
𝜽⋆max

))
Φ

(
𝜇N (𝜽)−𝜇N

(
𝜽⋆max

)
𝜎N (𝜽)

)
+ 𝜎N (𝜽) 𝜙

(
𝜇N (𝜽)−𝜇N

(
𝜽⋆max

)
𝜎N (𝜽)

)
. (14)277

Here, EO algorithm (Faramarzi et al. 2020) is also employed to find 𝜽+max.278

Similarly, the normalized version of stopping criterion for upper bound optimization scheme is279

adopted (Huang et al. 2006):280

max
𝜽∈

[
𝜽 ,𝜽

] LEI
max (𝜽)

max1⩽ 𝑗⩽N �̂�

(
𝜽 ( 𝑗)

)
− min1⩽ 𝑗⩽N �̂�

(
𝜽 ( 𝑗)

) < E2, (15)281

where the stopping tolerance E2 can take the same value as E1 for convenience. If Eq. (15) is not282

satisfied, 𝜽+max and corresponding response expectation �̂�
(
𝜽+max

)
estimated according to Section 4283

are added to the training dataset D. Then, another round of upper bound optimization is performed284

based on the enriched D. The optimization scheme stops only when Eq. (15) is satisfied for three285

times consecutively.286

Remark. Note that it is also possible to perform the upper bound optimization first and then the287

lower bound optimization. In this case, the training dataset D obtained from the upper bound288

optimization will be used as the initial training dataset for the lower bound optimization.289

Unscented transform290

As observed from Eq. (1), the evaluation of 𝑚 (𝜽) at a fixed design point 𝜽 becomes a determin-291

istic but still difficult-to-evaluate integration. In this regard, one may resort to use the numerical292
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integration method to approximate such deterministic integration. Denote the approximated solu-293

tion of 𝑚 (𝜽) at a fixed observation 𝜽 as �̂�. Using the numerical integration method, �̂� can be294

expressed as:295

�̂� =

𝑁𝑞∑︁
𝑟=1

𝑤𝑟𝑔
(
𝝌𝑟

)
, (16)296

in which 𝑁𝑞 is the number of integration points; 𝝌𝑟 is the 𝑟-th integration point, and 𝑤𝑟 is the297

corresponding 𝑟-th weight.298

Under this setting, there is a need for an efficient method to evaluate �̂�. The unscented transform299

(UT) (Julier and Uhlmann 1997b; Wan and Van Der Merwe 2000; Jia et al. 2013) is adopted in our300

work, since UT is computationally more efficient while maintaining acceptable accuracy, compared301

to MCS, univariate dimension reduction method, and sparse grid numerical integration utilized302

in existing optimization-integration methods (Bruns and Paredis 2006; Liu et al. 2018; Liu et al.303

2019). The UT was first introduced by Jeffrey Uhlmann (Julier and Uhlmann 1997b) in the field of304

nonlinear Kalman filter, which enables to calculate the expectation of a random vector propagated305

through a nonlinear transformation. The basic idea of UT is to first select a finite number of sample306

points, also known as sigma points, transform these sigma points by a nonlinear transformation,307

and finally perform a weighted summation of the transformed sigma points to obtain an estimate308

of the response expectation. The sigma points are obtained by sampling in the original Gaussian309

distribution according to certain rules, and the corresponding weights satisfy the results of the310

weighted sum of the sigma points with the same mean and variance of the Gaussian distribution.311

Accordingly, the sigma points and corresponding weights can be respectively given by (Julier and312

Uhlmann 1997b; Julier and Uhlmann 1997a):313



𝜸1 = [0, ..., 0]T , 𝑤1 = 𝜅
𝑛𝑠+𝜅 , 𝑟 = 1

𝜸𝑟 =
√
𝑛𝑠 + 𝜅𝒆𝑟−1, 𝑤𝑟 =

1
2(𝑛𝑠+𝜅) , 𝑟 = 2, · · · , 𝑛𝑠 + 1

𝜸𝑟 = −√𝑛𝑠 + 𝜅𝒆𝑟−𝑛𝑠−1, 𝑤𝑟 =
1

2(𝑛𝑠+𝜅) , 𝑟 = 𝑛𝑠 + 2, · · · , 2𝑛𝑠 + 1,

(17)314

where 𝒆𝑟−1 is the 𝑛𝑠-dimensional unit vector with the (𝑟 − 1)-th element being 1; 𝜅 is the scaling315
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factor that enables to tune the accuracy of moment approximations. According to Ref. (Julier316

and Uhlmann 1997b), it is suggested to take 𝜅 = 3 − 𝑛𝑠 for sigma points following the Gaussian317

distribution. In this manner, we have318



𝜸1 = [0, ..., 0]T , 𝑤1 =
3−𝑛𝑠

3 , 𝑟 = 1

𝜸𝑟 =
√

3𝒆𝑟−1, 𝑤𝑟 =
1
6 , 𝑟 = 2, · · · , 𝑛𝑠 + 1

𝜸𝑟 = −
√

3𝒆𝑟−𝑛𝑠−1, 𝑤𝑟 =
1
6 , 𝑟 = 𝑛𝑠 + 2, · · · , 2𝑛𝑠 + 1.

(18)319

Based on the above sigma points and corresponding weights, the response expectation can be320

estimated such that:321

�̂� =

𝑁𝑞∑︁
𝑟=1

𝑤𝑟𝑔

(
Γ−1 (𝜸𝑟 |𝜽 )

)
, (19)322

where 𝑁𝑞 = 2𝑛𝑠 + 1, which is highly efficient to evaluate the response expectation; Γ−1 (· |𝜽 ) rep-323

resents the isoprobabilistic transformation that transform sigma points from the standard Gaussian324

space to the original input random space. In this regard, the integration points can be regarded as the325

transformed sigma points, where the transformation relationship is 𝝌𝑟 = Γ−1 (𝜸𝑟 |𝜽 ) , 𝑟 = 1, ..., 𝑁𝑞.326

It is worth mentioning that responses corresponding to those 𝑁𝑞 sigma points involved in Eq. (19),327

i.e., 𝑔
(
Γ−1 (𝜸𝑟 |𝜽 )

)
, 𝑟 = 1, ..., 𝑁𝑞, can be evaluated in parallel.328

Note that the sigma points are generated by matching the moments of Gaussian random variables329

up to the second order. In addition, all odd-ordered moments of a Gaussian variable are zero.330

Therefore, the UT is able to estimate response expectation at a fixed 𝜽 up to the third order, regardless331

of the dimension of input variables (Julier and Uhlmann 1997a; Wan et al. 2001). Nevertheless,332

the UT is somehow difficult to adapt to problems with strong nonlinearities (Julier 2002). In333

this regard, it is reasonable to expect that the use of UT to evaluate the response expectation can334

have acceptable accuracy and efficiency for linear and moderately nonlinear problems. However,335

the approximation error introduced by UT needs to be considered, as it may affect the accuracy336

of the outer-loop optimization within the distribution parameter space. To take into account the337

approximation error in the optimization process, the estimated response expectation at a fixed338
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design point 𝜽 , i.e., �̂�
(
𝜽 (𝑖)

)
, is treated as a noisy observation in the training dataset D.339

Step-by-step procedure340

Once both the stopping criteria associated with the lower and upper bounds are satisfied in the341

optimization process, the lower and upper response expectation bounds can be obtained from the342

final training dataset D =

{
𝚯, M̂ (𝚯)

}
, such as:343

𝑚 = min
1⩽ 𝑗⩽N

�̂�

(
𝜽 ( 𝑗)

)
, (20)344

345

𝑚 = max
1⩽ 𝑗⩽N

�̂�

(
𝜽 ( 𝑗)

)
, (21)346

where the current N is the sample size of the final obtained D. Accordingly, the total number347

of response function calls required by response expectation bound estimation is 𝑁 = N × 𝑁𝑞 =348

N × (2𝑛𝑠 + 1). To distinguish the stopping criterion involved in lower bound estimation with that349

involved in upper bound estimation, the first criterion is named criterion 1, and the second is named350

criterion 2 in the following. A flowchart of the proposed method is shown in Fig. 1. To illustrate351

the procedure of proposed method, here we take the evaluation of the lower bound of response352

expectation as an example, and a brief procedure is summarized as follows:353

354

Step 1: Initialization. Set the initial sample size Nini and stopping tolerance E1. Create355

the initial training set D =

{
𝚯, M̂ (𝚯)

}
of size Nini by two steps. First, randomly sample Nini356

distribution parameters 𝜽 from the hyperrectangle
[
𝜽 , 𝜽

]
by adopting the Latin hypercube sampling357

(LHS) method, and form 𝚯 =
{
𝜽 (1) , 𝜽 (2) , ..., 𝜽 (Nini)

}T. Then, employ the UT to estimate Nini358

response expectations �̂� (𝜽) at each component of 𝚯, and accumulate these resultant estimated359

expectations as M̂ (𝚯) =
{
�̂�

(
𝜽 (1)

)
, ..., �̂�

(
𝜽 (Nini)

)}T
. Denote the current sample size as N , where360

N = Nini at present.361

Step 2: Optimization for finding 𝜽+min. This step involves first training a noisy GP model362

of 𝑚 (𝜽) based on the current training set D such that 𝑚N (𝜽) ∼ GP
(
𝜇N (𝜽) , 𝜎2

N (𝜽)
)
. The363

training of noisy GP model is realized by using the fitrgp function in the Matlab “Statistic364
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and Machine Learning Toolbox", where the initial value for the noise standard deviation 𝜎𝜖 is365

set to be 0.002. Then, the current best lower bound 𝜇N
(
𝜽⋆min

)
is specified by 𝜇N

(
𝜽⋆min

)
=366

min
{
𝜇N

(
𝜽 (1)

)
, 𝜇N

(
𝜽 (2)

)
, ..., 𝜇N

(
𝜽 (N)

)}
. The new update point 𝜽+min is selected from the hyper-367

rectangle
[
𝜽 , 𝜽

]
by maximizing EI over 𝜇N

(
𝜽⋆min

)
, where the EO algorithm is employed.368

Step 3: Check the stopping criterion 1. To accommodate stochastic evaluations, criterion 1 in369

Eq. (12) is checked by three times successively. If the criterion 1 is satisfied, end the updating370

process and output the current D as the initial training set for upper bound optimization; otherwise,371

go to step 4.372

Step 4: Evaluation of the response expectation at 𝜽+min. The response expectation at the373

new update point 𝜽+min, i.e., �̂�
(
𝜽+min

)
, is evaluated by the UT according to Eq. (19). A total of374

𝑁𝑞 = 2𝑛𝑠 + 1 sigma points and corresponding weights involved in UT are generated by Eq. (18).375

Step 5: Enrichment of the training dataset. The new update point 𝜽+min and corresponding376

expectation value �̂�
(
𝜽+min

)
are added into the training set D. Then, set N = N + 1 and go to Step377

2 to perform a new round of optimization.378

TEST EXAMPLES379

In this section, four test examples are investigated to verify the feasibility of the proposed380

method. In all cases, the size of initial training dataset takes Nini = min {2𝑛𝜃 , 10}, and the stopping381

tolerances for both lower bound and upper bound estimations take E1 = E2 = E = 0.002. To382

illustrate the advantages of the proposed method, two existing optimization-integration methods,383

i.e., OSGNI (Liu et al. 2019) and OUDRM (Liu et al. 2018), are performed for comparison in384

all examples. Both of these two methods employ the fmincon algorithm with sequential quadratic385

programming (SQP) method in Matlab for searching the optimal distribution parameters in the386

optimization process, where the termination tolerances for first-order optimality and step size are387

set to be 10−6. At a certain set of distribution parameters, the OSGNI adopts the sparse grid388

numerical integration method (SGNI) (Heiss and Winschel 2008) using the nested quadrature389

rule with Gaussian weights to evaluate the response expectation, where the accuracy level 𝑘acc390

representing the order of polynomial used for fitting is prescribed. The OUDRM employs the391
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univariate dimension reduction method (UDRM) (Rahman and Xu 2004) for expectation estimation,392

in which the number of Gauss-Hermite points used, denoted as 𝑁G, is given in advance. For all393

examples, 𝑘acc = 3 and 𝑁G = 6, unless otherwise specified in the example. Furthermore, in the first394

two examples, we also compare the results obtained by DLMCS (Bruns and Paredis 2006) method,395

Vertex-MCS (Dong and Shah 1987) method, and OPS (Bruns and Paredis 2006) method. Note396

that the outer loop of OPS is also performed by adopting MATLAB function fmincon with SQP397

algorithm, while the inner loop of OPS employs the MCS with 104 runs. All the above methods398

are implemented in MATLAB on the same computer with Intel Core i7-11800H at 2.30 GHz and399

32GB of RAM.400

Example 1: a two-dimensional toy example401

A two-dimensional toy example is first investigated, whose response function is given by:402

𝑦 = 𝑔 (𝑥1, 𝑥2) = 1 + (𝑥1 − 1)3

9
+ (𝑥2 − 1)3

16
, (22)403

where 𝑥1 and 𝑥2 are both Gaussian random variables with non-deterministic distribution parameters,404

i.e., mean and standard deviation. The mean parameters of 𝑥1 and 𝑥2, denoted as 𝜇1 and 𝜇2, take405

the same interval value [−1, 3]. And both the standard deviation parameters of 𝑥1 and 𝑥2, i.e., 𝜎1406

and 𝜎2, are set as [0.5, 3].407

In this example, the lower and upper bounds of response expectation are estimated by the analyt-408

ical method, DLMCS, Vertex-MCS, OPS, OSGNI, OUDRM and the proposed method. Since this409

example is simple, the OUDRM employs the UDRM using 𝑁G = 2 Gauss-Hermite points in the410

inner loop. To examine the robustness, each method is repeatedly performed 10 times. The average411

results obtained by each method and the corresponding average total number of response function412

calls (denoted as 𝑁) are presented in Table 2, along with the average number of simulations associ-413

ated with the lower and upper bounds (denoted as 𝑁𝐿 and 𝑁𝑈). Additionally, the coefficients of vari-414

ation (COVs) for the estimated bounds are reported. The analytical solution of response expectation415

can be easily derived as 𝜇true = 1+ 1
9 (𝜇1 − 1)

[
(𝜇1 − 1)2 + 3𝜎1

2] + 1
16 (𝜇2 − 1)

[
(𝜇2 − 1)2 + 3𝜎2

2] ,416
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which provides the analytical lower and upper bounds of response expectation as 𝑚 = −9.7639 and417

𝑚 = 11.7639, respectively. Note that since the UT has third-order algebraic accuracy, the response418

expectation estimated using the UT should be accurate for any given set of distributed parameters419

in this example. Compared with the analytical results, the proposed method obtains both the lower420

and upper bounds of response expectation in a robust and accurate manner. On average, only a421

total of 𝑁 = 𝑁L + 𝑁U = 76 + 27 = 103 response function calls are required, where Nini is included422

in 𝑁L. The OSGNI and OUDRM enable to provide quite accurate bound results, however, these423

two existing methods require more response function calls compared with the proposed method.424

In this sense, more computational efforts are required by the OSGNI and OUDRM. In addition,425

as observed from Table 2, the Vertex-MCS and OPS are able to give relatively accurate bounds,426

but both require more than one million samples, which is considerably expensive. Unfortunately,427

the traditional and widely used DLMCS is unable to obtain accurate lower and upper bounds on428

response expectation. Besides, the COVs of DLMCS results are larger than those by other methods.429

Example 2: a 120-bar spatial truss structure430

Example 2 investigates a 120-bar spatial truss structure subjected to seven vertical nodal loads431

(Dang et al. 2021), shown in Figure 2. In this figure, the nodes that bear vertical loads are marked432

with red circles and numbers. The vertical displacement of the top node of this structure is of433

interest in this example, which is analyzed by a finite element software, OpenSees. Each member is434

modeled as a truss element. A total of 48 nodes and 120 elements are involved in the finite element435

model. The Young’s modulus 𝐸0, cross-sectional area of element 𝐴 and seven vertical nodal loads436

(i.e., 𝑃0, 𝑃2, 𝑃4, 𝑃6, 𝑃8, 𝑃10, 𝑃12) are considered as input variables. Among them, 𝐸0, 𝐴 and 𝑃0 are437

p-box variables, and 𝑃2, 𝑃4, 𝑃6, 𝑃8, 𝑃10 and 𝑃12 are aleatory variables. The description of these438

nine input variables is provided in Table 3.439

In this example, the expectation bounds of the response of interest are estimated by the Vertex-440

MCS, DLMCS, OPS, OSGNI, OUDRM and the proposed method, where the corresponding results441

are given in Table 4. We take the result obtained by the Vertex-MCS as the reference. As observed,442

the lower and upper response expectation bounds by the proposed method accord fairly well with443
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the reference bounds. In addition, only 𝑁 = 𝑁𝐿 + 𝑁𝑈 = 247 + 57 = 304 response function calls are444

required in the proposed method, which is within affordable computational limits. Unfortunately,445

other selected double-loop methods, i.e., the DLMCS, OPS, OSGNI and OUDRM, can only provide446

narrower bounds on the response expectation but require much more computational efforts.447

Example 3: a jet engine turbine blade448

The third example consists of a jet engine turbine blade under pressure loading, as illustrated in449

Fig. 3a (MATLAB 2022). The turbine blade is governed by two mechanical boundary conditions,450

namely the pressure loads 𝑃1 and 𝑃2 on the pressure and suction sides caused by the surrounding451

high-pressure gases, and the fixed Dirichlet boundary condition on the left side. The model is452

discretized by adopting the linear tetrahedral elements with maximum element size as 0.01 m, as453

shown in Fig. 3b. A total of 21252 nodes and 11794 elements are involved. This turbine blade is454

assumed to be made by the nickel-based alloy (NIMONIC 90) material, where the Young’s modulus,455

coefficient of thermal expansion and Poisson’s ratio are represented by 𝐸 , 𝛼 and 𝜈, respectively.456

Here, the maximum von Mises stress of the turbine blade caused by high pressure from surrounding457

gases is the response of interest, which can be obtained by performing linear stress analysis using458

the Matlab Partial Differential Equation (PDE) Toolbox (MATLAB 2022). Five p-box variables,459

i.e., {𝐸, 𝛼, 𝜈, 𝑃1, 𝑃2}, are considered in this example, of which the mean and standard deviation460

parameters are all bounded by intervals. The detailed description of these p-box variables is listed461

in Table 5. Fig. 3c shows a resultant von Mises stress nephogram obtained by performing one462

structural analysis with all input variables to be fixed at the midpoint of their mean parameter463

intervals. As seen, the maximum von Mises stress happens at the tip of the turbine blade.464

The OSGNI, OUDRM, Vertex-MCS and proposed method are employed in this example to465

estimate the lower and upper bounds of response expectation, whose results are provided in Table466

6. It can be observed that the proposed method is able to obtain the response expectation bounds467

that are almost identical to those by the Vertex-MCS. However, much fewer response function468

calls (specifically 𝑁 = 143 + 33 = 176) are required by the proposed method, indicating that the469

proposed method has comparable accuracy but higher computational efficiency. In comparison,470
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the OSGNI and OUDRM give narrower response expectation bounds but cost considerably larger471

computational efforts. Note that although this example involves only linear stress analysis, the large472

number of discrete elements results in a relatively long time for one evaluation of the response.473

We record the total computational times for all the methods implemented in this example, which474

are also given in Table 6. It is found that the proposed method takes much less time than OSGNI,475

OUDRM, and Vertex-MCS. Thus, it indicates that the proposed method is more computationally476

efficient for this example.477

Example 4: a crash box in the vehicle478

Last example investigates the frontal impact problem of a crash box impacted by a moving479

planar impactor. The crash box is an important energy absorbing component installed at the front480

of the vehicle, which determines the crashworthiness and ensures the safety of the vehicle. A481

quarter of a symmetric crash box (Reid 1998) shown in Fig. 4 is considered in this example,482

which is analyzed by the LS-DYNA software in symmetric multiprocessing (SMP) version. The483

crash box is built as a tube with an uncertain shell thickness 𝑡, and adopts a steel-like material484

modeled by a piecewise linear plastic model with Possion’s ratio as 0.3, yield strength as 207 MPa,485

mass density as 7830 kg/m3, strain rate model as Cowper-Symmonds with parameter 𝐶 = 40486

and 𝑝 = 5, and an uncertain Young’s modulus 𝐸 . The lower end of the crash box is fixed. A487

planar impactor, modeled as a rigid wall with imprecisely known mass 𝑀wall and initial velocity488

𝑣wall, crushes the crash box from the top downwards. Three triggers are applied to the crash box489

in order to achieve desired energy absorption and deformation pattern. The LS-DYNA keyword490

∗𝐶𝑂𝑁𝑇𝐴𝐶𝑇_𝐴𝑈𝑇𝑂𝑀𝐴𝑇𝐼𝐶_𝑆𝐼𝑁𝐺𝐿𝐸_𝑆𝑈𝑅𝐹𝐴𝐶𝐸 is applied to formulate the contact between491

the impactor and the crash box. The simulation is terminated when the impactor stops moving492

or the total time reaches 15.01 ms. This example involves a total of 4 p-box variables with493

8 imprecise distribution parameters, i.e., {𝑀wall, 𝑣wall, 𝐸, 𝑡}, whose detailed description is listed494

in Table 7. Fig. 4c shows the deformation of the crash box under rigid wall impact, where495

{𝑀wall, 𝑣wall, 𝐸, 𝑡} = {800 kg, 8.94 m/s, 200 GPa, 2 mm}. As observed, the impacted crash box496

deforms in a folding mode without global bending, showing its good ability to absorb the impact497
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energy. In addition, under the same input conditions, the force-displacement curve of the rigid wall498

in the negative Z direction is illustrated in Fig. 5, which indicates that the investigated crash box499

undergoes irreversible nonlinear buckling deformation, and has a relatively strong nonlinearity.500

The output response of interest is the average force of the complete force-displacement curve501

measured at the rigid wall. Note that this example also requires a long computational time502

to perform a simulation. In order to demonstrate the effectiveness of the proposed method, a503

comparison is made between the results obtained from the proposed method, the Vertex-MCS,504

OSGNI and UDRM, as summarized in Table 8, alongside the respective total computational times.505

As observed, the proposed method enables to provide lower and upper bounds on the expectation of506

the averaged rigid wall force that are quite close to those of Vertex-MCS, while the proposed method507

requires much fewer response function calls, specifically 𝑁 = 162 + 63 = 225. In comparison,508

OSGNI and OUDRM produce narrower response expectation bounds but require a larger number509

of simulations. Moreover, the computational time for the proposed method is 2134.01 s, while the510

Vertex-MCS, OSGNI and OUDRM require 13245.27 s and 6639.07 s, respectively. Hence, this511

example illustrates that the proposed method can be applied not only to linear and weakly nonlinear512

problems, but also to problems with relatively strong nonlinearity.513

CONCLUDING REMARKS514

In this paper, an efficient optimization-integration method is developed for estimating the515

lower and upper bounds of response expectation for linear and moderately nonlinear problems516

with inputs characterized by parametric p-boxes. The proposed method combines the Bayesian517

global optimization (BGO) with a highly efficient numerical integration method named unscented518

transform (UT), to sequentially evaluate lower and upper bounds on response expectations. An519

adaptively refined noisy Gaussian process (GP) model is adopted to explore the space of distribution520

parameters considering the approximation error introduced by UT. Besides, the sequential design521

strategy of BGO allows the proposed method to reuse the samples generated by the lower bound522

estimation in the upper bound estimation. In the process of response expectation at a given set of523

distribution parameters, the UT is quite efficient and can obtain the estimates of response expectation524
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up to third accuracy. Four test examples are investigated to demonstrate the applicability to both525

linear and moderately nonlinear problems. For all of these examples, the results obtained by the526

proposed method use a reasonable number of response function calls. In addition, the resultant527

response expectation bounds are almost the same as the provided reference results, showing the528

effectiveness of the proposed method. Compared with some existing double-loop methods such529

as DLMCS, Vertex-MCS, OPS, OSGNI and OUDRM, the proposed method is able to acquire530

the results with acceptable accuracy and higher computational efficiency. It can also be observed531

from the four test examples that the accuracy of the proposed method is mainly affected by the532

complexity and nonlinearity of the problem at hand. For simpler problems, increasing the level533

of epistemic uncertainty does not affect the accuracy, while for more complex problems, a higher534

level of epistemic uncertainty tends to have a greater impact on the accuracy of the results.535

Admittedly, since the approximated expectation by the UT has only up to third order accuracy,536

the proposed method is not suitable for addressing strong nonlinear problems and evaluating537

higher-order response moments. To mitigate this, we are actively exploring alternative numerical538

integration methods, such as the mixed degree cubature scheme (He et al. 2022), to capture higher-539

order moments within our framework. Besides, the BGO in the optimization process still suffers540

from the so-called “curse of dimensionality" problem, i.e., it may perform poorly for problems with541

more than 20 dimensions. Future work will focus on a time-saving method for evaluating bounds542

on higher-order response moments that is applicable to higher dimensional and stronger nonlinear543

problems.544
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TABLE 1. List of acronyms

Acronym Definition
BGO Bayesian global optimization
CABO Collaborative and adaptive Bayesian optimization
COV Coefficient of variation
DLMCS Double-loop Monte Carlo simulation
EI Expected improvement
EMCS Extended Monte Carlo simulation
EO Equilibrium optimizer
GP Gaussian process
MCS Monte Carlo simulation
NIPI Non-intrusive imprecise probabilistic integration
NISS Non-intrusive imprecise stochastic simulation
OPS Optimized parameter sampling
OSGNI Optimized sparse grid numerical integration method
OUDRM Optimized univariate dimension-reduction method
p-box Probability box
PBQO Parallel Bayesian quadrature optimization
PDE Partial differential equation
PDF Probability density function
SGNI Sparse grid numerical integration method
SMP Symmetric multiprocessing
SQP Sequential quadratic programming
UDRM Univariate dimension-reduction method
UT Unscented transform
Vertex-MCS Vertex-based Monte Carlo simulation
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TABLE 2. Comparison of results by different methods (Example 1)

Method 𝑚 COV of 𝑚 𝑚 COV of 𝑚 𝑁

Analytical −9.7639 - 11.7639 - -
Vertex-MCS −9.7318 0.79% 11.7839 0.47% 16 × 105

DLMCS −8.1585 4.75% 9.8238 5.97% 104 × 104

OPS −9.8778 0.37% 11.6531 0.29% (896 + 1063) × 104 = 1.959 × 107

OSGNI −9.7639 0.00% 11.7639 0.00% 270 + 270 = 540
OUDRM −9.7639 0.00% 11.7639 0.00% 140 + 27 = 167
Proposed −9.7639 0.00% 11.7639 0.00% 76 + 27 = 103

Note: COVs relates to the coefficients of variation; for DLMCS and vertex-MCS, 𝑁 = 𝑁L × 𝑁U;
for OPS, OSGNI, OUDRM and proposed method, 𝑁 = 𝑁L + 𝑁U.
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TABLE 3. Description of input variables (Example 2)

Variable Unit Description Distribution Mean Standard deviation
𝐸0 MPa Young’s modulus Truncated Normal [164800, 247200] [2060, 10300]
𝐴 mm2 Cross section area Truncated Normal [900, 1100] [1, 5]
𝑃0 kN Vertical load Lognormal [180, 220] [2, 10]
𝑃2 kN Vertical load Lognormal 200 2
𝑃4 kN Vertical load Lognormal 200 2
𝑃6 kN Vertical load Lognormal 200 2
𝑃8 kN Vertical load Lognormal 200 2
𝑃10 kN Vertical load Lognormal 200 2
𝑃12 kN Vertical load Lognormal 200 2

Note: Trancated Normal means the values are all positive.

31 Ding, October 19, 2023



TABLE 4. Comparison of results by different methods (Example 2)

Method 𝑚 (MPa) 𝑚 (MPa) 𝑁

Vertex-MCS 25.2309 51.1475 64 × 104

DLMCS 25.9681 49.2774 103 × 104

OPS 27.8320 46.2661 (57 + 75) × 104 = 132 × 104

OSGNI 27.8153 46.2762 1304 + 1304 = 2608
OUDRM 27.8153 46.2762 432 + 368 = 800
Proposed 25.2393 51.1061 247 + 57 = 304
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TABLE 5. Description of input variables (Example 3)

Variable Unit Description Distribution Mean Standard deviation
𝐸 Pa Young’s modulus Truncated Normal [204.3, 249.7] × 109 [227, 1135] × 109

𝛼 1/K Coefficient of thermal expansion Truncated Normal [1.143, 1.397] × 10−5 [1.270, 6.350] × 10−7

𝜈 - Poisson’s ratio Truncated Normal [0.243, 0.297] [0.270, 1.350] × 10−2

𝑃1 Pa Pressure load Truncated Normal [45, 55] × 104 [5, 25] × 103

𝑃2 Pa Pressure load Truncated Normal [405, 495] × 103 [45, 225] × 102
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TABLE 6. Comparison of results by different methods (Example 3)

Method 𝑚 (MPa) 𝑚 (MPa) 𝑁 CPU time
Vertex-MCS 93.8542 118.8419 1024 × 103 804115.49 s
OSGNI 97.0640 115.0664 1122 + 1122 = 2244 7464.80 s
OUDRM 97.0640 115.0664 660 + 572 = 1232 5402.62 s
Proposed 94.1447 118.6347 143 + 33 = 176 821.28 s

Note: CPU time represents the total computational time.
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TABLE 7. Description of input variables (Example 4)

Variable Unit Description Distribution Mean Standard deviation
𝑀wall kg Mass of the rigid wall Truncated Normal [760, 840] [8, 40]
𝑣wall m/s Velocity of the rigid wall Truncated Normal [8.10, 9.90] [0.09, 0.45]
𝐸 GPa Young’s modulus Truncated Normal [195, 205] [2, 10]
𝑡 mm shell thickness Truncated Normal [1.90, 2.10] [0.02, 0.10]
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TABLE 8. Comparison of results by different methods (Example 4)

Method 𝑚 (kN) 𝑚 (kN) 𝑁 CPU time
Vertex-MCS 7.7243 9.4776 256 × 102 166403.64 s
OSGNI 8.0823 9.2635 1353 + 297 = 1650 13245.27 s
OUDRM 8.0893 9.2379 672 + 216 = 888 6639.07 s
Proposed 7.8018 9.4252 162 + 63 = 225 2134.01 s
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Figure 1: Flowchart of the proposed methodFig. 1. Flowchart of the proposed method
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Fig. 2. Diagram of 120-bar spatial frame
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(a) Geometry of the turbine blade (dimen-
sions in m) (b) Meshed model of the turbine blade

(c) Von Mises stress nephogram of struc-
tural analysis

Fig. 3. Geometry, mesh diagram and von Mises stress nephogram of the jet engine turbine blade
under pressure loads
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(a) Front view of the meshed model (b) Right view of the meshed model

(c) Deformation of the crash box under planar rigid
wall impact

Fig. 4. Front and right view of the meshed model of a quarter of the crash box, and the deformation
of the crash box under planar rigid wall impact
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Fig. 5. Force-displacement curve of the planar impactor in the negative Z direction
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