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Abstract 18 

In geotechnical engineering, an appreciation of local geological conditions from similar sites 19 

is beneficial and can support informed decision-making during site characterization. This 20 

practice is known as “site recognition”, which necessitates a rational quantification of site 21 

similarity. This paper proposes a data-driven method to quantify the similarity between two 22 

cross-sections based on the spatial variability of one soil property from a spectral perspective. 23 

Bayesian compressive sensing (BCS) is first used to obtain the discrete cosine transform (DCT) 24 

spectrum for a cross-section. Then DCT-based auto-correlation function (ACF) is calculated 25 

based on the obtained DCT spectrum using a set of newly derived ACF calculation equations. 26 

The cross-sectional similarity is subsequently reformulated as the cosine similarity of DCT-27 

based ACFs between cross-sections. In contrast to the existing methods, the proposed method 28 

explicitly takes soil property spatial variability into account in an innovative way. The 29 

challenges of sparse investigation data, non-stationary and anisotropic spatial variability, and 30 

inconsistent spatial dimensions of different cross-sections are tackled effectively. Both 31 

numerical examples and real data examples from New Zealand are provided for illustration. 32 

Results show that the proposed method can rationally quantify cross-sectional similarity and 33 

associated statistical uncertainty from sparse investigation data. The proposed method 34 

advances data-driven site characterization, a core application area in data-centric geotechnics. 35 

 36 
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1. Introduction 40 

Reliable site characterization is a cornerstone of effective geotechnical designs and 41 

construction safety. However, it is often subject to significant uncertainty due to the spatially 42 

variable geological conditions and a sparsity of investigation points (e.g., boreholes, in-situ 43 

tests). In practice, to supplement limited knowledge at a target site and to mitigate the resultant 44 

uncertainty, engineers usually attempt to refer to and review available information (e.g., 45 

interpreted soil cross-sections) of previous construction sites in the neighborhood where 46 

geological conditions are expected to be similar to the target project site. This practice is also 47 

known as “site recognition” which helps engineers to better understand the site-specific 48 

features at the target site and plays an important role in data-driven site characterization and 49 

informed decision-making in the presence of inter-site variabilities (e.g., Fenton, 1999b; Phoon 50 

et al., 2022; Yang et al., 2022; Phoon and Zhang, 2023; Shi et al., 2023; Zhao et al., 2023). 51 

Consider, for example, a two-dimensional (2D) soil property cross-section, which has 52 

been commonly adopted in practical engineering designs and analyses for explicitly 53 

representing site geological conditions along both depth and horizontal directions. 54 

Interpretation of a target 2D cross-section may be underpinned and supplemented by referring 55 

to 2D cross-section interpretations available from other pre-existing and documented 56 

construction sites. To this end, before introducing knowledge from other 2D cross-sections to 57 

inform decision making at a target site, it is desirable to assess the similarity between the target 58 

2D cross-section and the other available 2D cross-sections. Geotechnical engineers primarily 59 

do this qualitatively, because there are no quantitative methods that are tractable/effective in 60 

the presence of sparse and incomplete data to name a few data attributes. From a geotechnical 61 

engineering viewpoint, 2D cross-sectional similarity shall be closely related to the similarity 62 

of corresponding 2D soil property spatial variability, which is a natural product of complicated 63 

geological formation processes (e.g., erosion, weathering, deposition) undergone by the 64 
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corresponding sites (e.g., Fenton, 1999a; Phoon and Kulhawy, 1999; Baecher and Christian, 65 

2003; Juang et al., 2019; Wang et al., 2022). However, a direct and quantitative comparison of 66 

spatial variability in different 2D cross-sections is challenging because of the following issues: 67 

(1) the available site investigation data (e.g., borehole and in-situ test data) in both a target 2D 68 

cross-section and existing 2D cross-sections are usually sparse and are often not measured over 69 

an identical sampling grid (e.g., Xu et al., 2021; Guan and Wang, 2023). It is unlikely that the 70 

site investigation plans for two sites are identical (e.g., boreholes or CPT soundings layout). 71 

Therefore, classical statistical correlation analysis may not be applicable to quantify the 72 

similarity between two such cross-sections; (2) spatial variability in 2D cross-sections may 73 

exhibit non-stationary trends and spatial variability anisotropy. Accurate identification of the 74 

underlying trend and spatial variability anisotropy for different cross-sections is critical for 75 

cross-sectional similarity quantification, but challenging in the presence of sparse data (e.g., 76 

Ching and Phoon, 2017; Ching et al., 2017; Hu et al., 2019; Wang et al., 2019; Ching et al., 77 

2020; Shuku et al., 2020; Yoshida et al., 2021; Ching et al., 2022; Katsman and Painuly, 2022); 78 

and (3) the dimensions of different 2D cross-sections along depth and horizontal directions are 79 

often different due to projects occupying different footprints and extending to different depths. 80 

Directly comparing 2D cross-sections with different spatial dimensions is often a tricky task 81 

(e.g., Shechtman and Irani, 2007; Simakov et al., 2008; Shi and Wang, 2021b). Therefore, how 82 

to quantitatively evaluate the similarity between two given 2D cross-sections from their sparse 83 

site investigation data measured over different grids and covering different spatial dimensions 84 

remains unsolved. 85 

Recently, the topic of site similarity, or site retrieval, has been investigated from 86 

different perspectives. For example, Ching and Phoon (2020) proposed a Bayesian method for 87 

measuring similarity between data records (e.g., two or more soil parameter values at a location 88 

and or depth) at a target site and data records from other sites. Sharma et al. (2022) further 89 
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developed a novel hierarchical Bayesian model for measuring similarity between the target site 90 

and database sites, achieving site similarity quantification beyond solely data record similarity. 91 

Phoon and Ching (2022) presented a summary of different methods for similarity measures. 92 

Their frameworks focused on the MUSIC data attributes framework (Multivariate, Uncertain 93 

and Unique, Sparse, Incomplete, and potentially Corrupted) (e.g., Phoon et al., 2022) and 94 

treated the likelihood function of past data records given site-specific data records as an index 95 

of the similarity. Only cross correlations between different soil parameters are considered. The 96 

spatial variability of a soil parameter was not considered in these studies, although it was 97 

recognized as a critical aspect. In addition, Han et al. (2022) used confidence ellipses to 98 

quantify the similarity of soil parametric data using existing databases. Their framework 99 

required abundant data over identical depth ranges to be compiled at every site. The 100 

performance was highly dependent on the specific volume of available data at different depths. 101 

More importantly, the geotechnical spatial variability might not be fully preserved after 102 

preprocessing of the data. Shi and Wang (2021a, 2021b) proposed to use training images to 103 

incorporate and summarize past geological knowledge on stratigraphy and to quantify the site 104 

similarity by measuring the similarity of edge orientation statistics of soil layer boundaries 105 

between site-specific borehole data and geological training images. The spatial variability of 106 

soil property was not considered. Currently, there is no rational method available for 107 

quantifying similarity between 2D cross-sections of soil property from sparse site investigation 108 

data with explicit consideration of spatial variability. 109 

This paper proposes a novel method for data-driven quantification of 2D cross-sectional 110 

similarity from a spectral perspective. This paper attempts to fill an important gap in the site 111 

recognition challenge (e.g., Phoon et al., 2022). A non-parametric method called Bayesian 112 

compressive sensing (BCS) is used to directly approximate the sparse spectrum of 2D cross-113 

section. A new efficient and robust formulation of 2D auto-correlation function (ACF) is 114 
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derived for a unified representation of 2D spatial variability based on a sparse spectrum 115 

approximated by BCS. The 2D cross-sectional similarity is then quantified by the similarity 116 

between ACFs of the corresponding 2D cross-sections. In contrast to current methods in the 117 

literature, cross-sectional similarity quantification in this study deals explicitly with soil 118 

property spatial variability. Theoretical derivation suggests that the spatial variability patterns 119 

in a 2D cross-section, either stationary or non-stationary, spatially isotropic or anisotropic, can 120 

be quantified concisely by 2D ACF. The three challenges highlighted above are solved by the 121 

proposed method. The proposed method also has significant practical relevance in geotechnical 122 

site recognition. For example, given a global geotechnical database (e.g., Ching et al., 2023) 123 

containing a wealth of information from different sites, the proposed method can efficiently 124 

pick up a limited number of similar and informative records for a target site, which is also 125 

referred to as a “quasi-regional clustering” strategy (e.g., Phoon and Ching, 2022; Guan et al., 126 

2023b). 127 

The rest of this paper is organized as follows. Section 2 briefly illustrates the 128 

background and practical significance of 2D cross-sectional similarity using real examples. 129 

The proposed method for data-driven quantification of 2D cross-sectional similarity from 130 

sparse site investigation data is described in Section 3. The implementation procedure is 131 

provided in Section 4, followed by illustrative examples in Section 5. In Section 6, a real case 132 

study is used to demonstrate the application of the proposed method. 133 
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 134 

Figure 1. A layout of cone penetration tests (CPTs) performed in two cross-sections in 135 

Christchurch, New Zealand (NZGD, 2023) 136 

2. Similarity between two 2D cross-sections of a soil property 137 

A 2D cross-section in this study refers to 2D spatial variability of one soil property within a 138 

single soil layer. To illustrate the 2D soil property cross-sectional similarity, Figure 1 shows a 139 

map with a layout of 15 cone penetration tests (CPTs) performed in Christchurch, New Zealand. 140 

The CPTs data are obtained from the New Zealand Geotechnical Database (e.g., NZGD, 2023). 141 

In Figure 1, the CPTs are denoted by yellow triangles and numbered from #1 to #15. It is seen 142 

that these CPTs were performed at two separate sites, i.e., Site 1 and Site 2, respectively. Eight 143 

CPTs (CPT #1 to CPT #8) were performed in Site 1 (see the left-hand side of Figure 1), while 144 

seven CPTs (CPT #9 to CPT #15) were carried out in Site 2 (see the right-hand side of Figure 145 

1). The actual IDs of these CPTs used in the NZGD database are also provided in the map. 146 

Note that the CPTs at these two sites are roughly laid alone a straight line, leading to two cross-147 

sections denoted by two red dashed lines. Engineers may assess the cross-sections at Site 1 and 148 

Site 2 to be similar since the distance between the two cross-sections is only roughly 700m. 149 

Figures 2a and 2b show the corrected cone resistance (qt) data of available CPTs by color-150 

coded columns in the two cross-sections, respectively. It appears that the general patterns of qt 151 
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data at Sites 1 and 2 are comparable, both with qt values fluctuating but generally increasing 152 

with depth. For example, as shown in Figures 2c and 2d, the qt profiles of CPT #2 (CPT_50725) 153 

from Site 1 and CPT #11 (CPT_35561) from Site 2 exhibit comparable variation patterns. 154 

Between these two specific 1D qt profiles, similarity quantification can be conducted directly 155 

and readily. Mathematically, this may be routinely achieved by calculating the cross-156 

correlation between these two 1D qt profiles after re-configuring the data with an identical 157 

sampling interval, or by comparing the corresponding estimated spectrum of these two qt 158 

profiles (e.g., Priestley, 1981; Dai et al., 2022; Guan and Wang, 2023). However, it is very 159 

challenging to quantify the qt data cross-sectional similarity between Site 1 and Site 2, as shown 160 

in Figures 2a and 2b. This real example clearly demonstrates the three challenges for direct 161 

quantification of 2D cross-sectional similarity mentioned above in concrete terms. First, in 162 

Figures 2a and 2b, the available CPT soundings are sparse within these two cross-sections with 163 

non-uniform horizontal spacing and sounding depths. Second, the qt data shown in these two 164 

cross-sections exhibit evidence of non-stationarity and spatial variability anisotropy. Third, 165 

these two cross-sections have different spatial dimensions. The cross-section of Site 1 has a 166 

length of around 145m, while the cross-section of Site 2 has a length of 245m. The challenges 167 

highlighted above cannot be addressed by existing methods in literature (e.g., Ching and Phoon, 168 

2020; Han et al., 2022). This next section addresses these challenges by proposing a novel data-169 

driven approach. 170 
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 171 

 172 
Figure 2. Illustration of CPT example: (a) Cross-section of Site 1; (b) Cross-section of Site 2; 173 

(c) qt data profile of CPT #2 from Site 1; and (d) qt data profile of CPT #11 from Site 2 174 
 175 
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3. Proposed method for quantification of cross-sectional similarity 176 

The concept for quantification of cross-sectional similarity is to treat soil property cross-177 

sections as images and then compare them from a spectral perspective. Note that image spectral 178 

analysis is able to identify non-stationary patterns, spatial variability anisotropy, and spatial 179 

shift-invariant patterns (e.g., Shalvi and Weinstein, 1996; Wen and Gu, 2004; Blumensath and 180 

Davies, 2006). The results of image spectral analysis are also independent of image dimension. 181 

In the proposed method, the following two steps shall be performed before similarity 182 

quantification. First, Bayesian compressive sensing (BCS) is adopted to obtain the discrete 183 

cosine transform (DCT) spectrum of a 2D soil property cross-section directly from sparse data. 184 

It has been shown in past research that BCS can deal with non-stationarity (e.g., Wang et al., 185 

2019; Zhao and Wang, 2020), spatial variability anisotropy of soil property (e.g., Hu et al., 186 

2019), and the associated statistical uncertainty quantification (e.g., Wang et al., 2022). Second, 187 

to tackle the difficulty in comparing target 2D cross-sections with different dimensions, a novel 188 

and efficient 2D DCT-based ACF is developed to facilitate a unified representation of 2D soil 189 

property spatial variability. The DCT-based ACF is utilized in this study as a data-driven 190 

surrogate to represent 2D cross-sections and enables direct pattern comparison between cross-191 

sections with different spatial dimensions. Subsequently, cross-sectional similarity is 192 

quantified by DCT-based ACF similarity between two cross-sections. Details of the proposed 193 

method are elaborated in the following three subsections. The approximation of sparse DCT 194 

spectrum by BCS will be described in Subsection 3.1. A unified representation of 2D spatial 195 

variability using DCT-based ACF is then derived in Subsection 3.2. Quantification of DCT-196 

based ACF similarity is established in Subsection 3.3. 197 

3.1. Approximation of DCT spectrum from sparse data using BCS 198 

Compressive sensing (CS) is a technique for efficiently acquiring and reconstructing signals or 199 

images (e.g., Candès et al., 2006; Donoho, 2006; Candès and Wakin, 2008). Utilizing the 200 
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sparsity featured by many signals or images after adopting appropriate basis functions, CS is 201 

able to reconstruct a signal or image from far fewer measurement data points than the number 202 

indicated by conventional Nyquist sampling theorem (e.g., Shannon, 1948; Candès et al., 2006). 203 

From a spectral perspective, complicated soil property spatial variability in terms of a 1D 204 

profile or 2D cross-section (or image) can be sparsely represented after transformation using 205 

basis functions. For example, the DCT functions, which have been widely used in digital signal 206 

processing and data compression (e.g., Rao and Yip, 1990; Wallace, 1992), are used to 207 

construct basis functions in this study. The commonly used type-II 1D DCT basis function is 208 

defined as: 209 

B𝑡𝑡(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

1
√𝑁𝑁

                                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1; 𝑥𝑥 = 1,2,⋯ ,𝑁𝑁

�2
𝑁𝑁
𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐

(𝑡𝑡 − 1)(2𝑥𝑥 − 1)
2𝑁𝑁

          𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 2,⋯ ,𝑁𝑁; 𝑥𝑥 = 1,2,⋯ ,𝑁𝑁
 (1) 

in which 𝑥𝑥 represents the 1D index (𝑥𝑥=1, 2, …, 𝑁𝑁); 𝑡𝑡 indicates the order of B𝑡𝑡(𝑥𝑥). In Figure 3, 210 

the first five DCT basis functions (i.e., 𝑡𝑡 = 1, 2, 3, 4, 5) with 𝑁𝑁 = 200 are illustrated by colored 211 

lines with different styles. The frequency of these DCT basis function B𝑡𝑡(𝑥𝑥) is controlled by 𝑡𝑡 212 

and increases with 𝑡𝑡. Based on the 1D DCT basis functions in Equation (1), 2D DCT basis 213 

functions may be constructed by a tensor product of two 1D DCT basis functions (e.g., Itskov, 214 

2007): 215 

B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2) = B𝑡𝑡(𝑥𝑥1) × B𝑠𝑠(𝑥𝑥2) (2) 

in which B𝑡𝑡(𝑥𝑥1) and B𝑠𝑠(𝑥𝑥2) are two basis functions along two directions, respectively; 𝑡𝑡 and 𝑐𝑐 216 

indicate the corresponding orders (𝑡𝑡=1, 2, …, 𝑁𝑁1; 𝑐𝑐=1, 2, …, 𝑁𝑁2). For example, Figure 4 217 

illustrates the construction process of 25 2D DCT basis functions B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2). Each 2D DCT 218 

basis function is constructed by a tensor product of two 1D DCT basis functions of the same 219 

length at each frequency (e.g., 𝑡𝑡, 𝑐𝑐=1, 2, 3, 4, 5). Using the 2D DCT basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 220 
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soil property spatial variability in a cross-section can be regarded as an image F with size 221 

𝑁𝑁1 × 𝑁𝑁2, which is formulated as (e.g., Tipping, 2001; Candès and Wakin, 2008): 222 

F(𝑥𝑥1,𝑥𝑥2) = ��𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)

𝑁𝑁2

𝑠𝑠=1

𝑁𝑁1

𝑡𝑡=1

 (3) 

in which F(𝑥𝑥1, 𝑥𝑥2) is the 2D spatial variability in the cross-section; 𝑥𝑥1, 𝑥𝑥2 are indexes along 223 

two directions, respectively (𝑥𝑥1=1, 2, …, 𝑁𝑁1; 𝑥𝑥2=1, 2, …, 𝑁𝑁2); 𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷 is the weight coefficient of 224 

B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2). The weight coefficients and their corresponding frequencies collectively form the 225 

DCT spectrum of F(𝑥𝑥1,𝑥𝑥2).  226 

 227 

Figure 3. Illustration of five 1D discrete cosine transform (DCT) basis functions 228 

 229 

Figure 4. Construction of 2D DCT basis functions from 1D DCT basis functions 230 
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The DCT spectrum enables an effective representation of variability patterns at various 231 

frequencies along two directions. Note that both non-stationarity and spatial variability 232 

anisotropy may be preserved by a combination of various B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)  with large weight 233 

coefficients and specific patterns (e.g., see various 2D DCT basis functions in Figure 4). In 234 

addition, due to the spatial correlation contained in soil property spatial variability, F(𝑥𝑥1,𝑥𝑥2), 235 

usually leads to a sparse representation in its DCT spectrum. In other words, most weight 236 

coefficients in Equation (3) have negligible magnitudes and only limited weight coefficients 237 

are significant, or non-trivial, after adopting proper basis functions (e.g., Candès and Wakin, 238 

2008; Zhao et al., 2018; Hu et al., 2019). It is therefore feasible to approximate those limited 239 

non-trivial weight coefficients in DCT spectrum using sparse data Y, which is expressed as: 240 

Y(𝑥𝑥1, 𝑥𝑥2) = ��𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷A𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)

𝑁𝑁2

𝑠𝑠=1

𝑁𝑁1

𝑡𝑡=1

 (4) 

in which Y(𝑥𝑥1, 𝑥𝑥2)  is the measured data points from F(𝑥𝑥1, 𝑥𝑥2) , and A𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)  are 241 

corresponding values extracted from the 2D basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)  based on the 242 

measurement locations. In the context of geotechnical site investigation, generally the number, 243 

𝑀𝑀 , of available measurement Y(𝑥𝑥1, 𝑥𝑥2) , is much smaller than the size of F(𝑥𝑥1,𝑥𝑥2)  (i.e., 244 

𝑁𝑁1 × 𝑁𝑁2), and this leads to an underdetermined system in Equation (4), which cannot be solved 245 

directly. Numerical algorithms, e.g., orthogonal matching pursuit (OMP), may be used to 246 

approximate the solution 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 in Equation (4) by minimizing the error between the measured 247 

data Y(𝑥𝑥1,𝑥𝑥2) and the estimated values at measured locations (e.g., Pati et al., 1993; Wang and 248 

Zhao, 2016). The idea of the OMP algorithm is to iteratively find out B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) that can well 249 

match the Y(𝑥𝑥1,𝑥𝑥2). However, since the available site investigation data Y(𝑥𝑥1, 𝑥𝑥2) are sparse, 250 

CS may not produce a perfect reconstruction of the spatial variability F(𝑥𝑥1,𝑥𝑥2) , and the 251 

approximated 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷  contain significant statistical uncertainty. To quantify the associated 252 
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statistical uncertainty, CS may be integrated with the Bayesian framework (i.e., Bayesian 253 

compressive sensing, BCS) to estimate the non-trivial weight coefficients. In BCS, the prior of 254 

non-trivial weight coefficients is formulated as independent normal random variables with 255 

relatively large variance to achieve an uninformative prior. The posterior distribution of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 256 

also follows a normal distribution and can be solved efficiently by a Markov chain Monte Carlo 257 

(MCMC) simulation, leading to a series of random samples of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 (e.g., Zhao and Wang, 2020; 258 

Wang et al., 2022; Lyu et al., 2023). After repeatedly generating random samples of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 𝑁𝑁𝐵𝐵 259 

times, the best estimate of DCT spectrum can be approximated by taking the mean of 𝑁𝑁𝐵𝐵 260 

random samples of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷. In a MCMC simulation, the statistical independence of 𝑁𝑁𝐵𝐵 random 261 

samples of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 is guaranteed by taking only one sample in every larger number (e.g., 20 or 50) 262 

Markov chain samples as the random sample. The associated statistical uncertainty can be 263 

quantified using the standard deviation (SD) of 𝑁𝑁𝐵𝐵 samples. Another noteworthy advantage of 264 

BCS is that it is applicable to a non-uniform measurement grid, a scenario commonly 265 

encountered in site investigation (e.g., Zhao and Wang 2020; Guan et al., 2023a). Both the CS 266 

and BCS algorithms have been compiled into a user-friendly free download software which is 267 

available from the corresponding author’s website 268 

(https://sites.google.com/site/yuwangcityu/software-download/bayesian-compressive-269 

samplingsensing-bcs). The approximated DCT spectrum for the cross-section allows 270 

subsequent development of a unified representation of 2D spatial variability and quantification 271 

of a cross-sectional similarity. 272 

3.2. Unified representation of 2D spatial variability using DCT-based ACF 273 

Note that each weight coefficient 𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷  in DCT spectrum corresponds to a specific basis 274 

function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), which is defined over specific 𝑁𝑁1 and 𝑁𝑁2 (see Equations (1) and (2)). In 275 

other words, the DCT spectrum is relative to the dimension 𝑁𝑁1 and 𝑁𝑁2, which are essentially 276 
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determined by both the cross-section dimension and discretization resolution. This indicates 277 

that direct comparison of the DCT spectrums of spatial variability F(𝑥𝑥1, 𝑥𝑥2)  obtained in 278 

different 2D cross-sections may not be feasible. To this end, a unified representation of 2D 279 

spatial variability using DCT-based ACF is developed, which enables direct comparison 280 

between 2D cross-sections with different spatial dimensions. 281 

In signal processing, ACF is an effective tool for evaluating the correlation structure of 282 

signals (e.g., Vanmarcke, 2010; Onyejekwe et al., 2016). ACF essentially measures the 283 

correlation of a signal with a shifted version of itself. Mathematically, it describes how the 284 

correlation between two points varies as the lag distance between the two points changes. In 285 

the context of 2D cross-sectional spatial variability, ACF of F(𝑥𝑥1, 𝑥𝑥2) can be calculated as (e.g., 286 

Webster and Oliver, 2007; Vanmarcke, 2010): 287 

ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] =
𝐸𝐸��F(𝑥𝑥1,𝑥𝑥2) − 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)��F(𝑥𝑥1+𝜏𝜏1,𝑥𝑥2+𝜏𝜏2) − 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)��

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2  (5) 

in which 𝜏𝜏1, 𝜏𝜏2  are the lag distances along 𝑥𝑥1  and 𝑥𝑥2  directions, respectively; 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)  and 288 

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2) are the mean value and SD of all data points in F(𝑥𝑥1,𝑥𝑥2), respectively. Equation (5) 289 

does not assume stationarity. The ACF reflects the auto-correlation structure of 2D spatial 290 

variability with respect to its mean value. It is a normalized and non-parametric measure 291 

because it is normalized by the variance value and it is not fitted to any parametric function 292 

form. In many fields, ACF has been widely used to identify predominant patterns/frequencies 293 

embedded in the signals or images of interest (e.g., Priestley, 1981; Rafiee and Tse, 2009; 294 

Zhang et al., 2021). Mathematically, ACF is closely related to the spectrum, and they form a 295 

Wiener–Khinchin transform pair (e.g., Priestley, 1981). Although ACF may be used as a 296 

surrogate to represent patterns of 2D cross-sectional spatial variability, it is worth noting that 297 

calculating 2D ACF accurately and efficiently is usually difficult. Conventional approach of 298 

calculating 2D ACF using Equation (5) often yields instable ACF values at large lag distances 299 
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and may be subject to significant computational efforts when dealing with high-resolution 300 

images/matrices (e.g., Phoon and Fenton, 2004). To tackle this issue, this subsection derives a 301 

new efficient formulation of ACF based on the DCT spectrum obtained from BCS: 302 

ACF[F(𝑥𝑥1,𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
1

∑ ∑ 𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷2𝑁𝑁2

𝑠𝑠=1
𝑁𝑁1
𝑡𝑡=1

��𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷2

𝑁𝑁2

𝑠𝑠=1

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2�
𝑁𝑁1

𝑡𝑡=1

 

                                                                                                         (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(6) 

in which ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2�  is the ACF of B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) . Step-by-step derivation of 303 

Equation (6) is provided in Appendix. Equation (6) shows that the ACF of 2D spatial variability 304 

F(𝑥𝑥1,𝑥𝑥2) is a weighted summation of the ACFs of 2D DCT basis functions, which are functions 305 

of lag distances 𝜏𝜏1 and 𝜏𝜏2. The weight is the corresponding squared weight coefficient in DCT 306 

spectrum. Note that Equation (6) establishes a theoretical basis for the unified representation 307 

of 2D cross-sectional spatial variability, including non-stationarity and spatial variability 308 

anisotropy. Equation (6) can also be interpreted as a special case of covariance decomposition 309 

in traditional Karhunen-Loève expansion (e.g., Huang et al., 2001). Moreover, DCT-based 310 

ACF enables a direct and convenient comparison between different 2D cross-sections. Using 311 

𝑁𝑁𝐵𝐵 random samples of DCT spectrum, 𝑁𝑁𝐵𝐵 DCT-based ACFs are obtained by substituting 𝑁𝑁𝐵𝐵 312 

random samples of 𝜔𝜔�𝑡𝑡,𝑠𝑠
2𝐷𝐷 into Equation (6). The best estimate DCT-based ACF is calculated as 313 

the mean of 𝑁𝑁𝐵𝐵 DCT-based ACFs. Statistical uncertainty of approximated DCT spectrum also 314 

propagates to DCT-based ACFs and can be quantified using SD of the 𝑁𝑁𝐵𝐵 DCT-based ACFs. 315 

3.3. Quantification of DCT-based ACF similarity between cross-sections 316 

With the DCT-based ACFs of two cross-sections determined in Section 3.2, cross-sectional 317 

similarity can be quantified by the similarity between the corresponding DCT-based ACFs. 318 

Consider, for example, two cross-sections A and B. Note that the actual dimensions of cross-319 
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sections A and B may be different, leading to the different dimensions and patterns of the 320 

corresponding DCT-based ACFs. To enable fair and effective comparison between two cross-321 

sections, only the largest overlapped sections with common lag distances of DCT-based ACFs 322 

of cross-sections A and B are used accordingly. For example, if the sizes of spatial variability 323 

matrices for cross-sections A and B are (200, 300) and (300, 200), respectively, only the 324 

overlapped DCT-based ACFs with an identical range of lag distances, i.e., 𝜏𝜏1 = 0, 1, 2, …, 199 325 

and 𝜏𝜏2 = 0, 1, 2, …, 199, are considered for similarity quantification. The overlapped ACFs 326 

called effective ACFs offer a benchmark for comparison of two different cross-sections in a 327 

statistical manner. Mathematically, a generalized cosine similarity between the effective DCT-328 

based ACFs of cross-sections A and B is calculated as (e.g., Dong et al., 2006; Nguyen and 329 

Bai, 2011; Hu and Wang 2024): 330 

𝜌𝜌AB =
𝑡𝑡𝑓𝑓�𝐀𝐀𝐀𝐀𝐀𝐀A ∙ 𝐀𝐀𝐀𝐀𝐀𝐀BT�

�𝑡𝑡𝑓𝑓(𝐀𝐀𝐀𝐀𝐀𝐀A ∙ 𝐀𝐀𝐀𝐀𝐀𝐀AT)�𝑡𝑡𝑓𝑓(𝐀𝐀𝐀𝐀𝐀𝐀B ∙ 𝐀𝐀𝐀𝐀𝐀𝐀BT)
 (7) 

in which 𝜌𝜌AB is defined as the similarity value between cross-sections A and B; 𝐀𝐀𝐀𝐀𝐀𝐀A and 331 

𝐀𝐀𝐀𝐀𝐀𝐀B are matrix representations of the effective 2D DCT-based ACFs of cross-sections A and 332 

B, respectively; “T” is a transpose operation of a matrix; “𝑡𝑡𝑓𝑓” is the trace operation of a matrix. 333 

This formula is equivalent to calculating the sum of element-wise product of 𝐀𝐀𝐀𝐀𝐀𝐀A and 𝐀𝐀𝐀𝐀𝐀𝐀B, 334 

divided by the product of the Frobenius norms of 𝐀𝐀𝐀𝐀𝐀𝐀A and 𝐀𝐀𝐀𝐀𝐀𝐀B. 𝜌𝜌AB is therefore defined 335 

over the range of [-1, 1]. Equation (7) essentially treats 𝐀𝐀𝐀𝐀𝐀𝐀A and 𝐀𝐀𝐀𝐀𝐀𝐀B as high-dimensional 336 

vectors and measures the cosine value of the angle between the two vectors. High 𝜌𝜌AB indicates 337 

closeness between the two vectors and hence high similarity between cross-sections A and B, 338 

and vice versa. 339 

Note that a deterministic 𝜌𝜌AB  is obtained when substituting the corresponding best 340 

estimate DCT-based ACFs of cross-sections A and B into Equation (7). To consider the 341 
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associated statistical uncertainty in both cross-sections A and B simultaneously, Equation (7) 342 

may be used in a probabilistic manner. A random sample of 𝜌𝜌AB is calculated using Equation 343 

(7) by substituting a pair of random samples of DCT-based ACFs of cross-sections A and B 344 

respectively into Equation (7). After repeating the 𝜌𝜌AB calculation for all 𝑁𝑁B pairs of DCT-345 

based ACFs of two cross-sections, statistical analysis is performed on the obtained 𝑁𝑁B 𝜌𝜌AB 346 

values. The statistical uncertainty associated with the cross-sectional similarity quantification 347 

is expressed by the SD of the 𝜌𝜌AB samples. The SD reflects the variability of the cross-sectional 348 

similarity quantification in the presence of uncertainties in both cross-sections. Note that in 349 

engineering practice, the required number of 𝑁𝑁𝐵𝐵 depends on the characteristics of the spatial 350 

variability in the two cross-sections. The optimum value of 𝑁𝑁𝐵𝐵 may be identified by examining 351 

the convergence behavior of the obtained similarity values. 352 

4. Implementation procedures 353 

To facilitate its applicability in engineering practice, this section summarizes the 354 

implementation procedure of the proposed method for cross-sectional similarity quantification. 355 

For example, two cross-sections, e.g., A and B, are to be evaluated. Five steps are involved in 356 

implementing the cross-sectional similarity quantification between A and B, as described 357 

below: 358 

Step 1: Obtain the actual spatial dimensions (i.e., depths and horizontal lengths), and 359 

determine the corresponding spatial resolutions 𝑁𝑁1 × 𝑁𝑁2  of 2D spatial variability 360 

F(𝑥𝑥1,𝑥𝑥2) for cross-sections A and B, respectively. For example, if a cross-section has 361 

a depth of 20m and a horizontal distance of 30m, spatial resolutions of 0.1m along both 362 

directions will lead to a discretized 2D cross-section of shape 200×300.  363 
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Step 2: Compile the available soil property data within the cross-sections A and B as 364 

measurement data Y(𝑥𝑥1, 𝑥𝑥2), which is a subset of F(𝑥𝑥1, 𝑥𝑥2). This step leads to two sets 365 

of Y(𝑥𝑥1, 𝑥𝑥2) for cross-sections A and B, respectively.  366 

Step 3: Perform BCS simulation to generate 𝑁𝑁𝐵𝐵  (e.g., 𝑁𝑁𝐵𝐵=500) random samples of 367 

DCT spectrum from the corresponding measurement data Y(𝑥𝑥1, 𝑥𝑥2)  in two cross-368 

sections, respectively.  369 

Step 4: Calculate the 𝑁𝑁𝐵𝐵 DCT-based ACFs using Equation (6) and 𝑁𝑁𝐵𝐵 random samples 370 

of DCT spectrum for cross-sections A and B, respectively.  371 

Step 5: Perform probabilistic cross-sectional similarity quantification. 𝑁𝑁B DCT-based 372 

ACFs of cross-section A are randomly paired with the 𝑁𝑁B DCT-based ACFs of cross-373 

section B. One similarity value is then obtained using Equation (7) for each pair of 374 

DCT-based ACFs. 𝑁𝑁B  pairs of DCT-based ACFs lead to 𝑁𝑁B  similarity values. 375 

Statistical analysis is then performed on the obtained 𝑁𝑁B similarity values.  376 

With the mean of these 𝑁𝑁B similarity values, the similarity between cross-sections A and B can 377 

be evaluated based on a pre-specified threshold. The threshold is purpose-dependent and 378 

problem-specific. The question of how to select an optimal threshold is an interesting research 379 

topic and will be investigated in a future study. One possible approach is to develop 380 

characteristic values of similarity for a specific geotechnical problem based on many case 381 

studies performed in similar geological settings. The statistical uncertainty of cross-sectional 382 

similarity is quantified using SD of 𝑁𝑁B similarity values. Note that geotechnical analysis is 383 

purpose-dependent and problem-specific. Different engineering projects might be sensitive to 384 

the spatial variability of soil properties to different extents. This study only considers the 385 

statistical similarity (e.g., the ACF similarity) of 2D cross-sectional spatial variability of one 386 

soil property. This study does not consider the response of structures installed in the soil as a 387 

result of spatial variability. Geotechnical analyses of different projects still need to resort to 388 
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specific domain knowledge from geotechnical engineers, even for the same or highly similar 389 

site but with different purposes (e.g., deep foundation design versus liquefaction assessment) 390 

(e.g., Leung, 2023). In the following section, the proposed method is illustrated using numerical 391 

examples. 392 

5. Illustrative examples 393 

5.1. Numerical examples of soil property cross-sections 394 

In this section, three cross-sections, i.e., namely A, B, and C, are simulated for illustration of 395 

the proposed method. The configurations of these three cross-sections are summarized in Table 396 

1. These three cross-sections have different spatial dimensions. Cross-section A has a depth of 397 

20m and a width of 20m, i.e., a 20m×20m cross-section. Cross-sections B and C are 30m×20m 398 

and 20m×30m cross-sections, respectively. A discretization resolution of 0.1m is adopted for 399 

these three cross-sections, leading to discretized cross-sections with spatial resolution 𝑁𝑁1 × 𝑁𝑁2 400 

= 200×200, 300×200, and 200×300, respectively. Non-stationary undrained shear strength su 401 

data are simulated using random field (RF) models for these three discretized cross-sections. 402 

The non-stationary su random fields are realized by adding a non-stationary trend function to a 403 

2D zero-mean random field. As summarized in Table 1, in these three cross-sections, the su 404 

data have different trend functions, which are formulated as the sum of 50 kPa and a scaled 405 

cosine function term (in kPa) in different frequencies or phases. The cosine trend functions 406 

adopted herein are to model the periodic property of geological depositional conditions (e.g., 407 

Einsele et al., 1996). Note that the trend functions of cross-section A and cross-section B 408 

exhibit the same frequency, i.e., 0.5, which is equivalent to a period of around 12.5m, while 409 

cross-section B incorporates an additional spatial shift of 10m. Cross-section B may be 410 

interpreted as a cross-section exhibiting similar geological depositional conditions to A, but 411 

occurring at another elevation level, as a scenario commonly encountered in engineering 412 
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practice. Cross-section C contains a frequency of 1, which is higher than cross-sections A and 413 

B, and does not incorporate any spatial shift. The trend functions of the three cross-sections are 414 

illustrated in Figures 5a-c, respectively. For each cross-section, an SD of 5 kPa and a Gaussian 415 

auto-correlation structure are adopted for the 2D zero-mean random field. Different correlation 416 

lengths along vertical and horizontal directions are configured for each cross-section. As shown 417 

in Table 1, the vertical correlation lengths for three cross-sections are 1m, 1.5m, and 1m, 418 

respectively; the horizontal correlation lengths for three cross-sections are 3.5m, 3m, and 2.5m, 419 

respectively, leading to different spatial variability anisotropy structures for su data. For each 420 

cross-section, one su data cross-section is realized and used for illustration, as shown in Figures 421 

5d-f, respectively. Each su data cross-section is a realization of a random field simulated by the 422 

spectral representation method (e.g., Shinozuka and Deodatis 1991; Müller et al., 2022). 423 

Table 1. Configurations of simulated undrained shear strength su data for three cross-sections  424 

Parameters Cross-section A Cross-section B Cross-section C 
Depth (m) 20 30 20 
Width (m) 20 20 30 

Trend su(z) versus 
depth (kPa) 50+5×cos(0.5×z) 50+ 

5×cos(0.5×(z+10)) 50+5×cos(z) 

Standard deviation 
(kPa) 5 5 5 

Correlation function Gaussian Gaussian Gaussian 
Vertical correlation 

length (m) 1 1.5 1 

Horizontal correlation 
length (m) 3.5 3 2.5 

 425 
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 426 
Figure 5. Simulated undrained shear strength (su in kPa) data cross-sections A, B, and C 427 

 428 

Note that the three cross-sections are configured to illustrate the challenges of cross-429 

sectional similarity quantification. In Figure 5, it is seen that cross-sections A, B, and C have 430 

different spatial dimensions and show different non-stationary and spatial variability 431 

anisotropy patterns. It is very challenging to rationally quantify the similarity among these 432 

cross-sections using conventional statistical methods. In this study, the derived DCT-based 433 

ACF tackles this challenge and offers an effective way to quantify the cross-sectional similarity 434 

among these three cross-sections. For each of the three cross-sections, the associated DCT 435 

spectrum can be readily obtained using Equation (3), and subsequently, the associated DCT-436 

based ACF can be calculated using Equation (6). Note that the three cross-sections are 437 

respectively synthesized by adding up a non-stationary trend function and a 2D zero-mean 438 

random field. Therefore, the ACFs of su cross-sections are controlled by both the underlying 439 

trends and zero-mean RFs. The ACFs of the trend functions for the three cross-sections are 440 

shown in Figures 6a-6c, respectively, while the corresponding theoretical RF ACFs are shown 441 

in Figures 6d-6f, respectively. Figures 6g-6i, respectively, show the ACFs of the three 442 
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synthesized su cross-sections. The 2D ACFs are plotted as a colormap versus varying lag 443 

distances along two directions. Since the auto-correlation decreases as the lag distance 444 

increases, only half of the maximum lag distances along both directions are considered as 445 

shown in the figure. In Figures 6a-6c, it is shown that the DCT-based ACFs of the trend 446 

functions behave also like cosine functions, with ACF values fluctuating at corresponding 447 

frequencies along the depth direction. In Figures 6d-6f, theoretical RF ACFs decay along both 448 

directions accordingly to the corresponding RF parameters. Note that in Figures 6g-6i, the 449 

DCT-based ACFs of the three su cross-sections show combined patterns exhibiting features of 450 

the ACFs from the trend functions and the ACFs from the RFs. This indicates that ACF not 451 

only may be used to characterize a zero-mean RF, but also simultaneously characterize the 452 

underlying deterministic trend function (e.g., Brockwell and Davis, 1991). 453 

Note that the three DCT-based ACFs have different shapes. To fairly compare these 454 

DCT-based ACFs, the largest overlapped sections between any two cross-sections are selected, 455 

as delineated by red dashed lines in Figures 6g-6i. For any two cross-sections, a similarity value 456 

is calculated using Equation (7) and the corresponding overlapped DCT-based ACFs. The 457 

similarity values for different pairs of cross-sections are calculated as ρAB = 0.97, ρAC = 0.27, 458 

and ρBC = 0.36. The similarity values are consistent with the theoretical configurations of the 459 

three cross-sections. It has been indicated in Table 1 that cross-sections A and B demonstrate 460 

better spectral coherence since their non-stationary trend functions have an identical frequency, 461 

although the trend function of cross-section B has a spatial shift. However, the trend function 462 

of cross-section C contains a higher frequency than A and B. From a spectral perspective, cross-463 

section C may not be similar to cross-sections A and B. Note that the similarity quantification 464 

using DCT-based ACF is invariant to the spatial offset values of spatial variability. Similar 465 

examples with different spatial offset values had been analyzed, and consistent results were 466 

obtained. In this paper, only the cross-sections configured in Table 1 are presented for brevity. 467 
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 468 

 469 

 470 

 471 

Figure 6. DCT-based ACF in cross-sections A, B, and C: (a) Trend ACF of A; (b) Trend ACF 472 
of B; (c) Trend ACF of C; (d) RF ACF of A; (e) RF ACF of B; (f) RF ACF of C; (g) ACF of 473 

synthetic su data in A; (h) ACF of synthetic su data in B; (i) ACF of synthetic su data in C 474 
 475 

 476 
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Note that the above cross-sectional similarity quantification is based on the three 477 

simulated cross-sections with complete su data. To illustrate the typical scenario of sparse 478 

investigation data, the following subsection performs cross-sectional similarity quantification 479 

using the same examples, but with sparsely measured data. 480 

 481 

Figure 7. Sparse data measured from cross-sections A, B, and C 482 

5.2. Similarity quantification between simulated cross-sections using sparse data 483 

To illustrate the challenge of sparse investigation data in cross-sections, selective su data are 484 

sampled from the simulated cross-sections as measurement data, which are subsequently used 485 

for probabilistic quantification of similarity between cross-sections with consideration of 486 

statistical uncertainty. As shown in Figure 7, uniform grid sampling is implemented in the three 487 

cross-sections. In cross-sections A, B, and C, 8×8, 12×8, and 15×10 su data are measured, 488 

respectively. The measured data account for around 0.16%, 0.16%, and 0.25%, respectively, 489 

of the corresponding discretized cross-section. The sampling ratios adopted are generally 490 

comparable to the engineering practice of site investigation, where the ratio of the volume of 491 

sampled soils over the volume of soils loaded/affected is normally around or less than 0.1%, 492 

depending on the project requirements, site complexity, and the level of details needed (e.g., 493 

Look 2014; Guan and Wang, 2020). For the three cross-sections, the spatial resolutions 494 

𝑁𝑁1 × 𝑁𝑁2 are set as the original simulated cross-section, i.e., 200×200 for A, 300×200 for B, 495 
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and 200×300 for C. The corresponding measurement data are then adopted as Y(𝑥𝑥1, 𝑥𝑥2), and 496 

subsequently, BCS simulation is performed to generate 𝑁𝑁B=500 samples of DCT spectrum for 497 

each cross-section. 498 

 499 

500 

Figure 8. Statistics of DCT spectrum in cross-section A 501 

 502 

503 

Figure 9. Statistics of DCT spectrum in cross-section B 504 

 505 
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 506 

Figure 10. Statistics of DCT spectrum in cross-section C 507 

Figures 8a and 8b show the statistics of DCT spectrum for cross-sections A in the form 508 

of colored meshes. As shown in Figure 8a, 36 weight coefficients are identified from sparse 509 

data using BCS, and they are characterized by a 6×6 matrix of DCT spectrum. Each mesh is 510 

color-coded using the mean value of the weight coefficient with indexes t and s, which are 511 

indexes (or frequencies) of the corresponding 2D basis functions, as indicated in Equation (2). 512 

Note that the 𝜔𝜔1,1
2𝐷𝐷 corresponding to the contribution of the constant basis function B1,1(𝑥𝑥1,𝑥𝑥2) 513 

is much greater than the other coefficients and is not required for the calculation of DCT-based 514 

ACF (see Equation (6)). Therefore, the upper left cell in Figure 8 is shown as empty for 515 

visualization clarity. It is observed that among these 35 weight coefficients, only a few of them 516 

are significant, with the remaining ones close to zeros. Figure 8b shows the SD values of the 517 

corresponding weight coefficients in Figure 8a, which reflect the statistical uncertainty of the 518 

DCT spectrum. Figures 9 and 10 show the statistics of 𝑁𝑁B samples of DCT spectrum for cross-519 

sections B and C, respectively. Figures 8-10 display that the number of weight coefficients, as 520 

well as the indexes of significant coefficients, in the approximated DCT spectrum are different 521 
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in different cross-sections. The DCT spectrums are not directly comparable, since they 522 

correspond to cross-sections with different spatial dimensions. DCT-based ACF is 523 

subsequently calculated for a unified representation of 2D spatial variability in different cross-524 

sections. 525 

Using Equation (6), 𝑁𝑁B  samples of DCT-based ACFs are obtained for each cross-526 

section. Figure 11 shows the statistics of the obtained DCT-based ACFs in cross-section A by 527 

colormaps. Subplot (a) demonstrates one sample of DCT-based ACF, which portrays a possible 528 

representation of the 2D spatial variability patterns of su data in cross-section A. The associated 529 

non-stationarity and spatial variability anisotropy are represented in DCT-based ACF in a 530 

unified manner. Subplots (b) and (c) show the mean and the SD of 𝑁𝑁B samples of DCT-based 531 

ACFs. Subplot (d) reveals the absolute residual between the mean in Subplot (b) and the 532 

original DCT-based ACF in Figure 6g. The mean of DCT-based ACFs in Subplot (b) is 533 

interpreted as the best estimate for the cross-section A in the presence of sparse investigation 534 

data (e.g., see Figure 7a). Figures 12 and 13 show the statistics of the obtained DCT-based 535 

ACFs in cross-sections B and C, respectively, following the same presentation format. It is 536 

observed from Figures 11-13 that, for all three cross-sections, the colormaps in Subplots (c) 537 

and (d) are generally comparable, indicating the quantified statistical uncertainty of DCT-based 538 

ACF is rational. 539 

To quantify the similarity between any two cross-sections with consideration of 540 

statistical uncertainty, 𝑁𝑁B  DCT-based ACF samples from one cross-section are randomly 541 

paired with 𝑁𝑁B DCT-based ACF samples from another cross-section. For each pair of DCT-542 

based ACFs, a similarity value is calculated using Equation (7), leading to 𝑁𝑁B similarity values. 543 

Probabilistic cross-sectional similarity quantification is then performed by statistical analysis 544 

of these 𝑁𝑁B  similarity values. Figure 14 shows the obtained similarity values by blue 545 

histograms. Figure 14a presents the similarity values between cross-sections A and B. It shows 546 
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that for cross-sections A and B, the associated histogram of similarity values peaks at a value 547 

approaching 1. The mean of the similarity values is calculated as 0.88 and is close to the true 548 

similarity value 0.97, which is denoted by a vertical red dashed line in Figure 14a. High cross-549 

sectional similarity between A and B is reasonably quantified from sparse data. Figure 14b 550 

presents the similarity values between cross-sections A and C. The mean of the similarity 551 

values is calculated as 0.26 which is close to the true value 0.27. Although the correlation 552 

lengths of cross-sections A and B are slightly different as indicated in Table 1, the similarity 553 

quantification may be dominated by the respective trend functions that have the same frequency. 554 

The low cross-sectional similarity between cross-sections A and C is also quantified accurately. 555 

In Figure 14, the SD of similarity values can be interpreted as the statistical uncertainty of 556 

quantified cross-sectional similarity, which integrates the statistical uncertainty of DCT 557 

spectrum from both concerned cross-sections. The SD values are calculated as 0.06 for cross-558 

sections A and B, and 0.08 for cross-sections A and C. It suggests that for the above two 559 

comparisons, the associated statistical uncertainty is relatively small. In other words, the three 560 

cross-sections, particularly the associated trend functions, may be characterized well by sparse 561 

data. 562 

 563 
Figure 11. Statistics of DCT-based ACFs in cross-section A 564 
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 565 

Figure 12. Statistics of DCT-based ACFs in cross-section B 566 

 567 

 568 

Figure 13. Statistics of DCT-based ACFs in cross-section C 569 

 570 
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 571 

Figure 14. Normalized histogram of cosine similarity values between cross-sections: (a) A 572 

and B; (b) A and C 573 

 574 

Table 2. Statistics of cross-sectional similarity values obtained from measurement data of 575 

cross-sections A, B, and C 576 

M scenario Cross-
sections A B C 

MA=6×6 
MB=10×6 
MC=10×8 

A 1 0.68(0.21) 0.24(0.16) 
B - 1 0.35(0.14) 
C - - 1 

MA=8×8 
MB=12×8 
MC=15×10 

A 1 0.88(0.06) 0.26(0.08) 
B - 1 0.47(0.09) 
C - - 1 

MA=15×15 
MB=20×15 
MC=20×15 

A 1 0.96(0.01) 0.23(0.04) 
B - 1 0.36(0.03) 
C - - 1 

Data format: Mean (Standard deviation) 
 577 
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 578 

Figure 15. Normalized histogram of cosine similarity values between cross-sections under 579 
different measurement scenarios (M) 580 

5.3. Effect of the number of measured data points 581 

This subsection investigates the effect of the number, M, of measured data points on the 582 

performance of cross-sectional similarity quantification. Two more measurement scenarios for 583 

the three cross-sections are added. One added scenario has a smaller number of measured su 584 

data, i.e., M=6×6, 10×6, and 10×8 su data with a uniform grid sampling are measured in cross-585 

sections A, B, and C, respectively. Another added scenario has a larger number of measured su 586 

data, i.e., M=15×15, 20×15, and 20×15 su data are measured in the three cross-sections 587 

respectively. For each added scenario, cross-sectional similarity quantifications are performed, 588 

following the implementation procedures described in Section 4. 589 
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Figure 15 shows the histograms of cross-sectional similarity values for two added 590 

scenarios, between A and B, and between A and C, respectively. Figure 15a shows the 591 

similarity between cross-sections A and B, when the number of measurement data is relatively 592 

small. In comparison to Figure 14a, it is observed that the mean of similarity values decreases 593 

significantly from 0.88 to 0.68. In addition, the SD of similarity values increases significantly 594 

from 0.08 to 0.21. Figure 15c corresponds to the similarity between cross-sections A and B, 595 

when the number of measurement data is relatively large. It shows that the histogram is 596 

narrowed down significantly and almost overlaps with the true value. Similar observations are 597 

also obtained for similarity values between cross-sections A and C, where the corresponding 598 

small and large measurement data number scenarios are shown in Figures 15b and 15d, 599 

respectively. For cross-sectional similarity between A and C, it appears that the true similarity 600 

value, which is as low as 0.27, can be accurately identified using extremely sparse data. Both 601 

high cross-sectional similarity between A and B and low cross-sectional similarity between A 602 

and C can be quantified effectively using sparse data. The results of this sensitivity study, as 603 

well as the cross-sectional similarity between B and C, are summarized in Table 2. The results 604 

indicate that the performance of the proposed method for quantifying cross-sectional similarity 605 

depends on the number M of available measured data in corresponding cross-sections. When 606 

M is low in the two cross-sections to be compared, the associated statistical uncertainty might 607 

become dominant in the subsequent cross-sectional similarity quantification. In this case, 608 

additional site investigation might be required to get more measurements and insights into the 609 

spatial variability in concerned cross-sections. As M increases, the quantified cross-sectional 610 

similarity converges to the true value. Moreover, the proposed method also applies to scenarios 611 

where the amount of measured data differs significantly in the two cross-sections, e.g., one 612 

cross-section characterized with limited data while another characterized with much more data. 613 

This enables the proposed method to be performed in a data-driven manner in practical site 614 
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investigation. Note that the relationship between the number M of available measurement data 615 

and the cross-sectional similarity is problem-specific and might not necessarily be a general 616 

one that can possibly be applied to other cross-sections. 617 

 618 

 619 

Figure 16. Statistics of DCT spectrum at Site 1 620 

 621 

 622 

Figure 17. Statistics of DCT spectrum at Site 2 623 
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6. Real examples 624 

This section demonstrates an application of the proposed method to the real examples shown 625 

in Figure 1. Probabilistic quantification of cross-sectional similarity between Site 1 and Site 2 626 

is performed, following the implementation procedures in Section 4. Sites 1 and 2 have a length 627 

of 145m and 245m, respectively, and they are both 20m deep. In step 1, a vertical resolution of 628 

0.05m and a horizontal resolution of 0.5m are adopted to discretize the cross-sections at the 629 

two sites, leading to a cross-section image with a size of 400×290 for Site 1, and a cross-section 630 

image with a size of 400×490 for Site 2. In step 2, the CPT data (e.g., corrected cone resistance 631 

qt in this example) within these two cross-sections are obtained. As shown in Figures 2a and 632 

2b, eight qt data profiles are within cross-section at Site 1 and seven profiles are within cross-633 

section at Site 2. In step 3, 𝑁𝑁B=500 samples of DCT spectrum are generated from qt data for 634 

each site using BCS. Figures 16 and 17 show the statistics of DCT spectrum at Site 1 and Site 635 

2, respectively. It is seen that for both sites, the numbers of identified weight coefficients are 636 

different, with 179 coefficients for Site 1 and 119 coefficients for Site 2. The indexes of 637 

significant coefficients for the two sites are also apparently different. In step 4, 𝑁𝑁B DCT-based 638 

ACFs are calculated based on 𝑁𝑁B samples of DCT spectrum for both sites. Figures 18a and 18b 639 

show the mean and SD of 𝑁𝑁B samples of DCT-based ACFs at Site 1. Figures 19a and 19b show 640 

the corresponding results at Site 2. It is evident that the means of DCT-based ACFs in Figures 641 

18a and 19a have generally consistent patterns, i.e., predominant spatial variability patterns 642 

along vertical directions and relatively minor variability patterns along horizontal directions. 643 

The SD maps in Figures 18b and 19b show similar magnitudes, suggesting the statistical 644 

uncertainty for these two sites is comparable. In step 5, to perform a probabilistic quantification 645 

of cross-sectional similarity, 𝑁𝑁B DCT-based ACFs at Site 1 are randomly paired with 𝑁𝑁B DCT-646 

based ACFs at Site 2. Since the horizontal lengths are different for these two sites (i.e., 145m 647 

for Site 1 and 245m for Site 2), the associated DCT-based ACFs of these two sites have 648 
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different dimensions, as shown in Figures 18 and 19. Therefore, the overlapped sections of 649 

Sites 1 and 2, denoted by red dashed lines in Figures 18a and 19a, are used for cross-sectional 650 

similarity quantification. Using 𝑁𝑁B pairs of DCT-based ACFs and Equation (6), 𝑁𝑁B similarity 651 

values are obtained, which are presented by a histogram in Figure 20. Note that the histogram 652 

of similarity values is narrow and mainly located at the ρ range of about 0.97 to 0.98. The mean 653 

and SD of the 𝑁𝑁B similarity values are calculated as 0.977 and 0.002, respectively. According 654 

to the results, the proposed method suggests that Sites 1 and 2 are highly similar, and the 655 

associated statistical uncertainty is insignificant. Although the numbers of CPTs soundings are 656 

sparse from both sites, the spatial variability patterns of qt data are prominent and consistent. 657 

The increasing trends of qt data profiles at both sites, as shown in Figure 2 are comparable and 658 

properly identified. A systematic study on spatial variability with increasing trend functions is 659 

worth exploring in a future study to clearly demonstrate generalizability of the proposed 660 

method. In addition, the results indicate that the proposed method performs well even for cross-661 

sections with non-uniformly measured data. This scenario can be regarded as incomplete data, 662 

because any non-uniform measurement grid can be derived from a uniform measurement grid 663 

by removing measurements from selected points. Hence, this scenario refers to one aspect of 664 

MUSIC, which is “I” for incomplete data. 665 
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 666 

Figure 18. Statistics of DCT-based ACFs at Site 1 667 

 668 

Figure 19. Statistics of DCT-based ACFs at Site 2 669 

 670 
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 671 

Figure 20. Normalized histogram of cosine similarity values between Sites 1 and 2 in the real 672 
data example 673 

 674 

675 

 676 

Figure 21. Cone penetration tests (CPTs) performed in Site 3: (a) layout map of seven CPTs; 677 
(b) Cross-section of seven CPTs 678 
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To further demonstrate the performance of the proposed method, another cross-section 679 

example at Site 3 is compared with the cross-section at Site 1. As shown in Figure 21a, Site 3 680 

is a cross-section with a horizontal length of around 100m, and seven CPTs were performed in 681 

this cross-section. In contrast to Site 2, which is only approximately 700m away from Site 1, 682 

Site 3 is relatively far from Site 1, and they are roughly 5km apart. In view of this spatial 683 

distance, CPT data at Site 3 might exhibit different spatial variability patterns from that of Site 684 

1. Figure 21b shows the qt data profiles in this cross-section. Figure 2a and Figure 21b are 685 

visually different. Probabilistic quantification of cross-sectional similarity between Sites 1 and 686 

3 is performed, following the implementation procedures described in Section 4. After 687 

configuring the same spatial resolutions for Site 3 as Site 1 (i.e., vertical resolution of 0.05m 688 

and a horizontal resolution of 0.5m), 𝑁𝑁B=500 samples of DCT spectrum are generated for Site 689 

3 using BCS. Subsequently, DCT-based ACFs are calculated for Site 3. Figures 22a and 22b 690 

show the mean and SD of DCT-based ACFs at Site 3, respectively. It shows that the mean of 691 

DCT-based ACFs in Figure 22a differs significantly from Figure 18a. The ACF at Site 3 decays 692 

and fluctuates faster than the ACF at Site 1 along the depth direction. This suggests that the 693 

correlation length along the depth direction at Site 3 is much smaller than that at Site 1. In 694 

addition, the SD map in Figure 22b shows a higher magnitude than the SD map in Figure 18b, 695 

suggesting the statistical uncertainty of qt data at Site 3 is greater than Site 1. Then, 𝑁𝑁B DCT-696 

based ACFs at Site 3 are randomly paired with 𝑁𝑁B DCT-based ACFs at Site 1. The resulting 697 

𝑁𝑁B  similarity values are calculated and shown in Figure 23. The mean and SD of the 𝑁𝑁B 698 

similarity values are calculated as 0.036 and 0.008, respectively. The difference between Figure 699 

20 (similarity between Sites 1 and 2) and Figure 23 (similarity between Sites 1 and 3) is stark. 700 

According to the results, the proposed method suggests that Sites 3 and 1 are not similar.  701 
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 702 

Figure 22. Statistics of DCT-based ACFs at Site 3 703 

 704 

Figure 23. Normalized histogram of cosine similarity values between Site 1 and Site 3 705 
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7. Conclusions 706 

In this study, a novel data-driven method was proposed to quantify 2D cross-sectional 707 

similarity based on the spatial variability of one soil property. To the best of the authors' 708 

knowledge, the proposed method is the first method to quantify geotechnical site similarity 709 

with explicit consideration of 2D spatial variability. It tackled the challenges of sparse 710 

investigation data, non-stationary spatial variability, and inconsistent spatial dimensions of 711 

different 2D cross-sections. A unified representation framework of 2D spatial variability using 712 

DCT-based ACF was developed. Cross-sectional similarity was quantified by the similarity of 713 

DCT-based ACFs between cross-sections. For a given 2D cross-section, BCS was adopted to 714 

approximate the DCT spectrum directly from sparse investigation data. The associated 715 

statistical uncertainty was also quantified by simulation of many random samples of the DCT 716 

spectrum. Samples of DCT-based ACF were then calculated using random samples of DCT 717 

spectrum and the newly derived equations. Then, cross-sectional similarity was quantified by 718 

the cosine similarity of DCT-based ACFs between two cross-sections. Theoretical derivation 719 

in the Appendix suggested that DCT-based ACF is an effective surrogate to represent 2D cross-720 

sectional spatial variability from a spectral perspective and enables direct pattern comparison 721 

between cross-sections with different spatial dimensions.  722 

Numerical examples of three soil property cross-sections were provided to illustrate the 723 

performance of the proposed method. The similarity between any two of the three cross-724 

sections was quantified. Results indicated that the proposed method rationally quantifies the 725 

cross-sectional similarity and associated statistical uncertainty from sparse data in a data-driven 726 

manner. The quantified similarity values converged to the true value when the number of 727 

measured data increases. Real data examples from New Zealand were also used to demonstrate 728 

the application of the proposed method. High cross-sectional similarity was obtained between 729 

two sites which are approximately 700m apart. The proposed method also suggested low 730 
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similarity between two sites which are 5km apart. The similarity quantification developed in 731 

this study assists engineering geologists and geotechnical engineers with an efficient 732 

identification of similar project sites and informed decision-making in site characterization. 733 

Geotechnical experiences may be effectively shared between the identified similar sites. In 734 

practice, the proposed method might also be implemented with masked geographical 735 

coordinate information, since such information may be restricted for confidentiality reasons. 736 

The proposed method can identify a quasi-regional cluster of CPT soundings in a global 737 

database that is more relevant to understanding the spatial variability of a soil property at a 738 

target site. It relieves the engineer from sole reliance on subjective judgment and tedious 739 

manual visual inspection to complete the same task. 740 

Appendix: Derivation of Equation (6) 741 

Equation (3) suggests that the patterns of basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) and corresponding weight 742 

coefficient 𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷  jointly control the patterns of F(𝑥𝑥1, 𝑥𝑥2). To investigate the effect of basis 743 

function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) patterns on the F(𝑥𝑥1, 𝑥𝑥2) patterns when DCT basis function is adopted, 744 

the ACF of B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2) is firstly derived based on Equations (1), (2), and (5) (e.g., Shinozuka 745 

and Deodatis, 1991; Vanmarcke, 2010): 746 

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2� 

=
𝐸𝐸 ��B𝑡𝑡,𝑠𝑠

2𝐷𝐷(𝑥𝑥1,𝑥𝑥2) − 𝜇𝜇B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)� �B𝑡𝑡,𝑠𝑠

2𝐷𝐷(𝑥𝑥1+𝜏𝜏1, 𝑥𝑥2+𝜏𝜏2) − 𝜇𝜇B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)��

𝜎𝜎B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)
2  

(A.1) 

in which 𝜇𝜇B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2) and 𝜎𝜎B𝑡𝑡,𝑠𝑠

2𝐷𝐷(𝑥𝑥1,𝑥𝑥2) are the mean value and standard deviation of B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 747 

respectively. It is seen from Equation (1) and Figure 4 that, when 𝑡𝑡 = 𝑐𝑐 = 1, 𝜇𝜇B1,1
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2) is a 748 

constant function, for which ACF is undefined. For 𝑡𝑡 ≥ 2 , the mean value 𝜇𝜇B𝑡𝑡(𝑥𝑥)  is zero 749 

because of the nature of cosine function: 750 
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� 𝑐𝑐𝑓𝑓𝑐𝑐(𝑡𝑡𝑐𝑐)𝑖𝑖𝑖𝑖𝑖𝑖 = 0
1

0
   �𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ ℤ, 𝑡𝑡 ≥ 2,𝑎𝑎𝑐𝑐𝑖𝑖  𝑖𝑖 ∈ (0, 1)� (A.2) 

Therefore, for 𝑡𝑡, 𝑐𝑐 ≠ 1  concurrently, the 𝜇𝜇B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)  is reduced to zero according to the 751 

definition of B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) in Equation (2). Equation (A.1) is then rewritten as: 752 

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2� 

=
1

𝜎𝜎B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)
2 𝐸𝐸��B𝑡𝑡,𝑠𝑠

2𝐷𝐷(𝑥𝑥1,𝑥𝑥2)��B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1+𝜏𝜏1,𝑥𝑥2+𝜏𝜏2)�� 

(A.3) 

Since the 2D basis function B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1,𝑥𝑥2) is constructed by a tensor product of two 1D DCT 753 

basis functions along two orthonormal directions, respectively (see Equation (2)), two 1D DCT 754 

basis functions are independent of each other. B𝑡𝑡,𝑠𝑠
2𝐷𝐷(𝑥𝑥1, 𝑥𝑥2) and B𝑡𝑡,𝑠𝑠

2𝐷𝐷(𝑥𝑥1+𝜏𝜏1,𝑥𝑥2+𝜏𝜏2) hence can 755 

be factorized, and Equation (A.3) is rewritten as: 756 

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2� 

=
1

𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2 𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)]𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠(𝑥𝑥2 + 𝜏𝜏2)] 

(A.4) 

The first expectation term in Equation (A.4) for 𝑥𝑥1 direction can be derived, after substituting 757 

1D DCT basis function from Equation (1) to Equation (A.4): 758 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)] 

= 𝐸𝐸 ��
2
𝑁𝑁1
𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)

(𝑥𝑥1 − 0.5)
𝑁𝑁1

�
2
𝑁𝑁1
𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)

(𝑥𝑥1 + 𝜏𝜏1 − 0.5)
𝑁𝑁1

� 
(A.5) 

Using product-to-sum identity, the product of two cosine functions can be rewritten as: 759 
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𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)] 

=
1
𝑁𝑁1

�𝐸𝐸 �𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)
(2𝑥𝑥1 + 𝜏𝜏1 − 1)

𝑁𝑁1
� + 𝐸𝐸 �𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)

𝜏𝜏1
𝑁𝑁1
�� 

(A.6) 

The first expectation term with index 𝑥𝑥1 is reduced to zero after expectation operation for 𝑥𝑥1. 760 

Therefore, Equation (A.6) is derived as a cosine function of 𝜏𝜏1 at frequency 𝑐𝑐(𝑡𝑡 − 1): 761 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)] =
1
𝑁𝑁1
𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)

𝜏𝜏1
𝑁𝑁1

 (A.7) 

In a similar fashion, the second expectation in Equation (A.4) for 𝑥𝑥2 direction can be derived 762 

as: 763 

𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠(𝑥𝑥2 + 𝜏𝜏2)] =
1
𝑁𝑁2

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑐𝑐 − 1)
𝜏𝜏2
𝑁𝑁2

 (A.8) 

Therefore, substituting Equations (A.7) and (A.8) into Equation (A.4) leads to: 764 

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2� 

=
1

𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2 𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)]𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠(𝑥𝑥2 + 𝜏𝜏2)] 

=
1

𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2

1
𝑁𝑁1𝑁𝑁2

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)
𝜏𝜏1
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑐𝑐 − 1)
𝜏𝜏2
𝑁𝑁2

 

(A.9) 

Note that the variance term 𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2  can be derived based on the fact that the 2D DCT basis 765 

function is zero-mean and orthonormal (e.g., Rao and Yip, 1990). The Frobenius norm of 2D 766 

basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) is unity: 767 

�B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)� = �B𝑡𝑡,𝑠𝑠(1, 1)2 + B𝑡𝑡,𝑠𝑠(2, 1)2 + ⋯+ B𝑡𝑡,𝑠𝑠(𝑁𝑁1,𝑁𝑁2)2 = 1 (A.10) 

According to the definition of variance, the 𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2  is derived as: 768 
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𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2 =

1
𝑁𝑁1𝑁𝑁2

�B𝑡𝑡,𝑠𝑠(1, 1)2 + B𝑡𝑡,𝑠𝑠(2, 1)2 + ⋯+ B𝑡𝑡,𝑠𝑠(𝑁𝑁1,𝑁𝑁2)2� =
1

𝑁𝑁1𝑁𝑁2
 (A.11) 

Therefore, substituting Equation (A.11) into Equation (A.9) leads to the normalized ACF of 769 

2D basis function: 770 

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2� 

=
1

𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2 𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡(𝑥𝑥1 + 𝜏𝜏1)]𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠(𝑥𝑥2 + 𝜏𝜏2)] 

= 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)
𝜏𝜏1
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑐𝑐 − 1)
𝜏𝜏2
𝑁𝑁2

          (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(A.12) 

Equation (A.12) shows that the ACF of a 2D DCT basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) is derived as the 771 

product of two cosine functions along 𝑥𝑥1 and 𝑥𝑥2 directions, respectively. These two cosine 772 

functions are of lag distances 𝜏𝜏1  and 𝜏𝜏2 , respectively. Note that the indexes 𝑥𝑥1  and 𝑥𝑥2  are 773 

eliminated in Equation (A.12). 774 

Based on Equations (2), (3), and (5), the ACF of 2D spatial variability F(𝑥𝑥1,𝑥𝑥2) can 775 

also be derived under DCT framework: 776 

ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
𝐸𝐸��F(𝑥𝑥1, 𝑥𝑥2) − 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)��F(𝑥𝑥1+𝜏𝜏1,𝑥𝑥2+𝜏𝜏2) − 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)��

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2  

(A.13) 

in which 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2) and 𝜎𝜎F(𝑥𝑥1,𝑥𝑥2) are mean value and variance of F(𝑥𝑥1, 𝑥𝑥2). Note that 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2) 777 

can be replaced by the contribution of B1,1(𝑥𝑥1,𝑥𝑥2), since B1,1(𝑥𝑥1,𝑥𝑥2) is the only 2D DCT basis 778 

function with a non-zero mean value (see upper left 2D basis function in Figure 4). Substituting 779 

Equation (3) into Equation (5) leads to: 780 
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ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
𝐸𝐸��∑ ∑ 𝜔𝜔𝑡𝑡,𝑠𝑠

2𝐷𝐷B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2)𝑁𝑁2
𝑠𝑠=1

𝑁𝑁1
𝑡𝑡=1 ��∑ ∑ 𝜔𝜔𝑡𝑡′,𝑠𝑠′

2𝐷𝐷 B𝑡𝑡′,𝑠𝑠′(𝑥𝑥1+𝜏𝜏1,𝑥𝑥2+𝜏𝜏2)𝑁𝑁2
𝑠𝑠′=1

𝑁𝑁1
𝑡𝑡′=1 ��
𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2  

                                                       (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐;  𝑡𝑡′, 𝑐𝑐′ ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(A.14) 

The prime symbols are used to distinguish two factors along an individual direction. By 781 

utilizing the orthonormal property of B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2) , Equation (A.14) can be expanded and 782 

rearranged as a multiple summation: 783 

ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
1

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2 ��� �𝜔𝜔𝑡𝑡,𝑠𝑠

2𝐷𝐷𝜔𝜔𝑡𝑡′,𝑠𝑠′
2𝐷𝐷 𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)]𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠′(𝑥𝑥2+𝜏𝜏2)]

𝑁𝑁2

𝑠𝑠′=1

𝑁𝑁1

𝑡𝑡′=1

𝑁𝑁2

𝑠𝑠=1

𝑁𝑁1

𝑡𝑡=1

 

                                                       (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐;  𝑡𝑡′, 𝑐𝑐′ ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(A.15) 

The expectation operations are performed for 𝑥𝑥1 and 𝑥𝑥2 directions, separately. For 𝑥𝑥1 direction, 784 

after substituting 1D DCT basis function in Equation (1), the expectation operation 785 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)] can be further expressed as: 786 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)]

=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝐸𝐸 ��

2
𝑁𝑁1

�
2
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
(𝑡𝑡′ − 1)(𝑥𝑥1 + 𝜏𝜏1 − 0.5)

𝑁𝑁1
� = 0    𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 = 1, 𝑡𝑡′ ≠ 1

𝐸𝐸 ��
2
𝑁𝑁1

�
2
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
(𝑡𝑡 − 1)(𝑥𝑥1 − 0.5)

𝑁𝑁1
� = 0    𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 ≠ 1, 𝑡𝑡′ = 1

𝐸𝐸

⎣
⎢
⎢
⎢
⎡�

2
𝑁𝑁1
�

2
𝑁𝑁1
𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐

(𝑡𝑡 − 1)(𝑥𝑥1 − 0.5)
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
(𝑡𝑡′ − 1)(𝑥𝑥1 + 𝜏𝜏1 − 0.5)

𝑁𝑁1 ⎦
⎥
⎥
⎥
⎤

𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 ≠ 1,  𝑡𝑡′ ≠ 1

 
(A.16) 

Equation (A.16) consists of three scenarios, i.e., when 𝑡𝑡 = 1, 𝑡𝑡′ ≠ 1; 𝑡𝑡 ≠ 1, 𝑡𝑡′ = 1; and 𝑡𝑡 ≠787 

1,  𝑡𝑡′ ≠ 1. Since the first two scenarios lead to single cosine functions of 𝑥𝑥1, the associated 788 

terms are reduced to zeros after expectation operation on 𝑥𝑥1 . When 𝑡𝑡 ≠ 1,  𝑡𝑡′ ≠ 1 , the 789 
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expectation of product of two cosine functions yields zero when the frequencies of two basis 790 

function are not equal, i.e., 𝑡𝑡 ≠ 𝑡𝑡′ . Only the product of two cosine functions with equal 791 

frequencies remain, i.e., 𝑡𝑡 = 𝑡𝑡′: 792 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)] =

= �
0        𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 ≠ 𝑡𝑡′

2
𝑁𝑁1
𝐸𝐸 �𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐

(𝑡𝑡 − 1)(𝑥𝑥1 − 0.5)
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
(𝑡𝑡 − 1)(𝑥𝑥1 + 𝜏𝜏1 − 0.5)

𝑁𝑁1
�      𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝑡𝑡′ 

(A.17) 

When 𝑡𝑡 = 𝑡𝑡′ , the product of two cosine functions can be rewritten using product-to-sum 793 

identity as: 794 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)] 

=
1
𝑁𝑁1

𝐸𝐸 �𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
2(𝑡𝑡 − 1)(𝑥𝑥1 − 0.5) + (𝑡𝑡 − 1)𝜏𝜏1

𝑁𝑁1
+ 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)

𝜏𝜏1
𝑁𝑁1
� 

(A.18) 

Similarly, in Equation (A.18), the first cosine function term reduces to zeros after expectation 795 

operation on 𝑥𝑥1. Therefore, Equation (A.18) is then derived as: 796 

𝐸𝐸[B𝑡𝑡(𝑥𝑥1)B𝑡𝑡′(𝑥𝑥1+𝜏𝜏1)] =
1
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)
𝜏𝜏1
𝑁𝑁1

          𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑡𝑡 = 𝑡𝑡′ (A.19) 

In a similar fashion, the second expectation term in Equation (A.15) for 𝑥𝑥2 direction is derived 797 

as: 798 

𝐸𝐸[B𝑠𝑠(𝑥𝑥2)B𝑠𝑠′(𝑥𝑥2+𝜏𝜏2)] =
1
𝑁𝑁2

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑐𝑐 − 1)
𝜏𝜏2
𝑁𝑁2

          𝑤𝑤ℎ𝑐𝑐𝑐𝑐 𝑐𝑐 = 𝑐𝑐′ (A.20) 

After substituting Equations (A.19) and (A.20) into Equation (A.15), Equation (A.15) can be 799 

rewritten as: 800 
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ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
1

𝑁𝑁1𝑁𝑁2
1

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2 ��𝜔𝜔𝑡𝑡,𝑠𝑠

2𝐷𝐷2
𝑁𝑁2

𝑠𝑠=1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑡𝑡 − 1)
𝜏𝜏1
𝑁𝑁1

𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐(𝑐𝑐 − 1)
𝜏𝜏2
𝑁𝑁2

𝑁𝑁1

𝑡𝑡=1

 

                                                                                                         (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(A.21) 

The variance term 𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2  can also be derived since the 2D DCT basis function B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2) is 801 

orthonormal and independent of each other. By definition, 𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2  is expressed as: 802 

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2 = 𝐸𝐸 ��F(𝑥𝑥1, 𝑥𝑥2) − 𝜇𝜇F(𝑥𝑥1,𝑥𝑥2)�

2
� = ��𝜔𝜔𝑡𝑡,𝑠𝑠

2𝐷𝐷2𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2

𝑁𝑁2

𝑠𝑠=1

𝑁𝑁1

𝑡𝑡=1

 (A.22) 

Note that in Equation (A.11), 𝜎𝜎B𝑡𝑡,𝑠𝑠(𝑥𝑥1,𝑥𝑥2)
2  is derived as 1

𝑁𝑁1𝑁𝑁2
. Therefore, Equation (A.22) can be 803 

rewritten as 804 

𝜎𝜎F(𝑥𝑥1,𝑥𝑥2)
2 =

1
𝑁𝑁1𝑁𝑁2

��𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷2

𝑁𝑁2

𝑠𝑠=1

𝑁𝑁1

𝑡𝑡=1

 (A.23) 

Combining Equations (A.23) and (A.21) yields the normalized DCT-based ACF of F(𝑥𝑥1,𝑥𝑥2), 805 

which is provided as Equation (6) in the main text: 806 

ACF[F(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2] 

=
1

∑ ∑ 𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷2𝑁𝑁2

𝑠𝑠=1
𝑁𝑁1
𝑡𝑡=1

��𝜔𝜔𝑡𝑡,𝑠𝑠
2𝐷𝐷2

𝑁𝑁2

𝑠𝑠=1

ACF�B𝑡𝑡,𝑠𝑠(𝑥𝑥1, 𝑥𝑥2), 𝜏𝜏1, 𝜏𝜏2�
𝑁𝑁1

𝑡𝑡=1

 

                                                                                                         (𝑡𝑡, 𝑐𝑐 ≠ 1 𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐) 

(A.24) 

  807 
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