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Abstract 18 

Performance-based earthquake engineering (PBEE) is essential for ensuring engineering safety. Conducting 19 
seismic fragility analysis within this framework is imperative. Existing methods for seismic fragility analysis often 20 
rely heavily on double loop reanalysis and empirical data fitting, leading to challenges in obtaining high-precision 21 
results with a limited number of representative structural analysis instances. In this context, a new methodology for 22 
seismic fragility based on a full-probabilistic cloud analysis is proposed via the decoupled multi-probability density 23 
evolution method (M-PDEM). In the proposed method, the assumption of a log-normal distribution is not required. 24 
According to the random event description of the principle of preservation of probability, the transient probability 25 
density functions (PDFs) of intensity measure (IM) and engineering demand parameter (EDP), as key response 26 
quantities of the seismic-structural system, are governed by one-dimensional Li-Chen equations, where the physics-27 
driven forces are determined by representative analysis data of the stochastic dynamic system. By generating ground 28 
motions based on representative points of basic random variables and performing structural dynamic analysis, the 29 
decoupled M-PDEM is employed to solve the one-dimensional Li-Chen equations. This yields the joint PDF of IM 30 
and EDP, as well as the conditional PDF of EDP given IM, resulting in seismic fragility analysis outcomes. The 31 
numerical implementation procedure is elaborated in detail, and validation is performed using a six-story nonlinear 32 
reinforced concrete (RC) frame subjected to non-stationary stochastic ground motions. Comparative analysis against 33 
Monte Carlo simulation (MCS) and traditional cloud analysis based on least squares regression (LSR) reveals that 34 
the proposed method achieves higher computational precision at comparable structural analysis costs. By directly 35 
solving the physics-driven Li-Chen equations, the method provides the full-probabilistic joint information of IM and 36 
EDP required for cloud analysis, surpassing the accuracy achieved by traditional methods based on statistical moment 37 
fitting and empirical distribution assumptions.  38 

Keywords: Seismic fragility; Full-probabilistic cloud analysis; Performance-based earthquake engineering 39 
(PBEE); Li-Chen equation; Decoupled multi-probability density evolution method (M-PDEM).  40 
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1. Introduction 41 

Performance-based earthquake engineering (PBEE) stands as a cornerstone in ensuring the resilience of 42 
structures against seismic events, encompassing strategies to predict, mitigate, and reduce seismic risks, enhance 43 
structural safety, and minimize post-earthquake property losses (Priestley 2000, Porter 2003, Moehle & Deierlein 44 
2004). Within this context, seismic fragility analysis plays a pivotal role, enabling the assessment of structural 45 
vulnerability and informing decision-making processes aimed at safeguarding human lives and critical infrastructure 46 
(Shinozuka et al. 2000, Gardoni et al. 2002, Choi et al. 2004, Ellingwood et al. 2004). 47 

Seismic fragility assessment methodologies are classified into three main categories: multiple support analysis 48 
(MSA), incremental dynamic analysis (IDA), and cloud analysis. MSA (Singhal & Kiremidjian 1996) and IDA 49 
(Vamvatsikos & Cornell 2002) involve iterative structural re-analyses across various intensity measure (IM) levels, 50 
inherently confronting the computational burden of the double-loop problem (Jia & Taflanidis 2014, Gasser et al. 51 
2019), namely, it is necessary to conduct numerous representative analyses at each IM level, while simultaneously 52 
iterating through all IMs (Baker 2015, Pang & Wang 2021, Wang et al. 2022, Luo & Ai 2023, Lyu et al. 2023a). 53 
Conversely, cloud analysis (Cornell et al. 2002) offer computational efficiency but often rely on empirical distribution 54 
fitting of statistical moments, e.g., least squares regression (LSR) for log conditional means and standard deviation 55 
(STD), to approximate the conditional probability density functions (PDFs) of engineering demand parameter (EDP) 56 
given IM (Nielson & DesRoches 2007, Padgett et al. 2008, Jalayer et al. 2015, Cao et al. 2023c). To make the concept 57 
of fragility more comprehensive, there have been new developments fragility assessment models involving vector-58 
valued IMs (Shafieezadeh et al. 2012, Zhou et al. 2017, Du & Padgett 2020) and in multiple damage states (Jalayer 59 
et al. 2023). However, the above cloud-based approaches may lead to inadequate accuracy in capturing the complex 60 
relationships and evolving characteristics of IM and EDP joint distributions, particularly in regions of low probability 61 
where the fit of the log-normal distribution is less accurate. This limitation arises due to the reliance on statistical 62 
moments without fully considering the underlying physical mechanisms driving the joint evolution of IMs and EDPs 63 
under varying seismic conditions. As such, there exists a compelling need to develop a comprehensive probabilistic 64 
cloud analysis method that ensures both accuracy and computational tractability. 65 

The current landscape of cloud analysis-based fragility assessment develops various non-parametric approaches, 66 
directly estimating the joint probability distributions of IMs and EDPs driven by analysis data (Lallemant et al. 2015, 67 
Feng et al. 2023, Cao et al. 2023a). These methods encompass a range of techniques, including direct Monte Carlo 68 
simulation (MCS) combined with kernel density estimation (Mai et al. 2017, Cao et al. 2023b), clustering algorithms 69 
paired with polynomial kernels (Altieri & Patelli 2020), as well as the incorporation of diverse surrogate models or 70 
machine learning techniques (Mangalathu et al. 2018, Wang et al. 2018, Kiani et al. 2019). However, the integration 71 
of physical mechanisms governing the evolution of joint probability distributions under stochastic seismic excitation 72 
remains largely unexplored. As seismic forces interact with structural systems, IM and EDP become dependent 73 
stochastic processes influenced by basic random variables of the seismic-structural system, such as stochastic 74 
structural and seismic parameters. The evolution of their PDFs over time should be governed by a set of partial 75 
differential equations (PDEs), known as the Li-Chen equations (Nielsen et al. 2016). 76 

The seminal work of Li and Chen (2008) established the principle of preservation of probability for physical 77 
stochastic systems, culminating in the derivation of the Li-Chen equations that govern the transient PDFs of arbitrary 78 
quantities of interest in complex nonlinear dynamic systems (Li & Chen 2008, Chen & Li 2009). Importantly, the 79 
dimensionality of the Li-Chen equations is solely dependent on the dimensionality of the interested quantity, 80 
unaffected by the system’s degrees of freedom (DOFs) or the number of random variables involved. This exceptional 81 
feature enables efficient high-dimensional stochastic response analysis, giving rise to the methodology of probability 82 
density evolution method (PDEM) (Li & Chen 2009, Li et al. 2012, Lyu & Chen 2022). The accuracy and 83 
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effectiveness of PDEM have been rigorously examined through theoretical investigations and numerical validations 84 
(Chen et al. 2016, 2020b, Li & Wang 2022), demonstrating its capability to capture intricate probabilistic behaviors 85 
of complex systems. Furthermore, PDEM has found wide applications in various engineering domains, facilitating 86 
studies on uncertainty propagation (Papadopoulos & Kalogeris 2016, Hai & Lyu 2023, Liu & Lyu 2023) and 87 
reliability analysis (Afshari & Pourtakdoust 2018, Ang et al. 2021, Lyu et al. 2023b). Recent advancements (Lyu et 88 
al. 2024) suggest that joint PDFs of multiple response quantities can be realized through the solution of decoupled 89 
one-dimensional Li-Chen equations, further reducing the computational complexity of time-variant joint PDF 90 
analysis. 91 

Key to cloud analysis-based fragility assessment is the acquisition of the joint distribution of IMs and EDPs, a 92 
challenge adeptly addressed by the decoupled multi-PDEM (M-PDEM). Within this framework, the Li-Chen 93 
equations provide a physically-driven evolution of the joint PDF of IM and EDP under stochastic seismic actions, 94 
data-informed by representative structural dynamic analyses. This methodology facilitates efficient and refined full-95 
probabilistic seismic fragility analysis. 96 

The logical framework of this paper unfolds as follows: Sec. 2 outlines the foundational principles of cloud-97 
based fragility assessment; Sec. 3 details the methodology of determining joint and conditional PDFs of IM and EDP 98 
through the decoupled M-PDEM; Sec. 4 presents the numerical implementation procedure; Sec. 5 showcases the 99 
validation of the proposed method using a benchmark nonlinear reinforced concrete (RC) frame subjected to non-100 
stationary stochastic ground motions; Sec. 6 discusses the results and highlights the method’s advantages; and finally, 101 
Sec. 7 provides concluding remarks. 102 

2. Probabilistic perspective of cloud-based fragility analysis 103 

2.1. Description of classical cloud analysis 104 
Cloud analysis (Cornell et al. 2002) is a classical approach to assess the seismic fragility of engineering 105 

structures via determining the probability of EDP exceeding threshold limits under various values of seismic IM. 106 
Earthquake ground motion exhibits strong stochasticity, and the IM can be regarded as a random variable. If the 107 
stochastic ground motion with a realization of IM is applied as input to a structure, the EDP of the structure remain 108 
random due to the overall randomness of ground motion. Cloud analysis posits a linear conditional expectation 109 
relationship between the two random variables, IM and EDP (Cornell et al. 2002), namely, 110 

 ( ) ( )ln D
ˆˆˆ E ln ln ,x EDP IM x xµ α β= = = +  (1) 111 

where x  is a realization of IM; α̂  and β̂  are coefficients estimated by the LSR according to a series of sample 112 
pairs of IM and EDP, i.e., 113 

 ( )
( )

( )2

, 1

ˆˆ , arg min ln ln ,
n

i i
i

x z
α β

α β α β
=

 
= + − 

 
∑    (2) 114 

in which ( ),i ix z  , for 1,...,i n= , is n  sample pairs of IM and EDP given by deterministic structural analyses. 115 
Furthermore, assume that the EDP follows a lognormal distribution for each realization of IM as a condition 116 

(Padgett et al. 2008, Jalayer & Cornell 2009), namely, 117 

. ( )( )2
ln D ln Dˆ ˆ~ , ,IM xEDP xµ σ=   (3) 118 

where ( )ln Dˆ xµ  is the logarithmic mean given by Eq. (1); ln Dσ̂  is the logarithmic STD considered to be constant 119 
and estimated from the sample pairs of IM and EDP as 120 
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 ( ) 2
ln D ln D

1

1ˆ ˆln .
2

n

i i
i

z x
n

σ µ
=

 = − − ∑   (4) 121 

Then, the fragility function at a given threshold b  of EDP can be estimated as 122 

 ( ) { }
ln D

ˆˆ ln ln; Pr ,
ˆ

x bF x b EDP b IM x α β
σ

 + −
= = =   

 
Φ  (5) 123 

where ( )Φ ⋅  is the standard Gaussian cumulative distribution function (CDF). 124 
In the classic procedure of the above cloud analysis, three assumptions are employed:  125 
(1) The linear correlation assumption, which considers that the logarithms of IM and EDP have a linear 126 

conditional expectation relationship;  127 
(2) The conditional distribution assumption, which assumes that the conditional probability distribution of EDP 128 

given any realization of IM follows a log-normal distribution;  129 
(3) The conditional variance assumption, which assumes that the conditional variance of the logarithms of EDP 130 

given any realization x  of IM remains constant and does not vary with x .  131 
These three assumptions heavily rely on empirical observations and do not account for the differences in the 132 

physical stochastic characteristics of seismic motion in various engineering sites or the distinct physical-mechanical 133 
properties of different engineering structures. Consequently, fragility curves obtained solely through statistical fitting 134 
based on empirical assumptions are inherently limited in accuracy. Therefore, addressing how to perform physically 135 
realistic probabilistic seismic vulnerability analysis based on the concept of the cloud analysis method remains a 136 
challenge. 137 

2.2. Full-probabilistic perspective of cloud analysis 138 
The essence of the cloud analysis method lies in calculating the fragility function through the conditional 139 

probability of EDP given various realizations of the IM. If the conditional PDF of EDP given IM is available, denoted 140 
as ( )EDP IMp z x  , the conditional probability can be obtained by numerically integrating the conditional PDF, 141 
namely, 142 

 ( ) { } ( )EDP IM; Pr d ,
b

F x b EDP b IM x p z x z
∞

= = = ∫  (6) 143 

where the conditional PDF can be given as 144 

 ( ) ( )
( )

IM,EDP
EDP IM

IM

,
,

p x z
p z x

p x
=  (7) 145 

in which ( )IMp x  is the PDF of IM; ( )IM,EDP ,p x z  is the joint PDF of IM and EDP. 146 
Therefore, achieving cloud-based seismic fragility analysis under the full-probabilistic perspective requires 147 

obtaining the joint PDF of the two key response quantities, IM and EDP, in the complex nonlinear stochastic dynamic 148 
system of “earthquake-structure”. In this framework, the classical cloud analysis based on the above three 149 
assumptions provides only a specific parametric form of the conditional PDF, namely a lognormal distribution as 150 

 ( )
( )2

2
ln D

ˆˆln ln

ˆ2
EDP IM

ln D

1 ,  for 0.
ˆ2

z x

p z x e z
z

α β

σ

πσ

− −
−

=   (8) 151 

Additionally, previous studies by Mai et al. (2017) and Cao et al. (2023b) have explored non-parametric approaches 152 
based on kernel density estimation using sample data. However, direct fitting at the data level is limited in capturing 153 
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the physics-driven evolution of probabilistic dependencies during the uncertainty propagation from earthquake (e.g., 154 
IM) to structure (e.g., EDP). This evolution is the intrinsic reason behind the strong probabilistic correlation between 155 
IM and EDP. Introducing the PDEM may offer deeper insights to address this issue. 156 

3. Conditional PDF determination via decoupled M-PDEM 157 

3.1. Probability density evolution method 158 
Without loss of generality, a complex nonlinear structure subjected to non-stationary stochastic ground motion 159 

can be modeled as the high-dimensional stochastic dynamical system with the equation of motion as 160 

 ( ) ( ) ( ) ( ) ( ) ( )
.. .

, , , , ,mt t t t tξ + = −  
Θ Θ Θf Y M 1 ΘM Y Y  (9) 161 

where ( )tY  , ( )
.

tY  , and ( )
..

tY   are the m  -dimensional displacement, velocity, and acceleration response 162 
process vector, and m  is the number of the DOFs; Θ is the basic random vector involving the randomness both 163 
from structural parameters and ground motions with the known joint PDF ( )pΘ θ ; ( ), tξ Θ  is the non-stationary 164 
stochastic ground motion excitation process with the duration [ ]f0,t t∈  ; ( )M Θ   is the m m×   mass matrix; 165 
( )⋅f  is the m -dimensional nonlinear damping and restoring force vector function. 166 

When the basic random vector Θ   takes any realization θ  , Eq. (9) becomes a deterministic nonlinear 167 
dynamic system that can be numerically solved to obtain the deterministic time history of any desired response 168 
quantity ( )Z t   in the system. Therefore, with Θ   serving as uncertain inputs, ( )Z t   can be considered as a 169 
deterministic function of both the basic random vector Θ  and time t , namely, 170 

 ( ) ( ), ,Z t g t= Θ  (10) 171 

where ( )g ⋅  is a deterministic function that does not have an explicit expression and can be determined with various 172 
realization θ  by solving Eq. (9) numerically; ( )Z t  represents any quantity of interest, which can be a specific 173 
function or functional of seismic and structural responses within the system, i.e., ( ) ( ) ( ), ,Z t t tξ =  Y Θ  in 174 
which ( )⋅  is a function or functional operator. 175 

Eq. (10) actually constitutes the physical basis for random events description in the principle of preservation 176 
of probability. Under this description, based on the principle of preservation of probability, it can be derived that the 177 
joint PDF of ( )Z t  and Θ , denoted as ( ), ,Zp z tΘ θ , satisfies the Li-Chen equation (Li & Chen 2008, Chen & Li 178 
2009), namely, 179 

 
( ) ( ) ( ), , , ,

, 0,Z Zp z t p z t
g t

t z
∂ ∂

+ =
∂ ∂

Θ Θθ θ
θ  (11) 180 

where ( ),g tθ  is the derivative of ( ),g tΘ  with respect to t  under a given =Θ θ . The detailed proof of Eq. 181 
(11) can be found in Li and Chen (2008). 182 

Solving Li-Chen equation (11) with each realization θ  yields the numerical solution of ( ), ,Zp z tΘ θ . Then, 183 
integrating ( ), ,Zp z tΘ θ  with respect to θ  yields the transient PDF of ( )Z t , namely, 184 

 ( ) ( ), , , d ,
sZ Zp z t p z t= ∫ Θ θ θ



 (12) 185 

where s
  is the s -dimensional real domain, and s  is the dimension of Θ . This constitutes the fundamental 186 

framework of the PDEM (Li & Chen 2004, Li et al. 2012, Chen et al. 2016). 187 
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3.2. Decoupled M-PDEM for cloud analysis 188 
For the general case of seismic fragility analysis of complex nonlinear structures, the peak ground acceleration 189 

(PGA) of stochastic seismic motion can be employed as the IM, while the maximum inter-story drift angle (MIDA) 190 
of all floors of the structure can serve as the EDP. In this scenario, the logarithms of the time-variant extreme values 191 
processes of PGA and MIDA can be regarded as the quantities of interest, namely, 192 

 

( ) ( ){ }

( )
( ) ( )

IM 0

1
EDP 0 1,...,

ln max , ,

ln max max ,

t

i i

t i m
i

Z t

Y Y
Z t

h

τ

τ

ξ τ

τ τ−

=

 =   
   −   =   
      









Θ
 

 

 (13) 193 

where ih  is the height of the i -th story; ( )0 0Y τ =  is forcibly defined. The logarithms of IM and EDP required 194 
for the fragility analysis are the values of these quantities of interest at the termination time ft , i.e., 195 

 ( ) ( )IM f EDP fln and ln ,IM Z t EDP Z t= =  (14) 196 

respectively. 197 
Remark 1: Of course, apart from the PGA, other measures such as the spectral acceleration can also be chosen 198 

as the IM. Since the proposed method is non-parametric, there is no need to consider linear regression errors for the 199 
IM selection. The selection of PGA as the IM is primarily due to its structure-independence and its ability to better 200 
reflect the inherent characteristics of the earthquake. In addition, besides the MIDA, other alternative performance 201 
indicators can also be chosen according to engineering requirements. In Eqs. (13) and (14), the logarithmic 202 
operation can also be omitted simultaneously. However, numerical experiments have shown that using the 203 
logarithmically transformed values as the quantities of interest yields more accurate numerical analysis results. 204 

According to Eq. (11), the joint PDF of ( )IMZ t   or ( )EDPZ t   and Θ   satisfies the Li-Chen equation, 205 
namely, 206 

 

( ) ( ) ( )

( ) ( ) ( )

IM IM

EDP EDP

1 1
IM

1

2 2
EDP

2

, , , ,
, 0,

, , , ,
, 0,

Z Z

Z Z

p z t p z t
g t

t z
p z t p z t

g t
t z

∂ ∂
+ = ∂ ∂


∂ ∂ + = ∂ ∂

Θ Θ

Θ Θ

θ θ
θ

θ θ
θ





 (15) 207 

where ( )IM ,g tθ  and ( )EDP ,g tθ  are the deterministic solutions of ( )IMZ t  and ( )EDPZ t  obtained by solving 208 
Eq. (9) at the realization =Θ θ , respectively. The marginal PDFs of ( )IMZ t  and ( )EDPZ t  can be obtained by 209 
integrating the solutions of Li-Chen equations (15) with respect to θ . However, how does one derive the joint PDF 210 
of ( )IMZ t  and ( )EDPZ t  required for the fragility analysis as in Eq. (7)? 211 

According to the decoupled M-PDEM (Lyu et al. 2024), for any realization θ , there is 212 

 ( ) ( ) ( )
( )

IM EDP

IM EDP

1 2
1 2

, , , ,
, , , .Z Z

Z Z

p z t p z t
p z z t

p
= Θ Θ

Θ
Θ

θ θ
θ

θ
 (16) 213 

Note that due to the correlation between IM and EDP, the joint PDF cannot be expressed directly as the product of 214 
individual marginal PDFs. However, based on the random event description of the principle of preservation of 215 
probability (Lyu et al. 2024), under each =Θ θ  , the joint PDF of multiple responses can be calculated by 216 
multiplying the PDFs of each response. The detailed proof of Eq. (16) can be found in Lyu et al. (2024). Then, the 217 
joint PDF of ( )IMZ t  and ( )EDPZ t  can be given as 218 
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 ( ) ( )
IM EDP IM EDP1 2 1 2, , , , , d .

sZ Z Z Zp z z t p z z t= ∫ Θ θ θ


 (17) 219 

According to Eq. (14), the joint PDF of IM and EDP can be given as 220 

 ( ) ( )
IM EDP f

IM,EDP

ln , ln ,
, , for , 0,Z Zp x z t

p x z x z
xz

= >  (18) 221 

and the conditional PDF of EDP with given IM is 222 

( ) ( ) ( )
( )

EDP IM IM EDP

IM

f f
EDP IM

f

ln ln , ln , ln ,
, for , 0.

ln ,
Z Z Z Z

Z

p z x t p x z t
p z x x z

z zp x t
= = >  (19) 223 

Then, according to Eqs. (16) to (19), the fragility function in Eq. (6) can be captured via the solution of Li-Chen 224 
equations (15) as 225 

( ) ( ) ( )
( )

( )
( )

( )
( ) ( )

( )

IM EDP

IM

IM EDP

IM

IM EDP

IM

f
EDP IM

f

f
f

f f

f

ln , ln ,
; d d

ln ,

1 1 ln , ln , , d d
ln , , d

ln , , ln , ,1 1 d d .
ln , , d

s

s

s

s

Z Z

b b
Z

Z Zb
Z

Z Z

b
Z

p x z t
F x b p z x z z

zp x t

p x z t z
zp x t

p x t p z t
z

z pp x t

∞ ∞

∞

∞

= =

=

=

∫ ∫

∫ ∫∫

∫ ∫∫

Θ
Θ

Θ Θ

ΘΘ

θ θ
θ θ

θ θ
θ

θθ θ









 (20) 226 

Eq. (20) provides the main formula for conducting the cloud-based fragility analysis through the decoupled M-227 
PDEM. The term “decoupled” refers to the approach of obtaining the joint PDF of IM and EDP in cloud analysis 228 
without directly solving the high-dimensional probability density evolution equation for the coupling of IM and EDP. 229 
Instead, it involves solving the one-dimensional probability density evolution equations for IM and EDP separately 230 
for each representative realization of θ . 231 

4. Numerical implementation procedure 232 

The specific numerical implementation procedure of the cloud-based fragility analysis via the decoupled M-233 
PDEM includes the following four steps: 234 

Step 1. Partitioning the probabilistic space of basic random vector. 235 
First, determine the basic random vector Θ   that reflects the randomness of the structural parameters and 236 

seismic excitations, such as the mass and initial stiffness of each story, and random frequencies and phases of each 237 
harmonic term required for seismic generation, etc. Appropriate numerical techniques are utilized to discretize the 238 
probability space of Θ , obtaining a series of representative points ( )qθ , for 1,...,q n= . A representative point 239 
selection strategy based on the generalized F-discrepancy can be employed here (Chen et al. 2016). 240 

Subsequently, the assigned probabilities for each representative point ( )qθ  can be determined as 241 

 ( )( ) d ,qqP p
Ω

= ∫ Θ θ θ  (21) 242 

where ( )qΩ  is the probabilistic subdomain of ( )qθ  in the probabilistic space, and can be defined by the Voronoi 243 
cell (Chen et al. 2009). 244 

Then, a series of representative non-stationary seismic ground acceleration histories corresponding to the 245 
representative points can be generated and denoted as ( )( ),q tξ θ  in [ ]f0,t t∈ , for 1,...,q n= . To reduce the 246 
dimensionality of Θ , the stochastic harmonic function (SHF) can be used to generate seismic excitations (Chen et 247 
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al. 2013, 2017). For detailed seismic excitation modeling and characterization, refer to Subsec. 5.1. The representative 248 
history of quantity of interest corresponding to IM can be determined as ( ) ( )( )IM IM ,qZ t g t= θ , for 1,...,q n= , 249 
e.g., according to the first equation in Eq. (13). 250 

Step 2. Performing representative seismic dynamic analyses of the structure. 251 
The representative seismic dynamic analyses can be performed by solving Eq. (9) numerically with each 252 

( )q=Θ θ  , for 1,...,q n=  . Various approaches for deterministic dynamic analysis can be used according to the 253 
specific problem in this step. 254 

Then, the representative history of quantity of interest corresponding to EDP can be determined as 255 
( ) ( )( )EDP EDP ,qZ t g t= θ , for 1,...,q n= , e.g., according to the second equation in Eq. (13). 256 

Step 3. Solving the Li-Chen equation. 257 
Substituting ( ) ( )( )IM IM ,qZ t g t= θ   and ( ) ( )( )EDP EDP ,qZ t g t= θ   in, Li-Chen equations (15) can be 258 

solved at each ( )qθ  with appropriate initial conditions individually, namely solving 259 

 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

IM IM

EDP EDP

1 1
IM

1

2 2
EDP

2

, ,
, 0,

for 1,..., ,
, ,

, 0,

q q
Z Zq

q q
Z Zq

p z t p z t
g t

t z
q n

p z t p z t
g t

t z

∂ ∂
+ =

∂ ∂ =
∂ ∂

+ = ∂ ∂

θ

θ





 (22) 260 

where ( ) ( )
IM 1,
q

Zp z t   and ( ) ( )
EDP 2 ,q

Zp z t   are, respectively, the sub-PDFs of ( )IMZ t   and ( )EDPZ t   in the 261 
probabilistic subdomain ( )qΩ , i.e., 262 

 

( ) ( ) ( )( )
( )( ) ( )( )

( )( )
( ) ( ) ( )( )

( )( ) ( )( )
( )( )

IM IM IM IM

EDP EDP EDP EDP

1 1 1 1

2 2 2 2

, , , d , d , ,

, , , d , d , .

q q

q q

q q q
Z Z qZ Z

q q q
Z Z qZ Z

p z t p z t p z t p p z t P

p z t p z t p z t p p z t P
Ω Ω

Ω Ω

= =

=



 =




∫ ∫
∫ ∫

Θ ΘΘ Θ

Θ ΘΘ Θ

θ θ θ θ θ θ

θ θ θ θ θ θ





 (23) 263 

Various numerical schemes for solving hyperbolic PDEs, i.e., Eq. (15), can be employed in this step, such as the 264 
finite difference method (Li & Chen 2004, 2009), the direct probability integral method (Fan et al. 2009, Chen & 265 
Yang 2019), the finite element method (Papadopoulos & Kalogeris 2016), the reproducing kernel particle method 266 
(Wang & Li 2020, Wang et al. 2021), or deep learning methods (Pourtakdoust & Khodabakhsh 2022, Das & 267 
Tesfamariam 2024), to obtain the sub-PDFs  and . 268 

Step 4. Calculating the joint PDF of IM-EDP and the fragility function. 269 
According to the decoupled M-PDEM (Lyu et al. 2024), the joint PDF of IM and EDP in Eq. (18) can be 270 

calculated as 271 
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Meanwhile, the marginal PDF of IM can be given as 273 

( ) ( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )

IM IM

IM IM

IM f f
1

f f
1 1

1 1ln , , d ln , d

1 1ln , d ln , .
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n

Z Z
q

n n
q q

Z Z
q q

p x p x t p x t p
x x

p x t p p x t
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Ω
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Ω
= =

= =

=

∑∫ ∫

∑ ∑∫

Θ ΘΘ

Θ Θ

θ θ θ θ θ

θ θ θ





 (25) 274 

Then, the fragility function in Eq. (20) can be calculated as 275 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
IM EDP

IM

IM,EDP
f f

1IM
f

1

, 1 1 1; d ln , ln , d .
ln ,

n
q q

Z Znb bq q q
Z

q

p x z
F x b z p x t p z t z

p x z Pp x t

∞ ∞

=

=

= ∑∫ ∫
∑

  (26) 276 

The flowchart of the numerical implementation steps is shown in Fig. 1. The process outlined within the blue 277 
dashed box in the diagram represents the portion that requires parallel computations for each representative point of 278 
the basic random vector, while the process boxes highlighted in red bold indicate the key steps of employing the 279 
decoupled M-PDEM. 280 

 281 
Fig. 1. Flowchart of cloud-based fragility analysis via decoupled M-PDEM. 282 

5. Numerical verification 283 

This section applies the proposed method to a practical engineering case study, conducting seismic fragility 284 
analysis on a three-span six-story RC frame structure under non-stationary stochastic seismic excitations. A 285 
comparison and validation of the results are performed against those obtained from MCS. 286 

5.1. Non-stationary stochastic ground motion characterization 287 
In the practical case, the non-stationary stochastic ground motion acceleration ( ), tξ Θ  is modelled by the 288 

evolutionary power spectral density (PSD) given as (Deodatis 1996) 289 
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 (27) 290 

where  291 

 ( ) ( )1 1
g 0 g 0

f f

, and ;t tt t
t t
ω ζω ω ζ ζ= − = −  (28) 292 

the parameters are taken as f 25 st =  , a 6 st =  , a 2β =  , 2
m 1.96 m s/ξ =  , 2.85γ =  , 1

0 16 sω −=  , 293 
1

1 5 sω −= , 0 0.6ζ = , and 1 0.2ζ = . 294 
According to the given evolutionary PSD model, the representative histories of the non-stationary stochastic 295 

ground motion can be generated by the SHF as (Chen et al. 2017, 2020a) 296 

 ( ) ( ) ( )
SHF

1
, 2 , cos ,

n

k k k k
k

t S t tξξ ω ω ω
=

Λ Λ   = ∆ +   Φ∑Θ    (29) 297 

where SHFn   is the number of numerical discretization intervals in the frequency domain 298 
[ ]

SHFf 00, , nω ω ω ω ∈ =   ; 1k k kω ω ω −∆ = − , in which the discretized interval [ ]1,k kω ω−  satisfies 299 

 ( ) ( )f fSHF

1 0
SHF0 0

SHF

1, d d , d d , for 1,..., ;k n

k

t t
S t t S t t k n

n
ω ω

ξ ξω ω
ω ω ω ω

−

= =∫ ∫ ∫ ∫  (30) 300 

( )kω Λ  takes 301 

 ( ) [ ]1 1 SHF, for 1,..., ;k k k k k nω ω ω ω− −= +Λ Λ− =  (31) 302 

kΦ  , for SHF1,...,k n=  , and Λ   are ( )SHF 1n +   uniform-distributed independent random variables in [ ]0,2π  303 
and [ ]0,1 , respectively, and they are the components of the basic random vector ( )SHF

T

excit 1, , ,nΘ ΛΘ=Θ  . 304 
The numerical parameters are taken as SHF 10n =   and f 2 / tω π= ∆  in generation, and the time step is 305 
0.05 st∆ =  . The evolutionary PSD model and the corresponding generated typical ground motion history are 306 

illustrated in Fig. 2. 307 

 308 
Fig. 2. Non-stationary stochastic ground motion:  309 

(a) (b)
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(a) Evolutionary PSD; (b) Typical ground motion generation. 310 

5.2. Three-span six-story RC frame structure modelling and analysis 311 
In the present paper, a six-story three-span RC frame structure are employed for case study. The structure has a 312 

total of six stories with a design height of 22.5 m. Each span has a span length of 5.2 m, and there are a total of three 313 
spans. The geometric information and the cross-section and reinforcement details for each story of the structure are 314 
shown in Fig. 3. 315 

 316 

Fig. 3. Three-span six-story RC frame structure (unit: mm). 317 

The structure employs reinforcing steel of grade HRB335, stirrups of grade HRB300, and concrete of grade C30. 318 
The damping ratio sζ , concrete compressive strength cf , and peak compressive strain cε  of the structure are 319 
considered as basic random parameters, namely, ( )T

param s c c, ,fζ ε=Θ  . Then, the seismic-structural system 320 
includes 14 independent basic random variables, i.e, ( )TT T

param excit,=Θ Θ Θ ( )SHF

T

s c c 1, , , , , ,nfζ ε Φ Φ= Λ  . 321 
These variables follow probability distributions with their respective distribution parameters (Lu et al. 2014, Chen et 322 
al. 2020a, Tao et al. 2020), as presented in Tab. 1. 323 

Tab. 1. Basic random variables and their distributions. 324 
Variables Distribution Parameters PDF (Θ denoting each variable) 

sζ  Gaussian s
0.05ζµ = , 

s
0.005ζσ =  ( )

( )2
221

2
p e

θ µ
σθ

πσ

Θ

Θ

−
−

Θ
Θ

=  

cf  (Pa) Lognormal c

73.4 10 Pafr = × , 

c
0.21fσ =  ( )

2
2

1 ln
21

2
rp e
θ
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πσ θ

ΘΘ

−

Θ
Θ

= , for 0θ >  

cε  Lognormal c

32.2 10rε
−= × , 
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0.17εσ =  

kΦ ,  
for SHF1,...,k n=  

Uniform [ ] [ ], 0, 2a b πΦ Φ =  ( ) 1p
b a

θΘ
Θ Θ

=
−

, for a bθΘ Θ< <  

Λ  Uniform [ ] [ ], 0,1a bΘ Θ =  

The modeling methodology adopted for the practical application example involves the utilization of nonlinear 325 
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beam-column elements and specialized node elements. These elements serve as fundamental building blocks in the 326 
analysis and are integral to capturing the intricate nonlinear behavior of the structural system. 327 

The nonlinear beam-column elements, generated using the flexibility method, play a central role in 328 
characterizing the force-based nonlinearity exhibited by structural members. These elements remain stable under 329 
conditions of pronounced nonlinearity, enabling them to accurately represent the complex response of the structure. 330 
Each integration point within these elements is furnished with fiber sections representing both steel and concrete 331 
fibers (Scott et al. 1982). This delineation enables the precise modeling of mechanical properties within the structure. 332 

Moreover, the analysis employs specialized node elements to accurately model the behavior of critical regions 333 
such as beam-column joints. The joint two-dimensional element, a key component, incorporates a central spring and 334 
four interfacial springs (Bentz et al. 2006). The central spring characterizes shear damage in the core zones. This 335 
material model’s parameters are derived from the modified compression field theory, which captures the interfacial 336 
moment-rotation relationship. The interfacial springs, on the other hand, simulate the bond-slip effects of 337 
reinforcement and are described using the hysteresis material model (Cao et al. 2022). The parameters of this model 338 
are obtained through zero-length fiber-section analysis, capturing the joint moment-rotation relationship. 339 

After generating representative points for the basic random vector Θ , these points are employed as inputs for 340 
the structural parameters. Furthermore, the generated representative seismic excitations are applied as inputs to the 341 
structure. Dynamic analyses of the finite element method (FEM) model are then conducted using the OpenSEES 342 
software, facilitating the acquisition of response time histories for the structure under each representative points. 343 

5.3. Seismic fragility analysis 344 
In this case study, 800 representative points for the basic random vector Θ   are utilized to generate non-345 

stationary random seismic excitations., i.e.,   These excitations are subsequently employed as input for 346 
dynamic FEM analyses of the structure. Obtained numerical solutions of the response quantities of interest under 347 
each representative point are then substituted into the Li-Chen equation (22) for numerical solution. The decoupled 348 
M-PDEM is employed to provide the joint PDF of IM and EDP for the seismic-structural system, as well as the 349 
conditional PDF of EDP under the given IM. 350 

The results of the joint PDF of IM and EDP and the conditional PDF of EDP given IM are illustrated in Figs. 4 351 
and 5, respectively, via PDF surfaces and contours, where black scattered points in Fig. 4 (b) represent numerical 352 
solutions of IM and EDP under representative points. The different curves in Fig. 5 (c) represent the conditional PDFs 353 
of EDP under various given IM, including IM = 0.5 g, 1.0 g, 2.0 g, and 4.0 g. These PDFs do not need to be separately 354 
computed for different IM values; instead, they can be obtained comprehensively through the decoupled M-PDEM 355 
analysis in a single step. Traditional cloud analyses typically model this conditional distribution using the lognormal 356 
distribution. However, as evident from Fig. 5 (c), the results obtained from the decoupled M-PDEM analysis exhibit 357 
significant deviations from the lognormal distribution. The accuracy of the decoupled M-PDEM analysis will be 358 
validated next, and its detailed comparison and discussion with the traditional cloud method will be presented in Sec. 359 
6. 360 
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 361 
Fig. 4. Joint PDF of IM and EDP:  362 

(a) Joint PDF surface; (b) Joint PDF contour. 363 

 364 

Fig. 5. Conditional PDF of EDP given IM:  365 
(a) Conditional PDF surface; (b) Conditional PDF contour; (c) Conditional PDFs under various given IMs. 366 

Integrating the conditional PDF with respect to EDP within the failure domain yields the fragility varying with 367 
IM. The fragility curves for different limit state models are illustrated in Fig. 6. Four limit state models, i.e., slight, 368 
moderate, extensive, and complete, are considered through various failure thresholds of EDP (Jeon et al. 2015). The 369 
curves of varying colors and line styles represent the fragility obtained from decoupled M-PDEM analysis at different 370 
thresholds. The corresponding scatter points depict the fragility obtained from MCS at different thresholds. The MCS 371 
results involve performing 104 stochastic dynamic analysis simulations for the seismic-structural system at each IM 372 
value, and a total of 2×105 stochastic samples are needed to obtain the entire fragility curve. This serves as a 373 
comparison to the proposed method. Figs. 6 (a) and (b) present the comparison results of failure probability in linear 374 
and logarithmic coordinates, respectively. It is evident that the decoupled M-PDEM analysis results based on 800 375 
representative analyses match closely with the MCS results of 2×105 samples, even in the region of low failure 376 
probabilities displayed on the logarithmic scale. This validates the high computational accuracy of cloud-based 377 

(a) (b)

(a) (b)

(c)
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fragility analysis via the decoupled M-PDEM. It is also noticed a slight fluctuation in the red solid curve around the 378 
order of 10-2 in Fig. 6 (b), indicating a non-monotonic behavior in the presented fragility curve. This fluctuation is 379 
attributed to numerical errors. Diverging from traditional empirical fragility models, the proposed method is non-380 
parametric and does not inherently assume the monotonicity of the fragility curve. However, from the numerical 381 
results, it is evident that, except for a slight numerical fluctuation, the proposed method nearly perfectly adheres to 382 
monotonicity in the computed fragility curve. This further validates that the numerical results provided by the 383 
proposed method, driven by physical mechanisms, are highly accurate in qualitative analysis. 384 

 385 

Fig. 6. Fragility via decoupled M-PDEM:  386 
(a) Linear coordinate; (b) Logarithmic coordinate. 387 

6. Results and discussion 388 

To further compare the convergence of the fragility analysis results obtained using the proposed method with 389 
increasing representative analysis quantities, representative point numbers  were selected as 120, 200, 400, and 390 
800. Seismic excitations were generated, structural dynamic analyses were conducted, and Li-Chen equations were 391 
solved for different representative point quantities. The resulting fragility curves were then compared with the MCS, 392 
as depicted in Fig. 7 shown by the solid curves and hollow dots, respectively. It can be observed that as the number 393 
of representative analyses increases, the fragility curves obtained through decoupled M-PDEM analysis become 394 
increasingly close to the MCS results. 395 

(a) (b)
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 396 
Fig. 7. Fragility comparison based on various number of representative analyses:  397 

(a) ; (b) ; (c) ; (d) . 398 

In order to quantify the accuracy of the fragility curves, the error estimation formula can be introduced as (Feng 399 
et al. 2023) 400 

 ( ) ( )u 2

0
1 u

1 1error ; ; d ,
k IM

j j
j

F x b F x b x
k IM=

 = − ∑ ∫   (32) 401 

where ( )F ⋅  represents the exact solution of the fragility function, which is given by 2×105 MCS results; ( )F ⋅  402 
represents the fragility function calculated by the proposed method; uIM  is the upper bound of the IM, set to 4 g; 403 

jb , for 1,...,j k= , represent different failure threshold corresponding to the four limit state models. The second 404 
row in Tab. 2 presents the errors of the fragility functions obtained through decoupled M-PDEM analysis for different 405 
numbers of representative analyses. It can be observed that as the number of representative analyses increases, the 406 
errors gradually decrease. 407 

Tab. 2. Error comparison of various fragility results. 408 
n  120 200 400 800 

Decoupled M-PDEM 0.0417 0.0291 0.0210 0.0183 
LSR 0.0528 0.0448 0.0352 0.0375 

To further demonstrate the advance of the proposed method in terms of computational accuracy and efficiency, 409 
a comparison is made between the results obtained using the proposed method and those obtained through traditional 410 
cloud analysis, i.e., estimating conditional mean parameters through LSR and fitting EDP’s conditional distribution 411 
under IM with a lognormal distribution, under 120, 200, 400, and 800 representative analyses respectively, as shown 412 

(a) (b)

(c) (d)
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in Fig. 7 by dashed curves as well. The fragility obtained from 800 representative analyses combined with decoupled 413 
M-PDEM analysis exhibit significantly higher accuracy compared to them obtained from the same number of 414 
representative analyses combined with the LSR. 415 

Fig. 8 depict the log conditional means of EDP under IM obtained from the decoupled M-PDEM analysis and 416 
the LSR, where the black dots represent data points obtained from 800 deterministic analyses of IM and EDP; The 417 
red solid line represents the conditional mean of lnEDP under IM, and the magenta dashed line represents the 418 
conditional mean plus and minus one STD. The log conditional mean and STD via the LSR are estimated by Eqs. 419 
(1) and (4), respectively, while them via the decoupled M-PDEM are determined by the conditional PDF, namely, 420 

 ( ) ( ) ( )
MIDA PGAln D f0

E ln ln , d ,Z Zx EDP IM x zp z x t zµ
∞

= = = ∫  (33) 421 

and 422 

( ) ( ) ( ) ( )
MIDA PGA

2
ln D ln D f0

Var ln ln , d .Z Zx EDP IM x z x p z x t zσ µ
∞
 = = = − ∫  (34) 423 

 424 
Fig. 8. Log conditional mean of EDP given IM:  425 

(a) Decoupled M-PDEM; (b) LSR. 426 

In fact, when conducting fragility analysis using the decoupled M-PDEM, there is no need to compute 427 
conditional mean and STD. Instead, the joint PDF and conditional PDF are directly obtained by solving the Li-Chen 428 
equations. Here, the conditional mean and STD are derived from the obtained conditional PDF to compare with from 429 
the LSR. Comparing Figs. 8 (a) and (b), it can be observed that the conditional means by the decoupled M-PDEM 430 
exhibit a nearly identical linear relationship with the LSR results, with minor differences. However, the significant 431 
difference in the fragility between the two methods can be seen in Fig. 7 (d). 432 

This difference arises because conditional means and STDs represent an analysis level from statistical moments, 433 
while fragility, as obtained by the integral of the conditional PDF within the failure domain, reflects an analysis level 434 
from probability density. When the accuracy of fitting statistical moments is acceptable, the corresponding probability 435 
density estimates may not be as accurate. This is because the process of transforming statistical moments into 436 
probability density introduces additional assumptions as outlined in Assumption 2 in Subsec. 2.1, which can lead to 437 
larger errors in the fragility results obtained from LSR. On the other hand, the decoupled M-PDEM analysis directly 438 
solves the Li-Chen equations with physics-driven perspective. It provides more accurate results at the probability 439 
density level and thus demonstrating a considerable advantage in terms of accuracy. 440 

The third row in Tab. 2 also presents the errors of fragility obtained by the LSR for different representative 441 
analysis quantities. The error comparison is also shown in Fig. 9. It can be observed that the convergence of errors in 442 

(a) (b)
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fragility analysis by LSR is not evident as the number of representative analyses increases. In some cases, such as 443 
with 800 points, the error is even higher than that with 400 points. This discrepancy arises because, regardless of the 444 
number of representative analyses conducted, the traditional cloud analysis based on the LSR, as outlined in Subsec. 445 
2.1 with its three assumptions, provides empirically approximate fragility results. Consequently, it cannot achieve 446 
higher levels of analysis accuracy. In contrast, the fragility obtained by the decoupled M-PDEM exhibit noticeably 447 
smaller computational errors, and with an increasing number of representative analyses, the errors gradually diminish. 448 

 449 

Fig. 9. Error comparison of various fragility results. 450 

Remark 2 (Limitation and future works): While our proposed method exhibits notable advantages in terms 451 
of numerical precision and efficiency, it is crucial to acknowledge certain limitations inherent in its application. One 452 
significant consideration is the requirement to solve PDEs, albeit in a one-dimensional context. This necessitates a 453 
deeper theoretical understanding compared to traditional fragility methods. However, it is essential to underscore that 454 
the derived fragility function [Eq. (20)] is rigorously formulated without relying on empirical assumptions, ensuring 455 
heightened result accuracy. Additionally, the method’s application in seismic fragility assessment has been explored 456 
in a preliminary manner, and its versatility requires further investigation. Specifically, its suitability in scenarios 457 
involving multiple damage states or vector-valued IMs (Zhou et al. 2017, Du & Padgett 2020, Jalayer et al. 2023) 458 
warrants additional scrutiny. These limitations serve as avenues for future research, aiming to enhance the method’s 459 
applicability and address diverse structural scenarios. 460 

7. Concluding remarks 461 

In this study, a novel approach to seismic fragility analysis within a performance-based earthquake engineering 462 
(PBEE) framework has been proposed. This method, based on the cloud analysis, distinguishes itself from traditional 463 
methods by utilizing the decoupled joint probability density evolution method (M-PDEM) to calculate the joint 464 
probability density functions (PDFs) of intensity measure (IM) and engineering demand parameter (EDP). IM and 465 
EDP are fundamental response quantities of the seismic-structural system, and their transient PDFs satisfy a class of 466 
one-dimensional partial differential equations (PDEs) known as Li-Chen equations. By employing the decoupled M-467 
PDEM to solve these equations, the joint PDFs of IM and EDP, as well as the conditional PDFs of EDP given IM, 468 
can be obtained, leading to seismic fragility results. The method exhibits high numerical precision and computational 469 
efficiency. Key conclusions of this study include: 470 

(1) The decoupled M-PDEM provides a methodology to solve the one-dimensional Li-Chen equations 471 
governing the temporal evolution of the transient PDFs of both the time-variant peak ground acceleration (PGA) 472 
process and structural extreme value response process subject to stochastic seismic excitations. The joint PDF of IM 473 

120 200 400 800

Number of representative analyses

0.01

0.02

0.03

0.04

0.05

0.06
Er

or
r

Proposed

LSR



18 
 

and EDP can be obtained by solving their respective one-dimensional Li-Chen equations, avoiding the computational 474 
burden associated with high-dimensional PDE solving. 475 

(2) The use of decoupled M-PDEM for cloud-based seismic fragility analysis demonstrates superior 476 
computational accuracy. It achieves close agreement with the results of 105 Monte Carlo simulations (MCSs) using 477 
representative analysis data on the order of 102. Additionally, it offers high accuracy in capturing the tail of fragility 478 
under logarithmic coordinates, particularly for small probability of failure events. This precision arises from the fact 479 
that the joint PDF required for fragility analysis is physically driven by the Li-Chen equations and incorporates 480 
contributions from representative analysis data, surpassing the accuracy of solely data-driven fitting. 481 

(3) Compared to traditional cloud analysis based on least squares regression (LSR), the decoupled M-PDEM 482 
exhibits higher computational accuracy at similar structural analysis costs. This is due to the method’s direct 483 
acquisition of conditional PDF information through the solution of physics-driven Li-Chen equations, offering greater 484 
precision assurance than data-driven fitting combined with empirical assumptions. 485 

In summary, this study presents a methodology, numerical strategy, and validation under benchmark models for 486 
seismic fragility analysis via the decoupled M-PDEM. The proposed method can be further extended to address 487 
fragility assessment involving multiple damage states and vector-valued IMs. Additionally, the proposed method 488 
allows for the analysis of confidence intervals for fragility curves. This approach can be extended to more complex 489 
engineering structures, including the fragility and resilience analyses of high-rise buildings, long-span bridges, and 490 
of under sequence-type seismic excitations. 491 
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