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Abstract: Parameter identification is a critical task in the research of proton exchange membrane
fuel cells (PEMFC), which provides the basis for establishing an accurate and reliable PEMFC
model. However, the nonlinear characteristics of PEMFC model as well as inevitable noise data and
insufficient measurement data often overwhelm traditional optimization techniques. In particular,
noise data and inadequate measurement data can introduce bias or lead to data loss. To address this
problem, a novel hybrid optimization strategy is proposed. Firstly, a feedforward neural network
(FNN)  is  employed  to  preprocess  the  measured  data  (i.e.,  reducing  noise  data  and  enriching
measurement  data).  Furthermore,  Gaussian noise and Rayleigh noise with three signal-to-noise
ratio levels are introduced to simulate various disturbances of noise. Then, the pelican optimization
algorithm (POA) is used to identify the parameters of PEMFC based on preprocessed data. Lastly,
the effectiveness of the proposed strategy named FNN-POA is verified by comparing it with seven
advanced  competitive  algorithms.  Simulation  results  demonstrate  that  FNN-POA has  higher
robustness  and  optimization  quality  by  comparing  original  data  and  preprocessed  data.  For
instance, the root-mean-square error obtained by FNN-POA is reduced by 99.44% under  medium
temperature and medium pressure through noise reduction.

Keywords: PEMFC, FNN, POA, parameter identification, data noised reduction, data prediction.

Nomenclature

Variables IMOA improved monarch optimization algorithm

ε 1 , ε2 , ε3 , ε4semi-empirical coefficients IWOA improved whale optimization algorithm

λ the water content of the membrane JS artificial jellyfish search algorithm

Rc membrane equivalent resistance, Ω LSTM long short term memory

b parameter coefficient, V LTHP low temperature and high pressure

Abbreviations MCFC molten carbonate fuel cell

AFC alkaline fuel cell MFO moth-flame optimization

ASSA adaptive sparrow search algorithm MhAs meta-heuristic algorithms

BMO bird mating optimizer MTMP medium temperature and medium pressure

BP back propagation MVO multi-verse optimizer

CL catalyst layer PAFC phosphate acid fuel cell

FF flow field PEM proton exchange membrane
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FNN feedforward neural network PEMFC proton exchange membrane fuel cell

FNN-POA POA based on FNN POA pelican optimization algorithm

GBO gradient-based optimizer PSO particle swarm optimization

GDL gas diffusion layer RMSE root mean square error

GRNN general regression neural network SD standard deviation

GWO grey wolf optimization SOFC solid oxide fuel cell

HBO honey badger optimizer SNR signal-to-noise ratio

HHO Harris hawk optimization TLBO teaching-learning-based optimization

HTLP high temperature and low pressure V-I voltage-current

1. Introduction

Ecological and environmental protection and sustainable development of the world are
mutually  reinforcing  [1].  Nowadays,  serious  environmental  degradation,  growing  energy
demand, and the depletion of traditional fossil  fuel resources pose a great challenge to the
world's sustainable development  [2]. To cope with these challenges, the optimization of the
energy structure and the energy revolution have become indispensable. The development and
utilization of renewable energy, e.g., solar energy [3], wind energy [4], and hydrogen energy
[5] can solve environmental  and energy problems. Upon which the hydrogen fuel cell  has
attracted  the  attention  of  many  countries  thanks  to  its  advantages,  i.e.,  high  fuel  energy
conversion and zero emission. According to the different types of electrolytes, it can be divided
into  alkaline  fuel  cell  (AFC)  [6],  phosphate  acid  fuel  cell  (PAFC)  [7],  proton  exchange
membrane fuel cell (PEMFC)  Error: Reference source not found, molten carbonate fuel cell
(MCFC)  [8] and  solid  oxide  fuel  cell  (SOFC)  [10],  upon  which  PEMFC  enjoys  rapid
development and wide application due to low operating temperature. 

PEMFC was first applied in aerospace, military equipment, and other fields [11]. With the
reduction of production costs and the rapid development of related technologies, PEMFC has
formed a certain market scale in transportation, portable power supply, and other fields [12].
However, to realize large-scale commercialization of PEMFC, further research is still required
to improve the performance of PEMFC and extend its service life. Note that PEMFC modeling
has become the key and foundation to study the above problems. Based on modeling methods,
it can be classified into four categories: mechanism model  [13], semi-empirical model  [14],
empirical model [15], and data-driven model [16]. The electrochemical model based on a semi-
empirical model has been widely used because of its precise characteristic expressiveness in
the reaction process and adaptiveness in different operating conditions.

Nevertheless,  parameter  identification  of  the  electrochemical  model  is  a  complicated
nonlinear problem with high modal cells, and it is difficult to use traditional numerical analysis
methods  to  identify  parameters.  Fortunately,  numerous  MhAs  have  been  used  to  extract
unknown parameters  of  PEMFC  [17] thanks to  their  low requirement  of  initial  value and
global  search ability. For example, particle swarm optimization (PSO)  [18] was applied to
improve  the  parameter  identification  accuracy.  Reference  [19] proposed  a  parameter
identification scheme based on a gradient-based optimizer (GBO), which showed satisfactory
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global optimization ability on different brands of PEMFC. In addition, other original MhAs
also achieved high-quality solutions, e.g., artificial jellyfish search algorithm (JS) [20], multi-
verse optimizer (MVO) [21], bird mating optimizer (BMO) Error: Reference source not found
and  honey  badger  optimizer  (HBO)  [22],  etc.  Furthermore,  various  hybrid  and  improved
algorithms  were  also  developed  and  applied.  For  instance,  an  adaptive  sparrow  search
algorithm (ASSA)  [24] was designed for  different  PEMFCs from different  manufacturers,
upon  which  adaptive  learning  factors  were  introduced  to  enhance  accuracy.  Similarly, an
improved monarch optimization algorithm (IMOA) was constructed to improve the accuracy
and convergence speed by referring to chaotic local search and establishing a quasi-opposition
mechanism in reference [25]. 

While  MhAs  have  acquired  impressive  identification  results  based  on  ideal  and
conventional  data,  the  real  measurement data offered by manufacturers sometimes may be
insufficient and even noised due to data loss and the interruption of the collection instrument,
various  operating  environmental  disturbances,  etc.,  which  may  greatly  damage  the
identification  performance  of  them.  Aiming at  this  obstacle,  this  paper  proposes  a  hybrid
optimization scheme to identify the unknown parameters of PEMFC, namely a feedforward
neural network based on pelican optimization algorithm (FNN-POA). It owns the following
four contributions:
 FNN based data preprocess model, which is compared with other three efficient neural

networks under  different  operating conditions,  is  subtly and reasonably established to
denoise and extend  V-I data of PEMFC, thus servicing for decreasing the influence of
noised data and insufficient data on identification results;

 Two kinds of white noise (i.e., Gaussian white noise and Rayleigh white noise) and three
different levels of noise are adopted to simulate the effect of real noise on PEMFC, thus
fully evaluating the superiority of FNN in data noise reduction;

 Pelican optimization algorithm (POA) is applied to identify the unknown parameters of
PEMFC model and thoroughly compared with seven competitive algorithms from three
aspects, i.e., accuracy, speed, and stability;

 Comprehensive  and  profound  case  studies  are  designed  to  evaluate  and  analyze  the
effectiveness  and feasibility  of  FNN-POA under  three  operating  conditions,  i.e.,  high
temperature  and  low  pressure  (HTLP),  medium  temperature  and  medium  pressure
(MTMP), and low temperature and high pressure (LTHP).

2. PEMFC modeling

2.1 The theory of PEMFC

The basic components of a proton exchange membrane fuel cell include proton exchange
membrane (PEM), gas diffusion layer (GDL), catalyst layer (CL), and flow field (FF). In the
power generation process, the basic reaction mechanism diagram is shown in Fig. 1. Hydrogen
is decomposed into hydrogen ions and electrons at the anode, upon which the hydrogen ions
and the electrons are transferred to the cathode through PEM and load, respectively. Then, the
hydrogen ions and electrons react with the oxygen in the cathode to produce heat and water

3



[26]. 

Fig. 1. PEMFC reaction mechanism diagram.

Overall,  the  reaction  mechanism  of  PEMFC can  be  summarized  by  Eqs.  (1)-(3),  as
follows:

The reaction equation on the anode:

H 2→ 2 H+¿+2e−¿¿¿                                                    (1)

The reaction equation on the cathode:
1
2

O2+2 H+¿+2 e−¿→ H 2O ¿¿                                            (2)

Overall reaction mechanism equation:

H 2+
1
2

O2→ H 2O                                                  (3)

2.2 Mathematical model of PEMFC

In the operation process, the potential of PEMFC will gradually decrease, because there is
an irreversible loss in the cell, known as the polarization potential. As shown in Fig. 2, the
polarization curve of PEMFC is mainly affected by the polarization potential of three parts,
i.e., activation polarization, ohmic polarization, and concentration polarization [27].
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Fig. 2. The typical polarization curve of the PEMFC.

Considering the impact of polarization potential in electrochemical reactions of PEMFC,
the output voltage of a single cell can be described by [28]

V est=Enernst−V act−V ohm−V con                                        (4)
where V act,  V ohm and V con individually represent activation voltage loss, ohmic voltage loss,
and concentration voltage loss; Enernst  is the thermodynamic electromotive force, which can be
written as [28]

Enernst=
∆ G
2 F

+ ∆ S
2 F

×(T−T ref )+
RT
2 F

× [ ln(PH 2
)+ 1

2
ln (PO2

)]                    (5)

where  ∆ G represents  change in  free  Gibbs  energy;  ∆ S stands  for  change  in  entropy;  F
denotes the Faraday constant; R is the universal gas constant; T  and T ref   represent the actual

temperature and reference temperature in Kelvin, respectively; PH2
 and PO2

 denote the partial

pressure of hydrogen and oxygen, which can be calculated by

PH2
=0.5 × R Ha × PH 2 O

sat ×[( R Ha× PH 2 O
sat

Pa
× exp(

1.635×(
icell

A
)

T 1.334 ))
−1

−1]             (6)

PO2
=R H c × PH 2O

sat ×[( R Ha× PH 2 O
sat

Pc
× exp(

4.192×(
icell

A
)

T1.334 ))
−1

−1]                  (7)

where  R Ha and  R H c are  the  relative  humidity  of  the  vapor  in  the  anode  and  cathode,
respectively; Pa and Pc stand for the entrance pressure of the anode and cathode, individually;
icell is defined as the output current of a single cell; A represents the effective activation area of
PEM; PH2 O

sat  denotes the saturation pressure of water vapor, which can be expressed as [29]

log10(PH 2 O
sat )=2.95× 10−2 ×T c−9.19 ×10−5×T c

2+1.44×10−7× T c
3−2.18   (8)

T c=T−273.15                                                         (9)
Besides, the activation voltage loss V act can be calculated as
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V act=−¿¿        (10)

where  ε 1,  ε 2,  ε 3,  and  ε 4 are  semi-empirical  coefficients;  CO2
 denotes  the  concentration of

oxygen catalyzed by the anode catalyst surface, which can be formulated by

CO2
=

PO2

5.08× 106 ×e
(
− 498

T )
                                                     (11)

Besides, the ohmic voltage loss V ohm can be calculated by [29]
V ohm=icell ×(Rm+Rc )                                                (12)

where  Rc denotes the proton exchange membrane equivalent resistance;  Rm is the electron
transfer resistance, which is determined as

Rm=ρm ×( l
A

)                                                        (13)

where l represents the thickness of PEM; ρm is the specific membrane resistance, which can be
expressed as

ρm=
181.6 ×[1+0.03 ×(

icell

A
)+0.062 ×( T

303
)

2

(
icell

A
)

2.5]
[ λ−0.643−3×(

icell

A
)]×exp [4.18 ×( T−303

T
)]

                                 (14)

where λ denotes the water content of PEM.
Besides, the concentration voltage loss V con satisfy the following equations

V con=−b × ln(1− J
J max

)                                               (15)

J=
icell

A
                                                                 (16)

where  b stands for the parameter coefficient;  J  and  Jmax denote the current density and the
maximum current density, respectively.

2.3 Objective function

The  purpose  of  parameter  identification  is  to  extract  the  unknown  parameters  to
effectively  minimize  errors  between  the  actual  data  and  the  calculated  data.  Similar  to
references [30-32], root mean square error (RMSE) is chosen as the objective function, as
follows:

RMSE ( x )=√ 1
N ∑

i=1

N

[V act ( i )−V cal ( i ) ]2 , x=[ ε1 , ε2 , ε 3 , ε 4 , λ ,Rc , b ]             (17)

where x represents unknown identified parameters; N  is the number of V-I data sets; V act  and
V cal  represent the actual operating voltage and calculated voltage.
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3. FNN-POA for PEMFC parameter identification

3.1 Principle of FNN

A feedforward  neural  network (FNN)  is  an  artificial  neural  network  in  which  data
information is transmitted from the front end to the back end without feedback. Its topological
structure is shown in Fig. 3, which usually consists of an input layer, several hidden layers, and
an output layer [30].

Fig. 3. Structure diagram of FNN.

The model of the nth neuron in the mth layer can be written as [33]

xn
m= f (∑

i=1

T m−1

wi , n
m xn

m−1+bn
m)                                                 (18)

where  T m−1
 is the neuron number in the (m-1)th layer;  

w i ,n
m  is the weight between the  ith

neuron in the (m-1)th layer and the nth neuron in the mth layer; 
bn

m denotes the threshold value

of the  nth neuron in the  mth layer;  f (∙) is the Sigmoid function, which is given as follows
[34]:

f ( x )= 1
1+e− x                                                           (19)

where the mapping output of the Sigmoid function ranges from 0 to 1, and it owns so limited
output range that a stable result can be obtained by optimizing the model.

This article adopts a hidden layer with 10 neurons. Additionally, Bayesian regularization
is introduced as the model training function to improve the fitting accuracy and generalization
ability of the network by modifying the weight of the network.
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3.2 Pelican optimization algorithm

The optimization strategy is inspired by the hunting behavior of the pelican which mainly
includes two phases: moving towards prey and winging on the water surface [35].
3.2.1 Initialization

During the initialization stage, the position of each population member is generated by

x i , j=xmin, j+rand × ( xmax , j−xmin , j ) ,i=1,2, …, N , j=1,2 , …, D      (20)

where  x i , j is the position of the  ith pelican, namely the value of the  jth variable in the  ith
candidate solution; N  represents the number of the pelican population; D means the number of
the dimensions of the problem;  rand  denotes a random vector between 0 and 1;  xmin, j and
xmax, j is the jth lower bound and upper bound, respectively.

3.2.2 Moving Towards Prey

During the pelican's pursuit phase, the first step is to locate the prey and move toward the
identified zone, which can be expressed as [35]

x i , j
M ={x i , j+rand × ( p j−I × xi , j ) , if Fp<F i

x i , j+rand × ( xi , j−p j ) , otherwise
                          (21)

where x i , j
M  denotes the new position of the ith pelican in the jth dimension under pursuit phase;

I  represents a random number which is equal to 1 or 2; p j is the position of the jth prey; F p is
the best objective function value of the i-1 pelican; F i stands for the objective function value of
the ith pelican. Note that the pelican will generate more displacement to enhance exploration
when  I  is  equal  to  2.  To prevent  pelicans  from moving  to  suboptimal  areas,  Eq.  (22)  is
designed as follows:

X i={X i
M , if Fi

M<Fi

X i , otherwise
                                                   (22)

where X i
M and F i

M  represent the new position and objective function value of the ith pelican,

respectively.
3) Winging on the water surface

During the pelican's attack phase, they will reach the water surface and then spread their
wings to move the prey upwards. This strategy leads pelicans can catch more prey in the attack
area, which can be described as [36]

x i , j
W =x i , j+0.2 ×(1− t

T
)×(2 ×rand−1)× x i , j                     (23)

where x i , j
W  denotes the new position of the ith pelican in the jth dimension based on the attack

phase;  0.2 ×(1− t
T

) represents the neighborhood radius of  x i , j,  where  t  and  T  are current

iterations  and  maximum  iterations,  individually.  Through  hunting  nearby  local  areas,  the
searchability of POA can be significantly improved. Also, the same method as Eq. (22) is used
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to limit the displacement.

3.3 The parameter identification process of FNN-POA

The PEMFC parameter identification process of FNN-POA can be roughly divided into
three parts: data collection, data preprocessing, and parameter identification, as depicted in Fig.
4. 

Fig. 4. The flow chart of the FNN-POA.

The concrete process can be summarized as follows: Firstly, actual  V-I data of PEMFC
are collected to train the FNN model; Then the trained model is adopted to denoise and predict
data;  Finally,  POA is used to optimize the unknown parameters of the PEMFC model  via
iterations. 

4. Case studies

The temperature and relative humidity of vapor at the anode and cathode have a strong
influence on the parameter identification. Subsequently, MhAs are employed to extract the
parameters of  the PEMFC model  under three operating conditions,  tabularized in  Table  2.
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These  MhAs  include  multi-verse  optimizer  (MVO)  [21],  improved  whale  optimization
algorithm (IWOA) [37], grey wolf optimization (GWO) [38], Harris hawk optimization (HHO)
[39],  artificial  jellyfish  search  (JS)  [20],  moth-flame  optimization  (MFO)  [40],  pelican
optimization algorithm (POA) [35], and teaching-learning-based optimization (TLBO) [41].

Table 2. Three operating conditions of PEMFC.

Operation conditions Tk(K) Rha(atm) Rhc(atm)

HTLP 353.15 1 1

MTMP 333.15 2 2

LTHP 313.15 3 3

In addition, the parameter range of Ballard-Mark-V PEMFC with a film thickness of 178
μm2 and effective area of 50.6 cm2 are provided in Table 3, which are gathered from reference
[43].

Table 3. PEMFC parameter range for identification

Model parameters ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

Minimum -1.1997 0.0010 3.6000E-05 -2.6000E-04 10.0000 1.0000E-04 0.0136

Maximum -0.8531 0.0050 9.8000E-05 -9.5400E-04 23.0000 8.0000E-04 0.5000

Considering the noise interference and limited available data, 25 pairs of current-voltage
data extracted from the cell are regarded as original data. For the sake of impartial comparison,
the maximum iteration number of each algorithm is equally set to 500 times. Meanwhile, 10
times independent operations are executed to evaluate the stability of MhAs.

4.1 Preprocessing of neural network

The measurement error of the monitoring instrument and the interference of the operating
condition has a great influence on the data collection work. Therefore, this paper proposes to
use a neural network to preprocess the collected data. These neural networks include back
propagation (BP) neural network, long short term memory (LSTM) neural network, general
regression neural network (GRNN), and feedforward neural network (FNN).

Figure 5 gives the noise data and denoised data obtained by each neural network under
three operating conditions. The correlation coefficient R2 between ideal data and denoised data
is introduced to quantify the noise reduction effect. The denoised data obtained by FNN can
well match the ideal data. Moreover, FNN can always acquire the largest  R2 compared with
other  methods,  i.e.,  99.98%,  99.99%,  and  99.64%  under  HTLP,  MTMP,  and  LTHP,
respectively.  Therefore,  FNN  is  recommended  as  the  best  candidate  for  efficient  noise
reduction.
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Fig. 5. Noise reduction results under three operating conditions via different neural networks: (a) HTLP; (b) MTMP; and (c)

LTHP.

Moreover,  data  prediction  results  under  three  operating  conditions  via  various  neural
networks are shown in Figure 6. The predicted curves acquired by BP and GRNN fluctuate
around the ideal data curve. Also, the curve of LSTM has the maximum deviation from the
ideal data curve. Inspiringly, the predicted curve obtained by FNN is closest to the ideal data
curve.

0 0.5 1 1.5
Voltage(V)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ur

re
nt

(A
)

Ideal data
Predicted data via LSTM
Predicted data via BP
Predicted data via GRNN
Predicted data via FNN

0.96 0.97 0.98 0.99 1 1.01

0.675

0.68

0.685

0.69

(a)

12



0 0.5 1 1.5
Voltage(V)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ur

re
nt

(A
)

Ideal data
Predicted data via LSTM
Predicted data via BP
Predicted data via GRNN
Predicted data via FNN

0.96 0.97 0.98 0.99 1 1.01

0.655

0.66

0.665

(b)

0 0.5 1 1.5
Voltage(V)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

C
ur

re
nt

(A
)

original data
Predicted data via LSTM
Predicted data via BP
Predicted data via GRNN
Predicted data via FNN

0.96 0.97 0.98 0.99 1 1.01 1.02
0.635

0.64

0.645

0.65

(c)

Fig. 6. Date prediction results under three operating conditions via different neural networks: (a) HTLP; (b) MTMP; and (c)

LTHP.

4.2 The preprocessing of V-I data by FNN

4.2.1 The noise reduction of V-I data by FNN

Two  types  of  noise  data  (i.e.,  Gaussian  white  noise  and  Rayleigh  white  noise)  are
introduced to possibly simulate  the  disturbances from various factors  (e.g.,  data collecting
instrument and complex operating conditions) and to verify the effectiveness of FNN in noise
reduction. Figure 7 offers the noise reduction results of FNN under three different Gaussian
white noise with a signal-to-noise ratio (SNR) of 20 dB, 25 dB, and 35 dB. It is easy to see
denoised data obtained by FNN can better match the ideal data curve, which means FNN has
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an outstanding performance for noise reduction.
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Fig. 7. Gaussian noise reduction results under three operating conditions: (a)HTLP; (b) MTMP; and (c) LTHP.

In  addition,  Rayleigh  white  noise  is  employed  to  further  evaluate  the  denoised
performance of FNN. As shown in Fig. 8, with the increase of SNR, more ideal denoised data
can be acquired. To simplify the validation work, 35 dB white Gaussian noise data is used in
the following parameter identification.
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Fig. 8. Rayleigh noise reduction results under three operating conditions: (a)HTLP; (b) MTMP; and (c) LTHP.

4.2.2 The prediction of V-I data by FNN

The results of data prediction obtained by FNN are shown in Fig. 9, upon which 120 sets
of high-quality  predicted data  can be obtained.  One can easily  observe that  FNN predicts
results  that  are  very  close  to  the  ideal  data  through  the  fast  oscillation  approach,  which
expresses the excellent data prediction capability of FNN.
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Fig. 9. Date prediction results under three operating conditions: (a)HTLP; (b) MTMP; and (c) LTHP.

4.3 PEMFC parameter identification of HTLP

4.3.1 Noise reduction data

The parameter identification results of MhAs for noised data and denoised data under
HTLP are  tabulated  in  Table  4,  where  the  symbol  ‘N’ expresses  the  identification  results
obtained by noised data and the symbol ‘DN’ means those obtained by denoised data. From
Table 4, it can be seen that RMSE from denoised data is smaller than that from noised data. In
particular, POA exhibits the best performance and has the most significant RMSE decrease of
96.46%, whereas IWOA has a comparatively minimum reduction of 39.37%. Although RMSE
from denoised and noise data of JS, POA enjoys a more pronounced drop.

Table 4. Parameter identification results of noised data and denoised data under MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

H
TL

P

MVO
N -1.1518 3.8681E-03 8.2200E-05 -1.7265E-04 23.0000 1.9485E-04 0.0152 6.4417E-03

DN -0.8735 2.9398E-03 7.3804E-05 -1.7322E-04 21.5945 5.5895E-04 0.0136 3.1529E-04

IWOA
N -0.8531 3.2130E-03 9.5500E-05 -1.5908E-04 14.9181 7.8145E-04 0.0236 1.0827E-02

DN -0.8531 2.3220E-03 3.6000E-05 -1.6832E-04 10.0000 1.0373E-04 0.0136 6.5931E-03

GWO
N -0.9471 2.8987E-03 5.5600E-05 -1.7235E-04 14.6009 4.2108E-04 0.0144 6.3926E-03

DN -0.9465 3.1977E-03 7.7322E-05 -1.7318E-04 21.8454 4.0814E-04 0.0136 2.7858E-04

HHO
N -1.1980 3.7267E-03 6.3600E-05 -1.7163E-04 10.9784 7.1836E-04 0.0137 6.3408E-02

DN -1.1988 3.3091E-03 3.6090E-05 -1.5634E-04 10.0249 3.6544E-04 0.0264 3.0542E-03

JS
N -1.0383 3.4575E-03 7.6000E-05 -1.7228E-04 11.7147 4.0890E-04 0.0138 6.3611E-03

DN -1.0396 3.3115E-03 6.7036E-05 -1.7352E-04 22.9021 4.2615E-04 0.0136 2.8624E-04

MFO N -1.1755 3.2579E-03 3.6000E-05 -1.7245E-04 23.0000 8.0000E-04 0.0150 6.4326E-03

DN -1.0588 3.8192E-03 9.8000E-05 -1.7309E-04 23.0000 8.0000E-04 0.0136 3.1222E-04

18



TLBO
N -0.8532 3.3978E-03 9.8000E-05 -1.9301E-04 13.3947 1.0000E-04 0.0136 6.3311E-03

DN -0.9862 3.3543E-03 6.6186E-05 -1.9480E-04 23.0000 1.0000E-04 0.0136 5.6032E-04

POA
N -1.0015 3.5294E-03 8.8100E-05 -1.7182E-04 10.8469 2.4698E-04 0.0136 6.3375E-03

DN -1.1943 3.3659E-03 4.0913E-05 -1.7342E-04 23.0000 3.9860E-04 0.0136 2.2430E-04

In addition, Figure 10 provides convergence curves of eight algorithms under noised data
and denoised data, which indicates that RMSE obtained by denoised data is smaller than that
obtained  by  noised  data.  Particularly,  POA can  not  only  quickly  find  the  global  optimal
solution, but also has a relatively excellent optimization ability. Based on denoised data, POA
acquires the smallest RMSE while IWOA, TLBO, and MFO  prematurely converge to local
optimum which demonstrates POA has a superior global searching ability. Meanwhile, MVO,
GWO, JS, MFO, TLBO, and POA represent the same accuracy of convergence results based
on noise data, but POA shows an apparent dominance of identified results based on denoised
data.
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Fig. 10. Convergence curves of RMSE obtained by MhAs under HTLP: (a) noised data and (b) denoised data.

Boxplot of eight algorithms is shown in Fig. 11, which illustrates that RMSE obtained by
denoised data has a  smaller  distribution range and upper/lower bounds compared with the
RMSE obtained by noised data.  Compared with MOA, IWOA, GWO, and HHO, POA can
acquire the smaller bound boxplot, which demonstrates the excellent performance of POA for
parameter identification in terms of high accuracy and reliable stability.

Besides, the statistical results of the minimum, median, mean, maximum, and standard
deviation  (SD)  of  RMSE  are  listed  in  Table  5,  where  POA can  obtain  the  majority  of
satisfactory results except the SD. Therefore, it can be summarized that POA owns the most
satisfactory performance under HTLP.
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Fig. 11. Boxplot of RMSE obtained by MhAs under HTLP.

Table 5. Statistical results of RMSE obtained by denoised data.
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Algorithm
RMSE

Min. Median Mean Max. SD

MVO 1.4629E-04 5.9580E-04 5.4739E-04 1.2668E-03 3.3654E-04

IWOA 1.4032E-03 2.0762E-03 2.5393E-03 4.4876E-03 1.0972E-03

GWO 1.6185E-04 2.2832E-04 2.4727E-04 4.1777E-04 8.1323E-05

HHO 2.1208E-03 1.8809E-02 1.5712E-02 2.2568E-02 7.5213E-03

JS 1.3848E-04 2.1004E-04 2.4292E-04 4.0757E-04 8.6959E-05

MFO 1.2979E-04 1.4479E-04 1.4870E-04 1.8156E-04 1.8069E-05

TLBO 3.6076E-04 3.6398E-04 3.7422E-04 4.4415E-04 2.5432E-05

POA 1.1695E-04 1.4260E-04 1.4918E-04 1.7915E-04 2.1806E-05

Figure 12 presents the V-I characteristic curve of POA with the best performance based on
the denoised data under HTLP. It can be seen that the curve of fitting data highly overlaps with
that  of  actual  data.  Moreover,  the  RMSE is  equal  to  99.51% between 25 sets  of  V-I data
inversely derived from the identification results and the measured data.
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Fig. 12. FNN for V-I curve fitting based on denoised data under HTLP of POA.

4.3.2 Predicted data

The parameter identification results of MhAs for original data and predicted data under
HTLP are tabulated in Table 6,  where the  symbol ‘O’ and ‘P’ stand for original  data  and
predicted  data,  respectively.  Compared  with  RMSE  obtained  by  original  data,  that  from
predicted  data  is  smaller  i.e.  POA has  a  clear  reduction  of  41.79%.  Especially,  based  on
predicted data,  POA has the smallest RMSE, followed by MFO, MVO, JS, GWO, TLBO,
IWOA, and HHO.

Table 6. Parameter identification results of original data and predicted data under MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

H
TL

P MVO O -1.0831 3.5503E-03 7.4969E-05 -1.7279E-04 19.2388 7.8495E-04 0.0136 4.9210E-04

P -1.1941 4.1172E-03 9.2184E-05 -1.7331E-04 22.7382 7.4105E-04 0.0136 1.8705E-04
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IWOA
O -0.8531 2.4405E-03 4.6125E-05 -1.5459E-04 13.0083 3.8121E-04 0.0200 9.7089E-03

P -0.9703 2.7916E-03 4.6067E-05 -1.6611E-04 10.0000 2.1106E-04 0.0136 2.0844E-03

GWO
O -1.0501 3.4598E-03 7.5202E-05 -1.7163E-04 13.5401 7.3495E-04 0.0137 1.2369E-03

P -0.9200 2.8262E-03 5.7114E-05 -1.7294E-04 20.0027 6.0503E-04 0.0136 2.5299E-04

HHO
O -0.9138 2.4130E-03 3.6019E-05 -1.1628E-04 10.0053 2.9938E-04 0.0351 2.8708E-02

P -1.0210 3.0240E-03 4.9799E-05 -1.7801E-04 13.7873 3.5080E-04 0.0136 2.5786E-03

JS
O -0.9685 2.9743E-03 5.7749E-05 -1.7347E-04 20.7190 2.5012E-04 0.0137 4.1723E-04

P -0.9456 3.2006E-03 7.7645E-05 -1.7340E-04 21.9637 3.2823E-04 0.0136 2.2402E-04

MFO
O -0.9495 2.6005E-03 3.6000E-05 -1.7361E-04 23.0000 1.0000E-04 0.0136 1.8172E-04

P -1.1997 3.5086E-03 4.9576E-05 -1.7362E-04 22.2940 1.0000E-04 0.0136 1.3652E-04

TLBO
O -0.8531 2.5236E-03 3.8050E-05 -1.9472E-04 23.0000 1.0000E-04 0.0136 5.5224E-04

P -1.0237 3.1636E-03 4.4423E-05 -1.9459E-04 23.0000 1.0077E-04 0.0136 3.6277E-04

POA
O -1.1598 4.1051E-03 9.8000E-05 -1.7342E-04 22.4447 2.3202E-04 0.016 2.2296E-04

P -0.9643 2.6431E-03 3.6005E-05 -1.7362E-04 23.0000 3.3128E-04 0.0136 1.2979E-04

In addition, Figure 13 provides a convergence curves graph of MhAs under original data
and predicted  data,  which  indicates  that  RMSE is  decreased  after  using  predicted  data  to
identify  parameters.  Furthermore,  MFO and  POA are  the  two  best  algorithms.  Under  the
original data case, MFO can rapidly find the globally optimal solution to diminish RMSE,
followed by POA. Under predicted data, POA converges to the smallest RMSE with the fastest
speed.
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Fig. 13. Convergence curves of RMSE obtained by MhAs under HTLP: (a) original data and (b) predicted data.

Boxplot of eight algorithms in 10 separate runs is depicted in Fig. 14, which illustrates
that RMSE based on predicted data has a smaller distribution range and upper/lower bounds
compared with that based on original data. Compared with constant algorithms, the predicted
data based on a boxplot of POA enjoys the smallest distribution range and lowest upper/lower
bounds,  which  means  POA can  search  for  the  most  suitable  parameters  with  the  highest
stability. 

Furthermore, the statistical results of RMSE are listed in Table 7, where POA can obtain
the majority of satisfactory results  while only the SD of MFO is better than that of POA.
Therefore, it can be simply summarized that POA owns the best consistent performance under
HTLP.
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Fig. 14. Boxplot of RMSE obtained by MhAs under HTLP.

Table 7. Statistical results of RMSE obtained by predicted data.
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Algorithm
RMSE

Min. Median Mean Max. SD

MVO 1.4629E-04 5.9580E-04 5.4739E-04 1.2668E-03 3.3654E-04

IWOA 1.4032E-03 2.0762E-03 2.5393E-03 4.4876E-03 1.0972E-03

GWO 1.6185E-04 2.2832E-04 2.4727E-04 4.1777E-04 8.1323E-05

HHO 2.1208E-03 1.8809E-02 1.5712E-02 2.2568E-02 7.5213E-03

JS 1.3848E-04 2.1004E-04 2.4292E-04 4.0757E-04 8.6959E-05

MFO 1.3652E-04 1.4479E-04 1.5072E-04 1.8156E-04 1.5879E-05

TLBO 3.6076E-04 3.6398E-04 3.7422E-04 4.4415E-04 2.5432E-05

POA 1.2979E-04 1.4260E-04 1.5046E-04 1.7915E-04 1.9997E-05

4.4 PEMFC parameter identification of MTMP

4.4.1 Noise reduction data

The  parameter  identification  results  of  MhAs  for  noised  data  and  denoised  data  are
tabulated in Table 8. Here, it can be seen that, compared with RMSE obtained from noised
data, RMSE from denoised data is better. Particularly, POA exhibits the best performance and
has the most significant decrease of 99.84%, whereas GWO has a comparatively minimum
reduction of 78.91%. Moreover, under denoised data, the RMSE of the POA has a magnitude
of the minus six power of ten, while the RMSE of the best of other algorithms has a magnitude
of the minus five power of ten.

Table 8. Parameter identification results of noised data and denoised data under MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

M
TM

P

MVO
N -1.0009 3.1951E-03 6.8057E-05 -1.6655E-04 21.3934 4.7426E-04 0.0136 6.0683E-03

DN -0.9414 2.7758E-03 4.9912E-05 -17426E-04 12.8113 7.7709E-04 0.0149 1.6005E-04

IWOA
N -0.9298 2.4782E-03 4.0925E-05 -1.0943E-04 16.1227 1.0894E-04 0.0300 2.9663E-02

DN -0.8531 2.3269E-03 3.7900E-05 -1.7119E-04 11.8382 6.0437E-04 0.0136 2.3003E-03

GWO
N -0.9065 3.2239E-03 8.9583E-05 -1.6675E-04 19.4878 1.4998E-04 0.0136 6.1142E-03

DN -0.9724 3.0573E-03 6.2952E-05 -1.7264E-04 18.0840 1.0141E-04 0.0162 1.2895E-03

HHO
N -0.9986 2.6184E-03 3.6000E-05 -1.1103E-04 10.0000 1.0000E-04 0.0258 2.8590E-02

DN -1.0826 3.4979E-03 6.9440E-05 -1.7171E-04 15.8584 5.3949E-04 0.0208 5.9204E-03

JS
N -1.1055 3.3898E-03 5.9891E-05 -1.6678E-04 22.6664 1.197E-04 0.0136 5.9367E-03

DN -0.9480 3.1032E-03 7.1206E-05 -1.7218E-04 14.6758 5.4998E-04 0.0155 4.5147E-05

MFO
N -1.1997 4.2245E-03 9.8000E-05 -1.6694E-04 23.0000 1.0000E-04 0.0136 5.9095E-03

DN -1.1699 3.4826E-03 5.1354E-05 -1.7205E-04 10.0000 1.0000E-04 0.0136 2.8249E-04

TLBO
N -0.8531 2.2887E-03 3.6004E-05 -1.6700E-04 23.0000 1.0012E-04 0.0136 5.8950E-03

DN -0.8871 2.6049E-03 4.9300E-05 -1.7236E-04 16.7724 6.0722E-04 0.0160 2.3010E-05

POA
N -1.1752 3.2554E-03 3.6000E-05 -1.6699E-04 23.0000 1.0000E-04 0.0136 5.8950E-03

DN -1.1279 3.3438E-03 5.0455E-05 -1.7222E-04 16.2032 7.4086E-04 0.0158 9.2326E-06

Moreover,  Figure  15  provides  a  convergence  curves  graph of  eight  algorithms under
noised data and denoised data, which indicates that RMSE obtained by denoised data is smaller
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than RMSE obtained by noised data. Particularly, POA owns the smallest RMSE while MFO
and IWOA prematurely converge to local optimum which means the great global searching
ability of POA. While MVO, GWO, JS, MFO, and TLBO can obtain almost the same accuracy
from noise data with POA, POA enjoys the most remarkable precision from denoised data.
Meanwhile, POA owns the best performance among the eight algorithms.
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Fig. 15. Convergence curves of RMSE obtained by MhAs under MTMP: (a) noised data and (b) denoised data.

Boxplot of eight algorithms is shown in Fig. 16, which illustrates that RMSE obtained by
denoised data has a smaller distribution range and upper/lower bounds compared with RMSE
obtained by noise data. From it, it can be concluded that every algorithm can find a satisfied
outcome under different  data except  for  HHO and GWO, but  express different  degrees  of
stability.  Particularly,  based  on  denoised  data,  POA has  more  satisfied  results  than  other
algorithms, which means the most suitable parameters can be obtained by POA.
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Moreover, Table 9 shows the statistical results of RMSE obtained by denoised data under
MTMP. It illustrates that POA can obtain more stable results compared with other algorithms,
for  example,  minimum,  median,  mean,  maximum,  and  SD  of  RMSE.  Meanwhile,  the
measurement indicators of the other seven algorithms have a certain gap with that of POA.
Therefore, it  can be simply summarized that POA owns the most satisfactory performance
under MTMP.
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Fig. 16. Boxplot of RMSE obtained by eight MhAs under MTMP.

Table 9. Statistical results of RMSE obtained by denoised data.

Algorithm
RMSE

Min. Median Mean Max. SD

MVO 9.1120E-05 1.9497E-04 1.9506E-04 2.8883E-04 5.8333E-05

IWOA 1.2483E-03 2.5617E-03 2.6216E-03 4.6093E-03 8.4065E-04

GWO 6.6746E-05 1.7680E-04 1.8251E-04 3.0541E-04 8.7733E-05

HHO 2.2146E-03 6.2307E-03 5.9240E-03 8.7126E-03 1.8683E-03

JS 1.8714E-05 6.9333E-05 6.8882E-05 1.2675E-04 3.0031E-05

MFO 2.2813E-04 2.8247E-04 5.6620E-04 2.6155E-03 7.4179E-04

TLBO 3.6265E-05 6.5834E-05 6.7620E-05 8.5331E-05 1.4171E-05

POA 9.2326E-06 1.5205E-05 1.7425E-05 4.2055E-05 9.6879E-06

Figure 17 presents the  V-I characteristic curve of the POA with the best performance in
optimizing  the  denoised  data  under  MTMP.  It  can  be  seen  that  the  curve  of  fitting  data
practically coincides with the curve of actual data. Besides, the error measured by RMSE is
equal to 99.23%, which is the sum of error between 25 sets of V-I data inversely derived from
the identification results and the measured data. It can be condensed that the identified results
of POA can match the unknown parameters in practical applications.
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Fig. 17. FNN for V-I curve fitting based on denoised data under MTMP of POA.

4.4.2 Predicted data

The parameter identification results  of  MhAs for original  data  and predicted data are
tabulated in Table 10. Here, it can be seen that RMSE is better after predicting, indicating that
predicting data not only can obtain better parameters. Especially, based on predicted data, POA
has  the  smallest  RMSE,  followed  by  TLBO,  MFO,  JS,  GWO,  MVO,  IWOA,  and  HHO.
Moreover,  TLBO has  a  better  outcome  under  noise  data  than  that  of  POA,  whereas  the
expression of POA is more satisfactory under denoised data than that of TLBO.

Table 10. Parameter identification results of original data and predicted data under eight MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

M
TM

P

MVO
O -1.0623 3.8082E-03 9.6300E-05 -1.7277E-04 21.9203 7.9936E-04 0.0165 1.9657E-04

P -1.0053 3.1078E-03 5.9500E-05 -1.7294E-04 22.8452 6.1194E-04 0.0164 1.7530E-04

IWOA
O -08531 2.6101E-03 5.8000E-05 -1.6528E-04 10.7318 3.1731E-04 0.0139 4.2762E-03

P -0.8531 2.5796E-03 5.4000E-05 -1.7307E-04 10.0000 3.1003E-04 0.0136 1.7609E-03

GWO
O -0.9114 2.6726E-03 4.9000E-05 -1.7174E-04 11.5198 8.0000E-04 0.0148 2.1509E-04

P -1.1379 3.2678E-03 4.3100E-05 -1.7215E-04 12.2126 1.2234E-04 0.0149 1.5252E-04

HHO
O -0.9536 2.5117E-03 3.6000E-05 -1.0808E-04 10.0040 7.8532E-04 0.0379 3.0097E-02

P -0.9506 2.6246E-03 3.6000E-05 -1.7859E-04 10.0002 1.0000E-04 0.0136 2.6222E-03

JS
O -1.0013 3.1586E-03 6.4000E-05 -1.7255E-04 18.8705 1.0110E-04 0.0162 1.1904E-04

P -0.9908 3.1358E-03 6.4600E-05 -1.7242E-04 18.3654 5.0319E-04 0.0162 8.3019E-05

MFO
O -0.8531 3.0876E-03 8.9800E-05 -1.7202E-04 10.0000 8.0000E-04 0.0136 2.8317E-04

P -0.9322 3.4432E-03 9.8000E-05 -1.7251E-04 16.0541 1.0000E-04 0.0159 6.2772E-05

TLBO
O -0.8945 2.5043E-03 4.0900E-05 -1.7220E-04 14.1655 3.9088E-04 0.0155 6.2492E-05

P -0.8531 2.3127E-03 3.6200E-05 -1.7239E-04 14.7194 1.1146E-04 0.0157 5.4602E-05

POA
O -1.1595 3.0876E-03 8.9000E-05 -1.7208E-04 13.2260 4.2831E-04 0.0152 8.9257E-05

P -1.1789 3.9987E-03 8.5200E-05 -1.7230E-04 16.1010 5.3152E-04 0.0158 3.4896E-05
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In addition, Figure 18 provides a convergence curves graph of MhAs, which indicates that
RMSE obtained by predicted data are smaller after predicting. Particularly, POA exhibits the
best performance in eight algorithms under the predicted data. It can be concluded that POA
still can find high-quality solutions with high stability and can find the global optimal solution
compared with the majority of algorithms.
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Fig. 18. Convergence curves of RMSE obtained by MhAs under MTMP: (a) original data and (b) predicted data.

Boxplot of MhAs under MTMP is given in Fig. 19, which illustrates that RMSE obtained
by predicted data has a smaller distribution range and upper/lower bounds after predicting.
Compared with constant algorithms, the predicted data based on boxplot of POA enjoys better
performance, which demonstrates POA can search for the most suitable parameters with the
highest stability.

Besides,  Table 11 shows the statistical  results  of  RMSE obtained by eight  algorithms
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which illustrates that POA can obtain more stable results compared with other algorithms. The
RMSE of POA from predicted data has a smaller distribution range and upper/lower bounds
compared with the other seven algorithms. Therefore, the predicted data contribute to better
identification results, and POA owns the most stable performance under MTMP.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

R
M

SE
(lo

g)

Fig. 19. Boxplot of RMSE obtained by eight MhAs under MTMP.

Table 11. Statistical results of RMSE obtained by predicted data.

Algorithm
RMSE

Min. Median Mean Max. SD

MVO 9.2114E-05 1.8595E-04 2.0074E-04 3.4481E-04 7.5134E-05

IWOA 9.8362E-04 2.2913E-03 4.5651E-03 2.0796E-02 6.0711E-03

GWO 8.9914E-05 1.9767E-04 2.0366E-04 4.1641E-04 1.0115E-04

HHO 3.7163E-04 1.4740E-02 1.2201E-02 2.1367E-02 9.1560E-03

JS 4.0641E-05 7.5593E-05 7.7153E-05 1.2624E-04 3.0599E-05

MFO 6.2772E-05 2.8636E-04 2.7287E-04 3.4831E-04 8.9134E-05

TLBO 4.1891E-05 5.3539E-05 5.8249E-05 8.8946E-05 1.6490E-05

POA 2.7089E-05 4.4185E-05 4.5245E-05 7.8157E-05 1.5892E-05

4.5 PEMFC parameter identification of LTHP

4.5.1 Noise reduction data

The parameter identification results of MhAs under noised data and denoised data are
tabulated in Table 12. Here, it can be concluded that, compared with RMSE obtained from
noised  data,  RMSE  from  denoised  data  is  better.  In  particular,  POA exhibits  the  best
performance in eight algorithms and has the most decrease of 99.84%, whereas IWOA has a
comparatively minimum reduction of 64.86%. 

Table 12. Parameter identification results of noised data and denoised data under eight MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

L

N -1.1497 3.2768E-03 3.6000E-05 -1.8589E-04 19.3212 1.3725E-04 0.0136 1.2015E-02
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TH
P

MVO DN -1.0645 3.0824E-03 4.3923E-05 -17153E-04 19.2758 1.4118E-04 0.0174 1.4998E-04

IWOA
N -0.8571 2.2182E-03 3.6000E-05 -1.4135E-05 13.4256 2.2498E-04 0.0136 2.6902E-02

DN -0.8531 2.2508E-03 3.6283E-05 -1.5132E-04 16.2715 2.9286E-04 0.0223 9.4536E-03

GWO
N -0.9863 3.5633E-03 9.3357E-05 -1.8509E-04 16.8532 1.4597E-04 0.0136 1.2021E-02

DN -1.1747 3.4661E-03 4.6145E-05 -1.7039E-04 10.6233 7.1209E-04 0.0145 3.9098E-04

HHO
N -1.1619 3.6915E-03 6.2104E-05 -1.7465E-04 13.3037 1.0000E-04 0.0228 1.6013E-02

DN -0.9212 2.7885E-03 5.5573E-05 -1.7329E-04 12.4271 2.6204E-04 0.0136 2.0683E-03

JS
N -0.9619 3.0589E-03 6.3106E-05 -1.8605E-04 21.0274 1.6613E-04 0.0136 1.2016E-02

DN -1.0304 3.2659E-03 6.4667E-05 -1.7101E-04 16.3800 5.8121E-04 0.0169 2.4324E-05

MFO
N -1.1993 4.0423E-03 7.9065E-05 -1.8588E-04 19.6314 1.0000E-04 0.0136 1.2014E-02

DN -1.1997 4.2060E-03 9.2999E-05 -1.7105E-04 17.6707 8.0000E-04 0.0174 2.4655E-05

TLBO
N -0.8551 2.3360E-03 3.6000E-05 -1.8589E-04 19.5458 1.0000E-04 0.0136 1.2014E-02

DN -0.8700 2.5225E-03 4.8266E-05 -1.7113E-04 15.0933 1.3602E-04 0.0168 3.3245E-05

POA
N -1.1770 3.9950E-03 8.0751E-05 -1.8571E-04 20.7886 6.3403E-04 0.0136 1.2017E-02

DN -1.1216 3.2526E-03 4.3007E-05 -1.7105E-04 16.2891 5.9691E-04 0.0169 1.9683E-05

Meanwhile, the convergence curves graph of MhAs under noised data and denoised data
are demonstrated in Fig. 20, which indicates that RMSE obtained by denoised data has better
performance than RMSE obtained by noised data. Besides, one can easily observe that POA
can always find the global optimal solution in a more predictable way under noised data and
denoised data, which can effectively reflect the superior performance of POA.
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Fig. 20. Convergence curves of RMSE obtained by eight MhAs under LTHP: (a) noise data and (b) denoised data.

Figure 21 describes RMSE distribution boxplot obtained by MhAs under LTHP, which
illustrates that RMSE obtained by noised data have worse distribution range and upper/lower
bounds compared with RMSE obtained by denoised data. Compared with constant algorithms,
the denoised data based on boxplot of POA enjoys the smallest distribution range and lowest
upper/lower bounds, which illustrates POA can search for the most suitable parameters with
the highest stability.

Furthermore,  Table  13  shows  statistical  results  of  RMSE which  illustrates  that  POA
performs better  than other  algorithms in terms of  minimum, mean,  maximum, and SD of
RMSE. It can be summarized that the preprocessing of FNN can obtain better identification
results and POA owns the best performance under LTHP.
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Fig. 21. Boxplot of RMSE obtained by eight MhAs under LTHP.

Table 13. Statistical results of RMSE obtained by denoised data.
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Algorithm
RMSE

Min. Median Mean Max. SD

MVO 1.2351E-04 2.9233E-04 2.9503E-04 4.6257E-04 1.2729E-04

IWOA 8.7035E-04 4.2619E-03 5.3895E-03 1.9140E-02 5.5438E-03

GWO 1.7038E-04 3.3743E-04 3.1172E-04 4.4351E-04 1.0635E-04

HHO 5.2724E-04 1.4965E-03 2.4960E-03 9.1707E-03 2.7238E-03

JS 2.4324E-05 4.7189E-05 4.6337E-05 6.6975E-05 1.3759E-05

MFO 2.0177E-05 4.7934E-04 3.7621E-04 6.3240E-04 2.5326E-04

TLBO 2.5656E-05 3.6863E-05 3.9960E-05 6.3730E-05 1.2265E-05

POA 1.9683E-05 3.7831E-05 3.5327E-05 4.8693E-05 1.0147E-05

Figure 22 illustrates V-I curve obtained by POA with the denoised data. It can be noticed
that the curve of noise reduction data practically matched up with the curve of actual data.
Meanwhile,  the  error  measured  by  RMSE is  equal  to  98.58%, which  is  the  sum of  error
between 25 sets of V-I data inversely derived from the identification results and the measured
data. 
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Fig. 22. FNN for V-I curve fitting based on denoised data under LTHP of POA.

4.5.2 Predicted data

Table 14 makes a list of the parameter identification results of MhAs for original data and
predicted data. Here, it can be noticed that RMSE obtained by predicted data is better than
RMSE obtained by original data, indicating that predicted data can obtain better parameters
and that the preprocessing of FNN has a significant advantage. Especially, based on predicted
data, POA has the smallest RMSE, followed by JS, TLBO, GWO, MVO, MFO, IWOA, and
HHO. Meanwhile, under predicted data, the RMSE of the POA is far more than that of other
algorithms, which means POA enjoys excellent identification accuracy.

Table 14. Parameter identification results of original data and predicted data under eight MhAs.

State Algorithms Data
Identified parameters

RMSE
ԑ1 ԑ2 ԑ3 ԑ4 λ Rc(Ω) b(V)

O -0.8792 2.5251E-03 4.6331E-05 -1.7055E-04 10.0601 1.2508E-04 0.0142 3.9376E-04
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LT
H

P

MVO P -09150 3.2415E-03 8.9119E-05 -1.7030E-04 10.7794 4.4988E-04 0.0145 3.4810E-04

IWOA
O -0.8531 2.1653E-03 3.6000E-05 -9.5400E-05 10.0000 1.8395E-04 0.0363 3.2885E-02

P -0.8531 2.5047E-03 5.1270E-05 -1.7103E-04 16.5240 1.2139E-04 0.0165 1.3135E-03

GWO
O -0.8941 2.5711E-03 4.6251E-05 -1.7037E-04 10.1323 6.2562E-04 0.0140 4.4090E-04

P -0.9981 2.7706E-03 3.6776E-05 -1.7183E-04 17.7248 1.0868E-04 0.0172 1.8430E-04

HHO
O -0.8936 2.3156E-03 3.6005E-05 -9.9975E-05 10.0014 2.7566E-04 0.0398 3.1408E-02

P -0.8531 2.2727E-03 3.6004E-05 -1.6226E-04 10.0012 7.0934E-04 0.0149 2.1794E-03

JS
O -1.0513 3.3057E-03 6.2746E-05 -1.7131E-04 19.3205 5.9454E-04 0.0174 1.0010E-04

P -1.0781 3.2024E-03 4.9217E-05 -1.7100E-04 16.1684 5.8397E-04 0.0169 5.7688E-05

MFO
O -1.1997 3.4904E-03 4.2224E-05 -1.7062E-04 10.0000 8.0000E-04 0.0136 5.6756E-04

P -0.9512 2.6076E-03 3.6000E-05 -1.6987E-04 10.0000 8.0000E-04 0.0136 4.7282E-04

TLBO
O -0.8535 2.5424E-03 5.3394E-05 -1.7085E-04 13.2480 1.4049E-04 0.0163 1.5563E-04

P -0.8946 2.4720E-03 3.9096E-05 -1.7113E-04 14.7221 3.9393E-04 0.0165 8.0660E-05

POA
O -0.9717 2.6789E-03 3.6322E-05 -1.7077E-04 12.9917 3.3420E-04 0.0161 1.4692E-04

P -0.8851 2.7882E-03 6.3684E-05 -1.7105E-04 15.6807 5.1874E-04 0.0168 4.8399E-05

Moreover, Figure 23 provides a convergence curves graph of MhAs under original data
and predicted data, which characterizes that RMSE obtained by predicted data has a better
performance compared with RMSE from original data. Under the original data case, MFO can
rapidly find the globally optimal solution to reduce RMSE, followed by POA. One can easily
notice that POA has a relatively excellent optimization ability compared with the majority of
algorithms. Meanwhile, JS shows better identification results than POA in continuous iteration
from original data, but POA expresses better discernment and speed under predicted data.
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Fig. 23. Convergence curves of RMSE obtained by eight MhAs under LTHP: (a) original data and (b) predicted data.

Figure 24 describes RMSE distribution boxplot obtained by MhAs under LTHP, which
illustrates  that  RMSE  obtained  by  predicted  data  have  a  better  distribution  range  and
upper/lower bounds. Especially, based on predicted data, POA enjoys the satisfied performance
among MhAs, which means the most suitable parameters can be obtained by POA.

Moreover,  Table  15  represents  the  statistical  results  of  RMSE  obtained  by  eight
algorithms which illustrates that POA has the best performance. Therefore, it can be simply
summarized that POA can achieve the most satisfactory optimization ability under LTHP.
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Fig. 24. Boxplot of RMSE obtained by eight MhAs under LTHP.

Table 15. Statistical results of RMSE obtained by predicted data.

Algorithm
RMSE

Min. Median Mean Max. SD
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MVO 1.0935E-04 2.4687E-04 2.4977E-04 4.1061E-04 1.1192E-04

IWOA 6.5260E-04 1.7363E-03 3.9221E-03 1.9212E-02 5.5378E-03

GWO 6.8106E-05 2.0358E-04 2.0813E-04 3.9057E-04 1.0202E-04

HHO 4.2381E-04 1.3302E-02 1.1355E-02 1.9485E-02 7.5894E-03

JS 4.8378E-05 5.8476E-05 5.8474E-05 7.0743E-05 7.1916E-06

MFO 3.9941E-05 2.5976E-04 2.5238E-04 4.7282E-04 1.9331E-04

TLBO 5.3577E-05 1.1373E-04 1.2028E-04 2.8712E-04 6.7266E-05

POA 4.6706E-05 5.6578E-05 5.6593E-05 6.9646E-05 8.0560E-06

5. Discussion

As the inherent searching randomness of MhAs, it is hard for FNN-POA to always obtain
the optimal results or exhibit the obvious outperformance compared with other methods. For
instance, FNN-POA applied in predicted data performs a similar performance with FNN-MFO
in Fig. 14 and FNN-TLBO in Fig. 19.

For  a  more  comprehensive  comparison  of  the  optimization  performance  of  various
algorithms, Figure 25 intuitively illustrates radar graphs regarding five aspects of RMSE, i.e.,
the minimum, median, mean, maximum, and SD. Note that the best performer is rated at 8
scores and then decreased by 1 score in turn, which means the highest total score and the
lowest total score are 40 and 8, respectively. Besides, the higher the total score is, the bigger
the area of the radar graph will be. From the radar graphs, one can easily observe that POA
always acquires the highest total score and biggest area under different operating conditions
compared with other competitive algorithms. In particular, its scores are 38, 40, and 39 under
HTLP,  MTMP,  and  LTHP operating  conditions,  respectively.  Similar  results  can  also  be
obtained  based  on  predicted  data,  as  shown  in  Fig.  26.  Consequently,  POA remarkably
outperforms other algorithms in the comprehensive performance of parameter identification. In
conclusion,  after  data  is  preprocessed  by  FNN,  POA  can  obtain  a  more  satisfactory
performance than other algorithms, which significantly demonstrates the powerful searching
ability and optimization accuracy of FNN-POA.

(a) (b)
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(c)

Fig. 25. Radar graphs obtained by denoised data under three operating conditions: (a) HTLP; (b) MTMP; and (c) LTHP.

(a) (b)

(c)

Fig. 26. Radar graphs obtained by predicted data under three operating conditions: (a) HTLP; (b) MTMP; and (c) LTHP.

6. Conclusion

This paper proposes an intelligent parameter identification method for PEMFC via FNN-
POA. According to thorough case studies, five conclusions can be summarized as follows:

 While the traditional MhAs based PEMFC parameter identification methods are easy
to induce low-quality optimization results under the influence of insufficient data and
noise data, FNN based data preprocess model which has better performance than BP,
GRNN, and LSTM can help them obtain more ideal results;

 Both Gaussian white noise and Rayleigh white noise with three SNR levels (i.e., 20
dB,  25  dB,  and  35  dB)  are  introduced  to  simulate  various  disturbances.  The
outstanding performance of FNN in noise reduction is thoroughly validated by these
noise;
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 POA outperforms the others most  of  the  time,  only underperforming TLBO under
LTHP and MFO under HTLP when the original data. Therefore, POA can carry out
more  effective  global  exploration  and  local  development  for  PEMFC  parameter
identification;

 Case studies demonstrate that FNN-POA can not only enhance optimization ability and
precision  but  also  possess  high  robustness  and  optimization  quality.  In  particular,
RMSE  obtained  by  FNN-POA  is  reduced  by  96.45%,  99.44%,  and  99.84%
respectively  under  HTLP,  MTMP, and LTHP through noise  reduction.  Meanwhile,
RMSE obtained by FNN-POA is decreased by 41.79%, 60.72%, and 67.66% under
HTLP, MTMP, and LTHP through data expansion.

In the end, during PEMFC operation, FNN-POA can efficiently and accurately identify
unknown parameters even in  harsh environments,  i.e.,  data  loss  and the effect  of  ambient
temperature. FNN-POA framework gives an important guideline for parameter identification of
PEMFC single model. It may not be confined to itself, which could also be applied to PEMFC
stack model as well as other fuel cells and even PV cells.
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