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Abstract

Visual servoing technology has widely been employed
in manufacturing because it is a flexible, realizabili-
ty, and low-cost way to improve the intelligence of the
industry robot. Nevertheless, a worrisome and over-
looked issue is that the loss of visual features in the
camera’s field of view may lead to the failures of the
visual servoing tasks. This article addresses the visual
features escaping problem, by implementing an asym-
metric barrier Lyapunov function with a field of view
constraint controller. The asymmetric barrier Lya-
punov function defines a tightly specified range for the
feature coordinate errors and ensures the transient re-
sponse of the tracking error as well as enables arbitrary
tracking accuracy. It is worth noting that the asym-
metric barrier Lyapunov function directly handles the
visual-robot coupled dynamics while guaranteeing sys-
tem stabilities. Besides, to accommodate the uncer-
tain dynamics derived from a high-dimensional cou-
pled system, an adaptive controller is proposed utiliz-
ing fuzzy neural networks with computational efficien-
cy and few training parameters to enhance the control
performance. Finally, the effectiveness of the proposed
control strategy has been demonstrated through both
theoretical analysis and experimental verification.
Keywords: Visual servoing, fuzzy neural networks,

field of view constraints, asymmetric barrier Lyapunov
function.

1 Introduction

In recent years, visual servoing technology has been
proposed and widely applied in various areas, for in-
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stance, logistics robots, service robots, surgical robots,
and industrial robots [4, 17, 34, 44], as shown in Fig.1.
The visual servoing controller can be summarized into
three categories. Based on the difference of the con-
trol input variables, visual servoing can be divided in-
to Image-Based Visual Servoing (IBVS) and Position-
Based Visual Servoing (PBVS) [3]. Combining 3D pose
and 2D image feature signals as control input variables
are defined as Hybrid Visual Servoing (HVS) [25].

The PBVS method relies on the 3D position of
the camera to regulate the pose of the end-effector
in Cartesian space, which is applicable for industri-
al robotic manipulators due to its attribute of global
asymptotic stability. Nevertheless, the PBVS approach
makes it hard to achieve high precision control owing
to it being inevitably impacted by camera calibration
errors as well as robot modeling errors. In contrast,
IBVS directly utilizes image feature variables as the
control input, which avoids the disadvantage of PBVS
and can achieve accurate control.

In this paper, an IBVS control scheme is considered
under an eye-in-hand system. The implementation of
the IBVS task directly relies on the minimization of
the error between the desired and the current image
features. Thus, ensuring that the visual features re-
main within the camera’s field of view (FoV) is a hard
requirement, and also crucial to ensure that the visual
servoing task is completed. If some visual features van-
ish from the camera’s FoV, it will lead to the failure
of visual servoing. As is well known that at least four
visual features are required to ensure the IBVS task
success [3].

To retain the visual features to stay within the FoV
of the camera, many researchers have made great ef-
forts to handle this. In [29], the FoV constraint prob-
lem of visual servoing is implicitly expressed as an
optimal a control problem by combining demonstra-
tion learning and DMP to obtain the best control per-
formance. Huang et al. [13] designed a constrained
controller with a control barrier function and quadrat-
ic programming to prevent visual feature escape from
FoV. Several scholars addressed the visual field visibil-
ity problem utilizing active vision techniques. Garcia-
Aracil et al. [5] by reducing the weight of visual fea-
tures that are about to escape from the camera’s FoV
to mitigate the impact of some vanishing visual fea-
tures on the visual servoing task. Xin et al. [39], using a
zooming camera to handle the vision visibility problem,
combined with a depth adaptive zooming control strat-
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Figure 1: Real scenarios of visual servoing applications.
(a) Engine blade assembly. (b) Engine cylinder assem-
bly.

egy to dynamically adapt to the change of the camer-
a’s FoV. Nonetheless, the main drawback of the above
tactics is that a minimum number of visual features is
not guaranteed, imperiling visual servoing task success.
Another approach to manage FoV constraints with
path planning [1, 9, 10, 18, 19, 38, 43]. Wang et al. [38]
developed a virtual-goal-guided rapidly-exploring ran-
dom tree (RRT) approach to handle the FoV visibility
problem. In [1,10,43], the FoV constraints are handled
by employing Model Predictive Control to generate the
reference trajectory and camera velocity of the visual
servoing task. In [18], a randomized kinodynamic path
planning algorithm is proposed to generate desired fea-
ture trajectories in image space. Keshmiri et al. [19]
developed a semi-offline trajectory planning approach
to ease the limitation of the FoV of the camera. The
deficiencies of the path planning schemes are that they
are time-consuming for resolving the optimization ref-
erence trajectory and hard to implement for real plat-
forms. Hence, in [2, 8], Bechlioulis et al. considered a
prescribed performance control (PPC) solution to sat-
isfy FoV constraints, by applying error transformation
that imposes preordained transient and steady-state re-
sponse on the visual feature coordinate errors. Miao et
al. [27] utilizing an error transformation to deal with
the FoV constraints while ensuring prescribed control
performance. Those works provide new insights into
reliable, low-complexity FoV constraint controller de-
sign, and the robot control of the robot is considered at
the dynamics level. Despite this, visual-robot coupled
dynamics per se have not been dealt directly with the
PPC algorithm.

In this work, we exploit an adaptive output feedback
funnel control to address the FoV restrictions of the
camera. Funnel control has been applied to constraint
transient response of nonlinear systems [6, 24, 28, 41].
Yang et al. [41] utilizing a funnel function to guarantee
the transient tracking performance of a robotic sys-
tem with a predefined funnel boundary. In [6], a per-
formance funnel function is employed to construct a
fuzzy adaptive controller while ensuring the transient
response. Barrier Lyapunov Function (BLF) has been
proposed to design controllers for nonlinear systems

in strict constraints form [21]. KP. Tee et al. [36] u-
tilizes an asymmetric time-varying Barrier Lyapunov
Function to achieve strict state constraints for nonlin-
ear systems. Liu et. al [23] utilizing a funnel con-
trol scheme with a BLF to accomplish arbitrary out-
put tracking accuracy of uncertain nonlinear system.
The research [45] incorporated a constant symmetric
BLF and a time-varying asymmetric BLF to deal with
the visual system visibility problem. In [22], by using
a log-type BLF to work out the steady landing prob-
lem of an IBVS-controlled quadrotor. In our previous
works [14, 15], we employed a symmetric BLF to re-
strict visual features in the camera FoV. To the best of
the author’s knowledge, time-varying asymmetric BLF
has not been implemented to handle the issue of image
features escaping from the camera’s FoV. Unlike the
aforementioned research works, we present the FoV re-
striction for a visual servoing (VS) system with time-
varying asymmetric BLF, where the state tracking er-
ror can converge to a predefined error bound ensuring
a demanded transient response as well as required ar-
bitrary error tracking precision.

Another critical issue is that the vision system is
highly coupled with robot dynamics [11, 12]. Some re-
search works ignore the robot dynamics in IBVS tasks,
which is a feasible way to handle robots with slow mo-
tions [37]. To accommodate high-speed tasks, we pro-
pose a torque controller, but with unknown dynamic-
s. Artificial neural networks have been confirmed to
be able to approximate nonlinear functions with arbi-
trary accuracy under certain specific conditions [20].
Thus, artificial neural networks have been widely used
in compensating uncertain dynamics of nonlinear sys-
tems [16,47]. Adaptive fuzzy neural networks have ex-
cellent performance in approximating arbitrary nonlin-
ear functions. Applying adaptive fuzzy neural network-
s for compensation of high-dimensional robot dynamics
is a sensible choice, because of the simple parameteriza-
tion and computational efficiency. For instance, Su et
al. [35] introduced a decoupled adaptive fuzzy approx-
imation technique with dynamical uncertainties in a
teleoperated surgery scenario. Zhu et al. [48] develope-
d a fixed-time fuzzy controller for robot manipulator
dynamics. In [32], fuzzy neural networks are applied
to design an adaptive controller to better the human-
robot collaborative performance. Zhang et al. [42] pro-
posed a fuzzy-neural controller for improving the col-
laborative control accuracy of multi-manipulator sys-
tems. In [46], an adaptive fuzzy prescribed perfor-
mance algorithm is developed to estimate the unknown
nonlinear dynamics of high-order nonlinear multiagent
systems. In [40], adaptive fuzzy control is adopted to
deal with the uncertain kinematics and dynamics that
derive from strongly coupled nonlinearities of the dual-
arm robot. Zhong et al. [30] designed an adaptive fuzzy
control law for the strict-feedback nonlinear system to
handle external disturbance. Thus, a fuzzy neural net-
work (FNN) is employed in this work to compensate
for the uncertain term in the torque controller, which
is an intelligent choice since FNN requires only less in-
formation about the system dynamics. In summary,
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Figure 2: Schematic diagram of the operational mech-
anism of the vision servoing system.

the key contributions of our proposed control scheme
compared to existing research work can be summarized
as

1. A tunnel control scheme with a time-varying Bar-
rier Lyapunov function is innovatively employed
to design an IBVS constrained controller to re-
strain the feature points within the camera’s field
of view. The main contribution of the specified
work is that the performance specification is a pri-
ori, designable, and imposed without increasing
the complexity of the controller.

2. A time-varying BLF is implemented to ensure that
the feature point tracking errors converge to a
tightly specified range and to guarantee the tran-
sient response of tracking errors without requir-
ing any a priori knowledge about the nonlinear
visual servoing system. In contrast to our earlier
work [15], we employed a time-varying BLF in-
stead of a constant BLF to relax initial conditions
of feature errors as well as customize any desired
arbitrary tracking accuracy.

3. An adaptive controller is developed using fuzzy
neural networks to compensate for uncertain dy-
namics. In particular, the high-coupling visu-
al robot system affects the control performance.
Thus, taking advantage of the adaptive torque
controller contributes to better control accuracy
of the IBVS task performance.

The rest of the paper is organized as follows. Section
II introduces visual servoing system modeling, prelim-
inaries, and problem statements. Section III presents
the adaptive constrained IBVS controller and stabili-
ty analysis. The experimental results are presented in
section IV. Finally, section V concludes the paper.

2 Mathematical model and pre-
liminaries

2.1 System Description

The system dynamics of an n-linked rigid robot stated
as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where q, q̇, q̈ ∈ <m represent the joint position, velocity,
and acceleration state variables, respectively. τ ∈ <m
stands for the control signal, M(q) ∈ <m×m is the
symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈
<m describes the Coriolis and centripetal forces matrix,
and G(q) ∈ <m is the gravitational force vector.

To facilitate the subsequent derivation, we rewrite
the above equality in the form of the state equation, as

d

dt

[
q
q̇

]
=

[
q̇

M−1(q)[−C(q, q̇)q̇ −G(q) + τ ]

]
. (2)

The end-effector velocity Ve = [υe ωe]
T which is

related to the joint velocity q̇ expressed in the end-
effector frame, where υe and ωe represent the transla-
tion and rotation velocity respectively, by

Ve = Jr(q)q̇, (3)

where Jr(q) ∈ <6×m denotes the robot Jacobian.
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Figure 3: Universal pinhole camera geometry model.

Consider a visual servoing system in which the
pinhole camera model is mounted at the robot end-
effector, as shown in Fig.2. The geometric model of a
pinhole camera is presented in Fig.3. The camera cen-
ter Oc is linked to the camera frame C. OI is the cen-
ter of the pixel frame I, where zc of the camera frame
transverses OI and perpendicular to the pixel plane.
Given a group of 3D points Pi = [xi yi zi]

T , i = 1, ..., l,
we can obtain the respective 2D visual feature point
si = [ui vi]

T , i = 1, ..., l, by

si =

[
ui
vi

]
=
λ

zi

[
xi
yi

]
(4)

where λ denotes the focal length of the camera. The
time differential of the image feature points is related
to the spatial velocity Vc of the camera, we have

ṡi = Li(zi, si)Vc (5)

where

Li(zi, si) =

[
− λ
zi

0 ui

zi
uivi
λ −λ

2+u2
i

λ vi

0 − λ
zi

vi
zi

λ2+v2i
λ −uivi

λ −ui

]
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stands for the image interaction matrix, Vc = [vc wc]
T

is the spatial linear and angular velocity of the camera.
Given the visual servoing system feature points vector
s = [sT1 , ..., s

T
l ]T ∈ R2l. The dynamics of the vision

system are described as

ṡ = L(z, s)Vc (6)

and L(z, s) = [LT1 (z1, u1), LT1 (z1, v1), ..., LT2l(zl, vl)]
T

is the vision system interaction matrix and z =
[z1, ..., zl]

T is depth of the feature points.
To procedure the system dynamic modeling, we cor-

relate the end-effector velocity of the robot manipula-
tor with the camera’s spatial velocity employing the
velocity translation matrix Wce, as

Vc = WceVe (7)

and Wce is expressed as

Wce =

[
Rce [tce]×Rce
03×3 R[ce]

]
(8)

where Rce ∈ SO(3) is the rotation matrix, tce ∈ <3

denotes the translation vector. [tce]× represents the
3 × 3 skew-symmetric matrix. It’s worth noting that
Wce is a constant matrix in this work, benefiting from
the fact that the camera is rigidly mounted on the end-
effector of the robot. Hence, combining (3), (5) and (7),
the vision servo system dynamics are as follows

ṡ = Js(z, s, q)q̇ (9)

where Js = LWceJr represents the task Jacobian.
Summarizing the above modeling process, we define

a new state vector Q = [sT q̇T ]T ∈ <m+2l. Including
(2) and (9), the visual servoing system dynamics is
expressed as

d

dt

[
s
q̇

]
=

[
Js(z, s, q)q̇

M−1(q)[−C(q, q̇)q̇ −G(q) + τ ]

]
. (10)

Define x1 = s, x2 = q̇, we rewrite the system dy-
namics expression as

ẋ1 = Jsx2

ẋ2 = M−1(q)[−C(q, q̇)q̇ −G(q) + τ ] (11)

where the feature point vector x1 =
[x11, x12, ..., x1v]

T ∈ Rv, v = 2l. For limiting the
image feature points to stay within the camera’s FoV,
the coordinates of the feature points are required to
meet the following visibility restrictions

χmin ≤ χi ≤ χmax, i = 1, 2, ..., 2l, χ ∈ {u, v} (12)

where χmin, χmax denote the lower and upper bounds
of feature coordinates in pixels, respectively.

2.2 Fuzzy Neural Networks

Consider a fuzzy system consisting of N fuzzy IF-
THEN rules, the form of linguistic rule is

IF x1 is ζ
k
1 , ... and xn is ζ

k
n

THEN, y is ξk, k = 1, ..., N.

where x = [x1, ..., xn]T ∈ <n and y are the linguistic
variables with respect to the input and output of FNNs,
respectively. ζki , i = 1, 2, ..., n and ξk are the fuzzy
sets. The fuzzy neural network system is performed as
follows

y(x) =

∑N
k=1 yk

∏n
i=1 µζki (xi)∑N

k=1

(∏n
i=1 µζki (xi)

) . (13)

where µζki (xi) and µξk(y) are the fuzzy membership

functions, yk = maxy∈<µξk(y).
Define fuzzy basis function as

ϕk(x) =

(∏n
i=1 µζki (xi)

)
∑N
k=1

(∏n
i=1 µζki (xi)

) . (14)

The weight vector and fuzzy basis function vec-
tor are defined as ϑ = [y1, y2, ..., yN ]T and ϕ(x) =
[ϕ1(x), ϕ2(x), ..., ϕN (x)]T , respectively. Thus, equa-
tion 13 can be formulated as

y(x) = ϑTϕ(x). (15)

The FNNs have excellent performance in approxi-
mating any continuous function Φi(xi), i = 1, 2, ..., n
with arbitrary accuracy on a compact set Ω.

2.3 Preliminaries

Lemma 1 [7]: For bounded initial conditions, if there
exists a Lyapunov function V (x) which is C1 con-
tinuous and positive definite, satisfying κ1(‖x‖) ≤
V (x) ≤ κ2(‖x‖), with V̇ (x) ≤ −ρV (x) + c, where
κ1, κ2 : <n → < denote class κ functions, and ρ and c
are two positive constants, yielding a solution x(t) that
is uniformly bounded.

Lemma 2 [31]: For any positive constant |x| < 1
and any any positive integer p, the following inequality
holds:

log
1

1− x2p
<

x2p

1− x2p

Property 1 : The skew-symmetric matrix Ṁ(q) −
2C(q, q̇) meets the following equation

Ṁ(q)− 2C(q, q̇) = 0

2.4 Problem Statement

Consider a visual servoing system (10) in which a vision
sensor attaches at the end-effector of an n-linked rigid
robot manipulator, as shown in Fig.2. This work in-
tends to design a constrained image-based controller,
with the ability to tailor a priori and predetermined
performance for image feature tracking errors, to con-
strain visual feature points continuously staying within
the field of view of the camera. The visual features
s = [u v]T will converge to a preset, small neigh-
borhood around the desired constant visual feature
s∗. Furthermore, all signals of the closed-loop system
should remain bounded. The control strategy is pre-
sented in Fig.4
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Figure 4: The control block diagram of the proposed algorithm in this paper.

3 Control design

To begin with, let us introduce the definition of the
relevant tracking error signals:

z1 = x1 − xd,
z2 = x2 − α.

(16)

where z1 = [z11, z12, ..., z1N ]T ∈ <N , represent the im-
age feature errors, z2 = [z21, z22, ..., z2M ]T ∈ <M stand
for the joint velocity errors, and α is the virtual con-
troller signal need to be specified later.

3.1 Performance Specification for
Tracking Signals

To advance the controller design procedure, we import
the concept of a performance tunnel Pρ(t) to shape
the evolution of the tracking error zi, i = 1, 2, ..., N , as
follows:

Pρ := {(t, zi) ∈ <≥0 ×<| ‖ zi(t) ‖< ρk(t)}. (17)

where <≥0 represents a set of nonnegative real num-
bers.

It is worth noting that the funnel boundaries are
flexible, thus, it’s convenient to specify the error track-
ing performance, and in most situations, it is easy to
choose a monotonic funnel. We define a funnel function
ρk(t), k = 1, 2, ..., N with an exponential decay form as:

ρk(t) = (ρk(0)− ρ∞k )exp(−lkt) + ρ∞k . (18)

where lk > 0, k = 1, 2, ..., N regulates the exponen-
tial convergence rate of the error, and ρk(0) > 0,
ρ∞k > 0, k = 1, 2, ..., N are the maximum allowable
error and the steady-state performance specification,
respectively. They all need to be properly selected.

To perform error transformation, we define ϕa,k(t) =
−β1,kρk(t), ϕb,k(t) = β2,kρk(t), k = 1, 2, ..., N , where
positive constant β1,k and β2,k are design parameters.
The transferred error is performed as follows:

ξa =

[
z11

ϕa,1
, ...,

z1N

ϕa,N

]T
, ξb =

[
z11

ϕb,1
, ...,

z1N

ϕb,N

]T
,

ξk = qk(z1k)ξb,k + (1− qk(z1k))ξa,k.
(19)

where ξa,k and ξb,k represent the kth element of the
vectors ξa and ξb, respectively, and qk(z1k) is defied as

qk(z1k) :=

{
1 z1k > 0

0 z1k ≤ 0.

3.2 Robust IBVS Controller Design

To guarantee the performance of the robot manipu-
lator, an asymmetric time-varying barrier function is
constructed as follows:

V1 =

N∑
k=1

(
qk
2

ln
1

1− ξ2
b,k

+
1− qk

2
ln

1

1− ξ2
a,k

). (20)

Derivative of (20) with respect to time, we have

V̇1 =

N∑
k=1

(
qkξb,k ξ̇b,k
1− ξ2

b,k

+
(1− qk)ξa,k ξ̇a,k

1− ξ2
a,k

). (21)

The differentiation of ξa,k and ξb,k with respect to time
is given by

ξ̇a,k =
ż1k

ϕa,k
− z1kϕ̇a,k

ϕ2
a,k

ξ̇b,k =
ż1k

ϕb,k
− z1kϕ̇b,k

ϕ2
b,k

(22)

Substituting (22) into (21), and exploiting error sig-
nals transformation formulation (19), we have

V̇1 =

N∑
k=1

[
qkξ

2
b,k

(1− ξ2
b,k)z1k

(ż1k −
z1kϕ̇b,k
ϕb,k

)

]

+

N∑
k=1

[
(1− qk)ξ2

a,k

(1− ξ2
a,k)z1k

(ż1k −
z1kϕ̇a,k
ϕa,k

)

]

=

N∑
k=1

[
ξ2
kż1k

(1− ξ2
k)z1k

−
qkξ

2
b,k

1− ξ2
b,k

ϕ̇b,k
ϕb,k

−
(1− qk)ξ2

a,k

1− ξ2
a,k

ϕ̇a,k
ϕa,k

]
.

(23)
To facilitate the subsequent derivation, we define the

transient variable

H =

[
ξ2
1

(1− ξ2
1)z11

,
ξ2
2

(1− ξ2
2)z12

, ...,
ξ2
N

(1− ξ2
N )z1N

]T
.

(24)

5



Thus, expression (23) is rewritten as

V̇1 = HT ż1−
N∑
k=1

[
qkξ

2
b,k

(1− ξ2
b,k)

ϕ̇b,k
ϕb,k

+
(1− qk)ξ2

a,k

1− ξ2
a,k

ϕ̇a,k
ϕa,k

]
.

(25)
According to the definition of error vectors, we ob-

tain

ż1 = Js(z2 + α)− ẋd. (26)

Thus, we have

V̇1 = HT (Js(z2 + α)− ẋd)

−
N∑
k=1

[
qkξ

2
b,k

(1− ξ2
b,k)

ϕ̇b,k
ϕb,k

+
(1− qk)ξ2

a,k

1− ξ2
a,k

ϕ̇a,k
ϕa,k

]
.

(27)

To ensure the nonlinear system Lyapunov stable, the
stabilizing function is given by

α = J+
s [ẋd − (k1 + σ̄(t))z1]. (28)

where J+
s is the Moore-Penrose inverse of Js, and

k1 = diag(k11, k12, ..., k1N ), the elements in k1 are all
positive constants. The time-varying gain σ̄ is given by

σ̄k(t) =
√

(
ϕ̇a,k

ϕa,k
)2 + (

ϕ̇b,k

ϕb,k
)2 + ω, k = 1, 2, ..., N , where

ω is any positive constant guarantees that the time
derivative of αk remains bounded even ϕ̇a,k and ϕ̇b,k
are both zero. Substituting (28) into (27), yields

V̇1 = HTJsz2 −HT (k1 + σ̄)z1

−
N∑
k=1

[
qkξ

2
b,k

1− ξ2
b,k

ϕ̇b,k
ϕb,k

+
(1− qk)ξ2

a,k

1− ξ2
a,k

ϕ̇a,k
ϕa,k

]
.

(29)

Noting that

σ̄k(t) +
qkϕ̇b,k
ϕb,k

+
(1− qk)ϕ̇a,k

ϕa,k
≥ 0. (30)

We obtain

V̇1 ≤
N∑
k=1

(
− ξ2

k

1− ξ2
k

k1k

)
+HTJsz2. (31)

3.3 Adaptive Fuzzy NN Controller De-
sign

Choose the Lyapunov candidate function

V2 = V1 +
1

2
zT2 Mz2. (32)

The time derivative of V2 is given by

V̇2 = V̇1 + zT2 Mz2 +
1

2
zT2 Ṁz2. (33)

According to system dynamics expression (11) and the
error definition (16), we can obtain

V̇2 = V̇1 + zT2 [−C(q, q̇)α−G(q)−M(q)α̇+ τ ]

+
1

2
zT2 [Ṁ(q)− 2C(q, q̇)]z2.

(34)

Referring to the literature [33], the term Ṁ(q) −
2C(q, q̇) is equal to zero, thus

V̇2 = V̇1 + zT2 [−C(q, q̇)α−G(q)−M(q)α̇+ τ ]. (35)

Using FNNs to approximate the unknown part
−C(q, q̇)α−G(q)−M(q)α̇ with arbitrary accuracy, de-
fine

F (Z) = −C(q, q̇)α−G(q)−M(q)α̇. (36)

where F (Z) = [s1(Z), s2(Z), ..., sN0
(Z)]T , Z =

[qT , q̇T , αT , α̇T ]T ∈ <p, with p = 4N0. We define
F (Z) = θ∗Tφ(Z), where θ∗ = [θ∗1 , θ

∗
2 , ..., θ

∗
M ]T and

φ(Z) = [φ1(Z), φ2(Z), ..., φM (Z)]T . Combined with
the adaptive fuzzy neural network, we propose the fol-
lowing controller

τ = −k2z2 − F̂ (Z)−HTJs. (37)

where k2 = diag(k21, k22, ..., k2M ) with k2k represents

the kth element in k2, F̂ (Z) = θ̂Tφ(Z) + ε with the
estimation error satisfying |ε| < δ, δ is any positive
constant.

The fuzzy neural network weight adaptive law is de-
signed as

˙̂
θk = Γk(z2kφ(Zk)− γkθ̂k). (38)

where Γk and γk, k = 1, 2, ...,M denote positive con-
stants.

To confirm the proposed controller Lyapunov stabil-
ity, we choose the candidate as

V = V2 +
1

2

M∑
k=1

θ̃Tk Γ−k 1θ̃k. (39)

where ˜(∗) = ˆ(∗) − (∗). Differentiating V with respect
to time, considering the control law in (37), yields

V̇ ≤ zT2 (θ∗Tφ(Z)− θ̂Tφ(Z)− ε−HTJs − k2z2)

+HTJsz2 −
N∑
k=1

ξ2
k

1− ξ2
k

k1k +

M∑
k=1

θ̃Tk Γ−k 1
˙̂
θk.

(40)

Taking the adaptive update law (38) in considera-
tion, obtain

V̇ ≤ −zT2 k2z2 − zT2 ε+

M∑
k=1

θ̃Tk γk(θ̃k + θ∗k)−
N∑
k=1

ξ2
k

1− ξ2
k

k1k.

(41)

Taking full advantage of Young’s inequality, we have

−zT2 ε ≤
1

2
‖z2‖2 +

1

2
ε2 (42)

−
M∑
k=1

θ̃Tk γk(θ̃k + θ∗k) ≤ −
M∑
k=1

γk
2
θ̃Tk θ̃k +

M∑
k=1

γk
2
θ∗Tk θ∗k

(43)
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Substituting (42)-(43) in to (41), and exploiting
Lemma 2, we have

V̇ ≤ −zT2 k2z2 +
1

2
‖z2‖2 +

1

2
ε2 −

N∑
k=1

ξ2
k

1− ξ2
k

k1k

−
M∑
k=1

γk
2
θ̃Tk θ̃k +

M∑
k=1

γk
2
θ∗Tk θ∗k

≤ −
N∑
k=1

k1k ln
1

1− ξ2
k

− 2k2 − 1

M
(
1

2
zT2 Mz2)

− γ

Γ−1
(
1

2
θ̃TΓ−1θ̃) +

1

2
ε2 +

γ

2
‖θ∗‖2.

(44)

3.4 Stability Analysis

Theorem 1. For the visual servoing system in (11),
the robust IBVS controller in (28), the adaptive con-
troller in (37), the FNN weights adaptive update law
(38), and the performance specification function (18).
Given initial condition that z1k(0) satisfies ϕa,k(0) <
z1k(0) < ϕb,k(0). The performance of the visual servo-
ing system can be concluded as

(1) The tracking signals z1, z2, θ̃ of the closed loop
system are uniformly ultimately bounded.

(2) The tracking error vector z1 is constrained to the
boundaries of the performance specified function.

(3) The tracking error z1 will converge into a small
region nearby zero.

Proof. By the previous derivation, the final formula-
tion of the Lyapunov function V is

V =
1

2

N∑
k=1

ln
1

1− ξ2
k

+
1

2
zT2 Mz2 +

1

2
θ̃TΓ−1θ̃. (45)

The inequality (44) can be formulated as

V̇ ≤ −aV + b. (46)

where a = min{2λmin(k1), 2λmin(k2)−1
λmax(M) , λminγ

λmaxΓ−1 }, b =
1
2ε

2+ γ
2 ‖θ
∗‖2, λmin(∗) and λmax(∗) represent minimum

and maximum eigenvalues of matrix (∗), respectively.
By further solve inequality (46), it given us that

V ≤ V (0) + b/a. Also considering the initial condi-
tion ξk(0), we can deduce that the term of ln 1

1−ξ2k
, the

auxiliary error z2, and the adaptive FNN weight error
θ̃ is bounded. Thus, we can surmise that ϕa < z1 < ϕb
and the transient performance of control errors is guar-
anteed. Since ϕa and ϕb are limited functions, implies
that z1 is bounded. From the definition of error sig-
nals, x must be bounded, and in light of the formula-
tion of (28), α is bounded as Js is limited. Therefore,
we can smoothly conclude that x2 is bounded because
x2 = z2 + α. Ultimately, we prove that all signals are
bounded.

4 Experimental

In this portion, the theoretical results are verified by
practical experiments. The validation platform consist-
s of the Sawyer robot, a 7-DoF redundant robot ma-
nipulator, with a RealSense D435i camera mounted on
the end-effector, as shown in Fig.2. The Sawyer robot
is actuated by a built-in Intera SDK, and the host com-
puter is equipped with Ubuntu 18.04. The FNN system
and weight learning laws are training on a slave ma-
chine and communication with the host for the torque
compensation in the form of ROS topic. To quickly
verify the effectiveness of the algorithm and reduce the
experimental procedure, we use the AprilTag cooper-
ating with the Visual Servoing Platform (ViSP) [26]
extracting corner points as visual features. The con-
trol signals of the Sawyer run at a frequency of about
500 Hz, and feature points are refreshed at roughly 35
Hz.

To clarify the validity and the robustness of the pro-
posed method, two sets of comparative experiments
were conducted as follows:

Case 1: Point-to-point tracking experiment. A set
of visual feature points moves to a set of desired feature
points.

Case 2: Large-amplitude cycle following experiment.
A set of visual feature points rotation 45 degrees to a
set of desired feature points.

We utilize a classical VS control law and a Propor-
tion Integration Differentiation (PID) controller as a
comparison to elucidate the effectiveness of the above
two sets of experiments with the following expressions:

vc =− λL+(x1 − xd),
τc =−KP (q(t)− qd(t))−KD(x2(t)− α(t))

+KI

∫
(q(t)− qd(t))dt.

Remark: In the experimental section we conducted
two sets of experiments, the purpose of which is that,
in comparison to the point-to-point tracking experi-
ment, the rotational experiment under torque control
has a larger motion and increased probability that the
trajectories exceed the FoV, so we conducted a set of
comparative experiments of point-to-point tracking to
illustrate the effectiveness of the proposed algorithm.
The rotation comparative experiments are conducted
to illustrate the superior performance of the proposed
algorithm.

To ease the progression of the experiments, we con-
trol in image coordinates rather than pixel coordinates
because the error increases by a multiple in the pixel co-
ordinate plane, so a small deviation in the coordinates
of the feature points projected to the actual system will
bring about a large error, leading to a deterioration in
the control performance, which may further amplify
the error and cause the system to be unstable.

For the fuzzy neural networks, choose Gaussian
kernel functions as the affiliation function, which are
continuously differentiable and advantageous in the
theoretical analysis of FNN. For the Sawyer robot,
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(b)

Figure 5: Case 1: Point-to-point tracking experiment. Motion trajectories of four image feature points in the
actual FoV of the camera. (a) Classical IBVS controller. (b) Our proposed controllers. (Green cross: current
image feature points; red cross: desired image feature points.)
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(a)

t=4(s) t=5(s) t=8(s) t=29(s)t=0(s)

(b)

Figure 6: Case 2: Large-amplitude cycle following experiment. Motion trajectories of four image feature points
in the actual FoV of the camera. (a) Classical IBVS controller. (b) Our proposed controllers. (Green cross:
current image feature points; red cross: desired image feature points.)
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Figure 7: Case 1: Point-to-point tracking experiment. Motion trajectories of four image feature points in the
pixel plane. (a) Classical IBVS controller. (b) Our proposed controllers. The dotted rectangle represents the
camera’s FoV that we preset, which umax = 570 (pixels), vmax = 450 (pixels), umin = 120 (pixels), vmin = 0
(pixels).
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Figure 8: Case 1: Point-to-point tracking experiment. The evolution of the image feature errors along with the
corresponding funnel boundaries (Green dashed decay line: funnel upper bound, brown dashed rise line: funnel
lower bound).

each variable has 7 inputs since it is a 7-DoF redun-
dant robot. Thus, to improve the FNN efficiency of
training, we choose [qT , q̇T ]T ∈ R2M as input variables.
We set two central points for each input variable,
leading to p = 22×7 = 16384 fuzzy rules. For case
1, the central points of the FNN are select from the
area [−0.05, 0.05] × [−0.1, 0.1] × [−0.05, 0.05] ×
[−0.05, 0.05] × [−0.05, 0.05] × [−0.15, 0.05] ×
[−0.1, 0.05] × [−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1] ×
[−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1],
and the standard deviations for the FNN is b1 =
[0.12, 0.24, 0.12, 0.12, 0.12, 0.24, 0.18, 0.24, 0.24, 0.24,
0.24, 0.24, 0.24, 0.24]T . For case 2, the cen-
tral points of the FNN are select from the
area [−1.2,−0.8] × [−1,−0.8] × [0.2, 0.8] ×
[1.8, 2.2] × [−0.6,−0.2] × [0.2, 0.8] × [−0.9, 0.1] ×
[−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] ×
[−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5], and the
standard deviations for the FNN is b2 =
[0.48, 0.24, 0.72, 0.48, 0.48, 0.72, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2
, 1.2, 1.2]T . The initial weights are preset to be

θ̂(0) = 0. The adaptive gains of the weights learning
law (38) is Γ = 10, γ = 0.002.

Remark: For the fuzzy neural network training seg-
ment, we retrain the FNN parameters by collecting
data on joint angles q and joint angular velocities
q̇ prospectively. The retrained FNN parameters are
reused in the later experiment. Since the visual servo-
ing task converges from one set of points to another in
a very short period, there is not enough time for FNN
to do online training.

4.1 Point to Point Tracking Experi-
ment

In this case, the initial coordinates of
feature points in pixels are sinit =
[388, 280, 546, 284, 552, 124, 392, 122]T (Pixels),
and the desired feature points were preset as
s∗ = [209, 324, 420, 322, 417, 109, 204, 111]T (Pixels).

For the comparison experimental group, the pa-
rameter of vc is chosen as λ = 0.5, and parame-
ters of τc are KP = diag(100, 80, 50, 40, 36, 26, 6),
KD = diag(10.0, 6.0, 5.0, 3.0, 2.6, 1.9, 0.5),
KI = diag(15, 8, 10, 10, 5, 4, 1). The pa-
rameters of funnel functions were set as
ρa(0) = [2.25, 3.0, 2.25, 3.0, 2.25, 4.5, 4.5, 3.0]T ,
ρb(0) = [4.8, 3.6, 3.0, 3.0, 3.0, 3.6, 4.8, 3.6]T ,
ρ∞a,k = ρ∞b,k = 0.55 for k = 1, ..., 8, la =

[0.05, 0.05, 0.05, 0.02, 0.05, 0.02, 0.05, 0.02]T and
lb = [0.1, 0.08, 0.08, 0.08, 0.05, 0.05, 0.08, 0.05]T .
Fig.5 shows the trajectories of the four image feature
points observed in the camera’s FoV converging from
the current feature points (green crosses) to the
desired feature points (red crosses). Fig.5(a) shows
the trajectories of the feature points under classical
visual servoing control, and Fig.5(b) shows the trajec-
tories of the feature points under the constraints of
the funnel function. It is noticeable that the range
covered by the image feature point trajectories of our
proposed controller is markedly smaller than that of
the classical visual servoing controller. To emphasize
the effectiveness of the FoV constraint algorithm, we
plot the trajectories in the pixel coordinate system, as
shown in Fig.7. The dotted boxes were the preset FoV.
In Fig.7(a), the features 3 and 4 run out of the boxes,
VS task failed. Introducing the funnel constraints, the
features are well restricted to the FoV, as depicted
in Fig.7(b). Fig.8 demonstrated the feature errors
convergence curves, as can be seen in the detailed
zoomed-in plot, the error values under the funnel
function are noticeably reduced, and the convergence
time of the tracking error is noticeably shorter, which
saves about 80(s) compared to the classical vision
servoing (i.e., tABLF = 70(s) and tcp = 150(s)). We
utilize pre-trained FNN compensating the uncertain
dynamics of the Sawyer robot, the weights of FNN
were converged as indicated in Fig.11(a). Seen
Fig.7(b), the final stage trajectories of the feature
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Figure 9: Case 2: Large-amplitude cycle following experiment. Motion trajectories of four image feature points
in the pixel plane. (a) Classical IBVS controller. (b) Our proposed controllers. The dotted rectangle represents
the camera’s FoV that we preset, which umax = 600 (pixels), vmax = 450 (pixels), umin = 160 (pixels), vmin = 0
(pixels).
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Figure 10: Case 2: Large-amplitude cycle following experiment. The evolution of the image feature errors along
with the corresponding funnel boundaries (Green dashed decay line: funnel upper bound, brown dashed rise
line: funnel lower bound).
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Figure 11: FNN weights θ. (a) Convergent weights in
point-to-point tracking experiments. (b) Convergent
weights in large-amplitude cycle following experiment.

points near the desired targets are smoother.

4.2 Large-amplitude Cycle Following
Experiment

We implemented a set of rotational experiments to fur-
ther illustrate the superior performance of the present-
ed algorithm. In case 2, the initial feature points are
sinit = [335, 378, 457, 218, 299, 95, 175, 254]T (Pixels),
the desired image features are preset as
s∗ = [219, 339, 421, 339, 421, 138, 219, 138]T (Pixels).
For the comparison experiment parameters,
λ = 0.5, and KP = diag(60, 80, 30, 30, 36, 26, 6),
KD = diag(6.0, 6.0, 3.0, 3.0, 2.6, 1.9, 0.5),
KI = diag(8, 8, 6, 5, 5, 4, 1). The arguments
to the funnel performance function are set
to ρa(0) = [1.5, 2.0, 1.5, 2.0, 1.5, 3.0, 3.0, 2.0]T ,
ρb(0) = [4.0, 3.0, 2.5, 2.5, 2.5, 3.0, 4.0, 3.0]T ,
ρ∞a,k = ρ∞b,k = 0.8 for k = 1, 2, ..., 8,

la = [0.1, 0.1, 0.1, 0.04, 0.1, 0.04, 0.1, 0.04]T and
lb = [0.2, 0.16, 0.16, 0.16, 0.1, 0.1, 0.16, 0.1]T .

Fig.6 shows the trajectories of the current image fea-
tures converge to desired ones with rotation 45 degrees.
Fig.6(a) illustrates the trajectories without constraints.
Fig.6(b) records the trajectories of feature points with-
in the FoV of the camera with the funnel performance
function constraints. Similarly, we draw the trajecto-
ries in the pixel plane as shown in Fig.9. It can be
obviously observed from Fig.9(a) that features 3 and 4
escape from our preset range of FoV, while all image
features are confined to the pre-defined FoV as shown
in Fig.9(b). Fig.10 indicates the feature errors conver-
gent trajectories. The feature errors derived from the
constrained controller produce lower values than errors

generated by the unconstrained controller, and esABLF
converging at around tABLF = 29(s), while escp takes
about 128(s) approaching zero. By applying FNN in
the torque controller, comparing the approaching stage
to desired features, Fig.9(b) has smoother trajectories.
Fig.11(b) demonstrates converged FNN weights.

5 Conclusion

In this paper, a robust IBVS controller was designed
by introducing a funnel function to customize the per-
formance of VS tasks, while respecting the camera’s
FoV. A time-varying BLF was implemented to speci-
fy the transient response of the VS system and ensure
system stability. A torque controller was applied to ac-
commodate high-speed robot motion and introduced
a fuzzy neural network to compensate for the highly
coupled vision-robot system dynamics. The proposed
controllers were low complexity and require no a pri-
ori knowledge of the VS system. Experiment result-
s have substantiated the effectiveness of the proposed
controller.

Nevertheless, our proposed method exhibits some
limitations. Theoretically, the proposed method can
only guarantee that the tracking error converges to a
neighborhood close to zero, but not to an arbitrari-
ly small region. Meanwhile, the fuzzy neural network
is collecting data for offline training and then reusing
the parameters for online compensation, and the online
update algorithm can be considered in the future. In
addition, future industrial robots will require more in-
telligence and flexibility. We are considering introduc-
ing force perception combined with a vision for more
complex tasks.

References

[1] Akbar Assa and Farrokh Janabi-Sharifi. Robust
model predictive control for visual servoing. In
Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
pages 2715–2720, 2014.

[2] Charalampos P. Bechlioulis, Shahab Heshmati-
alamdari, George C. Karras, and Kostas J. Kyr-
iakopoulos. Robust image-based visual servoing
with prescribed performance under field of view
constraints. IEEE Trans. Rob., 35(4):1063–1070,
2019.

[3] Francois Chaumette and Seth Hutchinson. Visual
servo control. i. basic approaches. IEEE Robot.
Autom. Mag., 13(4):82–90, 2006.

[4] Zhiwei Cui, Weibing Li, Xue Zhang, Philip
Wai Yan Chiu, and Zheng Li. Accelerated du-
al neural network controller for visual servoing of
flexible endoscopic robot with tracking error, join-
t motion, and rcm constraints. IEEE Trans. Ind.
Electron., 69(9):9246–9257, 2022.

11



[5] N. Garcia-Aracil, E. Malis, R. Aracil-Santonja,
and C. Perez-Vidal. Continuous visual servoing
despite the changes of visibility in image features.
IEEE Trans. Rob., 21(6):1214–1220, 2005.

[6] Xiyue Guo, Huaguang Zhang, Jiayue Sun, and
Yu Zhou. Fixed-time fuzzy adaptive control of ma-
nipulator systems under multiple constraints: A
modified dynamic surface control approach. IEEE
Trans. Syst. Man Cybern. Syst., 53(4):2522–2532,
2023.

[7] Wei He, Shuzhi Sam Ge, Bernard Voon Ee How,
and Yoo Sang Choo. Dynamics and control of me-
chanical systems in offshore engineering. London,
U.K.: Springer-Verlag, 2014.

[8] Shahab Heshmati-alamdari, Charalampos P.
Bechlioulis, Minas V. Liarokapis, and Kostas J.
Kyriakopoulos. Prescribed performance image
based visual servoing under field of view con-
straints. In Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst., pages 2721–2726, 2014.

[9] Shahab Heshmati-alamdari, George K. Karavas,
Alina Eqtami, Michael Drossakis, and Kostas J.
Kyriakopoulos. Robustness analysis of model pre-
dictive control for constrained image-based visual
servoing. In Proc. IEEE Int. Conf. Robot. Au-
tomat., pages 4469–4474, 2014.

[10] Shahab Heshmati-alamdari, George C. Karras,
Alina Eqtami, and Kostas J. Kyriakopoulos. A
robust self triggered image based visual servo-
ing model predictive control scheme for small au-
tonomous robots. In Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., pages 5492–5497, 2015.

[11] Yingbai Hu, Guang Chen, Zhijun Li, and Alois
Knoll. Robot policy improvement with natural
evolution strategies for stable nonlinear dynamical
system. IEEE Trans. Cybern., 53(6):4002–4014,
2023.

[12] Yingbai Hu, Zhijun Li, and Gary G. Yen. A knee-
guided evolutionary computation design for motor
performance limitations of a class of robot with
strong nonlinear dynamic coupling. IEEE Trans.
Syst. Man Cybern. Syst., 53(7):4429–4441, 2023.

[13] Yanting Huang, Ming Zhu, Zewei Zheng, and
Kin Huat Low. Linear velocity-free visual servo-
ing control for unmanned helicopter landing on a
ship with visibility constraint. IEEE Trans. Syst.
Man Cybern. Syst., 52(5):2979–2993, 2022.

[14] Jiao Jiang, Yaonan Wang, Yiming Jiang, and
Zhiqiang Miao. Adaptive nn based visual servoing
control for robot manipulator with field of view
constraints and dynamic uncertainties. In Proc.
IEEE Int. Conf. Robot. Biomimetics, pages 1694–
1699, 2021.

[15] Jiao Jiang, Yaonan Wang, Yiming Jiang, He Xie,
Haoran Tan, and Hui Zhang. A robust visual ser-
voing controller for anthropomorphic manipula-
tors with field-of-view constraints and swivel-angle
motion: Overcoming system uncertainty and im-
proving control performance. IEEE Robot. Autom.
Mag., 29(4):104–114, 2022.

[16] Yiming Jiang, Yaonan Wang, Zhiqiang Miao,
Jing Na, Zhijia Zhao, and Chenguang Yang.
Composite-learning-based adaptive neural control
for dual-arm robots with relative motion. IEEE
Trans. Neural Netw. Learn. Syst., 33(3):1010–
1021, 2022.

[17] Zhehao Jin, Jinhui Wu, Andong Liu, Wen-An
Zhang, and Li Yu. Policy-based deep reinforce-
ment learning for visual servoing control of mobile
robots with visibility constraints. IEEE Trans. In-
d. Electron., 69(2):1898–1908, 2022.

[18] Moslem Kazemi, Kamal K. Gupta, and Mehran
Mehrandezh. Randomized kinodynamic planning
for robust visual servoing. IEEE Trans. Rob.,
29(5):1197–1211, 2013.

[19] Mohammad Keshmiri and Wen-Fang Xie. Image-
based visual servoing using an optimized trajec-
tory planning technique. IEEE/ASME Trans.
Mechatron., 22(1):359–370, 2017.

[20] A.U. Levin and K.S. Narendra. Control of non-
linear dynamical systems using neural networks.
ii. observability, identification, and control. IEEE
Trans. Neural Networks, 7(1):30–42, 1996.

[21] Zhijun Li, Guoxin Li, Xiaoyu Wu, Zhen Kan,
Hang Su, and Yueyue Liu. Asymmetric coopera-
tion control of dual-arm exoskeletons using human
collaborative manipulation models. IEEE Trans.
Cybern., 52(11):12126–12139, 2022.

[22] Jie Lin, Yaonan Wang, Zhiqiang Miao, Hesheng
Wang, and Rafael Fierro. Robust image-based
landing control of a quadrotor on an unpredictable
moving vehicle using circle features. IEEE Trans.
Autom. Sci. Eng., 20(2):1429–1440, 2023.

[23] Yong-Hua Liu, Chun-Yi Su, and Hongyi Li. Adap-
tive output feedback funnel control of uncertain
nonlinear systems with arbitrary relative degree.
IEEE Trans. Autom. Control, 66(6):2854–2860,
2021.

[24] Yong-Hua Liu, Chun-Yi Su, and Qi Zhou. Funnel
control of uncertain high-order nonlinear systems
with unknown rational powers. IEEE Trans. Syst.
Man Cybern. Syst., 51(9):5732–5741, 2021.

[25] E. Malis, F. Chaumette, and S. Boudet. 2 1/2
d visual servoing. IEEE Trans. Robot. Automat.,
15(2):238–250, 1999.

12



[26] E. Marchand, F. Spindler, and F. Chaumette. Vis-
p for visual servoing: a generic software platform
with a wide class of robot control skills. IEEE
Robot. Autom. Mag., 12(4):40–52, 2005.

[27] Zhiqiang Miao, Hang Zhong, Yaonan Wang, Hui
Zhang, Haoran Tan, and Rafael Fierro. Low-
complexity leader-following formation control of
mobile robots using only fov-constrained visual
feedback. IEEE Trans. Ind. Inform., 18(7):4665–
4673, 2022.

[28] Xiao Min, Simone Baldi, and Wenwu Yu. Dis-
tributed output feedback funnel control for uncer-
tain nonlinear multiagent systems. IEEE Trans.
Fuzzy Syst., 30(9):3708–3721, 2022.

[29] Ravi Prakash and Laxmidhar Behera. Neural op-
timal control for constrained visual servoing via
learning from demonstration. IEEE Trans. Au-
tom. Sci. Eng., pages 1–14, 2023.

[30] Jianbin Qiu, Tong Wang, Kangkang Sun, Imre J.
Rudas, and Huijun Gao. Disturbance observer-
based adaptive fuzzy control for strict-feedback
nonlinear systems with finite-time prescribed per-
formance. IEEE Trans. Fuzzy Syst., 30(4):1175–
1184, 2022.

[31] Beibei Ren, Shuzhi Sam Ge, Keng Peng Tee, and
Tong Heng Lee. Adaptive neural control for out-
put feedback nonlinear systems using a barrier lya-
punov function. IEEE Trans. Neural Networks,
21(8):1339–1345, 2010.

[32] Xiaoqian Ren, Zhijun Li, MengChu Zhou, and Y-
ingbai Hu. Human intention-aware motion plan-
ning and adaptive fuzzy control for a collaborative
robot with flexible joints. IEEE Trans. Fuzzy Sys-
t., 31(7):2375–2388, 2023.

[33] Tong Heng Lee Sam Shuzhi Ge and Christopher J
Harris. Adaptive neural network control of robotic
manipulators. Singapore: World Scientific, 1998.

[34] Haobin Shi, Meng Xu, and Kao-Shing Hwang. A
fuzzy adaptive approach to decoupled visual ser-
voing for a wheeled mobile robot. IEEE Trans.
Fuzzy Syst., 28(12):3229–3243, 2020.

[35] Hang Su, Wen Qi, Jiahao Chen, and Dandan
Zhang. Fuzzy approximation-based task-space
control of robot manipulators with remote center
of motion constraint. IEEE Trans. Fuzzy Syst.,
30(6):1564–1573, 2022.

[36] Keng Peng Tee, Beibei Ren, and Shuzhi Sam
Ge. Control of nonlinear systems with time-
varying output constraints. Automatica J. IFAC,
47(11):2511–2516, 2011.

[37] Pavlos D. Triantafyllou, George A. Rovithakis,
and Zoe Doulgeri. Constrained visual servo-
ing under uncertain dynamics. Int. J. Control,
92(9):2099–2111, 2019.

[38] Runhua Wang, Xuebo Zhang, Yongchun Fang,
and Baoquan Li. Virtual-goal-guided rrt for vi-
sual servoing of mobile robots with fov constraint.
IEEE Trans. Syst. Man Cybern. Syst., 52(4):2073–
2083, 2022.

[39] Jing Xin, Kemin Chen, Lei Bai, Ding Liu, and
Jian Zhang. Depth adaptive zooming visual ser-
voing for a robot with a zooming camera. Int. J.
Adv. Rob. Syst., 10(2):120, 2013.

[40] Chenguang Yang, Yiming Jiang, Jing Na, Zhijun
Li, Long Cheng, and Chun-Yi Su. Finite-time con-
vergence adaptive fuzzy control for dual-arm robot
with unknown kinematics and dynamics. IEEE
Trans. Fuzzy Syst., 27(3):574–588, 2019.

[41] Xiaowei Yang, Wenxiang Deng, and Jianyong
Yao. Neural adaptive dynamic surface asymptot-
ic tracking control of hydraulic manipulators with
guaranteed transient performance. IEEE Trans.
Neural Netw. Learn. Syst., pages 1–11, 2022.

[42] Jiazheng Zhang, Long Jin, and Yang Wang. Col-
laborative control for multimanipulator systems
with fuzzy neural networks. IEEE Trans. Fuzzy
Syst., 31(4):1305–1314, 2023.

[43] Kunwu Zhang, Yang Shi, and Huaiyuan Sheng.
Robust nonlinear model predictive control based
visual servoing of quadrotor uavs. IEEE/ASME
Trans. Mechatronics., 26(2):700–708, 2021.

[44] Lina Zhang, Zhe Sun, Feng Duan, Chi Zhu, and
Hiroshi Yokoi. Mind control of a service robot with
visual servoing. In Proc. IEEE/RSJ Int. Conf. In-
tell. Robots Syst. (IROS), pages 3747–3752, 2021.

[45] Yu Zhang, Changchun Hua, Yafeng Li, and Xin-
ping Guan. Adaptive neural networks-based visu-
al servoing control for manipulator with visibility
constraint and dead-zone input. Neurocomputing,
332:44–55, 2019.

[46] Haodong Zhou, Shuai Sui, and Shaocheng Tong.
Finite-time adaptive fuzzy prescribed perfor-
mance formation control for high-order nonlin-
ear multiagent systems based on event-triggered
mechanism. IEEE Trans. Fuzzy Syst., 31(4):1229–
1239, 2023.

[47] Chengzhi Zhu, Yiming Jiang, and Chenguang
Yang. Fixed-time neural control of robot manip-
ulator with global stability and guaranteed tran-
sient performance. IEEE Trans. Ind. Electron.,
70(1):803–812, 2023.

[48] Chengzhi Zhu, Chenguang Yang, Yiming Jiang,
and Hui Zhang. Fixed-time fuzzy control of un-
certain robots with guaranteed transient perfor-
mance. IEEE Trans. Fuzzy Syst., 31(3):1041–
1051, 2023.

13



Jiao Jiang received the B. E. de-
gree in Electrical Engineering and
Automation from China University
of Mining and Technology, Xuzhou,
China, in 2020. She is now working
on her Ph.D. in Control Science and
Engineering at the School of Electri-
cal and Information Engineering, Hu-

nan University, Changsha, China.
Her research interest covers robot vision perception

and control.

Yaonan Wang(Senior Member,
IEEE) received a Ph.D. degrees in
electrical engineering from Hunan
University, Changsha, China, in
1994. He was a Senior Humboldt
Fellow in Germany from 1998 to
2000 and a Visiting Professor with
the University of Bremen, Bremen,

Germany, from 2001 to 2004. Dr. Wang is an
Academician of the Chinese Academy of Engineering.

He is currently a Professor at the College of Elec-
trical and Information Engineering, Hunan University.
His research efforts mainly to robotics, image process-
ing, and intelligent control.

Yiming Jiang Yiming Jiang re-
ceived a Ph.D. degree in Pattern
Recognition and Intelligent System-
s from the South China University
of Technology, Guangzhou, China, in
2019. He is an associate professor at
the School of Robotics, Hunan Uni-
versity, and an associate research fel-

low at the National Engineering Research Center of
Robot Visual Perception and Control Technology.

His research interest covers multiple robots’ cooper-
ative control and their application.

Yun Feng received the Ph.D. de-
gree in Systems Engineering and En-
gineering Management, City Universi-
ty of Hong Kong, Hong Kong in 2020.
He is currently an Associate Professor
with the College of Electrical and In-
formation Engineering, Hunan Univer-
sity, Changsha, China, and also with

the National Engineering Laboratory for Robot Visual
Perception and Control Technology, Hunan University,
Changsha, China. His research interests include dis-
tributed parameter systems, fault diagnosis, and soft

robotics. He was selected for the Young Elite Scien-
tists Sponsorship Program by the China Association
for Science and Technology in 2023.

Hang Zhong received the B.S.,
M.S., and Ph.D. degrees in automa-
tion science from the College of Elec-
trical and Information Engineering,
Hunan University, Changsha, China,
in 2013, 2016, and 2020 respectively.
From 2020 to 2022, he was a post-
doc fellow with the College of Elec-

trical and Information Engineering, Hunan University,
Changsha, China. Now he is an Associate Professor
with the College of Robotics, Hunan University. His
research interests include aerial robotics, multi-robot
systems, visual servoing, visual navigation and nonlin-
ear control. He was a recipient of the Outstanding Doc-
toral Dissertation Award of Hunan Province in 2022.

Chenguang Yang (Senior Mem-
ber, IEEE) received the Ph.D. de-
gree in control engineering from the
National University of Singapore,
Singapore, in 2010, and postdoctor-
al training in human robotics from
the Imperial College London, Lon-
don, U.K. He was awarded UK EP-

SRC UKRI Innovation Fellowship and individual EU
Marie Curie International Incoming Fellowship. As the
lead author, he won the IEEE Transactions on Robotic-
s Best Paper Award (2012) and IEEE Transactions on
Neural Networks and Learning Systems Outstanding
Paper Award (2022). He is the Corresponding Co-
Chair of IEEE Technical Committee on Collaborative
Automation for Flexible Manufacturing, a Fellow of
Institute of Engineering and Technology (IET), a Fel-
low of Institution of Mechanical Engineers (IMechE),
and a Fellow of British Computer Society (BCS). His
research interest lies in human robot interaction and
intelligent system design.

14


