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Abstract

This work addresses the critical task of accurately estimating failure probabilities in dynamic

systems by utilizing a probabilistic load model based on a set of data with similar charac-

teristics, namely the relaxed power spectral density (PSD) function. A major drawback

of the relaxed PSD function is the lack of dependency between frequencies, which leads to

unrealistic PSD functions being sampled, resulting in an unfavourable effect on the failure

probability estimation. In this work, this limitation is addressed by various methods of

modeling the dependency, including the incorporation of statistical quantities such as the

correlation present in the data set. Specifically, a novel technique is proposed, incorporating

probabilistic dependencies between different frequencies for sampling representative PSD

functions, thereby enhancing the realism of load representation. By accounting for the de-

pendencies between frequencies, the relaxed PSD function enhances the precision of failure

probability estimates, opening the opportunity for a more robust and accurate reliability

assessment under uncertainty. The effectiveness and accuracy of the proposed approach is

demonstrated through numerical examples, showcasing its ability to provide reliable failure

probability estimates in dynamic systems.
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1. Introduction1

Stochastic dynamics investigates the behavior of systems under the influence of random2

vibrations and introduces a crucial element of unpredictability into the study of dynamic3

phenomena, which is often concerned with reliability analysis of a given structure [1, 2, 3, 4].4

Unlike deterministic systems, where the future behavior is completely determined by the5

initial conditions, stochastic dynamics incorporates the element of randomness, making it6

a powerful tool for modeling real-world phenomena characterized by inherent uncertainties.7

Random vibrations [5, 6, 7, 8, 9] constitute a significant aspect of stochastic dynamics in8

structural engineering and dynamic analysis. These vibrations are often induced by external9

factors such as wind, seismic activity, or other environmental forces, introducing a level of10

unpredictability that demands a stochastic approach for accurate modeling and analysis.11

Environmental processes represent notable examples in which stochastic dynamics plays a12

crucial role, particularly when considering their impact on buildings and structures. These13

natural phenomena are inherently complex, characterized by intricate patterns of variability14

and randomness that challenge traditional deterministic models.15

In structural reliability and stochastic dynamics, the power spectral density (PSD) func-16

tion is an important tool in characterizing and understanding the dynamics of the underlying17

process and the response of structure and can be derived directly from environmental pro-18

cesses [9, 10]. This statistical measure provides a representation of environmental excitations19

in the frequency domain and allows the reliability of structures to be assessed under random20

loading conditions. By analyzing the PSD function, insight can be gained into the distribu-21

tion of energy across different frequencies, allowing the identification of critical resonances22

and potential weaknesses in structural systems. This information is invaluable for the design23
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and assessment of structures and improves the ability to simulate and mitigate the effects of24

random excitations on the built environment. In this type of analysis, it is beneficial to use25

methods that generate compatible stochastic processes from an underlying PSD function26

for the application to structures. These methods are valuable as they encompass the prop-27

erties of the PSD function in the time domain, see for instance the spectral representation28

method [11] or the stochastic harmonic functions [12, 13].29

The challenges posed by uncertainties in stochastic dynamics and PSD function esti-30

mation are manifold and are paramount in understanding and predicting the behavior of31

complex systems. These uncertainties, which are usually divided into aleatory and epis-32

temic uncertainties [14], can arise from various sources, such as measurement errors, envi-33

ronmental fluctuations, or incomplete knowledge of the underlying system [15]. As a result,34

accurately modeling and analyzing stochastic processes becomes a non-trivial task. The key35

challenges are the correct treatment of uncertainties [16, 17] and the formulation of math-36

ematical models that capture the stochastic nature of loads subject to the system while37

accounting for uncertainties, see [18, 19, 20, 21] for an overview. Traditional deterministic38

models often prove insufficient in representing the inherent variability observed in many39

natural and engineered systems. Various approaches for handling uncertainties are out-40

lined in the literature, and they can be broadly categorized into distinct groups, including41

probabilistic approaches [19], which quantify uncertainties using probability distributions;42

non-probabilistic approaches [22], which do not rely on explicit probability measures; and43

imprecise probabilistic approaches [23], which account for uncertainties using set-valued or44

imprecise probability representations. Some specific methods to determine the structural45

reliability under uncertainties are the Monte Carlo (MC) method [24, 25], subset simulation46

(SuS) [26, 27], line sampling [28], or Bayesian methods [29, 30].47

Accurately quantifying and incorporating uncertainties into the PSD function, which48

serves as a load model under specific conditions, presents a challenging task. Incorrect49

quantification and insufficient consideration of uncertainties can lead to significant conse-50

quences in determining the structural reliability. Missing data, for instance, is problem in51

statistical analyses as it affects the accuracy and reliability of the results due to gaps in the52
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data set, which can lead to biased conclusions and low statistical significance. This prob-53

lem is tackled by different approaches such as artificial neural networks [31], probabilistic54

modeling [32, 33] and compressive sensing [34, 35]. In some cases, there may be a lack of55

available information, or the data at hand might not be sufficiently precise. In such cases,56

it is beneficial to consider the parameters of a PSD function as intervals, resulting in an57

imprecise load that can be used to determine bounds for the failure probability [36]. An58

approach for bounding limited data of estimated PSD functions was recently presented by59

some of the authors of this work [37]. An interval-values PSD function was proposed in [38],60

which is determined by a large set of accelerograms, leading to an imprecise PSD function.61

Another approach proposed by some of the authors of this work is the so-called re-62

laxed PSD function [39]. It serves as a tool for probabilistic uncertainty quantification of63

an ensemble of similar PSD functions. However, a significant drawback of this method is64

the lack of consideration for correlations between frequencies or the modeling of depen-65

dencies. In this work, this limitation is addressed by incorporating different methods for66

dependency modeling. In particular, a novel approach is presented that takes into account67

correlations between neighboring frequencies which results in accurately modeling the de-68

pendencies within the ensemble of PSD functions. Further, this strategy can be utilized to69

sample realistic PSD functions from the relaxed PSD function. This enhancement is crucial70

for a more comprehensive and realistic assessment of uncertainties in the underlying data71

and the determination of structural reliability.72

This work is organized as follows: Section 2 introduces some basic concepts required73

for this work. In Section 3 different dependency modeling and sampling techniques for the74

relaxed PSD function are presented. Based on this methodology, numerical examples are75

carried out in Section 4. Some final remarks are given in Section 5.76

2. Preliminaries77

Some basic concepts and theoretical background required for this work is provided in78

this section. This includes the estimation of PSD functions, the derivation of the relaxed79

PSD function, the generation of stochastic processes and the failure probability estimation.80
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2.1. Power spectral density estimation81

The Wiener-Khintchine theorem states that for a wide-sense stationary random process,82

the PSD function SX(ω) of that process is the Fourier transform of its autocorrelation83

function RX(τ). Mathematically, it can be expressed as follows84

SX(ω) =

∫ ∞

−∞
RX(τ)e

−iωτdτ,

RX(τ) =
1

2π

∫ ∞

−∞
SX(ω)e

iωτdω,

(1)

where ω is the frequency, τ is the time lag and i =
√
−1 is the complex number. While85

the Wiener-Khintchine theorem provides a theoretical framework for calculating the PSD86

function from the autocorrelation function, practical applications often require estimating87

the PSD function from finite data samples. Many of these estimators rely on the discrete88

Fourier transform, such as the periodogram [3, 9]89

ŜX(ωk) = lim
T→∞

∆t2

T

∣∣∣∣∣
N−1∑
n=0

xne
−2πikn/N

∣∣∣∣∣
2

, (2)

where ωk = 2πk
T

is the discrete frequency with integer frequency k, T is the total length of90

the record xn, ∆t is the time discretization, N is the total number of data points and n is91

the index in the record. Other methods constitute estimates in an averaged sense only, see92

for instance Bartlett’s method [40, 41] or Welch’s method [42], which is utilized in this work93

due to it’s flexibility in segmenting the underlying signal.94

In Welch’s method, the signal xn undergoes division into K segments, denoted as x
(1)
n =95

x(n∗), x
(2)
n = x(n∗ + D), . . ., x

(K)
n = x(n∗ + (K − 1)D), where n∗ = 0, 1, . . . , L − 1. Here,96

L signifies the length of each individual segment, and D is a parameter determining the97

spacing between the starting points of the segments. Notably, D governs the extent of98

overlap between consecutive segments; for instance, D = L/2 corresponds to a 50% overlap.99

Each segment is multiplied by a window function W (n∗). For tailoring the PSD function100

estimation to specific requirements, the selection of the window function is crucial. Two101

suggested window functions in [42] are102

W1(j) = 1−

(
j − L−1

2
L+1
2

)2

(3)
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and103

W2(j) = 1−

∣∣∣∣∣j − L−1
2

L+1
2

∣∣∣∣∣ , (4)

where |·| denotes the absolute value and j = 0, 1, . . . , L−1. Both window functions prioritize104

weighting values in the center of the segment more heavily than the outer values, resulting in105

a further smoothing effect during the estimation process. Utilizing these window functions106

the calculations take the form107

ŜWX (ωm) =
1

K

K∑
k=1

1

L

∣∣∣∣∣
L−1∑
n∗=0

xk(n
∗)W (n∗)e

−2πimn∗
L

∣∣∣∣∣
2

, (5)

with ωm = 2πm
T

, equivalently to ωk in Eq. 2.108

2.2. Relaxed PSD function109

The relaxed PSD function, developed by some of the authors of this work, is a proba-110

bilistic PSD function load model which aims to quantify uncertainties within data in the111

frequency domain [39]. The model utilizes an ensemble of NE estimated PSD functions S(i),112

with i = 1, 2, . . . , NE, which exhibit similarities in frequency domain, such as peak frequency113

or general shape. Based on this data, a probabilistic representation of this data set is de-114

rived, i.e. the data set is represented by a probability density function for each discrete115

frequency to capture the variation in the spectral density value.116

For the generation of the relaxed PSD function it is required to compute the mean µωn117

and standard deviation σωn for each discrete frequency ωn, such that118

µωn =
1

NE

NE∑
i=1

S(i)(ωn) (6)

and119

σωn =

√√√√ 1

NE

NE∑
i=1

(S(i)(ωn)− µωn)
2
, (7)

with ωn = n∆ω and n = 1, 2, . . . , Nω, where Nω the number of discrete frequency points.120

By analyzing the statistical information obtained from the ensemble, it becomes possible to121

generate a probability distribution function for each frequency. In this work, a truncated122
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normal distribution is employed, with truncation bounds a = 0 and b = ∞ to ensure, that123

negative values are excluded due to the non-negative nature of PSD functions. For a detailed124

description of the relaxed PSD function refer to [39].125

2.3. Stochastic process generation126

In stochastic dynamics the generation of stochastic processes from a specified PSD func-127

tion is fundamental for understanding and simulating the inherent randomness in dynamic128

systems and offering insights into their behavior and performance. The spectral repre-129

sentation method (SRM) is a valuable technique, particularly in the context of stochastic130

processes [11]. This method allows for the generation of stochastic processes based on a131

PSD function S(ω). The process is mathematically represented by132

x(t) =
√
2
N−1∑
n=0

(2S(ωn)∆ω)1/2 cos(ωnt+ ϕn), (8)

where ωn is the discrete frequency, ∆ω = ωu/N represents frequency discretization, ωu133

is the upper cut-off frequency, n = 0, 1, . . . , N − 1 denotes the frequency steps, N is the134

total number of frequency points, t is the time vector and ϕn ∼ U(0, 2π) denote uniformly135

distributed random variables in the interval [0, 2π].136

2.4. Failure probability estimation137

Stochastic dynamics plays a crucial role in modeling complex systems that are subject138

to uncertain and random influences. The structural behavior of many systems is determined139

by the inherent random phenomena. Estimating the failure probability of such systems is of140

paramount importance to ensure their reliability and optimal design. The failure probability141

indicates the likelihood that a system will exceed certain critical thresholds, which leads to142

an undesirable outcome, for instance that the structural reliability can not be guaranteed143

anymore. Accurate estimation of this probability is essential for risk assessment.144

However, conventional deterministic methods are often unable to capture the full range of145

uncertainties present in real systems. To address these challenges, sophisticated techniques146

have been developed in the field of stochastic dynamics. By taking into account the inherent147
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randomness and uncertainties, these methods provide a quantitative assessment of the failure148

probability and a deeper insight into the reliability of the system.149

To describe the failure of a system and the corresponding failure probability (see for150

instance [3]), a classical failure criterion is the first-passage probability. This describes151

the probability that the system under investigation exceeds a pre-defined threshold in the152

quantity of interest, e.g. the displacement of a specific storey of a building or its inter-storey153

drift. This problem can be described by154

Fs = Pr{y(t) ∈ Ωs, t ∈ (0, T ]}, (9)

where y(t) is assumed to be the response of a system, Ωs is the safe domain, i.e. the range155

of responses where the system is safe, t is the time variable and T as the total duration of156

the investigated time frame. If the response exceeds the safe domain, the system is assumed157

to fail.158

The estimation of the failure probability is an essential part in stochastic dynamics. It159

leads to results to conclude about the safety of a building or structure and determines the160

safety margins. In the case of first-passage problems the system responses y(t) of a stochastic161

input x(t) are investigated whether they exceed the pre-defined threshold. Therefore, the162

so-called performance function g(x) is determined, which is often referred to as limit state163

function. If g(x) < 0, the system is assumed to fail, while g(x) ≥ 0 determines a safe event.164

If precise probabilistic is considered, the failure probability pf can be determined by165

pf =

∫
X
I(x)f(x)dx. (10)

The failure probability is mainly governed by the probability density function (PDF) f(x)166

of the random variables and the indicator function I(x), which is assigned the value 1 if the167

system is assumed to fail and 0 if not, namely,168

I(x) =

1, g(x) ≤ 0,

0, otherwise.

(11)

The MC method stands out as one of the most widely recognized stochastic simulation169

techniques, see [24] for an overview. MC is known to be a robust sampling procedure for170
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the failure probability by applying the following expression as171

pMC
f =

1

n

n∑
i=1

I
(
x(i)
)
. (12)

However, in particular for the efficient determination of small failure probabilities MC has172

its limitations. In this case, MC is impractical because an prohibitively high number of173

samples NMC ≈ 1
pf

may be required to determine the failure probability. For this purpose,174

advanced sampling techniques such as SuS [26] were developed to overcome this issue.175

3. Dependency modeling and sampling in relaxed PSD functions176

In its current form, the relaxed PSD function does not take dependencies or correla-177

tions into account, which is a major drawback for accurately modeling of loads subject to178

systems where interrelationships among variables play a crucial role in understanding the179

overall behavior. Addressing this limitation would enhance the model’s ability to capture180

nuanced interactions and improve its applicability to more realistic scenarios. Thus, various181

approaches to account for dependencies are considered here, with the proposed method be-182

ing universally applicable to diverse forms of PSD functions, including seismic spectra, wind183

spectra, and wave spectra. In the following, a randomly generated set of earthquake data is184

utilized for illustration purposes.185

Sampling without accounting for correlations or modeled dependencies leads to a high186

variability in samples, as illustrated in Fig. 1. It becomes imperative to consider correlations187

and model dependencies accurately, as this significantly impacts the reliability and precision188

of the sampled data. The incorporation of correlations ensures a more realistic representation189

of the underlying characteristics. This consideration becomes particularly crucial in scenarios190

where the interactions and dependencies between frequencies contribute significantly to the191

load’s behavior.192

3.1. One random variable193

A simple form of a sampling procedure under dependency modeling is the utilization of194

only one random variable in the sampling process. In this case X is a random variable with a195
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Figure 1: Generated samples without dependency modeling or consideration of correlations.
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Figure 2: Generated sample PSD functions for the one RV model.

cumulative distribution function (CDF) F (x) corresponding to the PDF. The inverse CDF,196

F−1(u), can be computed, where u ∼ U(0, 1) is a uniformly distributed random variable on197

the interval [0, 1]. A random sample of u is generated and X = F−1(u) is computed. This198

process ensures that X will have the desired distribution according to the given PDF. If a199

random number is generated and sampled from each inverse CDF of the individual spectral200

densities in the relaxed PSD function, “slices” of the PSD function are sampled, which have201

the same probability density when all PDFs are normalized. Although this procedure does202

not consider the correlations between frequencies, it is a simple method to effectively model203

dependencies. The generated samples are depicted in Fig. 2.204
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An advantage of this method is obviously the utilization of only NZ = 1 random variable205

for each PSD function sample. In addition, very smooth realizations can be obtained.206

However, the smoothness of the samples depends highly on the shape of the relaxed PSD207

function itself, as other data sets can result in relaxed PSD functions which exhibit a higher208

variation. In addition, correlations within the data set, if existing, are not considered and the209

approach may lack flexibility and coverage of the full probability space. For the remainder210

of this work, the model is referred to as one random variable (RV) model.211

3.2. Multivariate Gaussian distribution212

Another approach is the modeling of a multivariate Gaussian distribution based on the213

marginal PDFs of the relaxed PSD function under consideration of correlations. The mul-214

tivariate Gaussian distribution for a vector of random variables X = [X1, X2, ..., Xp] with215

mean vector µX = [µ1, µ2, ..., µp] and covariance matrix ΣX is given by216

f(x) =
1√

(2π)p det(ΣX)
exp

(
−1

2
(x− µX)TΣ−1

X (x− µX)

)
, (13)

with x as vector of random variables and p as the dimensionality of the distribution. This217

equation describes the joint PDF of observing the vector of random variables x in a multi-218

variate Gaussian distribution. The mean vector µX represents the center of the distribution,219

and the covariance matrix ΣX captures the relationships and variances between the different220

variables.221

To sample from this multivariate Gaussian distribution the Cholesky decomposition can222

be used to transform independent standard Gaussian random variables into correlated Gaus-223

sian variables. This technique involves decomposing the covariance matrix ΣX into the224

product of a lower triangular matrix L and its transpose LT , such that ΣX = LLT . The225

sampled multivariate Gaussian random variables x can be obtained by generating a vector226

of p independent standard Gaussian random variables, denoted as z = [z1, z2, ..., zp]. Next,227

the standard Gaussian random variables are transformed using the Cholesky decomposition:228

x = µ+Lz. This transformation ensures that x follows a multivariate Gaussian distribution229

with mean vector µX and covariance matrix ΣX .230
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Figure 3: Generated sample PSD functions for the MVG model.

The Cholesky decomposition not only simplifies the sampling process but also guarantees231

positive definiteness, ensuring the validity of the resulting covariance matrix. The correlation232

is comprehensively addressed through the Cholesky decomposition of the covariance matrix.233

This approach provides an efficient and numerically stable method for generating samples. A234

number of NZ = p random variables is required. An example of samples using this approach235

is given in Fig. 3. However, it should be noted that for the use of multivariate Gaussian236

distributions, the data must exhibit a certain correlation, which may not be guaranteed237

when using PSD function estimators that lead to poor quality results. In the following, the238

model is referred to as multivariate (MVG) model.239

3.3. Proposed sampling procedure240

In the following, a novel approach for sampling PSD functions considering correlations241

is presented, which is tailored specifically for the use in the relaxed PSD function. Through242

the uncertainty modeling of the relaxed PSD function using observed data, the mean µS(ω),243

the variance σ2
S(ω) and the covariance ςS(ω, ω +∆ω) can be obtained244 

µS(ω) =E[S(ω)],

σ2
S(ω) =E[S2(ω)]− E2[S(ω)],

ςS(ω, ω +∆ω) =E[S(ω)S(ω +∆ω)]− E[S(ω)] E[S(ω +∆ω)],

(14)
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where E[·] is the expectation operator. Those statistical quantities are deterministic func-245

tions with respect to ω given by the relaxed PSD function via observed data determined at246

discrete points ωi, for i = 1, 2, . . . , Nω. Here and in the following S(ωi)=̂ Si, µS(ωi)=̂ µi,247

σS(ωi)=̂ σi and ςS(ωi, ωi+1)=̂ ςi,i+1 for simplicity.248

The approach is able to model dependencies between neighboring frequencies only. By249

doing so, the sampling procedure is improved. The proposed PSD function sampling method250

belongs to the category of Markov sampling, where the obtained PSD function can be seen251

as a sample path of a non-stationary Ornstein-Uhlenbeck process with respect to frequency.252

The first PSD function value S1 ∼ N (µ1, σ
2
1) is sampled in accordance with the respective253

determined PDF of the relaxed PSD function. The next PSD function value S2 can be254

obtained by adding S1 and a specified term ∆S1 which accounts for the correlation between255

S1 and S2. This procedure can be continued for S3, S4, . . ., SNω , until the entire PSD256

function is sampled.257

In general, the sampling procedure reads258

Sj+1 = Sj +∆Sj, (15)

where the term ∆Sj is described by259

∆Sj = −kjSj + λjΦj + µj+1 − (1− kj)µj, (16)

with Φj ∼ N (0, 1) for j = 1, . . . , Nω − 1. For Eq. 15 and 16, the determination of the newly260

introduced parameters kj and λj is required. Therefore, the following conditions for the261

variance262

Var(Sj+1) = σ2
j+1 = (1− kj)

2Var(Sj)︸ ︷︷ ︸
=σ2

j

+λ2
j Var(Φ)︸ ︷︷ ︸

=1

= (1− kj)
2σ2

j + λ2
j

(17)
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Figure 4: Generated sample PSD functions for the proposed sampling approach.

and for the cross-correlation between neighboring frequencies263

E[SjSj+1] = Cov(Sj, Sj+1) + E[Sj] E[Sj+1]

= ςj,j+1 + µjµj+1

= (1− kj) E[S
2
j ]︸ ︷︷ ︸

=µ2j+σ
2
j

+λj E[SjΦ]︸ ︷︷ ︸
=0

+(µj+1 − (1− kj)µj) E[Sj]︸ ︷︷ ︸
=µj

= (1− kj)(µ
2
j + σ2

j ) + µjµj+1 − (1− kj)µ
2
j

= µjµj+1 + (1− kj)σ
2
j

(18)

are introduced. Reformulation of Eqs. 17 and 18 will yield a system of linear equations with264

two unknowns, which are the paramter λj and kj265 
kj = 1− ςj,j+1

σ2
j

,

λj =

√
σ2
j+1 −

ςj,j+1

σ2
j

,
for j = 1, . . . , Nω − 1. (19)

The system of linear equations can be solved to obtain the values of λj and kj and the266

subsequent PSD function value Sj+1 can be evaluated by Eq. 15. This procedure has to be267

repeated until SNω has been reached and a PSD function is being sampled. An example of268

sampled PSD functions is given in Fig. 4.269

The sampled PSD functions are sufficiently smooth and they do not show irregular jumps270

between frequencies. In addition, a strong relationship between neighboring frequencies is271
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established, which includes the mean µS(ω), the variance σ
2
S(ω) and the covariance ςS(ω, ω+272

∆ω) of the random variables of the respective spectral densities, resulting in a realistic273

representation of the data set. This procedure requires NZ = Nω independent random274

variables, i.e. the randomly generated spectral density S1 according to the respective PDF275

and a number of Nω − 1 random variables Φj.276

4. Numerical examples277

In the forthcoming section, the examination of numerical examples, including a linear278

oscillator and a nonlinear shear-frame structure, will be carried out to demonstrate the279

applicability of the dependency models described in Section 3. In addition, simulations are280

performed for the mean of the ensemble, an uncorrelated relaxed PSD function model and281

the individual estimated PSD functions of the ensemble, which are applied to the system282

under investigation in a MC simulation in order to obtain a benchmark result.283

The ensemble considered in this work is an artificially generated ensemble. To emu-284

late this ensemble, the Clough-Penzien PSD function model has been adopted to generate285

artificial stochastic processes by SRM (Eq. 8). The Clough-Penzien PSD function reads286

SCP(ω, S0, ωf, ζf, ωg, ζg) = S0 ·
ω4

(ω2
f − ω2)2 + 4ζ2f ω

2
f ω

2
·

ω4
g + 4ζ2gω

2
gω

2

(ω2
g − ω2)2 + 4ζ2gω

2
gω

2
, (20)

where the parameters S0 = 0.01 m2/s3 , ωf = 0.8π rad/s, ζf = 0.6, ωg = 8π rad/s and ζg =287

0.6, adopted from [43] and characterizing stiff soil conditions, has been utilized. The upper288

cut-off frequency is set to ωu = 150 rad/s. Based on this PSD function description, NE = 30289

randomly generated stochastic processes with a time duration of T = 10 s and a time290

discretization ∆t = 0.0209 s were generated by SRM (Eq. 8) and transformed back into the291

frequency domain using Welch’s method (Eq. 5). The resulting ensemble of PSD functions292

exhibits some fluctuation due to the utilization of random variables in SRM, emulating the293

randomness in real data. The ensemble is given in Fig. 5, while the corresponding generated294

relaxed PSD function is given in Fig. 6.295
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Figure 5: Ensemble of PSD functions utilized in this work.

Figure 6: Relaxed PSD function generated from the ensemble of individual PSD functions.

4.1. Single degree of freedom (SDOF) system296

A fully linear system without damping is considered for a proof-of-concept simulation.297

The equation of motion is298

mẍ(t) + kx(t) = ag(t), (21)

with mass m = 5 kg, stiffness k = 1500 N/m and ag(t) as the stochastic ground motion299

acceleration of the system. The system is schematically depicted in Fig. 7. The failure300

probability is estimated through MC simulation and SuS, where exceeding the critical system301

displacement of bSDOF
crit = 0.1 m is considered indicative of a system failure. For the MC302

simulation, 106 samples are used, while 104 samples are employed for SuS. The ground303
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Figure 7: Schematic representation of the SDOF system.

Table 1: Failure probabilities of the SDOF system for the different dependency models.

Method Benchmark Mean Uncorrelated One RV MVG Proposed

MC 0.002746 0.000594 0.001616 0.003573 0.002593 0.002763

SuS — 0.000539 0.001425 0.003584 0.002699 0.002662

motions ag(t) are generated by SRM (Eq. 8) after sampling PSD functions utilizing the304

models described in Section 3.305

The estimated failure probabilities are given in Table 1. It can be clearly seen that306

both the mean and the uncorrelated relaxed PSD function model underestimate the failure307

probability severely. In case of the mean even by an order of magnitude. The mean value308

model lacks the ability to produce PSD functions with high spectral densities, whether309

considered for the entire PSD function or for some frequencies. The uncorrelated model is310

able to sample such high spectral densities. However, since no correlations are taken into311

account, these are often equalised by sampling low spectral densities, so that in the end PSD312

functions are sampled that are similar in characteristics to the mean.313

On the other hand, the models that take correlations or dependencies into account are314

significantly closer to the benchmark results. Merely the one RV model is too conservative315

and slightly overestimates the failure probability. This is due to the fact that using only one316

random variable may lead to often too PSD functions being sampled with high total energy,317

which are more likely to lead to system failure. Furthermore, since no correlations are taken318

into account in this model, but the dependencies are only modeled via one random variable,319

the model lacks a certain flexibility. Both, the MVG model and the proposed approach show320

17



a failure probability that corresponds very well with the benchmark result. As the proposed321

approach only considers the correlations between neighboring frequencies, its results are only322

a subset of the multivariate Gaussian variables. Nevertheless, the numerical results show323

that the proposed method achieves a considerable degree of accuracy. From this point of324

view, the proposed approach has the advantage of being sufficiently rational and efficient.325

4.2. Nine storey shear-frame structure with nonlinear restoring force326

For a more realistic case, a nonlinear nine storey shear-frame structure with Nf = 9327

degrees of freedom is considered in this section. The Bouc-Wen model [44, 45, 46] is adopted328

to represent the nonlinear behaviour of the structure. The governing equation of motion is329

Mẍ(t) +Cẋ(t) + αKx(t) + (1− α)Hz(t) = −MIag(t), (22)

where M ∈ RNf×Nf is the mass matrix, C ∈ RNf×Nf is the damping matrix, K ∈ RNf×Nf is330

the stiffness matrix, H ∈ RNf×Nf is the hysteretic matrix, I ∈ RNf×Nf is the identity matrix,331

and ag(t) is a stochastic ground motion acceleration. The quantities ẍ, ẋ, x ∈ R1×Nf332

describe the vectors of acceleration, velocity and displacement for each storey, respectively,333

z ∈ R1×Nf is a pseudo-displacement, see for instance [47], and α is the ratio between linear334

and nonlinear system behavior. The specific values for mass and stiffness for each storey are335

given in Table 2 and are adopted from [12] with a minor modification. Classical Rayleigh336

damping is assumed with C = a1M+a2K, where a1 and a2 are computed from the first two337

eigenfrequencies ω
(1)
0 and ω

(2)
0 with damping ratio ζ = 5%, i.e. a1 = 2ζω

(1)
0 ω

(2)
0 /(ω

(1)
0 + ω

(2)
0 )338

and a2 = 2ζ/(ω
(1)
0 + ω

(2)
0 ). The utilized Bouc-Wen model parameters are α = 0.01, A = 1,339

β = 1.4, γ = 0.2, n = 1, δv = 0.002, δη = 0.001, ζs = 0.95, q = 0.25, p = 2, Ψ = 0.2,340

δψ = 0.005 and λ = 0.1 and are adopted from [47], to which reference is also made for an341

explanation of the parameters. The stochastic ground motions ag(t) are generated via SRM342

(Eq. 8) after sampling PSD functions via the described correlation models in Section 3.343

An inter-storey drift between the first and second storey of more than bBW
crit = 0.1 m is344

considered as system failure. An example of a sampled PSD function with the proposed345

method, a generated stochastic process and the resulting nonlinear system behavior are346
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Table 2: Mass and lateral stiffness of the shear-frame structure model for the individual storeys.

Storey no. 1 2 3 4 5 6 7 8 9

Mass (×106 kg) 3.5 3.3 3.0 3.0 3.0 3.0 3.0 2.7 2.7

Stiffness (×108 N/m) 1.47 1.63 1.62 1.60 1.60 1.92 1.85 0.96 0.89

Figure 8: Schematic representation of the nine storey shear-frame structure.

depicted in Fig. 9. Again, the simulations are carried out by MC simulation with 106 and347

SuS with 104 samples.348

The estimated failure probabilities are provided in Table 3. This setup shows a similar349

trend as the SDOF model, which also confirms the previous results. While the mean model350

underestimate the failure probability by an order of magnitude, the uncorrelated model351

performs better as in the SDOF model simulation but is still not very accurate. The one352

RV model is again overestimating the failure probability, which leads to the conclusion353

that this model is generally too conservative. The results of the MVG model and the354

proposed correlation model show a clear consistency with the benchmark result and have a355

remarkable accuracy, which confirms that the consideration of correlations and the modeling356

of dependencies is crucial in failure probability estimation.357
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Figure 9: A PSD function sampled by the proposed method (a); a sample of a stationary ground motion

acceleration generated with SRM (Eq. 8) (b); and the resulting inter-storey drift vs. restoring force of the

shear-frame structure (c).

4.3. Limitations358

A limitation of the dependency models is that they are conditional on a certain level of359

correlation within the data set for accurate failure probability estimation. When there is no360

correlation or the correlation is too low, the simulation results align with the mean value or361

an uncorrelated model, leading to results of poor quality. To illustrate this issue, the SDOF362

model with MC simulation is run again with a data set estimated using the periodogram363

(Eq. 2), which is generally considered a poor estimator. The results are shown in Table 4.364

In instances where correlations are low, PSD functions with high variation are consistently365

sampled, regardless of the approach employed, as depicted in Fig. 10. Consequently, all366

methods yield similar results that align with the benchmark. However, as the benchmark367

itself has a low correlation, the quality of these results is not reliable.368
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Table 3: Failure probabilities of the shear-frame structure model for the different dependency models.

Method Benchmark Mean Uncorrelated One RV MVG Proposed

MC 0.014642 0.005426 0.012289 0.01701 0.014473 0.015085

SuS — 0.00591 0.01242 0.01706 0.01481 0.01472

Table 4: Failure probabilities of the SDOF system for the different dependency models by utilising a data

set with low correlation.

Method Benchmark Mean Uncorrelated One RV MVG Proposed

MC 0.043357 0.043022 0.043595 0.045229 0.043279 0.042622

5. Conclusions369

In this work, the dependency modeling and sampling between frequencies in the relaxed370

PSD function was investigated and a novel approach tailored for this purpose was proposed.371

The analysis indicates that estimated failure probabilities, when considering correlations and372

dependencies, are much more accurate and can differ by an order of magnitude compared373

to uncorrelated models. This underscores the importance of incorporating correlations and374

model dependencies for a more accurate assessment of failure probabilities. Simulations375

of individual PSD functions support the realism of models that account for dependencies,376

showing comparable failure probabilities to correlation models. In contrast, uncorrelated377

models, providing only averaged results, tend to be overly optimistic and systematically un-378

derestimate failure probabilities. The limitations of uncorrelated models become evident in379

their failure to systematically address the complexity and uncertainty inherent in the data,380

prompting questions about their reliability in predicting failure probabilities. The investi-381

gation highlights a potential over-conservatism in the one RV model. Conversely, both the382

MVG model and the proposed approach are effective due to the inclusion of correlations,383

whereby these approaches emerging as favored due to their highest consistency with the384

benchmark simulations. Since the MVG model and the proposed approach are able to esti-385

mate a more nuanced failure probability, this has a direct impact on real-world phenomena386
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Figure 10: Sampled PSD functions from the relaxed PSD of a data set with low correlation.

and decision making in dynamic systems. The more accurate failure probability is higher387

than the failure probability of the mean or uncorrelated model, which directly impacts de-388

cisions on the reliability of the system and building, for instance decisions on the material389

used to make it resistant to certain loads. With the improved estimation of the failure390

probability, buildings and structures can be better designed in accordance with the simula-391

tion results based on the dependency models. In conclusion, this research underscores the392

necessity of considering correlations when modeling relaxed PSD functions, as uncorrelated393

models demonstrate inadequacies in capturing the nuanced aspects of failure probabilities.394
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