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Abstract: The non-stationary load models based on the evolutionary power spectral density (EPSD) 9 

may lead to ambiguous structural responses. Quasi-stationary harmonizable processes with non-10 

negative Wigner-Ville spectra are suitable for modeling non-stationary loads and analyzing their 11 

induced structural responses. In this study, random environmental loads are modeled as quasi-12 

stationary harmonizable processes. The Loève spectrum of a harmonizable load process contains 13 

several random physical parameters. An explicit approach to calculate the probability distributions for 14 

the dynamic and extreme responses of a linear elastic structure subjected to a quasi-stationary 15 

harmonizable load is proposed. Conditioned on the specific values of the load spectral parameters, the 16 

harmonizable load process is assumed to be Gaussian. The conditional joint probability density 17 

function (PDF) of structural dynamic responses at any finite time instants and the conditional 18 

cumulative distribution function (CDF) of the structural extreme response are provided. By 19 

multiplying these two conditional probability distributions with the joint PDF of the load spectral 20 

parameters, and then integrating these two products over the parameter sample space, the joint PDF of 21 

structural dynamic responses at any finite time instants and the CDF of the structural extreme response 22 

can be calculated. The efficacy of the proposed approach is numerically validated using two linear 23 

elastic systems, which are subjected to non-stationary and non-Gaussian wind and seismic loads, 24 

respectively. The merit of the harmonizable load process model is highlighted through a comparative 25 
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analysis with the EPSD load model. 26 
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1. Introduction 29 

Random environmental loads, including extreme wind events and earthquake ground motion, 30 

exhibit obvious time-varying properties and thus are usually modeled as non-stationary processes. Due 31 

to its ability to physically interpret the local power-frequency distribution at each time instant, the 32 

evolutionary power spectral density (EPSD) [1, 2] has wide application in the characterization and 33 

simulation of non-stationary earthquake ground motions [3-5] and non-stationary wind speeds [6-9], 34 

and the prediction of structural responses [7, 10-14]. Though popular, EPSD has one essential 35 

deficiency. For a multi-variate non-stationary load process with time-varying coherences, calculating 36 

its correlation functions and the correlation functions of its induced structural responses involves a 37 

step of decomposing the load EPSD matrix. When different decomposition methods, e.g., Cholesky 38 

decomposition [3], proper orthogonal decomposition [15], or square root decomposition (SRD) [16], 39 

are employed, it has been theoretically proven that the obtained load and response correlation functions 40 

may be not unique [16]. 41 

The harmonizable process [17, 18] considering the spectral correlation represents a natural 42 

expansion of the wide-sense stationary process. Its Wigner-Ville spectrum (WVS) characterizes the 43 

time-frequency properties and the dual-frequency Loève spectrum describes the spectral correlation. 44 

For a harmonizable process, its WVS, Loève spectrum, and correlation function can be uniquely 45 

converted to each other by one-dimensional (1D) or two-dimensional (2D) Fourier transform [19, 20]. 46 

Thus, the harmonizable process does not suffer from the problem of ambiguous correlation functions, 47 

which is encountered by the EPSD model. Similar to the semi-stationary processes characterized by 48 

slowly-varying ESPDs [1], the non-negative slowly-varying WVSes of the quasi-stationary 49 

harmonizable processes [21] are suitable for characterizing the time-frequency properties of non-50 

stationary loads. A multi-taper S-transform method for the WVS and Loève spectrum estimation has 51 

been proposed to estimate the WVSes and Loève spectra of environmental loads based on field-52 
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measured records [22]. Applying a quasi-stationary harmonizable load process to a linear elastic 53 

structure, it is convenient to calculate the Loève spectrum of the structural response directly by 54 

multiplying the load Loève spectrum with the structural frequency response function [23]. Thus, the 55 

quasi-stationary harmonizable processes are suitable for characterizing non-stationary loads and 56 

analyzing their induced structural responses. Nonetheless, current research regarding the modeling of 57 

random loads and structural response analysis based on the quasi-stationary harmonizable process 58 

remains relatively limited. In [24, 25], the earthquake ground motion acceleration is modeled as a 59 

sigma oscillatory process characterized by its EPSD. The correlation function of the earthquake ground 60 

motion, which is calculated from its EPSD, is converted to a Loève spectrum to calculate the structural 61 

response Loève spectrum and the response correlation function. Although the Loève spectrum is 62 

employed, the structural response analysis under the stochastic seismic load in [24, 25] still remains 63 

within the framework of EPSD and thus may suffer from the ambiguity of correlation functions. In 64 

[23], two approximate representations of harmonizable processes based on the discrete Fourier 65 

transform were proposed to model various non-Gaussian and non-stationary load processes. The joint 66 

probability density function (PDF) of the load Fourier coefficients, which can be directly estimated 67 

from field-measured load records, is suitable for characterizing the complete probabilistic information 68 

of the load processes. The two load representations can be employed to compute the joint PDF of 69 

responses at any finite time instants for linear elastic structures. In [26], one of the two load 70 

representations based on the discrete Fourier transform has been utilized to model the complete 71 

probabilistic information of a fluctuating wind speed process with field-measured wind speed time 72 

records. Notably, the joint PDF of a total of 1198 wind speed frequency components was successfully 73 

modeled by the D-vine copula distribution. Though versatile for modeling the complete probabilistic 74 

information of various random loads, the high dimension of the frequency components may render the 75 

evaluation of their joint PDF computationally expensive. The load modeling and response analysis 76 

within the framework of the harmonizable process is still an open challenge. 77 

Utilizing the load spectrum containing several random physical parameters proves to be a 78 

convenient and practical approach for describing the probabilistic information of environmental loads 79 

[27-29]. In this study, random environmental loads are modeled as quasi-stationary harmonizable 80 
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processes and the Loève spectrum of a harmonizable load process contains several random physical 81 

parameters. An explicit approach to calculate dynamic and extreme response probability distributions 82 

for a linear elastic structure subjected to a quasi-stationary harmonizable load process is proposed. 83 

First, conditioned on the specific values of the load spectral parameters, the harmonizable load process 84 

is assumed to be Gaussian. Under this condition, the load Loève spectrum is a deterministic spectrum 85 

function and structural response correlation functions can be readily calculated from the deterministic 86 

load Loève spectrum. Subsequently, the conditional joint PDF of structural dynamic responses at any 87 

finite time instants, and the conditional cumulative distribution function (CDF) of the structural 88 

extreme response, conditioned on the values of the load spectral parameters, can be expressed in terms 89 

of the response correlation functions. Finally, by multiplying the conditional joint PDF of dynamic 90 

responses and the conditional CDF of the extreme response with the joint PDF of the load spectral 91 

parameters, and then integrating these two products over the parameter sample space, the joint PDF of 92 

structural dynamic responses at any finite time instants and the CDF of the structural extreme response 93 

can be calculated.  94 

The remainder of this paper is organized as follows. First, the mathematical definition and 95 

properties of the quasi-stationary harmonizable processes, along with the physical interpretation of 96 

WVS, are briefly introduced. Subsequently, the proposed approach to calculate dynamic and extreme 97 

response probability distributions for linear elastic structures subjected to quasi-stationary 98 

harmonizable load processes is provided. Finally, the efficacy of the proposed approach is numerically 99 

validated using two multi-degree-of-freedom (MDOF) systems, which are subjected to non-stationary 100 

and non-Gaussian wind and seismic loads, respectively. Using the system subjected to a bivariate non-101 

stationary wind speed process with a time-varying coherence, the merit of the harmonizable load 102 

process model is highlighted through a comparative analysis with the EPSD load model. 103 

2. Quasi-stationary harmonizable load process 104 

In this section, the mathematical definition of the harmonizable process, along with its correlation 105 

function, WVS, and Loève spectrum, is briefly introduced. Subsequently, the quasi-stationarity of the 106 

harmonizable process and the physical interpretation of the WVS of the quasi-stationary harmonizable 107 
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process are provided. A comprehensive introduction to the harmonizable process, along with a 108 

theoretical comparative analysis against the semi-stationary process characterized by EPSD, can be 109 

found in [20]. 110 

A zero-mean, second-order, and real-valued multi-variate harmonizable process F(t) = [F1 (t), 111 

F2(t),…, FNF
(t)]T is defined as [18, 23] 112 

 i2( ) d ( ),ftt e f


 F Z   (1) 113 

where T is the transposition operator; Z(f) = [Z1(f), Z2(f),…, ZNF
(f)]T is a complex-valued zero-mean 114 

process satisfying 115 

 d ( ) d ( );f f  Z Z   (2) 116 

and * is the conjugate operator. 117 

The Loève spectrum of F(t) is defined as [17] 118 

 T
1 2 1 2 1 2( , ) E d ( )d ( ) d d ,f f f f f f   FS Z Z   (3) 119 

where E[] is the expectation operator. SF (f1 , f2 ) can be continuous functions or the generalized 120 

functions consisting of the Dirac delta function () [30]. It satisfies 121 

 1 2 2 1( , ) ( , ).f f f f F FS S   (4) 122 

SF(f1, f2) and the correlation RF(t1, t2) = E[F*(t1) FT(t2)] of F(t) constitutes a 2D Fourier transform 123 

pair, as illustrated by 124 

 2 2 1 1i2 ( )
1 2 1 2 1 2( , ) ( , )d df t f tt t e f f f f  

 
  F FR S   (5) 125 

and 126 

 1 1 2 2i2 ( )
1 2 1 2 1 2( , ) ( , )d d .f t f tf f e t t t t  

 
  F FS R   (6) 127 

Rotating the time coordinate in RF(t1, t2) and the frequency coordinate in SF(f1, f2) by 45°, 128 

respectively, that is t = 0.5(t1 + t2) and  = (t2 – t1), f = 0.5(f1 + f2) and  = (f2 – f1), R෩F(t, ) = 129 

RF(t – 0.5, t + 0.5) and S෨F(f, ) = SF(f – 0.5, f + 0.5) are obtained. R෩F(t, ) and S෨F(f, ) are 130 

equivalent to RF(t1, t2) and SF(f1, f2), respectively, and they can be interchangeably used. The WVS 131 

WF(t, f) of F(t) is defined as [31] 132 
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 i2( , ) ( , )d ,ft f e t   
 


 F FW R   (7) 133 

and can also be calculated from S෨F(f, ) 134 

 i2( , ) ( , )d .tt f e f  



 F FW S   (8) 135 

WF(t, f) represents the time-frequency property of F(t). Eqs. (5)-(8) indicate that RF(t1, t2), WF(t, 136 

f), and SF(f1, f2) are in one-to-one correspondence and can be converted to each other by a 1D or 2D 137 

Fourier transform [19, 20]. 138 

As illustrated in Eq. (1), the definition of the harmonizable process is in the form of the Fourier 139 

transform. Any process, that can be expressed in this form, belongs to the class of harmonizable 140 

processes. The commonly-used semi-stationary processes characterized by the EPSD [1] and the 141 

wavelet processes characterized by the wavelet spectrum [32, 33] can be expressed in the form of Eq. 142 

(1), and they both belong to the class of harmonizable processes.  143 

In this study, two assumptions are enforced to F(t). One is that F(t) is assumed to be quasi-144 

stationary, that is R෩F (t, ) is slowly-varying with respect to t [21, 22]. The specific mathematical 145 

definition of the quasi-stationarity of the harmonizable process was provided in [21]. The other one is 146 

that the auto-WVSes of F(t) are non-negative. The conditions for the positive WVSes of harmonizable 147 

processes has been investigated in [34]. 148 

The physical interpretation of the WVS of the quasi-stationary harmonizable process is provided 149 

here. Noting that R෩F(t, ) = RF(t – 0.5, t + 0.5) = E[F*(t – 0.5) FT(t + 0.5)], from Eq. (7), the 150 

WVS WF(t, f) of F(t) can be expressed as 151 

 i2 i2( , ) ( 0.5 , 0.5 )d E ( 0.5 ) ( 0.5 ) d .f ft f e t t e t t        
    

 
        F FW R F F   (9) 152 

Eq. (9) indicates that at each time instant t, WF(t, f) is the Fourier transform of the correlation function 153 

RF(t – 0.5, t + 0.5) of F(t) around t. Since the correlation function RF(t – 0.5, t + 0.5) of the quasi-154 

stationary F(t) is slowly-varying with respect to t, in the neighborhood of each time instant t, RF(t – 155 

0.5, t + 0.5) can be regarded as a stationary correlation function, and WF(t, f) is just the power 156 

spectral density of the stationary correlation function at each time instant t. When F(t) is a wide-sense 157 

stationary process, WF (t, f) degenerates to the stationary power spectral density of F(t). Besides, 158 

WF(t, f) satisfies the condition that 159 
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 Var[ ( )] ( , ) ( , )d ,t t t t f f



  F FF R W   (10) 160 

where Var[] is the variance operator. Thus, for a quasi-stationary F(t), WF(t, f) is a time-varying 161 

spectrum representing the energy distribution of F(t) over the time-frequency domain. The WVS of 162 

the quasi-stationary harmonizable process shares a similar physical interpretation with that of EPSD. 163 

3. Probability distributions of responses for linear elastic structures 164 

In this section, the calculation of the response correlation function, WVS, and Loѐve spectrum of 165 

an MDOF linear elastic structure subjected to a harmonizable load process is first introduced. 166 

Subsequently, the proposed methods to calculate the joint PDF of structural dynamic responses at 167 

multiple time instants and the CDF of the structural extreme response are presented in Sections 3.1 168 

and 3.2, respectively. 169 

The differential equation for a MDOF linear elastic structure on a time interval [0, +∞) is 170 

 ( ) ( ) ( ) ( , ),t t t t  MU CU KU F Θ    (11) 171 

where M, C, and K are the mass, damping and stiffness matrixes, respectively; U(t) is an NU -172 

dimensional process representing the structural displacement response; ሶ  and ሷ  are the first- and 173 

second-order derivative operators with respect to t, respectively; F(t, ) is an NU-dimensional quasi-174 

stationary harmonizable load process defined by Eq. (1); and  = [1, 2,…, N] is a stochastic 175 

vector representing a set of random physical parameters characterizing the randomness of the load 176 

Loève spectrum SF(f1, f2, ). In this study, it is assumed that U(t) satisfies the initial conditions U(0) 177 

= Uሶ (0) = 0. 178 

Given a realization  = [1, 2,…, N] of , the load Loève spectrum SF(f1, f2, ) on this 179 

condition becomes a deterministic spectrum function. The conditional probability distribution of the 180 

load F(t, ) on the condition of the deterministic SF(f1, f2, ) is assumed to be Gaussian. The rationale 181 

for the assumption that F(t, ) is Gaussian on the condition of a realization  of  is explained here. 182 

Simulated records from the commonly-used stochastic process simulation methods based on either the 183 

decomposition of the spectrum matrix [3, 35, 36] or the correlation function matrix [15] are Gaussian. 184 
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In addition, following the central limit theorem, a linear combination of a set of basis functions with 185 

independent stochastic coefficients is approximately a Gaussian process without requiring the same 186 

marginal probability distributions of the coefficients [37]. The conditional probability distribution of 187 

F(t, ) under this assumption is consistent with that of its realizations simulated using the commonly-188 

used simulation methods. Under this assumption, the response U(t) caused by F(t, ) is also Gaussian. 189 

The Loѐve spectrum SU(f1, f2, ) of U(t) caused by F(t, ) can be directly calculated from SF(f1, 190 

f2, ) 191 

 1 2 1 1 2 2( , , ) ( ) ( , , ) ( ),f f f f f f U FS θ H S θ H   (12) 192 

where H(f) is the frequency response function matrix of the linear elastic system in Eq. (11) 193 

 
12 2( ) 4 i2 .f f f 


     H M C K   (13) 194 

The correlation function RU
(p)(q)(t1, t2, ) can be calculated from SU(f1, f2, ) 195 

 

2 2 1 1

T
( )( ) 1 2

1 2
1 2

i2 ( )
1 2 1 2 1 2

d ( ) d ( )
( , , ) E

d d

( i2 ) (i2 ) ( , , )d d ,

p q
p q

p q

f t f tp q p q

t t
t t

t t

e f f f f f f 



  

 

 
  

 

   

U

U

U U
R θ

S θ

  (14) 196 

where p and q are non-negative integers. The WVS WU(t, f, ) of U(t) can be calculated as 197 

 i2( , , ) ( , , )d ,tt f e f  



 U UW θ S θ   (15) 198 

where S෨U(f, , ) = SU(f – 0.5, f + 0.5, ). 199 

3.1. Joint PDF of structural dynamic responses at multiple time instants 200 

Given finite time instants, t = [t1, t2,…, tNt
], at each time instant ti, i = 1, 2,…, Nt, a subset of 201 

the structural responses caused by F(t, ), Yi = [Y1, i(ti), Y2, i(ti),…, YMi, i(ti)]
T, is considered. The 202 

elements of Yi can be the structural displacement, velocity, or acceleration responses. The response 203 

Y = [Y1
T, Y2

T,…, YNt
T ]T under a deterministic  is jointly Gaussian. The conditional joint PDF of Y on 204 

the condition of  is 205 

 1
|

1
( | ) exp 0.5 ( ) ,

(2 ) ( )M
p

D
    Y Θ Y

Y

y θ y R θ y
θ

  (16) 206 
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where y = [y1
T, y2

T,…, yNt

T ]T; yi = [y1, i, y2, i,…, yMi, i
]T; RY() is the covariance matrix of Y, whose 207 

elements can be calculated using Eq. (14) with SF(f1, f2, ); DY() is the determinant of RY(); and 208 

M = ∑ Mi
Nt
i = 1 . 209 

The joint PDF of Y can be calculated by 210 

 1
|

1
( ) ( | ) ( )d exp 0.5 ( ) ( )d ,

(2 ) ( )M
p p p p

D
      

Θ Θ
Y Y Θ Θ Y ΘΩ Ω

Y

y y θ θ θ y R θ y θ θ
θ

  (17) 211 

where  is sample space of  and p() is the joint PDF of .  212 

According to Sklar's theorem [38], the joint CDF P() of  can be expressed as 213 

 1 1 2 2( ) ( ), ( ), , ( ) ,N NP C P P P     Θ ΘΘ Θθ    (18) 214 

where C(ϑ), ϑ = [ϑ1, ϑ2,…, ϑN], from [0, 1]N to [0, 1], is a copula function [38] and Pi(i) is the 215 

marginal CDF of i, i = 1, 2,…, N. Then, the joint PDF p() is expressed as 216 

 1 1 2 2
1

( ) ( ), ( ), , ( ) ( ),
N

N N i i
i

p c P P P p   


   
Θ

Θ ΘΘ Θθ    (19) 217 

where pi(i) = dPi(i) di⁄  is the marginal PDF of i and c(ϑ) = ∂C(ϑ) ∂ϑ⁄ . It is assumed that 218 

every CDF Pi(i) has its inverse function 219 

 1( ),i i iP    (20) 220 

where ϑi  [0, 1]. Then pY(y) in Eq. (17) can be calculated as 221 

 

   

 
   

| 1 2[0,1]

1
1 2[0,1]

( ) | ( ) , , , d

1
exp 0.5 ( ) , , , d ,

(2 ) ( )

N

N

N

NM

p p c

c
D

  

  


 



   





Θ Θ

Θ Θ

Y Y Θ Θ

Y Θ

Y

y y θ

y R θ y
θ





 

 


  (21) 222 

where (ϑ) represents the one-to-one mapping relationships formed by Eq. (20). The integrals in Eqs. 223 

(17) and (21) can be numerically computed using the Monte Carlo and quasi-Monte Carlo integrations 224 

[39], respectively. 225 
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3.2. CDF of the structural extreme response 226 

The Loève spectrum SF (f1 , f2 , ) of the quasi-stationary harmonizable load process F(t, ) 227 

defined by Eq. (1) is concentrated around the main diagonal line of f1 = f2 on the dual-frequency 228 

plane [22]. Thus, as illustrated in Eq. (12), the Loève spectrum SU(f1, f2, ) of U(t) caused by F(t, ) 229 

is also concentrated around the main diagonal line on the dual-frequency plane. The Loève spectra of 230 

wide-sense stationary processes are exactly lines along the main diagonal line. The similarity between 231 

the Loève spectra of the quasi-stationary U(t) and stationary processes indicates that the out-crossing 232 

rate approach [40] can be employed to calculate the extreme distribution of U(t), which involves 233 

replacing the time-invariant second-order statistical moments of stationary processes with the time-234 

varying ones of U(t). The time-varying moments of U(t) are also called nongeometric spectral 235 

characteristics [14, 41]. 236 

The extreme value Ye of Y(t), which can be a structural displacement, velocity, or acceleration 237 

response, over a time duration [0, T] is defined by 238 

 e
[0, ]

max ( ) ,
t T

Y Y t


      (22) 239 

where || is the absolute value operator. The conditional CDF of Ye given  can be approximated as 240 

[42] 241 

 ee

e

( , , )

| e( | ) ,YN y T

YP y e
 θ

Θ θ   (23) 242 

where 243 

 
e ee e0
( , , ) ( , , )d

T

Y YN y T y t t θ θ   (24) 244 

and ηYe
(ye, t, ) is expressed by the Vanmarcke approximation [40, 42] 245 

 e

e2
e 2 2

e

1 exp 0.5 ( , ) ( , )( , )1
( , , ) 1 ( , ) .

( , ) exp 0.5 ( , ) 1

Y YY
Y YY

Y Y

q t y tt
y t t

t y t

 
 

  

    
   

θ θθ
θ θ

θ θ


   (25) 246 

In Eq. (25), the exponent α of qY(t, )  is taken as α = 1 or 1.2 [40]. σY(t, )  is the time-varying 247 

standard deviation of Y(t) calculated from its Loève spectrum SY(f1, f2, ) 248 
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 2 1i2 ( )
1 2 1 2( , ) ( , , )d d .f f t

Y Yt e S f f f f
  

 
  θ θ   (26) 249 

σYሶ (t, ) is the time-varying standard deviation of the derivative Yሶ (t) of Y(t) and can be calculated by 250 

 2 1i2 ( )
1 2 1 2 1 2( , ) 2 ( , , )d d .f f t

YY
t e f f S f f f f 

  

 
  θ θ   (27) 251 

ρYYሶ (t, ), the correlation coefficient of Y(t) and Yሶ (t), is defined by 252 
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  (28) 253 

where rYYሶ (t, ) = E[Y*(t)Yሶ (t)] is the correlation function between Y(t) and Yሶ (t) and can be calculated 254 

as 255 

 2 1i2 ( )
2 1 2 1 2( , ) i2 ( , , )d d .f f t

YYY
r t e f S f f f f

  
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  θ θ   (29) 256 

qY(t, ) is the bandwidth factor of Y(t) and is calculated by 257 
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where 259 
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  (31) 260 

and rYY෨ሶ (t, ) = E[Y*(t)Y෨ሶ (t)]. Y෨ሶ (t) is the derivative of the auxiliary process Y෨(t) of Y(t). rYY෨ሶ (t, ) is 261 

calculated by 262 

 2 1i2 ( )
2 1 2 1 2( , ) 2 ( , , )d d .f f t

YYY
r t e f S f f f f

  

 
  θ θ   (32) 263 

The derivation of Eqs. (30)-(32), as well as that of Y෨(t) and Y෨ሶ (t), is provided in Appendix A.  264 

In [25], a calculation formula of rYY෨ሶ (t, ) , which is the same as that in Eq. (32), was given. 265 

However, the calculation formula of rYY෨ሶ (t, ) in [25] was still based on the condition that the target 266 

process is characterized by the EPSD. In this study, Eq. (32) is derived from a harmonizable process 267 

Y(t). Since the processes characterized by the EPSD belong to the class of harmonizable processes. It 268 

is reasonable that the calculation formula of rYY෨ሶ (t, ) in Eq. (32) is the same as that in [25]. 269 

The CDF of Ye is approximately calculated as 270 

 
e ee | e( ) ( | ) ( )d .Y YP y P y p 

Θ
Θ ΘΩ

θ θ θ   (33) 271 
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Analogy to Eq. (21), PYe
(ye) can be also calculated as 272 

    
e ee | e 1 2[0,1]
( ) | ( ) , , , d .

NY Y NP y P y c     Θ ΘΘ Θθ     (34) 273 

The integrals in Eqs. (33) and (34) can be numerically computed using the Monte Carlo and quasi-274 

Monte Carlo integrations [39], respectively. 275 

As shown in Eqs. (17), (25), (28) and (31), Rs(), σY(t, ), σYሶ (t, ), rYYሶ (t, ), and rYY෨ሶ (t, ) in 276 

the time domain are essential for calculating the probability distributions of the structural dynamic and 277 

extreme responses. Under the EPSD load model, it has been theoretically proven that these second-278 

order statistical moments may be ambiguous when the loads have time-varying coherences [16]. The 279 

ambiguity of the response correlation function under the EPSD load model is numerically verified in 280 

Section 4.1. Eqs. (12), (14), (26), (27), (29) and (32) indicate that when the load is modeled as the 281 

quasi-stationary harmonizable process, these second-order statistical moments of the structural 282 

responses in the time domain can be unambiguously and conveniently calculated using the load Loève 283 

spectrum. This is an important advantage of the harmonizable load process model over the EPSD load 284 

model. The Gaussian distribution in Eq. (16) and its associated extreme distribution from Eqs. (23)-285 

(25) can be also replaced by other appropriate ones according to various practical applications, which 286 

is beyond the scope of this study. 287 

4. Numerical validation 288 

In this section, the efficacy of the proposed approach is validated using two numerical cases. In 289 

the first one, a 2-DOF linear elastic structure subjected to a bivariate harmonizable wind speed process 290 

with a time-varying coherence is considered. In the second case, a 10-story shear-type linear elastic 291 

structure subjected to a harmonizable earthquake ground motion acceleration process is employed. 292 

Using the first case, the merit of the harmonizable load process model is highlighted through a 293 

comparative analysis with the EPSD load model. The records of all harmonizable load processes 294 

considered in this section can be simulated using the simulation method based on the correlation 295 

function matrix decomposition [15]. 296 
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4.1. Case 1 297 

In this subsection, a bivariate zero-mean harmonizable fluctuating wind speed process u(t) = 298 

[u1(t), u2(t)]T with a time period of 600 s is applied to a 2- DOF linear elastic structure, as shown in 299 

Fig. 1. U1(t)  and U2(t)  represent the displacement responses of the first and second coordinates, 300 

respectively, relative to the ground. In this structure, m = 3  106 kg, k = 5  106 N/m, and c = 4  301 

105 N⋅s/m. 302 

 303 
Fig. 1. A 2-DOF linear elastic structure 304 

The WVS matrix Wu (t, f, ),  = [Uഥ , Lu ], of the harmonizable wind speed process u(t) is 305 

expressed as 306 

 1 1 2

1 2 2
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 
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u

u

Θ Θ Θ
W Θ

Θ Θ Θ
  (35) 307 

In Eq. (35), Uഥ is the mean wind speed (m/s), Lu is the longitudinal turbulence integral scale (m), 308 

Wu1
(t, f, ) = Wu(t, f, Uഥ, Lu) is the auto-WVS of u1(t), Wu2

(t, f) = Wu(t, f, √2Uഥ, √2Lu) is the auto-309 

WVS of u2(t), and Wu(t, f, Uഥ, Lu) is a two-side modulated von Kármán spectrum 310 
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u   (36) 311 

where 312 

 5 2( , ) exp 2 10 ( 300) .A t f t        (37) 313 

The time-varying coherence ru(t, f) in Eq. (35) is expressed as 314 

   i ( ) 10 ( )( , ) 1 5 ( ) ,fd t fr t f f e   u   (38) 315 

where 316 
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 ( ) 10sin
300

t
d t

   
 

  (39) 317 

and 318 

 2 4( ) 0.1 10 .f f     (40) 319 

The Loѐve spectrum Su(f1, f2, Uഥ, Lu) of Wu(t, f, Uഥ, Lu) is 320 

  
 
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1 2 5/62
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 

u   (41) 321 

where f = 0.5(f1 + f2) and  = (f2 – f1). The correlation function Ru(t1, t2, Uഥ, Lu) of Wu(t, f, Uഥ, 322 

Lu) is 323 
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

u   (42) 324 

where t = 0.5(t1 + t2);  = (t2 – t1); Γ() is the Gamma function; and K1/3() is the modified Bessel 325 

function of the second kind [43]. 326 

In Wu(t, f, ), the mean wind speed Uഥ and the longitudinal turbulence integral scale Lu are 327 

two correlated random variables. The marginal distribution of Uഥ  is assumed to be a Weibull 328 

distribution  329 
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b b
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  (43) 330 

where a = 15 and b = 2.5. The marginal distribution of Lu is assumed to be a lognormal distribution 331 
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  (44) 332 

where μL = 4 and σL = 0.2. The probabilistic dependence between Uഥ and Lu is modeled using a 333 

Gaussian copula with a correlation coefficient of 0.7 [44]. 334 

    The along-wind dynamical force induced by u(t) is Fu(t) = [Fu1
(t), Fu2

(t)]T 335 

 
1 1 1

i2( ) ( , )d ( )ft
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and 337 
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    (46) 338 

where Zui
(f) is the frequency component of ui(t), i = 1 and 2; ρ = 1.225 kg/m3 is the air density; CD 339 

= 1.2 is the drag coefficient; AT  = 400 m2  is the tributary area; χu1
 (f, Uഥ ) and χu2

 (f, Uഥ ) are two 340 

aerodynamic admittances [45] 341 
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and 343 
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  (48) 344 

The wind induced dynamic force Fu (t) expressed by Eqs. (45) and (46) is also a bivariate 345 

harmonizable process and its form is a direct expansion of the stationary wind induced dynamic force 346 

[45]. The Loève spectrum SFu
(f1, f2, ) of Fu(t) can be calculated by 347 

 1 2 1 1 2 2( , , ) ( , ) ( , , ) ( , ),f f f U f f f U
uF uS Θ χ S Θ χ   (49) 348 

where Su(f1, f2, ) is the Loève spectrum matrix of u(t), which can be calculated from Wu(t, f, ); 349 

and χ(f, Uഥ) is 350 

 1

2
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The correlation function matrix RFu
(f1, f2, ) of Fu(t), which can be computed from SFu

(f1, f2, ) 352 

based on Eq. (5), will be utilized to simulate samples of Fu(t). In the case of Uഥ = 20 m/s and Lu = 353 

400 m, RF1
(t1, t2), WF1

(t, f), and SF1
(f1, f2) of F1(t) are illustrated in Fig. 2. 354 
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 355 
(a)                                      (b) 356 

 357 
(c)                                      (d) 358 

Fig. 2. RF1
(t1, t2), WF1

(t, f), and SF1
(f1, f2) under Uഥ = 20 m/s and Lu = 400 m. (a) RF1

(t1, t2), (b) WF1
(t, f), (c) 359 

real part of SF1
(f1, f2), and (d) imaginary part of SF1

(f1, f2). 360 

In this subsection, following Eqs. (17) and (33), the probability distributions of the dynamic and 361 

extreme responses of the 2-DOF linear elastic structure are computed using the Monte Carlo 362 

integration [39] with 900 samples of the random physical parameter vector  = [Uഥ, Lu]. The computed 363 

results are then compared with those from 106 structural response samples. The response samples are 364 

computed using the Newmark method [46] with 106 simulated wind force samples. 365 

The evolutionary PDF of the displacement response U2(t) in Fig. 1, which is computed using 366 

Eq. (17), is compared with the result from the response samples, as shown in Fig. 3. It is illustrated 367 

that the result from the theoretical formula is consistent with that from the response samples. The CDFs 368 

of U2(t) at t = 200 and 300 s, which are computed by integrating the PDFs computed using Eq. (17), 369 

well match the results from the response samples and obviously diverge from their corresponding 370 

Gaussian distributions. In Fig. 4, the joint PDF of U1(t) at t = 400 s and U2(t) at t = 402 s, which is 371 

computed using Eq. (17), is consistent with that from the response samples. 372 
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  373 
(a)                                       (b) 374 

  375 
(c)                                       (d) 376 

Fig. 3. Evolutionary probability distribution of U2(t). (a) evolutionary PDF calculated using Eq. (17), (b) 377 
evolutionary PDF estimated using the response samples, (c) CDF of U2(t) at t = 200 s, and (d) CDF of U2(t) at t 378 

= 300 s. 379 

 380 
(a)                                       (b) 381 

Fig. 4. Joint PDF of U1(400) and U2(402). (a) the result from Eq. (17) and (b) the result from the response 382 
samples. 383 

The CDF of max(|U2(t)|), the extreme value of U2(t), is computed using Eq. (33) and compared 384 

with the result from the response samples, as shown in Fig. 5. It is illustrated that the extreme 385 

distribution of U2(t) from the theoretical formula well matches the result from the response samples. 386 
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 387 
Fig. 5. CDF of max(|U2(t)|). 388 

For the purpose of comparing the EPSD load model and the harmonizable load process model, 389 

the bivariate fluctuating wind speed process u(t) is assumed to be a zero-mean bivariate semi-390 

stationary process [1, 2] and is denoted as v(t) = [v1(t), v2(t)]T. The EPSD matrix Pv(t, f, ) of v(t) is 391 

the same as Wu(t, f, ) in Eq. (35), that is Pv(t, f, ) = Wu(t, f, ). Then, the evolutionary PDF and 392 

time-varying variances of the response displacement response U2(t)  in Fig. 1 caused by v(t) are 393 

computed. The theoretical background for calculating the evolutionary PDF and time-varying variance 394 

of U2(t) under the semi-stationary wind speed process v(t) is briefly introduced in Appendix B. As 395 

illustrated in Eq. (64) in Appendix B, under the semi-stationary wind speed process model involving 396 

the time-varying coherence in Eq. (38), the EPSD matrix Pv(t, f, ) has to be decomposed to obtain 397 

Gv(t, f). In this subsection, the Cholesky decomposition [3] and SRD [16] are employed. Under the 398 

semi-stationary wind speed process v(t), the evolutionary PDFs and time-varying variances of the 399 

response displacement response U2(t) computed using the two matrix decomposition methods are 400 

shown in Fig. 6. The same 900 samples of  = [Uഥ , Lu ], which are employed to compute the 401 

evolutionary PDF of U2(t) in Fig. 3, are utilized to compute the evolutionary PDFs and time-varying 402 

variances of U2(t) in Fig. 6.  403 

Under the same computational condition, the computation times consumed to compute the 404 

evolutionary PDF of U2(t) employing the harmonizable load process, the EPSD load model with the 405 

Cholesky decomposition, and the EPSD load model with SRD are 1.86 hours, 3.29 hours, and 8.98 406 

hours, respectively. The numerical results indicate that the harmonizable load process has a higher 407 

computational efficiency than the EPSD load model for this case. Under the EPSD load model, the 408 

step of decomposing the EPSD matrix Pv (t, f, ) is time-consuming. Moreover, it has been 409 
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theoretically proven that different matrix decomposition methods can lead to different response 410 

correlation functions under the same load EPSD matrix [16]. In Fig. 6(c), it is illustrated that the time-411 

varying variance computed using the Cholesky decomposition is smaller than that using SRD under 412 

the same EPSD load model. The difference between the results computed using the Cholesky 413 

decomposition and SRD in Fig. 6(c) is apparent, although not large. The time-varying variance of 414 

U2(t) by the harmonizable load process is consistent with that by the EPSD load model with SRD, as 415 

illustrated in Fig. 6(c). On the condition of Uഥ = 5.87 m/s and Lu = 65 m, the time-varying variances 416 

of U2(t) computed using the three methods are displayed in Fig. 6(d). It is shown that the time-varying 417 

variance computed using the Cholesky decomposition is obviously smaller than that using SRD. Since 418 

the Uഥ and Lu control the shape of the wind force EPSD matrix, it can be inferred that the ambiguity 419 

in the response correlation function caused by different matrix decomposition methods is dependent 420 

on the shape of the load EPSD matrix. 421 

  422 
(a)                                       (b) 423 

  424 
(c)                                       (d) 425 

Fig. 6. Evolutionary PDFs and time-varying variances of U2(t) caused by the bivariate semi-stationary wind speed 426 
process v(t). (a) evolutionary PDF computed with the Cholesky decomposition, (b) evolutionary PDF computed 427 
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with the SRD, (c) time-varying variance of U2(t), and (d) time-varying variance of U2(t) on the condition of Uഥ = 428 
5.87 m/s and Lu = 65 m. 429 

4.2. Case 2 430 

In this subsection, an earthquake ground motion acceleration Ue(t) is modeled as a zero-mean 431 

quasi-stationary harmonizable process. Its WVS We(t, f, ),  = [1, 2], is [23, 47] 432 
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where 1 and 2 are independent random variables. 2 controls the shape of We(t, f, ) and it is 434 

uniformly distributed in the interval of [0.05,0.15]. 1 controls the magnitude of We(t, f, ) and it is 435 

assumed to obey a Gamma distribution 436 
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where α = β = 2. The Loѐve spectrum Se(f1, f2, ) of Ue(t) is [23] 438 
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where f = 0.5(f1 + f2) and  = (f2 – f1). The correlation function Re(t1, t2, ) of Ue(t) is 440 

 
2 2 2 2

2 22
e 1 2 1 22.5

22

1
( , , ) exp ( 2 ),

2

t
R t t t

tt

       


 
    

 
Θ   (54) 441 

where t = 0.5(t1 + t2);  = (t2 – t1); and t1, t2  0. Fig. 7 illustrates the Re(t1, t2, ), We(t, f, ), and 442 

Se(f1, f2, ) with  = [1, 0.1]. 443 

 444 
(a)                                      (b) 445 
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 446 
(c)                                      (d) 447 

Fig. 7. Re(t1, t2, ), We(t, f, ), and Se(f1, f2, ) under  = [1, 0.1]. (a) Re(t1, t2, ), (b) We(t, f, ), (c) real part of 448 
Se(f1, f2, ), and (d) imaginary part of Se(f1, f2, ). 449 

A 10-story shear-type linear elastic structure subjected to the earthquake ground motion 450 

acceleration Ue(t), as illustrated in Fig. 8, is considered in this study. In the 10-story linear elastic 451 

structure, m = 3.456  105 kg, k = 1.7  108 N/m, and the damping ratio of its every vibration mode 452 

is 0.05. In Fig. 8, Ui(t) represents the displacement response of the ith floor relative to the ground, i = 453 

1, 2,…, 10. 454 

 455 
Fig. 8. A 10-story shear-type linear elastic structure 456 

In this subsection, following Eqs. (21) and (34), the probability distributions of the dynamic and 457 

extreme responses of the 10-story shear-type linear elastic structure are computed using the quasi-458 

Monte Carlo integration [39] with 200 Sobol points in sample space of  = [1, 2]. The computed 459 

results are then compared with those from 4 × 104 structural response samples. The response samples 460 
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are computed using the Newmark method [46] with 4 × 104  simulated earthquake ground motion 461 

acceleration samples. 462 

The evolutionary PDF of U10(t), which is computed using Eq. (21), is compared with the result 463 

from the response samples, as shown in Fig. 9. It is illustrated that the result from the theoretical 464 

formula is consistent with that from the response samples. The CDFs of U10(t) at t = 15 and 60 s, 465 

which are computed by integrating the PDFs computed using Eq. (21), are also shown in Fig. 9. The 466 

two CDFs from the theoretical formula well match the results from the response samples and obviously 467 

diverge from their corresponding Gaussian distributions. The joint PDF of the velocity responses Uሶ 5(t) 468 

at t = 15 s and Uሶ 10(t) at t = 30 s, which is computed using Eq. (21), is compared with the result from 469 

the response samples, as illustrated in Fig. 10. The joint PDF computed from the theoretical formula 470 

is consistent with that from the response samples. 471 

 472 
(a)                                      (b) 473 

 474 
(c)                                      (d) 475 

Fig. 9. Evolutionary probability distribution of U10(t). (a) evolutionary PDF computed using Eq. (21), (b) 476 
evolutionary PDF estimated using the response samples, (c) CDF of U10(t) at t = 15 s, and (d) CDF of U10(t) at t 477 

= 60 s. 478 
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 479 
(a)                                      (b) 480 

Fig. 10. Joint PDF of Uሶ 5(15) and Uሶ 10(30). (a) the result from Eq. (21) and (b) the result from the response 481 
samples. 482 

The CDF of the maximum value of the acceleration response |Uሷ 10(t)|, which is computed using 483 

Eq. (34), is compared with the result from the response samples, as shown in Fig. 11. It is illustrated 484 

that the extreme distribution of Uሷ 10(t) computed using the theoretical formula well matches the result 485 

from the response samples. 486 

 487 
Fig. 11. CDF of max(|Uሷ 10(t)|). 488 

5. Conclusions and prospects 489 

In this study, random environmental loads are modeled as quasi-stationary harmonizable 490 

processes, with each process characterized by a Loève spectrum containing several random physical 491 

parameters. An explicit calculation approach for the dynamics and extreme response probability 492 

distributions of a linear elastic structure driven by a quasi-stationary harmonizable load is proposed. 493 

Given the values of the load spectral physical parameters, the harmonizable load process is assumed 494 

to be Gaussian. The conditional joint PDF of structural dynamic responses at any finite time instants 495 



24 
 

and the conditional CDF of the structural extreme response are expressed in terms of the structural 496 

response correlation functions. By multiplying these two conditional probability distributions with the 497 

joint PDF of the load spectral parameters, and then integrating these two products over the parameter 498 

sample space, the joint PDF of structural dynamic responses at any finite time instants and the CDF of 499 

the structural extreme response can be calculated. The efficacy of the proposed approach is numerically 500 

verified using two MDOF systems. One is subjected to a bivariate harmonizable wind speed process 501 

with a time-varying coherence. The other one is driven by a harmonizable ground motion acceleration 502 

process. The numerical results indicate that the probability distributions of structural dynamic and 503 

extreme responses computed using the proposed approach are consistent with the results estimated 504 

using simulated structural response samples. This validates the feasibility of the proposed approach in 505 

analyzing the dynamic and extreme response probability distributions of linear elastic structures 506 

subjected to quasi-stationary harmonizable loads. Using the first numerical case, the merit of the 507 

harmonizable load process model is highlighted through a comparative analysis with the EPSD load 508 

model. The numerical results indicate that the harmonizable load process model has a higher 509 

computational efficiency than the EPSD load model for this case. The ambiguity in the response 510 

correlation function under the EPSD load model is also verified using this numerical case. 511 

The quasi-stationary harmonizable process has two shortcomings in modeling random loads and 512 

analyzing structural responses. First, although the WVS of a harmonizable load process can be 513 

assumed to be non-negative, its induced response WVS, which is directly calculated from Eq. (15), 514 

may be not non-negative over the entire time-frequency domain. The smoothed WVS with a kernel 515 

satisfying certain conditions can be ensured to be non-negative over the entire time-frequency domain, 516 

see Sections 5.4 and 5.5 in [48]. This type of smoothed WVSes can be employed to depict the time-517 

frequency distribution of the structural response in cases where the original response WVS (as 518 

calculated by Eq. (15)) exhibits negative values. Second, not every non-negative time-frequency 519 

function is suitable for representing the load WVS. Considering a non-negative time-frequency 520 

function W(t, f) and assuming it to be the WVS of a harmonizable process X(t), its corresponding 521 

correlation function R(t1 , t2 ) = E[X* (t1 )X(t2 )] can be calculated from W(t, f) using a 1D Fourier 522 

transform based on Eq. (7). To be a valid correlation function, R(t1, t2) must satisfy the condition that 523 
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ඥR(t1, t1)R(t2, t2)   R( t1 , t2 ) for arbitrary values of t1  and t2 . Not every non-negative time-524 

frequency function W(t, f) can provide a valid correlation function R(t1, t2) satisfying this condition. 525 

The conditions under which a non-negative time-frequency function can provide a valid correlation 526 

function need to be studied in the future. 527 
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Appendix A. Derivation of Eqs. (30)-(32) 538 

The response Y(t) caused by the quasi-stationary harmonizable load process F(t, ) is also a quasi-539 

stationary harmonizable process and can be expressed as 540 

 i2( ) d ( ).ft
YY t e Z f


    (55) 541 

The Loève spectrum SY(f1, f2) of Y(t) is defined as 542 

 1 2 1 2 1 2( , ) E d ( )d ( ) d d .Y Y YS f f Z f Z f f f      (56) 543 

The auxiliary process Y෨(t) of Y(t) is calculated as 544 

 i2( ) i sgn( )d ( ),ft
YY t e f Z f


     (57) 545 
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where sgn() is the signum function 546 

 

1, 0

sgn( ) 0, 0.

1, 0

f

f f

f


 
 

  (58) 547 

The derivative Y෨ሶ (t) of Y෨(t) is calculated as 548 

 i2( ) 2 d ( ).ft
YY t e f Z f




    (59) 549 

Similar to the stationary process [49], the pre-envelope process Ψ(t) of Y(t) is defined as 550 

 ( ) ( ) i ( ),t Y t Y t      (60) 551 

and the envelope process V(t) of Y(t) is defined as  552 

 2 2( ) ( ) ( ) ( ).V t t Y t Y t      (61) 553 

Being quasi-stationary, SY(f1, f2) of Y(t) is concentrated around the main diagonal line on the 554 

dual-frequency plane. In this situation, rYY෨ (t, )  = E[Y* (t)Y෨  (t)] is small and can be approximately 555 

assumed to be zero. Under this assumption, the analytical joint PDF of the envelope process and its 556 

derivative for a Gaussian non-stationary process, which is given in the Appendix of [41], is also 557 

suitable for V(t) in Eq. (61) and its derivative Vሶ (t). In this situation, the bandwidth qY(t, ) of the 558 

harmonizable process Y(t) can be derived from the joint PDF of V(t) and Vሶ (t) [41] and its calculation 559 

formula is given in Eq. (30). rYY෨ሶ (t, ) is calculated as 560 
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  (62) 561 

Appendix B. Theoretical background for analyzing U2(t) under the semi-stationary v(t). 562 

The bivariate semi-stationary wind speed process v(t) = [v1 (t), v2 (t)]T with a time-varying 563 

coherence in Eq. (38) is defined by the Wold-Cramer decomposition [9, 50] 564 

 i2( ) ( , , )d ( ).ftt e t f f


  v vv G Θ Z   (63) 565 
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In Eq. (63), Zv (f) = [ Z1, v (f), Z2, v (f)]T is a complex-valued bivariate zero-mean orthogonal 566 

incremental process satisfying dZv
* (–f) = dZv (f) and E[dZv

* (f)dZv
T (f)]/df = I, where I is an identity 567 

matrix. Gv (t, f) is a complex-valued slowly-varying time- and frequency-dependent modulating 568 

function matrix. The EPSD matrix Pv(t, f, ) of v(t) is defined as 569 

     ( , , ) E ( , , )d ( ) ( , , )d ( ) ( , , ) ( , , ).t f t f f t f f t f t f
    v v v v v v vP Θ G Θ Z G Θ Z G Θ G Θ   (64) 570 

The along-wind dynamical force Fv(t) = [Fv1
(t), Fv2

(t)]T induced by v(t) is calculated as [51] 571 

 i2( ) ( , ) ( , , ) d ( ),ftt f U t f e f


 v v vF χ G Θ Z   (65) 572 

where χ(f, Uഥ) is in Eq. (50). 573 

Given a realization  = [1, 2] of  = [Uഥ, Lu], the wind force F(t, ) on the condition of  being 574 

 is assumed to be a Gaussian process. Under this condition, the displacement response U(t) of the 575 

structure in Fig. 1 caused by F(t, ) is Gaussian and can be calculated as [51] 576 

 i2
1( , ) ( ) ( )d ( ) ( , ) ( , , ) d d ( ),ft t t f f e f       

  

  
     v v vU θ h F h χ G θ Z   (66) 577 

where 1 is the value of Uഥ and h(t) is the unit-impulse response function matrix calculated by 578 

 i2( ) ( )dftt e t t 


 h H   (67) 579 

and H(f) is the frequency response function matrix in Eq. (13). The correlation function matrix RU(t1, 580 

t2, ) = E[U*(t1)UT(t2)] of U(t, ) on the condition of  =  is calculated as 581 

 
2 1

1 2

i2 ( )
1 1 1 1 2 1 2 2 1 2

( , , )

( ) ( , ) ( , , ) ( , , ) ( , ) ( )d d d .f

t t

e t f f f f t f          
         

  
    
U

v v

R θ

h χ G θ G θ χ h
 (68) 582 

Substituting RU(t1, t2, ) into Eq. (17), the probability distribution of U(t) at multiple time instants 583 

can be calculated. 584 
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