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Abstract: The safety and serviceability of in-service structures and infrastructure systems are often threatened by natural hazards. Asset
owners/decision makers are thus concerned about the resilience of an object of interest (structure or infrastructure), that is, its ability to
be in readiness for, to absorb, recover from, and adapt to disruptive events. This is particularly the case when considering the potential impacts
of climate change, which may lead to nonstationary natural hazards in the future (e.g., increasing wind hazard in a changing climate). More-
over, in many occasions, the presence of concurrent multiple hazards may result in more severe performance reduction to structures/infra-
structures, compared with the occurrence of single hazards. This paper proposes an innovative method for the time-dependent resilience
assessment of structures and infrastructure systems exposed to the impacts of concurrent multiple hazards in a changing climate. The inter-
action between different types of hazards is reflected through the mutual dependency between the performance functions associated with
these hazards. New insights into the time-dependent resilience problem are also provided through a new concept of the performance concern
index (PCI). It is shown that the mean nonresilience (i.e., 1 minus the mean value of resilience), if small enough, can be approximated by the
mean value of the average PCI over the time domain of interest. Two examples are presented to demonstrate the applicability of the proposed
method, and to investigate the sensitivity of resilience to key factors such as the interaction between multiple hazards and the climate change
scenario. DOI: 10.1061/AOMJAH.AOENG-0024. © 2023 American Society of Civil Engineers.
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Introduction

Natural hazards such as earthquakes and tropical cyclones (hurri-
canes) are among the major threatening factors for the safety and
serviceability of civil structures and infrastructure systems during
their service lives (Gerstenberger et al. 2020; Wang et al. 2020). Fra-
gility, reliability, and resilience have been widely used tools to mea-
sure an object’s (e.g., an individual structure or an infrastructure
system consisting of multiple facilities) ability to withstand the ef-
fects of hazardous events. Of these quantities, the fragility model
evaluates the conditional occurrence probability of a particular

damage state (e.g., collapse) on a given intensity measure (Reed
et al. 2016; Gidaris et al. 2017; Argyroudis et al. 2019). Reliability
analysis takes into account the uncertainty associated with the resis-
tance as well as that of the hazard intensity, yielding a fully probabi-
listic assessment of the object’s state – survival or failure (Ayyub and
McCuen 2016; Melchers and Beck 2018; Wang 2021; Wang et al.
2021). The concept of resilience, compared with reliability, addition-
ally incorporates the recovery process of an object in the aftermath of
a disruptive event, and is typically measured by the integral of perfor-
mance function within a reference period of interest (Bruneau and
Reinhorn 2007; McAllister 2013; Ayyub 2015; Salomon et al.
2020). With this regard, a dimensionless measure for resilience, de-
noted by Re, was proposed by Attoh-Okine et al. (2009) as follows:

Re =
1

t2 − t1

∫t2
t1

Q(t) dt (1)

where Q(t) is the functionality/performance function of the object
at time t, taking a value between 0 and 1, t1 is the occurrence
time of a hazardous (disruptive) event, and t2 is the time to full re-
covery (or a user-defined reference time; see, e.g., Cimellaro et al.
2010). Note that the resilience model in Eq. (1) cannot fully reflect
the sensitivity of resilience to the variation of performance func-
tion. To overcome this disadvantage, a generalized resilience mea-
sure takes the following form (Wang 2023a):

Re = f −1
1

t2 − t1

∫t2
t1

f (Q(t)) dt

[ ]
(2)

where f (x) (x∈ [0, 1]) is a monotonic generating function. If f (x)≡
x, then Eq. (2) reduces to Eq. (1). It was shown by Wang (2023a)
that, with a properly selected f (x) (e.g., f (x)= lnx), the mean value
of Re in Eq. (2) is mathematically equivalent to reliability, and thus
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establishes a unified framework for reliability and resilience
analyses.

The performance functionQ(t) is essentially affected by the haz-
ardous events. Many types of natural hazards display nonstationary
characteristics in terms of occurrence frequency and/or magnitude
due to the potential impacts of climate change (IPCC 2021). For ex-
ample, Walsh et al. (2016) projected that the future wind hazard
will decrease in Northern Australia, but will increase along the
East Coast. Xu et al. (2020) reported that, in a changing climate,
most climate models considered in their study (five of six) result
in a significantly shortened return period of tropical cyclone
winds over the 21st century for Hangzhou and Shanghai – two
coastal cities in China. For California, Goss et al. (2020) found
that the state-wide increase in temperature and decrease in precip-
itation over the past four decades have contributed to the increasing
aggregate fire weather indices. Relevantly, the ATSE (2022) re-
cently released a position statement, summarizing that “Planning
and design for resilience is a key component in mitigating the dam-
age of major hazards and the effects of climate change.”

In many occasions, in-service structures and infrastructures are
exposed to the impacts of concurrent multiple hazards (Yin and Li
2011; Wahl et al. 2015; Salman and Li 2017; Bruneau et al. 2017),
instead of single hazard types. One example is that, in August 2023,
the state of California was hit by Hurricane Hilary and a
magnitude-5.1 earthquake on the same day during the state’s wildfire
season (CalMatters 2023), prompting the necessity of considering
the effects of multiple hazards for the region. The interdependencies
of the hazard-induced damaging effects on structures and infrastruc-
tures need to be adequately addressed in resilience assessment.
Ouyang et al. (2012) proposed a multistage framework for the resil-
ience assessment of infrastructure networks, with a focus on the “ex-
pected annual resilience metric” for both single hazard types and
concurrent multiple hazards. They also presented a case study on
the resilience of a power transmission grid in Harris County,
Texas. Li et al. (2020) presented a framework for resilience and
loss assessment of highway bridges in the presence of multiple inde-
pendent natural hazards, including earthquakes, hurricanes, and
floods. They employed a stochastic renewal process to describe
the random occurrence of hazardous events. Wang et al. (2022) de-
veloped a mathematical formula for the time-dependent resilience as-
sessment of aging structures in a changing climate. They treated the
occurrence of different types of hazards as statistically independent,
and used a Poisson process to model the occurrence of hazards.
However, these works did not consider the impact of mutual depend-
ency between different hazards on resilience. Further, Laurien et al.
(2022) reviewed 17 representative approaches to climate and disaster
resilience measurement, and revealed the lack of existing resilience
approaches that account for the interactions of multiple hazards.
Moreover, it was stated by the Risk and Resilience Measurement
Committee (2019, Chapter 4) that, “The effect of multiple hazards
on infrastructure response is not explicitly considered in current
codes and standards, and the nonstationarity of hazards (e.g., due
to climate change) is also seldom considered.” This observation mo-
tivates the development of novel analytical approaches that address
the resilience problem (of, e.g., individual structures, infrastructure
systems, or communities) considering the concurrence of multiple
hazards and the potential impacts of climate change.

The aim of this paper is to develop a novel approach for resilience
assessment of structures and infrastructure systems that are sub-
jected to multiple hazards in a changing climate. The method bene-
fits from the resilience model in Eq. (2) with the generating function
being f (x)= lnx, and takes into account the mutual dependency of
performance functions associated with different hazard types.
New insights into the resilience problem are also provided through

proposing a new concept of the “performance concern index,”
which measures the asset owner/decision maker’s concern arising
from nonfull performance of structures or infrastructure systems.
The applicability of the proposed resilience method is illustrated
through two examples. The impacts of influencing factors, such as
the mutual dependency between different hazards, the climate
change scenario, and the recovery profiles in the aftermath of hazard-
ous events, on time-dependent resilience are investigated through
sensitivity analyses. Focusing on the resilience of structures and in-
frastructure systems, the scope of this paper is related to the UN Sus-
tainable Development Goal 11, which is themed “making cities and
human settlements inclusive, safe, resilient and sustainable.”

Resilience Measure

Resilience for a Single Hazard Type

Consider the time-dependent resilience of an object (structure or in-
frastructure) within a reference period of [0, tl], denoted by Re(0, tl).
Extending the model in Eq. (2) with the generating function being
f (x)= lnx, the resilience is as follows (Wang 2023a):

Re(0, tl) = exp
1

tl

∫tl
0
lnQ(t)dt

[ ]
(3)

Note that Re(0, tl) in Eq. (3) has been based on the geometric mean
of the performance function within the reference period of [0, tl].
To demonstrate this point, subdivide [0, tl] into n identical intervals,
namely [0, tl/n] ∪ [tl/n, 2tl/n] ∪ · · · ∪ [(n − 1)tl/n, tl]. Let Ωi be
the performance function evaluated at the midpoint of the ith inter-
val for i= 1, 2, …, n, that is, Ωi=Q((i− 0.5)T/n). From a view of
Riemann integral, with a sufficiently large n, Eq. (3) becomes

Re(0, tl) = lim
n�∞

exp
1

n

∑n
i=1

lnΩi

[ ]
= lim

n�∞

∏n
i=1

Ωi

( )1/n

(4)

which is the geometric mean of the sequence Ω1, Ω2, …, Ωn. Note
that the resilience model in Eq. (1) (or its extended form to a refer-
ence period of [0, tl] by replacing t1, t2 with 0, tl, respectively) has
been based on the arithmetic mean of the performance function. A
key feature of Eq. (3), compared with arithmetic mean-based resil-
ience, is that it can better reflect the sensitivity of resilience to the
variation ofQ(t). Illustratively, consider a structure with full perfor-
mance (i.e., Q(t)= 1) for the reference period of [0, tl/2]; subse-
quently, due to the occurrence of a hazardous event at time tl/2
causing collapse of the structure, the performance function reduces
to zero in the absence of a resource that supports the recovery pro-
cess (i.e., Q(t)= 0 for t∈ [tl/2, tl]). In such a case, the structure is
deemed as “nonresilient” with a zero value for resilience. This is
consistent with Eq. (3). However, if applying an arithmetic
mean-based resilience model [e.g., Eq. (1) with t1, t2 replaced by
0, tl, respectively], the resilience is 0.5, suggesting that the structure
is partially resilient.

It is further noticed that the performance function Q(t) in Eq. (3)
is a stochastic process by nature, with which Re(0, tl) is a random
variable. To achieve a scalar measure for resilience, the mean
value of Re(0, tl) in Eq. (3) is considered, denoted by Re(0, tl),
which is evaluated according to

Re(0, tl) = μ exp
1

tl

∫tl
0
lnQ(t) dt

[ ]{ }
(5)

in which μ( ) denotes the mean value of the variable in the brackets.
In this following, the resilience model in Eq. (5) will be adopted,
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where Re(0, tl) is referred to as mean resilience. The resilience as-
sessment considering multiple hazards will be formulated in the
next section.

Proposed Resilience Measure Considering Multiple
Hazards

In the presence of totally m types of hazards, the individual perfor-
mance associated with the ith hazard type is denoted by Qi(t) for
i = 1, 2, …, m. The integrated performance considering the com-
bined effects of the m types of hazards, denoted by Qmul(t), is de-
pendent on the joint behavior of Q1(t), Q2(t), …, Qm (t), and is
expressed as follows based on a properly defined function ψ:

Qmul(t) = ψ (Q1(t), Q2(t), . . . , Qm(t)) (6)

It is expected that Qmul(t) takes a value between 0 and 1, and
Qmul(t)≤Qi(t) holds ∀i. In this paper, the following formulation
of Qmul(t) is considered:

Qmul(t) =
∏m
i=1

Qi(t) (7)

Note that Eq. (7) does not require statistical independence be-
tween the performance functions Qi(t). It is applicable to the ge-
neral cases where the percentage of performance degradation
due to a hazardous event is measured with respect to the exist-
ing performance of an object. The determination of each Qi(t) is
dependent on the specific type of hazard and posthazard damage
state of an object, and is generally representative of the asset
owner/decision maker’s attitude toward the hazard-induced resid-
ual performance.

One numerical example of applying Eq. (7) is presented in
Fig. 1, considering two performance functions Q1(t) and Q2(t)
corresponding to two hazard types. A Type 1 hazard occurs at
time t= 1, and a Type 2 hazard occurs at time t= 2. The recovery
duration in the aftermath of both events is 2 [i.e., from t= 1 to 3
in Fig. 1(a), and from t= 2 to 4 in Fig. 1(b)]. The integrated per-
formance function, Qmul(t), is dependent on the joint behavior of
Q1(t) and Q2(t), as depicted in Fig. 1(c). For example, when t∈
[2, 3], Q1(t)=Q2(t)= 0.5, yielding Qmul(t)=Q1(t) ·Q2(t)= 0.25.
Note that the graphs in Fig. 1 have been used herein for illustra-
tion purposes only. The dependence of performance function on
the specific type of hazard will be later demonstrated in the “Ex-
amples” section.

Based on Eq. (5), replacing Q(t) with Qmul(t) yields the resil-
ience model in the presence of multiple hazards as

Re,mul(0, tl) = μ exp
1

tl

∑m
i=1

∫tl
0
lnQi(t) dt

[ ]{ }
(8)

In Eq. (8), if each performance function Qi(t) is statistically inde-
pendent, it follows that

Re,mul(0, tl) =
∏m
i=1

Re,i(0, tl) (9)

in which Re,i(0, tl) is the mean resilience considering the ith hazard
only [evaluated by substituting Qi(t) into Eq. (3)], i= 1, 2, …, m.
Eq. (9) suggests that, if not considering the mutual dependency be-
tween different hazard types, the mean resilience considering mul-
tiple hazards equals the multiplication of the mean resiliences
associated with each hazard type. This observation is consistent
with the results of Wang et al. (2022). Illustratively, for the three
scenarios in Figs. 1(a–c), based on the three trajectories of perfor-
mance function, the resiliences for [0, 6] are 0.794, 0.794, and
0.630, respectively (note that 0.794 × 0.794= 0.630), according to
Eq. (3).

Note that Eq. (9) does not necessarily hold if considering the
mutual dependency between different performance functions. For
the case in Fig. 1, at time t= 2 when the Type 2 hazard occurs, if
the recovery process is postponed due to the recovery associated
with the Type 1 hazard being in progress, and is resumed at
t= 3, the “updated” performance function for the Type 2 hazard,
denoted by Q*

2(t), is presented in Fig. 2(b). Correspondingly, the in-
tegrated performance function is affected by Q*

2(t), denoted by
Q*

mul(t) (where the asterisk symbol accounts for the consideration
of dependency of Q2(t) on Q1(t)). The graph of Q*

mul(t), which
equals Q1(t) · Q*

2(t), is plotted in Fig. 2(c).
Based on the trajectory in Fig. 2(c), the resilience over [0, 6] is

evaluated according to Eq. (3) as 0.561. This is smaller than that
associated with Fig. 1(c), implying the impact of performance func-
tion dependency on resilience.

Taking into account the mutual dependency between different
performance functions, Qi(t) is modified as Q*

i (t) for i= 1, 2, …,
m [Q*

i (t) ≡ Qi(t) if the ith performance function is not affected by
others; see, for example, Q1(t) in Fig. 2(a)], and Eq. (8) is rewritten
as

Re,mul(0, tl) = μ exp
1

tl

∑m
i=1

∫tl
0
lnQ*

i (t) dt

[ ]{ }
(10)

Eq. (10) is the proposed method for resilience assessment in the
presence of multiple hazards. It has been built on the

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(a)

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(b)

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(c)

Q1(t) Q2(t) Qmul(t)

Fig. 1. Time variation of performance functions: (a) Q1(t); (b) Q2(t); and (c) Qmul(t).
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multiplication-based definition of Qmul(t) in Eq. (7), and can be ex-
tended to fit other definitions in Eq. (6). Note that in Eq. (10), the
consideration of climate change impacts on hazardous events can
be reflected in the evaluation of each Q*

i (t), and subsequently in
the resilience measure Re,mul(0, tl).

One can employ Monte Carlo simulation to evaluate Eq. (10)
numerically. This requires to generate samples for the performance
functions Q*

1(t), Q
*
2(t), . . . , Q

*
m(t). To this end, one can first discre-

tize the reference period [0, tl] by subdividing it into n identical in-
tervals, namely [0, tl/n] ∪ [tl/n, 2tl/n] ∪ · · · ∪ [(n − 1)tl/n, tl]. Let
Ωi,j denote the ith performance function evaluated at the midpoint
of the jth interval for i= 1, 2, …, m; j= 1, 2, …, n, that is, Ωi,j=
Qi(( j− 0.5)T/n). Denote Ω1,0=Ω2,0= · · ·=Ωm,0= 1. With an in-
creasing j from 1 until n, one can determine Ω1,j, Ω2,j, …, Ωm,j ac-
cording to the values of Ω1,j−1, Ω2,j−1, …, Ωm,j−1 by incorporating
the mutual dependency between different performance functions.
Finally, substituting the generated trajectories of Q*

1(t), Q
*
2(t), . . . ,

Q*
m(t) into Eq. (10) yields a sample resilience. Through N replica-

tions of simulation (where N is a sufficiently large integer), the
mean value of the N sample resiliences converges to the mean
resilience.

Discussion on the Kernel of Resilience Definition

The kernel of the resilience model in Eq. (10),
∑m

i=1

�tl
0 lnQ

*
i (t)dt,

has been built based on the logarithm of the performance functions.
This is similar to the definition of the “Shannon information con-
tent” (a basic quantity in information theory), which is defined as
follows for an outcome of x (MacKay 2003; Ayyub and Klir 2006):

I(x) = − ln p(x) (11)

in which p(x) is the occurrence probability of outcome x. An impor-
tant feature of the information content I(x) is that, for two indepen-
dent outcomes x and y, I(x, y) = I(x)+ I(y), in which I(x, y) is the
information content of the outcome (x, y) (i.e., the concurrence of
x and y).

Similar to Eq. (11), a new concept of the “performance concern
index” (PCI) is proposed in this paper, which measures asset
owner/decision maker’s concern about the performance of an ob-
ject (structure or infrastructure), Q(t). The PCI at time t, denoted
by C(t), takes a form of

C(t) = − lnQ(t) = ln
1

Q(t)
(12)

The PCI in Eq. (12) satisfies the following conditions simultaneously.
1. A state of full performance (i.e., Q(t)= 1) leads to no concern.
2. A smaller value of Q(t) means greater concern (i.e., C(t) is a

monotonic function of Q(t)).

3. For two independent performance functions (corresponding to
two independent hazard types), the total amount of concern
equals the sum of the concerns associated with the individual
performance functions.
To verify, it is straightforward to see that C(t) in Eq. (12) meet

conditions (1) and (2). For condition (3), note that for two indepen-
dent performance functions, namely Q1(t) and Q2(t), it follows
that, Q*

mul(t) = Qmul(t) = Q1(t) · Q2(t). Thus, ln [1/Q*
mul(t)]=

ln [1/Qmul(t)] = ln [1/Q1(t)] + ln [1/Q2(t)]. This indicates the addi-
tivity property (see definition in, e.g., Ayyub and Klir 2006) of the
PCI in the presence of independent performance functions. For
more general cases where Q*

mul(t) < Qmul(t) (i.e., the dependency
between individual performance functions worsens the integrated
performance), it follows that ln [1/Q*

mul(t)] > ln [1/Q1(t)]+
ln [1/Q2(t)], with which the PCI is superadditive.

One can further show that there is a unique function that satisfies
all the three conditions mentioned previously, up to a multiplicative
scaling factor. Generally, let g(x) denote such a function, that is,
C(t) = g(Q(t)). From condition (3), g(Q1(t) ·Q2(t))= g(Q1(t))+
g(Q2(t)) holds for any performance functions Q1(t) and Q2(t).
This further results in g(x)=αlnx, where α is a constant (see
proof in, e.g., Milkman 1950). Next, since g(x) is a decreasing func-
tion of x [see condition (2)], α is assigned a negative value [it equals
−1 in Eq. (12)].

Denote Cmul(t) = − lnQmul(t). The average PCI over [0, tl],
Cmul, is evaluated according to

Cmul =
1

tl

∫tl
0
Cmul(t) dt (13)

Based on Eqs. (10) and (13), it follows that

Re,mul(0, tl) = μ exp −Cmul

( )[ ]
(14)

Eq. (14) establishes a simple relationship between the mean resil-
ience and the average PCI; it provides a new angle to understand
the resilience problem from asset owner/decision maker’s concern
about the performance function of an object (structure or infrastruc-
ture) over its life cycle. Let nRe,mul(0, tl) be the time-dependent
mean nonresilience for a reference period of [0, tl], which equals
1− Re,mul(0, tl). An equivalent form of Eq. (14) is that

nRe,mul(0, tl) = μ 1 − exp −Cmul

( )[ ]
(15)

Note that in Eq. (15),Cmul varies from 0 to infinity. Correspond-
ingly, the item 1 − exp (−Cmul) takes a value between 0 and 1, and
thus can be treated as the “normalized” form of the average PCI.
The mean value of the normalized Cmul equals the mean nonresi-
lience, which also varies within [0, 1].

Q*1(t)

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(a)

Q*2(t)

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(b)

Q*mul(t)

Time (t)t = 0 1 2 3 4 5 6

1

0.25

0.5

0.75

(c)

Recovery

starts

Fig. 2. Time variation of performance functions considering dependence of Q2(t) on Q1(t): (a) Q
*
1(t); (b) Q*

2(t); and (c) Q*
mul(t).
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In Eq. (15), ifCmul ≈ 0 (i.e., a well-designed and maintained ob-
ject that raises little concern), it follows that

nRe,mul(0, tl) ≈ μ(Cmul) (16)

Examples

Example 1: Impact of Performance Function Dependency
on Mean Resilience

In this section, a numerical example, as adopted from Wang
(2023b) with modification, is used to demonstrate the applicability
of the proposed resilience model in Eq. (10), and to quantify the im-
pact of performance function dependency on mean resilience.

Consider a structure subjected to two types of natural hazards,
denoted by H1 and H2. The associated performance functions are
Q1(t) and Q2(t), respectively. For simplicity, assume that the statis-
tics of the hazards and their damaging effects on the structure are
identical. For each hazard type, the occurrence is modeled by a
nonstationary Poisson process with an occurrence rate of
λ(t) = c0 + cλt (in year−1), in which c0 is the occurrence rate at
the initial time, and cλ is a constant representing the changing
rate of λ(t) (note that cλ = 0 results in a stationary occurrence pro-
cess of the hazards). Conditional on the occurrence of a hazardous
event (either type) at time t, the remaining functionality (perfor-
mance) becomes Qr times the state immediately before the hazard
occurrence. Assume thatQr follows a Beta distribution with a mean
value of μQ(t) (a function of time) and a coefficient of variation
(COV) of 0.2. The recovery of functionality immediately after
the occurrence of a hazardous event is linear. The recovery rate,
K, is dependent on Qr (i.e., the severity of performance reduction)
and resourcefulness, and is expressed as K= ξ · (0.2+ 2Qr) (in
year−1), in which ξ is a constant that reflects the resourcefulness
for the recovery process. A reference period of 50 years is consid-
ered in this example.

To reflect the dependency between the two performance func-
tions, Q1(t) and Q2(t), the following six types of dependency are
considered.
i. Type 1, Q2(t) is affected by Q1(t) only: immediately after the

occurrence of an H2 event causing reducedQ2(t), the recovery
process is postponed if another recovery associated with H1 is
in progress (until the completion of the H1-related recovery).

ii. Type 2, Q1(t) and Q2(t) affect each other: immediately after
the occurrence of an Hi event causing reduced Qi(t) (i= 1,
2), the recovery process is postponed if another recovery asso-
ciated with Hj (j= 3− i) is in progress (until the completion of
the Hj-related recovery).

iii. Type 3, Q2(t) is affected by Q1(t) only: immediately after the
occurrence of an H2 event causing reduced Q2(t), the remain-
ing functionality is further reduced by a factor of ηq if the in-
stant Q1(t) is not in full performance.

iv. Type 4, Q1(t) and Q2(t) affect each other: immediately after
the occurrence of an Hi event causing reduced Qi(t) (i= 1,
2), the remaining functionality is further reduced by a factor
of ηq if the instant Qj(t) (j= 3− i) is not in full performance.

v. Type 5, Q2(t) is affected by Q1(t) only: combining the effects
in Types 1 and 3.

vi. Type 6, Q1(t) and Q2(t) affect each other: combining the ef-
fects in Types 2 and 4.

For visualization purposes, Fig. 3 presents a set of sampled tra-
jectories of Q1(t), Q2(t), Q*

1(t), Q
*
2(t), Qmul(t), Q*

mul(t) for a refer-
ence period of 50 years (note that Q*

mul(t) = Q*
1(t) · Q*

2(t)),
considering Type 5 interaction between Q1(t) and Q2(t) (thus,
Q*

1(t) ≡ Q1(t)). For the scenario in Fig. 3, ηq= 0.7 and ξ= 1 (i.e.,
it needs five months to fully restore a 50% functionality). The
mean value of Qr decreases linearly from 0.8 at the initial time to
0.3 by the end of 50 years, with which μQ(t)= 0.8− 0.01t, where
t is in years. Over 50 years, there are six H1 events and seven
H2 events, as depicted in Fig. 3. The dependency of Q2(t) on

(a)

(c)

(e)

(b)

(d)

Fig. 3. Sampled trajectories of performance functions considering Type 5 interaction betweenQ1(t) andQ2(t): (a)Q1(t); (b)Q2(t); (c)Q*
2(t); (d)Qmul(t);

and (e) Q*
mul(t).
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Q1(t) is reflected through the occurrence of the fifth H2 event
[Fig. 3(c)], including: (1) the reduction of Q2(t) is further amplified
due to the corresponding Q1(t) not in full performance, and (2) the
recovery process is postponed due to the recovery associated with
the sixth H1 event being in progress, and is resumed until the com-
pletion of the H1-related recovery. The updated Q*

2(t) further im-
pacts the integrated performance function Q*

mul(t), as revealed
through the comparison between Figs. 3(d and e).

Similar to Fig. 3, sample trajectories of the performance func-
tions considering the Type 6 interaction between Q1(t) and Q2(t)
are plotted in Fig. 4 (based on the same configuration as in
Fig. 3). At the occurrence of the first and sixth H1 events, Q1(t)
is affected by Q2(t) in terms of amplified performance deterioration
and postponed recovery process. For example, the performance
function associated with H1 reduces to 0.33 due to the sixth H1
event in Fig. 4(b), which is otherwise 0.47 with independent
Q1(t) and Q2(t) [Fig. 4(a)]. This further explains the difference be-
tween Qmul(t) and Q*

mul(t) in Figs. 4(e and f).
The interaction between performance functions is also affected

by the recovery profiles in the aftermath of hazardous events. Re-
call that ξ= 1 in Fig. 3. Sampled trajectories of the performance
functions are depicted in Fig. 5 with ξh= 0.2 (i.e., it takes 25
months to restore functionality from 50% to 100%). With a longer
duration of the recovery process, the Q1–Q2 interaction is en-
hanced. For example, as depicted in Fig. 5(d), the recovery process
associated with the fourth H2 event is postponed significantly, due
to the long hazard–restoration–hazard process associated with H1.
Further, in Figs. 5(b and d), a hazardous event may occur before the
full completion of the recovery process, with which the temporal
correlation between the recovery profiles for the same hazard
type arises (Wang 2023b).

Fig. 6 depicts the time-dependent mean nonresilience [evaluated
according to Eq. (10)] for reference periods up to 50 years,

considering Type 5 and 6 interactions of Q1(t) and Q2(t). The oc-
currence rate for both hazard types is modeled as λ(t)= 0.1(1+
0.01t), with which the occurrence rate increases by 50% over 50
years. The values of ηq and ξ are the same as those in Fig. 4. For
comparison purposes, the mean nonresilience with independent
Q1(t) and Q2(t) is also plotted in Fig. 6. It is observed that ignoring
the performance function dependency will overestimate the resil-
ience of an object, thus yielding a nonconservative evaluation.
The mean nonresilience associated with Type 5 is smaller than
that of Type 6, because Type 5 has partially considered the interac-
tion between Q1(t) and Q2(t).

Recall that according to Eq. (16), if the mean nonresilience is
close to zero, it can be approximated by the mean value of the av-
erage PCI. This can be verified by examining the case in Fig. 6. For
a reference period of 50 years, the mean value of PCI equals 0.048
and 0.050 for Types 5 and 6, respectively (not shown in the figure),
with a difference of only 2.86% and 3.04% compared with the cor-
responding mean nonresilience.

To investigate the impact of hazard nonstationarity in a chang-
ing climate on resilience, the dependence of mean nonresilience on
λ(t) and μQ(t) (reflecting the time variation of hazard magnitude
conational on occurrence) for reference periods up to 50 years is
presented in Fig. 7, considering the Type 6 interaction of Q1(t)
and Q2(t). In Fig. 7(a), c0= 0.1, and the variation of cλ represents
different changing scenarios of the hazard occurrence rate. A
greater value of cλ results in larger mean nonresilience due to the
greater accumulative risks for the structure, and this effect is ampli-
fied with a longer reference period. Fig. 7(b) examines four chang-
ing patterns for the time-variant mean value of Qr, that is, μQ(t)
decreases linearly from 0.8 at the initial time to 0.5, 0.4, 0.3, and
0.2, respectively, over 50 years. A more severe deterioration of
the mean value of Qr, which is representative of amplified hazard
intensity over time due to climate change, leads to greater mean

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Sampled trajectories of performance functions considering Type 6 interaction betweenQ1(t) andQ2(t): (a)Q1(t); (b)Q*
1(t); (c)Q2(t); (d)Q*

2(t);
(e) Qmul(t); and (f) Q*

mul(t).
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nonresilience. For example, for a reference period of 50 years, the
mean nonresilience equals 0.022, 0.033, 0.048, and 0.074 respec-
tively corresponding to the four deterioration scenarios of μQ(t).
The observations from Fig. 7 suggest the importance of incorporat-
ing the hazard nonstationarity in resilience assessment.

The impact of ηq on the mean nonresilience is revealed in Fig. 8
for a reference period of 50 years, with the same configuration as in
Fig. 6 except ηq. While the variation of ηq does not affect the mean
nonresilience if ignoring the performance function dependency, a
greater value of ηq indicates a weaker correlation between Q1(t)
and Q2(t), and thus results in smaller mean nonresilience for both
Type 5 and 6 interactions.

The influence of performance dependency type on resilience is
examined in Fig. 9 for a reference period of 50 years, considering
the six types of interactions between Q1(t) and Q2(t). The configu-
ration of the structure in Fig. 9 is as in Fig. 6, and Type 0 means
independent performance functions. The mean nonresilience

associated with Type 0 is the smallest, because it has assumed in-
dependence between the two performance functions. This is consis-
tent with the observation from Fig. 6. Further, partially considering
the Q1(t)–Q2(t) dependency also underestimates the mean nonres-
ilience, as revealed through the comparison between Types 1, 2 (or
3, 4, or 5, 6). The mean nonresilience of Type 2 is greater than that
of Type 4, due to the more critical effect of delayed recovery pro-
cess on resilience. Moreover, the mean nonresilience associated
with Type 6 is the largest, as it has fully incorporated the mutual
dependency between the two performance functions.

Fig. 10 depicts the effect of posthazard recovery profile on mean
resilience. The variation of ξ indicates different recovery rates of
the posthazard functionality, as previously illustrated in Fig. 5,
and thus has an essential impact on resilience. For both types of
performance interaction, a smaller value of ξ means a less rapid re-
covery process, and thus leads to greater nonresilience. This is be-
cause of the enhanced interaction betweenQ1(t) and Q2(t), which is
consistent with the comparison between Figs. 4 and 5. Correspond-
ingly, for a fixed reference period, the difference between the mean
nonresiliences considering independent or interacting performance
functions becomes larger with a smaller ξ. Further, with a longer
reference period, the impact of ξ on mean nonresilience is en-
hanced, due to the increasing number of hazardous events (and
thus larger number of performance interactions).

Example 2: Resilience of a Building Subjected
to Groundwater Intrusion and Hurricane Winds

In this section, the resilience problem of a virtual building located
in Miami-Dade County, Florida (a coastal area) is examined. Two
types of hazards will be considered: (1) groundwater intrusion lead-
ing to the deterioration of foundation loading bearing capacity; and
(2) hurricane wind threatening the serviceability and safety of the

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Sampled performance functions considering Type 6 interaction and ξh= 0.2: (a) Q1(t); (b) Q*
1(t); (c) Q2(t); (d) Q*

2(t); (e) Qmul(t); and
(f) Q*

mul(t).

Fig. 6. Time-dependent mean nonresilience associated with Type 5
and 6 interactions.
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building. Assume that the building has a strip foundation with a
width of 0.9m and a depth of 0.6m, as adopted from Wang et al.
(2023) and illustrated in Fig. 11. The foundation is subjected to
the impacts of groundwater intrusion due to sea level rise (SLR)
in a changing climate. The load bearing capacity of the foundation,
Rult, can be determined by the trinomial formula as follows

(Terazaghi 1943):

Rult = cNc + γDf Nq + 0.5γBf Nγ (17)

in which c is the cohesion of soil, γ is the unit weight of soil, Df and
Bf are the depth and width of the foundation, respectively (Fig. 11),

(a) (b)

Fig. 7. Impact of hazard nonstationarity on time-dependent mean nonresilience: (a) impact of occurrence rate; and (b) impact of mean value of Qr.

Fig. 8. Effect of ηQ on time-dependent mean nonresilience for tl= 50
years.

Fig. 9. Effect of performance interaction type on time-dependent mean
nonresilience.

(a) (b)

Fig. 10. Impact of recovery profile on time-dependent mean nonresilience: (a) Type 5; and (b) Type 6.
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Nc, Nq, Nγ are functions of the soil internal friction angle ϕ, and are
expressed as

Nq = tan2
π

4
+
ϕ

2

( )
exp (π tanϕ) (18)

Nc = (Nq − 1) cotϕ (19)

Nγ = 2(Nq + 1) tanϕ (20)

Note that Eq. (17) holds when the groundwater table is below
the foundation bottom with a minimum distance of Bf. Otherwise,
one needs to adjust Eq. (17) to fit more general cases. If the ground-
water table is above the foundation bottom at a distance of xa (Case
1 in Fig. 11), Eq. (17) becomes

Rult = cNc + [γ(Df − xa) + xa(γsa − γw)]Nq + 0.5(γsa − γw)Bf Nγ

(21)

in which γsa is the saturated unit weight of soil, and γw is the unit
weight of water. If the groundwater table is below the foundation
bottom at a distance of xb (Case 2 in Fig. 11), Eq. (17) is rewritten
as

Rult = cNc + γDf Nq + 0.5 (γsa − γw) +
xb
Bf

(γ − γsa + γw)

[ ]
Bf Nγ

(22)

The statistical information of the variables associated with the
soil properties is summarized in Table 1 (assuming that the cohe-
sion of soil is negligible). The initial groundwater table is 1.8m
lower the ground level. Further, taking into account the impact of
climate change, the groundwater table will increase, as a result of
SLR, by 0.5–1.4m over 80 years. This will affect the load bearing
capacity of the foundation, as revealed in Eqs. (21) and (22), and
subsequently the serviceability. Assume that the performance func-
tion of the foundation decreases from 1 (at the initial time) to 0.8
upon Rult degrading by 5%, and to 0.5 if Rult degrades by 10%,
with which the maintenance measure is conducted to restore the
load bearing capacity to the initial state. The maintenance time is
normally distributed with a mean value of two years and a COV
of 0.2.

Next, the performance of the building exposed to hurricane
winds is evaluated through comparing the wind speed and the gen-
eralized capacity, denoted by R, whose cumulative distribution
function (CDF) has the same shape as the fragility curve (Wang
et al. 2020). Typically, R is assumed to follow a lognormal distri-
bution, with which the probability density function (PDF), fR(r),

takes a form of

fR(r) =
1���

2π
√

rνR
exp −

1

2

ln r − κR
νR

( )2
[ ]

, r > 0 (23)

where the two parameters κR and νR are the mean value and the
standard deviation of lnR, respectively, and are related to the
mean value and the variance of R according to

μR = exp κR + 0.5ν2R
( )

; σ2R = μ2R exp (ν2R) − 1
[ ]

(24)

in which μR and σ2R are the mean value and the variance of R,
respectively.

In this example, four post-hurricane damage states for the build-
ing will be considered, namely, none, moderate, severe, and com-
plete damage states. As a result, three generalized capacities are
used in the damage assessment, denoted by R1, R2, and R3 (note
that each R has the same unit as the wind speed). These capacities
have mean values of 49.24, 56.13, and 63.02m/s, respectively, in
terms of the gust wind speed, and an identical COV of 0.11. Cor-
responding to the four damage states, the remaining functionalities
are 100%, 50%, 25%, and 0%, respectively, and the recovery times
are 0, 120, 360, and 720 days (HAZUS 2003).

The occurrence of hurricane events is modeled by a Poisson pro-
cess with an occurrence rate of λ(t). Conditional on the occurrence
of a hurricane event, the maximum wind speed, V, follows a
Weibull distribution, and its CDF, FV(v, t) at time t, is as follows
(Li et al. 2016):

FV (v, t) = 1 − exp −
v

u(t)

( )α(t)
[ ]

(25)

in which v is the 1-minute average wind speed, and u(t) and α(t)
are the time-variant scale and shape parameters of the Weibull dis-
tribution. A conversion factor of 1.23 is used (Harper et al. 2010) to
further convert V into the gust wind speed (as used in the aforemen-
tioned fragility curves). Through examining the historical data from
1901 to 2010, Li et al. (2016) calibrated the scale and shape param-
eters in Eq. (25) as 35.9m/s and 2.06, respectively, for Miami-Dade
County. The average annual number of hurricanes is 0.245 (27
events in a 110-year period). To further consider the impact of cli-
mate change on future hurricane events, the scale parameter and oc-
currence rate are modeled by time-variant functions as follows
(with a fixed shape parameter of 2.06):

u(t) = 35.9 + c1t, λ(t) = 0.245 + c2t (26)

in which c1 and c2 are two constants reflecting the changing rates
of u(t) and λ(t), respectively. Illustratively, the following four
cases of hurricane hazard are considered in this example [based
on Eq. (26)].
i. Case 1. Both the intensity (reflected through the scale param-

eter) and occurrence rate do not vary with time, yielding a sta-
tionary hurricane process.

ii. Case 2. The hurricane intensity increases by 50% over 80
years, with a time-invariant occurrence rate.

Fig. 11. Strip foundation.

Table 1. Statistics of the soil property variables

Variable Mean
Coefficient of

variation (COV)
Distribution

type

Unit weight of soil γ 16 kN/m3 0.15 Lognormal
Soil friction angle ϕ 30 ◦ 0.10 Lognormal
Saturated unit weight of
soil γsa

18 kN/m3 0.15 Lognormal

Source: Adapted from Wang et al. (2023).
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iii. Case 3. The hurricane occurrence rate increases by 50% over
80 years, with a time-invariant intensity.

iv. Case 4. Both the intensity and occurrence rate increase by
50% over 80 years.

Let Q1(t) and Q2(t) denote the hurricane- and groundwater
intrusion-related performance functions, respectively. In terms of
performance interaction, assume that the post-hurricane recovery
process is postponed if another recovery associated with groundwa-
ter intrusion is in progress (this is similar to the Type 1 interaction
in Example 1). A set of sampled trajectories for Q1(t), Q2(t) and
Q*

2(t) is depicted in Fig. 12, showing that Q*
2(t) has been affected

by two recovery processes associated with Q1(t).
The time-dependent mean nonresilience for reference periods

up to 80 years is depicted in Fig. 13 (see the legend “Interacting”),
assuming a 1.4-m groundwater table rise over 80 years and Case 4
hurricane scenario. The mean nonresilience assuming independent
performance functions is also presented in Fig. 13, which is smaller
than that incorporating the Q1(t)–Q2(t) interaction. This is consis-
tent with the observation from Fig. 6. For example, for a reference
period of 80 years, the mean nonresilience is underestimated by

44.8% if ignoring the performance function interaction. Further,
the difference between the mean nonresiliences associated with in-
dependent/interacting performance functions is negligible for refer-
ence periods up to 30 years, but becomes more significant for
longer reference periods. The variation of the difference between
the mean nonresiliences can be explained by examining the time
of conducting the first and second maintenance measures against
groundwater intrusion, denoted by T1 and T2, respectively. While
there is a probability that no (5.9%) or only one (49.5%) mainte-
nance measure is conducted through the reference period of 80
years, the conditional distributions of T1 and T2 on their existence,
as depicted in Fig. 14, account for the amplified difference between
the mean nonresiliences in Fig. 13 around 30 and 60 years,
respectively.

An important feature of the resilience problem examined herein
is that the groundwater table rise-induced hazard is not necessarily
a Poisson process. As a result, existing resilience models assuming
a Poisson process for the hazard occurrence (e.g., that in Wang
et al. 2022) are not applicable in this context. This further demon-
strates the applicability of Eq. (10) for general cases.

(a)

(b)

(c)

Fig. 12. Sample trajectories of a building’s performance functions: (a) Q1(t); (b) Q2(t); and (c) Q*
2(t).

Fig. 13. Time-dependent mean nonresilience considering groundwater
intrusion and hurricane hazards.

Fig. 14. Conditional probability distribution of the time of first/second
restoration on existence.
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The impact of hazard nonstationarity in a changing climate on
time-dependent mean nonresilience is examined in Fig. 15. In
Fig. 15(a), the groundwater table rises by 1.4m over 80 years.
The mean nonresilience associated with Case 4 (i.e., both intensity
and occurrence rate increase by 50% over 80 years) is the greatest,
followed by those associated with Cases 2, 3, and 1. For instance,
the mean nonresilience associated with Case 1 (0.216) is underes-
timated by 48.1% compared with Case 4. This observation indi-
cates the importance of reasonably projecting the future changing
scenarios of hurricanes in resilience assessment. In particular, the
comparison between Cases 2 and 3 demonstrates that the mean
nonresilience is more sensitive to the variation of future hurricane
intensity than the occurrence rate. In Fig. 15(b), the groundwater
table rises by 0.5, 0.8, 1.1, and 1.4m respectively, while the
Case 4 hurricane scenario is adopted. A more severe scenario of
groundwater table rise due to SLR results in larger mean nonresi-
lience, and thus a less resilient building. For example, for a refer-
ence period of 80 years, the mean nonresilience is 0.417 with the
groundwater table rising by 1.4m, which is underestimated by
57.3% if considering a 0.5m rise of groundwater table. The differ-
ence between the mean nonresiliences associated with different
groundwater rise scenarios does not vary monastically with time,
because of the joint behavior of T1 (and/or T2) associated with dif-
ferent groundwater intrusion hazards.

Concluding Remarks

In this paper, a new method for the evaluation of time-dependent
resilience has been developed, which takes into account the inter-
action between performance functions associated with different
types of hazards. The proposed resilience model can also take
into account the hazard nonstationarity in terms of the hazard inten-
sity and/or occurrence rate due to the potential impacts of climate
change. A novel concept of the PCI is proposed to develop further
insights into the resilience problem. The following conclusions can
be drawn from this paper.
1. The proposed resilience model is applicable for both discrete

and continuous hazard processes, and takes into account the in-
teraction between performance functions associated with dif-
ferent hazard types, reflected through the postponed recovery
process if the recovery associated with the other hazard type
is in progress, and/or the amplified hazard-induced

performance reduction due to the nonfull performance associ-
ated with the other hazard type.

2. The proposed PCI, which takes a similar form of the Shannon
information content (a concept in information theory), measures
asset owner/decision maker’s concern about the performance of
an object (structure or infrastructure). An important feature of
the proposed PCI is that, for two independent hazard types,
the total amount of concern equals the sum of the concerns re-
lated to each hazard type.

3. The mean nonresilience, if close to zero, can be approximated
by the mean value of the average PCI over the considered ref-
erence period. This observation suggests that one can interpret
the mean nonresilience as the asset owner/decision maker’s av-
erage concern on the life-cycle performance of an object.

4. The interaction between the performance functions associated
with different types of hazards plays an essential role in resil-
ience assessment. Ignoring such interaction underestimates the
nonresilience (44.8% for the virtual building examined in Ex-
ample 2), and thus yields a nonconservative estimate of the ob-
ject’s performance.

5. Resilience assessment needs to incorporate the time-variant
characteristics of the hazard intensity and/or occurrence rate
in a changing climate. Ignoring the impact of hazard nonstatio-
narity underestimates the mean nonresilience by approximately
50%.
In future works, the resilience evaluation of complex infrastruc-

ture systems consisting of multiple interacting components is a
promising topic, which requires the optimization of resource allo-
cation that supports the recovery processes of multiple components,
but has not been addressed in this paper.
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