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A B S T R A C T   

Geostructures, vital for the progress of civilisation, often face inefficiencies and suboptimal performance due to 
the lack of optimisation in current designs. Achieving cost-efficiency in geostructure design involves optimising 
material usage while considering practical construction aspects. While size and shape optimisations are common 
in geostructure design, the application of topology optimisation remains underexplored. This paper addresses 
this gap by introducing a novel topology optimisation method for three-dimensional geostructure design. The 
method integrates mixed limit analysis and density-based topology optimisation theories, allowing for two- 
material design focused on the ultimate bearing capacity of the geostructure. The innovation resides in align-
ing the applied external load in the topology optimisation process with the ultimate load that the designed 
geostructure can sustain. The robustness of the proposed method is exemplified through its application to the 
design of an embankment and soil foundation, showcasing its potential to enhance the efficiency and perfor-
mance of geostructures. This research contributes to the advancement of geostructure design practices, ulti-
mately promoting sustainable and resilient infrastructure development.   

1. Introduction 

Geostructures play a key role in the advancement of human civili-
sation, providing essential support for buildings and transportation 
infrastructure. Despite their pivotal role, current designs of geo-
structures often lack optimisation, resulting in inefficiencies and sub-
optimal performance. Designing geostructures to be cost-efficient 
involves optimising material usage while considering practical con-
struction aspects. However, achieving this balance is challenging due to 
the multitude of factors at play, encompassing geological, geotechnical, 
structural, and environmental considerations. 

In geostructure design, conventional practices often rely on size and 
shape optimisations. Size optimisation aims to identify the optimal di-
mensions or scaling of structural elements while preserving the existing 
shape, while shape optimisation focuses on finding the optimal config-
uration of structural elements while maintaining a consistent size. 
Common structural elements in geostructure design include piles, 
shallow foundations, walls, anchors, among others. An alternative to 
these two methods is the topology optimisation, which optimises the 
spatial distribution of material within a specified domain. This is ach-
ieved by minimising a predefined cost function while meeting specified 

constraints. Although topology optimisation is renowned for its effi-
ciency in achieving optimal designs, its application in geostructure 
design remains underutilised with limited contributions specifically 
dedicated to its use in underground excavation (Ren et al., 2005,2014) 
and foundation design (Kammoun et al., 2019, Pucker and Grabe, 2011, 
Seitz and Grabe, 2016). This is notably distinct from other engineering 
disciplines such as automotive engineering, aircraft engineering, and 
even structural engineering, where topology optimisation is actively 
employed to tailor structural designs optimally to problem-specific 
demands. 

Several topology optimisation approaches have been devoted over 
the past few decades (Sigmund and Maute, 2013). Among them, the 
density-based topology optimisation method, particularly the so-called 
Solid Isotropic Material with Penalization (SIMP) method, stands out 
as widely adopted. The traditional SIMP method involves minimising 
the elastic strain energy of a structure subjected to specified external 
loads, a volume constraint, and assumptions of linear elastic material 
behaviour. This approach found practical application in the field of 
geotechnical engineering, specifically in the design of foundation 
structures, as demonstrated by Pucker and Grabe (2011). Despite the 
widespread use of the traditional SIMP method in structural 
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optimisation, designs obtained through this approach may not ensure 
the feasibility of stress states in relation to material strength. In simpler 
terms, the optimised design generated by the traditional SIMP method 
does not guarantee that the stress states within the structure remain 
below the yield limit of the material when subjected to the considered 
external loads. This raises concerns about the structural integrity and 
performance of the designed system in real-world conditions. The stress- 
constrained topology optimisation method was proposed to address this 
issue (Duysinx and Bendsøe, 1998), wherein stress constraints are 
additionally incorporated. Remarkably, linear elastic structural analysis 
continues to be utilised in the traditional stress-constrained topology 
optimisation, notwithstanding the added stress constraints (Holmberg 
et al., 2013). This persistence results in a conservative design, as 
demonstrated in the work of Zhang et al., (2023a) and Li et al. (2023). 
An alternative approach, which considers stress, is the topology opti-
misation method for stiffness and strength. Functioning as a hybrid 
method, it seeks to minimise both the compliance of a structure and the 
homogenisation of stresses and was recently applied in the design of 
strip foundations (Hadjiloo et al., 2023). 

In a recent development, Kammoun and Smaoui (2015) proposed a 
density-based topology optimisation formulation that integrates limit 
plasticity. This method, grounded in lower bound finite element limit 
analysis, ensures the preservation of a statically admissible stress field 
throughout the optimisation process, thereby facilitating the determi-
nation of a structure’s ultimate plastic limit. Subsequently, Herfelt et al. 
(2019) introduced an alternative plasticity-based formulation that en-
ables both upper and lower bound finite element limit analysis using 
different elements. However, their formulation produces designs solely 
in greyscale. To overcome this limitation, Zhang et al., (2023a) intro-
duced a penalty into the framework proposed by Herfelt et al. (2019), 
allowing for the creation of black-and-white designs. It is also demon-
strated that the formulation proposed in the work of Zhang et al., 
(2023a) does not require a stress-relaxation technique. Li et al. (2023) 
further extended the work specifically for three-dimensional scenarios 
involving mesh refinement techniques. Alternatively, Mourad et al. 
(2021) introduced a formulation for topology optimisation incorpo-
rating plastic limit analysis. Diverging from the previously mentioned 
approaches (Herfelt et al., 2019; Kammoun and Smaoui, 2015; Li et al., 
2023; Zhang et al., 2023a), Mourad et al. (2021) aims to maximise the 
load-bearing capacity of the structure. This is accomplished while 
considering material strength properties and adhering to a material 
volume constraint. 

This paper aims to develop a tailored topology optimisation method 
for designing three-dimensional geostructures, with a emphasise on 
achieving the design’s limit state. To fulfill this goal, the devised method 
integrates both mixed limit analysis theory and density-based topology 
optimisation theory. It accommodates two materials, such as soils and 
foundations/reinforcements, and incorporates gravity effects into the 
topology optimisation process. The ultimate formulation seeks to 
minimise the volume of material used for foundations or reinforcement, 
considering yielding states of both soil and foundations/reinforcements. 
To validate the proposed method, the geostructure resulting from the 
developed method is extracted for bearing capacity analysis. Addition-
ally, a comparative analysis between the performance of designs derived 
from our approach and those using traditional geotechnical practices 
was conducted to illustrate the robustness and efficiency of our method. 

The rest of the paper is structured as follows. Section 2 introduces the 
theory of mixed limit analysis. Section 3 presents the plasticity-based 
topology optimisation formulation for two-material design. Numerical 
examples are illustrated in Section 4 with conclusions drawn in Section 
5. 

2. Mixed limit analysis formulation 

In this section, we provide a summary of the formulation for mixed 
limit analysis. The mixed formulation incorporates both displacement 

and stress as variables, as introduced by Krabbenhøft et al. (2007), and 
operates within the framework of the generalized Hellinger Reissner 
variational principle proposed by Zhang et al. (2019). Specifically, a 
mixed limit analysis formulation is expressed as a min–max optimisation 
problem: 

min
u

max
(σ,α)

α +

∫

Ω
σT∇T(u)dΩ − α

∫

Γt

tT udΓ −

∫

Ω
bT udΩ

subject to f (σ) ≤ 0
(1)  

where σ =
(

σxx σyy σzz σyz σzx σxy
)T represents the Cauchy 

stress, u denotes the displacement, b is the body force, t is the prescribed 
traction, f(σ) is the yield function, α is the collapse load factor (e.g., αt 
indicating the ultimate force the structure can sustain), and ∇ is the 
differential operator matrix. 

In 3D cases, when employing a four-node tetrahedron, the approxi-
mation of displacement (u) within an element is expressed as: 

u(x) ≈ Nû (2)  

where û comprises the displacement values at mesh nodes, and N rep-
resents the shape function. Accordingly, the strain is approximated by: 

ε ≈ ∇T(Nû) = Bû (3)  

with B = ∇TN being the strain–displacement matrix. Sequentially, the 
min–max problem (1) is discretised as 

min
û

max
(σ,α)

α +

∫

Ω
σT BdΩû − α

∫

Γt

tT NdΓû −

∫

Ω
bT NdΩû

subject to f (σ) ≤ 0
(4)  

where σ represents the uniform stress in the integral domain. The min-
imisation part of (4) can be resolved analytically, leading to a subse-
quent maximisation problem which is 

max
(σ,α)

α

subject to :

∫

Ω
σT BdΩ = α

∫

Γt

tT NdΓ +

∫

Ω
bT NdΩ

f (σ) ≤ 0

(5)  

The mixed limit analysis formulation mentioned above has been inte-
grated into the finite element limit analysis commercial software 
OptumG2/G3. In the implementation, the finite elements utilised as-
sume a quadratic displacement field and a linear stress field. It is note-
worthy that the occurrence of volumetric locking is evident when 
employing elements with linear shape functions, for instance three-node 
triangular elements in 2D cases and four-node tetrahedral elements in 
3D cases. To tackle this issue, this study incorporates nodal integration 
based on smoothing domains, also referred to as cells, following the 
work of Zhang et al. (2023b). The construction of cells involves dividing 
each tetrahedron into four hexahedrons (see Fig. 1(a)), ensuring equal 
volumes, by connecting the centroid of the tetrahedron to the centroids 
of the four surface triangles and then the centroid of each surface tri-
angle to the three mid-edge nodes of the triangle. The cell associated 
with a node comprises all hexahedrons adjacent to that specific node. 
Fig. 1(b) illustrates a cubic domain discretised using cells. For further 
insights into the construction of smoothing domains/cells, interested 
readers are directed to the work of Li et al. (2023) and Zhang et al. 
(2023b). It has been demonstrated that the volumetric locking issue 
associated with linear elements can be effectively overcome by 
employing this approach (Meng et al., 2020; Zhang et al., 2023b). 

Following nodal integration, maximisation problem (5) is written as 
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Computers and Geotechnics 169 (2024) 106239

3

max
(σ,α)

α

subject to:

⎧
⎨

⎩

BT σ̂ − Fb = Ft

f i(σ̂) ≤ 0 i = 1, 2,⋯,NN

(6)  

in which the notation ( • )i denotes the value of ( • ) at the ith node 
unless otherwise specified, NN represents the total number of nodes 
(equal to the total number of cells, NC). The vector σ̂ comprises stress 
components at all mesh nodes and can be viewed as a weighted average 
stress of the tetrahedrons adjacent to each node. 

The global matrix BT is computed by 

BT
=

∫

Ω
BT dΩ =

∑NN

i=1

(
1
Vi

∑ne

j=1

(
1
4
BT

ijV
j
))

(7)  

where 
∑

( • ) denotes the standard finite element assembly operator, Vi 

is the volume of the ith cell, Vj is the volume of the jth tetrahedron, ne is 
the total number of tetrahedron elements adjacent to the ith node, and 
Bij is the strain–displacement operator at the ith node contributed by the 

jth adjacent tetrahedron. Hence, 1
Vi

∑ne
j=1

(
1
4BT

ijVj
)

represents the 

weighted average of the strain–displacement operator at the ith node. 
The surface force and body force are Ft and Fb, respectively, whose 

estimates based on nodal integration are 

Ft = α
∫

Γt

tT NdΓ = α
∑NN

i=1
βi

Γ

(

t̃i Γi
)

(8)  

and 

Fb =

∫

Ω
bT NdΩ =

∑NN

i=1

(
biVi) (9)  

in which Γi is the nodal contour area, and βi
Γ is a factor that equals one if 

the node belongs to a Neumann boundary and zero otherwise. 
It is worth highlighting that, even in the absence of an upper/lower 

bound feature in the abovementioned mixed limit analysis, the solution 
derived from such analysis often closely approximates to the exact 
bearing capacity of a structure, as indicated by Nguyen (2023). 

3. Topology optimisation formulation for two-material 
structures 

3.1. Single-material structure design 

Li et al. (2023) indicated that the topology optimisation with plas-
ticity can be formulated as a volume minimisation problem through the 
introduction of a novel design variable, ‘density’ (denoted as ρ ∈ [0,1]), 
in problem (6). The modified optimisation problem takes the form: 

min
(σ̂,ρ̂)

LT ρ̂

subject to:

⎧
⎨

⎩

BT σ̂ − Fb ρ̂ = Ft

f i(σ̂ , ρ̂) ≤ 0 i = 1, 2,⋯,NN

(10)  

where ρ̂ = [ρ1, ρ2,⋯, ρNN]
T represents a vector containing the ‘density’ 

(ρ) at all nodes, and L = [V1,V2,⋯,VNC]
T is a vector comprising the 

volumes of all cells. In the work of Li et al. (2023), only one material is 
considered in the optimal design. Thereby, ρi = 0 in problem (10) im-
plies that the ith cell is a void. In this study, the von Mises model is 
employed as the plasticity model for clay. The yield condition of von 
Mises provides a smooth approximation of the Tresca yield condition, 
which has been widely embraced for the analysis of clay in undrained 
conditions (Dunne and Martin, 2017, Walker and Yu, 2010, Zhang et al., 
2023b). When using the von Mises yield criterion, the inequality 
constraint in problem (10) is expressed as: 

f i =
̅̅̅̅̅̅̅
3J2

√
− ρify ≤ 0 (11)  

where J2 = 1
6(σx − σy)

2
+1

6(σy − σz)
2
+1

6(σz − σx)
2
+σ2

xy +σ2
yz +σ2

zx is the 
second invariant of the deviatoric stress, and fy is the yield stress of the 
material. In the case of single material topology design, the modified 
yield criterion (11) is supplemented with an additional inequality con-
dition: 

f i
sp =

⃒
⃒σx + σy + σz

⃒
⃒ − kfyρi ≤ 0 (12)  

to prevent a spherical stress state (e.g., σx = σy = σz) when ρi = 0. 

Fig. 1. Illustrations of 3D cell construction: (a) A tetrahedron divided into four hexahedrons, and (b) the cell generated based on tetrahedrons for a cube (Zhang 
et al., 2023b). 
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3.2. Two-material structure design 

In this section, the scope of problem (10) will be generalised to 
incorporate two-material topology optimisation. In other words, the 
space can be either occupied by clays or foundations/reinforcements. To 
this end, the Von Mises yield criterion at the ith node/cell thereby should 
be modified as: 

f i =
̅̅̅̅̅̅̅
3J2

√
− ρify1 − (1 − ρi)fy2 ≤ 0 (13)  

where fy1 and fy2 represent the yield stress of foundations/re-
inforcements and clays, respectively. Specifically, the ith cell is occupied 
by foundations/reinforcements with yield stress fy1 if ρi = 1, and by 
clays with yield stress fy2 if ρi = 0. When fy2 = 0, inequality (13) sim-
plifies to the optimal design scenario for a single material structure, for 
instance, the condition outlined in (11). Given the binary occupation of 
space by either foundations/reinforcements or clays in a two-material 
structure design, the inclusion of the additional inequality constraint 
(12) is unnecessary in this study. 

Additionally, the term related to the body force should be adjusted. 
For two-material structure design, the gravitational component should 
be expressed as 
∫

Ω
[ρib1 +(1 − ρi)b2 ]NdΩ =

∑NN

i=1
[ρib1 +(1 − ρi)b2 ]Vi

=
∑NN

i=1

(
bi

1Vi − bi
2Vi)ρi +

∑NN

i=1

(
bi

2Vi) (14)  

in which, b1 and b2 denote the body forces of clays and foundations/ 
reinforcements considered in the design. 

Consequently, the topology optimisation formulation for two- 
material structure design is presented as 

min
(σ̂,ρ̂)

LT ρ̂

subject to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

BT σ̂ − F̂b ρ̂ = Ft + F̃b

f i(σ̂ , ρ̂) =
̅̅̅̅̅̅̅
3J2

√
− ρify1 − (1 − ρi)fy2 ≤ 0

0 ≤ ρi ≤ 1 i = 1, 2,⋯,NN

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BT =
∑NN

i=1

(
1
Vi

∑ne

j=1

(
1
4
BT

j Vj
))

F̂b =
∑NN

i=1

(
bi

1Vi − bi
2Vi)

Ft = α
∑NN

i=1
βi

Γ

(

t̃i
nΓi
)

F̃b =
∑NN

i=1

(
bi

2Vi)

(15)  

The optimisation formulation presented in (15) results in a grayscale 
solution. To achieve a black-and-white design, it is necessary to penalise 

Fig. 2. A plate under shear stress.  

Fig. 3. The evolution of material distributions with iteration number (a) iter =
0; (b) iter = 2; (c) iter = 4; and (d) iter = 6, where ‘density’ ρ = 0 represents 
MA, and ρ = 1 represents MB, reflecting the optimisation process. 
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the objective function. In line with the approach detailed in previous 
works of Kammoun et al. (2019), Zhang et al., (2023a), and Li et al. 
(2023), the vector L is substituted with L̃ = [c1V1, c2V2,⋯, cNCVNC]

T, 
where the penalty factor for the ith node, ci, is determined by 

ci = ep(1− ρ*
i ) (16)  

in which ρ*
i denotes the ‘density’ at the ith node obtained in the previous 

iteration, and p is a constant set to 5 as suggested by Li et al. (2023), if 
not otherwise specified. The effectiveness of this exponential penalty 
function has been investigated in previous studies conducted by Smaoui 
and Kammoun (2022) and Zhang et al., (2023a). 

Consequentially, the plasticity-based topology optimisation for two- 
material structures can be expressed as: 

min
(σ̂,ρ̂)

L̃T ρ̂

subject to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

BT σ̂ − F̂b ρ̂ = Ft + F̃b

f i(σ̂ , ρ̂) =
̅̅̅̅̅̅̅
3J2

√
− ρify1 − (1 − ρi)fy2 ≤ 0

0 ≤ ρi ≤ 1 i = 1, 2,⋯,NN

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃T = [c1V1, c2V2,⋯, cNCVNC]

BT =
∑NN

i=1

(
1
Vi

∑ne

j=1

(
1
4
BT

j Vj
))

F̂b =
∑NN

i=1

(
bi

1Vi − bi
2Vi)

Ft = α
∑NN

i=1
βi

Γ

(

t̃i
nΓi
)

F̃b =
∑NN

i=1

(
bi

2Vi)

(17)  

The optimisation problem (17) can be redefined as a conventional 
standard second-order cone programming (SOCP) problem following 
the work of Meng et al. (2020) and Zhang et al. (2023a). The resolution 
of this SOCP problem is accomplished by MOSEK (ApS, 2019), a 
comprehensive optimisation software designed for addressing linear, 
quadratic, conic, semidefinite, and mixed integer problems, among 
others. 

A common numerical instability encountered in topology optimisa-
tion is the checkerboard phenomenon. A standard method to enhance 
numerical stability involves the use of the checkerboard-filtering 
method. In this study, we employ the density filtering method sug-
gested by Sigmund (2007) that the filtered density at the ith point is 
computed as: 

ρ̃i =

∑
j∈Nn

w
(
xj
)
Vjρj

∑
j∈Nn

w
(
xj
)
Vj

(18)  

Here, Vj represents the volume of the jth cell, ρj is the ‘density’ at the jth 
node, and Nn denotes the total number of nodes within the filtering 
region of the ith node. The filtering region is defined as a circle with a 
radius of R. The weighting function, denoted as w(xi), takes the form of a 
Gaussian (bell shape) distribution function, as in the work of Sigmund 
(2007): 

w
(
xj
)
= e

− 1
2

(
‖xj − xi‖

σd

)2

(19)  

in which xi denotes the coordinates of the ith node undergoing density 
filtering, and xj represents the coordinates of the jth nodes within the 
filtering region. The effectiveness of the aforementioned weighting 
function in plasticity-based topology optimisation has been demon-
strated in prior studies for single-material design in both 2D (Zhang 
et al., 2023a) and 3D (Li et al., 2023) scenarios. In this study, the same 
weighting function is utilised for two-material topology optimisation. 
The parameter σd in Eq. (19) is set to the value of R/2, where R is 1.5 
times the mesh size, aligning with the recommendation provided by 
Zhang et al. (2023a). 

Given that the objective function incorporates an exponential pen-
alty function of the ‘density’, achieving a converged solution necessi-
tates an iterative approach as outlined by the subsequent steps:  

(i) Initialisation: Start by assuming an initial ‘density’, ρ = 1, for all 
nodes in the domain.  

(ii) Penalty Factor Calculation: Compute the exponential penalty 
factor, ci, for each node using Eq. (16).  

(iii) Optimisation Problem Solving: Utilise the MOSEK solver to 
solve the optimisation problem (17) which couples the limit 
analysis and density-based topology optimisation, thereby 
obtaining the density field and stress field.  

(iv) Density Filtering: Apply density filtering (e.g., using Eq. (18)) 
and consider the filtered value as the updated density for each 
node.  

(v) Convergence Check: Evaluate the convergence criterion. 
Terminate the iteration if the criterion is met; for example, if the 

change in the objective function, Obj = L̃
T ρ̂, between two 

consecutive iterations satisfies ‖Objn+1 − Objn‖
Objn+1

≤ tolerance value. If not, 
proceed to step (ii) and repeat the entire process until the 
convergence criterion is satisfied. 

Notably, both the objective function and the constrains in (15) are 
linear. Consequently, the optimisation problem can be categorised as 
mathematically convex. Therefore, it can generally be anticipated that 
the optimisation result is a global solution. Nonetheless, with the 
introduction of the penalty factor ci, which is contingent upon the 
density from the preceding iteration step, the resultant binary design 
from the above iterative procedure may not necessarily represent a 
global minimum. 

4. Numerical examples 

In this section, three examples are provided to validate the proposed 
method and demonstrate its robustness in geostructure design. All 
simulations were conducted on a DELL PC with a 2.20 GHz CPU and 
32.0 GB memory running Microsoft Windows Server (Version 11.0). The 
final SOCP problem is resolved using MOSEK (ApS, 2019), an advanced 
modern optimisation tool for addressing large-scale optimisation prob-
lems, in MATLAB environment (R2022b). 

4.1. Design of a short plate 

To validate the proposed method, we first examine the design of a 
short plate, as depicted in Fig. 2. The plate dimensions are 4 m × 8 m ×
0.01 m. The left surface of the plate is fully fixed, while the front and 
back surfaces are fixed in the z direction. The plate is designed to 
experience a vertical shear load of 227 kPa distributed over a 1.5 m 
central section on its right surface. 

Two materials can be used in the design of this plate: Material A (MA) 
with a yield stress of 30 kPa, and Material B (MB) with a yield stress of 
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300 kPa. Given that MB is much more expensive than MA, we are ex-
pected to minimise the use of MB while ensuring that the designed plate 
can sustain the given shear load. 

Fig. 3 illustrates the evolution of material distribution through 
various iterations. It is evident that a highly diffuse structure is achieved 
when no iteration is conducted (Fig. 3(a)). Because of the application of 
penalisation, an almost binary material structure emerges through 
subsequent iterations (Fig. 3 (b)–(d)). As shown, with increasing itera-
tions, the plate’s domains are predominantly occupied by either MA 
(ρ = 0) or MB (ρ = 1), with very few domains exhibiting 0 < ρ < 1. The 
material layouts after 4 iterations (Fig. 3(c)) and 6 iterations (Fig. 3(d)) 
closely resemble each other, indicating a converged solution. This 
convergence aligns with the trend observed in the volume ratio of MB (e. 
g., the ratio of the volume of MB to the total volume of the plate) against 
iteration number, as illustrated in Fig. 4. After 4 iterations, the volume 
ratio of MB stabilises, showing minimal change and converging to a 
value of 16.5 %. 

Notably, this study incorporates the mesh refinement technique 
introduced by Li et al. (2023) for enhancing computational efficiency. 
The fundamental concept of this technique involves refining meshes in 
the domain with a density greater than a specified value, such as 0.3 in 
this study. The simulation begins with 6,642 nodes and 19,200 ele-
ments. As the simulation progresses, both the number of nodes and el-
ements gradually increase, reaching 10,671 nodes and 37,808 elements, 
respectively. Following this point, these quantities remain constant. The 
total computation time for this particular case, involving a total of 10 
iterations, amounts to 243 s. This refinement results in a very thin 
transition area from a density of 0 to a density of 1, as illustrated in Fig. 5 
(a). For validation purposes, a binary material structure is extracted 
from Fig. 5(a), as shown in Fig. 5(b). Utilising the commercial software 
OptumG2, the maximum shear load that this structure can sustain is 
determined to be 230 kPa, which closely matches the external shear load 
value of 227 kPa applied in the initial topology optimisation simulation. 
This alignment demonstrates the accuracy and validity of the proposed 
method. 

4.2. Embankment design 

Earthen embankments play a crucial role in civil engineering in-
frastructures, serving to control flooding and provide support for various 
overlying transport structures. A recent focus has been on exploring 
biopolymer-treated soil for constructing embankments, aiming to 
address challenges such as mitigating internal erosion and enhancing 
stability (Chang et al., 2020). In this section, we will apply the developed 
topology optimisation approach to design an embankment using 

biopolymer-treated clays, ensuring it meets the required Factor of 
Safety. 

The schematic representation of the embankment is depicted in 
Fig. 6, with only one-half simulated owing to its symmetrical nature. The 
bottom of the embankment is fully fixed, while symmetric boundary 
conditions are imposed on the left surface. The front and back surfaces 
are fixed in the z direction, mimicking a plane strain condition. The 
embankment will be constructed using normal clays with a bulk unit 
weight of 19.6 kN/m3 and a cohesion of 30 kPa, and biopolymer-treated 
clays with a bulk unit weight of 27.5 kN/m3 and a cohesion of 230 kPa – 
values falling within the reported range (Chang et al., 2020). When 
utilising only normal clays in the construction, the Factor of Safety (FoS) 
for the constructed embankment is 2.87. In this study, we will explore 
how to further incorporate the minimal biopolymer-treated clays into 
the construction, ensuring a FoS of 4.0. The domain allowed to use 
biopolymer-treated clays is in a shape of parallelogram (i.e., the light 
blue region indicated in Fig. 6), referred to as design domain. In this 
study, the yield stress fy of clays is twice the value of the cohesion, 
implying that the von Mises yield surface middle circumscribes the 
Tresca yield surface. Additionally, the yield stress to be used in the to-
pology optimisation process should be fy/FoS to ensure the required FoS. 
In the simulation, a fine mesh with a mesh size of he = 0.1 m is employed 
to discretise the region where biopolymer-treated clay can be applied. In 
contrast, a relatively coarse mesh with he = 0.2 m is utilised in the 
remaining area. This configuration yields a total of 10,908 nodes and 
55,152 elements. Without further refinement of the meshes in the 
simulation, the computational cost amounts to 335 s, allowing for the 
attainment of a converged solution over 9 iterations. 

Fig. 7 shows the evolution of material distribution across different 
iteration steps. Like the first example, an initially diffuse distribution is 
achieved without iteration. However, after undergoing 9 iterations, the 

Fig. 4. The curve of volume ratio of Material B (MB) against iteration number.  

Fig. 5. The illustration of (a) the converged material layout with meshes and 
(b) the extracted binary-material structure. 

Fig. 6. Schematic diagram of an embankment.  
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material distribution transforms into a nearly binary state, yielding a 
biopolymer-treated clay volume ratio of 6.1 %. Most biopolymer-treated 
clays (i.e., red part in Fig. 7(d)) are concentrated along the left and right 
surfaces of the design domain (i.e., the parallelogram). A notable 
quantity of these clays is also found in the bottom-left corner of the 
design domain. Stability analysis of the embankment design resulting 
from the topology optimisation was conducted using the commercial 
software OptumG2. In the analysis, both the normal clay and 
biopolymer-treated clay were treated as rigid-perfectly plastic materials. 
Specifically, the Drucker-Prager (DP) model in OptumG2 was employed. 
The two strength parameters associated with the DP model are M = 0 
and k = 2c/

̅̅̅
3

√
where c is the cohesion for normal clay (30 kPa) and 

biopolymer-treated clay (230 kPa). Consequently, the values of 
parameter k for normal clay and biopolymer-treated clay are 35 kPa and 
266 kPa, respectively. With such settings, the DP model in OptumG2 
degrades to a von Mises model with the yield surface middle circum-
scribing the Tresca yield surface, ensuring that the material model used 
in the stability analysis remains consistent with that utilised in the 

topology optimisation simulation. Whilst the geometry remains constant 
for the stability analysis, it is imperative to extract interface information 
to differentiate between the domains occupied by normal and 
biopolymer-treated clays. The identification of interfaces entails 
discerning boundaries between domains with densities exceeding and 
falling below 0.5. This geometric and interface data is then utilised to 
construct the analysis model in OptumG2, with corresponding material 
parameters, such as unit weight and cohesion, allocated to the respective 
domains to facilitate the analysis. Nodes and elements are automatically 
generated in OptumG2 utilising mesh adaptivity technique, thereby 
guaranteeing the achievement of converged solutions. Fig. 8 illustrates 
the stability analysis results from OptumG2. The FoS of the embankment 
with biopolymer-treated clays is 3.946, in agreement with the expected 
FoS. Compared to the embankment constructed using just normal clay 
(Fig. 8(a)), fewer soils are disturbed when the embankment with 
biopolymer-treated clays fails (Fig. 8(b)). This is attributed to the 
presence of the biopolymer-treated clays on the far left of the design 
domain, causing the shear band to propagate on its right. 

It is notable that the shape of the region designated for biopolymer- 
treated soil exhibits irregularity, which poses significant challenges for 
practical engineering implementation. Hence, it is advisable to slightly 
simplify the derived optimal topology to yield a more practical and 
easily implementable soil distribution for engineering purposes. This 
adaptation ensures that the insights gained from the optimisation pro-
cess are translated into feasible engineering solutions. Table 1 illustrates 
the designed simplified from our topology optimisation solution and 
three other designs influenced by traditional reinforcement approaches. 
These conventional strategies include the integration of reinforced ma-
terials at the base, the implementation of ecological blankets, and their 
synergistic combinations. All designs maintain a consistent area occu-
pied by biopolymer-treated soils, approximately 2.29 m2, reflecting a 
6.1 % volume ratio of biopolymer-treated clays achieved from our to-
pology optimisation. Table 1 reveals that the design strategy inspired by 
combining ecological blanket implementation and toe reinforcement 
(type 3) yields the highest FoS (3.756) among the three designs 
emulating conventional reinforcement strategies. Nevertheless, this FoS 
is still lower than that of the embankment design simplified from our 
topology optimisation solution (i.e., type 4), standing at 3.896. This 
underscores the effectiveness of the proposed method for embankment 
design. 

4.3. Soil foundation 

In the last example, we explore the design of a soil foundation as 

Fig. 7. The evolution of material distributions for the embankment with iteration number (a) iter = 0; (b) iter = 2; (c) iter = 4; and (d) iter = 9, where ‘density’ ρ =
0 represents normal clays, and ρ = 1 represents biopolymer-treated clays. 

Fig. 8. Factor of Safety (FoS) and failure mode of the embankment (a) without 
biopolymer-treated clay and (b) with biopolymer-treated clay. 
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shown in Fig. 9. The scenario involves a cuboid domain measuring 12 m 
× 6 m × 12 m. All surfaces are fixed, excepted for the top surface where 
we intend to apply a pressure of 250 kPa to a circular region with a 
diameter of 2 m. When the entire domain is occupied by normal clays of 
a bulk unit weight of 19.6 kN/m3 and a cohesion of 30 kPa, the ultimate 
pressure on the circular region it can sustain is 150 kPa. This study aims 
to increase the bearing capacity up to 250 kPa using minimal 
biopolymer-treated clays. The bulk unit weight and cohesion of the 
biopolymer-treated clays are 27.5 kN/m3 and 230 kPa, respectively. Due 
to symmetry, a quarter of the domain is considered in the topology 

optimisation process. 
The obtained material layout obtained from the developed topology 

optimisation approach is shown in Fig. 10 (a). As illustrated, mesh 
refinement techniques are employed in the simulation to enhance 
computational efficiency, leading to a total computational cost of 927 s 
for this case. The region that should be reinforced using biopolymer- 
treated clays is depicted in Fig. 10 (b) and (c), with a volume of 4.54 
m3 implying a volume ratio of 2.1 %. 

Although such a material layout can sustain a pressure of 250 kPa on 
the circular region, the irregularity of the reinforced clays escalates 

Table 1 
Four layout designs with the same volume ratio of the biopolymer-treated clays.  

Reinforcement type Schematic diagram of the model Geometry of the reinforced soil (total area 2.29 
m2) 

1. Emulate ecological blanket 

2. Emulate toe reinforcement 

3. Emulate ecological blanket & toe 
reinforcement 

4. Inspired from topology optimisation solution 

Fig. 9. An illustration of soil foundation design in 3D case: (a) Overall domain; and (b) top view of quarter section.  
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Fig. 10. An illustration of the designed soil foundation from topology optimisation: (a) material layout; (b) region with biopolymer-treated soil (before rendered); 
and (c) region with biopolymer-treated soil (after rendered). 

Table 2 
Design of soil foundations and their bearing capacity.  
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complexity in practice. We thus simplify the design according to the 
topology from the simulation to alleviate the construction challenges. 
Three designs are illustrated in Table 2: a cylinder as the traditional 
circular foot, a hollow cylinder, and a design close to the shape from our 
topology optimisation solution. The volume of all three cases are the 
same, namely 4.54 m3. Simulation analysis of the bearing capacity for 
the three distinct designs was conducted utilising Optum G3. Although 
the failure mechanism of the structure is similar for these three designs, 
the corresponding bearing capacities differ. The findings revealed that 
the first scheme manifested the lowest bearing capacity of 219 kPa, 
merely achieving 87.6 % of the intended load magnitude. Following 
this, the hollow cylindrical foundation scheme, being the second 
approach, attained 92.5 % of the intended load magnitude. The third 
scheme, which closely resembles our topology-optimised design solu-
tion, comes closest to meeting the intended load magnitude, reaching 
94.8 %. This suggests that, through simple modification of the topology 
optimisation design, we can establish a foundation that not only comes 
close to or even meets the required bearing capacity but is also suitable 
for practical construction. 

5. Conclusions 

This paper presents a novel three-dimensional limit analysis-based 
topology optimisation method tailored specifically for geostructure 
design. By seamlessly integrating limit analysis theory with density- 
based topology optimisation principles, this method enables the crea-
tion of geostructures incorporating two distinct materials, such as soils 
and reinforcements/foundations. Moreover, it ensures alignment of the 
designed geostructure’s bearing capacity with the external load applied 
during the topology optimisation process. Validation confirms the effi-
cacy of our approach, which has been successfully applied to various 
aspects of geostructure design, including embankments and soil 
foundations. 

While designs resulting from the proposed topology optimisation 
method often exhibit complexity and pose challenges for practical en-
gineering implementation, this study demonstrates the potential for 
further simplification. By streamlining the designs from the proposed 
method, we can achieve more practical and easily implementable so-
lutions, which may not be immediate apparent. This work offers a ver-
satile and efficient methodology for creating geostructure designs that 
balance material usage and structural stability. 
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