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An empirical approach to improving tidal predictions using recent real-time tide gauge data

Angela Hibberta*, Samantha Jane Roystona, Kevin James Horsburgha, Harry Leachb and Alan Hisscottc

aNational Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, UK; bDepartment of Earth, Ocean
and Ecological Sciences, University of Liverpool, Jane Herdman Building, 4 Brownlow Street, Liverpool L69 3GP, UK; cIsle of Man
Meteorological Office, Ronaldsway Airport, Ballasalla, Isle of Man

Harmonic tidal prediction methods are often problematic in estuaries owing to the distortion of tidal fluctuations in shallow
water, causing disparity between predicted and observed sea levels. The UK National Tidal and Sea Level Facility attempted
to reduce prediction errors for the short-term forecasting of High Water (HW) extremes using three alternative techniques to
the Harmonic Method in the Bristol Channel, where prediction errors are relatively large. A simple procedure for correcting
Harmonic Method HW predictions using recent observations (referred to as the Empirical Correction Method) proved most
effective and was also successfully applied to sea-level records from 42 of the 44 UK Tide Gauge Network locations. It is to be
incorporated into the operational systems of the UK Coastal Monitoring and Forecasting Partnership to improve UK short-
term sea level predictions.

Introduction

The classical Harmonic Method of Tidal Analysis and
Prediction is long-established, having been developed by
Laplace, Lord Kelvin and George Darwin (Darwin 1911)
and further advanced by Doodson (1921) and Cartwright
and Tayler (1971) among others. It is based upon the prin-
ciple that a series of tidal observations (T ) at times (t) may
be decomposed into a finite number of sinusoidal functions
(or tidal constituents) of the form given in Equation (1),
with angular speeds (σ) that are related to a number of
known astronomical frequencies.

T (t) = Z0 +
∑N
n=1

Hn fncos [snt − gn + (Vn + un)] (1)

The amplitudes (H ) and phase lags (g, relative to the Equi-
librium Tide at Greenwich) of these constituents are
derived by least-squares regression. Variations in phase
and amplitude that are caused by the 18.6-year cycle in
maximum lunar monthly declination are accounted for by
nodal factors fn and un, while Vn is the equilibrium phase
angle of the nth constituent.

The tidal constituents collectively define the tidal
characteristics at a particular location and may be recom-
bined to predict future tidal patterns at that site. The selec-
tion of constituents to be used in an Harmonic Analysis and
Prediction is dependent upon the length and sampling inter-
val of the observational time series, but as a general rule, in

the deep water of the open ocean and for time series of 12
months or longer, the observed tide may be resolved using
only 60 tidal constituents (Doodson 1921) – a practice that
is generally referred to as the Standard Harmonic Method
(SHM).

However, in the relatively shallow coastal seas, the pro-
gression of the tide is modified by non-linearities intro-
duced by depth and bottom friction and this shallow
water distortion of the tide requires the use of additional
higher frequency tidal constituents. This Extended Harmo-
nic Method (EHM) (Rossiter and Lennon 1967) typically
involves the use of 114 constituents to resolve the observed
tide for records of 1 year or longer. Even so, in certain
environments (such as long, shallow estuaries) tidal distor-
tion can be such that even EHM may fail to resolve the
observed tide sufficiently. Consequently, the residual
times series (i.e. the total observed water level minus the
calculated tidal component) may still contain significant
tidal energy so that any future tidal predictions based
upon such an analysis will fail to capture all of the observed
tidal variability.

Such tidal predictions are an integral part of the UK
Coastal Monitoring and Forecasting (UKCMF) Service
which provides a coordinated system of sea-level monitor-
ing and forecasting at 44 locations around the UK coast
(Figure 1). This network of tide gauges (the UK Tide
Gauge Network, UKTGN) evolved in response to the
1953 North Sea storm surge event and transmits sea level
observations from each location at 15 min intervals to the
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UK Flood Forecasting Centre, where they are used in con-
junction with EHM tidal predictions to monitor and plan for
tidally and meteorologically induced extremes. Given the
operational importance of these predictions, it is essential
to minimize the associated prediction errors.

For the majority of UKTGN sites, the Mean Absolute
Error (MAE) associated with EHM predictions is typically
in the region of 5–6 cm, but in the Bristol Channel region,
owing to a combination of shallow water effects and large
tidal range of around 12 m, these errors more than double
resulting, for example, in a MAE of 14.37 cm at Avon-
mouth and 15.83 cm at Newport Newport for the period
2006–2009 inclusive. Consequently, the National Tidal
and Sea Level Facility (NTSLF) at the National Oceanogra-
phy Centre (NOC) in Liverpool was commissioned by the
Environment Agency to conduct a pilot study in the Bristol
Channel to investigate the potential for alternative methods
of tidal prediction or methods to improve the prediction
accuracy associated with classical harmonic analysis.

Three alternative tools for Tidal Analysis and Predic-
tion were evaluated in the pilot study, and were bench-
marked against EHM tidal predictions. The three methods

evaluated were (1) the use of Artificial Neural Network
(ANN) models, (2) the Species Concordance technique,
and (3) a simple empirical procedure for correcting Harmo-
nic Method HighWater (HW) predictions based upon a few
recent observations, which is referred to hereafter as the
Empirical Correction Method.

Data and methods

Sea-level data

Two test sea-level datasets were prepared for this study.
The first consisted of quality-controlled sea level obser-
vations for the UK Tide Gauge Network gauge at Avon-
mouth, for the period January to December 2007
(inclusive). These data were obtained from the electronic
archive of the British Oceanographic Data Centre
(BODC) (http://www.bodc.ac.uk/data/online_delivery/
ntslf/processed/) and were supplied in the form of 15 min
averages, derived from 1 second sampling by a bubbler
gauge. These data formed the basis of the pilot study to
evaluate the alternative Tidal Analysis and Prediction tech-
niques in the Bristol Channel and are therefore referred to
hereafter as the Bristol Channel Pilot Study Dataset.

Certain of the prediction techniques tested in the pilot
study demand the use of additional data for reference pur-
poses. For example, theANNmodel requires the use of train-
ing and validation datasets and consequently, year-long
BODC sea level time series for the Avonmouth gauge for
2005 and 2006 were obtained for these respective purposes.
Similarly, the Species Concordance Technique involves the
use of a long observational tidal record at a reference location
that is unaffected by tidal distortion. Therefore, BODC
quality-controlled sea level observations were obtained for
two potential reference ports: Milford Haven (for the
period 1993–2009) and Newlyn (between 1915 and 2009)
(see Figure 1). Other UKTGN ports adjacent to Avonmouth
were discounted as reference locations since they are them-
selves affected by shallow water tidal distortion.

The second test dataset consisted of quality-controlled
sea level data from the BODC electronic archive for the
period 2006–2009 inclusive at 44 UK TGN sites
(Figure 1). This dataset was used to evaluate the most
successful technique from the pilot study in the context
of the wider UK Tide Gauge Network. This is referred to
hereafter as the UKTGN Validation dataset.

All datasets were downsampled to hourly intervals in
order to reduce computational complexity and data values
identified as ‘suspect’ by BODC were excluded from the
study.

Storm surge data

Two datasets of the meteorologically induced surge com-
ponent of sea level (S) were prepared, affording identical

Figure 1. Locations of the 44 UKTGN stations. Grey circles
show the Avonmouth pilot study site (No. 6) and the tide gauges
at Newlyn and Milford Haven (No. 2 and No. 9 respectively,
which were used as reference ports for the Species Concordance
technique). All stations were used to devise the validation
dataset. Ports numbers are used only for the purposes of this
study and are allocated clockwise from the southwest tip of the
UK.
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spatial and temporal coverage to the sea level datasets for
the Bristol Channel Pilot Study and the UKTGN Validation
dataset. These data were derived from hourly surge hind-
casts which are produced and archived annually for
model validation purposes by NTSLF, using the UK Oper-
ational Storm Surge Model (CS3x) (Horsburgh & Flower-
dew 2014). This is a 12 km 2D hydrodynamic shelf model
that is run four times daily at the UK Met Office and is
forced by 10 m winds and sea level pressure (SLP) from
the UK Met Office Global Atmospheric model.

Methods

In order to quantify the potential improvement afforded by
the alternative prediction methods, two sets of tidal predic-
tions were prepared using the classical Harmonic Method,
which has traditionally been used by UKCMF for flood
forecasting purposes. The first consisted of hourly tidal pre-
dictions for 2007 for the port of Avonmouth and was gen-
erated by applying the EHM to the Avonmouth sea level
record for 1988–2007 (inclusive). This record length was
selected to encompass an entire lunar nodal cycle, in
order to capture the full extent of the Avonmouth tidal
range.

The second set of hourly tidal predictions afforded
identical spatial and temporal coverage to the UKTGN
Validation Dataset and was produced by applying the
EHM to sea-level observations at the 44 UKTGN sites
using data for 1990–2009. For locations where 19 years’
observations were not available, the longest available sea-
level record was used to derive the harmonic predictions.

ANN

ANN models are adaptive numerical models that emulate
biological neural networks, consisting of various elements
(neurons) that operate in parallel and are interconnected by
weightings. Such models employ a training dataset to itera-
tively identify and adjust patterns and relationships
between neurons to minimize the error between the training
data and the model output. At each iteration, the resulting
model is tested using an authentication dataset.

To evaluate the potential for ANN models to improve
on short-term water level predictions in the Bristol
Channel, a simple ANN model was developed using the
MATLAB neural network toolbox, version 6.0.1 in
MATLAB R2008b1. Initially, the models were developed
with a single output, for computational speed, so that
each model was built with the aim of predicting water
level at a given number of hours in advance. Models
were tested for predictions up to 24 h in advance, using
the Avonmouth pilot study sea level dataset. Two inputs
were presented to the model; the observed water level at
Avonmouth and the predicted tide level using the EHM,
over periods of 7 days to 24 h.

A feed-forward back propagation (FFBP) ANN struc-
ture was chosen for the initial stage of work owing to its
simplicity. The original FFBP method (Rumelhart et al.
1986) has been improved considerably since its first publi-
cation, with recent advances such as the introduction of the
Levenberg-Marquardt algorithm in ANN training (Leven-
burg 1944; Marquardt 1963). This study used a Bayesian
Regulation training algorithm, which employs the Leven-
berg–Marquardt algorithm to optimize the weights and
biases of the model with respect to the mean squared
error. This method incorporates an early stopping routine
to avoid overfitting; a common problem with ANNs,
where the model is optimized on the training data set
with a subsequent loss of generality when applied to
other data sets. The Bayesian Regulation training algorithm
derives model weights and biases from the training data set,
testing the resulting model on a validation data set at each
iteration. When the mean squared error of the validation set
deteriorates consistently over a given number of iterations,
the training ceases. The default number of iterations for
early stopping is six.

The internal structure of an ANN model can be made as
simple or complex as necessary for any given problem. In
this study, a range of ANN model structures were tested,
including variations in the number of hidden layers, in
the number of neurons and in transfer function types. In
practice, the greatest success was achieved with a three-
layer model, consisting of two hidden layers of 24 and
six neurons respectively using tan sigmoid transfer func-
tions and one output layer using a pure linear transfer func-
tion. The results described hereafter relate only to that
combination of parameters.

The model predictions may vary for the same training
and validation data sets because the weights and biases
are initialized by a random number generator and therefore
the optimization techniques may converge to different
minima. Consequently, the model was reproduced three
times to ensure consistency of ANN model performance.

Species Concordance technique

The Species Concordance Method of Tidal Prediction
(Simon 1981; George & Simon 1984) is a variant of the
Response Method (Munk & Cartwright 1966) and was
specifically designed to overcome the effects of both
shallow-water distortion and variations in fluvial discharge
that arise in estuaries. The full mathematical derivation of
this technique is given by George and Simon (George &
Simon 1984), but in essence it involves the derivation of
a number of complex spherical harmonics, each of which
represents a frequency band of the tidal potential, the
theory being that the oceanic response to gravitational
forcing (including tidal distortion in shallow water) will
be the same at all frequencies within each tidal species.
Complex amplitudes (C ) are derived for each frequency
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band (or tidal species, k) at a problematic port (m) and at a
nearby reference location (R) at which the tidal patterns are
not distorted. Least-squares regression is then used to
deduce a magnification factor (B) between the complex
amplitudes at the two ports. So, for even species, the
complex amplitude at location m and time t + τ (where τ
is the mean time lag of the M2 tide between ports m and
R) is described by:

Cmk(t + t) = Bmk(t)Ck/2
Rk (t) (2)

and for odd species, by:

Cmk(t + t) = Bmk(t)CRk(t) (3)

The resulting complex amplitudes Cmk can then be used to
predict water levels Hm(t) at the problematic site from:

Hm(t) = 1

2

∑k−1

k=0

[Cmk(t)ejkq1t + C
′
mk(t)e−jkq1t] (4)

where q1 = 2π radians per lunar day, and C
′
mk is the complex

conjugate of Cmk .
The technique has been successfully applied to the

Gironde and Loire Estuaries (George & Simon 1984) and
to a number of ports in Brittany and Normandy (Simon
1989). In the latter study, for example, the non-tidal
residuals at Le Conquet for a 12-month analysis period
obtained using the EHM exhibited a standard deviation of
5.3 cm, while the predictions of the Species Concordance
Method for the same analysis period generated residuals
with a standard deviation of 4.4 cm.

The present study used the MAS (MArvé Simon)
Species Concordance suite of programs supplied by the
French Service Hydrographique et Océanographique de la
Marine (SHOM), who use this method routinely for tidal
analysis of short time series (of ∼1–12 months’ duration)
and for ports experiencing shallow water distortion.
Complex amplitudes (Cmk) were derived for each tidal
species at two reference locations that were unaffected by
shallow-water distortion, using the longest available time
series of hourly sea level heights at each site. In the case
of Avonmouth, two potential reference ports were ident-
ified: (1) Milford Haven, which is situated on the South
Wales coast across the Bristol Channel from Avonmouth
and affords continuous sea level records since 1993 and
(2) Newlyn, which is situated over 200 km from Avon-
mouth but provides a long sea level record (observations
commenced in 1915) and is a deep water port experiencing
little shallow water distortion. These complex amplitudes
were then used as data inputs, in conjunction with hourly
observed sea level heights from Avonmouth for an overlap-
ping period, in order to derive tidal magnification factors
(Bmk) between the reference and problematic ports and

thereafter produce tidal predictions for Avonmouth using
Equation (4). Of the two reference ports, optimum results
were obtained using the Newlyn record, and so only
those results are reported in this paper.

The technique was tested using various periods of over-
lapping observations at Avonmouth and the Newlyn refer-
ence record, but in practice the success of the technique
displayed little dependence upon the length of the concur-
rent observation period at the two ports. The results
reported here are based upon an overlapping period of 1
year’s observations at Avonmouth and Newlyn.

Empirical Correction Method

This simple empirical procedure was developed by Hisscott
(Hisscott 2009) to adjust harmonic tidal predictions by a
correction factor that is based upon differences between
observations and predictions during a few recent HW,
when the accuracy of tidal predictions is of greatest
concern from a flood forecasting perspective. The tech-
nique has previously been successfully applied by the Isle
of Man Meteorological Office to HW levels at Douglas,
halving the RMS error of EHM predictions from ∼8 cm
to ∼4 cm for the period 1 June 2009 to 31 May 2010
(Hisscott 2013, personal communication).

Since this technique is applied solely to HW predictions
and observations and not to the whole tidal curve, both the
Bristol Channel Pilot Study time series and the UKTGN
Validation time series of (a) sea-level observations, (b) har-
monic analysis predictions and (c) storm surge hindcasts
were sub-sampled to HW only.

To exclude the influence of diurnal inequality (a dis-
parity in the height of adjacent HW caused by the lunar
declination), the correction process was made using predic-
tions and observations for alternate HW, producing the fol-
lowing algorithm:

H(N ) = A(N ) + S(N ) + C1[H(N−2) − S(N−2) − A(N−2)]
+ C2[H(N−4) − S(N−4) − A(N−4)]
+ C3[H(N−6) − S(N−6) − A(N−6)] + C4 (5)

whereH(N ) is the observed HW level for tide number N (see
Figure 2), A(N ) is the astronomical HW prediction derived
by the EHM, and S(N ) is the meteorologically induced
‘surge’ component for the same tide, while C1, C2, and
C3 are prediction correction coefficients, derived by least-
squares regression of the prediction error for H(N ) against
the predictions errors in the preceding H (N−2…N−6). Cor-
rection coefficients (C1 … CN) were calculated for preced-
ing alternate HW between N – 2 and N – 8, but optimum
results were obtained for N – 2 to N – 6, resulting in the
use of three coefficients (C1 … C3) and a constant term
(C4). Consequently, predictions made using this method
can be prepared up to 24 h in advance.
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It should be noted that the Empirical Correction
Method ignores differences in the predicted and observed
arrival time of HW, so that A(N ) and H(N ) represent a
semi-diurnal maximum in time series of astronomical pre-
dictions and sea level observations, even though the timing
of that maximum may differ slightly in the two records.

Results and discussion

For each alternative prediction method ( j), the associated
error (err) at time (i) was estimated exclusive of the
surge sea level component and was defined thus:

err ij( ) = Ht(i) − S(i) − P(ij) (6)

where Ht is the observed water level i, S is the hindcast
surge, and P is the prediction.

Several criteria were used to evaluate the efficacy of
each prediction method compared with classical harmonic
analysis, including the use of spectral analysis and
various statistical measures. Such comparisons were
made for hourly interval data for the EHM, the Species
Concordance Technique and the ANNmodel. The residuals
of these three alternative techniques were also sub-sampled
to HW intervals, to facilitate ‘like-for-like’ comparisons
with the Empirical Correction Method.

Bristol channel Pilot Study dataset

The MAE, the root mean squared error (RMSE), and the
coefficient of determination (r2 = 1− var(err)/var(H))
were derived for each prediction method using the
Bristol Channel Pilot Study dataset. Since the Empirical
Correction Method is based solely upon HW prediction
errors, these statistics are presented for the ANN,
Species Concordance and Harmonic Analysis methods
for hourly intervals [Table 1(a)] and, for comparison
with the Empirical Correction Method, sub-sampled to
HW intervals [Table 1(b)]. In addition, histograms of
the errors associated with each method, together with
the skewness (s) and kurtosis (k) of each error distri-
bution, are presented in Figure 3 for hourly sampled
data and in Figure 5 for HW intervals only. The skewness
(s) and kurtosis (k) are defined as:

s =
∑n

i=1 (xi− �x)3
sd3

(7)

and

k =
∑n

i=1 (xi− �x)4
sd4

(8)

(where sd is the standard deviation) and their respective
standard errors (ses and sek) are defined as follows:

ses =
��
6

n

√
(9)

and

sek =
���
24

n

√
(10)

Consequently, skewness or kurtosis values that are smaller
than their respective standard errors are not significantly
different from zero.

Panel (a) of Table 1 shows that, of the three methods
tested at hourly sampling at Avonmouth, the ANN model
shows the greatest improvement upon the classical EHM,
exhibiting a markedly lower RMSE and MAE and a
higher r2 value. Indeed, Table 1(a) indicates that the
average magnitude of the prediction error (MAE) associ-
ated with the ANN model is 5.84 cm smaller than that of
the EHM. In contrast, the Species Concordance Method
performs relatively poorly, resulting in larger prediction
errors than the alternative methods. For example, the
MAE associated with the Species Concordance Method is
2.26 cm larger than that of the EHM. Additionally, the r2

value of the Species Concordance predictions is lower
than those derived by other methods, suggesting that they
explain a smaller proportion of the observed variance.

Histograms of the errors associated with each method
using hourly sampled data [Figure 3(a)–3(c)] show that
the error relating to the EHM is positively skewed, relative
to a mean of 5.21 cm [shown as a thick dashed line in
Figure 3(a)]. A positive skew indicates a tendency for
over-prediction, while the mean itself is indicative of
under-prediction and perhaps reflects the extreme under-
prediction errors to the right of the distribution. In contrast,
Figures 3(b) and 3(c) show that the error distributions
associated with the Species Concordance and ANN
methods are both negatively skewed relative to mean
errors of 2.16 cm and 0.82 cm respectively. This is indica-
tive of a tendency towards under-prediction. As regards
kurtosis, the EHM error distribution [Figure 3(a)] is platy-
kurtic (broad), suggesting that the errors are relatively
widespread about the mean, while the distributions of the
alternative methods exhibit greater kurtosis, meaning that
there are fewer outliers and that errors are generally
smaller. In particular, the ANN model error distribution is
strongly leptokurtic (narrow), exhibiting a more acute
peak, with a greater concentration of errors close to zero.
The relative success of applying this method to the
hourly sampled data is confirmed by spectral analysis
[Figure 4(a)–4(c)], which shows that the residual time
series of the EHM and the Species Concordance techniques
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contain more energy at tidal frequencies than the ANN
model residuals, particularly at fourth-diurnal and higher
frequencies, although tidal energy is not entirely eliminated
by the ANN model as spectral peaks are still obvious in
Figure 4(c) at diurnal and semi-diurnal frequencies.

When comparisons between the techniques are made
solely at HW [Table 1(b)], the improvement afforded by
the ANN model is less clear. While the MAE and RMSE
are 1.71 cm and 2.01 cm lower respectively than those
associated with the EHM approach, the r2 value derived
for the EHM (0.9862) is higher than that relating to the
ANN model predictions (0.9804), meaning that the harmo-
nic predictions explain a greater proportion of the observed
variance than those of the ANNmodel. This is explained by
examination of histograms of the errors associated with
these methods at HW [Figure 5(a) and 5(c)], which show
that the EHM errors exhibit fewer outliers than those of
the ANN model, meaning that the EHM predictions are
more frequently closer to observations that the ANN

model predictions. However, Figures 5(a)–5(d) also show,
that while all error distributions display a negative skew
(reflecting a tendency towards under-prediction), the skew-
ness of the ANN model error distribution is relative to a
mean of only 2.36 cm, while the means of the EHM and
Species Concordance error distributions are 12.74 cm and
13.67 cm respectively, indicating that this under-prediction
bias is smaller in the ANN model.

As regards the Species Concordance Method, Table 1
indicates that it performs better at HW [panel (b)] than at
hourly intervals [panel(a)], but it still fails to improve
upon the results obtained by the EHM. Figure 5(a) and
(b) confirm this, since the error distribution associated
with the Species Concordance Method shows that errors
are more widespread about the mean than those of the
EHM and that they display a larger negative skew relative
to a higher mean value, reflecting a greater bias towards
under-prediction than the EHM. This comparatively poor
performance may be attributable to the limited availability
of suitable nearby reference ports, being constrained by
both the spatial coverage of the UK Tide Gauge Network
and by the large physical scale of the Bristol Channel,
which means that only distant ports are unaffected by
shallow water tidal distortion.

Table 1(b) shows that the greatest improvement upon
the EHM tidal predictions at HW is afforded by the Empiri-
cal Correction Method, which reduces the RMSE and
MAE by 7.96 cm and 7.25 cm respectively and improves
the r2 statistic from 0.9862 to 0.9916. Thus, not only is
the average magnitude of the error reduced, but the
improved r2 statistic indicates that the Empirical Correc-
tion Method predictions are more frequently closer to
observed HW levels than is true of the EHM HW predic-
tions. Further examination of Figure 5(a)–(d) show that
despite the general susceptibility of all methods to under-
prediction at HW, such bias is minimized using the Empiri-
cal Correction Method, as the skewness of the error distri-
bution is smallest and is relative to a zero mean. Figure 5
(a)–(d) also indicates that statistically, the kurtosis of the
error distributions association with EHM, Species Concor-
dance and the ANN model are not significantly different
from zero, but even so, it is clear from visual examination
of these histograms that the errors associated with the
Empirical Correction Method are smaller than those of
the alternative methods. Indeed, the error distribution of
Empirical Correction Method predictions is clearly lepto-
kurtic, exhibiting a greater concentration about the mean
value (in this case, 0.00 cm) and fewer outliers. This con-
firms that the HW predictions of this latter technique are
generally closer to observed HW levels than is true of the
alternative methods.

Given that (a), from a flood forecasting perspective, the
accuracy of tidal predictions is most crucial at HW and (b),
the Empirical Correction Method outperformed the alterna-
tive techniques at such intervals using the Pilot Study

Figure 2. Example of the indexing of HW employed by the
Empirical Correction Method, using hourly sampled data from
the Avonmouth tide gauge.

Table 1. Statistical comparison of prediction methods at
Avonmouth (a) for hourly sampling intervals and (b) for HWs
only.

RMSE (cm) MAE (cm) r2

(a) Hourly sampling
EHM 26.30 21.24 0.9939
ANN model 19.80 15.40 0.9964
Species Concordance 29.69 23.50 0.9920

(b) HW only
EHM 19.55 16.30 0.9862
ANN model 17.84 14.29 0.9804
Species Concordance 22.03 18.77 0.9813
Empirical correction 11.59 9.05 0.9916

Note: The prediction error is defined as the observed water level minus the
model hindcast surge and tidal prediction [Equation (6)]. RMSE and MAE
are the root mean squared error and the mean absolute error, respectively.
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dataset, the latter technique was then applied to the
UKTGN Validation dataset.

UKTGN validation dataset

Table 2 shows the RMSE, the MAE and the r2 statistic at
each of the 44 UKTGN Validation Dataset locations for
(a) the EHM using residuals that were sub-sampled to
HW intervals and for (b) the Empirical Correction
Method. These data are also presented graphically in
Figure 6(a)–(c).

For ports numbered 22 and 41 in Table 2 and Figure 6
(Bournemouth and Port Ellen), the Empirical Correction
Method could not be applied, since these locations experi-
ence multiple high and low waters each day owing to non-
linear shallow water effects, which are enhanced in the
vicinity of amphidromic points where the M2 amplitude
is low (Pugh 1987). This renders the computational identi-
fication of HW through the extraction of turning points in
the tidal curve extremely complex. However, both ports
exhibit relatively small tidal ranges of ∼1 m (at Port
Ellen) and ∼2 m (at Bournemouth) and the associated
EHM prediction error is therefore similarly low. For
example, MAEs relating to the EHM at hourly intervals
for 2006–2009 were 6.85 cm and 5.36 cm respectively.
Given that prediction errors have been shown to be
smaller over HW than at hourly intervals at Avonmouth,

it is likely that any potential improvement afforded by the
Empirical Correction Method over HW at these ports
would also be small.

Table 2 and Figure 6(a)–6(c) both clearly show that for
all other locations, the Empirical Correction Method results
consistently in a lower MAE and a lower RMSE than is the
case for the EHM. The consistently higher r2 statistic also
shows that empirically corrected predictions explain a
larger proportion of the observed variance than is the case
for the EHM predictions. In particular, relatively large
reductions in error of around 5 cm [panels (a) and (b)] and
improved r2 statistics are seen in the high tidal range area
of the Bristol Channel (port numbers 3–9), which is an
important development from the perspective of coastal
flood forecasting. Comparison of the results using the 12
month Pilot Study dataset at Avonmouth [Table 1(b)] with
those of the 48 month UKTGN Validation Dataset for the
same location (Table 2) shows that the Empirical Correction
Method achieves remarkably similar results, irrespective of
the length of the observational time series used. For the
shorter time series, the RMSE andMAE of the EHMpredic-
tion error are several cm higher than for the UKTGN Vali-
dation dataset, but despite this the Empirical Correction
technique yields RMSEs of 11.59 cm and 11.61 cm for
the Pilot Study and Validation datasets respectively,
MAEs of 9.05 cm and 8.94 cm and r2 statistics of 0.9916
and 0.9914.

Figure 3. Histogram of prediction errors using hourly sampled data at Avonmouth for 2007 associated with (a) the EHM (b) the Species
Concordance Method, and (c) the ANN Model. The error bin interval is 2 cm. The skewness (s) and kurtosis (k) of each distribution are
shown on the upper left of each panel, and the associated standard errors are 0.026 and 0.053 respectively. The mean value of each dis-
tribution is represented by the black dashed line.
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Figure 4. Power spectra of non-tidal residual time series for January–December 2007 for the Avonmouth tide gauge using (a) the EHM,
(b) the Species Concordance Method, and (c) the ANN model.

Figure 5. Histogram of prediction errors at HW at Avonmouth for 2007 associated with (a) the EHM, (b) the Species Concordance
Method, (c) the ANN Model, and (d) the Empirical Correction Method. The error bin interval is 2 cm. The skewness (s) and kurtosis
(k) of each distribution are shown on the upper left of each panel and the associated standard errors are 0.093 and 0.186 respectively.
*Skewness or kurtosis is smaller than the associated standard error and is therefore not statistically different from zero. The mean value
of each distribution is represented by the black dashed line.
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Interestingly, while ports situated around the North
Channel of the Irish Sea (Bangor, Portpatrick, Portrush
and Millport, port numbers 18–21) exhibit relatively low
MAE and RMSE for the EHM predictions, the r2 statistic
is also relatively low, implying that the prediction error is
large relative to the observed tidal variability and that
there is frequent disparity between observations and predic-
tions. It is likely that this is because the primary semi-
diurnal tidal constituents are not so dominant in this

region (Pugh 1987). Comparatively low predictions errors
and r2 statistics are also found at Lerwick and Lowestoft
(port number 27 and 35 respectively), which are again,
areas of small M2 amplitude and enhanced shallow water
distortion.

Several other locations exhibit comparatively high
EHM prediction errors, most notably Whitby, Harwich
and Sheerness (port numbers 32, 36 and 37 respectively)
and in the latter two cases, the r2 statistic is also relatively

Table 2. Statistical comparison of HW prediction errors for 2006–2009 (inclusive) at 42 of the 44 UKTGN stations, using (a) the classical
Extended Harmonic Method (EHM) and (b) the Empirical Correction Method.

Port number Port name

RMSE (cm) MAE (cm) r2 (cm)

(a) EHM (b) Emp Corr (a) EHM (b) Emp Corr (a) EHM (b) Emp Corr

1 St Marys 7.19 3.41 5.94 2.57 0.9892 0.9953
2 Newlyn 10.30 3.72 9.09 2.85 0.9864 0.9932
3 Ilfracombe 9.87 5.87 8.14 4.50 0.9923 0.9953
4 Hinkley Point 14.12 10.28 11.50 7.88 0.9865 0.9919
5 Portbury 18.11 11.50 14.25 8.84 0.9834 0.9909
6 Avonmouth 17.80 11.61 14.37 8.94 0.9857 0.9914
7 Newport 19.26 12.89 15.83 9.71 0.9821 0.9884
8 Mumbles 8.47 6.42 6.79 4.90 0.9895 0.9938
9 Milford Haven 12.22 4.34 10.92 3.35 0.9915 0.9955
10 Fishguard 7.37 4.25 5.89 3.22 0.9806 0.9925
11 Barmouth 8.32 6.55 6.47 4.89 0.9763 0.9853
12 Holyhead 7.12 4.58 5.61 3.46 0.9757 0.9897
13 Llandudno 8.15 6.55 6.46 4.85 0.9852 0.9902
14 Liverpool 10.00 5.76 8.40 4.47 0.9904 0.9940
15 Heysham 9.14 6.28 7.33 4.75 0.9900 0.9944
16 Port Erin 7.23 4.50 5.94 3.44 0.9784 0.9886
17 Workington 9.01 6.75 6.76 4.97 0.9855 0.9908
18 Bangor 6.30 4.54 4.76 3.40 0.9285 0.9620
19 Portpatrick 7.65 5.27 6.22 3.93 0.9355 0.9665
20 Portrush 7.06 4.49 5.40 3.36 0.9264 0.9658
21 Millport 8.33 6.15 6.45 4.64 0.8945 0.9410
22 Port Ellena – – – – – –
23 Tobermory 7.69 4.72 5.87 3.55 0.9725 0.9887
24 Ullapool 9.59 4.82 7.36 3.70 0.9694 0.9896
25 Stornoway 7.53 4.01 6.01 3.09 0.9733 0.9921
26 Kinlochbervie 9.40 4.45 7.40 3.42 0.9699 0.9898
27 Lerwick 6.71 3.53 5.28 2.77 0.8920 0.9680
28 Wick 6.78 4.19 5.31 3.23 0.9521 0.9806
29 Aberdeen 6.21 4.49 5.01 3.42 0.9715 0.9834
30 Leith 8.06 6.26 6.35 4.81 0.9731 0.9805
31 North Shields 8.71 5.39 7.06 4.07 0.9730 0.9831
32 Whitby 15.79 5.57 14.14 4.20 0.9709 0.9833
33 Immingham 11.55 8.30 8.77 6.07 0.9701 0.9778
34 Cromer 8.35 6.08 6.47 4.53 0.9696 0.9792
35 Lowestoft 6.90 5.54 5.30 4.18 0.8687 0.9059
36 Harwich 17.38 6.93 15.33 5.28 0.9050 0.9408
37 Sheerness 12.94 6.98 10.47 5.35 0.9484 0.9695
38 Dover 9.56 6.46 7.74 4.83 0.9758 0.9835
39 Newhaven 7.47 5.60 5.95 4.16 0.9858 0.9902
40 Portsmouth 7.93 5.54 6.38 4.15 0.9591 0.9721
41 Bournemoutha – – – – – –
42 Weymouth 6.98 4.34 5.60 3.23 0.9486 0.9794
43 Jersey 9.38 6.73 7.53 4.92 0.9936 0.9963
44 Plymouth 7.30 4.08 5.89 3.14 0.9796 0.9902

Note: The prediction error is defined as the observed water level minus the model hindcast surge and tidal prediction [Equation (6)].
aPorts that experience multiple HW per day, to which the Empirical Correction Technique could not be applied.
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Figure 6. Comparison of (a) MAE, (b) RMSE, and (c) r2 statistic of prediction errors using the EHM (black line) and the Empirical Cor-
rection Method (grey line) for 42 of the 44 UK Ports used in this study. Ports are numbered clockwise from the Southwest tip of the UK (see
Figure 1).

Figure 7. Histogram of prediction errors at HWat Harwich for 2006–2009 (inclusive) associated with (a) the EHM and (b) the Empirical
Correction Method. The error bin interval is 2 cm. The skewness (s) and kurtosis (k) of each distribution are shown on the upper left of each
panel, and the associated standard errors are 0.046 and 0.092, respectively. The mean value of each distribution is represented by the black
dashed line.
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low, showing that the predictions explain less of the
observed variability than at most other locations.

Regardless of this apparent regional variability in the
performance of the EHM, what clearly emerges from
Figure 6(a)–6(c) is that the application of the Empirical
Correction Method to the EHM predictions results in a
noticeable improvement in the r2 statistic at these locations
and a reduction in prediction errors. Histograms of the error
distributions associated with the two methods at each of
these ports (see example for Harwich in Figure 7), show
a general tendency of the EHM to underpredict HW, but
the application of the Empirical Correction Method
increases the Kurtosis and decreases the skewness of the
error distribution in each case, reducing the disparity
between observations and predictions.

Since the interactions of the lunar perigeal and nodical
cycles induce an amplitude variation in tidal extremes over
a period of ∼4.5 years, it was considered that the UKTGN
Validation dataset duration of four years would be sufficient
to capture the full extent of the tidal range at each site,
thereby ensuring that the empirical correction coefficients
would be pertinent to tidal predictions errors at other
times. To verify this, the correction coefficients were vali-
dated by testing the correction algorithm at all 42 locations
using EHM predictions and sea-level observations for 2010
and were found to reduce EHM prediction errors to a
similar extent as was the case for the UKTGN Validation
dataset covering the period 2006–2009.

In a further test, the Empirical Correction Method was
applied solely to HW Springs using the UKTGN Validation
dataset, but the results were not materially different to those
presented here for all HW.

Conclusions

This study was motivated by the problems associated with
classical harmonic methods of tidal prediction in shallow
waters, particularly in estuaries like the Bristol Channel
which experience a large tidal range and therefore com-
mensurately large prediction errors. The minimization of
such errors is of particular importance where these predic-
tions are used in the context of coastal flood forecasting.
Indeed, such forecasting will become increasingly
demanding in terms of accuracy given that Mean Sea
Level Rise will increase the risk of any given storm event.

Of the alternative methods tested, the Species Concor-
dance Method was least successful, yielding larger predic-
tion errors than the EHM – a result that may be attributed to
the requirement by this technique for tidal observations
from a nearby port that does not experience tidal distortion,
since the large scale of the Bristol Channel means that only
remote ports are unaffected by shallow water effects. In
contrast, both the ANNmodel and the Empirical Correction
Method offer considerable scope for improvement upon the
classical EHM for certain forecast times into the future (and

here we have focused upon operational forecast times).
From this perspective, the two methods are comparable in
that they both allow predictions to be made up to 24 h in
advance.

At hourly intervals, the ANN model performed best,
but when all four techniques were compared solely at
HW, it offered less potential for improvement upon the har-
monic method, which is currently adopted by the UKCMF
partnership as the standard method of tidal prediction.
From the perspective of operational flood forecasting, the
accuracy of tidal predictions is of greatest importance at
HW and this flaw in the ANN model is therefore a draw-
back to its use for these purposes. However, it is important
to note that the ANN model results at HW were based upon
subsampling of hourly predictions and not on the appli-
cation of the model solely to HW intervals, which is an
area for future study.

Clearly, the advantage of the ANN model is that it
allows predictions to be made for the whole tidal curve
and is not restricted to HW. Where such high frequency
predictions are required, the ANN model may offer poten-
tial for improvement upon harmonic methods, if errors can
be reduced at HW. It is certainly possible that experimen-
tation with alternative model structures, model inputs and
training algorithms might lead to improved predictions.
For example, if use is made of additional input data such
as residual water level and/or SLP datasets together with
tidal predictions, this might enable the model to discrimi-
nate between tidal, atmospheric and other forcings and
thereby improve the predictability of these components.
In addition, consideration could be given to the use of
recurrent inputs, i.e. using the predictions of the ANN
Model as inputs to improve the convergence between pre-
dictions and observations.

Nevertheless, it is evident that for HW predictions, the
relatively simple Empirical Correction Method is most suc-
cessful, reducing prediction errors (RMSE and MAE) by
between ∼2 and ∼10 cm at UKTGN locations. Since this
technique can be considered an enhancement to the
present method of tidal prediction used by the UKCMF
partnership, it is relatively simple and quick to implement,
which is clearly of benefit given the recent UK incidence of
coincident storm surges and HW during winter of 2013/
2014. Evidently, the technique cannot be applied every-
where since the identification and indexing of alternate
HW is problematic for locations that experience multiple
High and Low Waters. However, it should be noted that
the disparity between tidal predictions and observations
was reduced at all remaining locations for which the tech-
nique was tested, irrespective of whether they experienced
strong tidal distortion. Thus, the Empirical Correction
Method offers the potential to improve HW prediction at
many locations and has advantages in that it is both
simple and remarkably effective in reducing tidal predic-
tion error. Consequently, it is to be incorporated into the
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operational systems of the UKCMF Partnership in order to
improve short-term sea level predictions for the UK and in
particular, the accurate estimation of HW extremes.
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