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Abstract11

Line sampling (LS) is a powerful stochastic simulation method for structural reliability analysis, especially for12

assessing small failure probabilities. To further improve the performance of traditional LS, a Bayesian active13

learning idea has been successfully pursued. This work presents another Bayesian active learning alternative,14

called ‘Bayesian active learning line sampling with log-normal process’ (BAL-LS-LP), to traditional LS. In15

this method, we assign an LP prior instead of a Gaussian process prior over the distance function so as16

to account for its non-negativity constraint. Besides, the approximation error between the logarithmic17

approximate distance function and the logarithmic true distance function is assumed to follow a zero-mean18

normal distribution. The approximate posterior mean and variance of the failure probability are derived19

accordingly. Based on the posterior statistics of the failure probability, a learning function and a stopping20

criterion are developed to enable Bayesian active learning. In the numerical implementation of the proposed21

BAL-LS-LP method, the important direction can be updated on the fly without re-evaluating the distance22

function. Four numerical examples are studied to demonstrate the proposed method. Numerical results23

show that the proposed method can estimate extremely small failure probabilities with desired efficiency24

and accuracy.25
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1. Introduction28

Probabilistic structural reliability analysis is concerned with the calculation of the failure probability,29

which is defined by a multiple integral of the form:30

Pf =

∫
X
I(g(x))fX(x)dx, (1)

where X = [X1, X2, · · · , Xd]
⊤ ∈ X ⊆ Rd is a vector of d random variables; fX(x) denotes the joint31

probability density function (PDF) of X, which is assumed to be known; g(X) : X → R is the so-called32

performance function (also known as limit state function) such that g takes negative values when the33

underlying system behaves unacceptably and vice versa; I(·) is the indicator function: I(g(x)) = 1 if g(x) < 034

and I(g(x)) = 0 otherwise. Typically, Eq. (1) is not analytically tractable, leading to the development of35

various numerical methods over the years. One of the major challenges arises in assessing extremely low36

failure probabilities for computationally demanding problems, a situation commonly encountered in real-37

world scenarios.38

Stochastic simulation techniques occupy a prominent position among the existing methods to estimate39

failure probabilities. As the most representative example, Monte Carlo simulation (MCS) has proved to be40

a universal method for reliability analysis. In many practical cases, however, the use of MCS is ruled out41

due to its low sampling efficiency, especially when the g-function is expensive-to-evaluate and the failure42

probability is extremely small. This leads to the development of more advanced stochastic simulation43

techniques that require less performance function evaluations. A partial list of such techniques includes44

importance sampling [1–3], subset simulation [4, 5], directional simulation [6, 7] and line sampling (LS)45

[8, 9]. Among these methods, the LS technique has attracted growing attention, especially when dealing46

with the challenging task of evaluating very small failure probabilities.47

As a stand-alone simulation method, the invention of LS is attributed to the work of Koutsourelakis et48

al. [8, 10]. However, a similar but slightly different idea was exposed early in [11]. In the standard normal49

space, LS first identifies a unit vector that points towards the failure domain, which is the so-called important50
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direction α. Then, the d-dimensional failure probability integral is reformulated into a nested integral, with51

the inner being a one-dimensional conditional integral along α, and the outer being a (d − 1)-dimensional52

integral over the hyperplane orthogonal to α. In practice, the inner integral conditional on a point on the53

hyperplane is solved by means of a root-finding algorithm, while the outer integral is approximated by the54

MCS. The basic idea of LS can be understood as follows: to explore the failure domain by using random but55

parallel lines instead of random points. As a result, the simulation can be focused on the region where failure56

is most likely to occur. This makes it possible to provide an accurate estimate for the failure probability57

with less g-function calls than the crude MCS. The LS method has been shown to be particularly suitable58

for assessing small failure probabilities of weakly and moderately nonlinear problems.59

The traditional LS has been enhanced in various ways to improve its performance and applicability. In60

[12–14], efforts have been made to efficiently adjust the important direction and/or process lines. These61

methods still rely on the direct use of MCS to address the outer integral, which can lead to unnecessary62

computational cost. To alleviate this problem, LS can be used in combination with active-learning-driven63

surrogate models [15, 16]. Beyond its original purpose, the application scope of the traditional LS has also64

been expanded greatly. Examples include but not limited to reliability sensitivity analysis [17–19], imprecise65

reliability analysis [12, 20–24], reliability-based design optimization [25] and system reliability analysis [26].66

More recently, the first author and his collaborators have attempted to interpret the reliability analysis67

problem as a Bayesian inference problem and then to further frame reliability analysis in a Bayesian active68

learning setting [27–29]. Compared with the existing active learning reliability methods, the developed69

Bayesian active learning methods put more emphasis on using Bayesian principles, and hence have many70

promising advantages. For example, the uncertainty about the failure probability estimate can be modeled71

explicitly, based on which two critical components for active learning, i.e., learning function and stopping72

criterion, can be developed. The Bayesian active learning idea has also been pursued in the context of LS for73

reliability analysis. In [30], a method, called ‘partially Bayesian active learning line sampling’ (PBAL-LS),74

has been developed. This is a first attempt to approach the failure probability integral in LS from a Bayesian75

active learning perspective, where the posterior mean and an upper bound of the posterior variance of the76
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failure probability are available. The exact expression of the posterior variance of the failure probability is77

then given in [31], which allows for a more complete uncertainty characterization of the failure probability78

in terms of second-order statistics. The resulting method is termed ‘Bayesian active learning line sampling’79

(BAL-LS), which can be regarded as an enhanced version of PBAL-LS. However, both PBAL-LS and BAL-80

LS only account for the discretization error, which is only one source of uncertainty than preventing from81

learning the true value of the failure probability. Actually, there is another kind of numerical uncertainty,82

i.e., the approximation error, due to the numerical approximation of the inner integral. In addition, the83

non-negativity constraint of the distance function is disregarded both in PBAL-LS, as well as in BAL-84

LS. Ignoring these two factors (i.e., approximation error and non-negativity constraint) may lead to a less85

accurate failure probability estimate.86

The goal of this work is to simultaneously consider the discretization error, the approximation error, and87

the non-negativity constraint in a strategic manner when approaching the Bayesian active learning idea in88

the context of LS for structural reliability analysis. For this purpose, the distance function associated with89

the inner integral of LS is assigned to a log-normal process (LP) prior in order to explicitly express the90

non-negativity constraint, instead of a Gaussian process (GP) as used in PBAL-LS and BAL-LS. Using a91

trick, the prior assumption can be equivalent to placing a GP prior over the logarithmic distance function.92

Further, the approximation error between the logarithmic distance function and the logarithmic true distance93

function is assumed to follow a zero-mean normal distribution. Conditional on some observations arising94

from evaluating the logarithmic distance function at several locations, the posterior distribution of the95

logarithmic distance function follows a GP. This implies that the posterior distribution of the distance96

function follows an LP. The posterior mean and variance of the failure probability can be derived based on a97

moment-matched GP approximation of the LP posterior of the distance function. To enable Bayesian active98

learning, a learning function and a stopping criterion are developed in light of the uncertainty representation99

of the failure probability.100

The rest of this paper is structured as follows. In Section 2, two related methods are briefly reviewed.101

The proposed method is presented in Section 3. Four numerical examples are investigated in Section 4 to102
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demonstrate the proposed method. Section 5 gives some concluding remarks.103

2. Brief review of two related methods104

In this section, two methods in close relation to our development, i.e., traditional LS [8] and BAL-LS105

[31], are briefly introduced. To do so, we first reformulate our reliability analysis problem in the standard106

normal space. Assume that a reversible transformation T can be applied to transforming the basic random107

vector X into a standard normal vector U = [U1, U2, · · · , Ud]
⊤, i.e., U = T (X). This makes it possible to108

define a transformed performance function G(U) := g(T−1(U)).109

2.1. Traditional line sampling110

Traditional LS begins by identifying an important direction α, see Fig. 1. It is a unit vector pointing111

to the failure domain in the standard normal space, i.e., F = {u ∈ U : G(u) < 0}. The identification of α112

can be achieved by using the, e.g., gradient information of G at a certain point [12], design point by the113

first-order reliability method [32], or failure samples generated by the Markov Chain Monte Carlo [32].114

 

Figure 1: Illustration of the traditional LS in two dimensions.

Under the premise that the failure domain F is a half-open region, the failure probability can be formu-115

lated as:116

Pf =

∫
Rd−1

Φ(−β(u⊥))ϕU⊥(u⊥)du⊥, (2)
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where u⊥ denotes a realization of a (d−1)-dimensional standard normal vector U⊥ = [U⊥
1 , U⊥

2 , · · · , U⊥
d−1]

⊤
117

such thatU = αU∥+BU⊥; U∥ is a standard normal variable parallel toα; B is a d×(d−1) matrix containing118

(d−1) orthogonal basis vectors for the hyperplane perpendicular to α; β(u⊥) returns the Euclidean distance119

between u⊥ and the limit state surface G = 0 along α; Φ(·) is the cumulative distribution function (CDF) of120

the standard normal distribution; ϕU⊥(·) is the joint PDF ofU⊥. The standard normal vectorU ′ = [U∥;U⊥]121

can be interpreted as a rotated counterpart of U , and the matrix R = [α,B] turns out to be the rotational122

matrix such that U = RU ′.123

In traditional LS, the failure probability integral defined in Eq. (2) is solved by the crude MCS in124

conjugation with a root-finding technique. The MCS estimator of Pf is given by:125

P̂f =
1

N

N∑
i=1

Φ(−β̂(u⊥,(i))), (3)

where
{
u⊥,(i)

}N
i=1

is a set of N random samples generated according to ϕU⊥(·); β̂(u⊥,(i)) denotes the126

approximate result of u∥ subject to G(αu∥ +Bu⊥,(i)) = 0 (see Fig. 1), which can be obtained by a suitable127

root-finding algorithm such as polynomial interpolation [8] and Newton’s method [12]. The crude MCS128

method is a robust technique for approximating the integral (Eq. (2)). However, its convergence rate is129

quite low. In addition, the approximation error of β̂(u⊥,(i)) is not considered when forming the estimate for130

the failure probability.131

2.2. Bayesian active learning line sampling132

BAL-LS provides a Bayesian active learning alternative to the traditional LS described above. The133

basic ideas of BAL-LS are as follows. In contrast to frequentist inference, estimating the failure probability134

integral defined in Eq. (2) is first treated as a Bayesian inference problem, where the discretzation error135

is considered as a kind of epistemic uncertainty. Then, the induced probabilistic uncertainty in the failure136

probability allows the development of an active learning scheme so as to reduce the epistemic uncertainty.137

Following a Bayesian approach, BAL-LS places a GP prior over the β-function:138

β0(u
⊥) ∼ GP(mβ0

(u⊥), kβ0
(u⊥,u⊥′)), (4)
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where β0 denotes the prior distribution of β; mβ0(u
⊥) is the prior mean function; kβ0(u

⊥,u⊥′) is the prior139

covariance function. The prior mean and covariance functions are assumed to be a constant and squared140

exponential kernel, respectively.141

Suppose that we now obtain a training dataset D =
{
U⊥,Y

}
by evaluating the β-function, where142

U⊥ =
{
u⊥,(j)

}n
j=1

is a (d− 1)× n design matrix with its j-th column being a observation point u⊥,(j), and143

Y =
{
y(j)
}n
j=1

is a column vector with its j-th element being y(j) = β(u⊥,(j)). Conditioning the GP prior144

on the data D gives a GP posterior of β:145

βn(u
⊥) ∼ GP(mβn(u

⊥), kβn(u
⊥,u⊥′)), (5)

where βn denotes the posterior distribution of β conditional on D; mβn(u
⊥) and kβn(u

⊥,u⊥′) are the146

posterior mean and covariance functions respectively, which can be expressed in closed form [33]:147

mβn
(u⊥) = mβ0

(u⊥) + kβ0
(u⊥,U⊥)⊤Kβ0

(U⊥,U⊥)−1(Y −mβ0
(U⊥)), (6)

148

kβn
(u⊥,u⊥′) = kβ0

(u⊥,u⊥′)− kβ0
(u⊥,U⊥)⊤Kβ0

(U⊥,U⊥)−1kβ0
(U⊥,u⊥′), (7)

wheremβ0
(U⊥) = [mβ0

(u⊥,(1)),mβ0
(u⊥,(2)), · · · ,mβ0

(u⊥,(n))]⊤; kβ0
(u⊥,U⊥) = [kβ0

(u⊥,u⊥,(1)), kβ0
(u⊥,u⊥,(2)),149

· · · , kβ0
(u⊥,u⊥,(n))]⊤; kβ0

(U⊥,u⊥′) = [kβ0
(u⊥,(1),u⊥′),kβ0

(u⊥,(2),u⊥′), · · · ,kβ0
(u⊥,(n),u⊥′)]⊤; Kβ0

(U⊥,U⊥)150

is an n× n covariance matrix with (i, j)-th entry being kβ0(u
⊥,(i),u⊥,(j)).151

Conditional on D, the posterior mean and covariance functions of Φ(−β(u⊥)) can also be derived as152

[30, 31]:153

mΦn(−β̃)

(
u⊥) = Φ

 −mβn

(
u⊥)√

1 + σ2
βn

(u⊥)

 , (8)

154

kΦn(−β)(u
⊥,u⊥′) =Ψ


 mβn

(
u⊥)

mβn

(
u⊥′)

 ;

 0

0

 ,

σ2
βn

(
u⊥)+ 1 kβn

(u⊥,u⊥′)

kβn(u
⊥′,u⊥) σ2

βn

(
u⊥′)+ 1




− Φ

 mβn

(
u⊥)√

1 + σ2
β̃n

(u⊥)

Φ

 mβn

(
u⊥′)√

1 + σ2
βn

(u⊥′)

 ,

(9)

where σ2
βn

(
u⊥) is the posterior variance function of β, i.e., σ2

βn

(
u⊥) = kβn

(u⊥,u⊥); Ψ denotes the bivariate155

normal CDF.156
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The posterior mean and variance of the failure probability conditional on D turn out to be:157

mPf,n
=

∫
Rd−1

mΦn(−β)

(
u⊥)ϕU⊥(u⊥)du⊥, (10)

158

σ2
Pf,n

=

∫
Rd−1

∫
Rd−1

kΦn(−β)(u
⊥,u⊥′)ϕU⊥(u⊥)ϕU⊥′(u⊥′)du⊥du⊥′. (11)

Note that the posterior distribution of the failure probability (denoted as Pf,n) reflects our uncertainty about159

the true failure probability value, where the uncertainty is due to the discretization of the β-function. The160

posterior mean mPf,n
can be used as a point estimate of the failure probability, while the posterior variance161

σ2
Pf,n

lends itself as a natural convergence diagnostic. Due to their analytical intractability, mP̃f,n
and σ2

P̃f,n
162

have to be numerically approximated.163

Based on the uncertainty representation of the failure probability, the above Bayesian inference framework164

can also be equipped with the use of active learning, which is the so-called Bayesian active learning. The165

stopping criterion for active learning is defined as:166

σPf,n

mPf,n

< δ, (12)

where δ is a user-specified tolerance value. If the stopping criterion is not satisfied, the next best point167

to query the β-function can be identified by maximizing the following learning function, called ‘posterior168

standard deviation contribution’ (PSDC):169

PSDC
(
u⊥) = ϕU⊥(u⊥)×

∫
U⊥

kΦ̃n(−β̃)(u
⊥,u⊥′)ϕU⊥′(u⊥′)du⊥′, (13)

where the integral term is estimated by means of a numerical integration scheme.170

In addition, another salient feature of BAL-LS is that it can adjust the important direction on the fly171

during its course. This means that it is not necessary to specify an optimal important direction at the172

very beginning, which is usually difficult or expensive to obtain. The reader is referred to [31] for more173

information about BAL-LS.174

However, the BAL-LS method also has some limitations that motivate the present work. First, BAL-LS175

directly places a GP prior over the β-function. This can be a poor choice as it is unable to express the non-176

negativity of β. Second, the numerical error introduced by the numerical approximation of y(j) = β(u⊥,(j))177

is also ignored in BAL-LS, which may result in a poor failure probability estimate.178
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3. Bayesian active learning line sampling with log-normal process179

This section introduces another Bayesian active learning alternative, i.e., BAL-LS-LP, to the traditional180

LS, in order to address the aforementioned limitations of BAL-LS. The proposed method starts by assigning181

an LP prior, instead of a GP prior, over the β-function, which allows explicitly taking into account its182

non-negativity constraint. Furthermore, to account for the approximation error of the β-function resulting183

from the root-finding procedure, the error term between the log approximate distance function and the log184

true distance function is assumed to follow a zero-mean normal distribution. The approximate posterior185

mean and variance of the failure probability are obtained by using a moment-matched GP approximation186

of the LP posterior of the distance function. Based on the quantified uncertainty, two critical components187

for active learning, i.e., stopping criterion and learning function, are proposed accordingly.188

3.1. Theoretical development189

3.1.1. Prior distributions190

Let β̂(u⊥) denote the approximation of β(u⊥). In this study, we assume that the error between191

log
(
β̂(u⊥)

)
and log

(
β(u⊥)

)
is additive:192

log
(
β̂(u⊥)

)
= log

(
β(u⊥)

)
+ ε, (14)

where ε represents the error term. For notational simplicity, we denote log
(
β̂(u⊥)

)
and log

(
β(u⊥)

)
as193

l̂(u⊥) and l(u⊥) respectively. It follows that Eq. (14) can be rewritten as:194

l̂(u⊥) = l(u⊥) + ε. (15)

Considering the non-negativity of β, our prior beliefs about it are encoded by an LP model:195

β0(u
⊥) ∼ LP( m

β0
(u⊥), k

β0
(u⊥,u⊥′)), (16)

where m
β0
(u⊥) and k

β0
(u⊥,u⊥′) denote the prior mean and covariance functions receptively, which can196

completely characterize the LP model. By using a trick, we equate the LP prior over β to a GP prior over197

l(u⊥):198

l0(u
⊥) ∼ GP(ml0(u

⊥), kl0(u
⊥,u⊥′)), (17)
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where l0 denotes the prior distribution of l; ml0(u
⊥) and kl0(u

⊥,u⊥′) are the prior mean and covariance199

functions, respectively. Without loss of generality, the prior mean and covariance functions are chosen as a200

constant and as a squared exponential kernel, respectively:201

ml0(u
⊥) = b, (18)

202

kl0(u
⊥,u⊥′) = σ2

k exp

(
−1

2
(u⊥ − u⊥′)⊤Σ−1(u⊥ − u⊥′)

)
, (19)

where b ∈ R; σk > 0 is the process standard deviation; Σ = diag
(
w2

1, w
2
2, · · · , w2

d−1

)
with wi > 0 being the203

length scale in the i-th dimension.204

In order to account for the difference between l and l̂, the error term should also be properly modeled.205

In this study, we assume that the additive error ε follows a zero-mean normal distribution:206

ε ∼ N (0, σ2
ε), (20)

where σε > 0 is the standard deviation of ε. The mean is taken as zero because we believe that the average207

error over the location u⊥ is not very biased.208

3.1.2. Hyper-parameters tuning209

Our prior assumptions expressed in Eqs. (18)-(20) depend on a set of d+2 parametersΩ = {b, σk, w1, w2, · · · , wd−1, σε}⊤,210

which are referred as hyper-parameters. Given a noisy training dataset D̃ =
{
U⊥, Z̃

}
, where U⊥ =211 {

u⊥,(j)
}n
j=1

is a (d−1)×n design matrix with its j-th column being a design point u⊥,(j), and Z̃ =
{
z̃(j)
}n
j=1

212

is a column vector with its j-th element being z̃(j) = log
(
β̃(u⊥,(j))

)
. The hyper-parameters can be tuned213

by maximizing the log marginal likelihood:214

Ω = argmax log p(Z̃|U⊥,Ω), (21)

in which215

log p(Z̃|U⊥,Ω) = −1

2

[
log (|Kl0 + σεI|) +

(
Z̃ − b

)⊤
(Kl0 + σεI)

−1
(
Z̃ − b

)
+ n log (2π)

]
, (22)

where Kl0 is an n× n matrix whose (i, j)-th entry is kl0(u
⊥,(i),u⊥,(j)); I is an n× n identity matrix.216
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3.1.3. Posterior distributions217

The posterior distribution of l conditional on D̃ is also a GP:218

ln(u
⊥) ∼ GP(mln(u

⊥), kln(u
⊥,u⊥′)), (23)

where ln denotes the posterior distribution of l after seeing n noisy observations; mln(u
⊥) and kln(u

⊥,u⊥′)219

are the posterior mean and covariance functions respectively, which can be further expressed as [33]:220

mln(u
⊥) = ml0(u

⊥) + kl0(u
⊥,U⊥)⊤ (Kl0 + σεI)

−1
(Z̃ −ml0(U

⊥)), (24)
221

kln(u
⊥,u⊥′) = kl0(u

⊥,u⊥′)− kl0(u
⊥,U⊥)⊤ (Kl0 + σεI)

−1
kl0(U

⊥,u⊥,′), (25)

whereml0(U
⊥) = [ml0(u

⊥,(1)),ml0(u
⊥,(2)), · · · ,ml0(u

⊥,(n))]⊤; kl0(u
⊥,U⊥) = [kl0(u

⊥,u⊥,(1)), kl0(u
⊥,u⊥,(2)),222

· · · , kl0(u⊥,u⊥,(n))]⊤; kl0(U
⊥,u⊥′) = [kl0(u

⊥,(1),u⊥′),kl0(u
⊥,(2),u⊥′), · · · ,kl0(u

⊥,(n),u⊥′)]⊤.223

It is readily noticed that the induced posterior distribution for β conditional on D̃ follows an LP:224

βn(u
⊥) ∼ LP( m

βn
(u⊥), k

βn
(u⊥,u⊥′)), (26)

where βn denotes the posterior distribution of β; m
βn
(u⊥) and k

βn
(u⊥,u⊥′) are the posterior mean and225

covariance functions respectively, which can be derived as:226

m
βn
(u⊥) = exp

(
mln(u

⊥) +
1

2
σ2
ln(u

⊥)

)
, (27)

227

k
βn
(u⊥,u⊥′) =

[
exp

(
kln(u

⊥,u⊥′)
)
− 1
]
exp

(
mln(u

⊥) +mln(u
⊥′) +

1

2

(
σ2
ln(u

⊥) + σ2
ln(u

⊥′)
))

, (28)

where σ2
ln
(·) = kln(·, ·).228

With the LP posterior of β, it is challenging to derive the resulting posterior distribution of Φ(−β) and229

even its posterior mean and covariance functions. This in turn prevents us from obtaining the posterior230

statistics of the failure probability Pf . Inspired by [34, 35], we adopt an approximation scheme for βn231

in order to avoid the lack of traceability. Specifically, the GP posterior LP( m
βn
(u⊥), k

βn
(u⊥,u⊥′)) is232

approximated by a moment-matched GP, i.e., GP( m
βn
(u⊥), k

βn
(u⊥,u⊥′)). Note that the accuracy of the233

approximation depends on the specific characteristics of the LP. If the LP deviates significantly from a GP,234

the moment-matched GP approximation may become less accurate. However, according to our experience,235
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this approximation can provide fairly good results in most cases. Besides, another advantage of such an236

approximation is that we can directly exploit the previous results given in BAL-LS [31] when inferring the237

posterior statistics of both Φ(−β) and Pf .238

Under the Gaussian approximation, the approximate posterior mean and covariance functions of Φ(−β)239

conditional on D̃ can be given by:240

m
Φ̃n(−β)

(
u⊥) = Φ

 − m
βn

(
u⊥)√

1 + σ
2

βn
(u⊥)

 , (29)

241

k
Φ̃n(−β)

(u⊥,u⊥′) =Ψ


 m

βn

(
u⊥)

m
βn

(
u⊥′)

 ;

 0

0

 ,

 σ
2

βn

(
u⊥)+ 1 k

βn
(u⊥,u⊥′)

k
βn
(u⊥′,u⊥) σ

2

βn

(
u⊥′)+ 1




− Φ

 m
βn

(
u⊥)√

1 + σ
2

βn
(u⊥)

Φ

 m
βn

(
u⊥′)√

1 + σ
2

βn
(u⊥′)

 ,

(30)

where σ
2

βn
(·) = k

βn
(·, ·). For proofs of Eqs. (29) and (30), please refer to [31]. Note that Eqs. (29) and242

(30) are respectively different from Eqs. (8) and (9) in essence due to the differences in the mean, variance243

and covariance functions involved.244

As a consequence, we can approximate the posterior mean and variance of Pf by:245

m
Pf,n

=

∫
Rd−1

m
Φn(−β)

(
u⊥)ϕU⊥(u⊥)du⊥, (31)

246

σ
2

Pf,n
=

∫
Rd−1

∫
Rd−1

k
Φn(−β)

(u⊥,u⊥′)ϕU⊥(u⊥)ϕU⊥′(u⊥′)du⊥du⊥′. (32)

Eqs. (31) and (32) can be proved by using the Fubini’s theorem, hence the proofs are omitted. It is noted247

that Eqs. (31) and (32) are essentially different from Eqs. (10) and (11) respectively due to the differences248

in the integrands involved. The uncertainty in the failure probability summarizes the numerical uncertainty249

resulting from both the discretization error (i.e., discretizing the l-function at discrete locations) and the250

approximation error (i.e., approximating the value l(u⊥)). The approximate posterior mean m
Pf,n

can be251

used as a point estimate of the failure probability, while the approximate posterior variance σ
2

Pf,n
provides252

a measure for the uncertainty.253
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3.1.4. Estimating the approximate posterior mean and variance of the failure probability254

The approximate posterior mean and variances of the failure probability defined in (31) and (32) have to255

be numerically approximated due to their analytical intractability. Following the same way in BAL-LS, we256

employ the standard deviation-amplified importance sampling (SDA-IS) originally developed in [29]. The257

SDA-IS estimators of m
Pf,n

and σ
2

Pf,n
can be given by:258

m̂
Pf,n

=
1

N

N∑
q=1

Φ

 − m
βn

(
u⊥,(q)

)√
1 + σ

2

βn

(
u⊥,(q)

)
 ϕU⊥(u⊥,(q))

ϕU⊥,λ(u
⊥,(q))

, (33)

259

σ̂
2

Pf,n
=

1

N

N∑
i=1

k
Φn(−β)

(u⊥,(q),u⊥′,(q))
ϕU⊥(u⊥,(q))ϕU⊥(u⊥′,(q))

ϕU⊥,λ(u
⊥,(q))ϕU⊥,λ(u

⊥′,(q))
, (34)

where
{
u⊥,(q)

}N
q=1

and
{
u⊥′,(q)}N

q=1
are two sets of N random samples generated according to ϕU⊥,λ(u

⊥)260

and ϕU⊥,λ(u
⊥′), respectively; ϕU⊥,λ(u

⊥) is the SDA-IS density of the form ϕU⊥,λ(u
⊥) =

∏d−1
i=1 ϕU⊥

i ,λ(u
⊥
i ),261

in which262

ϕU⊥
i ,λ(u

⊥
i ) =

1

λ
√
2π

exp

(
−u⊥,2

i

2λ2

)
, (35)

where λ > 1 is the amplification factor.263

The corresponding variances of the above two estimators can be expressed as:264

V
[
m̂

Pf,n

]
=

1

N(N − 1)

N∑
q=1

Φ
 − m

β̂n

(
u⊥,(q)

)√
1 + σ

2

β̂n

(
u⊥,(q)

)
 ϕU⊥(u⊥,(q))

ϕU⊥,λ(u
⊥,(q))

− m̂
Pf,n

2

, (36)

265

V
[
σ̂

2

Pf,n

]
=

1

N(N − 1)

N∑
q=1

[
k

Φn(−β)
(u⊥,(q),u⊥′,(q))

ϕU⊥(u⊥,(q))ϕU⊥(u⊥′,(q))

ϕU⊥,λ(u
⊥,(q))ϕU⊥,λ(u

⊥′,(q))
− σ̂

2

Pf,n

]2
. (37)

In order to reduce the computational burden and guarantee the accuracy of the results, the SDA-IS is266

implemented in a step-by-step manner, rather than all at once. That is, we generate samples incrementally267

(e.g., 1× 104 at once) until

√
V
[
m̂

Pf,n

]
/ m̂

Pf,n
< τ1 and

√
V
[
σ̂

2

Pf,n

]
/ σ̂

2

Pf,n
< τ2 are satisfied, where268

τ1 and τ2 are two user-specified thresholds.269

3.1.5. Stopping criterion and learning function270

The above Bayesian framework can be further cast in an active learning setting based on the uncertainty271

modeling of the failure probability. Two principal components for active learning are the stopping criterion272

and learning function.273
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Supposing that we are at the stage with n noisy observations, the stopping criterion can be defined in274

terms of the estimated COV of the posterior failure probability such that:275

σ̂
Pf,n

m̂
Pf,n

< η, (38)

where η is a tolerance value. The stopping criterion in Eq. (38) should be met twice in a row in order to276

avoid fake convergence.277

If the stopping criterion is not reached, then the training dataset should be enriched so as to further278

reduce the epistemic uncertainty in the failure probability. For this propose, a learning function, called279

‘approximate posterior standard deviation contribution’ (APSDC), is first introduced:280

APSDC
(
u⊥) = ϕU⊥(u⊥)×

∫
Rd−1

k
Φn(−β)

(u⊥,u⊥′)ϕU⊥′(u⊥′)du⊥′. (39)

Note that
∫
Rd−1 APSDC

(
u⊥)du⊥ = σ

2

P̃f,n
holds true. Hence, the APSDC function provides a measure of281

the contribution of the epistemic uncertainty at site u⊥ to the approximate posterior variance (or standard282

deviation) of the failure probability. The intractable integral term involved in the APSDC function can be283

approximated by a numerical integration scheme such that:284

ÂPSDC
(
u⊥) = ϕU⊥(u⊥)

1

M

M∑
p=1

k
Φn(−β)

(u⊥,u⊥′,(p)), (40)

where
{
u⊥′,(p)}M

p=1
is a set of M integration points, which are generated according to ϕU⊥′(u⊥′) using Sobol285

sequence in this study. To obtain good results, the number of integration points M should be as large as286

possible. However, a too large M will result in a non-negligible computational load when optimizing the287

learning function.288

The next best point u⊥,(n+1) to query the l-function can be identified by maximizing the estimated289

APSDC function such that:290

u⊥,(n+1) = argmax
u⊥∈Rd−1

ÂPSDC
(
u⊥) , (41)

where a global optimization algorithm, i.e., particle swarm optimization, can be used. As soon as u⊥,(n+1)
291

is selected, l̃(u⊥,(n+1)) should be evaluated by an appropriate algorithm.292
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3.2. Step-by-step procedure293

During the theoretical development of the proposed BAL-LS-LP method, the important direction is294

assumed to be fixed. However, it is not necessary to do so and the important direction can be updated295

as well. To be specific, the BAL-LS-LP algorithm will start with a sub-optimal important direction, and296

then update to a new one once a more probable is found during the active learning phase. In addition,297

how to evaluate the l function is another important aspect that remains unmentioned. These issues will be298

addressed as the steps of the proposed method are presented.299

The procedure for implementing the proposed BAL-LS-LP method is summarized below in six main300

steps, and illustrated with a flowchart in Fig. 2.301

302

Step 1: Specifying an initial important direction303

The proposed method is initialized with an important direction α(0), which can be a rough guess and does304

not need to be optimal. In this study, the initial important direction is chosen as the negative normalized305

gradient of the G-function at the origin:306

α(0) = − ∇uG(0)
||∇uG(0)||

, (42)

where ∇uG(0) =
[
∂G(0)
∂u1

, ∂G(0)
∂u2

, · · · , ∂G(0)
∂ud

]⊤
; || · || is the Euclidean norm. The gradient vector ∇uG(0) may307

not be analytically available in most cases. To this end, the forward difference method is used to provide308

a numerical approximation at the cost of (d + 1) G-function evaluations. Given α(0), it is in principle not309

possible to uniquely determine the corresponding matrix B(0) that describes the hyperplane orthogonal to310

α(0). However, this does not impose severe restrictions in practice because one can simply employ, e.g., the311

Gram–Schmidt orthonormalization, to specify an admissible B(0).312

Step 2: Generating an initial training dataset and updating the important direction313

In this step, an initial training dataset needs to be generated and the initial important direction can314

be updated. First, we draw a small set of samples U⊥ =
{
u⊥,(j)

}n0

j=1
uniformly distributed within a315

hyper-rectangle [−r, r]d−1 on the hyperplane orthogonal to α(0), using Sobol sequence. As a convenient316
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rule of thumb, the two parameters n0 and r are specified as 5 and 3.5, respectively. Second, for each317

sample u⊥,(j), one has to compute the Euclidean distance between u⊥,(j) and the limit state surface G = 0318

along α(0). This is equivalent to finding the root of G(α(0)u∥ + B(0)u⊥,(j)) = 0, which can be solved319

by using the adaptive inverse interpolation method [31]. The approximate roots corresponding to U⊥ are320

denoted as Ỹ =
{
ỹ(j)
}n0

j=1
with ỹ(j) = β̃(u⊥,(j)). Besides, it is also important to record each approximate321

intersection α(0)ỹ(j)+B(0)u⊥,(j) of the line α(0)u∥+B(0)u⊥,(j) and G = 0. Third, a new important direction322

α(1) can be set as the normalized vector of the approximate intersection with the shortest distance to the323

origin, i.e., α(1) =
α(0)ỹ(j⋆)+B(0)u⊥,(j⋆)

||α(0)ỹ(j⋆)+B(0)u⊥,(j⋆)|| with j⋆ = argmin1≤j≤n0
||α(0)ỹ(j) + B(0)u⊥,(j)||. The matrix324

B(1) corresponding to α(1) can be specified by means of the Gram-Schmidt process. Fourth, by projecting325

those n0 approximate intersections onto the hyperplane perpendicular to α(1), one can simply obtain the326

projection points U⊥ =
{
u⊥,(j)

}n0

j=1
and distances Ỹ =

{
ỹ(j)
}n0

j=1
. The initial training dataset is obtained327

as D̃ =
{
U⊥, Z̃

}
with Z̃ = log Ỹ . Let n = n0 and q = 1.328

Step 3: Inferring the posterior statistics of the failure probability329

The approximate posterior mean and variance of the failure probability can be inferred based on data330

D̃. First, we make an inference about the GP posterior of the l-function, as defined in Eq. (23). This can be331

achieved by using, e.g., the fitrgp function in Statistics and Machine Learning Toolbox of Matlab. Second, via332

the relationship between the l-function and the β-function, it is straightforward to obtain the LP posterior333

of the β-function, as given by Eq. (26). Third, with the help of the moment-matched GP approximation,334

we can finally arrive at the approximate posterior mean and variance of the failure probability (as shown in335

Eqs. (31) and (32)). Fourth, one can obtain the approximate mean estimate m̂
Pf,n

and the approximate336

variance estimate σ̂
2

Pf,n
by using the sequential SDA-IS method described in Section 3.1.4. The sequential337

method (λ = 1.5) is stopped until

√
V
[
m̂

Pf,n

]
/ m̂

Pf,n
< τ1 and

√
V
[
σ̂

2

Pf,n

]
/ σ̂

2

Pf,n
< τ2 are met338

(τ1 = 0.01 and τ2 = 0.05).339

Step 4: Checking the stopping criterion340

If the stopping criterion

ˆσ
Pf,n

ˆm
Pf,n

< η is reached twice in a row, go to Step 6; Otherwise, go to Step 5.341

In this study, the threshold η takes the value of 0.05.342
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Step 5: Enriching the training dataset and updating the important direction343

This step involves enriching the previous training dataset by identifying a new promising location at which344

to query the l-function, and updating the important direction once a more probable one is found. First,345

the next best point u⊥,(n+1) is determined by maximizing the learning function (Eq. (40)), where M = 20346

is adopted. Second, the approximate distance ỹ(n+1) between u⊥,(n+1) and the limit state surface G = 0347

is solved by using the Newton’s method. As a guess, m
βn
(u⊥,(n+1)) can be taken as the starting point.348

An approximate intersection is recorded as α(q)ỹ(n+1) +B(q)u⊥,(n+1). Third, if the new intersection does349

not have the shortest distance to the origin among all the available approximate intersections, the previous350

training dataset D̃ is directly enriched with
{
u⊥,(n+1), log ỹ(n+1)

}
. Otherwise, the previous important351

direction is then updated to a new one, i.e., α(q+1) =
α(0)ỹ(n+1)+B(q)u⊥,(n+1)

||α(0)ỹ(n+1)+B(q)u⊥,(n+1)|| . Accordingly, a new matrix352

B(q+1) can be specified and q = q + 1. Projecting all the available approximate intersections on the latest353

hyperplane yields the enriched training dataset D̃. Let n = n+ 1 and go to Step 3.354

Step 6: Stopping the algorithm355

The latest m̂
Pf,n

and σ̂
2

Pf,n
are returned and the algorithm is stopped.356

4. Numerical examples357

In this section, we illustrate the proposed BAL-LP-LS method on four numerical examples. Although358

some examples have explicit performance functions, they are all treated as implicit. In all cases, the crude359

MCS method is employed to provide the reference failure probabilities whenever possible. For comparison360

purposes, several existing methods, i.e., first-order reliability method with sequential quadratic programming361

(FORM-SQP) [36], traditional LS [8], combination line sampling (CLS) [14], active learning reliability362

method in UQLab version 2.0 (denoted as ALR in UQLab) [37] and BAL-LS [31], are also implemented. In363

FORM-SQP, the starting point is set as the point of origin and the SQP method adopts the one available in364

Matlab R2022b with its default settings. The important direction in traditional LS is specified by FORM-365

SQP, and the Newton’s method is employed to process lines. For CLS, the initial important direction uses366

the same as the proposed method (Eq. (42)). The ALR in UQLab employs the Kriging model with Gaussian367
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Start

Specify an initial important direction α(0) according to Eq. (42)
and the matrix B(0) using the Gram–Schmidt process

Construct an initial observation dataset D̃ =
{
U⊥, Z̃

}
and update the important direction and B-matrix to α(1) and R(1).

Let n = n0 and q = 1

Compute the approximate posterior mean and variance estimates of
the failure probability conditional on D̃ using the sequential SDA-IS method

Stopping criterion?

Determine the next best point u⊥,(n+1) by Eq. (41),
compute the correspoding β-fucntion value ỹ(n+1);

Update the important direction and R-matrix if possible
(q = q + 1) and obtain the enriched training dataset D̃.

Let n = n+ 1

Return m̂
Pf,n

and σ̂
2

Pf,n

Stop

No

Yes

Figure 2: Flowchart of the proposed BAL-LS-LP method.

kernel instead of its default polynomial chaos-Kriging. For ALR in UQLab, BAL-LS and BAL-LS-LP, 20368

independent runs are performed for the first three examples in order to test their robustness. Therefore, we369

only report the mean and/or variability of the quantities of interest.370

4.1. Example 1: A test function371

For the first example, let us consider a test function taking the form [30]:372

Y = g(X) = a−X2 + bX3
1 + c sin (dX1) , (43)

where a, b, c and d are four parameters that can influence the non-linearity of the problem and the level of373

failure probability, which are specified as: a = 5.5, b = 0.02, c = 5
6 , d = π

3 ; X1 and X2 are two standard374

normal variables.375
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The results of the proposed BAL-LS-LP method and several existing methods are summarized in Table376

1. The reference failure probability is taken as 3.54 × 10−7, which is provided by MCS with 1011 samples.377

The estimated failure probability from FORM-SQP (i.e., 7.19×10−7) differs significantly from the reference378

value, mainly due to the violation of the linearity assumption in FORM. In two cases, Nline = 100, 200,379

both traditional LS and CLS can produce more accurate results than FORM-SQP. However, in order to380

have a small COV, both methods require a large number of G function evaluations. ALR in UQLab only381

needs 16.00 performance function evaluations on average, but it results in obvious bias in the mean of 20382

failure probability estimates (say 3.95 × 10−7). The BAL-LS method gives an average failure probability383

of 3.50 × 10−7 with a COV of 3.50%, which are at a cost of 9.25 lines and 35.50 G-function evaluations384

on average. The proposed BAL-LS-LP can further reduce the average number of Nline and Ncall, while385

producing a fairly good failure probability mean (i.e., 3.59 × 10−7) with a sufficiently small variability386

(COV
[
P̂f

]
= 0.30%).387

To provide a schematic illustration of the proposed method, Fig. 3 shows some of the results obtained388

from an exemplary run. It can be observed from Fig. 3(a) that the initial important direction is far389

from optimal, but still informative. After five approximate intersections are obtained, the initial important390

direction is immediately updated to a new one. After three additional intersections are available, the391

proposed method stops as the stopping criterion is satisfied. As seen from Fig. 3(b), the final important392

direction is almost optimal.393

4.2. Example 2: A non-linear oscillator394

The second example consists of a non-linear oscillator subject to a rectangular-pulse load [38], as shown395

in Fig. 4. The performance function is defined by:396

Z = g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

k1 + k2
sin

(
t1
2

√
k1 + k2

m

)∣∣∣∣∣ , (44)

where m, k1, k2, r, F1 and t1 are six random variables, as detailed in Table 2.397

In Table 3, we summarize the results of several methods, including MCS, FORM-SQP, traditional LS,398

CLS, ALR in UQLab, BAL-LS and BAL-LS-LP. The reference value for the failure probability is 4.01×10−8
399
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Table 1: Results of Example 1 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1011 3.54× 10−7 0.53%

FORM-SQP - 28 7.19× 10−7 -

Traditional LS
100 366 3.74× 10−7 7.01%

200 714 3.33× 10−7 5.24%

CLS
100 490 3.79× 10−7 6.91%

200 964 3.37× 10−7 5.74%

ALR in UQLab - 16.00 3.95× 10−7 6.30%

BAL-LS 9.25 35.50 3.50× 10−7 3.50%

Proposed BAL-LS-LP 7.00 30.00 3.59× 10−7 0.30%

Note: Nline = the total number of lines; Ncall = the total number

of G-function calls (including the number of G-function calls to

find the roots, if applicable).

with a COV of 0.50%, provided by MCS with 1012 samples. At the cost of 176 G-function evaluations,400

FORM-SQP provides a failure probability estimate of 4.88× 10−8, which is not that close to the reference401

value. The accuracy of FORM-SQP can be further improved by the traditional LS with some extra lines402

(e.g., 100), which, in turn, leads to a significant increase in G-function calls. Compared to the traditional403

LS, CLS needs more lines and G−function evaluations to yield a reasonable result. ALR in UQLab is able to404

reduce the number of G-function evaluations to 46.55 on average. Nevertheless, the mean value of 20 failure405

probability estimates (say 4.75× 10−8) appears to be biased and relatively larger than the reference value.406

At the cost of 12.65 lines and 43.25 G-function calls on average, BAL-LS produces a failure probability mean407

of 3.73× 10−8 with a COV of 30.52%. Compared to BAL-LS, BAL-LS-LP requires on average slightly more408

lines and G-function calls, but produces a almost unbiased result with a significantly small COV, say 0.92%.409
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Figure 3: Schematic illustration of the proposed BAL-LS-LP method for Example 1.

 

Figure 4: A nonlinear oscillator driven by a rectangular pulse load.

4.3. Example 3: An I beam410

As a third example, we consider a simply-supported I beam subject to a concentrated force [39], as411

depicted in Fig. 5. The performance function is expressed as:412

Y = g(X) = S − σmax, (45)

in which413

σmax =
Pa(L− a)d

2LI
, (46)

with414

I =
bfd

3 − (bf − tw)(d− 2tf )
3

12
. (47)
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Table 2: Random variables for Example 2.

Variable Description Distribution Mean COV

m Mass Lognormal 1.0 0.05

k1 Stiffness Lognormal 1.0 0.10

k2 Stiffness Lognormal 0.2 0.10

r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20

t1 Load duration Lognormal 1.0 0.20

A total number of eight random variables X = [P,L, a, S, d, bf , tw, ff ]
⊤ are involved in this example, as415

listed in Table 4.416

 

Figure 5: A simply-supported I beam.

The results obtained from several methods are reported in Table 5. MCS with 1011 samples produces417

a reference failure probability of 1.69 × 10−7 with a COV being 0.77%. FORM-SQP gives a result (say418

1.48 × 10−7) that is slightly smaller than the reference one. However, it necessitates a large number (i.e.,419

1511) of performance function evaluations. In order to achieve a failure probability estimate with a COV420

less than 5%, traditional LS may require more than 100 additional lines. Even with 200 lines, the failure421

probability given by CLS still has a large COV, i.e., 7.40%. At the cost of 93.10 G-function calls on average,422

the result from ALR in UQLab is still biased and tends to be larger than the reference value. The average423

numbers of lines and G-function calls required by BAL-LP-LS are less than those of BAL-LS, but can still424
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Table 3: Results of Example 2 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1012 4.01× 10−8 0.50%

FORM-SQP - 176 4.88× 10−8 -

Traditional LS
50 376 4.16× 10−8 2.93%

100 576 4.09× 10−8 1.92%

CLS
200 868 4.87× 10−8 7.91%

300 1,329 4.65× 10−8 6.79%

ALR in UQLab - 46.55 4.75× 10−8 11.62%

BAL-LS 12.65 43.25 3.73× 10−8 30.52%

Proposed BAL-LS-LP 13.65 46.20 4.02× 10−8 0.92%

give a failure probability mean that is closed to the reference one and with a smaller COV.425

4.4. Example 4: A space truss structure426

The last example involves a 120-bar space truss structure subject to seven vertical loads [27, 28], as shown427

in Fig. 6. The structure is modeled as a three-dimensional truss using an open-source finite element analysis428

software, OpenSees. The established model consists of 49 nodes and 120 truss elements. It is assumed that429

all elements have the same cross-sectional area, A, and the same modulus of elasticity, E. The thirteen430

vertical loads (as depicted in Fig. 6) are denoted as P0 ∼ P12. The performance function is defined as:431

Y = g(X) = ∆− V0(A,E, P0 ∼ P12), (48)

where V0 is the vertical displacement of node 0; ∆ is a threshold, which is specified as 100 mm; A, E,432

P0 ∼ P12 are fifteen random variables, as described in Table 6.433

In this example, we cannot afford to run the crude MCS in order to provide a reference solution because434

the target failure probability is quite small. To this end, the importance sampling (IS) available in UQLab435

[37] is then implemented as an alternative, where the importance sampling density is chosen as Gaussian436
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Table 4: Random variables for Example 3.

Variable Distribution Mean COV

P Lognormal 1500 0.20

L Normal 120 0.05

a Normal 72 0.10

S Normal 200,000 0.15

d Normal 2.3 0.05

bf Normal 2.3 0.05

tw Normal 0.16 0.05

tf Normal 0.26 0.05

centered on the most probable point. The failure probability given by IS is 1.90 × 10−9 with a COV of437

1.97%. The results of IS and several other methods are compared in Table 7. FORM-SQP converges to438

an infeasible point after one iteration. Therefore, the traditional LS also cannot work because it is based439

on the FORM-SQP in our setting. ALR in UQLab produces a wrong result for the failure probability due440

to it is premature in most trials. Although the CLS method is workable, its variability is quite large even441

using 1,000 lines. At the cost of 25 lines and 144 performance function evaluations, BAL-LS gives a failure442

probability estimate of 2.24 × 10−9 with a COV of 2.69%. Remarkably, the proposed BAL-LS-LP method443

can produce a much better estimate with less G-functions calls compared to BAL-LS.444
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Table 5: Results of Example 3 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
MCS - 1011 1.69× 10−7 0.77%

FORM-SQP - 1,511 1.48× 10−7 -

Traditional LS
100 1,859 1.89× 10−7 7.08%

200 2,195 1.62× 10−7 2.43%

CLS
100 504 1.62× 10−7 10.27%

200 993 1.50× 10−7 7.40%

ALR in UQLab - 85.95 2.01× 10−7 14.88%

BAL-LS 17.20 59.30 1.61× 10−7 10.19%

Proposed BAL-LS-LP 11.35 40.70 1.62× 10−7 8.88%

Table 6: Random variables for Example 4.

Variable Distribution Mean COV

A Normal 2,000 mm2 0.10

E Normal 200 GPa 0.10

P0 Lognormal 400 kN 0.20

P1 ∼ P12 Lognormal 50 kN 0.15
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1589 cm

691.4 cm

1250 cm

Figure 6: A 120-bar space truss structure subject to thirteen vertical loads.
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Table 7: Results of Example 4 by several methods.

Method Nline Ncall P̂f COV
[
P̂f

]
IS - 25,141 1.90× 10−9 1.97%

FORM-SQP - - - -

Traditional LS - - - -

CLS
500 3,001 1.02× 10−9 15.20%

1,000 5,926 1.82× 10−9 14.12%

ALR in UQLab - - - -

BAL-LS 25 144 2.24× 10−9 2.69%

Proposed BAL-LS-LP 26 102 1.90× 10−9 2.39%
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5. Concluding remarks445

This paper presents a new Bayesian active learning alternative, called ‘Bayesian active learning line446

sampling with log-normal process’ (BAL-LS-LP), to the traditional line sampling for structural reliability447

analysis, especially for assessing small failure probabilities. First, we treat the estimation of the failure448

probability in LS with Bayesian inference. By using an LP prior instead of a GP prior, it is possible449

to simultaneously consider the discretization error of the distance function, as well as its non-negativity450

constraint that is ignored in both PBAL-LS and BAL-LS. In addition, the approximation error of the451

distance function is taken into account by assuming a zero-mean normal distribution. The approximate452

posterior mean and variance of the failure probability are derived based on the use of a moment-matched453

GP approximation of the posterior distribution of the distance function. Second, two essential components454

for active learning, i.e., learning function and stopping criterion, are developed using the posterior statistics455

of the failure probability. Third, the important direction can be automatically updated on the fly during456

the simulation from an initial rough guess. By means of four numeral examples, it is demonstrated that457

the proposed method is able to assess extremely small failure probabilities (e.g., an order of magnitude458

10−7 ∼ 10−9) with reasonable accuracy and efficiency.459

Note that the BAL-LS-LP method is suitable for weakly and moderately nonlinear problems with a460

single half-open failure domain. The authors suggest potential improvements for the method in the following461

directions. Firstly, optimizing the learning function using a nature-inspired global optimization algorithm462

can be time-consuming as the dimensions increase. This reduces the efficiency of the proposed method in463

higher dimensions. The problem may be solved by simplifying the learning function or using a more efficient464

optimization algorithm. Secondly, approximating the posterior variance of the failure probability using the465

SDA-IS method can be challenging. One solution could be to simplify the approximation or develop a more466

efficient numerical integrator.467
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