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The Bayesian failure probability inference (BFPI) framework provides a sound basis for developing new9

Bayesian active learning reliability analysis methods. However, it is still computationally challenging to10

make use of the posterior variance of the failure probability. This study presents a novel method called11

‘semi-Bayesian active learning quadrature’ (SBALQ) for estimating extremely low failure probabilities, which12

builds upon the BFPI framework. The key idea lies in only leveraging the posterior mean of the failure13
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analytically intractable integrals inherent in the stopping criterion. Furthermore, a new learning function is17

derived from the stopping criterion and by maximizing it a single point can be identified in each iteration18

of the active learning phase. To enable multi-point selection and facilitate parallel computing, the proposed19

learning function is modified by incorporating an influence function. Through five numerical examples,20

it is demonstrated that the proposed method can assess extremely small failure probabilities with desired21

efficiency and accuracy.22
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1. Introduction25

In the context of probabilistic structural reliability analysis, a primary objective is to compute the26

so-called failure probability, which is defined through a multidimensional integral as follows:27

Pf =

∫
X
I(g(x) ≤ 0)fX(x)dx, (1)

where X = [X1, X2, · · · , Xd] ∈ X ⊆ Rd is a vector of d basic random variables; fX(x) denotes the joint28

probability density function (PDF) of X; g(·) is the performance function (also known as the limit state29

function), which takes a non-positive value when a prescribed failure event occurs; I(·) is the indicator30

function: I = 1 if g(x) ≤ 0 and I = 0 otherwise. An analytical solution of Eq. (1) is always desirable,31

which, however, is rarely available in the majority of real-world scenarios. Therefore, the use of numerical32

approximation becomes essential to derive a failure probability estimate. A typical numerical solution33

scheme involves repeatedly eventuating the I-function (equivalently, the g-function) many times. However,34

it is worth noting that each evaluation of the g-function may take a long running time, which poses a35

significant computational challenge in probabilistic structural reliability analysis.36

There exist many numerical methods for approximating the failure probability, such as crude Monte37

Carlo simulation (MCS) [1] and its variants (e.g., important sampling [2–4], subset simulation [5], directional38

simulation [6] and line sampling [7]), first- and second- order reliability methods [8–10] and surrogate-based39

methods (e.g., polynomial chaos expansions [11] and Kriging [12]), to name just a few. The reader is40

referred to [13] for a relatively comprehensive review of existing computational methods for probabilistic41

structural reliability analysis. Among the diverse paradigms, the active learning reliability approaches have42

attracted increasing attention in the last decade. In this context, two seminal works are the efficient global43

reliability analysis [14] and the active learning reliability method combining Kriging and MCS (AK-MCS)44

[15]. Since their inception, a large number of active learning reliability methods have been developed. To45

learn about those advancements, we direct the reader to [16–18]. It has been shown that active learning46

reliability analysis methods can yield accurate failure probability estimates with fewer g-function calls. This47

is advantageous, especially for computationally demanding problems.48
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In addition, another more recent category, collectively denoted as Bayesian active learning reliability49

analysis methods (e.g., [19–26]), has emerged in recent years. These methods feature a distinctive fusion of50

Bayesian statistical inference and active learning techniques, referred to simply as Bayesian active learning.51

A first attempt is the ‘active learning probabilistic integration’ (ALPI) method reported in [19]. This52

method frames the estimation of the failure probability integral as a Bayesian inference problem, and a53

learning function and stopping criterion are developed based on the posterior mean and an upper bound on54

the posterior variance of the failure probability. The ALPI method is further enhanced to assess small failure55

probabilities and use parallel computing, resulting in the ‘parallel adaptive Bayesian quadrature’ (PABQ)56

method [20]. In the work presented in [21], the authors introduce a principled Bayesian framework known57

as ‘Bayesian Failure Probability Inference’ (BFPI). A noteworthy contribution is that the posterior variance58

of the failure probability is derived. However, it cannot be expressed in a closed form and is expensive to59

evaluate numerically, making it challenging to use for active learning purposes. Consequently, efforts have60

been made to develop Bayesian active learning reliability analysis methods that do not rely solely on the61

posterior variance of the failure probability. For instance, parallel Bayesian probabilistic integration [25] and62

partially Bayesian active learning cubature (PBALC) [26] are such methods. Besides, the Bayesian active63

learning concept is also investigated in the context of line sampling for structural reliability analysis [22–64

24]. While considerable progress has been made, there is still significant room for improvement in making65

Bayesian active learning reliability analysis methods more effective tools for practical applications.66

The objective of this paper is to develop a new Bayesian active learning reliability analysis method67

with the capability to assess extremely low failure probabilities and facilitate parallel computing. This68

method relies solely on the posterior mean of the failure probability, aligning with the idea introduced in the69

previous work [26]. The resulting method is termed ‘semi-Bayesian active learning quadrature’ (SBALQ).70

The primary contributions of this work can be summarized as follows. First, a novel stopping criterion is71

introduced based on exploring the structure of the posterior mean of the failure probability. Second, an72

effective numerical integration method called ‘hyper-shell simulation’ (HSS) is developed for approximating73

the two intractable integrals involved in the proposed stopping criterion. Third, new learning functions are74
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designed to enable multi-point section during the active learning phase, thus facilitating parallel distributed75

processing.76

The rest of this paper is arranged as follows. In Section 2, we provide a brief review of two previous77

studies. The proposed SBALQ method is introduced in Section 3. Five numerical examples are investigated78

in Section 4 to illustrate the proposed method. This paper closes with some concluding remarks in Section79

5.80

2. Brief review of two related works81

This section provides a brief overview of the BFPI framework [21] and the three PBALC methods [26],82

which are closely related to this work. Note that both the PBALC method and the proposed SBALQ method83

are set up in the standard normal space (called the U space). For consistency, we will reformulate the BFPI84

framework in the U space. To do so, let us first introduce a transformation T (e.g., Rosenblatt transformation85

and Nataf transformation) that can project the physical random vector X into a standard normal one U ,86

i.e., U = T (X), where U = [U1, U2, · · · , Ud] ∈ U ⊆ Rd is a set of d i.i.d. standard normal variables. This87

allows us to define a transformed performance function G(U) = g(T−1(U)), where G = g ◦ T−1 and T−1
88

represents the inverse transformation.89

2.1. Bayesian failure probability inference90

The BPFI framework recast in the U space begins by assigning a Gaussian process (GP) prior over the91

G-function:92

G0(u) ∼ GP(mG0(u), kG0(u,u
′)), (2)

where G0 represents the prior distribution of G before seeing any observation data; mG0(u) and kG0(u,u
′)93

denote the prior mean and covariance functions, respectively, which can fully define the GP prior. Without94

loss of generality, the prior mean and covariance functions are assumed to be a constant and a squared95

exponential kernel, respectively:96

mG0
(u) = β, (3)
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97

kG0
(u,u′) = s20 exp

(
−1

2
(u− u′)Σ−1(u − u′)⊤

)
, (4)

where β ∈ R; s0 > 0 is the standard deviation of the GP prior; Σ = diag
(
l21, l

2
2, · · · , l2d

)
, where diag and98

li > 0 are the diagonal operator and the length scale in the i-th dimension, respectively. The parameters99

collected in θ = [β, s0, l1, l2, · · · , ld] are refereed to as the hyper-parameters.100

Now suppose that we obtain an observation dataset DDD = {UUU ,YYY }, where UUU =
{
u(j)

}n
j=1

is an n × d101

matrix with j-th row being u(j) ∈ U and YYY = [y(1), y(2), · · · , y(n)]⊤ is an n×1 vector with j-th element being102

y(j) = G(u(j)). Those hyper-parameters can be learned from DDD by maximizing the log-marginal likelihood:103

log p(YYY |UUU ,θ) = −1

2

[
(YYY − β)⊤K−1

G0
(YYY − β) + log |KG0

|+ n log 2π
]
, (5)

where KG0 denotes an n× n covariance matrix with its (i, j)-th entry being kG0(u
(i),u(j)).104

The posterior distribution of G conditional on DDD follows another GP:105

Gn(u) ∼ GP(mGn(u), kGn(u,u
′)), (6)

where Gn represents the posterior distribution of G after seeing n observations; mGn
(u) and kGn

(u,u′) are106

the posterior mean and covariance functions, respectively, which can given by:107

mGn
(u) = mG0

(u) + kG0
(u,UUU )⊤K−1

G0
(YYY −mG0

(UUU )) , (7)
108

kGn(u,u
′) = kG0(u,u

′)− kG0(u,UUU )⊤K−1
G0

kG0(UUU ,u′), (8)

wheremG0
(UUU ) = [mG0

(u(1)),mG0
(u(2)), · · · ,mG0

(u(n))]⊤; kG0
(u,UUU ) = [kG0

(u,u(1)), kG0
(u,u(2)), · · · , kG0

(u,u(n))]⊤;109

kG0(UUU ,u′) = [kG0(u
(1),u′), kG0(u

(2),u′), · · · , kG0(u
(n),u′)]⊤.110

The posterior mean and variance of the failure probability Pf are expressed as:111

mPf,n
=

∫
U
Φ

(
−mGn(u)

σGn
(u)

)
ϕU (u)du, (9)

112

σ2
Pf,n

=

∫
U

∫
U
Φ2


 0

0

 ;

 mGn
(u)

mGn
(u′)

 ,
 σ2

Gn
(u) kGn

(u,u′)

kGn
(u′,u) σ2

Gn
(u′)


ϕU (u)ϕU (u′)dudu′

−
[∫

U
Φ

(
−mGn

(u)

σGn(u)

)
ϕU (u)du

]2
,

(10)
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where Φ and Φ2 denote the cumulative distribution function (CDF) of the standard normal variable and113

bivariate normal CDF, respectively; ϕU (·) is the joint PDF of U ; σ2
Gn

(·) represents the posterior variance114

function of G, i.e., σ2
Gn

(·) = kGn
(·, ·).115

The BFPI framework actually provides a probabilistic prediction for the failure probability Pf , though116

the exact distribution is unknown. The posterior mean mPf,n
is a natural point estimate for Pf , while the117

posterior variance σ2
Pf,n

can measure our uncertainty of the estimate. Note that both mPf,n
and σ2

Pf,n
are118

analytically intractable. Compared to mPf,n
, σ2

Pf,n
is harder to approximate because it involves a more119

complex integral.120

2.2. Partially Bayesian active learning cubature121

The three PBALC methods (denoted as PBALC1, PBALC2, and PBALC3) further embed the BFPI122

framework in an active learning circle. The underlying idea is to use only the posterior mean mPf,n
to123

design crucial components for Bayesian active learning (i.e., stopping criterion and learning function), thus124

avoiding the need to deal with the posterior variance σ2
Pf,n

. The resulting three sets of stopping criteria and125

learning functions are summarized in Table 1. Note that the key to achieving these results is to examine126

the numerator of the fractional term inherent in the posterior mean of the failure probability mPf,n
.127

Table 1: Stopping criteria and learning functions developed in PBALC1, PBALC2, and PBALC3.

Method Stopping criterion Learning function

PBALC1

∫
U

[
Φ

(
−

mGn
(u)

σGn
(u)

)
−Φ

(
−

mGn
(u)

σGn
(u)

−b

)]
ϕU (u)du∫

U Φ

(
−

mGn
(u)

σGn
(u)

)
ϕU (u)du

< ϵ1 LSC (u) =
[
Φ
(
−mGn (u)

σGn (u)

)
− Φ

(
−mGn (u)

σGn (u)
− b

)]
ϕU (u)

PBALC2

∫
U

[
Φ

(
−

mGn
(u)

σGn
(u)

+b

)
−Φ

(
−

mGn
(u)

σGn
(u)

)]
ϕU (u)du∫

U Φ

(
−

mGn
(u)

σGn
(u)

)
ϕU (u)du

< ϵ2 RSC (u) =
[
Φ
(
−mGn (u)

σGn (u)
+ b

)
− Φ

(
−mGn (u)

σGn (u)

)]
ϕU (u)

PBALC3

∫
U

[
Φ

(
−

mGn
(u)

σGn
(u)

+b

)
−Φ

(
−

mGn
(u)

σGn
(u)

−b

)]
ϕU (u)du∫

U Φ

(
−

mGn
(u)

σGn
(u)

)
ϕU (u)du

< ϵ3 LSRSC (u) =
[
Φ
(
−mGn (u)

σGn (u)
+ b

)
− Φ

(
−mGn (u)

σGn (u)
− b

)]
ϕU (u)

Note that: b is a critical value that determines the desired confidence level; ϵ1, ϵ2 and ϵ3 are three user-defined thresholds.
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3. Semi-Bayesian active learning quadrature128

In this section, we present another novel Bayesian active learning method, called SBALQ, which is129

based on the BFPI framework. This method is tailored for conducting structural reliability analysis with130

extremely low failure probabilities. The core idea of the proposed method aligns with that of the three131

previously developed PBALC methods. Specifically, we sorely use the posterior mean mPf,n
to formulate132

both the stopping criterion and learning function. However, this study focuses on the denominator rather133

than the numerator in the fractional term involved in the posterior mean of the failure probability. Besides,134

the proposed method allows for parallel computing while the PBALC methods do not.135

3.1. Stopping criterion and its numerical solution136

The stopping criterion is of critical importance within a Bayesian active learning reliability analysis137

method, as it determines when to stop. In this context, we are looking for a stopping criterion that can138

judge whether the posterior mean mPf,n
, which serves as a failure probability estimate, reaches a desired139

level of accuracy. However, it is difficult to establish such a stopping criterion based on the posterior mean140

mPf,n
without invoking the posterior variance σ2

Pf,n
. To overcome this dilemma, a possible means is to141

explore the structure of mPf,n
.142

As seen from Eq. (9), the integrand of mPf,n
contains the ratio of the posterior mean function mGn

(u) to143

the posterior standard deviation function σGn(u). Building upon this insight, we introduce a novel quantity144

by imposing a penalty on σGn(u). This quantity, denoted as Qn(p), is defined as follows:145

Qn(p) =

∫
U
Φ

(
−mGn

(u)

pσGn(u)

)
ϕU (u)du, (11)

where 0 < p < 1 acts as a penalty factor. Consequently, we can define the absolute difference of mPf,n
and146

Qn(p), denoted as ∆n(p):147

∆n(p) =|mPf,n
−Qn(p)|

=

∣∣∣∣∫
U
Φ

(
−mGn

(u)

σGn
(u)

)
ϕU (u)du−

∫
U
Φ

(
−mGn

(u)

pσGn
(u)

)
ϕU (u)du

∣∣∣∣
=

∣∣∣∣∫
U

[
Φ

(
−mGn

(u)

σGn(u)

)
− Φ

(
−mGn

(u)

pσGn(u)

)]
ϕU (u)du

∣∣∣∣ .
(12)
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Further, we can establish an upper bound for ∆n(p), denoted as ∆n(p):148

∆n(p) =

∫
U

∣∣∣∣Φ(−mGn
(u)

σGn(u)

)
− Φ

(
−mGn

(u)

pσGn(u)

)∣∣∣∣ϕU (u)du. (13)

To proceed, we examine the limit of ∆n(p):149

Ln = lim
p→0

∆n(p)

= lim
p→0

∫
U

∣∣∣∣Φ(−mGn(u)

σGn
(u)

)
− Φ

(
−mGn(u)

pσGn
(u)

)∣∣∣∣ϕU (u)du

=

∫
U

∣∣∣∣Φ(−mGn(u)

σGn
(u)

)
− I(mGn

(u))

∣∣∣∣ϕU (u)du

=

∫
U
Φ

(
−|mGn

(u)|
σGn

(u)

)
ϕU (u)du,

(14)

where I is a indicator function: I(mGn(u)) = 1 if mGn(u) < 0 and I(mGn(u)) = 0 otherwise. Note that it150

is easy to show that as σGn
(u) → 0+ and mGn

(u) → G(u), there exist Ln → 0+ and mPf,n
→ Pf .151

Based on these findings, we can formulate the stopping criterion as:152

Ln

mPf,n

< ϵ, (15)

where ϵ is a user-defined threshold, which should be a very small positive real number. This stopping153

criterion implies that the proposed method stops when the value of Ln becomes significantly smaller relative154

to mPf,n
. The choice of the stopping criterion is rather natural, since it actually constrains the upper bound155

of the relative error between mPf,n
and limp→0Qn(p). In the context of active learning reliability methods,156

similar stopping criteria have been reported in [27, 28]. The use of the proposed stopping criterion, however,157

is not straightforward because it involves two analytically intractable integrals.158

In this study, we present a novel numerical integration method, called ‘hyper-shell simulation’ (HSS),159

to numerically approximate both mPf,n
and Ln. Our method draws inspiration from and builds upon160

some established methods, especially incorporating some key principles derived from the “importance ball161

sampling” (IBS) method [20] and “spherical decomposition - Monte Carlo simulation” (SD-MCS) method162

[29].163

The HSS method begins by partitioning the standard normal space U into h concentric hyper-spherical164
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shells, following the SD-MCS method [29]:165

h⋃
i=1

Ui = U , (16)

166

Ui

⋂
Uj = ∅, i ̸= j, (17)

where Ui = {u|Ri−1 ≤ ||u|| < Ri} denotes the i-th hyper-shell, i = 1, 2, · · · , h; Ri−1 and Ri are the inner and167

outer radius of Ui, respectively. The radii, {Rj}hi=0, forms an ascending sequence, i.e., R0 < R1 < · · · < Rh.168

Apart from R0 = 0 and Rh = +∞, one has to choose Ri (i = 1, 2, · · · ,m − 1) properly, which can be169

specified as Ri =
√
χ−2
d (1− 10−i), where χ−2

d (·) denotes the inverse CDF of the chi-squared distribution170

with d degrees of freedom. A schematic representation of the space decomposition in two dimensions can171

be found in Fig. 1(a).172

 

(a) Space decomposition
 

(b) Subregion sampling

Figure 1: Illustration of the HSS method (h = 3) in two dimensions.

Building upon the space decomposition, we can rewrite mPf,n
and Ln as follows:173

mPf,n
=

h∑
i=1

m
(i)
Pf,n

=

h∑
i=1

∫
Ui

Φ

(
−mGn

(u)

σGn(u)

)
ϕU (u)du,

(18)

174

Ln =

h∑
i=1

L(i)
n

=

h∑
i=1

∫
Ui

Φ

(
−|mGn

(u)|
σGn(u)

)
ϕU (u)du.

(19)
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Then, we introduce uniform sampling PDFs (denoted as p(i)(u), i = 1, 2, · · · , h − 1) for the first h − 1175

sub-regions and a truncated normal sampling PDF (denoted as ψ(h)(u)) for the last sub-region such that:176

p(i)(u) =


1
vi
,u ∈ Ui

0, otherwise

, (20)

177

ψ(h)(u) =


ϕU (u)

δh
,u ∈ Uh

0, otherwise

, (21)

where vi =
πd/2

Γ(d/2+1)

(
Rd

i −Rd
i−1

)
is the volume of the i-th hyper-shell; δh =

∫
Uh
ϕU (u)du is the probability178

content of the outermost hyper-shell Uh. Accordingly, mPf,n
and Ln can be further reformulated as:179

mPf,n
=

h∑
i=1

m
(i)
Pf,n

=

h−1∑
i=1

vi

∫
Ui

Φ

(
−mGn

(u)

σGn
(u)

)
ϕU (u)p(i)(u)du+ δh

∫
Uh

Φ

(
−mGn

(u)

σGn
(u)

)
ψ(h)(u)du,

(22)

180

Ln =

h∑
i=1

L(i)
n

=

h−1∑
i=1

vi

∫
Ui

Φ

(
−|mGn

(u)|
σGn

(u)

)
ϕU (u)p(i)(u)du+ δh

∫
Uh

Φ

(
−|mGn

(u)|
σGn

(u)

)
ψ(h)(u)du.

(23)

The HSS estimators for mPf,n
and Ln can be given by:181

m̂Pf,n
=

h∑
i=1

m̂
(i)
Pf,n

=

h−1∑
i=1

vi

 1

Ni

Ni∑
j=1

Φ

(
−mGn

(u(i,j))

σGn(u
(i,j))

)
ϕU (u(i,j))

+ δh
1

Nh

Nh∑
j=1

Φ

(
−mGn

(u(h,j))

σGn(u
(h,j))

)
,

(24)

182

L̂n =

h∑
i=1

L̂(i)
n

=

h−1∑
i=1

vi

 1

Ni

Ni∑
j=1

Φ

(
−
∣∣mGn

(u(i,j))
∣∣

σGn
(u(i,j))

)
ϕU (u(i,j))

+ δh
1

Nh

Nh∑
j=1

Φ

(
−
∣∣mGn

(u(h,j))
∣∣

σGn
(u(h,j))

)
,

(25)

where
{
u(i,j)

}Ni

j=1
, i = 1, 2, · · · , h − 1 is a set of Ni random samples generated according to p(i)(u);183 {

u(h,j)
}Nh

j=1
is a set of Nh random samples drawn from ψ(h)(u). For how to generate these random numbers,184

please refer to Appendix A and Appendix B. In addition, one can examine Fig. 1(b) for a visual depiction185

of the sub-region sampling results.186
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The variances of the estimators can be expressed as:187

Var
[
m̂Pf,n

]
=

h∑
i=1

Var
[
m̂

(i)
Pf,n

]
=

h−1∑
i=1

1

(Ni − 1)Ni

Ni∑
j=1

[
viΦ

(
−mGn

(u(i,j))

σGn
(u(i,j))

)
ϕU (u(i,j))− m̂

(i)
Pf,n

]2

+
1

(Nh − 1)Nh

Nh∑
j=1

[
δhΦ

(
−mGn

(u(h,j))

σGn(u
(h,j))

)
− m̂

(h)
Pf,n

]2
,

(26)

188

Var
[
L̂n

]
=

h∑
i=1

Var
[
L̂(i)
n

]
=

h−1∑
i=1

1

(Ni − 1)Ni

Ni∑
j=1

[
viΦ

(
−|mGn

(u(i,j))|
σGn

(u(i,j))

)
ϕU (u(i,j))− L̂(i)

n

]2

+
1

(Nh − 1)Nh

Nh∑
j=1

[
δhΦ

(
−|mGn(u

(h,j))|
σGn

(u(h,j))

)
− L̂(h)

n

]2
,

(27)

where Var
[
m̂

(i)
Pf,n

]
and Var

[
L̂(i)
n

]
are called partial variances and Var

[
m̂Pf,n

]
and Var

[
L̂n

]
are called total189

variances.190

One of the salient features of the proposed HSS method is that it allows us to generate more samples in191

the hyper-shell with the largest partial variance, thus reducing the total variance more effectively. This can192

be achieved by the following procedure:193

Step A1: Generate ∆N initial samples in each hyper-shell, based on which the partial and total means194

and variances are calculated.195

Step A2: Check whether the coefficients of variation are small enough, i.e.,
√

Var
[
m̂Pf,n

]
/m̂Pf,n

< γ1196

and

√
Var

[
L̂n

]
/L̂n < γ2, where γ1 and γ2 are two user-specified thresholds.197

• If
√

Var
[
m̂Pf,n

]
/m̂Pf,n

< γ1 and

√
Var

[
L̂n

]
/L̂n < γ2 are satisfied, then terminate the HSS method;198

• If
√
Var

[
m̂Pf,n

]
/m̂Pf,n

≥ γ1 and

√
Var

[
L̂n

]
/L̂n < γ2, then identify the hyper-shell with the largest199

partial variance for m̂Pf,n
as i⋆ = argmax1≤i≤h Var

[
m̂

(i)
Pf,n

]
and go to Step A3;200

• If
√
Var

[
m̂Pf,n

]
/m̂Pf,n

< γ1 and

√
Var

[
L̂n

]
/L̂n ≥ γ2, then identify the hyper-shell with the largest201

partial variance for L̂n as i⋆ = argmax1≤i≤h Var
[
L̂(i)
n

]
and go to Step A3;202

• If
√

Var
[
m̂Pf,n

]
/m̂Pf,n

≥ γ1 and

√
Var

[
L̂n

]
/L̂n ≥ γ2, then identify the two hyper-shells with the203

largest partial variances for m̂Pf,n
and L̂n as i⋆1 = argmax1≤i≤h Var

[
m̂

(i)
Pf,n

]
and i⋆2 = argmax1≤i≤h Var

[
L̂(i)
n

]
,204

11



and go to Step A4;205

Step A3: Start by generating an additional set of ∆N samples for the i⋆-th hyper-shell. Afterward,206

update the partial and total means and variances, and proceed to Step A2;207

Step A4: For both the i⋆1-th and i⋆2-th hyper-shells, generate an additional set of ∆N samples for each.208

Subsequently, update the partial and total means and variances before proceeding to Step A2;209

The numerator and denominator on the left-hand side of the stopping criterion (Eq. (15)) should thus210

be replaced by the corresponding final estimates m̂Pf,n
and L̂n. To avoid false convergence, the stopping211

criterion needs to be satisfied twice in a row.212

3.2. Learning function and multi-point selection213

In addition to the stopping criterion, another pivotal component for developing a Bayesian active learning214

reliability analysis method is the so-called learning (or acquisition) function. This function guides the active215

learning process by selecting the most informative data points. These carefully chosen data points, once216

evaluated, are expected to yield the most significant improvement on the accuracy of the failure probability217

prediction. Assuming that the accuracy of the failure probability prediction can be effectively governed218

by the proposed stopping criterion (Eq. (15)), then the optimal learning function is one that minimizes219

the number of selected data points required to meet this criterion. Therefore, our underlying principle for220

designing the learning function is to align with the attainment of the stopping criterion. Besides, we also221

seek to develop a strategy that can identify multiple informative points instead of a single point in each222

iteration from the designated learning function, in order to facilitate parallel computing.223

A new learning function, denoted as Jn, which is derived from the proposed stopping criterion, is given224

as follows:225

Jn(u) = Φ

(
−|mGn

(u)|
σGn(u)

)
ϕU (u). (28)

Note that the equation
∫
U Jn(u)du = Ln holds. Consequently, we can interpret the learning function Jn226

as a measure that quantifies the contribution of the value at point u to the overall value of Ln. Intuitively,227

the point with the largest Jn-function value is likely to be the most promising candidate point to choose.228
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It is worth pointing out that some existing learning functions can be regarded as variants of our proposed229

Jn function, e.g., U function [15], expected misclassification probability contribution (EMPC) function [21]230

and learning functions in [27, 30].231

Having established the learning function, we now turn our attention to the selection of multiple infor-232

mative points from it. The method we are going to develop is strongly inspired by the previous work [31],233

where a multi-point expected improvement criterion was proposed for efficient global optimization. It is234

important to note that Jn is non-negative, and drops sharply to zero at those sampled points. This inherent235

property presents a promising avenue for developing a multi-point selection strategy. Suppose that in a236

given iteration of active learning, we wish to select an additional na points, in addition to the existing n237

points. The core of our strategy is to select the na points one at a time, rather than all at once. This can be238

achieved by sequentially adjusting the Jn function to account for the possible effects induced by the points239

that have been identified. To initiate the process, we begin by identifying the first point, denoted as u(n+1),240

by maximizing the original Jn function:241

u(n+1) = argmax
u∈[−B,B]d

Jn(u), (29)

where [−B,B]d is a d-dimensional hyperrectangle of side length B in the standard normal space. A con-242

venient way to specify a reasonable value for B is according to R =
√
χ−2
d (1− ε), where ε = 1 × 10−10 is243

adopted [26]. Then, one can choose the q-th point u(n+q) by maximizing a pseudo Jn+q function (denoted244

as SJ (q)
n ) such that:245

u(n+q) = argmax
u∈[−B,B]d

SJ (q)
n (u;u(n+1),u(n+2), · · · ,u(n+q−1)). (30)

Here SJ (q)
n is used to approximate the real Jn+q function without evaluating the last q− 1 points on the G246

function. The SJ (q)
n function takes the following form:247

SJ (q)
n (u;u(n+1),u(n+2), · · · ,u(n+q−1)) = Jn(u)×

q−1∏
j=1

IF (u,u(n+j)), (31)
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where IF (u,u(n+j)) is the influence function, defined by [31]:248

IF (u,u(n+j)) =1− ρ(u,u(n+j))

=1− exp

(
−1

2
(u− u(n+j))Σ−1(u − u(n+j))⊤

)
,

(32)

in which ρ(u,u(n+j)) denotes the correlation coefficient function. By introducing the influence function,249

the SJ (q)
n function takes a zero value at the q− 1 already selected points u(n+1),u(n+2), · · · ,u(n+q−1), and250

approaches to the original Jn+q function when far away from those points. This function is referred to as251

‘pseudo’ because its primary purpose is to serve as an approximation for the true Jn+q function. To produce252

na points in a given iteration using the proposed strategy, it is necessary to perform na optimizations on the253

corresponding learning functions. Fortunately, this computational burden is typically much smaller than254

that of a single evaluation of the G-function in practical scenarios.255

3.3. Implementation procedure of the proposed method256

The main steps for implementing the proposed SBALQ method are summarized below, alongside a257

flowchart shown in Fig. 2.258

Step B1: Generate an initial observation dataset259

To begin the proposed method, it is necessary to create an initial observation dataset by evaluating the260

G-function. This can be achieved by first generating a small number (denoted as n0) of uniformly distributed261

samples UUU =
{
u(j)

}n0

j=1
within a d-ball of radius B using a low-discrepancy sequence. In this study, the262

radius is specified as B =
√
χ−2
d (1− υ) with υ = 10−8, and the Hammersley sequence is employed. Next,263

the corresponding output values YYY = [y(1), y(2), · · · , y(n0)]⊤ of the G-function at UUU can be obtained through264

parallel computation. Finally, the initial observation dataset is formed by DDD = {UUU ,YYY }. Let n = n0.265

Step B2: Obtain the GP posterior of the G-function266

This step entails obtaining the posterior distribution of the G-function (i.e., GP(mGn(u), kGn(u,u
′))),267

given the data DDD . Such task can be accomplished using some well-established GP regression toolkits. In268

this study, we utilize the fitrgp function from the Statistics and Machine Learning Toolbox in Matlab.269

Step B3: Compute the two integrals in the stopping criterion270

14



In this stage, one needs to compute the two estimates m̂Pf,n
and L̂n by using the proposed HSS method271

outlined in Section 3.1.272

Step B4: Check the stopping criterion273

If L̂n

m̂Pf,n
< ϵ is met twice in a row, go to Step B6; Otherwise, go to Step B5.274

Step B5: Enrich the observation dataset275

In this phase, the current observation dataset needs to be enriched with new data. First, identify the next276

na point(s)UUU + =
{
u(n+j)

}na

j=1
by optimizing the proposed learning function(s), where the genetic algorithm277

is used in this study. Then, the evaluation of the G-function atUUU + can be performed in parallel, which yields278

the output value(s) YYY +. Finally, the enriched observation dateset can be formulated as DDD = DDD∪{UUU +,YYY +}.279

Let n = n+ na and proceed to Step B2.280

Step B6: End the method281

Return the current estimate m̂Pf,n
as the failure probability estimate and end the entire procedure.282

Start

Generate an initial dataset DDD = {UUU ,YYY } with n0 observations
and let n = n0

Obtain the GP posterior of the G-function conditional on DDD ,
i.e., GP(mGn(u), kGn(u,u

′))

Compute the two estimates m̂Pf,n and L̂n using the HSS method

Stopping criterion?

Identify UUU + using the proposed function(s),
observe the corresponding G-fucntion value(s) YYY +,
enrich the current dataset DDD with

{
UUU +,YYY +

}
.

Let n = n+ na

Return m̂Pf,n as the failure probability estimate

Stop

No

Yes

Figure 2: Flowchart of the proposed SBALQ method.
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One must specify at least the parameters n0, h, ∆N , γ1, γ2 and ϵ before running the SBALQ algorithm.283

Although they all have a clear physical meaning, some experience may be required to set the proper values.284

For example, the size of the initial observed dataset n0 should be neither too small nor too large. On the285

one hand, too small n0 can result in a very coarse initial GP posterior model, which is less informative for286

subsequent active learning. On the other hand, too large na is neither necessary nor unadvisable.287

4. Numerical examples288

Five numerical examples are analyzed in this section to demonstrate the effectiveness of the SBALQ289

method in estimating extremely small failure probabilities. In each of these examples, the parameters not yet290

specified in the proposed method are set to be: n0 = 10, h = 10, ∆N = 2×105, γ1 = γ2 = 2%, ϵ = 2%(4%).291

Additionally, we vary the value of na to systematically investigate its influence on the obtained results. For292

comparison, several representative existing methods, i.e., PBALC1 [26], PBALC2 [26], PBALC3 [26], PABQ293

[20] and extreme AK-MCS (eAK-MCS) [32] are also conducted. These methods and the proposed method294

are run independently 20 times to evaluate their robustness. Where it is feasible to do so, the reference295

failure probabilities are generated using the MCS method with a significantly large number of simulations.296

4.1. Example 1: A series system with four branches297

The first example involves a series system comprising four branches, which has been extensively studied298

as a benchmark (see for example [15, 29, 33]). The performance function is given as follows:299

g (X1, X2) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

a+ (X1−X2)
2

10 + (X+X2)√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2

, (33)

where X1 and X2 are two independent standard normal variables; a and b are two constant parameters,300

which are specified as 6 and 12, respectively.301
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Table 2 summarizes the results of several structural reliability analysis methods. The reference failure302

probability, obtained thorough the MCS method with 1013 samples, is 3.04 × 10−9 with a COV of 0.57%.303

When na = 1 (indicating that parallel computing is not permitted during the active learning phase), the304

proposed SBALQ method requires an average number of 32.15 iterations, which stands as the lowest among305

PBACLC1, PBACLC2 and PBACLC3, while producing a fairly good average failure probability with a306

small COV. When considering the case na = 4, the PABQ method demands more iterations on average307

compared to the proposed method. The results of eAK-MCS are missing because it is unable to converge in308

this example. The proposed method (na = 4) can give a fairly good failure probability mean with a small309

COV at the expense of only 12.75 iterations (on average). As for the proposed method itself, it can always310

produce nearly unbiased results with COVs less than 4% when na varies from 1 to 8. Besides, it is evident311

that the average number of G-function calls increases with na, while the average number of iterations first312

decreases, stays the same, and then finally increases. This observation implies that selecting an excessive313

number of points at each iteration may not necessarily lead to a reduction in the overall number of iterations.314

For a more intuitive illustration, Fig. 3 shows the selected points and convergence curve obtained from a315

typical run of the proposed method (ϵ = 2% and na = 2). As evident in Figure 3(a), a majority of the points316

chosen during the active learning phase are clustered around the four critical regions of the actual limit state317

curve. As we continue to identify more informative points, Figure 3(b) illustrates how the posterior failure318

probability estimate gradually approaches the reference value before the stopping criterion is reached. These319

observations indicate the effectiveness of the proposed learning functions and stopping criterion.320

4.2. Example 2: A nonlinear oscillator321

As a second example, we consider a nonlinear oscillator subject to a rectangular pulse load [34], as shown322

in Fig. 4. The performance function reads:323

g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

k1 + k2
sin

(
t1
2

√
k1 + k2
m

)∣∣∣∣∣ , (34)

where m, k1, k2, r, F1 and t1 are six random variables, as listed in Table 3.324

The results of several structural reliability analysis methods are reported in Table 4. The reference value325
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Table 2: Reliability analysis results of Example 1 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - 1013 3.04× 10−9 0.57%

PBALC1 (ϵ1 = 2.5%) [26] na = 1 35.75 44.75 3.04× 10−9 3.82%

PBALC2 (ϵ2 = 2.5%) [26] na = 1 41.10 50.10 3.04× 10−9 1.39%

PBALC3 (ϵ3 = 5.0%) [26] na = 1 40.50 49.50 3.03× 10−9 1.99%

PABQ na = 4 18.00 78.00 2.95× 10−9 1.06%

eAK-MCS na = 4 - - - -

Proposed SBALQ (ϵ = 2%)

na = 1 32.15 41.15 3.03× 10−9 1.31%

na = 2 19.35 46.70 3.03× 10−9 0.58%

na = 3 15.55 53.65 3.01× 10−9 0.75%

na = 4 12.75 57.00 3.02× 10−9 0.80%

na = 5 11.10 60.50 3.02× 10−9 0.68%

na = 6 9.95 63.70 3.03× 10−9 0.48%

na = 7 9.95 72.65 3.03× 10−9 0.44%

na = 8 10.65 87.20 3.00× 10−9 3.98%

Note: Niter = the total number of iterations; Ncall = the total number of

performance function calls; P̂f = the failure probability estimate; δP̂f
= the

COV of P̂f .

of the failure probability is taken as 4.04 × 10−8 (with a COV of 0.50%), which is produced by the MCS326

method with 1012 samples. In the non-parallel case (i.e., when na = 1), the proposed SBALQ method327

performs similarly to PBALC1, PBALC2, and PBALC3, with a slightly smaller COV. In the parallel case328

(i.e., when na = 4), the proposed method requires fewer iterations on average compared to the PABQ and329

eAK-MCS methods. However, the proposed method exhibits a smaller COV of 1.40% compared to the330

PABQ and eAK-MCS methods, which have COVs of 7.48% and 3.92%, respectively. In all eight cases, the331
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Figure 3: Illustration of the proposed SBALQ method (ϵ = 2% and na = 2) for Example 1.

 

Figure 4: A nonlinear oscillator subject to a rectangular pulse load.

proposed method can give a nearly unbiased average failure probability with a small COV. Notably, the332

average number of iterations can be reduced from 22.45 to 6.20 as na increases from 1 to 8.333

4.3. Example 3: A reinforced concrete section334

The third example consists of a reinforced concrete section under a bending moment [35], as depicted in335

Fig. 5. The performance function can be expressed as:336

g(X) = X1X2X3 −
X2

1X
2
2X4

X5X6
−X7, (35)

where X1 to X7 are seven random variables, as shown in Table 5.337

Table 6 lists the results of several different methods. The reference failure probability generated by the338

MCS method (with 5× 1011 samples) is 1.59× 10−8 (with a COV of 0.79%). In the non-parallel case (i.e.,339
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Table 3: Random variables for Example 2.

Variable Description Distribution Mean COV

m Mass Lognormal 1.0 0.05

k1 Stiffness Lognormal 1.0 0.10

k2 Stiffness Lognormal 0.2 0.10

r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20

t1 Load duration Lognormal 1.0 0.20

Table 4: Reliability analysis results of Example 2 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - - 1012 4.04× 10−8 0.50%

PBALC1 (ϵ1 = 5%) [26] na = 1 20.10 29.10 4.03× 10−8 4.29%

PBALC2 (ϵ2 = 5%) [26] na = 1 22.90 31.90 4.07× 10−8 2.61%

PBALC3 (ϵ3 = 10%) [26] na = 1 21.95 30.95 4.05× 10−8 3.66%

PABQ na = 4 9.40 43.60 3.94× 10−8 7.48%

eAK-MCS na = 4 11.35 51.40 4.05× 10−8 3.92%

Proposed SBALQ (ϵ = 4%)

na = 1 22.45 31.45 4.03× 10−8 1.72%

na = 2 13.35 34.70 4.09× 10−8 2.08%

na = 3 10.00 37.00 4.03× 10−8 1.95%

na = 4 8.50 40.00 4.05× 10−8 1.40%

na = 5 7.95 44.75 4.04× 10−8 1.12%

na = 6 7.20 47.20 4.02× 10−8 1.95%

na = 7 6.45 48.15 4.06× 10−8 1.74%

na = 8 6.20 51.60 4.04× 10−8 1.48%
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Figure 5: Ultimate stress state of a reinforced concrete section subject to a bending moment.

Table 5: Basic random variables for Example 3.

Variable Description Distribution Mean COV

X1 Area of reinforcement Normal 1260 mm2 0.05

X2 Yield stress of reinforcement Lognormal 300 N/mm2 0.10

X3 Effective depth of reinforcement Normal 770 mm 0.05

X4 Stress–strain factor of concrete Lognormal 0.35 0.10

X5 Compressive strength of concrete Lognormal 30 N/mm2 0.15

X6 Width of section Normal 400 mm 0.05

X7 Applied bending moment Lognormal 80 kN·m 0.20

na = 1), the proposed method performs slightly better than PBALC1, PBALC2 and PBALC3 . When340

Na = 4, the PABQ and eAK-MCS methods require fewer iterations than the proposed method. However,341

they exhibit COVs of 12.90% and 7.17%, respectively, which are much larger than that of the proposed342

method (1.50%). As na increases from 1 to 8, the proposed method can produce fairly good results with343

almost no bias and a small COV, while significantly reducing the average number of iterations.344
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Table 6: Reliability analysis results of Example 3 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - 1012 1.59× 10−8 0.79%

PBALC1 (ϵ1 = 5%) na = 1 14.70 23.70 1.60× 10−8 3.16%

PBALC2 (ϵ2 = 5%) na = 1 16.45 25.45 1.57× 10−8 2.63%

PBALC3 (ϵ3 = 10%) na = 1 16.10 25.10 1.59× 10−8 3.37%

PABQ na = 4 6.75 33.00 1.58× 10−8 12.90%

eAK-MCS na = 4 5.40 27.60 1.60× 10−8 7.17%

Proposed SBALQ (ϵ = 4%)

na = 1 14.60 23.60 1.58× 10−8 2.35%

na = 2 9.95 27.90 1.58× 10−8 2.51%

na = 3 8.90 33.70 1.56× 10−8 1.59%

na = 4 8.15 38.60 1.57× 10−8 1.50%

na = 5 7.25 41.25 1.57× 10−8 1.53%

na = 6 6.60 43.60 1.56× 10−8 1.26%

na = 7 6.20 46.40 1.57× 10−8 1.64%

na = 8 6.20 51.60 1.57× 10−8 1.05%

4.4. Example 4: A spatial truss structure345

The fourth example is a 120-bar spatial truss structure under vertical loads [19, 20], as depicted in346

Fig. 6. The finite element of the structure is built using OpenSees and it contains 49 nodes and 120 truss347

members. The cross-sectional area and Young’s modulus, denoted A and E, are assumed to be the same348

for all members. Thirteen vertical loads, denoted P0 - P12, are applied to nodes 0 - 12, respectively. The349

performance function is formulated as follows:350

g(X) = ∆− V0(A,E, P0-P12), (36)

where V0 denotes the vertical displacement of node 0; ∆ is the associated threshold, which is specified as351

100 mm; A, E, P0 - P12 are treated as 15 random variables, as listed in Table 7.352
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Figure 6: A 120-bar space truss structure subject to thirteen vertical loads.
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Table 7: Random variables for Example 4.

Variable Distribution Mean COV

A Normal 2,000 mm2 0.10

E Normal 200 GPa 0.10

P0 Lognormal 500 kN 0.20

P1 ∼ P12 Lognormal 60 kN 0.15

The reliability analysis results of several methods are summarized in Table 8. To provide a reference353

solution, the important sampling (IS) method available in UQLab [36] is used instead of MCS. The reference354

failure probability obtained is 1.87 × 10−7 with a COV of 1.98%, at the expense of 30,142 G-function355

evaluations. When na = 1, the three PBALC methods, on average, demand slightly fewer G function calls356

compared to the proposed SBALQ method, but they exhibit higher variability. When na = 4, although357

the PABQ method outperforms the proposed SBALQ method in terms of the average number of iterations,358

the former yields a rather large COV of 162.04%. The eAK-MCS method fails to produce results due to359

computer memory issues. As for the proposed SBALQ method itself, the average number of iterations can360

be reduced from 37.05 to 12.55 (although the average total number of performance function calls increases)361

when na is increased from 1 to 8. In addition, the proposed method can produce a nearly unbiased failure362

probability mean with a COV less than 8% in each case.363

4.5. Example 5: A jet engine turbine blade364

The final example concerns a turbine blade from a jet engine (as depicted in Fig. 7), which is available365

in the Partial Differential Equation Toolbox of Matlab R2022b. The turbine blade is made of nickel-based366

alloy (NIMONIC 90) with Young’s modulus E, Poisson’s ratio ν and the coefficient of thermal expansion367

CTE. The root face (face 3 in Fig. 7(a)) in contact with other metal is fixed. Pressure load p1 is applied368

to the pressure sides, and pressure loads p2 are applied to the suction sides. The finite-element model369

is discretized by linear tetrahedral elements with the maximum element size 0.01 m, which is shown in370

Fig. 7(b). One typical cause of the blade failure is mechanical stress, and hence we define the following371
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Table 8: Reliability analysis results of Example 4 by several methods.

Method Niter Ncall P̂f δP̂f

IS - 30, 142 1.87× 10−7 1.98%

PBALC1 (ϵ1 = 5%) na = 1 36.25 45.25 1.85× 10−7 7.39%

PBALC2 (ϵ2 = 5%) na = 1 30.45 39.45 1.84× 10−7 6.36%

PBALC3 (ϵ3 = 10%) na = 1 32.75 41.75 1.84× 10−7 7.44%

PABQ na = 4 9.70 44.80 1.95× 10−7 162.04%

eAK-MCS na = 4 - - - -

Proposed SBALQ (ϵ = 4%)

na = 1 37.05 46.05 1.82× 10−7 3.39%

na = 2 22.70 53.40 1.80× 10−7 6.87%

na = 3 20.20 67.60 1.82× 10−7 6.48%

na = 4 17.20 74.80 1.85× 10−7 5.09%

na = 5 14.95 79.75 1.82× 10−7 7.93%

na = 6 14.30 89.80 1.81× 10−7 6.54%

na = 7 13.15 95.05 1.83× 10−7 6.64%

na = 8 12.55 102.40 1.82× 10−7 6.42%

performance function:372

g(X) = σth − σmax(E, ν, CET, p1, p2), (37)

where σth = 0.8 GPa is the threshold for the maximum von Mises stress σmax of the blade; E, ν, CET , p1373

and p2 are five random variables, as listed in Table 9.374

Table 10 reports the reliability analysis results of several methods, i.e., IS [36], PBALC1, PBALC2,375

PBALC3, PABQ, eAK-MCS and the proposed SBALQ method. IS [36] was implemented to provide a376

reference value for the failure probability. However, its results were not available because something went377

wrong during the analysis. As an alternative, the reference failure probability is taken as 1.25×10−8 (with a378

COV of 0.77%), which is the mean value given by PBALC1 (ϵ1 = 5%) with 20 runs. For na = 1, PBALC1,379
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Figure 7: A jet engine turbine blade.

Table 9: Random variables for Example 5.

Variable Distribution Mean COV

E Normal 220 GPa 0.10

ν Normal 0.30 0.05

CET Uniform 1.25× 10−7 1/K 0.05

p1 Gumbel 500 kPa 0.15

p2 Gumbel 450 kPa 0.15

PBALC2 and PBALC3 methods and the proposed SBALQ method can produce quite similar mean values380

for the failure probability with rather small COVs. Among them, the proposed method requires the fewest381

G-function calls. When na = 4, PABQ gives a biased mean for the failure probability, while processing382

a large COV. Like IS, eAK-MCS encountered an error when running the finite element analysis, so no383

results can be given. On the contrary, the proposed method (na = 4) performs well, as do other cases (i.e.,384

na = 1, 2, 3, 5, 6, 7, 8). Moreover, the number of iterations required by the proposed method decreases as na385

increases from 1 to 5, but increases as na increases from 5 to 8.386
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Table 10: Reliability analysis results of Example 5 by several methods.

Method Niter Ncall P̂f δP̂f

IS - - - -

PBALC1 (ϵ1 = 5%) na = 1 28.85 37.85 1.25× 10−8 0.77%

PBALC2 (ϵ2 = 5%) na = 1 41.00 50.00 1.25× 10−8 1.45%

PBALC3 (ϵ3 = 10%) na = 1 38.30 47.30 1.24× 10−8 2.04%

PABQ na = 4 3.95 21.80 1.01× 10−8 34.05%

eAK-MCS na = 4 - - - -

Proposed SBALQ (ϵ = 4%)

na = 1 18.65 27.65 1.25× 10−8 1.63%

na = 2 12.00 32.00 1.26× 10−8 2.92%

na = 3 10.50 38.50 1.25× 10−8 1.42%

na = 4 8.35 39.40 1.26× 10−8 1.10%

na = 5 8.05 45.25 1.25× 10−8 1.02%

na = 6 8.55 55.30 1.25× 10−8 0.84%

na = 7 8.15 60.05 1.25× 10−8 0.59%

na = 8 8.95 73.60 1.25× 10−8 1.28%

Remark. As observed in the five numerical examples above, the average number of iterations required387

by the proposed method does not always decrease as na increases. This means that if na cores are used388

for an expensive G function, a too large na may not lead to a reduction in the overall computation time.389

According to our computational experience, na = 4 - 6 should be sufficient.390

5. Concluding remarks391

This study presents an innovative method termed ‘semi-Bayesian active learning quadrature’ (SBALQ)392

for structural reliability analysis, particularly for evaluating extremely small failure probabilities. The main393

contributions lie in the development of two key components for active learning (i.e., stopping criterion and394
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learning function) based on the well-established Bayesian failure probability inference framework, while395

avoiding the use of the posterior variance of the failure probability, which is expensive to evaluate. First, we396

introduce a new stopping criterion by exploring the structure of the posterior mean of the failure probability397

only. This criterion involves two analytically intractable integrals. Second, a numerical integration technique398

called ‘hyper-shell simulation’ is devised to approximate the integrals. Third, we propose a new learning399

function based on the proposed stopping criterion, and by maximizing it a single point can be identified400

at each iteration of the active learning phase. Fourth, the proposed learning function is further modified401

by multiplying an influence function so as to enable multi-point selection and hence parallel distributed402

processing. It is empirically shown from five numerical examples that the proposed SBALQ method is403

capable of estimating very low failure probabilities in the order of 10−7 - 10−9, while maintaining desired404

efficiency and accuracy. It is worth noting that the computational efficiency can be further improved by405

leveraging the parallelizability inherent in the proposed approach.406

The proposed method, in its current form, performs poorly in high dimensions due to the limitations407

of GP and HSS. Consequently, a promising avenue for future research lies in the integration of effective408

dimension reduction techniques. Furthermore, it is still challenging to apply the proposed method to highly409

nonlinear problems when using the squared exponential kernel, as it implies a smooth assumption.410
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Appendix A. Generation of uniform random samples in the h − 1 inner hyper-shells419

The procedure for generating Ni uniform random samples in the h− 1 inner hyper-shells is as follows:420

1. DrawNi random samples that are uniformly distributed on
[
Rd

i−1, R
d
i

]
, denoted as

{
v(j) : j = 1, 2, · · · , Ni

}
;421

2. Generate Ni random samples from ϕU (u), denoted as
{
u(j) : j = 1, 2, · · · , Ni

}
;422

3. Obtain the j-th sample in the i-th inner hyper-shell by u(i,j) =
d√
v(j)u(j)

||u(j)|| .423

Appendix B. Generation of random samples in the outermost hyper-shell424

The procedure for generating Ni random samples from ψ(h)(u) in the outermost hyper-shell is as follows:425

1. Draw Ni random samples that are uniformly distributed on
[
1− 10−(h−1), 1

]
, which are denoted as426 {

pj : j = 1, 2, · · · , Ni

}
;427

2. Generate Ni random samples from ϕU (u), denoted as
{
u(j) : j = 1, 2, · · · , Ni

}
;428

3. Obtain the j-th sample in the outermost hyper-shell by u(i,j) =

√
χ−2
d (pj)u(j)

||u(j)|| .429

References430

[1] G. Rubino, B. Tuffin, et al., Rare event simulation using Monte Carlo methods, Vol. 73, Wiley Online Library, 2009.431

[2] S.-K. Au, J. L. Beck, A new adaptive importance sampling scheme for reliability calculations, Structural Safety 21 (2)432

(1999) 135–158. doi:https://doi.org/10.1016/S0167-4730(99)00014-4.433

[3] I. Papaioannou, S. Geyer, D. Straub, Improved cross entropy-based importance sampling with a flexible mixture model,434

Reliability Engineering & System Safety 191 (2019) 106564. doi:https://doi.org/10.1016/j.ress.2019.106564.435

[4] J. Xian, Z. Wang, Relaxation-based importance sampling for structural reliability analysis, Structural Safety 106 (2024)436

102393. doi:https://doi.org/10.1016/j.strusafe.2023.102393.437

[5] S.-K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, Probabilistic438

Engineering Mechanics 16 (4) (2001) 263–277. doi:https://doi.org/10.1016/S0266-8920(01)00019-4.439

[6] J. Nie, B. R. Ellingwood, Directional methods for structural reliability analysis, Structural Safety 22 (3) (2000) 233–249.440

doi:https://doi.org/10.1016/S0167-4730(00)00014-X.441

29

https://doi.org/https://doi.org/10.1016/S0167-4730(99)00014-4
https://doi.org/https://doi.org/10.1016/j.ress.2019.106564
https://doi.org/https://doi.org/10.1016/j.strusafe.2023.102393
https://doi.org/https://doi.org/10.1016/S0266-8920(01)00019-4
https://doi.org/https://doi.org/10.1016/S0167-4730(00)00014-X
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