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A General-Purpose Fixed-Lag No-U-Turn Sampler
for Nonlinear Non-Gaussian State Space Models

Alessandro Varsi, Lee Devlin, Paul Horridge and Simon Maskell

Abstract—Particle Filters (PFs) are commonly used Sequential
Monte Carlo (SMC) algorithms to process a never-ending stream
of measurements relating to a nonlinear non-Gaussian state space
model. Fixed-Lag SMC (FL-SMC) is an extension to the PF
that allows for re-processing of historic data. FL-SMC is widely
flexible, such that it can solve problems that are challenging for
standard PFs. However, FL-SMC also inherits the challenges (in
terms of maximizing accuracy and efficiency) that can limit PFs’
efficacy when using a poor choice of the proposal distribution:
this can be especially evident in strongly nonlinear scenarios.
One alternative is to employ Sequential Markov Chain Monte
Carlo (S-MCMC) methods, for which the literature offers a wider
selection of efficient proposal distributions. However, S-MCMC
does not inherently have the broad applicability of FL-SMC.
In this paper, we present the Fixed-Lag No-U-Turn Sampler, an
SMC framework that combines FL-SMC and No-U-Turn Sampler
(NUTS), a gradient-based MCMC method. We show that, when
compared with several variants of PFs, including one that employs
Particle Flow, several variants of FL-SMC, and S-MCMC, our
proposed approach provides significant accuracy and efficiency
improvements, at the price of a moderate run-time overhead.

Index Terms—Fixed Lag Sequential Monte Carlo, Particle Fil-
ters, Sequential Markov Chain Monte Carlo, No-U-Turn Sampler.

I. INTRODUCTION

A. Motivation

P article Filters (PFs) are well-known Sequential Monte
Carlo (SMC) methods that perform state estimation for

State Space Models (SSMs) of dynamic systems in response
to an incoming stream of noisy measurements. More precisely,
they are commonly used in the context of nonlinear non-
Gaussian models, and therefore, find application in a vast
range of domains, such as machine learning [1], weather
forecasting [2], medical research [3], risk assessment [4] and
target tracking [5]. The idea is to recursively represent the
posterior by sampling N weighted hypotheses of the state (i.e.
particles) from an arbitrary proposal distribution, and to use the
resampling algorithm when the variance of the particle weights
becomes too low [6]. The performance of PFs is typically
assessed in terms of the accuracy of their state estimation,
and their efficiency, as usually quantified using the variance of
the particle weights.
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We can improve the performance by using several different
approaches. Relatively straightforward ideas include changing
the resampling algorithm [7], [8], using tempering [9], query-
ing more sensors whenever possible [10], or simply increasing
the number of particles [11]. All of these techniques are gener-
ically applicable, but the key to increasing the performance is
to ensure that the proposal puts the particles in good places,
i.e., in such a way they resemble the posterior.

Therefore, we argue that in order to have a high-performance
PF that is effective across a diverse range of potential applica-
tions, we need to have an effective general-purpose proposal
distribution.

B. Problem Definition and Related Work
The original bootstrap filter [12] and the Sequential Impor-

tance Resampling (SIR) PF [6] use the dynamics as a proposal.
Although this convenient approach is widespread, it is not the
optimal proposal, since it does not incorporate information
from the measurements in how the particles are proposed.
Indeed, the optimal proposal is dependent on the measurements
and is defined as one that maximizes the efficiency, i.e.,
minimizes the variance of the weights [13], [14]. In theory, it is
always possible to define an optimal proposal, but in practice
such a proposal is often impossible to compute in closed form,
as well as being model-specific.

There have been several attempts to approximate the optimal
proposal. In [15], [16] a hierarchical SMC method in which
every particle is itself a PF is presented. This approach
improves the accuracy but greatly increases the run-time. Also,
the choice of the proposal for the inner PFs is crucial for
performance. Another approach is to use a Gaussian approxi-
mation of the optimal proposal by using variants of the Kalman
Filter (KF), such as the Extended KF (EKF) or the Unscented
KF (UKF) [17], to incorporate information from the mea-
surements. While these approaches are still commonly used
[18]–[20], real-world models might be strongly nonlinear [21],
[22], which makes it challenging to define effective KF-based
proposals. One strategy in such settings is to define a problem-
specific transformation of variables such that the proposal is
well approximated as Gaussian in the transformed space [17].
Another approximation to the optimal proposal, called PF with
Invertible Particle Flow (PFIPF), is presented in [23]. For each
particle, PFIPF introduces a Particle Flow [24] step in between
the prediction and update steps of a KF-based proposal for
nonlinear SSMs (e.g., EKF or UKF), and has been shown
to handle the curse of dimensionality in highly-dimensional
models more efficiently than SIR PF or the approaches in [18]–
[20]. We note that, in common with the approach that we pro-
pose, Particle flow uses gradient information to handle high-
dimensional models. More precisely, Particle flow uses these
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gradients when considering the transport of the probability
mass between the prior and posterior distributions in such a
way that the particles are moved to approximate the posterior.
We adopt a different approach to capitalizing on the availability
of gradient information.

Other proposal distributions have been considered in the
context of Markov Chain Monte Carlo (MCMC) methods,
albeit typically applied to static systems (i.e., having a posterior
distribution with constant state and data). Two methods stand
out in terms of accuracy and acceptance rate, especially with
highly-dimensional posterior distributions: Hamiltonian Monte
Carlo (HMC) and the No-U-Turn-Sampler (NUTS) [25]–[28].
These are gradient-based proposals, which means they use
the gradient of the posterior (i.e., including the likelihood of
the measurement) to propose new samples. There have been
attempts to apply MCMC in the context of dynamic systems
(i.e., having a time-varying state or data). For example, at each
iteration, Sequential MCMC (S-MCMC) generates a chain of
N (unweighted) samples using MCMC and then proceeds to
the next iteration by conditioning the MCMC proposal on just
one sample of the state at the previous iteration. Since this
sample is drawn from the (previous) filtering distribution, S-
MCMC is unable to refine its single sample of the previous
state in light of newly received data. None-the-less, we note
that there have been some approaches to using gradient-based
proposals in the context of S-MCMC [29]–[31].

Another approach to making the proposal more effective
and widely applicable in a dynamic context is the one used in
Fixed-Lag SMC (FL-SMC) methods, which are also described
in the literature as Block Sampling PFs. Similarly to Fixed-
Lag smoothing, FL-SMC refines the l previous states of each
particle (where l is an arbitrary time step lag), in order to
improve the quality of the new set of particles. This approach
was presented in [32], [33], and recently further improved
in [34]. FL-SMC finds application in several domains [35]–
[37], can be effectively employed within hierarchical SMC
methods [38], and can be configured (by extending the lag to
the full measurement history) to work on static systems [39],
to which MCMC methods are typically applied.

Broadly speaking, using a lag enables the proposal in FL-
SMC to revisit historic portions of the trajectory. This means
that FL-SMC shares PFs’ ability to handle problems where
sampling errors related to the current particles will have
minimal impact on the future particles, but, crucially, FL-
SMC can also work well when such sampling errors have a
significant impact on future particles. When it comes to the
convergence proofs for PFs [40], this notion of forgetting errors
is referred to as ergodicity: systems that are highly ergodic
forget errors quickly. Therefore, in this paper we distinguish
between two extreme regimes in a continuum of problems:

Definition 1: We define an SSM to exhibit short-term mem-
ory (STM) if a substantial state estimation error at time step
t − 1 is unlikely to compromise the state estimation at time
step t, i.e., it is highly ergodic.

Definition 2: We define an SSM to exhibit long-term mem-
ory (LTM) if a substantial state estimation error at time step
t − l, for l > 0, is likely to compromise the state estimation
of the next l time steps, i.e., the problem is not ergodic.
More intuitively, STM models are those for which performance

can be maximized by using a proposal that only uses the most
recent measurement, Yt, while LTM models are those for
which it is important for the proposal to be dependent on the
last l measurements, Yt−l:t.

Using the dynamics as the proposal is widespread in the
context of FL-SMC, since doing so is convenient from an
implementation perspective. None-the-less, in [32], it is shown
that the proposal can be straightforwardly switched to an EKF
smoother, and, therefore, to any KF-based smoother. While this
improves performance, the use of a KF-based proposal in the
context of FL-SMC encounters the same challenges as using
such proposals in the context of a PF.

Therefore, we argue that the key to constructing a general-
purpose proposal distribution for SSMs is to combine the
wide applicability of FL-SMC with the high efficiency of
gradient-based MCMC proposals. However, this idea is not
straightforwardly achievable for two primary reasons. Firstly,
the posterior considered in dynamic systems is time-varying.
Secondly, MCMC proposals can be slow to converge unless a
(potentially also slow) burn-in phase is used.

C. Our Results
The contribution of this paper is to extend the preliminary

work in [41] to propose Fixed-Lag NUTS (FL-NUTS), a
general-purpose sequential Bayesian filter that combines FL-
SMC and NUTS. More precisely, in this work, we present
the following contributions relative to the preliminary work
in [41]:
• We have revised the theory behind the weight update

in Equation (22), to remove an unnecessary (and unde-
sirable) assumption present in [41]. Approximating that
this assumption holds would limit the range of scenarios
where FL-NUTS has utility: this is discussed in Section
IV-A;

• We have improved the proposal by adding an opti-
mization step, which we describe in Section IV-B. This
optimization step is new and necessary to achieve both
accurate and efficient performance, as the empirical
results in Section V emphasize;

• We have significantly extended the baselines for com-
parison relative to those considered in [41];

• We have a larger set of more developed scenarios
(relative to [41]) which are used to generate the results
we present.

Indeed, the resulting filter is compared with several variants
of FL-SMC, PFIPF, and S-MCMC on several exemplary non-
linear non-Gaussian SSMs configured to have an increasingly
challenging posterior in terms of nonlinearity, memory latency,
and state dimensionality. At the price of a slower run-time (up
to 12 times more intensive), FL-NUTS improves the efficiency
by up to 20 times and the accuracy by up to three orders of
magnitude.

In doing so, the rest of the paper is organized as follows:
in Section II, we describe FL-SMC. In Section III, we give
brief information about gradient-based MCMC methods and
S-MCMC. In Section IV, we present our approach in detail.
Section V provides the numerical results. In Section VI, we
draw our conclusions and give suggestions for possible future
work.
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II. FIXED LAG SEQUENTIAL MONTE CARLO METHODS

In this section, we describe the FL-SMC method. To provide
context, we first explain the SIR PF, and then progress to
describe FL-SMC, as the latter can be intuitively viewed as
an extension of the first. Further details can be found in [6],
[32], [33].

A. Sequential Importance Resampling

p(X1|X0) p(X2|X1) p(Xt−1|Xt−2) p(Xt|Xt−1)

Y1 Y2 Yt−1 Yt

X0 X1 X2 Xt−1 Xt

Fig. 1: SIR PF: state flow

At each time step t = 0, 1, . . . , T − 1, SIR employs
the Importance Sampling (IS) principle to make Bayesian
inferences of the true state, Xt ∈ RM , of a dynamic system.
The key idea consists of generating xt ∈ RN×M , a population
of N samples (or particles) of the true state, by randomly
drawing each particle, xit ∈ RM , from an arbitrary proposal
distribution, q(Xt|Xt−1,Yt). This step is commonly referred
to as prediction. Then, xit is weighted by an unnormalized
weight, wi

t ∈ R, which ensures that the samples, xt, can be
used to approximate estimates associated with p (Xt|Y1:t).
This step is usually called update. To update the weights at
each iteration, SIR processes a datum, Yt, which also has to
be a known function of Xt.

At the time step t = 0, no data have been collected yet, so
the particles can be drawn from an initial distribution, p0(Xt),
and weighted equally, i.e. wi

t = 1/N ∀i. For any time step
t = 1, 2, . . . , T −1, new measurements are collected, and each
particle is drawn from the proposal distribution as follows:

xit ∼ q(xit|xit−1,Yt), (1)

and weighted as follows:

wi
t = wi

t−1
π(xit,Yt|xit−1)

q(xit|xit−1,Yt)
, (2)

where the incremental posterior, π(Xt,Yt|Xt−1) =
p(Xt|Xt−1)p(Yt|Xt), is known from the model. The
optimal proposal is then that which minimizes the variance of
the incremental weights and is defined in [13] as:

qOpt (xit|xit−1,Yt

)
= p

(
xit|xit−1,Yt

)
=

p
(
xit,Yt|xit−1

)∫
p
(
Xt,Yt|xit−1

)
dXt

=
π
(
xit,Yt|xit−1

)
p
(
Yt|xit−1

) ,

(3)

which is such that the weight update with the optimal proposal
is

wi
t = wi

t−1
π(xit,Yt|xit−1)

π(xi
t,Yt|xi

t−1)
p(Yt|xi

t−1)

= wi
t−1p

(
Yt|xit−1

)
, (4)

where the term p
(
Yt|xit−1

)
is the likelihood conditioned to

the previous state of each particle and is computed as follows:

p
(
Yt|xit−1

)
=

∫
p
(
Xt,Yt|xit−1

)
dXt

=

∫
p(Yt|Xt)p(Xt|xit−1)dXt.

Two problems arise when attempting to use the optimal
proposal. The integral to compute p

(
Yt|xit−1

)
for each i often

does not have closed form solution, and, while it is theoret-
ically possible to sample from π (Xt,Yt|Xt−1), it is rarely
achievable in practice, as well as being model specific [13],
[14]. Hence, a typical approach used by SIR PFs is to propose
samples from the dynamic model (as illustrated in Figure 1),
p(Xt|Xt−1), such that (2) becomes wi

t = wi
t−1p(Yt|xit).

To ensure the samples can be used to generate estimates
with respect to p (Xt|Y1:t) and not just p (Xt,Yt|Y1:t−1),
the weights are then normalized (to sum to unity) as follows:

w̃i
t =

wi
t∑N−1

j=0 wj
t

. (5)

An estimate of the current state can then be computed as
the weighted sum of the particles:

µXt
= Ep(Xt|Y1:t)[Xt] =

N−1∑
i=0

w̃i
tx
i
t. (6)

The previous operations are however subjected to a numeri-
cal error, called particle degeneration, which makes all weights
but one decrease towards 0, and hence causes (6) to diverge
from (the true value of) Xt. To correct for this error, the typical
approach is to perform resampling, an algorithm that removes
the particles with low weights and replaces them with copies
of the particle(s) with high weight(s). In SIR, resampling is
performed if the effective sample size (ESS)

Neff =
1∑N−1

i=0 (w̃i
t)

2
(7)

drops below an arbitrary threshold, typically set to N/2. Many
resampling variants can be found in the literature [7]. Here,
we only consider systematic resampling for all SMC methods,
since the novelty of this work only focuses on IS. Systematic
resampling first computes the cumulative density function of
Nw̃t, cdf ∈ RN , as follows:

cdf i = N

i−1∑
j=0

w̃j , ∀i = 0, 1, 2, ..., N − 1. (8)

Then each particle, xit, is copied as many times as:

ncopiesi = dcdf i + w̃i
t − ue − dcdf i − ue, (9)

where d·e is the ceiling function and u ∼ Uniform[0, 1).
After that, each weight is reset to 1/N , and the next time step
starts over from (1).
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p(Xt−l|Xt−l−1)

p(Xt−l+1|Xt−l) p(Xt−1|Xt−2) p(Xt|Xt−1)

Replaces Xt−l:t−1 by sampling from
q(Xt−l:t|Xt−l−1,Yt−l:t) = p(Xt−l:t|Xt−l−1)

old trajectory

new trajectory

Yt−l Yt−l+1 Yt−1 Yt

Xt−l−1 Xt−l Xt−l+1 Xt−1

Xt−l Xt−l+1 Xt−1 Xt

Fig. 2: FL-SMC: state flow

B. Fixed-Lag Sequential Monte Carlo

In the FL-SMC method, each particle is not a sample of
Xt as in the SIR PF, but represents a sample of a trajectory
of l + 1 states, Xt−l:t, where l ∈ Z+ is a lag. Therefore,
each particle (also called particle trajectory or simply trajec-
tory, in this method), is defined by the following notation:
xit−l:t ∈ RN×(l+1)×M . The key idea to propose each xit−l:t
at every time step, t, is to rewind by l time steps and re-
run the proposal given xit−l−1 and the last l + 1 sets of data,
Yt−l:t. This way, the intermediate states of each particle at
time steps τ = t − l, t − l + 1, . . . , t − 1 are replaced and
potentially improved; however, before running the proposal,
these intermediate states need to be stored into a temporary
vector, which we call old trajectory, xit−l:t−1∀i, as they are
required to update the importance weights. Figure 2 illustrates
these concepts. More precisely, at each time step, IS generates
and weights each new particle trajectory xit−l:t as follows:

xit−l:t ∼ q(xit−l:t|xit−l−1,Yt−l:t), (10)

such that

wi
t = wi

t−1
π(xit−l:t,Yt−l:t|xit−l−1)L(xit−l:t−1|xit−l:t−1)

π(xit−l:t−1,Yt−l:t|xit−l−1)q(xit−l:t|xit−l−1,Yt−l:t)
,

(11)

where the L(·) term is called backward kernel and is a design
choice [32], [33]. This kernel expresses a probability of a
backwards-going distribution and can intuitively be considered
as a quantification of proximity (between the old and new
trajectories) in the space of sampled trajectories. More specif-
ically, it is a function of the old states at times t− l, . . . , t− 1
given the newly sampled values for those same states. The
incremental posterior is computed as follows:

π (Xt−l:t,Yt−l:t|Xt−l−1) =

t∏
τ=t−l

p (Xτ |Xτ−1) p (Yτ |Xτ ) .

(12)

After (10) and (11), FL-SMC performs (5), (6), (7), and
resampling as SIR. We also note that if l = 0 FL-SMC and
SIR become equivalent.

As in SIR, it is theoretically possible to define an optimal
proposal for FL-SMC, which again is the one that minimizes
the variance of (11):

qOpt (xit−l:t|xit−l−1,Yt−l:t
)
∝ π

(
xit−l:t,Yt−l:t|xit−l−1

)
. (13)

In such a scenario, [33] proves that the optimal choice for the
L(·) kernel would simplify (11) to wi

t = π(xit−l)/π(xit−l−1).
It is often impossible to sample from (13). Hence, the typical
proposal for the new trajectory is again the dynamics, i.e.,
p(Xt:t−l|Xt−l−1), and the backward kernel is chosen to match
the proposal, i.e., L(·) = q

(
xit−l:t−1|xit−l−1

)
. However, it

is straightforward to replace the dynamics with any Kalman-
based proposal, such as the EKF [32]. In this case, (11) does
not need to change, and we refer to the resulting method as FL-
EKF. For completeness, we also consider a UKF proposal for
FL-SMC, although this method is not technically considered
in the literature on FL-SMC, albeit being a typical proposal
for SIR. We refer to this method as FL-UKF1.

We note that increasing l does not always translate to
improved state estimation or ESS, and its optimal value varies
depending on the specifics of the model, as also pointed out
in [32].

III. MARKOV CHAIN MONTE CARLO METHODS

In this section, we first describe two gradient-based MCMC
methods, HMC and NUTS, and then give a brief introduction
to the S-MCMC framework. The reader is referred to [25]
and [43] for further details.

A. Hamiltonian Monte Carlo
The goal of any MCMC algorithm is to generate a Markov

chain of samples from a static posterior distribution, π(θ|Y).
This distribution is a function of a generic sample, θ, and is
defined given some data, Y: we will explain the relationship
between θ and x in Section IV. HMC draws upon ideas from
statistical physics. It achieves the goal of sampling from a
distribution of interest by hypothesizing a dynamic system
that has a specific property. This property is that if we were
able to simulate exactly the evolution of the system over time,
the distribution of the states of the system (marginalized over
time) would exactly match the distribution of interest. More
formally, HMC achieves this by considering a Hamiltonian
system, with potential and kinetic energy. The potential energy
is a function of the posterior distribution. Each sample, θ,
is viewed as an object with some kinetic energy defined
by a momentum vector, V. The object then moves around
the posterior converting kinetic to potential energy and vice
versa. HMC operates by considering the canonical distribution
p(θ,V) = 1

Z exp(−H(θ,V)/Te), where Z is a normalizing
constant and Te is a temperature value (we subsequently
assume Te = 1). H(θ,V) is called the Hamiltonian. It
represents the total energy and is defined as the sum of
the potential energy, U(θ), and the kinetic energy, K(V):
H(θ,V) = U(θ) + K(V). HMC sets the potential energy
to be proportional to the log of the posterior distribution, as
follows: U(θ) = − log(π(θ|Y)). The kinetic energy is set to
be a function of the momentum given to the sample, V, as
follows: K(V) = 1

2V
Tm−1V where m ∈ RM×M is a mass

matrix.
Every MCMC algorithm generates a chain of samples where

each new sample, θ∗, is proposed from the previous one, θ.

1For brevity, we assume the reader is familiar with EKFs and UKFs, but
further information can be found in [42].
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In the specific case of HMC, the dynamics of the sample
moving across the posterior are then modeled using Hamilton’s
equations:

dV

dt
= −∂U(θ)

∂θ
(14a)

dθ

dt
= m−1V. (14b)

However, the system of equations (14) typically has no closed-
form solution and requires a numerical integrator, f(θ,V). This
numerical integrator is initialized to the previous sample, θ, and
to V, a momentum vector randomly drawn from N (0,m).
After n integration steps of step-size ∆h, V becomes V∗,
and the previous position, θ, becomes the final position, θ∗,
meaning that f(θ,V) = (θ∗,V∗). The final position is the
proposed sample which is either accepted or rejected with an
acceptance probability

β = min(1, exp(−H(θ∗,V∗) +H(θ,V))) (15)

according to the same Rejection Sampling decision mechanism
as used in Metropolis-Hastings, whose description is omitted
for brevity. The process is repeated N̂ times to generate a chain
of N̂ samples, as with any MCMC method. For performance
reasons, a subset of Nb samples (typically Nb = N̂/2) is
discarded, a process which is called burn-in. The performance
is then assessed over N = N̂ − Nb samples. For MCMC
methods, the ESS is approximated as follows:

Neff =
N

1 + 2
∑N−1
i=0 ci

, (16)

where ci is the autocorrelation at an offset of i. Since the
samples are unweighted, the estimate in (6) becomes a mean:

µθ =
1

N

N−1∑
i=0

θi. (17)

Leapfrog is the most common numerical integrator to solve
(14) because it satisfies two important properties. Firstly, it
is time-reversible. This means that given an initial position
and momentum and applying leapfrog, then by running the
integration in reverse we will arrive back at the initial state, i.e.,
f(θ∗,−V∗) = (θ,V). Proposals that use leapfrog make the
distribution being generated invariant, and therefore detailed
balance is satisfied, which is required for the MCMC process
to be valid. Secondly, it is a symplectic method. This means
that leapfrog is able to preserve the geometric structure of the
dynamics as the integration steps progress. As a result, energy
is conserved, and therefore (15) remains close to unity with
a small deviation, owing to small errors in the integration.
As a result, samples are proposed with a high acceptance rate,
i.e., quite efficiently. These properties, as we will demonstrate,
will also become useful for the novelty of this work. Each
integration step solves the following equations:

θk = θk−1 + ∆hm−1Vk−1 −
1

2
∆h2m−1

∂U(θk−1)

∂θ
(18a)

Vk = Vk−1 −
1

2
∆h

(
∂U(θk−1)

∂θ
+
∂U(θk)

∂θ

)
(18b)

∀k = 1, 2, . . . , n, where the gradient terms are evaluations of
the derivative of the negative of the log posterior at points on
the distribution.

We note that the ideal value for the mass matrix is model-
dependent. A typical choice is to set m to the identity matrix
I in order to simplify (14) and (18). An optimized mass
matrix will allow for efficient exploration through the posterior
space. However, by setting a generic mass matrix, we place
more emphasis on finding a suitable step-size to maintain high
acceptance rates. There is currently active work on finding a
heuristic method that would pre-tune m to any model [44].
However, proposing a novel approach that also makes use
of such heuristics is beyond the scope of this manuscript.
Therefore, from this point on, we consider m = I for all
filtering methods that use gradient-based MCMC proposals.

B. No-U-Turn Sampler

HMC requires two parameters to be tuned to sample from
a distribution effectively: namely, the step-size, ∆h, and the
number of steps, n. NUTS auto-calibrates the number of
leapfrog steps by extending a path until it turns back on itself,
after which a state along the path is selected. When used in
MCMC, NUTS is used to generate a single Markov chain. In
this work, we utilize NUTS as a way of proposing new samples
within the filter. An outline of how the process operates is
described briefly below.

NUTS explores the posterior by taking leapfrog steps for-
wards (+∆h) and backwards (−∆h) in time from the initial
state. The joint states at either end of the path, (θ−,V−) and
(θ+,V+), are used to detect whether the path has U-turned.
A U-turn is present if either of the two following conditions
is met: (

θ+ − θ−
)
·V− < 0 (19a)(

θ+ − θ−
)
·V+ < 0 (19b)

NUTS decides whether to explore forwards or backwards
through a Bernoulli trial with equal probability. Initially, a
single step is taken, before a new direction is selected; the
process then repeats but at each stage the number of steps
doubles until a U-turn is detected. At its core, NUTS is a
tree-building algorithm that, at a tree height of j, attempts to
take 2j steps. Upon the detection of a U-turn, the sub-tree
being constructed is discarded, and a state is sampled from
the completed tree. The process of discarding incomplete sub-
trees guarantees that full trees are generated. This means that
any leaf node in the tree is able to transition to any other
without violating the U-turn condition. This ensures that the
methodology is reversible and therefore detailed balance is
maintained, which is required for MCMC.

Sampling a new state from the tree was initially performed
with slice-sampling [25] which negates the fact that leapfrog
only approximates the dynamics of the system. A state is
then uniformly selected from those within the slice. However,
multinomial sampling can also be used, and is currently
utilized in the Stan [45] probabilistic programming language.
For computational efficiency, the step-size should not be so
small that large computationally expensive trees are grown.
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To stop this from happening, a maximum tree depth is set to
halt tree-growth if they grow too large.

The output of NUTS is a new position and momentum
vector pair (θ∗,V∗). In MCMC, the final momentum vector
is discarded but in this work, as will be shown, this is used to
compute importance weights.

C. Sequential Markov Chain Monte Carlo
Although MCMC methods are notorious in their application

to static systems, it is possible to use them in dynamic contexts
as well. In [29], an S-MCMC method called Sequential HMC
(S-HMC) is presented. At every time step, t, this approach
uses HMC to build a chain of N unweighted samples of the
posterior to estimate Xt. At the next time step, one of the
samples from the previous step is picked randomly (by using a
uniform random selection), and used to represent the previous
state, Xt−1. In the results section, we slightly augment the
work in [29], and use Sequential NUTS (S-NUTS) as one of
the baselines to compare our novel approach with. S-NUTS
simply replaces HMC with NUTS in S-HMC. This is done
to guarantee a fair comparison with our approach, which also
uses NUTS. As explained in Section III-B and in [25], [43],
HMC provides the same results as NUTS when it is possible
to find the ideal number of leapfrog steps at compile time.
However, NUTS simply removes the need to calibrate and
hence is therefore generally more reliable.

IV. FIXED-LAG NO-U-TURN SAMPLER

In this section, we describe the mathematical derivation of
our approach. The general idea is to efficiently exploit the
accuracy of gradient-based MCMC proposals, such as HMC
and NUTS, in the prediction step of FL-SMC methods.

One could embed such MCMC algorithms (including the
accept-reject step) directly into the q(·) terms of (10) and (11)
and choose an L-kernel that enables (11) to be calculated.
This approach has been successfully used when applying SMC
samplers to static systems [46] (i.e., the counterpart of PFs
for static posteriors). However, this approach assumes that the
MCMC can easily generate samples of the pdf. This is less
likely to be the case with dynamic systems (that are our focus
in this paper), since the posteriors may move in space and/or
change shape over time.

The approach we describe in the following sections splits up
the prediction into three substeps and leads to greater accuracy
and ESS albeit at the price of a (reasonable) run-time overhead.

p(Xt|Xt−1)

GA & q(θ∗|θ) =NUTS

θ = Xt−l:t

θ∗ = Xt−l:t

Yt−l Yt−l+1 Yt−1 Yt

Xt−l−1 Xt−l Xt−l+1 Xt−1 Xt

Xt−l Xt−l+1 Xt−1 Xt

Fig. 3: FL-NUTS: state flow

A. Importance Weights

Both HMC and NUTS use the leapfrog numerical integrator
in Equation (18). In this case, the proposal distribution to draw
θ∗ given θ is:

q(θ∗|θ) =
qV(V)

||J(θ,V)||
, (20)

where qV(·) is the proposal of the momentum vector, and J is
the Jacobian of the leapfrog numerical integrator. By the same
logic, the backward kernel can be chosen to be:

L(θ|θ∗) =
qV(Vback)

||J(θ∗,Vback)|| , (21)

where Vback is the momentum for the backward integration.
One might think that equations (20) and (21) could be

applied directly to (11) if θ∗ = Xt−l:t and θ = Xt−l:t−1.
Three problems may arise with this approach. The first is that
Vback is, in general, unknown given V. The second is that
calculating the determinants of the Jacobians in (20) and (21)
might be computationally prohibitive. The third is that θ? and
θ̄ have different dimensionalities, making it impossible for the
numerical integrator to get from one to the other.

Theorem 1 and Corollary 1 in Appendix A prove that,
because the leapfrog numerical integrator in Equation (18) is
reversible, then Vback = −V∗, the denominators in (20) and
(21) may cancel when computing the ratio of L(·) and q(·).
However, this can only be true if θ has the same dimensionality
as θ?. In our setting, they do not. To overcome this issue, we
draw a new “ghost” state, Xt, from a convenient distribution
that we choose to be the dynamics, i.e., Xt ∼ p(Xt|Xt−1)
and then use HMC or NUTS. By doing this, θ and θ? now
have the same dimensionality, (28) holds and (11) becomes:

wi
t = wi

t−1p(Y
i
t|xit)

π(xit−l:t,Yt−l:t|xit−l−1)qV(−vit−l:t)
π(xit−l:t,Yt−l:t|xit−l−1)qV(vit−l:t)

= wi
t−1

π(xit−l:t,Yt−l:t|xit−l−1)qV(−vit−l:t)
π(xit−l:t−1,Yt−l:t|xit−l−1)p(xit|xit−1)qV(vit−l:t)

,

(22)

where vit−l:t is the block (for the time steps τ = t− l, . . . , t)
of momentum vectors generated from qV(·) and used to
initialize leapfrog in NUTS (as also explained in Section
III). At the end of the leapfrog integration steps, vit−l:t
will evolve into a new block of momentum vectors, vit−l:t.
Equation (22) is a computationally efficient way to update
the importance weights in FL-SMC method when HMC or
NUTS moves are used at each time step. The extra term
p(xit|xit−1) in the denominator takes into account that, after
sampling xit, the weight becomes wi

t−1p(Yt|xit) and that
π(xit,Yt|xit−l−1)/p(Yt|xit) = p(xit|xit−1). We point out that
the work in [41] uses a similar approach (up to this point of the
paper), in which the weight update considers the p(xit|xit−1) as
constant for all particles; this approximation makes the weight
update faster than (22), but is only valid in specific cases,
which we do not anticipate to have widespread relevance or
utility. Note that (22) prioritizes those new trajectories that
have improved the most with respect to their old counterpart,
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up to a factor qV(−vit−l:t)/qV(vit−l:t). The reader may like
to consider this product of ratios being analogous to that in
(15).

B. Convergence Acceleration

As we will show empirically in the numerical results in
Section V, simply using a NUTS move per particle within
IS, and updating each particle weight as in (22), may provide
competitive state estimates, on one hand, but also very poor
ESS, on the other hand. This indicates that a large portion
of the particle population is not actually contributing to the
estimate of Xt. This convergence problem is mainly due to
two reasons. First, MCMC methods, including gradient-based
methods such as NUTS, are notoriously slow at converging.
Second, any SMC method that employs IS generates the
particles independently, rather than as multiple outputs from
the same chain (as done in S-MCMC methods).

This convergence problem is also complicated by having to
sample from a dynamic posterior distribution: at each t the
target moves, and we are given a new measurement, meaning
that the particles that represented the pdf of Xt−1 (at time
t− 1) may be a poor approximation to the current pdf of Xt.

To accelerate the convergence of the filter, we advocate an
additional step before performing the NUTS move to propose
a new trajectory, xit−l:t. More specifically, we consider an
optimization algorithm, such as Adagrad, a gradient ascent
(GA) with an adaptive learning rate, η, to find a local maximum
of the posterior distribution, before sampling through NUTS.
Appendix B offers a brief description of this approach, but
further details can be found in many textbooks, such as [47].

In summary, the approach we propose splits up the predic-
tion in IS (which traditionally only performs sampling) into
three phases in this order: first, we extend the old trajectory
as (22) requires; then we optimize, and finally, we sample
with NUTS. The three phases are linked together since we
initialize NUTS to the output of Adagrad which is given the
old trajectory in input.

After the prediction, the weights are updated as in (22).
Algorithm 1 illustrates a pseudocode summarizing the ideas
described in this section, which are also graphically repre-
sented in Figure 3.

As anticipated in the introduction, we refer to a FL-SMC
method that employs the IS step described by Algorithm 1 as
Fixed-Lag No U-Turn Sampler, or simply FL-NUTS.

C. Remarks

Remark 1: We note that this use of GA before NUTS would
be likely to cause issues related to detailed balance if we were
using MCMC. However, we emphasize that we are operating
in an IS context.

Remark 2: We also note that Adagrad is used in Algorithm
1 for its simplicity and for providing much faster convergence
than other first order approaches with fixed step-size: we
note that it is one of the most commonly used optimization
algorithms [48], [49]. However, Adagrad could be straightfor-
wardly replaced with a more recent and advanced optimization
algorithm [50]–[52]. Comparisons between different variants

Algorithm 1 Importance Sampling for FL-NUTS
Input: xt−l−1:t−1, Yt−l:t, wt−l−1, N , l, ∆h, η, γ, kmax
Output: xt−l:t, wt

1: for i← 0; i < N ; i← i+ 1 do Save old trajectories
2: xit−l:t−1 ← xit−l:t−1
3: end for
4: for i← 0; i < N ; i← i+ 1 do Extend old trajectories
5: xit ∼ p(xit|xit−1)
6: end for
7: for i← 0; i < N ; i← i+ 1 do Optimization
8: xit−l:t ← xit−l:t
9: xit−l:t ← Adagrad(xit−l:t, η, γ, kmax,

π(xit−l:t,Yτ |xit−l−1))
10: end for
11: for i← 0; i < N ; i← i+ 1 do Sampling
12: vit−l:t ∼ qV(vit−l:t)
13: xit−l:t,v

i
t−l:t ∼ NUTS(xit−l:t,∆h,
π(xit−l:t,Yτ |xit−l−1),vit−l:t)

14: end for
15: for i← 0; i < N ; i← i+ 1 do Update
16: wi

t ← wi
t−1

π(xi
t−l:t,Yt−l:t|xi

t−l−1)qV(−vi
t−l:t)

π(xi
t−l:t−1,Yt−l:t|xi

t−l−1)p(x
i
t|xi

t−1)qV(vi
t−l:t)

17: end for

of Algorithm 1 using alternative approaches for the optimiza-
tion step is a good starting point for future development,
although beyond the scope of this paper.

Remark 3: While we will show in the next section that
FL-NUTS is quite efficient, we perceive further gains from
optimizing the choice of L(·) in (29). Indeed, there is work to
optimize SMC methods (in other contexts) by defining com-
putationally efficient approximations to the optimal backward
kernel [33], [53]. Finding a better backward kernel than (29)
for FL-NUTS specifically is beyond the scope of this paper,
albeit an interesting avenue for future work.

Remark 4: Our approach of using optimization in the con-
text of each particle means that each particle will be pa-
rameterized by its local mode. Note that if the distribution
is multimodal (e.g. as can be encountered in multi-sensor
range-only measurement models), different particles will be
parameterized by different modes. Indeed, if N is sufficiently
high, different subsets of particles will be drawn toward each of
the different modes that are present. Applications of FL-NUTS
on these scenarios are beyond the scope of this paper, but
certainly are interesting future development, especially if FL-
NUTS is embedded within methods that are notoriously used
for multi-target tracking, such as the SMC-PHD filter [54].

V. NUMERICAL RESULTS

In this section, we test and compare FL-NUTS with several
alternative methods on four nonlinear non-Gaussian problems.
As anticipated in Sections I, II-B and III-C, the alternative
approaches we consider are: FL-SMC, FL-EKF, FL-UKF, S-
NUTS, and the variant of the PFIPF method in [23] which
utilizes the Particle Flow step in between the UKF prediction
and update. A description of PFIPF is omitted here for brevity,
but the reader is referred to [23]. However, we also consider
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FL-NUTS without the optimization step, i.e., the method
we present up to Section IV-A. We aim to underline the
importance of including an optimizer to achieve both accurate
estimation and high ESS. From this point on, we refer to
the method without an optimizer as FL-NUTS w/o Opt. As
we note in Section IV-A, since we compare with FL-NUTS
w/o Opt, we do not see the utility in also comparing with an
implementation that exactly replicates that in [41], given the
implicit assumptions and approximations that [41] makes with
respect to FL-NUTS w/o Opt.

For each case study, we provide numerical results of the
run-time, accuracy, and efficiency. On a single Monte Carlo
(MC) run, these metrics are measured as follows:
• The run-time is measured in seconds taken for T time

steps.
• The accuracy is expressed in terms of Mean Squared Er-

ror (MSE) of the state estimates, and (in some examples)
the MSE of the estimates of some nonlinear functions
of Xt (with a view to quantifying more accurately how
well the posterior is approximated).

• The efficiency is expressed as the average percentage
ESS for T time steps. We note that the ESS for S-NUTS
(calculated using (16)) is not directly comparable to
that calculated for the alternative approaches (using (7)),
primarily because S-NUTS is measuring the efficiency
with which we sample from the incremental posterior,
not the efficiency with which we sample from the
filtered posterior. We do include both but avoid direct
comparisons between the outputs of the two equations.
We note that we also discard 50% of the total samples
from S-NUTS prior to calculating ESS.

The reported numerical results are then averages computed
over 100 MC runs. A total of 200 particles is used for all
filtering methods in each MC run.

We consider four examples designed to test several progres-
sively challenging scenarios in terms of nonlinearity, memory
latency, and state dimensionality as follows:
• An STM model with a (nearly) linear, and (nearly)

Gaussian posterior;
• An STM model with a nonlinear, non-Gaussian poste-

rior;
• An LTM model with a nonlinear, non-Gaussian poste-

rior;
• An STM model with a nonlinear, non-Gaussian, and

highly-dimensional posterior.
The implementation of NUTS is that freely available as part

of CmdStan, a command line, open source Stan interface with
a back end written in C++ [45]. CmdStan also provides a fast
symbolic automatic differentiation, which we have used for
Algorithm 2. Hence, all the source code we use is written in
C++. All experiments have been run on a machine mounting
a ‘2 Xeon Gold 6138’ CPU.

A. STM Model with Nearly Linear and Gaussian Posterior
In the first example, we consider a 2D random-walk model,

with measurements of the range, ρ, and the bearing, φ, coming
from a sensor in position s = 0. This example was also con-
sidered in other relevant work [17]. The Cartesian coordinates

of the state and the range are expressed in meters, while the
bearing is expressed in radians. The SSM is as follows:

Xt =

[
1 0
0 1

]
·Xt−1 + νt, (23a)

Yt =

[
ρ
φ

]
=

[
‖Xt − s‖

arctan
(

Xt,1−s1
Xt,0−s0

)]
+ ωt, (23b)

where X0 ∼ N (0,P), νt ∼ N (0,Q), ωt ∼ N (0,R), and

P =

[
1 0
0 1

]
, Q =

[
1 0
0 1

]
, R =

[
1 0
0 0.02

]
,

and the total number of time steps is T = 100.
According to Definition 1, (23) is specified, in this configu-

ration, such that it exhibits short-term memory. As a result,
we anticipate that setting l = 0 is sufficient for accurate
filtering. We also anticipate that the posterior distribution is
well-approximated as Gaussian with a relatively small amount
of measurement noise applied to the bearings with respect to
the process noise.

TABLE I: STM model with nearly linear and Gaussian pos-
terior - results for 200 particles, and T = 100. The * is to
remind the reader that Neff in S-NUTS is computed as in
(16) and 50% of the samples are burned-in.

Filter l Time [s] µXt µρ
Neff

N

FL-SMC 0 0.67 2.69 1.86 0.442
FL-EKF 0 1.23 1.96 0.97 0.515
FL-UKF 0 1.76 2.01 3.08 0.590
PFIPF − 2.05 2.07 1.34 0.621

S-NUTS − 2.08 2.55 0.72 0.665∗

FL-NUTS w/o Opt 0 2.15 2.52 1.76 0.438
FL-NUTS 0 3.03 2.41 0.62 0.701

For this experiment, we set the leapfrog step-size ∆h =
0.008 for the three methods that involve NUTS, and for FL-
NUTS we have set the initial learning rate η = 0.1, and
the final convergence threshold γ = 0.01. These values were
found empirically, and we acknowledge that future work would
sensibly investigate automated settings of these parameters.

Table I provides the numerical results for this scenario.
As we can see, all filters manage to follow the target with
commensurate accuracy. A slight accuracy advantage is ob-
served in the FL-EKF, FL-UKF, and PFIPF methods relative
to the others (including FL-NUTS). This is expected since the
nonlinearity is not particularly pronounced and the posterior is
well approximated as Gaussian (see Figure 7a). In other words,
the Kalman-based proposals use linearization of the model
that is applicable across the bulk of the probability mass. All
methods seem to represent the posterior well, as exemplified in
Figure 4. Note that S-NUTS and FL-NUTS capture better the
limited extent to which the posterior is non-Gaussian, which
translates to a better MSE of the estimated range.

This advantage is also seen in terms of Neff : FL-NUTS is
between 1.1 and 1.8 times more efficient than all other PF or
FL methods, including FL-NUTS w/o Opt, as we anticipated
in Section IV. However, in such a simple model, this efficiency
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Fig. 4: STM model with nearly linear and Gaussian posterior - pdfs for an arbitrary time step t. For all filtering methods, except
S-NUTS, the particles, xt, are colored in different shades of red to represent the particles’ weights, wt, where darker shades of
red represent higher weights. The particles in S-NUTS all have the same color, as the samples in S-NUTS are unweighted.

boost does not compensate for the extra run-time, as FL-NUTS
is between 1.4 and 4.5 times slower than the other filters. We
also note that the efficiency for S-NUTS is also commensurate
here, albeit with different definitions for ESS.

B. STM Model with Nonlinear Non-Gaussian Posterior

In this second experiment, we are interested in compar-
ing the same filtering methods as in Section V-A, when
the posterior distribution is nonlinear and non-Gaussian. To
consider such a setting, we modify the model described in
(23) by significantly increasing the uncertainty on the bearing
measurement while making the range observation considerably
more informative. More precisely, we modify R to be:

R =

[
0.001 0

0 1

]
.

This is a routine scenario when we deal with data coming from
radars, and the resulting posterior is the common “banana-
shaped” pdf [17] (see Figure 7b), and notoriously challenging
to sample from. The model still has short-term memory, and
hence we use l = 0 for all SMC methods. Because of the
challenges that tackling this model involves, we reset the
convergence threshold in FL-NUTS to a more demanding
value, precisely γ = 0.001.

Table II provides the numerical results for this second
scenario. Here, FL-NUTS provides the best state and range
MSEs. More precisely, in comparison with PFIPF, FL-UKF, S-
NUTS, FL-SMC, and FL-NUTS w/o Opt, FL-NUTS improves
the MSE for Xt by up to a factor of 4.8, and its MSE for ρ is
at least three orders of magnitude better. In this case, FL-EKF

TABLE II: STM model with nonlinear non-Gaussian posterior
- results for 200 particles, and T = 100. The * is to remind
the reader that Neff in S-NUTS is computed as in (16) and
50% of the samples are burned-in.

Filter l Time [s] µXt µρ
Neff

N

FL-SMC 0 0.78 23.14 1.21 0.039
FL-EKF 0 1.46 3210.26 0.01 0.361
FL-UKF 0 1.97 12.01 3.16 0.202
PFIPF − 2.12 8.19 1.94 0.358

S-NUTS − 2.21 13.76 1.79 0.041∗

FL-NUTS w/o Opt 0 2.24 7.37 1.19 0.034
FL-NUTS 0 3.54 4.83 10−3 0.754

happens to have a competitive MSE for ρ, but the MSE on
the state estimation is about three orders of magnitude larger
than the one for FL-NUTS, due to the poor linearization on
this highly nonlinear model. These accuracy improvements for
FL-NUTS are the result of a higher fidelity approximation of
the posterior (see Figure 5).

Once again, this also translates to a better average ESS.
The reported Neff for FL-NUTS is up to 25 times larger than
that for the other filtering methods considered, with FL-SMC,
and FL-NUTS w/o Opt being the least competitive in terms
of ESS. Indeed, FL-SMC struggles because the informative
range measurements are not used in the proposal. As explained
in Section IV-A, FL-NUTS w/o Opt experiences convergence
issues, when having to deal with such a challenging model.
As expected, FL-EKF’s use of linearization makes it both
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(c) FL-UKF with l = 0

75 80 85 90 95 100 105 110 115
x

85

90

95

100

105

110

115

120

y

STM model with nonlinear non-Gaussian 
posterior: pdf for PFIPF

xit ∀i <N
Yt

Xt

(d) PFIPF

75 80 85 90 95 100 105 110 115
x

85

90

95

100

105

110

115

120

y

STM model with nonlinear non-Gaussian 
posterior: pdf for S-NUTS

xit ∀i <N
Yt

Xt

(e) S-NUTS

75 80 85 90 95 100 105 110 115
x

85

90

95

100

105

110

115

120

y

STM model with nonlinear non-Gaussian 
posterior: pdf for FL-NUTS w/o Opt

xit ∀i <N
Yt

Xt

(f) FL-NUTS w/o Opt with l = 0

75 80 85 90 95 100 105 110 115
x

85

90

95

100

105

110

115

120

y

STM model with nonlinear non-Gaussian 
posterior: pdf for FL-NUTS

xit ∀i <N
Yt

Xt

(g) FL-NUTS with l = 0

Fig. 5: STM model with nonlinear non-Gaussian posterior - pdfs for an arbitrary time step t. For all filtering methods, except
S-NUTS, the particles, xt, are colored in different shades of red to represent the particles’ weights, wt, where darker shades of
red represent higher weights. The particles in S-NUTS all have the same color, as the samples in S-NUTS are unweighted.

quite confident and also quite inaccurate. In this scenario,
the accuracy and efficiency improvements provide plenty of
compensation for the run-time overhead, as FL-NUTS is again
no more than approximately 4.5 times slower than the other
filters. We point out that the increases in Neff are greater than√

4.5: according to the law of large numbers, the variance of an
MC estimate scales as 1√

N
if the N samples are independent

(and running for 4.5 times longer would mean we had roughly
4.5 times as many samples). We also note that akin to FL-
NUTS w/o Opt, S-NUTS is also suffering from burn-in, which
results in inefficient sampling from the incremental posterior.

C. LTM Model with Nonlinear Non-Gaussian Posterior

In this third experiment, we want to tackle a model with
long-term memory that also requires sampling from a nonlinear
non-Gaussian posterior. To achieve that, we start again from
(23) but we change the prior covariance matrix to:

P =

[
100 0
0 100

]
,

while using the same matrix Q as in the previous experiments.
At each time step, we assume to be given range and bearing
measurements coming from a radar in position s0 = [0, 0], as
in the previous section. However, in this experiment, we also
query a second radar in position s1 = [100, 0] every ∆ = 4
time steps. For both radars, the measurement noise covariance
R is the same as in Section V-B.

This model presents more layers of complexity than the
model in Section V-B which makes it more challenging to
accurately track the target. First, the prior covariance is 100

times larger than in the previous scenarios, meaning that the
particles at t = 0 may be quite far from the true state; second,
we query only one radar whose bearing measurement has high
variance for the first ∆−1 steps. At time step t = ∆ we query
the second radar, which reduces the uncertainty on the true
state, but also abruptly reshapes the posterior from a banana
distribution with highly selective range to a quite heavily tailed
distribution that is somewhat Gaussian (see Figures 7b and
7c). According to Definition 2, (23) with this configuration
becomes an LTM model with a lag of l = ∆−1 time steps. In
this example, we measure the ability of the filtering methods
to localize the target after the initialization, and hence, all MC
runs consider T = 4. We point out that it has been necessary
to increase significantly the initial learning rate of FL-NUTS
to η = 25, in order to take into account the much larger prior
covariance, but we have kept the other parameters unchanged.

Table III shows the numerical results for this third scenario.
On a qualitative level, we can say that all filters experience
more difficulties in following the target relative to the previous
experiments, which is expected given the extra challenges that
this model presents. However, we can also say that FL-NUTS
still reports good accuracy and efficiency, and offers substantial
improvements relative to the other methods.

Given the LTM nature of this model, it is unsurprising to
observe that all FL methods have improved performance when
l = 3 with respect to the same methods when l = 0. In
comparison with FL-SMC with l = 3, FL-UKF with l = 3,
and FL-NUTS w/o Opt with l = 3, FL-NUTS with l = 3
reports a better MSE for the state by up to a factor of 2.5
and at least a two times smaller MSE in range. FL-NUTS
is again significantly more accurate than FL-EKF (e.g., by



11

a factor of 20 in MSE of the state), but also S-NUTS (by
almost a factor of 25 in MSE of the state). Indeed, FL-EKF
is again struggling due to the linearization performed across
the measurement(s) likelihood. Meanwhile, S-NUTS is unable
to follow the target for two reasons. First, it does not possess
the ability to correct previous state estimates. Second, S-NUTS
conditions the incremental posterior at time step t to a single
sample of Xt−1. This means that poor past estimates (e.g.
due to the large prior covariance) have a significant effect on
later estimates. Just like S-NUTS, PFIPF is not equipped with
the ability to reprocess historic data, but, in contrast to S-
NUTS, PFIPF is an SMC method. Therefore, it is unsurprising
that the performance of PFIPF is comparable to that of any
FL method with l = 0. More precisely, PFIPF performs
better than FL-UKF with l = 0, due to the improvements
provided by the extra Particle Flow step, but not as well as
most FL methods with l = 3. We conjecture that a variant
of PFIPF with lag could be developed in the future, but we
are unaware of any such method already existing. FL-NUTS’
accuracy improvements are again a direct consequence of its
improved ability to represent the posterior distribution: indeed,
Figure 6g illustrates how the particles in FL-NUTS respond
more promptly to the changes in shape of π(Xt,Yt|Xt−1)
across consecutive time steps, and estimate more accurately
the position of Xt when the second measurement arrives at
t = 4.

In terms of ESS, FL-NUTS is again vastly more efficient
than the other filtering methods, which are struggling in part
for similar reasons to those relevant to the previous experiment
and in part due to the bigger P: e.g. the ESS for FL-SMC
plunges to about 1.0, despite being again the fastest method.
Therefore, as in the previous scenario, we can again conclude
that the extra run-time that FL-NUTS requires (here being up
to six times slower) is well spent in achieving better accuracy
and efficiency. We note that S-NUTS offers good ESS, but that
since this sample size is pertinent to the sequential posterior
for a fixed previous state, this is misleading. We perceive
that S-NUTS’ improvements in ESS relative to the results in
section V-B are caused by the incremental posterior for a very
improbable (a posteriori) previous state being relatively easy
for NUTS to sample from.

D. STM Model with Highly-Dimensional Nonlinear Non-
Gaussian Posterior

In this final example, we consider an STM highly-
dimensional nonlinear non-Gaussian scenario. More precisely,
this scenario is a multivariate generalized hyperbolic skewed-t
distribution, which was also considered in relevant work on S-
NUTS and PFIPF [23], [29], and is described by the following
dynamic model:

p(Xt|Xt−1) =
K d+M

2

(√
(d+ ξ(Xt))(GTQ−1G)

)
(

1 + ξ(Xt)
d

) d+M
2

×

× e(Xt−AXt−1)
ᵀQ−1G√

(d+ ξ(Xt))(GTQ−1G)
− d+M

2

, (24)

TABLE III: LTM model with nonlinear non-Gaussian posterior
- results for 200 particles, and T = 4. The * is to remind the
reader that Neff in S-NUTS is computed as in (16) and 50%
of the samples are burned-in.

Filter l Time [s] µXt µρ
Neff

N

FL-SMC 0 0.01 52.47 2.87 0.005
FL-SMC 3 0.04 31.73 2.96 0.016
FL-EKF 0 0.03 191.03 26.37 0.131
FL-EKF 3 0.11 194.78 25.94 0.116
FL-UKF 0 0.03 56.24 6.45 0.107
FL-UKF 3 0.12 32.51 6.73 0.215
PFIPF − 0.03 50.48 5.83 0.128

S-NUTS − 0.03 249.08 11.68 0.443∗

FL-NUTS w/o Opt 0 0.04 51.93 2.95 0.005
FL-NUTS w/o Opt 3 0.15 29.46 3.06 0.015

FL-NUTS 0 0.06 28.72 1.62 0.174
FL-NUTS 3 0.24 11.36 1.59 0.562

and the following measurement model:

p(Yt|Xt) =

M−1∏
j=0

P(Yj
t ;n1e

n2X
j
t ), (25)

where K d+M
2

(·) is the modified Bessel function of the sec-
ond kind of order d+M

2 , the function ξ(Xt) = (Xt −
AXt−1)ᵀQ−1(Xt −AXt−1), and the state transition matrix,
A = 0.9I, where I is an identity matrix of M dimensions.
The values d, and the matrix G are arbitrary and determine the
shape of the distribution. We have M sensors uniformly placed
on a two-dimensional grid {1, 2, . . . ,

√
M}×{1, 2, . . . ,

√
M}.

The process noise covariance is given by the following equa-
tion:

Q =
d

d− 2
Q̂ +

d2

(2d− 8)(d2 − 1)2
GGᵀ, (26)

where each i, j term in Q̂ is computed as follows:

Q̂i,j = 3e−
||si−sj ||

2
2

20 + 0.01δi,j , ∀i,∀j, (27)

where si, and sj are the i-th and j-th sensors, respectively. The
term δi,j is the Kronecker symbol, which is equal to δi,j = 1
if i = j, and equal to δi,j = 0 if i 6= j.
P(·; ·) is a Poisson distribution, where the hyperparameters

n1 = 1, n2 = 1/3 as in [23], [29]. The state dimensionality,
M , is arbitrary, and in [23], [29] several values of M up
to M = 400 were considered. For brevity, in this work, we
directly report the results for M = 400. All filters have been
initialized in the true state 0 for all state dimensions, which is
the scenario that has been considered in [23], [29]. Also, we
have used T = 10 time steps as in [23], [29]. The leapfrog
step-size has been empirically set to ∆ = 0.01 for all methods
using NUTS, and for FL-NUTS we have utilized η = 1.0, and
γ = 0.01.

The numerical results for this final scenario are reported in
Table IV. Here, we can see that only the methods that sample
from the full incremental posterior (i.e., both dynamics and
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Fig. 6: LTM model with nonlinear non-Gaussian posterior - pdfs at time steps t = 3, 4. For all filtering methods, except S-NUTS,
the particles, xt, are colored in different shades of red to represent the particles’ weights, wt, where darker shades of red represent
higher weights. The particles in S-NUTS all have the same color, as the samples in S-NUTS are unweighted.

likelihood) can provide at least a moderately accurate estimate
of the true state, Xt. Indeed, FL-SMC propagates the particles
by only using the dynamics, and, despite being once again the
fastest method, has a significantly higher MSE than the other
methods. FL-EKF and FL-UKF score a moderate average MSE
with respect to the other considered methods. Indeed, the best
average MSEs are scored by FL-NUTS, FL-NUTS w/o Opt, S-
NUTS, and PFIPF, and are within the same order of magnitude,
with FL-NUTS providing an average MSE between 1.4 and 2.0
times better than FL-NUTS w/o Opt, S-NUTS, and PFIPF.

From this point of view, it may look like in this scenario FL-
NUTS does not provide significant improvement, considering

the extra run-time (here being about 12 times slower than the
run-time of FL-SMC). However, in such a highly-dimensional
scenario, the curse of dimensionality increases the particle
degeneracy, which typically results in a much lower ESS than
in low-dimensional scenarios. Indeed, FL-SMC, FL-EKF, FL-
UKF, FL-NUTS w/o Opt, and PFIPF score an efficiency be-
tween 0.5% and 1.7%. On the other hand, FL-NUTS achieves
roughly 20% efficiency, which is indeed lower than in the
previous examples, but still at least about 12 times higher than
the other methods, meaning that extra run-time is again well
spent. This is not unexpected, as the literature on MCMC has
well documented the ability of gradient-based MCMC propos-
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Fig. 7: π(Xt,Yt|Xt−1) in model (23) for different R and number of sensors. Xt−1 is the true value.

als (e.g., NUTS or HMC) to sample from highly-dimensional
posteriors more efficiently than other MCMC proposals, once
the burn-in period is finished [25], [43]. Furthermore, the use
of the optimizer in FL-NUTS accelerates the convergence of
the independent particles, especially with respect to FL-NUTS
w/o Opt.

TABLE IV: STM Model with highly-dimensional nonlinear
non-Gaussian posterior - results for 200 particles, and T =
10. The * is to remind the reader that Neff in S-NUTS is
computed as in (16) and 50% of the samples are burned-in.

Filter l Time [s] µXt

Neff

N

FL-SMC 0 14.24 21.12 0.005
FL-EKF 0 79.56 8.2 0.011
FL-UKF 0 89.04 4.1 0.0095
PFIPF − 100.68 1.12 0.017

S-NUTS − 92.02 0.89 0.0521∗

FL-NUTS w/o Opt 0 108.72 0.91 0.0075
FL-NUTS 0 176.86 0.54 0.2065

VI. CONCLUSION

In this paper, we have presented FL-NUTS, an SMC method
that combines the ability of block sampling particle filters to
handle blocks of measurements across multiple time steps, and
the ability of gradient-based MCMC methods, such as NUTS,
to explore efficiently highly challenging posterior distributions.

Despite being between two to twelve times slower (per
particle) than other popular alternative methods due to the
gradient computations, FL-NUTS compensates for this by
greatly improving the accuracy and the effective sample size,
especially in models that require sampling from strongly
nonlinear and non-Gaussian posterior densities, such as when
dealing with range-bearing measurements from radars or
highly-dimensional states. More precisely, in such models, the
estimated quantities are at least three times and (in some cases)
up to three orders of magnitude more accurate; the effective

sample size may increase by up to two orders of magnitude in
some extreme cases, and typically by a factor of five.

Although the findings are encouraging, there still is wide
room for improvements. First, the effective sample size can
be increased by investigating a better backward kernel than
the one we describe in Section IV-A, which was primarily
designed to accelerate calculation of the weight update. In
terms of run-time, the particle prediction could be accelerated
by using a better optimizer than Adagrad, or an adaptive step
size across different leapfrog steps during the sampling phase.
We also remind the reader that the mass matrix we have used
in NUTS is the identity, but future work should investigate
methods to construct an adaptive mass matrix, which would
likely accelerate the convergence. We also note that run-time
can be straightforwardly reduced through parallel computing
on clusters of big computers [55], [56]. Future work should
also investigate the benefits of using FL-NUTS within other
Monte Carlo methods that use PFs, such as nested SMC
for filtering, particle MCMC or SMC2 [57] for parameter
estimation, or the SMC implementation of the PHD filter for
multi-target tracking [54].
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APPENDIX A
REVERSIBLE AND SYMPLECTIC NUMERICAL

INTEGRATORS: PROPERTIES

Theorem 1: Let q(θ∗|θ) be the proposal distribution of a
gradient-based MCMC method (e.g. NUTS) used by a FL-
SMC method to propose a new single-state sample θ∗ = Xt,
given the old one θ = Xt at a certain time step t. Let
L(θ|θ∗) be the related backward kernel. If leapfrog is the
chosen numerical integrator, it is possible to prove that:

L(θ|θ∗)
q(θ∗|θ)

=
qV(−V∗)
qV(V)

, (28)

where V∗ is the final momentum after n leapfrog steps, and
qV(·) is the proposal for the momentum.
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Proof of Theorem 1: Let f be the leapfrog integrator, such
that f(θ,V) = (θ∗,V∗), and let

→
J = J(θ,V) be the Jacobian

matrix associated to this integration. Let also
←
J = J(θ∗,V∗)

be the Jacobian matrix of the backward integration. Equations
(20) and (21) describe generically the forward and backward
kernels to be used in (28).

The first thing we can notice is that leapfrog is time
reversible, which means that f(θ∗,−V∗) = (θ,V). Hence,
←
J = J(θ∗,−V∗) and (21) becomes

L(θ|θ∗) =
qV(−V∗)
||J(θ∗,−V∗)|| . (29)

To prove (28), we first need the expression for
→
J :

→
J =

[
∂θ∗

∂θ
∂θ∗

∂V
∂V∗

∂θ
∂V∗

∂V

]
. (30)

The determinant of this matrix has been shown to be equal
to an absolute value of 1 and means that the geometric
volume is preserved over the integration step [58]. This is
a property of all symplectic integration methods, including
leapfrog. For leapfrog, which is time reversible, it is also
possible to show that the backward Jacobian matrix can be
computed by transposing each block of the matrix

→
J :

←
J =


(
∂θ∗

∂θ

)T (
∂θ∗

∂V

)T(
∂V∗

∂θ

)T (
∂V∗

∂V

)T
 . (31)

In other words, if B is an arbitrary block matrix, and we let
α be the operation

α(B) = α

([
B1,1 B1,2

B2,1 B2,2

])
=

[(
B1,1

)T (
B1,2

)T(
B2,1

)T (
B2,2

)T
]
, (32)

we can then say that for a single leapfrog step:
←
J = α(

→
J). (33)

Now, we need to consider the generic scenario, where the
integration f(θ,V) = (θ∗,V∗) is the result of n leapfrog steps,
such that we have a sequence of position-momentum pairs
(θ,V), (θ0,V0), (θ1,V1), ..., (θn−1,Vn−1) = (θ∗,V∗). In
this case, the forward Jacobian for the full forward integration
is given by the following matrix product:

→
J =

→
Jn−1 ·

→
Jn−2 ·

→
Jn−2 · · ·

→
J1 ·

→
J0, (34)

while
←
J is computed as follows:

←
J =

←
J0 ·

←
J1 ·

←
J2 · · ·

←
Jn−2 ·

←
Jn−1, (35)

where by (33)
←
Jk = α(

→
Jk).

It is relatively straightforward to prove that for a block

matrix B = B0 ·B1 ·B2 · · ·Bn−2 ·Bn−1, we have:

α(B) = α(B0 ·B1 · · · ·Bn−2 ·Bn−1)

= α(Bn−1) · α(Bn−2) · · · ·α(B1) · α(B0). (36)

By applying (36) to (34), we obtain:

α(
→
J) = α(

→
J0) · α(

→
J1) · · · ·α(

→
Jn−2) · α(

→
Jn−1)

=
←
J0 ·

←
J1 · · ·

←
Jn−2 ·

←
Jn−1 =

←
J , (37)

which means (33) can be applied to the full integrator. In
particular, (37) automatically proves that the determinants of
→
J and

←
J have the same absolute value:

||J(θ,V)|| = ||J(θ∗,−V∗)||, (38)

which also means that (29) divided by (20) equals (28).
Collary 1: Let θ∗ = Xt−l:t be a trajectory of l > 0

states in a FL-SMC method, generated from its old trajec-
tory, θ = Xt−l:t, by a gradient-based MCMC method (e.g.
NUTS) performing n leapfrog steps per each new state. Let
V = Vt−l:t and V∗ = Vt−l:t be the input and the final
momentum vectors for the leapfrog steps. It is possible to prove
that (28) is still valid.

Proof of Corollary 1: In this case, (34) and (35) have to
be reformulated respectively as follows:

→
J =

∏t

τ=t−l

∏0

k=n−1

→
Jkτ , (39)

←
J =

∏t

τ=t−l

∏n−1

k=0

←
Jkτ . (40)

Since (33) is still valid, we now have
←
Jkτ = α(

→
Jkτ ) ∀τ and ∀k,

and by applying (36), we reach the same conclusion as in (37)
and (38) because the number of states in θ∗ and θ is equal.

APPENDIX B
GRADIENT ASCENT WITH ADAPTIVE LEARNING RATE

Gradient descent/ascent is a first-order optimization algo-
rithm that looks for a local minimum/maximum of a differ-
entiable, multi-variable objective function, π(θ). The goal is
then to look for a θ = θ̃ such that ∇π(θ̃) ≈ 0. Considering the
scope of this paper, in this appendix, we only describe gradient
ascent.

The overall idea is to perform a sequence of iterations, where
at each step the previous local maximum, θk−1, is moved
towards the direction of ∇π(θ) by an arbitrary step size, η,
which is also commonly known as the learning rate. More
precisely, the current local maximum is computed as follows:

θk = θk−1 + η∇π(θk−1), (41)

where the initial value, θ0, could be picked randomly or
deterministically. This routine goes on until |π(θk)−π(θk−1)|
falls down below a pre-defined threshold, γ. It is also common
to set another exit condition on the maximum number of
iteration steps, kmax, in order to accelerate the run-time.

The choice of the learning rate is critical for a good com-
promise between accuracy and run-time. Broadly speaking,
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decreasing η makes the convergence slower but more accurate,
while increasing η tends to speed-up the convergence at the
expense of the accuracy. A typical solution to this is to use an
adaptive learning rate, where the learning rate is decreased or
increased as θk−1 approaches or moves away from θ̃. Several
alternative methods have been presented in the literature [47].
As explained in Section IV-B, here we only consider the
Adagrad method. In this approach, the original learning rate is
rescaled by a factor of

√
ε+ gk, where ε is an arbitrarily small

offset (typically set to 10−8) to avoid division by 0 errors, and
gk is a vector containing the sum of all gradients up to the
current iteration step. More precisely, (41) becomes:

gk = gk−1 +∇π(θk−1) (42a)

θk = θk−1 +
η√

ε+ gk
∇π(θk−1). (42b)

This routine is described in the following pseudocode.

Algorithm 2 Adagrad
Input: θ0, η, γ, kmax, π(θ)
Output: θ̃

1: g0 ← 0, k ← 1, ε← 10−8

2: while k ≤ kmax do
3: gk ← gk−1 +∇π(θk−1)
4: θk ← θk−1 + η√

ε+gk
∇π(θk−1)

5: if |π(θk)− π(θk−1)| < γ then
6: break
7: end if
8: k ← k + 1
9: end while

10: θ̃ ← θk

We note that gradient descent only requires changing the +
sign after θk−1 in Equations (41) and (42b) to a − sign.
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