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Abstract. Jordan Normal Forms serve as excellent representatives of
conjugacy classes of matrices over algebraically closed fields. Once we
know normal forms, we can compute functions of matrices, their main
invariants, etc. The situation is more complicated if we search for normal
forms for conjugacy classes over fields that are not closed and especially
over rings.
In this paper we study PGL(2,Z)-conjugacy classes of GL(2,Z) matri-
ces. For the ring of integers the Jordan approach has various limitations
and in fact it is not effective. The normal forms of conjugacy classes of
GL(2,Z) matrices are provided by an alternative theory, which is known
as Gauss Reduction Theory. We introduce new techniques to compute
reduced forms in Gauss Reduction Theory in terms of the elements of
certain continued fractions. The current approach is based on recent
progress in the field of the geometry of numbers. The proposed tech-
nique provides an explicit computation of periods of continued fractions
for the slopes of eigenvectors.

Keywords: Integer matrices · Gauss Reduction Theory · continued frac-
tions · geometry of numbers.

Introduction

In this paper we study the structure of the conjugacy classes of GL(2,Z). Recall
that GL(2,Z) is the group of all invertible matrices with integer coefficients. As a
consequence the determinants of such matrices are ±1. We say that the matrices
A and B from GL(2,Z) are PGL(2,Z)-conjugate if there exists a GL(2,Z) matrix
C such that B = ±CAC−1. In the integer case projectivity simply means that
all matrices are considered up to the multiplication by ±1.

Recall that for algebraically closed fields every matrix is conjugate to its
Jordan Normal Form. The situation with GL(n,Z) is not so simple as the set
of integer numbers does not have a field structure. A description of PGL(2,Z)-
conjugacy classes in the two-dimensional case is the subject of Gauss Reduction
Theory. The conjugacy classes are classified by periods of certain periodic con-
tinued fractions (for additional information we refer to [17, 13, 18]; for the algo-
rithms of the conjugacy test in GL(2,Z) see [4, 6]). The first geometric invariants
of GL(2,Z) matrices in the spirit of continued fractions were studied in [9]. The
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question of the classification of conjugacy classes is closely related to the study
of homogeneous forms (see e.g. in [2]) and the theory of Markov and Lagrange
spectra (see e.g. in [5]).

Our aim is to study a natural class of reduced matrices that represent every
conjugacy class, which are good candidates for normal forms in integer settings.
Note that the number of reduced matrices in any PGL(2,Z)-conjugacy class of
matrices is finite (see, e.g., in Chapter 7 of [11]). In this paper we approach the
following problem.

Problem 1. Find explicit expressions for normal forms PGL(2,Z)-conjugate to
a given matrix.

We solve this problem by introducing a new surprising explicit formula to
generate all reduced matrices PGL(2,Z)-conjugate to a given one via certain
long continued fractions that are built using the elements of the matrices. We
show how write all the reduced matrices in Section 3. The formula is justified
by Theorem 3 which is supplemented by technical statements of Theorem 2,
Theorem 4 and Proposition 2. The new method is based on lattice trigonometry
introduced in [7, 8] (see also in [11]).

We expect that the computational complexity of the new method is compara-
ble to the algorithm of Chapter 7 in [11]. One of the advantages of the proposed
new approach is that it constructs all reduced matrices while the classical algo-
rithms result in a single reduced matrix. In addition all the reduced operators of
the proposed approach are explicitly described via geometric invariants, which
is potentially useful for the multidimensional case. Recall that the studies of
the conjugacy classes of GL(n,Z) for n > 2 were motivated by V. Arnold (see,
e.g., in [1]) who revived the notion of multidimensional continued fractions in
the sense of Klein ([15, 16]). The first results in higher dimensional cases were
obtained in [10] (see also [11], Chapter 21), however the theory is far from its
final form even for the case of n = 3. We hope that the approach of the current
paper will give some hints for numerous open problems in the multidimensional
case.

This paper is organized as follows. In Section 1 we start with necessary
notions and definitions of geometry of numbers. In particular we introduce the
notion of the semigroup of reduced matrices. We discuss three different cases
of GL(2,Z) matrices in general in Section 2. In Section 3 we bring together all
the stages of finding all reduced matrices PGL(2,Z)-conjugate to a given one.
Finally in Section 4 we discuss some technical details used in the construction
of reduced matrices.

1 Background

In this section we briefly discuss basic notions used in the computation of reduced
matrices. We start in Subsection 1.1 with elementary notions and definitions of
lattice geometry. In Subsection 1.2 we define sails of integer angles; and introduce
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LLS sequences for broken lines. Further we define LLS sequences for integer
angles. Sails and LLS sequences are important invariants related to conjugacy
classes of GL(2,Z) matrices. We continue in Subsection 1.3 with the notion of
periods of LLS sequences related to matrices. In Subsection 1.4 we introduce
reduced matrices and give a continuant representation for them. We conclude
this section with a general definition of difference of sequences in Subsection 1.5.

1.1 Basics of integer geometry in the plane

We say that a point is integer if its coordinates are integers. A segment is integer
if its endpoints are integer. An angle is called integer if its vertex is an integer
point. We also say that an integer angle is rational if its edges contain integer
points distinct to the vertex.

An affine transformation is said to be integer if it is a one-to-one mapping of
the lattice Z2 to itself. Note that the set of integer transformations is a semidirect
product of the group of translations by an integer vector and the group GL(2,Z).
Two sets are integer congruent if there exists an integer affine transformation
providing a bijection between these two sets.

Definition 1. The integer length of an integer segment AB is the number of
integer points inside its interior plus one. Denote it by lℓ(AB).

The integer sine of a rational angle ∠ABC is the following integer: | det(AB,BC)|
lℓ(AB)·lℓ(BC) ,

where |det(AB,BC)| is the absolute value of the determinant of the matrix of
the pair of vectors (AB,BC). Denote it by lsin∠ABC.

The integer lengths and sines are invariants of integer affine transformations.

1.2 Sail and LLS sequences

Let us now study an important invariant of angles and broken lines. It will be
employed in the proofs, however from computational perspectives one can use
the statement of Theorem 4 as the explicit definition of LLS sequences for angles
(without appealing to integer geometry).

Let ∠ABC be an integer angle. The boundary of the convex hull of all integer
points in the convex closure of ∠ABC except B is called the sail of ∠ABC.

Note that the sail of a rational angle is a finite broken line, while the sail of
an integer angle that is not rational is a broken line infinite on one or both sides.

Definition 2. Let A1, . . . , An be a broken line (here we can consider finite or
infinite broken lines) such that Ai, Ai+1, and O are not in one line for all
admissible parameters of i. Define

a2k = det(OAk, OAk+1) and a2k−1 =
det(AkAk−1, AkAk+1)

a2k−2ak
.

for all admissible k. The sequence (a0, . . . , a2n) (or an infinite one respectively)
is called the LLS sequence of the broken line A0 . . . An.
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Definition 3. Consider an integer angle ∠ABC. Let . . . Ai−1, AiAi+1, . . . be the
sail of ∠ABC. Here we consider the broken line directed from the edge AB to
the edge BC. Let the LLS sequence for the broken line . . . Ai−1, AiAi+1, . . . be
(. . . a2k−1, a2k, a2k+1, . . .) (finite or infinite). Then the sequence

(. . . |a2k−1|, |a2k|, |a2k+1|, . . .)

is called the Lattice Length Sine sequence (or simply LLS sequence, for short) of
the angle ∠ABC and is denoted by LLS(∠ABC).

Remark 1. Note that the LLS sequence can be defined for any lattice (not nec-
essarily for the integer lattice).

Remark 2. Consider a rational angle ∠ABC with a positive det(AO,BC). Then
its LLS sequence (a0, . . . , a2n) consists of an odd number of elements and

a2k = lℓAkAk+1 and a2k−1 = lsin∠Ak−1AkAk+1 for all admissible k.

Now let us recall the definition of a continuant.

Definition 4. Let n be a positive integer. A continuant Kn is a polynomial with
integer coefficients defined recursively by

K−1() = 0; K0() = 1; K1(a1) = a1;
Kn(a1, a2, . . . , an) = anKn−1(a1, a2, . . . , an−1) +Kn−2(a1, a2, . . . , an−2).

Remark 3. Note that we have the following general expression relating continued
fractions and continuants. For any real numbers a1, . . . , an it holds that

[a1; a2 : · · · : an] =
Kn(a1, a2, . . . , an)

Kn−1(a2, . . . , an)
.

We use the following important geometric property of LLS sequences.

Theorem 1. ([7] 2008) Consider a finite broken line A1, . . . , An with LLS
sequence (a0, . . . , a2n). Let also A0 = (1, 0) and A1 = (1, a0). Then

An =
(
K2n+1(a0, . . . , a2n),K2n(a1, . . . , a2n)

)
.

For further additional information on the geometry of continued fractions
see [11].

1.3 LLS periods of GL(2,Z) matrices

Let M be a (2× 2)-matrix with two distinct real eigenvalues. In this case M has
two eigenlines. The complement to these eigenlines is a union of four cones. We
say that the sails of these cones are the sails associated to M .

Definition 5. We say that a sequence of positive integers is an LLS sequence
of M if this sequence is the LLS sequence of one of the sails associated to M .
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Remark 4. It turns out that in the case of GL(2,Z) matrices with real irrational
eigenvalues the LLS sequences of all associated sails coincide up to a possible
index shift and reversal (see Section 7 of [11]). So the LLS sequence is uniquely
defined by the matrix in this case.

We conclude this subsection with the following fundamental definition.

Definition 6. Let M be a GL(2,Z) matrix with real irrational eigenvalues. Then
its LLS sequence is periodic. In addition M2 acts as a periodic shift on every
one of the sails. Assume that M2 shifts the sail by n vertices. Then any period
of length n is called an LLS period of M . (Here we write the elements of the
period in order from a vertex v on the sail to the vertex M2(v) on the sail.)

Remark 5. Note that matrices inverse to each other have reversed periods.

1.4 Reduced matrices and continuants

In this section we introduce reduced matrices. Their elements have a nice repre-
sentation in terms of continuants. Let us fix the following notation.

Definition 7. Let a be a real number, denote Ma =

(
0 1
1 a

)
.

Now let (a1, . . . , an) be any sequence of real numbers, we set

Ma1,...,an =

n∏
k=1

(
0 1
1 ak

)
.

Definition 8. Consider a sequence of positive integers (a1, . . . , an). Then the
matrix Ma1,...,an is said to be reduced.

There are two main benefits for the proposed choice of reduced matrices.
Firstly, they form a semigroup with respect to matrix multiplication. Secondly,
there is the following explicit description of such matrices.

Proposition 1. Let n ≥ 0 and let (a1, . . . , an) ∈ Rn. Then we have

Ma1,...,an
=

(
Kn−2(a2, . . . , an−1) Kn−1(a2, . . . , an)

Kn−1(a1, a2, . . . , an−1) Kn(a1, a2, . . . , an)

)
.

In addition, we have detMa1,...,an
= (−1)n.

Example 1. Consider

M3,−3,−2,5 = M3 ·M−3 ·M−2 ·M5.

Hence M is represented by the following sequence: (3,−3,−2, 5). By Proposi-
tion 1 we immediately have

M3,−3,−2,5 =

(
K2(−3,−2) K3(−3,−2, 5)
K3(3,−3,−2) K4(3,−3,−2, 5)

)
.
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Therefore,

M3,−3,−2,5 =

(
7 32
19 87

)
.

Here we actually have

19

7
= [3 : −3 : −2] and

87

19
= [3 : −3 : −2 : 5].

Note also that
detM = (−1)4 = 1.

Proof of Proposition 1. The proof is done by induction in n.

Base of induction. For n = 1, 2 we have respectively

Ma1 =

(
0 1
1 a1

)
=

(
K−1() K0()
K0() K1(a1)

)
.

Ma1,a2
= Ma1

Ma2
=

(
1 a2
a1 1 + a1a2

)
=

(
K0() K1(a2)
K1(a1) K2(a1, a2)

)
.

Step of induction. We have

Ma1,...,an+1
= Ma1,...,an

·Man+1
=(

Kn−2(a2, . . . , an−1) Kn−1(a2, . . . , an)
Kn−1(a1, . . . , an−1) Kn(a1, . . . , an)

)
·
(
0 1
1 an+1

)
=(

Kn−1(a2, . . . , an) Kn−2(a2, . . . , an−1) + an+1Kn−1(a2, . . . , an)
Kn(a1, . . . , an) Kn−1(a1, . . . , an−1) + an+1Kn(a1, . . . , an)

)
=(

Kn−1(a2, . . . , an) Kn(a2, . . . , an+1)
Kn(a1, . . . , an) Kn+1(a1, . . . , an+1)

)
.

The last equality is a classical relation for the numerators and denominators of
continued fractions (see, e.g., in [14] or in [11]). This concludes the proof for the
induction step.

Finally, since detMa = −1 we have detM = (−1)n. ⊓⊔

1.5 Difference of sequences

Finally let us give the following general combinatorial definition.

Definition 9. Let m > n be two non-negative integers and consider two se-
quences of real numbers Sa = (a1, . . . , am) and Sb = (b1, . . . , bn). We say that
there exists a difference of Sa and Sb if there exists k ≤ m + 1 such that the
following conditions are fulfilled: (i) bi = ai for 1 ≤ i < k;
(ii) either k = m+ 1 or bk ̸= ak; (iii) bk+i = ak+i+m−n for 0 ≤ i ≤ n− k.
In this case we denote Sa − Sb = (ak, ak+1, . . . , ak+n−m−1).

Example 2. (i) We have (1, 2, 3, 4, 5, 6, 7, 8)− (1, 2, 3, 6, 7, 8) = (4, 5).
(ii) The expression (1, 2, 3, 4, 5, 6, 7, 8)− (1, 5, 8) is not defined.
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2 Three cases of GL(2,Z) matrices

It is natural to split the matrices of GL(2,Z) into three cases with respect to
their spectra (set of eigenvalues). We distinguish the cases of complex, rational,
and real irrational spectra. The cases of complex and rational cases are rather
straightforward, they are not included in Gauss Reduction Theory. The case of
real irrational spectra is more complicated, it is central for this paper. Let us
now briefly discuss these three cases in this section.

Case of complex spectra: We start with GL(2,Z) matrices whose charac-
teristic polynomials have a pair of complex conjugate roots. There are exactly
three PGL(2,Z)-conjugacy classes of such matrices (these classes are perfectly
distinguished by traces of matrices). They are represented by(

1 1
−1 0

)
,

(
0 1
−1 0

)
, and

(
0 1
−1 −1

)
.

The author does not have a link to the proof of the classification in the complex
case, however it is a classical result. The complete proof will be shortly available
in the second edition of [11].
Case of rational spectra: It turns out that such matrices have eigenvalues
equal to ±1, any of rational spectra matrices are PGL(2,Z)-conjugate to exactly
one of the following matrices(

1 m
0 1

)
for m ≥ 0,

(
1 0
0 −1

)
, or

(
1 1
0 −1

)
.

(Note that the rational spectra case contains the degenerate case of coinciding
roots.) For the proofs in the rational spectra case see [3].
Case of real irrational spectra: This case is the most complicated. It is
described by a so-called Gauss Reduction Theory, which is based on Euclidean
type algorithms providing a descent to reduced matrices (see Chapter 7 of [11]).
It is interesting to note that the number of reduced matrices integer congruent to
a given one is finite and equal to the number of elements in the minimal period
of the regular continued fraction for the tangent of the slope of any eigenvector
of the matrix. In the next section we introduce an alternative algorithm based on
explicit expressions for reduced matrices that originated in geometry of numbers.

3 Techniques to find reduced matrices PGL(2,Z)-
conjugate to a given one

Let us outline the main stages of the reduced matrices construction. All the
statements involved in it are proven in the next section. The construction is
based on general Theorem 3 and several supplementary technical statements.

Remark 6. The proposed algorithm provides an answer to Problem 1.
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Goal of the algorithm. List all reduced matrices PGL(2,Z)-conjugate to M .

Input data. We are given a GL(2,Z) matrix. Namely we have M =

(
p r
q s

)
.

Step 1. Starting with any point P0 we set P1 = M4(P0) and P2 = M6(P0) and
compute LLS(∠P0OP1) and LLS(∠P0OP2) using Theorem 4.

Step 2. By Proposition 2 one of the periods of the LLS sequence for M is a half
of LLS(∠P0OP2) − LLS(∠P0OP1). We take the first half of this sequence, so
let the period be (a1, . . . , an) and let the lengths of the minimal possible periods
be m.

Step 3. Now we can write down the reduced matrices in accordance with The-
orem 2 and Proposition 1.

Output. All the reduced matrices PGL(2,Z)-conjugate to M will be of the form(
Kn−2(ak+2, . . . , ak+n−1) Kn−1(ak+2, . . . , ak+n)

Kn−1(ak+1, ak+2, . . . , ak+n−1) Kn(ak+1, ak+2, . . . , ak+n)

)
, k = 0, . . . ,m− 1.

Example 3. Input: Find all reduced matrices for the matrix M =

(
7 −30

−10 43

)
.

Step 1. Starting with any point P0 = (1, 1) set

P1 = M4(P0) = (−2875199, 4119201) and
P2 = M6(P0) = (−7182245951, 10289762449).

Let us first compute LLS(∠P0OP1). First of all note that

ε = −sign
1

1
= −1, δ = sign

−2875199

4119201
= −1 and det(OP1,OP2) · (−1) > 0.

Hence we take the following odd regular continued fractions: 1
1 = [1] and∣∣−2875199

4119201

∣∣ = 2875199
4119201 = [0; 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 3].

Now we combine these two continued fractions in accordance with Theorem 4:

[−1; 0 : 0 : −1 : −2 : −3 : −4 : −1 : −2 : −3 : −4 : −1 : −2 : −3 : −4 :
−1 : −2 : −3 : −3] = −6994400

4119201 .

We have∣∣∣∣−6994400

4119201

∣∣∣∣ = 6994400

4119201
= [1; 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 4 : 1 : 2 : 3 : 3].

Therefore, LLS(∠P0OP1) = (1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 3).
Similarly we get

LLS(∠P0OP2) = (1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3 , 3).
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(Here we show the difference of the sequences in the box.)

Step 2. By Proposition 2 one of the periods of the LLS sequence for M is a half
of the sequence LLS(∠P0OP2)− LLS(∠P0OP1) = (4, 1, 2, 3, 4, 1, 2, 3), which is
(4, 1, 2, 3). The minimal possible period is of length 4 (so m = 4).

Step 3. We can write down the reduced matrices in accordance with Theorem 2
and Proposition 1 for all distinct periods of length 4, i.e. for

(4, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 1), and (3, 4, 1, 2).

Output. Finally applying Proposition 1 to these four sequences we have the list
of all reduced matrices PGL(2,Z)-conjugate to M :(

K2(1, 2) K3(1, 2, 3)
K3(4, 1, 2) K4(4, 1, 2, 3)

)
=

(
3 10
14 47

)
,

(
7 30
10 43

)
,

(
13 16
30 37

)
,

(
5 14
16 45

)
.

(We show continuants only for the first matrix and omit them for the others.)

4 Technical aspects of reduced matrices computation

In this section we show some technical statements involved in the justification
of the above algorithm. We start in Subsection 4.1 with writing periods of LLS
sequences for reduced matrices. In Subsection 4.2 we explain how to list all
reduced matrices PGL(2,Z)-conjugate to the given one (the reduced matrices are
given in terms of LLS periods of original matrices). Then we show in general how
to compute LLS sequences of angles in Subsection 4.3. Finally in Subsection 4.4
we state how to compute the periods of LLS sequences.

4.1 Continued fraction enumeration of reduced matrices

Let us find a period of the LLS sequence for matrices Ma1,a2,...,an
.

Theorem 2. Let n, a1, . . . , an be positive integers. Then one of the periods of
the LLS sequence for Ma1,a2,...,an

is (a1, a2, . . . , an).

Proof. Consider the sequence of integer points (xk, yk) = Mk
a1,a2,...,an

(1, 0) for
positive integer values of k. By Proposition 1 and Definition 7 for every k we
know the coordinates xk and yk via continuants. So from the general theory
of continued fractions they are relatively prime and further by Remark 3 they
satisfy

yk
xk

= [(a1; a2 : · · · : an)k].

Therefore, all the points (xk, yk) are vertices of the sail of the periodic continued
fraction α = [(a1; a2 : · · · : an)]. (This is a classical statement of geometry of
numbers (Theorem 3.1 of [11]).) This immediately implies that the direction
of the vector (1, α) is the limiting direction for the sequence of directions for
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the vectors (xk, yk), and in particular that lim
k→∞

(yk/xk) = α. Hence (1, α) is

one of the eigenvectors corresponding to the maximal eigenvalue (and thus the
eigenvalues are both real and distinct). By construction the LLS sequence for α
is periodic with period (a1, a2, . . . , an).

Finally the sail for α from some element coincides with the sail for M . Since
the sail for M is periodic, the period is the same as for α, i.e. (a1, a2, . . . , an). ⊓⊔

4.2 Matrices PGL(2,Z)-conjugate to a given one

The following theorem produces the list of all reduced matrices PGL(2,Z)-
conjugate to a given one.

Theorem 3. Let M be a GL(2,Z) matrix and let (a1, . . . , an) be a period of
the LLS sequence corresponding to M . Finally let m be the minimal length of
the period of the LLS sequence. Then the list of all reduced matrices PGL(2,Z)-
conjugate to M consists of the following m matrices:

Ma1+k,...,an+k
, k = 1, . . . ,m.

Let us first prove the following lemma.

Lemma 1. Two operators have the same LLS sequences if and only if their
unions of eigenlines are integer congruent to each other.

Proof. The LLS sequence is an invariant of arrangements of two lines with re-
spect to integer congruences, hence they are the same if the unions of eigenlines
for the operators are integer congruent to each other.

Now let the unions of eigenlines have the same LLS sequences. Pick any of the
four angles for the first unions of the eigenlines. Now we pick another angle for the
second union of the eigenlines in such a way that their subsequences of integer
lengths and integer sines coincide respectively. This is always possible as the
adjacent angles have the same LLS sequence with subsequence of integer angles
equal to the subsequence of integer sines and vice versa. This is a consequence
of a classical duality of sails for adjacent angles ([11], Proposition 8.5).

Such angles are integer congruent. This follows from the fact that the sail is
uniquely reconstructed by the LLS sequence, one of its vertices, and the direction
of one of the adjacent edges to this vertex. Once LLS sequence is reconstructed,
the integer angle is reconstructed itself (here we assume that we consider the
angles with vertex at the origin). For further details we refer to [11], Theorem
4.11. Since the angles are integer congruent, the unions of eigenlines are integer
congruent as well. ⊓⊔

Proof of Theorem 3. By Lemma 1 we know that two operators have the same
LLS sequences if and only if their unions of eigenlines are integer congruent to
each other. In Theorem 2 we showed that the LLS sequence of Mb1,b2,...,br has a
period

(b1, b2, . . . , br).
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Therefore, by Lemma 1, M could be congruent only to reduced matrices whose
units of eigenlines are integer congruent to the units of eigenlines

±Ma1+k,...,an+k

for k = 1, . . . ,m (these are the only matrices with LLS sequences of length n that
have such LLS sequences). By the structure of the sails of reduced operators (as
the first segment of the sail in the positive octant containing (1, 0) is orthogonal
to the x-axis) reduced matrices with congruent units of eigenlines have coinciding
eigenlines. By a general statement in geometry of numbers, the operators with
coinciding eigenlines are the elements of the same Dirichlet group and in the two-
dimensional case they are some rational powers of each other (see Section 8.1
of [11]).

The LLS sequence ofM2 shifts the LLS sequence by n, and hence the reduced
matrices integer conjugate to ±M should be defined by sequences of length n
(or, equivalently, that they have periods of length n). Note that the powers of
matrices Ma1+k,...,an+k

are defined by a sequence of length n if and only if the
exponents are either 1 or −1.

In the case of the exponent equal to 1 we have matrices Ma1+k,...,an+k
for

k = 1, . . . ,m themselves. In case of the exponent equal to −1 the LLS sequences
are reversed, so this case is possible only for palindromic sequences, and hence
we arrive to the same matrices Ma1+k,...,an+k

for k = 1, . . . ,m. Therefore, the
list of all reduced matrices PGL(2,Z)-conjugate to M consists of m matrices of
the form Ma1+k,...,an+k

for k = 1, . . . ,m. This concludes the proof. ⊓⊔

4.3 Computation of LLS sequences for rational angles

In this subsection we formulate a theorem that provides an explicit formula for
the LLS sequence of a given matrix. This formula is very much in the spirit of
generalized Perron Identity introduced in our recent paper [12].

Theorem 4. Consider two linearly independent integer vectors A = (p, q) and
B = (r, s). We assume that none of them are proportional either to (1, 0) or
to (0, 1). Let two sequences of integers (a0, a1, . . . , a2m) and (b0, b1, . . . , b2n) be
defined as the sequences of elements of the odd regular continued fractions of

– |q/p| and |s/r| in case of det(OA,OB) · signp
q < 0;

– |p/q| and |r/s| in case of det(OA,OB) · signp
q > 0.

Further we set ε = −signp
q and δ = sign r

s . Denote also

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δb0 : δb1 : · · · : δb2n].

Let |α| = [c0; c1 : · · · : c2k] be the regular odd continued fraction for |α|. Set

– S = (c0, c1, . . . , c2k) in the case c0 ̸= 0;
– S = (c2, . . . , c2k) in the case c0 = 0.
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Then S is the LLS sequence for the angle ∠AOB.

Remark 7. In fact it is possible to simplify the computation of the continued
fraction for α. Namely we take

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δw];

where w = s/r if det(OA,OB) · signp
q < 0 and w = r/s otherwise.

We continue with the following remark.

Remark 8. Recall one technical statement for angles represented by slopes with
tangents less than 1: the angles represented by the continued fractions

[0; a1 : a2 : · · · : a2n] and [a2; · · · : a2n]

are integer congruent. In particular, they have the same LLS sequences.

Proof of Theorem 4. First we set E = (1, 0). Consider the broken line that is a
concatenation of the sail of the angle ∠AOE (in case the last edge of this sail is
not vertical we add the infinitesimal edge EE of zero integer length with vertical
direction and 0 integer length) and the sail for the angle ∠EOB (again we add
another infinitesimal edge EE in case the first edge of the sail of the angle is not
vertical).

Note that this broken line L has the following properties:
— it starts at the ray OA and ends at the ray OB;
— the direction of the first edge is towards the interior of the angle ∠AOB.
Then the angle is integer congruent to the angle ∠EOC with C = (1, α)

where |α| is defined by the LLS sequence of the above broken line as

α = [εa2m : εa2m−1 : · · · : εa1 : εa0 : 0 : δb0 : δb1 : · · · : δb2n].

The proof for this formula is given by the study of numerous straightforward
cases of various signs for p, q, r, s and det(OA,OB).

Let us study the case p, q, r, s > 0,det(OA,OB) < 0. In this case, the first
part of the broken line L will be the sail of ∠AOE passed clockwise. Hence the
elements of the LLS sequence will be reversed and negative to the values of the
LLS sequence for ∠AOE. Note that in the case of q/p < 1 we end up with an
infinitesimal (zero integer length) vertical vector which additionally brings two
elements: the element ⌊p/q⌋ for the angle with the vertical line passing through
E, and the element 0 indicating that we stay at E. Then we switch to the second
sail. Both sails are starting vertically (or asymptotically vertical in the case of
a1 or b1 are zeroes), hence the angle between the edges corresponding to a0 and
b0 is zero. So we add a zero element to the LLS sequence for L here. Finally we
continue back following the sail of the angle ∠EOB, which is described by the
continued fraction [b0 : b1 : · · · : b2n] (here again we have b0 = 0 and b1 = ⌊s/r⌋
for the case of r/s < 1). Hence the LLS sequence of the broken line L is

(−a2m,−a2m−1, . . . ,−a1,−a0, 0, b0, b1, . . . , b2n).
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Finally we get α = [−a2m : −a2m−1 : · · · : −a1 : −a0 : 0 : b0 : b1 : · · · : b2n].
The cases for the rest choices of signs for p, q, r, s and det(OA,OB) are con-

sidered similarly, so we omit them here.

Now let |α| = [c0; c1 : · · · : c2k]. Therefore (c.f. Remark 8) the LLS sequence
for ∠EOC is either (c0, c1, c2, . . . , c2k) if c0 ̸= 0, or (c2, . . . , c2k) otherwise. ⊓⊔

4.4 Periods of the LLS sequences corresponding to matrices

In this subsection we show how to extract periods of the LLS sequence for a
given matrix.

Proposition 2. Let a GL(2,Z) matrix M have distinct irrational eigenvalues
(not necessarily positive). Let also P0 be any non-zero integer point. Denote
P1 = M4(P0) and P2 = M6(P0). Then there exists a difference LLS(∠P0OP2)−
LLS(∠P0OP1), which is a period of the LLS sequence for M repeated twice.

Remark 9. The obtained period of the LLS sequence is not necessarily minimal.

We start the proof with the following lemma.

Lemma 2. Let a GL(2,Z) matrix M have distinct irrational positive eigen-
values. Let also P0 be any non-zero integer point. Denote P1 = M2(P0) and
P2 = M3(P0). Then there exists a difference LLS(∠P0OP2) − LLS(∠P0OP1),
which is a period of the LLS sequence for M .

Remark 10. It is not enough to consider the difference of the LLS sequences for
the angles ∠P0OP1 and ∠P0OQ (where Q = M(P0)), as it is not possible to
determine the last integer sine of the period then. Let us illustrate this with the
following example.

Consider a matrix M =

(
1 2
1 3

)
and the point P = (4,−1). Then

Q = M(P0) = (2, 1), P1 = M2(P0) = (4, 5), and P2 = M3(P0) = (14, 19).

The LLS sequences for the angles ∠P0OQ, ∠P0OP1 and ∠P0OP2 are respectively

(1, 4, 1); (1, 3, 1, 3, 1); and (1, 3, 1, 2, 1, 3, 1).

We have
(1, 3, 1, 2, 1, 3, 1)− (1, 3, 1, 3, 1) = (2, 1)

which is the correct period for the LLS sequence of M , while the difference
(1, 3, 1, 3, 1)− (1, 4, 1) is not even defined.

Proof of Lemma 2. Set Q = M(P0). First of all note that ∠P0OQ is a funda-
mental domain of one of the angles C whose edges are eigenvectors of M up to
the action of the group of (integer) powers of M . Hence it contains at least one
vertex of the sail. Denote this vertex by v. Then the angle ∠P0OP2 contains
vertices v0 = v, v1 = M(v), and v2 = M2(v). Thus by convexity reasons, the
sail for the angle ∠P0OP2 contains the part of the sail of C between v0 and v2.
Namely there will be four parts of the sail:
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– S1: a part of the sail contained in P0Ov0;
– S2: a part of the sail contained in v0Ov1;
– S3: a part of the sail contained in v1Ov2;
– S4: a part of the sail contained in v2OP2.

Here S2 and S3 are periods of the sail for the angle ∠P0OP2.

Now by the same reason we have v0 and v1 in the sail for angle ∠P0OP1. We
have the following parts:

– S′
1: a part of the sail contained in P0Ov0;

– S′
2: a part of the sail contained in v0Ov1;

– S′
3: a part of the sail contained in v1OP1.

Note that
S′
1 = S1, S′

2 = S2
∼= S3, and S′

3
∼= S4.

Therefore, the difference of the LLS sequences for the angle ∠P0OP2 and the
angle ∠P0OP1 is precisely the period of the LLS sequence between the points
v1 and v2. This period corresponds to M as M(v1) = v2. This concludes the
proof. ⊓⊔
Proof of Proposition 2. First of all let us study the LLS sequences of reduced
operators. Let M = Ma1,...,an be a reduced operator for the sequence of positive
integers (a1, . . . , an). Then from Definition 7 we have

M2 = M2
a1,...,an

= Ma1,...,an,a1,...,an
.

Hence the period of the LLS sequence of M2 is twice the period of M .

For an arbitrary M we know that

M2 ∼= Ma1,...,an,a1,...,an
= M2

a1,...,an
.

Hence M itself is PGL(2,Z)-congruent to Ma1,...,an
Therefore, the period of the

LLS sequence corresponding to M2 will be twice the period of the LLS sequence
for M . By Lemma 2 the difference LLS(∠P0OP3) − LLS(∠P0OP2) exists and
it is a period for M2. Finally by the above the resulting sequence is a period of
the LLS sequence for M repeated twice. ⊓⊔
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Nombres Bordeaux, 31(1), pp. 131–144 (2019).

13. Katok S.: Continued fractions, hyperbolic geometry and quadratic forms. In MASS
selecta, pp. 121–160. Amer. Math. Soc., Providence, RI (2003).

14. Khinchin, A. Ya.: Continued fractions, FISMATGIS, Moscow (1961).
15. Klein, F.: Ueber eine geometrische Auffassung der gewöhnliche Kettenbruchen-
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