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Abstract—Despite extensive research, remote sensing image
classification remains a challenging issue within the field of
remote sensing image analysis. Achieving a balance between
classification accuracy and computational efficiency remains
challenging, as traditional methods often face difficulties in
attaining both high speed and precision simultaneously. To
tackle this dilemma, we propose a method named IMVR which
significantly reduces the computational burden while maintaining
validity. This method enhances the richness and accuracy of
high-dimensional feature representations through its output.
Extensive experiments are conducted on the UC Merced Land-
Use Dataset to demonstrate that our method can substantially
improve classification performance and efficiency in comparison
to traditional methods.

Index Terms—Feature classification, image classification, deep
learning, Remote sensing image classification

I. INTRODUCTION

Remote sensing image classification plays a crucial role in
analysing remote sensing images, enabling accurate identifica-
tion and classification of different feature categories in these
images. It has significant implications in various fields, such
as environmental monitoring, urban planning, and agricultural
management. With the continuous advancement of satellite
technology, remote sensing images’ acquisition and processing
capabilities have been greatly improved [1]. Satellites now
provide higher spatial resolution, which means that they can
capture more detailed surface information. In addition, the
availability of multispectral and hyperspectral sensors makes
it possible to capture images in multiple bands, allowing
for more comprehensive and precise information extraction
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Advances in image processing algorithms and techniques have
enabled more efficient and accurate extraction of valuable
information from remotely sensed images.

Remote sensing image classification involves the task of
assigning predefined labels to pixels or regions in a remote
sensing image based on their spectral, spatial, and contextual
characteristics. The goal is to accurately classify different land
cover types or objects present in the image. This task is
challenging due to the complexity and variability of remote
sensing data, including variations in illumination, scale, and
spatial distribution [2].

Traditionally, remote sensing image classification methods
have been categorized into three main approaches based on the
level of visual features used: low-level, mid-level, and deep
learning-based methods.

Low-level visual feature-based methods focus on extracting
features from the low-level visual attributes of high-resolution
remote sensing images. Commonly used methods include
color histograms [3] and scale-invariant feature transform
[4]. These traditional methods demonstrate good classification
performance for high-resolution remote sensing images with
uniform spatial distribution and structural patterns. However,
they often fail to perform well in scenes with non-uniform
spatial distribution.

Mid-level visual representation-based methods aim to en-
code the low-level local visual features of high-resolution
remote sensing images to form a global feature representation
of the scene. Common encoding models include bag-of-visual-
words [5], spatial pyramid matching [6], local constrained
linear coding [7], probabilistic latent semantic analysis [8].
Compared to low-level visual feature-based methods, mid-
level visual representation-based methods have Mid-level vi-
sual representation-based methods aim to encode the low-level



local visual features of high-resolution remote sensing images
to form a global feature representation of the scene. Common
encoding models include bag-of-visual-words [5], spatial pyra-
mid matching [6], local constrained linear coding [7], prob-
abilistic latent semantic analysis [8]. Compared to low-level
visual feature-based methods, mid-level visual representation-
based methods have shown significant improvements in clas-
sification accuracy. However, they are still limited by the low-
level visual features and encoding methods, which prevent
them from achieving optimal classification performance and
classification accuracy.

In recent years, deep learning-based methods have attracted
extensive attention due to their remarkable achievements
across various fields. These methods utilize deep neural net-
works to automatically learn image features and improve clas-
sification performance. Commonly used deep learning models
for remote sensing image classification include convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
and autoencoders. Subsequently, ResNet-50, a CNN with skip
connections, has proven highly effective for computer vision
tasks [9]. Additionally, Inception V3 improves the neural net-
work structure by decomposing the original large convolution
kernel into small convolution kernels with equivalent opera-
tions [10], performing spatial decomposition of asymmetric
convolution, and using auxiliary filters while further reducing
the feature map and computation amount. This enables more
effective preservation of image features, extracting remote
sensing image features well while maintaining excellent train-
ing speed. These methods have achieved remarkable success in
classifying high-resolution remote sensing images, effectively
handling complex spatial distribution and structural patterns,
and improving classification accuracy and robustness.

In this paper, we propose the IMVR model, which integrates
the respective advantages of Inception, MobileNet, VGG,
and ResNet50 through transfer learning. Transfer learning is
utilized to perform initial preprocessing on the large natural
image dataset ImageNet. To evaluate the performance of the
proposed method, we compare IMVR against previous clas-
sical models using large benchmark datasets. The ensemble
model harnessing the strengths of specialized neural networks
demonstrates advanced performance for remote sensing image
classification. The critical contributions of this work are as
follows:

1. A new remote sensing image classification neural net-
work is proposed, IMVR, which demonstrates improved
performance compared to traditional remote sensing clas-
sification methods.

2. The model can monitor specific characteristics of a given
area in real-time, enabling supervisors and decision-
makers to obtain the latest information in real-time to
make more informed decisions.

3. This work advances interdisciplinary research across ma-
chine learning, geography, climate science, etc., opening
avenues for applying the proposed techniques in diverse
fields such as geography and pollutant distribution anal-
ysis.

II. METHODOLOGY

A. Basic models

1) Inception v3: Inception V3 has optimised the structure
of the Inception Module, and there are now more varieties
of Inception Modules as shown below, and the practice of
splitting a larger two-dimensional convolution into two smaller
one-dimensional convolutions has also been introduced in
Inception V3 [11]. For example, a 7 × 7 convolution can be
split into a 1 × 7 convolution and a 7 × l convolution. This
kind of asymmetric convolutional structure splitting is better
than symmetric convolutional structure splitting in terms
of handling more and richer spatial features and increasing
feature diversity, and at the same time, it can reduce the
amount of computation.

2) Resnet50: The ResNet-50 [12] network structure com-
prises two fundamental blocks: the Conv Block and the
Identity Block, with a total of four blocks in this connection
module. The complete model is depicted below.

Fig. 1. ResNet50 Module [12]:From stage1-stage3 there will be two kinds of
Bottleneck, two kinds of Bottleneck corresponds to two kinds of situations:
the same number of input and output channels (BTNK2), the number of input
and output channels are different (BTNK1), stage1 first use BTNK1 and then
add two BTNK2, stage2 use a BTNK1 and then add three BTNK2, stage3
use BTNK1 and then add two BTNK2, stage4 use BTNK1 and then add five
BTNK2

3) Mobilenet: Mobilenet replaces ordinary convolution
with deep separable convolution [13], the convolution for-
mula for deep convolution is as Eq.1. In Eq.1, Output(i, j)
denotes the value of the output feature map at position (i, j),
Input(i+m, j+n, k) denotes the value of the input feature map
at position (i+m, j +n) and channel k, and Kernel(m,n, k)
denotes the value of the convolution kernel at position(m,n).
In Eq.1, the variables of channel k, M , N and K denote
the height, width and number of channels of the convolution
kernel, respectively.

Output(i, j) =
M∑

m=1

N∑
n=1

K∑
k=1

Input(i+m, j+n, k)×Kernel(m,n, k)

(1)
The computation of depth separable convolution is also

composed of two parts: the convolution kernel size of depth
convolution is Dk ∗ Dk ∗ M , and a total of Dw ∗ Dh

multiplication and addition operations have to be done;
the convolution kernel size of point-by-point convolution is
1 ∗ 1 ∗M , and there are N of them, and a total of Dw ∗Dh

multiplication and addition operations have to be done so



that the calculation amount of depth separable convolution is:
DK ∗DK ∗M ∗Dw ∗Dh +M ∗N ∗Dw ∗Dh.

4) VGG: In VGG [14](Visual Geometry Group), three 3x3
convolutional kernels are used instead of the 7x7 convolutional
kernels in AlexNet [15], and two 3x3 convolutional kernels are
used instead of the 5*5 convolutional kernels, and the main
purpose of this is to enhance the depth of the network under
the condition of ensuring that it has the same perceptual field,
which enhances the effect of neural network to some extent.

B. IMVR

We chose four classical CNN models as feature extractors,
NASNetMobile, ResNet50, VGG16, and InceptionV3. These
models were pre-trained on ImageNet on large-scale datasets
and have good feature extraction capabilities. We constructed
classifiers by concatenating their outputs and adding a fully
connected layer and softmax layer. During training, we used
data enhancement and preprocessing techniques, including
operations such as image rotation, translation, cropping,
scaling and horizontal flipping to increase the diversity and
generalisation of the training data. According to the transfer
learning technique, the pre-trained model weights are frozen,
and only the classifier weights are updated.

Fig. 2. IMVR:Firstly, the 256*256 remote image data will be pre-processed
and passed into the pre-trained Resnet50, Inception v3, Mobilenet and Vgg16,
respectively, and extracted to 1*256 high-dimensional features by GlobalAv-
eragePooling2D and Dense to concatenate the high-dimensional features of
the four models, and then carry out the multi-classification task of 21 classes
by Dense.

1) Transfer Learning: Transfer learning [16] can effectively
solve the information silo problem by transferring effective
information from the original domain to improve the learning
and training efficiency of another domain (target domain),
which can effectively solve the information silo problem.
Using the powerful functions of deep neural networks and
imagenet datasets, the knowledge learnt from natural image
processing models applicable to large data volumes can be
transferred to remote sensing image datasets applicable to
small data volumes to achieve effective migration.

Fig. 3. Transfer Learning: the target network is trained with ImageNet
parameters in the original domain, the corresponding parameters are frozen
after training, and remote sensing images are passed into the already pre-
trained model in the target domain for the multi-classification task .

2) Convolutional neural network: Convolutional neural
networks have the ability of representation learning, able to
shift-invariant classification of the input information according
to its hierarchical structure, convolutional layer, there are two
key operations, local correlation and window sliding, each con-
volutional neuron serves as a filter through the corresponding
parameter to carry out the sliding to carry out the calculation
of the local data, to get the high-dimensional features of the
image.
The full for convolution is:

z(u, v) =

∞∑
i=−∞

∞∑
j=−∞

xi,j · ku−i,v−j (2)

The defining equation for the convolution is:

z(u, v) =

∞∑
i=−∞

∞∑
j=−∞

xi+u,j+v · kroti,j · χ(i, j) (3)

χ(i, j) =

{
1, 0 ⩽ i, j ⩽ n

0, others
(4)

Backpropagation calculates the residuals (error term) for
gradient descent: The detailed derivation of backpropagation
is in Eqs. 5-7.

3) Concatenate: Our model chose to use Concatenate to
extract high-dimensional features as this retains more infor-
mation. Cascading would connect the outputs of the model
sequentially to form a longer feature vector, which would lose
the information interaction between the models. Concatenate
helps to improve the expressiveness and generalisation of the
model. And it can be more flexible to concatenate in different
dimensions without the limitation of dimension matching,
which provides more flexibility and freedom.

III. EXPERIMENTS

A. Dataset Description

The UC Merced Land-Use Dataset [17] used in this paper
is a 21-class remote sensing dataset of land-use imagery for
research purposes, with a total of 100 classes of imagery
extracted from the USGS National Map Urban Area Imagery
series, which is used in urban areas across the country. This
dataset of public domain images has a pixel resolution of 1 ft,
an image pixel size of 256*256, and contains a total of 2100
scene images in 21 classes, of which 100 are in each class.
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B. Evaluation Methods

The choice of accuracy rate as the evaluation criterion rate
is one of the most intuitive and commonly used evaluation
metrics, which provides a simple measure of how correct the
model is in its predictions. The accuracy rate can intuitively
reflect the model’s prediction accuracy, i.e., the proportion of
correctly predicted samples. Calculating the accuracy rate is
very simple, need to count the number of correctly predicted
samples and the total number of samples.

The accuracy rate is very widely used: accuracy rate is one
of the most commonly used evaluation metrics in machine
learning and deep learning and is widely used in various tasks
and fields.

C. Remote Sensing Image Recognition

1) Preprocessing: The raw data is first normalised by
scaling the image’s pixel values to between 0 and 1 by dividing
the pixel values by 255. It is convenient for model training
and optimisation to unify the pixel values of the image into a
smaller range. The data enhancement is carried out randomly
by rotating the image by a certain range of angles can increase
the diversity of data so that the model has a certain degree of
invariance for different angles of the image, and then randomly
translating the position of the image can simulate the changes
of the image under different positions, increase the diversity
of data, and improve the generalisation ability of the model.

2) Trend analysis: Vgg’s Validation Accuracy does trend
upwards along with the Train Accuracy trend, but the climb
is slow. Resnet50 Validation Accuracy does not compare well
with the Train Accuracy trend and remains low, mobilenet
Validation Accuracy and Train Accuracy trends are both
increasing but with low initial accuracy, and inceptionV3 Vali-
dation Accuracy and Train Accuracy trends are both increasing
but with low initial accuracy. The inceptionV3 Validation
Accuracy and Train Accuracy trends are both increasing, but
the initial accuracy is low and fluctuates greatly.
IMVR validation Accuracy and Train Accuracy trends are
both increasing, with high initial accuracy of 0.85 and little
fluctuation.

IV. RESULT AND DISCUSSION

According to the 100 epoch training accuracy graph com-
parison can be seen that 10 epoch has reached the optimal

Fig. 4. Training results of 10 epochs

value of the model. To prevent overfitting, choose to use 10
epoch accuracy comparison.

Fig. 5. IMVR:Training perfor-
mance of 100 epochs

Fig. 6. Mobilenet:Training perfor-
mance of 100 epochs

The main results are shown in Table 2. From the table,
it can be seen that IMVR successfully outperforms other
methods with a test accuracy of 44.52% over Vgg, 17.14%
over Mobilenet, and 19.05% over Inception, which is strong
proof of the effectiveness of our proposed method. From
the performance comparison based on Mobilenet and Resnet,
it can be concluded with certainty that different effective
features can be extracted from different models, and more
high dimensional features can be extracted from the fusion
of multiple models, which can be used to judge the cate-
gories more accurately in classification. And IMVR has higher
accuracy in the same epoch through the comparison graph
of accuracy, which indicates that the advantage of IMVR in
training efficiency is obvious.



The computational setup utilized for this analysis consisted
of CPU 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz
2.30 GHz. Consequently, hardware limitations may exist when
attempting to optimize model parameters further. With more
advanced hardware devices and larger data availability, clearer
and more precise classification results can be achieved.

TABLE I
EXPERIMENT RESULT

test loss test accuracy
Vgg 1.5709 0.4786

Inception V3 1.2600 0.7333
MobileNet 1.2020 0.7524

Our Approach 0.2314 0.9238

V. CONCLUSION

In this thesis, we propose an integrated model-based ap-
proach. In order to improve the training efficiency, we applied
migration learning to pre-train on Imagenet large dataset.
Compared with the classical deep learning model alone, the
accuracy was chosen as the evaluation criterion for the test.
Experimental results are demonstrated with comparisons of the
performance, i.e., accuracy.

Comparison results on the UC Merced land use dataset
show that our method successfully outperforms other indi-
vidual methods on remote sensing classification tasks and
outperforms other models in terms of training efficiency.

However, there are some limitations to this study, firstly
the choice of a single evaluation criterion may have some
evaluation error and the choice of a single dataset may limit
the ability to generalise the results. In the future, we will
test our method b on other benchmark datasets to evaluate
its performance in remote sensing classification tasks.
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