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Abstract— The phenomenon of partial discharge in high-

voltage equipment poses a significant threat to system reliability, 

emphasizing the importance of early fault detection and detailed 

analysis. This paper presents CosNet, a deep learning model 

developed to identify pertinent features in 2D images of Phase-

Resolved Partial Discharge (PRPD) patterns and established 

templates. Subsequently, these features are evaluated using a 

cosine similarity function to assess the similarity between specific 

PRPD pulse patterns and these templates. Our study indicates that 

PRPD patterns resulting from slot defects in stator motors 

frequently manifest themselves in a triangular shape. The success 

of our proposed method sheds light on the potential to standardize 

partial discharge analysis using artificial intelligence, which could 

replace the hazardous and time-consuming task of amassing large 

datasets.  
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discharge, image processing, pattern recognition 

I. INTRODUCTION 

Electrical equipment constitutes invaluable assets that must 
be protected and maintained, with their primary role being the 
consistent provision of electricity to support the essential 
functions of our daily lives. Yet, over time and with continuous 
use, complications begin to emerge. One of the primary culprits 
of equipment malfunctions in power facilities is insulation 
issues. The initial sign of insulation degradation is the 
emergence of partial discharge (PD), a phenomenon that can 
often go undetected. Continuous operation can intensify this 
problem, accelerating the ageing of the equipment aging and 
eventually leading to complete failure [1]. Hence, it is vital to 
detect PD and report on insulation condition. Taking timely 
action can prevent this issue from escalating, averting serious 
repercussions. 

Defects in insulation can arise from various sources. 
Manufacturing imperfections might introduce tiny gaps while 
handling during delivery or installation might lead to 
mechanical damage. Operational wear, such as physical harm to 
the electrical apparatus, or natural aging can erode the resilience 
of the insulating material [2]. These defects can instigate various 
forms of PD as illustrated in Fig. 1. Examples include internal 
discharges within voids of solid or liquid insulators, surface 
discharges on the insulator's external layer, corona discharges 
stemming from uneven electric fields at electrode tips, or treeing 

caused by continuous discharge effects in solid insulating 
materials. 

PD detection is carried out using sensors such as Ultra High 
Frequency (UHF) couplers, High-Frequency current 
Transformers (HFCTs), Piezoelectric Transducers, and 
Transient Earth Voltage (TEV) detectors. The acquired signals 
are often displayed in Phase-Resolved Partial Discharge (PRPD) 
plots to aid with analysis. The PRPD data are obtained based on 
voltage waveform where the phase angle of the applied voltage 
is divided into definite number of segments, and the voltage is 
kept at a persistent level [3]. Each of the PD signals are captured 
using a PD detector and pulses are quantified based on the phase 
angle ���,  magnitude of charge ���,  and the number of PD 
events ��� over a specific period. The measurements known as 
a � − � − � when displayed on a plot with the power frequency 
sinewave form a PRPD pattern. 

 Significant effort has been put into making the analysis of 
PD faster and easier using advanced computation techniques. 
These include the use of Gray-Level Co-occurrence Matrix 
(GLCM) features along with Support Vector Machine (SVM)  
[4] and HOG features [5]. However, the use of intricate 
descriptive feature extraction techniques involves complicated 
mathematical procedures. Lately, deep learning, such as 
Convolutional Neural Networks (CNN), have been embraced to 
improve feature extraction efficiency. The effectiveness of 
CNNs has been proven in various sectors like health [6], and 
security [7] in addition to condition monitoring where CNNs 
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Fig. 1. Four typical partial discharge types. 

(b) Internal Discharge(a) Treeing Discharge

(c) Surface Discharge (d) Corona Discharge



have been applied with promising results. Nevertheless, the 
substantial computational requirements associated with deep-
learning techniques present challenges within industrial settings 
where computational resources may be limited. This 
underscores the ongoing need for research in methods for 
recognizing PRPD patterns.  

In this study, an innovative method for segmenting and 
extracting PD patterns from complex PRPD images is 
introduced. The process begins by identifying regions of interest 
and key characteristics within the data, crucial for PD analysis, 
which are then fed into an advanced deep-learning algorithm. 
The capability of deep-learning models to discern meaningful 
patterns from limited PRPD samples is demonstrated, 
challenging the traditional requirement for extensive datasets in 
complex tasks like PD analysis. The unique approach utilizes a 
cosine similarity function as the output layer of the deep-
learning model, enabling the matching of a single processed 
PRPD image with a pre-defined template. This method not only 
provides insightful PD interpretations but also represents a novel 
asset-based PD recognition approach in condition monitoring. 
By identifying fault types through PRPD pattern characteristics 
and employing pre-defined templates, the method circumvents 
the need for large-scale data collection, marking a significant 
advancement in the field.  

II. IMAGE-PRE-PROCESSING 

Before attempting pattern recognition, it is essential to 
implement pre-processing methods to either reduce the 
imperfections or improve the quality of the PRPD images. The 
methods utilized in this study for PRPD image pre-processing 
are described in the following sections. 

A. Noise Reduction 

Noise reduction is achieved using Bilateral Filtering (BF). 
This method operates by considering both the geometric 
proximity and photometric similarity of pixels within a local 
window to determine the value of a specific pixel. This approach 
ensures that noise is effectively smoothed out, while maintaining 
the sharpness of edges. The calculation for BF can be applied to 
any pixel located at position �, using (1): 
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The parameters 	
  �� 	�  in this context are utilized to 
control the trade-off between the spatial and intensity domains 
respectively. Here, ℕ���  refers to a spatial local window of 
position �, while � stands for the normalization constant. The 
value of constant � is obtained by (2): 
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The values assigned to the two parameters, 	
  �� 	�, are 
instrumental in determining the final quality of the denoised 
output. Determining the optimal values for these parameters 
often involves a process of trial and error. 

B. Illumination Enhancement 

Histogram equalization (HE) is a method used to improve 
the quality of digital images by redistributing pixel values across 
a specified gray range. Sometimes referred to as histogram 
flattening, this nonlinear stretching technique ensures that pixel 
values are roughly equalized within the range, leading to a more 
uniform distribution of gray levels. The resulting effect is an 
image that appears flatter and clearer. The underlying principle 
of HE is to distribute the gray levels evenly, which often 
enhances the overall contrast and clarity of the image. 

C. Contrast Enhancement 

To further boost the contrast of images, the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) technique was 
used. It ensures better contrast without compromising the quality 
of the image. �  represents the limit value (clip limit) which 
signifies the highest permissible histogram height, and can be 
established through (3): 
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� represents the grayscale value (typically set at 256), � 
refers to the region size, � signifies the clip factor indicating the 
addition of a histogram with a value ranging from 1 to 100 [8], 
and ���� is the maximum permissible slope. The PRPD images 
were sectioned into 8 × 8 sized areas, and the clip limit was set 
to 3. 

D. Image Segmentation 

The k-means clustering algorithm was used to partition a 
PRPD image into a specific number of groups, where a region 
of interest was selected [9]. Using the k-means algorithm 
involves two distinct stages. In the first stage, the � centroid is 
calculated, and in the second stage, each point that has a closest 
centroid from the respective data point is selected. Euclidean 
distance is one of the common methods used to define the closest 
centroid. The k-means clustering is an iterative method that for 
each grouping, the new centroid of each cluster will be 
recalculated, and the Euclidean distance will also be calculated 
between each centre and each data point and assign the point to 
the cluster with the shortest Euclidean distance.  An image with 
dimensions � ×   can be partitioned into � number of clusters. 
If !��,  �  are the image pixels to be clustered, and "#  is the 
centre of the cluster, the steps for implementing the k-means 
clustering algorithm are the following: 

i. Set the number of clusters � and centre. 

ii. Calculate   (Euclidean distance) between the centre 
and each pixel of the input image.  

iii. Assign all pixels to the closest centre based on . 

iv. Recalculate the new position of the centre.  

v. Iterate until the error value is satisfied. 

vi. Reshape the cluster pixels into an image. 

III. PRPD PATTERN RECOGNITION METHODOLOGY 

When partial discharges are recorded and presented a PRPD 
form, well-defined representations are produced. Processing 
these directly can have several advantages compared to other 



approaches that attempt to analyse individual PD pulses. In this 
study, phase-resolved plots of partial discharges in the form of 
images are processed by firstly isolating individual PRPD 
patterns, and then cosine similarity is employed to assess the 
degree of resemblance between each pulse pattern and 
predefined shape templates (Fig. 2). The templates are 
themselves created by phase-resolved plots specified in 
international standards and related literature, such as CIGRE 
brochures, where these are used as guidelines for the 
interpretation PD measurements. 

A. Cosine Similarity 

Cosine similarity (CS) is a mathematical measure that 
calculates the cosine of the angle between two non-zero vectors 
in an inner dot product space. The similarity �  is computed 
using (4) where � and $ are the two given vectors and % is an 
angle between them: 
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CS is computed to find the shortest distance between each 
PRPD pattern and each of the pre-defined shape templates:  

( )min ,shortest pattern imageCS dist PRPD Template =    (5) 

To measure the dissimilarity between the pattern and 
template, the Cosine Distance can be calculated which provides 
a score ranging from 0 to 1. A higher score indicates greater 
dissimilarity between the two vectors, while a lower score 
indicates greater similarity. 

B. CosNet 

Deep learning models are inherently data-hungry 
algorithms, necessitating a substantial amount of data for 
effective learning and performance on new tasks. This 
characteristic has led to the requirement for high-powered 
computing hardware during training, which can result in 
significant financial expenses, making their deployment in 
industries challenging.  

To address the limitations, an innovative image processing 
and recognition model, the CosNet (Fig. 3), was developed for 
PD analysis. It integrates k-means segmentation into the pipeline 
framework, with a cosine similarity function as the output layer. 
This approach leverages the benefits of both transfer learning 
and specialized feature segmentation to enhance efficiency and 
accuracy in the recognition of PRPD patterns. The k-means 

algorithm is integrated into the pipeline as preprocessing before 
feeding the centroids into the pretrained ResNet50 CNN, which 
is a very large neural network with 50 convolutional layers 
featuring skip connections in the network that allow efficient 
feature reuse. 

IV. MODEL VALIDATION  

To investigate the capabilities of the new CosNet PRPD 
image processing and recognition model, a series of experiments 
was undertaken using images from existing literature where the 
types of defects had already been determined through manual 
PRPD pattern analysis. Two examples are presented together 
with the associated metrics. 

The first experiment (E1) involves slot defect analysis in a 
10 KV motor where a defect was intentionally introduced by 
abrasion on the insulation surface [10]. PD measurements were 
performed at temperatures of 20 ℃ and 80 ℃ and the data 
presented in the form of PRPD plots (Fig. 4(a)). In the second 
experiment (E2), an additional stator with slot defects is 
examined. Specifically, internal discharges of a stator core slot 
obtained at voltage levels spanning from 3-10 kV [11] were 
recorded in the form of PRPD plots (Fig. 4(b)). The successful 
segmentation of the patterns in each case is clearly presented, 
with contour lines delineating each pattern for clarity. 

Table I shows the similarity scores and Fig. 5 presents the 
results of the PRPD image processing diagrammatically. The 
CosNet model in consistently and reliably able to identify slot 
discharge defects from PRPD images, matching them to the 
triangular pattern with a high similarity score. Except for pattern 
E1P1, the difference between the best match and the second-best 
match is greater the 15%, a testament to the ability of the model 
to confidently decide regarding the similarity of the patterns 
with the appropriate template indicative of a slot discharge 
defect. Additionally, Table 1 shows the time taken to compute 
the match percentages. In all cases this is a fraction of a second.  

V. CONCLUSION 

For the purposes of recognizing, extracting, and processing 
PRPD patterns from two-dimensional plots automatically to 
identify specific defect types affecting electrical equipment, a 

 

 

Fig. 2. Predefined PRPD pattern shape templates: (a) crescent, (b) triangular, 
(c) semicircular 

 

 

Fig. 3. Schematic representation of CosNet image processing and recognition 
model for automated PRPD pattern analysis. 



new methodology was developed and validated. In summary, 
the new solution is:  

i. Monitoring equipment agnostic. It is not tied to 
equipment supplied by a specific manufacturer and can be 
used with monitoring systems that are already in use.  

ii. Fast and efficient. Analyzing a PRPD pattern and 
reporting the similarity score indicating the type of defect 
takes less than a second. and does not require training that 
relies on extensive data sets. 

iii. Flexible. The model can be adapted to include any number 
of templates of known defects and can be employed as 
narrowly or as widely as deemed necessary.  
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Fig. 4. PRPD plots of stator slot discharges: (a) from E1 dataset and (b) from 
E2 dataset. 

 

TABLE I 

IDENTIFICATION OF STATOR SLOT DISCHARGE PATTERN USING COSNET 

 Match (%) 

Pattern Triangular Semi-

Circular 

Crescent Time 

(s) 

E1P1 78.06 67.55 72.59 0.2329 

E1P2 72.54 57.35 57.76 0.2450 

E2P1 89.42 55.05 54.96 0.1796 

E2P2 80.50 53.46 51.28 0.1570 

  

 

Fig. 5. Diagrammatic presentation of the PRPD pattern recognition results for 
E1 and E2 showing consistently strong match to the triangular pattern. 


