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Abstract

This thesis aims to provide a comprehensive analysis of the interplay between technological advance-

ments, capital-skill complementarity, and labour market dynamics. The central focus is to explore the

implications of these factors on business cycle dynamics. The research builds upon the existing literature

while introducing novel elements, such as varying utilisation associated with different skill levels for labour.

By employing empirical analyses and developing a stochastic dynamic general equilibrium (DSGE) model,

this study seeks to offer insights into the intricate relationships among technology, labour composition, and

economic outcomes.

Chapter 1 revisits the study conducted by Basu et al. (2006) on constructing a measure of aggregate

technology change while accounting for aggregation effects, non-constant returns, varying utilisation of capi-

tal and labour, and imperfect competition. However, our study extends their work by incorporating varying

utilisation associated with different skill levels for labour. Empirical findings demonstrate that techno-

logical improvements lead to an increase in both output and input, with high-skilled labour experiencing

higher utilisation while low-skilled labour experiences decreased utilisation. Furthermore, the analysis reveals

sector-specific variations in the responses of high-skilled and low-skilled labour utilisation to technological

advancements.

Chapter 2 examines the capital-skill complementarity hypothesis across various industries in the U.S.

economy. Applying Hansen’s (2002) data-splitting methodology, the study identifies four primary findings.

Firstly, industries with higher capital-to-output ratios exhibit substitution between capital and skilled labour,

while those with lower ratios demonstrate complementarity. Secondly, skilled and unskilled labour display

a complementary relationship in both industry groups, with a stronger association observed in industries

characterized by a higher-educated workforce. Thirdly, a time break in capital-skill substitution is identified

in industries with high capital-to-output ratios, indicating a higher degree of substitutability between capital

and skilled labour after 1980. These findings are robust across various sensitivity analyses, aligning with

the non-linearity observed in the time-series analysis by Goldin and Katz (1998) using U.S. manufacturing

data. This suggests the possibility of a transitory nature in the observed capital-skill complementarity

phenomenon.

Chapter 3 focuses on the development of a stochastic dynamic general equilibrium (DSGE) model that

integrates capital-skill complementarity in production, Calvo prices, and nominal wage rigidity. The primary

objective is to gain insights into the negative dynamics observed in the skilled to unskilled working hours ratio

and the differential responses of hours worked by skilled and unskilled workers. Four distinct scenarios are

simulated, including a generalized real business cycle (RBC) model, a frictionless monopolistic competition

model, a generalized model incorporating Calvo (1983) pricing, and a model incorporating Calvo wage

and Calvo price settings. The analysis reveals that with moderate capital-skill complementarity, both the

generalized RBCmodel and the frictionless monopolistic competition model can explain the negative response

of the skilled to unskilled hours ratio to technological advancements. However, these models fail to capture
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the divergent responses of hours worked for the two skill levels. In contrast, a generalized model incorporating

Calvo (1983) pricing provides a more satisfactory explanation. Additionally, the incorporation of Calvo wage

and price settings further enriches the analysis, offering deeper insights into the interplay between technology,

labour market dynamics, and economic outcomes.
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Introduction

The business cycle, characterized by the fluctuation of gross domestic product (GDP) around its long-

term growth trend, has been a subject of extensive research and analysis. One key characteristic of business

cycles is the positive co-movement between economic conditions and various economic variables, including

labour input. However, the factors driving these fluctuations and their implications for economic stability

remain areas of ongoing investigation.

In existing studies, there has been significant attention given to the relationship between technology

shocks, capital-labour utilisation, and their effects on business cycles. The impact of technology shocks on

labour productivity is a well-documented feature of business fluctuations. Scholars have long recognized the

importance of identifying the primary macroeconomic shocks that drive fluctuations in economic activity

and determining the most effective policies for maintaining economic stability. Among the various models

used to explain economic fluctuations, the Real Business Cycle (RBC) model stands out as a prominent

framework. This model emphasizes the role of technology shocks as the primary driver of business cycles,

building on the observation that detrended Solow residuals closely track detrended real GDP.

However, the use of Solow residuals as a reflection of stochastic movements in technology has been subject

to criticism and challenges in the literature. Basu and Kimball (1997) highlights three main explanations

for the observed pro-cyclicality of productivity. Firstly, variations in measured productivity may stem from

exogenous changes in production technology. Secondly, productivity can exhibit a pro-cyclical pattern due to

increasing returns to scale, leading to enhanced efficiency as the economy operates at higher activity levels.

Lastly, inaccuracies in input measurements can cause measured productivity to display a pro-cyclical pattern

even if true productivity remains constant. It is emphasized that the gap between actual and measured tech-

nology shocks most likely arises from mismeasurement of inputs, which refers to the inadequate consideration

of unobserved fluctuations in capital utilisation and labour effort. When firms face significant adjustment

costs in their decisions to hire employees and accumulate capital, there is a tendency for employment and

capital to become quasi-fixed factors. Consequently, firms respond to technology advancement in production

by intensively utilising labour and capital during economic booms and less during recessions in the short

run. Therefore, disregarding cyclical variations in factors utilisations when analyzing the Solow residual can

lead to the risk of cyclical mismeasurement and inaccurate assessment of technology shocks and result in

misleading business cycle results

The importance of variable utilisation in understanding business cycles and their implications is widely

acknowledged in the literature. Scholars have developed various approaches to measure unobservable labour

effort and capital utilisation, including proxies such as accident rates, overtime hours, the ratio of production

to non-production workers, material growth, and capital depreciation rate. These studies have shed light

on the role of variable factor utilisation as a propagation mechanism in the economy, explaining lead-lag

relationships in the data and providing insights into the cyclicality of measured productivity.

While existing literature has explored the importance of variable utilisation in the business cycle context,

there is a notable gap in research specifically examining heterogeneity in utilisation, particularly in relation

to the disparity in utilisation between high-skilled and low-skilled workers. Understanding the dynamics

of capital and labour utilisation across different skill levels is crucial for a comprehensive understanding of

business cycles and the factors driving them. In light of this research gap, the first chapter of this thesis is to

contribute to the literature by estimating the utilisation-adjusted technology shock series that is robust across

different skill levels. Moreover, a key focus of this chapter is to estimate the utilisation series specifically

for high and low skilled workers. Furthermore, this thesis examines the implications of utilisation-adjusted
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technology shocks and capital-labour utilisation in business cycle models, with a specific focus on the response

of utilisation among different skill levels of labour to utilisation-adjusted technology advancement. The

insights gained from these findings shed light on the dynamics of capital-skill complementarity/substitution

in various industry sectors of the U.S. economy. These insights serve as the inspiration for the subsequent

exploration of this issue in the second chapter.

This thesis also provides insights into the intricate relationship between technology shocks and capital-

skill complementarity. Over the past six decades, the labour market in the United States has undergone

significant changes characterized by a consistent increase in the supply of both skilled and unskilled workers.

Paralleling this trend, there has been a notable escalation in the skill premium, which pertains to the

relative hourly wage disparity between skilled and unskilled workers. The growing body of literature in this

field suggests that technological advancements tend to favor skilled workers by enhancing their productivity

and substituting tasks traditionally performed by the less-skilled counterparts, thereby exacerbating wage

inequality. The hypothesis of capital-skill complementarity emerges as one plausible explanation for the

observed rise in the skill premium. It postulates that the elasticity of substitution between capital equipment

and skilled labour is lower than that between capital and unskilled labour. In essence, this hypothesis

suggests that capital and skilled workers exhibit a higher degree of complementarity compared to capital

and unskilled workers. With capital-skill complementarity, technological progress can effectively drive an

increase in the marginal productivity of skilled labour while diminishing that of unskilled labour. However,

it is important to note that the relationship between technology shocks and capital-skill complementarity is

complex and multifaceted. While the existing literature predominantly supports the hypothesis of capital-

skill complementarity, there are also studies that yield null or weak evidence in this regard. Goldin and

Katz (1998) argue that technological advancements may not always lead to an increased demand for skilled

workers. In fact, certain technological developments have the potential to replace skilled labour, resulting in

a decline in their demand. Such observations suggest that the phenomenon of capital-skill complementarity

may not be a universally enduring characteristic but rather contingent on various factors, including the stage

of economic development. To contribute to this ongoing discourse, the second chapter of this thesis endeavors

to test the hypothesis of capital-skill complementarity by employing industry-level panel data encompassing

a wide range of sectors within the U.S. economy.

Lastly, this thesis thoroughly investigates the role of technology factors in business-cycle models and

specifically focuses on analyzing the implications of technology shocks on the response of hours worked

among labour of different skill levels. The study builds upon the foundation laid in the first chapter, which

extensively discussed the importance of accounting for variable utilisation in the context of business cycles.

Basu (2006) utilizes the methodologies introduced by Basu (1997) and Basu, Fernald, and Kimball, who build

upon the works of Solow (1957) and Hall (1990), to construct an index of aggregate technology change. This

index effectively controls for the cyclical patterns observed in the Solow residual due to variations in both

returns to scale and utilisation of inputs. Notably, Basu’s findings suggest that technology improvements

lead to a significant decrease in total hours worked in the short run, contradicting the conventional results

of the real-business-cycle model (RBC) that propose increased input across all time horizons. Since then,

the utilisation-adjusted technology shock has become commonplace in analyzing the dynamics of business

cycles, leading to further expansions and investigations in this field. The relationship between hours worked,

employment, and technology shocks has been extensively explored in the literature, with empirical studies

providing evidence of a persistent decline in employment following positive technology shocks, challenging

the real business cycle model’s ability to explain business cycles. In contrast to previous literature, the third
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chapter of this thesis seeks to examine the response of hours worked by skilled and unskilled workers to

utilisation-adjusted technology shocks.

The subsequent sections of this thesis are structured as follows:

Chapter 1 introduces an innovative methodology for measuring utilisation-controlled neutral technology

shocks, ensuring robustness to factor heterogeneity. This approach estimates utilisation series separately for

high-skilled and low-skilled labour, allowing for a more comprehensive analysis of cyclical fluctuations in

utilisation at both the aggregate and disaggregate levels.

Chapter 2 utilizes the linear estimation technique proposed by Goldin and Katz (1998) and adopts the

data-splitting methodology outlined by Hansen (2000) to examine the validity of Griliches (1969)’s capital-

skill complementarity hypothesis across various industries in the U.S. economy.

In Chapter 3, a stochastic dynamic general equilibrium (DSGE) model is employed, integrating capital-

skill complementarity in production, Calvo prices, and nominal wage rigidity. Through simulations and

calibration to the U.S. economy, this chapter aims to provide insights into the observed negative dynamics

in the skilled-to-unskilled working hours ratio and the differential responses of hours worked by skilled and

unskilled workers to utilisation-adjusted technology shocks.

In summary, the primary objective of this thesis is to enhance and refine our understanding of how

technology shocks, labour and capital utilisations, and capital-skill complementarity impact labour market

dynamics. By delving into these areas of research, this study seeks to deepen our insights into the intricate

relationships among these factors and their implications for the labour market. Furthermore, this thesis

aims to contribute to the exploration of policy implications, particularly in addressing the changes related

to hours worked and the evolving skill demands in the modern economic landscape. Through this research,

valuable insights can be gained to inform policymakers and guide the formulation of effective policies that

promote sustainable economic growth and address the evolving labour market needs in an ever-changing

technological environment.

1 Revisiting Aggregate Technological Shocks While Controlling

for Varying Utilisations of Different Skill Levels

1.1 Introduction

The business cycle refers to the fluctuation of gross domestic product (GDP) around its long-term growth

trend. The key characteristic of business cycles is the positive co-movement between economic status and

various economic variables, and the cyclical variation of labour productivity is a well-documented feature

of business fluctuations. It is crucial to identify the primary macroeconomic shocks that drive fluctuations

in economic activity and determine the most effective policies for maintaining economic stability. There

exist various underlying factors that may contribute to the occurrence of business cycles. The RBC model,

developed by Kydland and Prescott (1982), is among the most well-known models used to explain economic

fluctuations. These scholars were motivated by the observation that detrended Solow residuals closely track

detrended real GDP, leading them to suggest that technology shocks could be a potential explanation for

business cycles.

The literature on the relationship between technology shocks and productivity cycles is extensive, with

numerous studies challenging the use of the Solow residual as a reflection of stochastic movements in ag-

gregate production technology. The mismeasurement of inputs is a common issue that is often discussed
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in this context, as it refers to the inadequate consideration of unobserved fluctuations in capital utilisation

and labour effort. Scholars contend that firms incur significant adjustment costs in their decisions to hire

employees and accumulate capital, resulting in a form of ’factor hoarding,’ whereby employment and capital

become quasi-fixed factors. Consequently, firms respond to short-run fluctuations in production by inten-

sively utilising labour and capital during economic booms and less during recessions. Therefore, failing to

consider cyclical factor utilisations can lead to the risk of cyclical miss-measurement. Understanding the

extent to which the cyclicality of productivity reflects variable factor utilisation is crucial for several reasons.

Firstly, if variable utilisation is present, it can serve as an important propagation mechanism in the econ-

omy. Secondly, if factor utilisation varies over the business cycle, it can help to explain some of the observed

lead-lag relationships in the data. Finally, accounting for variable utilisation enables the cyclicality of mea-

sured productivity to be explained without invoking increasing return to scale or unobserved fluctuations

in technology. Consequently, the importance of variable utilisation is widely recognized in the literature on

economic fluctuations.

Factor hoarding has been extensively studied in the economic literature. A number of contributions

were simulated by Hall (1989) who challenged the real business theorists’ identification of Solow residuals

as true technology shocks. However, empirical tests of the labour hoarding hypothesis face a challenge

in observing capital and labour utilisations. Economists have developed different ways to measure the

unobservable labour effort and capital utilisations, recognizing the importance of variable factor utilisations

in examining cyclical movements. For instance, Shea et al. (1990) uses accident rates to proxy for variation

in effort and finds that this can explain some but not all of the cyclical productivity. Caballero and Lyons

(1992) use data on overtime hours and the ratio of production over non-production workers as proxies for

factor utilisations and conclude that neither true increasing returns nor unmeasured factor utilisations can

solely account for aggregate procyclical productivity. Basu (1996) use material growth as an indicator of

cyclical factor utilisations and find that technology shocks are small and have low correlation with output

or hours growth after controlling for factor utilisations. Other studies take a different approach to measure

this issue by imposing optimality conditions on the behavior of economic agents. Bils and Cho (1994)

introduce procyclical labour and capital utilisation, along with the costs of rapidly increasing employment

into a general equilibrium model. They posit that both effort and utilisation rate of capital increase when

workers work longer hours. Their study demonstrates that workweeks, labour effort, capital utilisation,

and productivity all exhibit pronounced leading behavior in relation to the business cycle. Burnside and

Eichenbaum (1994) assume the capital utilisation rate as a function of capital depreciation rate and show

that by adding plausible cyclical variations in capital utilisations, their model can generate the same amount

of aggregate output variability with smaller technology disturbances. Sbordone (1997) and Sbordone (1996)

and Basu and Kimball (1997) derive effort within a cost minimization framework and confirm the role of

cyclical labour utilisations in generating cyclical productivity.

Existing literature has explored the importance of variable utilisation in the business cycle context. How-

ever, there is a lack of research that specifically examines heterogeneity in utilisation, particularly with regard

to the difference in utilisation between high-skilled and low-skilled workers. Notably, the work of Bocola

et al. (2011) is among the most relevant literature in this area, it focuses on identifying technology shocks in

the presence of heterogeneity in factor utilisations. Bocola argues that identifying neutral technology using

structural vector autoregressions (SVAR) is challenging in models with heterogeneous capital and labour, as

the key long-run restrictions required for identifying neutral technology are violated. The long-run restric-

tions implemented in the business cycle context by Gali (1999) assume that only technology shocks have a
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long-term effect on labour productivity. 1 It as been intensively discussed in existing literature, questioning

the reliability of the results when imposing long-run restriction in relatively small sample (e.g., Erceg et al.

(2005), Faust and Leeper (1997), Chari et al. (2008)). Additionally, the long-run restrictions have been also

criticized for their weakness (e.g., Uhlig (2004), Shea (1998)). 2 Amidst the literature that has cast doubts

on long-run restrictions, Bocola et al. (2011) question that in the model with heterogeneous labour or capital

inputs most non-technology shocks can have a long-run effect on labour productivity as well, consequently

violating long-run restrictions. Therefore, in steady of using SVAR, Bocola et al. (2011) propose an alter-

native method for estimating neutral technology shocks using filtering/smoothing techniques. However, this

method cannot uncover the series of capital and labour utilisation for high-skilled and low-skilled workers

which we focused in this paper.

This paper presents a novel approach for measuring utilisation-controlled neutral technology shocks that

is robust to factor heterogeneity. More importantly, the approach estimates the utilisation series for both

high-skilled and low-skilled labour, allowing for a more granular analysis of cyclical movements of utilisation

at both the aggregate and disaggregate levels. To estimate neutral technology, we use a classic approach first

proposed by Solow (1957), which involves estimating residual output growth - i.e., the growth of output not

accounted for by the growth of inputs. Effort and capital utilisation associated with high-skilled and low-

skilled labour are derived using a cost-minimization framework, building on Basu et al. (2006)’s construction

of aggregated index of labour and capital utilisations controlled aggregate technology. 3 Our work differs

from Basu’s in two key ways. Firstly, we decompose the aggregate labour input into two types - high-skilled

and low-skilled - which enables us to identify utilisation for different skill levels. Secondly, while Basu et al.

(2006) used the standard Cobb-Douglas production function with fixed capital, labour, and intermediate

input shares to demonstrate that hours-per-worker could be used as a proxy for capital’s workweek, we

extend this analysis by employing a more general production function with varying input ratios across

industries. Specifically, our approach allows us to find that capital’s workweek depends not only on hours-

per-worker but also on the relative share of total expenditures in capital and labour compensations to the

total cost of input factors. By adopting this more flexible approach, our analysis provides a more robust

understanding of the factors influencing capital utilisation and its relationship with labour utilisation.

We make several critical assumptions in this paper, firstly, we assume that firms behave competitively

in the factor market. Secondly, consistent with Basu et al. (2006), we adopt the assumption that increasing

labour utilisation incurs a higher wage cost due to the increased disutility of effort. Moreover, we posit that

the primary cost of increasing capital utilisation is the shift premium paid to employees for working during

undesirable times, as workers have to be present to ensure the smooth operation of the production process.
4 However, unlike Basu, we introduce two skill types and thus the shift premium paid to workers must be

adjusted to reflect these differences. For the sake of simplicity, we assume a uniform shift premium function

for both high- and low-skilled labour. Nevertheless, the heterogeneity in the shift premium for different types

of workers is accounted for by differences in the workweek of capital associated with different skill levels.

1The work of Blanchard and Quah (1988),King et al. (1991) highlighted a widespread interest in using vector autoregressions
(VARs) to impose long-run restrictions for identifying the severity of the effects of shocks.

2According to Shea (1998), the bankruptcy of low-productivity companies during economic downturns could have a lasting
impact on productivity. Meanwhile, Uhlig (2004) contends that a shift in societal attitudes toward work, in which individuals
engage in leisure activities at work instead of at home, could lead to inaccuracies in measuring effective work hours and ultimately
affect productivity measurements over an extended period of time.

3Basu et al. (2006)’s work follows Basu and Fernald (1997) and Basu and Kimball (1997). Basu and Fernald (1997) build
on Solow (1957) and Hall (1990) and stress the role of sectoral heterogeneity and aggregation. And Basu and Kimball (1997)
stress the role of variable capital and labour utilisation.

4Bils and Cho (1994) find evidence that capital utilisation does respond significantly to movements in weekly hours of work,
which indicating the close relationship between capital utilisation and hours per worker.
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The decision of a firm to increase the workweek of capital may have varying impacts on the working hours

of different labour types, contingent on the proportion of their workload associated with managing machines

and other capital. Workers whose job is closely related to managing machines and equipment may have their

working hours extended to a greater extent when firms increase capital utilisation than those whose workload

is less reliant on such equipment. This discrepancy arises because the former group of workers needs to be

present during periods of capital utilisation to ensure the smooth and effective operation of the production

process. To address this, we disaggregate the capital’s workweek into high- and low-skilled workers to reflect

the fact that an increase in capital’s workweek corresponds to specific types of workers’ working hours. We

believe that the assumptions in our cost-minimization framework are more plausible than the assumptions

required for solving a full general-equilibrium model.

Our study yields several main results. First, at the aggregate level, our model generates results that are

consistent with the standard Real Business Cycle (RBC) model. However, we find that a utilisation-controlled

technology shock leads to less business cycle fluctuations in output, inputs, employment, and total hours than

the TFP shock. Secondly, our analysis indicates that at aggregate economy level, firms tend to motivate high-

skilled workers to put in more effort and prolong high skills working hours when increasing capital utilisation

in response to technological advancements, while simultaneously reducing utilisation of both labour and

capital associated with low-skilled workers. Thirdly, we find that the IRFs of utilisation for high-skilled

and low-skilled workers to a technology advancement differ across sectors. In response to technological

advancements, firms in the durable manufacturing sector exhibit a decrease in the working intensity of high-

skilled labour while maintaining the working intensity of low-skilled labour relatively constant. Conversely,

in the nondurable goods sector, firms demonstrate an increase in the utilisation of high-skilled labour and

a reduction in the utilisation of low-skilled labour. In the non-manufacturing sector, firms demonstrate

a reduction in the utilisation of low-skilled labour while maintaining the utilisation of high-skilled labour

relatively constant. The cyclical movements of utilisation provide some evidence supporting capital-skill

complementarity hypothesis in the aggregate economy, the nondurable manufacturing sector, and the non-

manufacturing sector. However, in the durable manufacturing sector, our results indicate a substitution

relationship between capital and skilled labour.

The present study identified and analyzed the utilisation series for both high-skilled and low-skilled

labour, thus providing a more nuanced perspective on the cyclical movements of utilisation at both the

aggregate and sectoral levels. By doing so, this research sheds light on the importance of undertaking

an industry-focused analysis in order to gain a comprehensive understanding of the diversity in utilisation

patterns for workers with different skill levels. Furthermore, this paper contributes to the existing literature

on the interplay between capital and skilled labour in the context of technological progress. Specifically,

it provides insights into the differential effects of technology shocks on workers with different skill levels

across various economic sectors. Overall, this research expands our understanding of the complex dynamics

between technology, capital, and labour, and emphasizes the importance of considering the heterogeneity of

labour utilisation patterns across different skill levels and economic sectors.

The paper is organized as follows. In Section 1.2, we review our methodology for identifying utilisation-

controlled neutral technology shocks that is robust to different skill levels. Section 1.3 describes the data

and econometric model used in the analysis. In Section 1.4, we present our main results for the aggregate

economy, while Section 1.5 discusses the results for the disaggregate sectors. Section 1.6 examines the

complementarity/substitution between capital and skill across sectors. Finally, in Section 1.7, we conduct

robustness checks to test the sensitivity of our results to alternative specifications and model assumptions.
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1.2 Model

We identify aggregate technology growth by estimating a regression equation with proxies for capital and

labour utilisation in each disaggregated industry by GMM estimation. We then aggregate the industry-level

technology growth as the weighted sum of the resulting residuals. Section 1.2.1 shows the decomposition of

the production function; Section 1.2.2 discuss how we control for utilisations; and Section 1.2.3 discuss the

aggregation.

1.2.1 Decompose Production Function

We assume each industry has a production function that firms use capital inputs K̃i, labour inputs of high-

skilled and low-skilled workers, L̃i,H ,L̃i,L, and intermediate inputs of materials and energy Mi to produce

gross output Yi through the technology Zi and production technique F :

Yi,t = F (K̃i,t, L̃i,H,t, L̃i,L,t,Mi,t, Zi,t)

The labour and capital inputs depend on the number of total hours and capital stock and the intensity

with which capital and labour are utilised. The labour inputs are the product of the number of employees,

N , hours per worker h, and the labour effort, ϕH and ϕL. And the capital inputs are the product of the

workweek of capital, ϕK,H and ϕK,L and the capital stock, K. We eliminate the industry and time subscript

for convenience. Thus, the inputs are defined as:

L̃H = ϕHhHNH

L̃L = ϕLhLNL

K̃ = ϕK,HϕK,LK

For a meaningful model with varying capital and labour utilisation, we assume the firm cannot change

the number of employees and capital stock costless; thus, K and N are quasi-fixed. 5 We also assume the

cost of increasing the capital utilisation is to pay a shift premium to compensate workers for working for a

long time or at an undesirable time. And when labour utilisation increases, workers must be compensated

with a higher wage. Basu et al. (2006) only consider the aggregate labour inputs in the production function;

different from them, our model introduced two types of labour; high-skilled and low-skilled workers.

The impact of a firm’s decision to increase the workweek of capital on the working hours of different

types of workers is dependent on the proportion of their workload associated with managing machines and

other capital. As such, the extent to which each type of worker will extend their working hours will vary.

This has implications for the shift premium, which will be different for each type of labour. Workers whose

workload is more closely tied to the management of machines and other capital are likely to extend their

working hours to a greater degree than workers whose work is less reliant on capital. The reason for this is

that the former group of workers will need to be present during the increased utilisation of capital in order to

5Basu et al. (2006) illustrated that the quasi-fixed number of capital stock and employees ensures a meaningful model with
varying factor utilisations. If a firm can vary K and N freely, it would always keep the factor utilisation at the cost-minimizing
level to avoid paying shift premiums and higher wages to compensate workers for working longer. Only if it is costly to change
K and N is it reasonable for a firm to change factor utilisation and pay the costs of varying utilisations.
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manage it effectively. Since the extent to which each type of worker extends their working hours is different,

the shift premium will need to be adjusted accordingly in order to reflect this difference. For simplicity,

we assume the shift premium function is the same for two types of labours, and the workweek of capital,

i.e., capital utilisation ϕK,H and ϕK,L captures the heterogeneity in shift premium. That is, we use V (.) to

denote the shift premium function, then the shift premium for high and low-skilled workers are V (ϕK,H)

and V (ϕK,L), respectively. Taking the log of both sides of the production function and then differentiating

with respect to time gives,

dY/dt

Y
=

F1dK̃/dt

F
+

F2dL̃H/dt

F
+

F3dL̃L/dt

F
+

F4dM/dt

F
+

F5dZ/dt

F
(1)

Substitute the differentiation of capital and labour inputs K̃, L̃H and L̃L with respect to time, we can

rewrite Equation 1 as (after some algebra):

dY/dt

Y
=

F1K̃

F

(
dK/dt

K
+

dϕK,H/dt

ϕK,H
+

dϕK,L/dt

ϕK,L

)
+

F2L̃H

F

(
dϕH/dt

ϕH
+

dhH/dt

hH
+

dNh/dt

Nh

)
+

F3L̃L

F

(
dϕL/dt

ϕL
+

dhL/dt

hL
+

dNL/dt

NL

)
+

F4M

F

dM/dt

M
+

F5Z

F

dZ/dt

Z

(2)

Let dj represent the growth rate of input factor J (i.e., dj = dJ/dt
J ), let dϕK,m denote the growth rate

of capital utilisation, and dϕm denote the growth rate of labour utilisation for labour type m ∈ (H,L). To

simplify the analysis, we have normalized the output elasticity with respect to technology to one. As a result,

Equation 2 can be expressed as follows:

dy =
F1K̃

F
(dk + dϕK,H + dϕK,L)

+
F2L̃H

F
(dϕH + dhH + dnH)

+
F3L̃L

F
(dϕL + dhL + dnL) +

F4M

F
dm+ dz

(3)

Suppose that firms take the price of all input J , PJi as given by competitive markets, and denote the

markup over marginal cost as µi. According to Basu and Fernald (2007), the first order condition for costs-

minimization implies the firm set the value of maginal product of factor J equal to a markup over the factor’s

input price, that is:

PiF
i
J = µiPJi (4)

Using equation 4, we can write the output elasticity with respect to factor J as the markup times the

total expenditure for factor J over the total revenue,6 that is,

6SJ is defined as the total expenditure for input factor J over the total revenue. When the firm earns zero profit, SJ equals

to the ratio of expenditure for input factor J to the total costs for inputs factors; SJ = PJJ∑
jPJjJj

.
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F1K̃

F
=

FKK

Y
= µ

PKK

PY
= µSK

F2L̃H

F
=

FhH
hH

Y
= µ

PhH
hH

PY
= µSLH

F3L̃L

F
=

FhL
hL

Y
= µ

PhL
hL

PY
= µSLL

F4M

F
=

FMM

Y
= µ

PMM

PY
= µSM

Now, substituting the output elasticities with respect to each input factors equations into Equation 3

gives our main estimation equation:

dy = µ(SKdk + SLH
(dhH + dnH) + SLL

(dhL + dnL) + SMdm)

+ µ(SKdϕK,H + SKdϕK,L + SLH
dϕH + SLL

dϕL) + dz
(5)

Appendix C.1 details the derivations behind all the equations in this section.

1.2.2 Utilisations

To derive the proxies for capital and labour utilisation growth, we set up the cost-minimization problem

for the representative firm within each industry. Basu and Kimball (1997) and Basu et al. (2006) provide

micro-foundations for using changes in hours-per-worker as a simple proxy for capital and labour utilisation.

It is derived from a firm’s cost-minimizing problem with the underlying intuition that cost-minimizing firms

operate on all margins simultaneously; change in observed factors can be potentially used as a proxy for

unobserved utilisation change. The model in this paper follows Basu et al. (2006), but there are two main

differences. The first difference is that rather than include the aggregate labour input, we decompose it

and introduced two types of labour inputs; high-skilled labour and low-skilled labour. Secondly, Basu and

Kimball used the standard Cobb-Douglas production function, which allows the hours-per-worker to be

a proxy for capitals’ workweek. In this paper, we extend the model to the general production function

form and found that besides the hours-per-worker, the capitals’ workweek also depends on the share of

total expenditures in capital and labour compensations to the total costs of inputs factors. The critical

assumptions of the approach are competitive behaviour in the factor market, shift premium function for

high and low-skilled labour are equal, and wage functions depend on both labour effort and hours worked,

which are more plausible than the assumptions needed for solving a full general-equilibrium model.

We have assumed that the firm can freely change labour effort ϕH , ϕL and capital’s workweek ϕK,H and

ϕK,L. Consider an industry’s representative firm minimizes the present value of expected costs:

minϕk,H ,ϕk,L,ϕH ,ϕL,hH ,hL,I,DEt

∞∑
τ=t

[

τ−1∏
j=t

(1 + rj)
−1]

× [WH,τG(hH,τ , ϕH,τ )V (ϕK,H,τ )NH,τ +WL,τG(hL,τ , ϕL,τ )V (ϕK,L,τ )NL,τ

+WH,τNH,τΨ

(
DH,τ

NH,τ

)
+WL,τNL,τΨ

(
DL,τ

NL,τ

)
+ PI,τKτJτ

(
Iτ
Kτ

)
+ PMMτ ]

(6)
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s.t.

Yτ = F [(ϕK,H,τϕK,L,τKτ ), (ϕH,τhH,τNH,τ ), (ϕL,τhL,τNL,τ ),Mτ , Zτ ] (7)

Kτ+1 = Iτ + (1− δ)Kτ

Nτ+1,H = Nτ,H +Dτ,H

Nτ+1,L = Nτ,L +Dτ,L

In each period, the firm’s costs in Equation 6 encompass the total payments for two types of labour,

capital, and materials, as well as the costs of new hiring denoted by D and gross investment denoted by

I. Specifically, W represents the wage rate, and G(.) is the wage function that determines how the hourly

wage depends on effort and the hours worked per worker. V (.) represents the shift premium function for

capital utilisation. When a firm increases the capital workweek, it incurs additional costs in the form of

shift premiums to compensate workers for working longer and harder. For simplicity, we assume that the

shift premium functions V (.) are the same for both types of workers, and ϕK,H and ϕK,L capture the

heterogeneity in the shift premiums for the two types of workers. The term WG(.)V (.)N represents the

total labour compensation. Moreover, Ψ(DN ) represents the adjustment costs associated with changing the

number of workers. It is important to note that, following Basu et al. (2006), for a meaningful model of

capital and labour utilisation, it assumes that the number of machines, buildings, and workers is quasi-fixed.

Thus, firms face adjustment costs when changing the number of production inputs. With these costs, it is

sensible for a firm to consider the expenses of variable capital and labour utilisation. The term PIKJ(I/K)

represents the cost of investment, and δ denotes the rate of depreciation. Furthermore, we assume that the

cost functions Ψ, G, and J are convex.

To save space, we only analyze the optimization conditions that affect our derivations, which are those

for ϕK,H , ϕK,L, ϕH , ϕL, hH , hL, NH , and NL. Denoting the multiplier on constraint Equation 7 as λ, we use

FJ , J = 1, 2, 3 to represent derivatives of the F function with respect to input factor J . The intertemporal

first-order conditions are as follows (we omit the time and industry subscripts except where needed for

clarity) from where we can further derive the capital and labour utilisation in the following subsections.

ϕK,H : λF1ϕK,LK = WHNHG(hH , ϕH)V ′(ϕK,H) (8)

ϕK,L : λF1ϕK,HK = WLNLG(hL, ϕL)V
′(ϕK,L) (9)

hH : λF2ϕHNH = WHNHGhH
(hH , ϕH)V (ϕK,H) (10)

hL : λF3ϕLNL = WLNLGhL
(hL, ϕL)V (ϕK,L) (11)

ϕH : λF2hHNH = WHNHGϕH
(hH , ϕH)V (ϕK,H) (12)
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ϕL : λF3hLNL = WLNLGϕL
(hL, ϕL)V (ϕK,L) (13)

NH : λF2ϕHhH = WHG(hH , ϕH)V (ϕK,H) +WHΨ

(
DH

NH

)
−WHNH

(
DH

N2
H

)
ΨNH

(
DH

NH

)
(14)

NL : λF2ϕLhL = WLG(hL, ϕL)V (ϕK,L) +WLΨ

(
DL

NL

)
−WLNL

(
DL

N2
L

)
ΨNL

(
DL

NL

)
(15)

1.2.2.1 Labour Utilisation

Combining Equation 10 and Equation 12 gives an equation relating labour effort and hours worked for the

high skilled workers:

ϕHGϕH
(hH , ϕH)

G(hH , ϕH)
=

hHGhH
(hH , ϕH)

G(hH , ϕH)
(16)

This implies the equalisation of the elasticities of labour costs with respect to labour effort ϕH and hours

hH . As G(.) is an increasing and convex cost function, Equation 16 implies an upward-sloping expansion path

between labour effort and hours for high skill worker: ϕH = ϕH(hH), ϕ′
H(hH) > 0. Thus, the unobservable

labour utilisation can be expressed as a monotonically increasing function of the observed number of hours

per worker. In the long run, it can be shown that the elasticities of labour costs with respect to hours

and effort are equal to the elasticity of labour costs with respect to employment which is 1. Only in the

short run, with the adjustment cost, the elasticity of labour costs with respect to employment is different

from the others. In the long run, employment reaches a steady state, and the terms with DH in Equation

14 disappear. 7 Combining Equation 14 with steady state version of Equation 10 shows the elasticity of

labour costs with respect to hH equals to 1. 8 Moreover, combining the steady-state version of Equation

14 and Equation 12 shows the elasticity of labour costs with respect to the effort also is 1. 9 Combining

the steady-state version of equation 15 with Equation 11 and 13 gives symmetrical results for low-skilled

workers.

Log-linearize Equation 16 at the steady-state gives the equation relates hours-per-worker with labour

effort for the high-skilled worker. In other words, the unobserved effort growth can be proxied by the

observed growth of hours.

dϕH = ηHdhH (17)

Similarly, combining Equation 11 and Equation 13 gives the equation between hours-per-worker and

labour effort for the low-skilled worker,

dϕL = ηLdhL (18)

7Ψ(0) = Ψ′(0) = 0
8Steady-state version of Equation 14 and Equation 10 are λF2ϕ∗

Hh∗
H = W ∗

HG(h∗
H , ϕ∗

H)V (ϕ∗
K,H) and λF2ϕ∗

HN∗
H =

W ∗
HN∗

HGhH
(h∗

H , ϕ∗
H)V (ϕ∗

K,H), respectively. Combining two equations shows
h∗
H

N∗
H

=
G(h∗

H ,ϕ∗
H )

N∗
H

GhH
(h∗

H
,ϕ∗

H
)
. Rearrange to

h∗
HN∗

HGhH
(h∗

H ,ϕ∗
H )

N∗
H

G(h∗
H

,ϕ∗
H

)
=

N∗
HG(h∗

H ,ϕ∗
H )

N∗
H

G(h∗
H

,ϕ∗
H

)
= 1.

9Combining the steady-state version of Equation 14 and Equation 12 shows
ϕ∗
HN∗

HGϕH
(h∗

H ,ϕ∗
H )

N∗
H

G(h∗
H

,ϕ∗
H

)
=

N∗
HG(h∗

H ,ϕ∗
H )

N∗
H

G(h∗
H

,ϕ∗
H

)
= 1.
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Where ηH =
h∗
Hϕ′

H(h∗
H)

ϕH(h∗
H) and ηL =

h∗
Lϕ′

L(h∗
L)

ϕL(h∗
L) are the elasticity of labour effort with respect to hours,

evaluated at the steady state.

1.2.2.2 Capital Utilisation

To derive the proxy for capital utilisation, we combine Equation 8 and Equation 10, and after some algebra,

it gives,

(F1K̃)/F

(F2L̃H)/F
=

G(hH , ϕH)

hHGhH
(hH , ϕH)

· ϕK,HV ′(ϕK,H)

V (ϕK,H)
(19)

The left-hand side is the ratio of output elasticity with respect to K̃ and L̃H . As mentioned in Section

1.2.1, this ratio is proportional to share of factor costs to total revenue, denoted as SK

SLH
. 10 Now, let’s

denote g(hH) and v(ϕK,H) as the elasticity of labour costs function G(.) with respect to hours for high-

skilled workers and the elasticity of shift premium V (.) with respect to capital’s workweek associated with

high-skilled workers, respectively. Note that g(hH) is positive because G(·) > 0 and G′(·) > 0, and v(ϕK,H)

is positive if the shift premium V (ϕK,H) is positive. With this information, we can express the right-hand

side of Equation 19 as the multiplication of v(ϕK,H) and the inverse of g(hH). Therefore, we can rewrite

Equation 19 as follows:

SK

SLH

=
v(ϕK,H)

g(hH)
(20)

Let g(hL) denote the elasticity of the labour costs function G(·) with respect to the hours of low-skilled

workers, and v(ϕK,L) represent the elasticity of the shift premium function V (·) with respect to capital’s

workweek associated with low-skilled workers. We define (F1K̃)/F

(F3L̃L)/F
as the ratio of factor cost share, denoted

as SK

SLL
. Then, by the same logic as embodied in Equation 20, combining Equation 9 and Equation 11 we

find the similar equation for the low skilled worker. 11

SK

SLL

=
v(ϕK,L)

g(hL)
(21)

Log-linearizing Equation 20 and Equation 21 and define ϵ = h∗g(h∗)h
g(h∗) as elasticity of g(h∗) with respect

to h and κ =
ϕ∗
Kv(ϕ∗

K)ϕK

v(ϕ∗
K) as elasticity of v(ϕ∗

K) with respect to ϕK to obtain:

dϕK,H =
1

κH
dsk +

ϵH
κH

dhH − 1

κH
dsLH

(22)

dϕK,L =
1

κL
dsk +

ϵL
κL

dhL − 1

κL
dsLL

(23)

Equation 22 and Equation 23 show that the growth rate of capital utilisation depends on the growth rate

of hours-per-worker, the growth rate of the proportion of expenditure in capital and labour inputs over total

revenue. In other words, the unobserved capital utilisation growth can be proxied by observed hours growth

and factor costs share growth. Basu and Fernald (2006) employs a generalized Cobb-Douglas production

10Basu et al. (2006) assumes a generalized Cobb-Douglas function for the inputs of capital (K) and labor (L), given by:

Y = ZF
(
(ϕKK)αK (ϕHHN)αL ,M

)
. This functional form implies that the ratio of the output elasticity with respect to capital

and labour inputs is proportional to the factor cost shares αK and αL.

11Combining Equation 9 and Equation 11 gives
(F1K̃)/F

(F3L̃L)/F
=

G(hL,ϕL)
hLGhL

(hL,ϕL)
· ϕK,LV ′(ϕK,L)

V (ϕK,L)
.



14

function, assuming a constant share of capital and labour inputs across industries. Consequently, Equation

20 and Equation 21 simplifies to v(ϕK) = αK

αL
g(h), where αK

αL
is assumed to be constant. The results obtained

from log-linearization indicate that capital utilisation is solely proxied by the measure of hours worked per

worker.

By substituting Equation 17, 18, 22, and 23 into Equation 5, we obtain the estimation equation that

incorporates controls for both capital utilisation and labour effort for the two types of labour.

dy = µdx+

(
µSK

κH
+

µSK

κL

)
dsk +

(
µSKϵH
κH

+ µSLH
ηH

)
dhH − µSK

κH
dsLH

+

(
µSKϵL
κL

+ µSLL
ηL

)
dhL − µSK

κL
dsLL

+ dz

= µdx+ α1dsk + α2dhH + α3dsLH
+ α4dhL + α5dsLL

+ dz

(24)

Where

dx = SKdk + SLH
(dnH + dhH) + SLL

(dnL + dhL) + SMdm

We do not need to explicitly estimate all of the parameters in Equation 24 that multiply dsk, dhL, dhH , dsLL

and dsLH
. Following Basu et al. (2006), to conserve parameters, we constrain the coefficients associated with

capital and labour utilisation variables, namely dsk, dhL, dhH , dsLL
and dsLH

, within three groups: durables,

nondurables and nonmanufacturing. However, we allow the return-to-scale coefficient µ to vary across in-

dustries. The industry-level utilisation-controlled technology change is quantified as the residuals dz. In the

absence of capital and labour utilisation and under assumptions of constant returns and perfect competi-

tion, the technology change corresponds to the standard Solow residual or total factor productivity (TFP):

: tfp = dy − dx.12

Appendix C.2 details the derivations behind all the equations in this section.

1.2.3 Aggregation

Estimating Equation 24 gives residuals dzi for each industry, from which we aggregate utilisation-controlled

technology growth by Domar-weight, 13 that is a weighted sum of industry technology growth: 14

dz =

30∑
i=1

(
wi

1− ¯ssni

)
dzi

The industry’s share of the aggregate nominal added value, denoted as wi, is defined as the ratio of

industry i’s value added (V Ai) to the sum of value added across all 30 industries (
∑30

i=1 V Ai). Additionally,

¯ssni represents the average time ratio of intermediate input expenses in total input costs for industry i. 15

12Under the assumptions of constant returns, perfect competition, and no change in utilisation, Equation 5 simplifies to
dy = dx+ dz.

13This weighting scheme is from Domar (1961). Basu et al. (2006) illustrated that Domar-weighted series are more robust to
mismeasurement.

14In nonmanufacturing sector, we include a break of 1972 into the regression; d72, and the regression function for nonmanu-
facturing sector is dy = C + α1dx + α4dhH + α6dhL + C72 ∗ d72 + dz. Thus, the aggregated growth of utilisation-controlled
technology change is defined as dz =

∑30
i=1(

wi
1−ssnbar

)(dzi + C + C72 ∗ d72), where C is the constant term and C72 is the

coefficients multiplying break dummy variable.
15As mentioned in Section 1.2.1, in each industry SJ refers to the total expenditure on input factor J relative to total revenue.

When a firm earns zero profit, SJ is equivalent to the ratio of expenditure on input factor J to the total costs of input factors,

which can be expressed as SJ = PJJ∑
JPJJ

= ssj. So PMM
PY

= SM = ssn.
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Dividing by (1− ¯ssni) allows us to convert gross-output technology shocks to a value-added basis. Converting

to a value-added basis is more desirable because the final aggregate expenditure is accounted as aggregate

value added in national accounts. And the growth of aggregate utilisation is calculated as a weighted average

of industry-level utilisation growth.

du =

30∑
i=1

(
wi

1− ¯ssni

)
dui

where

dui = α1dsk,i + α2dhH,i + α3dsLH ,i + α4dhL,i + α5dsLL,i

1.3 Data and Method

The data used in this study is sourced from the April 2013 release of the World KLEMS database. This

database, which was adapted from the database on U.S. productivity growth by industry created by Dale

Jorgenson and associates, provides detailed labour and capital inputs for the U.S. using the North American

Industry Classification System (NAICS). Our sample encompasses industry-level labour and capital inputs

from 1949 to 2001, and includes data from 30 industries, including 6 durable, 7 non-durable, and 17 non-

manufacturing industries. Table 46 provides a detailed classification of the industries. The sectoral accounts

include gross industry output, capital inputs, labour, energy and materials, employment, and value-added.

In this study, the labour data encompasses detailed information on labour compensation per hour, average

weekly working hours, and employment. The data is further categorized into six skill levels: less than high

school, some high school, some high school graduate, some college, college graduate, and more than college.

Following the existing literature (such as Krusell et al. (2000), Kawaguchi et al. (2014), Parro (2013)),

workers with a college education or higher (at least 16 years of schooling) are classified as skilled labour,

while low-skilled labour is defined as workers without a college education. Workers who are aged under 16

or above 64 are excluded from the analysis.

To avoid the potential endogenous problem caused by the correlation of independent variables with

technology growth dz in Equation 24, we use instruments that are uncorrelated with technology growth.

Specifically, we utilise three instruments from Basu et al. (2006): oil prices, growth in actual government de-

fence spending and quarterly Federal Reserve ’monetary shocks’. 16 Further details about these instruments

can be found in the appendix of Basu et al. (2006). The lagged values of the input factors’ cost shares to

the total costs of inputs serve as remaining three appropriate instruments.

As mentioned in Section 1.2.2.2, to conserve parameters, we constrain the utilisation coefficients (coef-

ficients in front of the growth of capital share, labour input share, and hours-per-worker) to be the same

within three groups: durable, nondurable, and nonmanufacturing (Without these constraints, the estimated

technology variance increases, but the qualitative and quantitative results show little change). Therefore,

for each group, we estimate,

dyi = ci + µidxi + α1dsk,i + α2dhH,i + α3dsLH ,i + α4dhL,i + α5dsLL,i + dzi (25)

The residual gives the industry-level utilisation controlled technology change, and the aggregate utilisation-

controlled technology change is the weighted sum of the industry residuals. The industry level capital and

16For oil, it refers to the increase in the U.S. refiner acquisition price for crude oil. Additionally, monetary shock is defined
as innovations to the 3-month Treasury bill rate. These three instruments are lagged by one year.
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labour utilisation change are defined as the sum of hours-per-worker change, capital and labour share changes

for two types of workers.

1.4 Estimation Results

1.4.1 Estimates Summary

The results of the GMM estimation are presented in Table 1. The average return-to-scale estimates are 0.96,

1.02, and 1.00 for durable, nondurable, and non-manufacturing industries, respectively, with an average

estimate across all industries of 0.99. These estimates were calculated after excluding the estimates for the

real estate activities industry, for which the coefficients were negative and statistically insignificant. There

is no evidence of increasing returns after controlling for utilisation, and the return-to-scale estimates vary

widely across industries during the sample period. This results align with Basu (1996), Basu and Kimball

(1997) and Basu et al. (2006). In recent years, the declining labour income share in the U.S. has been a

focal point, with increased markups and returns to scale drawing attention. Basu (2019) examined several

empirical methodologies for gauging markups and returns to scale, all of which originate from a firm’s cost-

minimization problem with given inputs prices. For a firm producing output Y with a production function

Y = F (K,L,Z), the cost-minimizing problem requires product of the markup and the cost of each input

equal to the marginal product of that input, denoted by PFL = µW and PFK = µR. Multiplying each

condition by the corresponding input, dividing by the output Y , and then summing the conditions, gives the

first approach for measuring markups and returns to scale. Specifically, in the first approach, the return to

scales (the left-hand side) are equated to product of the markup and one minus the profit ratio sπ,

FLL

Y
+

FKK

Y
= µ

[
WL

PY
+

RK

PY

]
= µ

TotalCost

Revenue
= µ(1− sπ)

The alternative methodology, aligning with this thesis and sourced from Hall (1990), involves a log-linear

approximation of the production function and taking differences over time of the resulting expression. By

applying the cost-minimization condition to this differential expression where ∆x denotes the growth rate

of variable X, then return to scale coefficient µ can be estimated by regressing the growth rate of output

against the growth rate of inputs,

∆y = µ

[
WL

PY
∆l +

RK

PY
∆k

]
+∆z

Barkai (2020) utilises the initial approach, observing an increase in the profit rate from 2.2 percent in 1984

to 15.7 percent in 2014, implying a rise in the markup ratio from 1.02 to 1.19, assuming constant returns to

scale. This observation finds support in the work of Gutiérrez and Philippon (2017). However, Basu (2019)

contends that for the markup increase to 1.2 to be consistent with the decline in labor’s share, returns to

scale would need to have increased by about 10 percent during the examined period. Adopting the second

strategy, Hall (2018) analyzes data across 60 U.S. industries, determining that the weighted average return to

scale was approximately 1.3 in 2015, with individual industry returns spanning from 1.0 to 1.8. The findings

related to constant returns to scale presented in this thesis are based on data spanning from 1949 to 2001.

The constraints imposed by the length of the data set precluded us from replicating the increasing returns

to scale documented in the literature mentioned above. Nonetheless, our results for the period 1949-2001

are consistent with those from existing studies that utilized similar lengths of sample data. In section 1.9,
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Durable Nondurable Nonmanufacturing
A. Return-to-scale estimates
5 Wood 0.75*** 3 Food & Tobacco 0.56 1 agriculture hunting 0.22

(0.10) (0.73) (0.41)
11 Basic metals 1.01*** 4 Textiles 0.60** 2 mining and quarrying 0.27

(0.11) (0.26) (0.37)
12 Machinery nec 1.50*** 6 Printing & Publishing 1.35*** 16 electricity gas and water 0.45

(0.24) (0.35) (0.41)
13 Electrical & optical equip 0.69 7 Apparel 0.79** 17 constructions 0.97***

(0.48) (0.34) (0.05)
14 Transport equip 1.00*** 8 Chemicals 1.65*** 18 wholesale trade 2.37**

(0.11) (0.24) (1.10)
15 Manufacturing nec 0.80*** 9 Rubber & Plastics 1.12*** 19 motor vehicles 0.99**

(0.25) (0.12) (0.39)
10 Other mineral 1.10*** 20 retail trade 2.13***

(0.14) (0.76)
21 hotels and restaurants 1.24***

(0.31)
22 transport and storage 1.38***

(0.17)
23 post and telecommunications 0.78**

(0.37)
24 financial intermediations 0.05

(1.03)
25 real estate activities -0.343

(1.20)
26 other business activities 1.24***

(0.35)
27 public admin and defense 0.84***

(0.09)
28 educations 0.87***

(0.21)
29 health and social work 0.714***

(0.17)
30 social&personal services 1.49***

(0.38)
Average 0.96 1.02 1.00
Median 0.90 1.10 0.92
B. Coefficients on hours per worker
high skill (dhH) 0.95 3.42** -0.17

(2.15) (1.61) (0.40)
low skill (dhL) -0.05 -3.20* -0.43

(2.20) (1.75) (0.45)
C. Coefficients on labour inputs share
high skill (dsLH

) 0.04 0.01 0.03
(0.08) (0.06) (0.04)

low skill (dsLL
) 0.03 0.18** 0.13*

(0.11) (0.07) (0.07)
D. Coefficients on capital share (dsk) -0.02 0.06** 0.01

(0.04) (0.03) (0.02)

Table 1: Two-skills estimation results

Notes: Heteroskedasticity- and autocorrelation-robust standard errors are in parenthesis. Constant terms are not
shown. Coefficients multiplying out-per-worker labour inputs share and capital share are constrained to be equal
within three industry groups (durables, nondurables, and nonmanufacturing). ∗ ∗ ∗ represents significance at 1
percent significance level, ∗∗ and ∗ represents 5 percent and 10 percent significance level, respectively.
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we discussed the exploration of more current data. In future research, with access to updated datasets, we

aim to replicate the findings related to increasing returns to scale.

Returning to Table 1, in the nondurable manufacturing sector, the coefficient for the labour cost share of

high-skilled workers (i.e., coefficient in front of dsLH
) is insignificant. However, the coefficient for the labour

cost share of low-skilled workers (i.e., coefficient in front of dsLL
) is positive and statistically significantly

different from zero. This positive coefficient suggests κL < 0 indicating a negative elasticity of v(ϕ∗
K) with

respect to capital’s workweek associated with low-skilled workers. 17 Furthermore, in the nondurable sector,

the coefficient on the capital input share (dsk) is both significant and positive. This, combined with the

negative value of κL, suggests that κH is greater than zero. This positive value of κH indicates a positive

elasticity of v(ϕ∗
K) with respect to the capital’s workweek for high-skilled workers. 18 The coefficients for

capital and labour cost shares (dsk, dsLH
, and dsLL

) are not significant for the durable manufacturing and

non-manufacturing sectors, except for the low-skilled labour cost share (dsLL
) in the non-manufacturing

sector, which is significant at a 90-percent confidence level. When the regression function eliminates the

variables of capital and input shares, the estimation results become less accurate, with the coefficients

for hours per worker losing statistical significance across all three industry sectors, and the return-to-scale

coefficients for several industries becoming insignificant. (The results can be found in Table 11 in Appendix

B.) 19

The positive value of κH and negative value of κL in nondurable sector indicate that as the workweek of

capital increases, the elasticity of v(.) with respect to capital’s workweek increases for high-skilled workers,

while it decreases for low-skilled workers. 20 This can be interpreted as the shift premium increasing at an

increasing rate for high-skilled workers as the workweek of capital increases, while it increases at a decreasing

rate for low-skilled workers. In other words, the utilisation of additional capital leads to an increase in the

demand for hours working from high-skilled workers, thereby elevating the elasticity of the shift premium

in relation to the capital’s workweek associated with high-skilled workers. This finding is consistent with

the capital-skill complementarity hypothesis, which postulates that that capital is more complementary with

high-skilled workers compared to low-skilled workers. Capital skill complementarity has been extensively

discussed in the literature (e.g., for example, see Griliches (1969), Goldin and Katz (1998), Krusell et al.

(2000), Duffy et al. (2004), Polgreen and Silos (2008), Hara et al. (2014), Balleer and Van Rens (2013)).

However, the coefficients for the durable manufacturing and non-manufacturing sectors are not statistically

significant, thus it is not possible to determine the complementarity or substitution relationship between

capital and skill in these two sectors through this method. We will discuss this further in Section 1.6.

The coefficients for hours per worker in the nondurable manufacturing sector are significant for two types

of workers, with the estimated coefficient for high-skilled workers at 3.42 and -3.2 for low-skilled workers.

While, the coefficients in durable manufacturing and nonmanufacturing are not statistically significant. In

contrast to the standard model that utilises aggregate labour inputs, our model incorporates two skill levels,

allowing for the possibility of negative coefficients in front of hours per worker. This outcome depends on

the uncertain signs of the elasticity of labour effort with respect to hours (i.e., ηH , ηL) and the signs of the

17As shown in in the regression function 24, the coefficient in front of dsLL
is given by −µSK

κL
. Given that the return-to-scale

parameter µ and the capital cost share SK are positive, the positive coefficient in front of dsLL
for the nondurable sector implies

that κL must be negative.
18Considering the regression function 24, the coefficient in front of dsk is µSK

κH
+ µSK

κL
, and taking into account the conditions

κL < 0, µ > 0, and SK > 0, a positive coefficient on dsk implies that κH must be greater than zero.
19Removing capital and labour costs share variables, the regression function is reduced to dyi = ci + µidxi + +α1dhH,i +

α2dhL,i + dzi, where inputs growth is defined as dx = SKdk + SLH
(dnH + dhH) + SLL

(dnL + dhL) + SMdm.
20Recall v(ϕK,H) and v(ϕK,L) are the elasticity of shift premium V (.) with respect to capital’s workweek.
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elasticity of the v(.) function with respect to the capital’s workweek associated with different skill levels

(i.e.,κH , κL), which represents the rate at which the shift premium will change when the capital’s workweek

associated with two skills labour changes. 21

Table 2 summarizes means and standard deviations for TFP (the Solow residual) and two-skills estimated

utilisation-controlled technology for sample period of 1950-2001. 22 TFP, also known as the Solow residual,

measures technology change under the assumptions of constant returns, perfect competition, and no util-

isation changes. On the other hand, the two-skills utilisation-controlled technology controls for utilisation

changes and nonconstant returns for two skill levels. The standard deviations of two-skills technology are

slightly lower for the entire sector than for TFP, indicating that input utilisation and other non-technological

effects not accounted for by TFP increase its volatility. Figure 1 displays a comparison of the logarithmic

growth of TFP and the two-skills utilisation-controlled technology, both series are in logarithmic growth.

The two series are positively correlated, but TFP exhibits greater fluctuations compared to the utilisation-

controlled technology. The volatility of TFP is particularly pronounced prior to the 1980s.

Solow Residual Two-skills utilisation-controlled technology
Mean 0.79 1.11
Std deviation 1.35 1.34

Table 2: Means and standard deviations of Solow residual and two-skills estimated utilisation-controlled
technology

Figure 1: Utilisation-controlled technology improvement
Notes: The sample period is 1950-2001. This figure plots two-skills estimated utilisation-controlled
technology series against TFP. All series are in logarithmic growth and are detrended by HP-filter.

21As shown in Equation 24, coefficients in front of hours per worker are given by µSKϵH
κH

+ µSLH
ηH and µSKϵL

κL
+ µSLL

ηL
for high and low skilled workers, respectively.

22With constant returns, perfect competition, and no utilisation changes, technology change equals the standard Solow
residual (TFP): tfp = dy − dx.
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1.4.2 Business Cycle Results

1.4.2.1 TFP Shocks and Utilisation Controlled Technology Shock

In this section, the dynamic impacts of the utilisation-controlled technology shock on various business-

cycle related variables are summarized. These variables include logarithmic growth of output, inputs, TFP,

utilisation, employment, and total hours worked. The impulse response functions were estimated through

bivariate structural vector autoregressive models (SVARs). The utilisation-controlled technology series are

considered stationary, as evidenced by the Augmented Dickey-Fuller test which strongly rejects the null

hypothesis of a unit root at the conventional significance level, and also by a KPSS test, which fails to reject

the null hypothesis of stationarity. Tests details can be found in Table 12 and Table 13 of the Appendix

B. The results of the technology growth series analysis do not support the presence of autocorrelation, as

indicated by panel data. Although negative correlation was observed at three lags, the associated p-values

were large in the panel estimation. While examining the aggregated time series of technology, some evidence

of the presence of autocorrelation was found, with a p-value of approximately 0.05. However, given the short

sample period, the accuracy of these results may be compromised. Detailed point estimates can be found in

Table 14 of the Appendix B.

Technology shocks are treated as exogenous in the bivariate SVAR system, as previously identified through

the cost-minimization problem of the firm. In the first equation, the logarithmic growth of the variable J

(dj) is regressed on utilisation-controlled technology growth (dz) and two lags of itself and dz. The second

equation is the equation of utilisation-controlled technology growth, and the parameters on dj and its lagged

terms are restricted to be zero, assuming that the technology change is not affected by the response variables;

thus we regressed dz on its two lags (this restriction has been shown to not affect the quality results, details

are presented in the robustness check section).

Figure 2: Impulse response to utilisation-controlled technology improvement-two skills estimation
Notes: The sample period is 1950-2001. The figure shows the Impulse responses of output, input, utilisation, tfp

and total hours to one percent of the aggregate utilisation-controlled technology change. All series are in

logarithmic growth, i.e., dj = ln(J/J(−1)). The TFP series are estimated by regressing tfp = ty − dx and

aggregating across industries. The horizontal scale shows the number of years after the initial technology shock.

The dashed lines represent the 95-percent confidence intervals.

Figure 2 displays the impulse response results of the Two-skills estimation. The findings are generally

consistent with the established predictions of the standard Real Business Cycle (RBC) model. Specifically,

the model shows that the improvement in technology leads to an increase in both output and inputs. The
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response of inputs is characterized by a peak in the first period, followed by a gradual convergence to the

steady state within a span of three periods. Surprisingly, the results of the technology shock indicate a mild

and statistically insignificant impact decline in utilisation. However, utilisation exhibits a rapid increase

following the initial shock, although its persistence is less pronounced compared to that of inputs; rises

sharply within one year but remains flat with two lags. These findings warrant further investigation to

fully understand the underlying dynamics of the utilisation response to technology shocks. The distinction

in the magnitude and persistence of the response of utilisation compared to inputs in the aftermath of

the initial technology shock can be attributed to the firms’ prioritization of increasing working intensity in

response to technology improvement in the short run. This increase in working intensity results in longer

and harder work by the existing workforce and extended utilisation of existing equipment, and subsequently,

the firms commence adjusting their production inputs. TFP exhibits a statistically significant and positive

response to the utilisation-controlled technology shock, with an increase of 0.76 percent, reflecting the close

correlation between TFP and utilisation-controlled technology. The results pertaining to employment and

total hours demonstrate that while total hours experience an increase of 0.51 percent, employment experiences

a comparatively lower increase of 0.23 percent in response to the initial technology shock. This disparity

can be attributed to the initial increase in working intensity in the short run, which precedes adjustments

in employment in response to the technology shock.

The results of the impulse responses to the two-skills utilisation-controlled technology shock and TFP

shock are displayed in Figure 3 and Table 3 provides a summary of the point estimation of the impact

responses to the utilisation-controlled technology shock and TFP shock. The results suggest that all of

the variables respond positively and statistically significantly to both the utilisation-controlled technology

shock and the TFP improvement, which aligns with the real business cycle facts. However, the responses

of output, input, employment, and total hours are found to be more pronounced in response to the TFP

shock as compared to the two-skills utilisation-controlled technology shock. This result is consistent with

Bocola et al. (2011). The estimation of TFP shock assumes constant returns to scale, and it does not

control for utilisations. From an economic perspective, these results are intuitive as utilisation and other

non-technological factors contribute to the cyclicality of the response variables and amplify the business cycle

fluctuations, leading to more profound positive responses to the TFP shock. The statistical insignificance of

the utilisation response to both technology shocks has been observed, and subsequent sections will provide

a detailed analysis of utilisation

Two skills TFP
Estimates p-value Estimates p-value

Output 2.45 0.000 3.660 0.000
Input 0.27 0.059 0.690 0.000
Utilisation -0.08 0.579 0.191 0.178
TFP 0.76 0.000
Total hours 0.51 0.000 2.110 0.000
Employment 0.23 0.110 1.970 0.000

Table 3: Point estimation for initial responses of business cycle related variables to the two skills utilisation-
controlled technology shock and the TFP shock

Notes: The sample period is 1950-2001. This table shows the point estimates of the initial responses of output,
inputs, utilisation, tfp, total hours worked, and employment to utilisation-controlled technology shock and TFP
shock for aggregate economy. All series are in logarithmic growth.
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Figure 3: Impulse response to utilisation-controlled technology improvement and TFP shock
Notes: The sample period is 1950-2001. The figure shows the Impulse responses of output, input, utilisation, tfp

and total hours to one percent of the aggregate utilisation-controlled technology change and TFP shock. All series

are in logarithmic growth, i.e., dj = ln(J/J(−1)). The TFP series are estimated by regressing tfp = ty − dx and

aggregating across industries. The horizontal scale shows the number of years after the initial technology shock.

The dashed lines represent the 95-percent confidence intervals.

1.4.2.2 Differences in IRFs with Different Skill Levels

To gain a deeper understanding of how changes in technology affect the utilisation with differing skill levels,

providing insights into the dynamic nature of the utilisation response to technology shock, we distinguish

between high-skilled and low-skilled utilisation. In each sector, we define the utilisation growth for high and

low skilled workers in industry i as follows,

duH,i = α1dsk,i + α2dhH,i + α3dsLH ,i

duL,i = α1dsk,i + α4dhL,i + α5dsLL,i

We follow the Domar-weight scheme and aggregate the utilisation growth for two skill levels. The results

depicted in Figure 4 demonstrate the relationship between the utilisation-controlled technology series dz

and the utilisation series of both high-skilled and low-skilled workers in the aggregate economy. High-

skilled utilisation shows a clearly positive contemporaneous comovement with technology series throughout

the entire period, with the correlation coefficient between these two series of 0.56. Conversely, low-skilled

utilisation covaries negatively with technology over the same period, with correlation coefficient of −0.65.

Figure 5 shows the IRFs of utilisation, total hours and employment for workers of two skills levels to a

positive utilisation-controlled technology shock. The utilisation of high-skilled workers increases by 0.37

percent, while that of low-skilled workers decreases by approximately 0.56 percent in response to a 1 percent

technology improvement. In Section 1.2 we employed hours-per-worker and inputs cost shares as proxies

for labour effort and capital utilisation to estimate the utilisation series. Consequently, the utilisation series
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comprises both capital utilisations and labour effort. Therefore, the response of utilisations in this study

suggests that firms tend to encourage high-skilled workers to exert more effort and prolong their working hours

in response to the increase in capital’s workweek resulting from technological advancements. In contrast,

firms tend to reduce the utilisation of both labour and capital associated with low-skilled workers. These

results suggest that, as a response to technological progress, the workload of high-skilled workers becomes

more closely tied to managing equipment and machinery. Consequently, when firms increase the workweek of

capital, the working hours of high-skilled workers are extended to a greater extent than those of low-skilled

workers, whose work is less reliant on capital. This disparity in the impact of increased capital utilisation

on high- and low-skilled workers can be attributed to the fact that the former group of workers needs to be

present during the increased utilisation of capital in order to effectively manage it effectively.

The relatively deep decline in the utilisation of low-skilled workers offsets the rise in the utilisation of

high-skilled workers, resulting in an insignificant change in aggregate utilisation as depicted in Figure 2.

The empirical evidence that firms tend to utilise high-skilled workers more than low-skilled workers in the

short run responding to technological advancements align with the capital-skill complementarity hypothesis

(CSC). This hypothesis posits that technology advances enhances the productivity of high-skilled workers

while concurrently decreasing the productivity of low-skilled workers, thus induce deeper utilisation for

high-skilled workers in the short run. More will be discussed in section 1.6.

The results of the total hours and employment demonstrate a comparable pattern. Responding to a

technology advancement, in the short run, there is a decline in high-skilled total hours and employment

of approximately 0.05-percent and 0.48-percent, respectively, while there is a corresponding increase of

0.6-percent in low-skilled total hours and 0.37-percent in low-skilled employment. All the responses are

statistically significant. except for the high-skilled hours, which are demonstrated in Table 4. The total

hours worked is determined by the combined effects of employment and hours per worker. In the short

run, the rise in utilisation and decline in employment for high-skilled workers results in a mild, statistically

insignificant decline in total hours. Conversely, the fall in utilisation and increase in employment for low-

skilled workers in the short run drives a positive response of total hours. The confluence of technological

advancements and CSC provide an explanation for the differential employment short run responses between

skill levels, which will be further explicated in Section 6.
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Figure 4: Utilisation-controlled technology and utilisation for high-skilled and low-unskilled workers in ag-
gregate economy
Notes: The sample period is 1950-2001. This figure plots utilisation-controlled technology series against utilisation

series for high-skilled and low-skilled workers. All series are in logarithmic growth and are detrended by HP-filter.

Figure 5: Impulse response to utilisation-controlled technology improvement-two skills estimation
Notes: The sample period is 1950-2001. The figure shows the Impulse responses of output, input, utilisation, tfp

and total hours to one percent of the aggregate utilisation-controlled technology change. All series are in

logarithmic growth, i.e., dj = ln(J/J(−1)). The TFP series are estimated by regressing tfp = ty − dx and

aggregating across industries. The horizontal scale shows the number of years after the initial technology shock.

The dashed lines represent the 95-percent confidence intervals.
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Two skills estimation
Estimates p-value

High skill utilisation 0.37 0.009
Low skill utilisation -0.56 0.000
High skill total hours -0.05 0.712
Low skill total hours 0.60 0.000
High skill employment -0.48 0.001
Low skill employment 0.37 0.008

Table 4: Point estimation for the initial responses

Notes: The sample period is 1950-2001. This table shows the point estimates of the initial responses of utilisations,
employment and total hours for two skills to utilisation-controlled technology shock for aggregate economy. All
series are in logarithmic growth.

1.5 Heterogeneity in Utilisation with Different Skills Across Sectors

Despite the aggregate level, we are able to identify the utilisation series for high-skilled and low-skilled

workers at disaggregate levels by following the Domar-weight scheme and aggregating the utilisation growth

for two skills level into durable manufacturing, nondurable manufacturing and non-manufacturing sectors.

The results depicted in Figure 6 demonstrate the relationship between the utilisation-controlled technol-

ogy series dz and the utilisation series of both high-skilled and low-skilled workers in the various sectors.

These sectors include durable goods, nondurable goods, and nonmanufacturing. The analysis of the durable

goods sector reveals that the utilisation series for low-skilled workers demonstrates significantly lower fluc-

tuations in comparison to the utilisation series for high-skilled workers. This observation suggests that

technological advancements do not have as profound an effect on high-skilled workers’ utilisation as they do

on low-skilled workers’ utilisation in durable manufacturing. Moreover, a distinct contemporaneous negative

correlation is observed between technology and both high-skilled and low-skilled utilisations, with correla-

tion coefficients of -0.17 and -0.36, respectively. However, the correlations display a non-monotonic trend

throughout the period. Specifically, the negative correlation between high-skilled utilisation and technology

is profound in the period after 1980, with a correlation coefficient of -0.48, compared to a coefficient of 0.01 in

the period prior to 1980. Conversely, the negative correlation between low-skilled utilisation and technology

is pronounced in the period before 1980, with a correlation coefficient of -0.49, and the coefficient becomes

positive, at 0.09, after 1980. Thus, our analysis indicates that in the period following 1980, technological

improvements are negatively and significantly correlated with high-skilled utilisation, while they positively

comove with low-skilled utilisation in durable goods sector.

The results in the nondurable goods sector indicate a clear contemporaneous positive correlation between

technology and high-skilled utilisation, while a contemporaneous negative correlation is observed between

technology and low-skilled utilisation for the entire period, with correlation coefficients of 0.21 and -0.41,

respectively. In the nonmanufacturing sector, there is no clear contemporaneous comovement between high-

skilled utilisation and technology. The correlation coefficient is only 0.02 for the entire period. However, the

low-skilled utilisation exhibits a profound negative relationship with technology for the entire period, with

a correlation coefficient of -0.45.
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Durable Nondurable Nonmanufacturing

corr (dz,du h) -0.173 0.205 0.022
corr (dz,du l) -0.365 -0.412 -0.449

Table 5: Correlation between utilisation-controlled technology series and utilisation series across sectors

Notes:All series are in logarithmic growth and are detrended by hp-filter.The sample period is 1950-2001

Figure 6: Relationship between utilisation-controlled technology series and utilisations for high-skilled and
low-unskilled workers across sectors
Notes: The sample period is 1950-2001. This figure plots utilisation-controlled technology series against utilisation

series for high-skilled and low-skilled workers. All series are in logarithmic growth and are detrended by HP-filter.

Then we estimate the IRFs of utilisations to sector-specified utilisation-controlled technology growth. The
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IRFs results are shown in Figure 7, and the point estimates for impact responses are summarized in table 6.

Notably, in the durable goods sector, a significant decrease in utilisation is observed among high-skilled

workers, while a relatively insignificant decrease in utilisation is observed among low-skilled workers. The

drop in low-skilled utilisation exhibits a strongly statistically insignificant result with a large p-value, while

the p-value for high-skilled utilisation response is 0.143, indicating significance at an 85-percent confidence

level. In the nondurable goods sector, the utilisation patterns among workers are consistent with the results

observed at the aggregate level, with a rise in utilisation among high-skilled workers and a corresponding

decrease in utilisation among low-skilled workers. As indicated in Table 6, the initial response of low-skilled

workers is found to be statistically significant, while the response of high-skilled workers is statistically

significant at an 85-percent confidence level. In contrast, the utilisation patterns in the nonmanufacturing

sector are found to be statistically insignificant, with a substantial decrease in utilisation among low-skilled

workers and only a minimal change in utilisation among high-skilled workers.

Table 7 summarized the results of the regression analysis of a FDL model regressing the utilisation

growth of high-skilled and low-skilled workers on current and two lagged values of technology shocks. Using

more lags has little effect on quality results; further regression results, including four lags of technology

shocks can be found in Table 15 in Appendix B. The regression results are consistent with the Impulse

Response Functions (IRFs) of utilisations displayed in Figure 5 and Figure 7. The coefficients on the current

technology shock (dz) are comparable to the initial utilisation responses depicted in the IRFs. Moreover, the

regression results provide additional statistical significance compared to the IRFs results, complementing the

shortage in the IRF results. The decline of high-skilled utilisation in the durable manufacturing sector to

technology shocks is significant at only the 85-percent confidence level (p-value is 0.143) as shown in in Table

6, whereas the significance of the decline in duh in the regression results is elevated to around 95-percent

confidence level (p-value for coefficient on dz is 0.051). Similarly, the decline in low-skilled utilisation in the

nonmanufacturing sector is strongly significant at 99-percent confidence level (p-value for coefficient on dz

is 0.001), a result that was previously found to be insignificant in Table 6 (p-value is 0.314).

In the short term, given the constraints of quasi-fixed employment and capital stock, firms firstly respond

to positive technological shocks by adjust the working intensity of existing workers and capital. Our findings

indicate that, in response to technological advancements, firms in the durable manufacturing sector exhibit a

decrease in the working intensity of high-skilled labour while maintaining the working intensity of low-skilled

labour relatively constant. Conversely, in the nondurable goods sector, firms demonstrate an increase in

their utilisation of high-skilled labour and a reduction in their utilisation of low-skilled labour. In the non-

manufacturing sector, firms demonstrate a reduction in the utilisation of low-skilled labour while maintaining

the utilisation of high-skilled labour relatively constant.

Durable sector Nondurable sector Nonmanufacturing sector
estimates p-value estimates p-value estimates p-value

high-skill utilisation -0.207 0.143 0.215 0.129 -0.023 0.867
low-skill utilisation -0.045 0.750 -0.572 0.000 -0.142 0.314

Table 6: Point estimations of the initial responses of utilisation for two types of skill levels to utilisation-
controlled technology shock across sectors

Notes: The sample period is 1950-2001. This table shows the point estimates of the initial responses of utilisations
for two skills to utilisation-controlled technology shock across sectors. All series are in logarithmic growth.
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Regressors

dz dz(-1) dz(-2) R-square Prob>F
Aggregate du h 0.465 0.188 0.187 0.254 0.012

p-value 0.001 0.183 0.085

du l -0.538 -0.099 -0.036 0.324 0.001
p-value 0.000 0.426 0.748

Durable du h -0.199 0.073 0.090 0.086 0.208
p-value 0.051 0.517 0.365

du l -0.043 0.011 0.004 0.087 0.244
p-value 0.107 0.611 0.874

Nondurable du h 0.377 0.735 0.203 0.187 0.050
p-value 0.261 0.011 0.455

du l -0.693 -0.580 -0.223 0.224 0.018
p-value 0.026 0.023 0.283

Nonmanufacturing du h -0.027 -0.041 -0.040 0.076 0.302
p-value 0.482 0.165 0.161

du l -0.154 -0.004 0.034 0.349 0.000
p-value 0.001 0.938 0.551

Table 7: Regression of utilisations for two types of skill levels on current and lagged utilisation-controlled
technology

Note: Each row shows a separate OLS regression of the utilisations for high-skilled workers (duh) and for low-
skilled workers dul (in growth rates) on current and lagged values of utilisation-controlled technology growth,
dz, plus a constant term and linear trend (not shown). Heteroskedasticity- and autocorrelation-robust standard
errors in parentheses. All regressions are estimated from 1950 to 2001.
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Figure 7: Impulse response of utilisations to sector specified utilisation-controlled technology improvement
across sectors

Notes: The sample period is 1950-2001. The figure shows the Impulse responses of utilisations for high and

low-skilled workers to the aggregate utilisation-controlled technology change in durable, nondurable, and

nonmanufacturing sectors. All series are in logarithmic growth, i.e., dj = ln(J/J(−1)). The horizontal scale shows

the number of years after the initial technology shock. The dashed lines represent the 95-percent confidence

intervals.

1.6 Capital-Skill Complementarity/Substitution?

The concept of capital-skill complementarity refers to the phenomenon whereby the elasticity of substitution

between capital equipment and skilled labour is lower than that between capital and unskilled labour. The

key implication of the capital-skill complementarity; it is that the technology development induces lower

prices of capital equipment, thus accumulating the stock of equipment, which further increases the marginal

product of skilled workers, but decreases the marginal product of unskilled worker. Previous research has

established that capital and skill are complementary at the aggregate level of the economy, as evidenced by

numerous empirical studies, for example, see Griliches (1969), Goldin and Katz (1998), Krusell et al. (2000),

Polgreen and Silos (2008), Hara et al. (2014). In this study, we extend the utilisation-controlled technology

model to encompass two distinct types of labour with varying skill levels. This extension enables us to identify

the utilisation series for two skill levels, providing some insights into the cyclical movement of utilisations for

each skill level. The results can shed some light on the complementarity/substitution between capital and

skill labour at both the aggregate and disaggregate levels, thus contributing to our understanding of how

the capital-skill complementarity effect shapes the short-run dynamics of utilisations and the distribution of

employment across different skill levels. And this information is crucial for understanding the implications of

technology development and other economic changes for labour markets and overall economic performance.

This study employs three main approaches to analyze the complementarity/substitution between capital and

skilled labour.
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1.6.1 Signs of κH and κL

The first approach involves an analysis of the signs of κH and κL, which are indicative of the elasticity of v(.)

with respect to the workweek of capital (as outlined in Section 1.2.2.2). A positive value of κH and a negative

value of κL indicate that the shift premium for highly skilled workers increases at an increasing rate as the

workweek of capital increases, while it increases at a decreasing rate for low-skilled workers. This suggests

a complementarity between capital and skilled workers. However, it should be noted that the reliable signs

of κH and κL can only be deduced in the nondurable sector. For detailed analyses, please see Section 1.4.1.

1.6.2 IRFs of Utilisation

A second approach to analyzing the complementarity/substitution between capital and skilled labour in-

volves incorporating different skill levels to separate the utilisation (including labour and capital utilisation)

of high-skilled and low-skilled workers. By analyzing the utilisation responses of workers with different skill

levels to a utilisation-controlled technology shock, this approach provides insights into the complementar-

ity/substitution between capital and skilled labour at both the aggregate economy and disaggregate sector

levels. The paper presents Figure 5 in Section 1.4, which depicts the impulse response functions (IRFs) of

utilisation, total hours, and employment for workers of two skill levels in response to a positive utilisation-

controlled technology shock in the aggregate economy. The distinct responses of utilisation of high-skilled

and low-skilled workers suggest that, in response to technological advancements, firms tend to encourage

existing high-skilled workers to impose more effort and prolong high-skilled workers’ working hours when

increasing capital’s workweek, while reducing that of the low-skilled workers. It should be noted that the

analysis assumes that the number of employees and total hours cannot be changed costlessly. Thus, in

the short run, when a positive technological shock occurs, firms primarily adjust the hours per worker to

further utilise their existing labour and capital stock. When capital-skill complementarity is present, firms

will tend to increase the hours-per-worker of existing high-skilled employees and reduce that of existing low-

skilled employees due to the amplification of productivity of high-skilled labour through the aforementioned

adjustments in response to advanced technology.

The responses of employment of high-skilled and low-skilled workers depicted in Figure 5 can also be

explained by the interplay of the capital-skill complementarity (CSC) effect and technology advancement.

The short-run employment dynamics can be analyzed through the lens of two interrelated factors: techno-

logical advancement and the CSC effect. The former drives firms to expand their labour force in response

to rising demand, as technological improvement stimulates increased productivity and market demand. The

CSC effect impacts the distribution of employment across different skill levels, where high-skilled workers ex-

perience heightened productivity and low-skilled workers face reduced productivity, this leads firm to utilise

high-skilled workers more than low-skilled workers in the short run. When the CSC effect dominates, the

short-run employment dynamics are characterized by a reduction in the demand for high-skilled labour and

an increase in the demand for low-skilled labour. This trend is driven by the heightened efficiency of high-

skilled workers, which allows firms to meet the rising demand with a smaller number of high-skilled workers

and a larger number of low-skilled workers in the short run. However, as the utilisation of high-skilled labour

reaches its limit, firms begin to increase the employment of both skill types, with a greater emphasis on

hiring high-skilled workers. This trend continues as the demand for labour continues to rise, reflecting the

interplay between technological progress and the CSC effect in shaping employment dynamics in the long

run.
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The analysis of the complementarity/substitution between capital and skilled labour has been extended

to the disaggregate sectors. And the impulse response functions (IRFs) of utilisation of two skill levels at

disaggregate sectors depicted in Figure 7 have been discussed in Section 1.5. The decline in high-skilled

utilisation and relative unchanged low-skilled utilisation in the durable sector can be attributed to the

interplay between capital and skills. When capital and skills are substitutes, technological advancements

lead to the automation of tasks previously performed by skilled workers, resulting in a decrease in working

intensity for high-skilled workers. On the contrary, the new technology might be creating roles or tasks

that low-skilled workers can quickly adapt to or are better suited for. For instance, they may take on jobs

related to operating, maintaining, or working alongside the new technology, or they might be filling roles not

directly impacted by the new technology. The phenomenon of capital and skilled worker substitution has

been examined by Goldin and Katz (1998), who propose that technological advancements may not always

increase the demand for skills. In fact, technological progressions may replace skilled workers by ’deskilling’

the production process. This involves simplifying complex tasks previously performed by skilled workers

and breaking them down into smaller, less-skilled pieces, thereby reducing the demand for skilled labour.

Similar conclusions have been reached by Braverman (1998) and Marglin (1974). More recently, Duffy et al.

(2004) and Balleer and Van Rens (2013) found weak support for CSC. Previous literature has examined this

issue at the aggregate economy level, Perez-Laborda and Perez-Sebastian (2020) used EU KELMS dataset

found in manufacturing sector capital is relatively more complementary to unskilled labour. In this paper,

the validity of capital-skill substitution in the disaggregate durable goods sector will be further supported

by applying a third methodology discussed in Section 1.6.3.

In the nondurable sector, the increase in high-skilled utilisation and decrease in low-skilled utilisation

indicate capital-skill complementarity. The improvement in technology increases the marginal product of

high-skilled workers relative to low-skilled workers, leading to higher demand for high-skilled inputs. In the

short term, facing with the quasi-fixed employment and capital, this increased demand results in a deeper

utilisation of high-skilled workers by firms to make use of the higher high-skilled labour productivity. This

conclusion aligns with the results obtained from the initial methodology outlined in Section 1.6.1. For the

non-manufacturing sector, the deep decline in the utilisation of low-skilled workers and relative unchanged

high-skilled utilisation are an indication of capital-skill complementarity. This phenomenon occurs as firms

tend to substitute low-skilled hours for high-skilled hours in response to technological advancements due

to the amplification of marginal labour productivity of high-skilled labour, resulting in a reduction of low-

skilled labour utilisation in the short term. However, the lack of statistically significant IRFs in the non-

manufacturing sector calls for further investigation. To address this issue, an additional analytical approach

will be undertaken in Section 1.6.3 to shed further light on the situation.

1.6.3 IRFs of Skill Premium, K/S and S/U

A third approach for evaluating the complementarity/substitution between capital and skilled labour involves

analyzing the reactions of the skill premium, the proportion of capital stock to the number of hours worked

by skilled labour (K/S), and the ratio of skilled to unskilled relative hours worked (S/U). These measures

provide valuable insights into the nature of capital-skill complementarity/substitution across sectors.

To illustrate the third method for illuminating the complementarity/substitution between capital and

skill at disaggregate level, we consider an economy where firm uses two types of labour inputs, skilled (S)

and unskilled (U), and capital (K) to produce final goods (Yi) in each sector i. The production function is

as follow
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Yi,t = Zi,t

[
µi(K

ρi

i,t + (1− λi)(Si,t)
ρi)σi/ρi + (1− µi)(Ui,t)

σi

]1/σi

where Zi,t is the sector-specific technology shock, µi and λi control the input shares of capital and un-

skilled labour, respectively. And σi and ρi governs the elasticity of substitution between inputs. Specifically,

1/(1− ρi) is the elasticity of substitution between capital and skilled labour; and 1/(1− σi) is the elasticity

of substitution between capital (or skilled labour) and unskilled labour. If σi > ρi, there is capital-skill

complementarity; that is, the elasticity between capital and unskilled labour is larger than that between

capital and skilled labour. Denote the wage of skilled and unskilled labour by ws,i,t and wu,i,t. Then, under

the assumption that worker’s wages are proportional to their marginal product, we can calculate the skill

premium by the ratio of the marginal product of each type of labour.

ws,i,t

wu,i,t
=

(1− µi)(1− λi)

µi

[
λi

(
Ki,t

Si,t

)ρi

+ (1− λi)

]σi−ρi
ρi
(
Si,t

Ui,t

)σi−1

(26)

Given that σ < 1, µ < 1, λ < 1, an increase in the ratio of skilled to unskilled hours (S/U) will, ceteris

paribus, result in a decrease in the skill premium for any acceptable values of σ. 23 This is referred to as the

relative supply effect by Krusell et al. (2000). Furthermore, if σ > ρ, an increase in the ratio of capital stock

to skilled hours (K/S) will, ceteris paribus, result in an increase in the skill premium, which is referred to as

the capital-skill complementarity effect by Krusell et al. (2000). Analyzing the sign of the responses of skill

premium, capital stock to skilled hours ratio and relative hours to the utilisation-controlled technology shock

can shed light on the complementarity or substitution between capital and skilled labour across sectors. The

results of the impulse response functions (IRFs) are shown in Figure 8 and the point estimates are shown in

Table 8.

The integration of advanced technology leads to a decrease in the relative total hours (S/U) in all

aggregate and disaggregate sectors. it indicate a positive relative supply effect across sectors given σ < 1.

The responses are strongly statistically significant in the aggregate, durable, and non-manufacturing sectors

and significant at a 75-percent confidence level in the non-durable sector as shown in Table 8. Therefore,

the sign of the response of skill premium will be the same as the sign of the responses of capital-to-skilled

hours ratio (K/S) when σ > ρ, that is when capital and skill are complementary, otherwise, capital and skill

are substitution.

In the aggregate economy and non-manufacturing sectors, the capital to skilled hours ratio (K/S) re-

sponds positively and significantly to the technological advancement, thereby contributing to the rise in the

skill premium and suggesting a positive complementarity effect (i.e., σ > ρ). In the durable manufacturing

sector, the capital to skilled ratio (K/S) responds positively to the technology shock, though the skill pre-

mium decreases, indicating σ < ρ, that is skilled labour in this sector are likely to be substitutes rather than

complements. However, the decrease in skill premium is insignificant. In the non-durable manufacturing

sector, both the capital to skilled ratio (K/S) and skill premium respond negatively and significantly to the

technology improvement, thereby indicating σ > ρ, and there are some evidence of capital-skill complemen-

tarity.

In conclusion, the results obtained from the three analytical approaches are consistent and provide some

evidences of capital-skill complementarity in the aggregate economy, the nondurable manufacturing sector,

23A positive elasticity of substitution between capital (or skilled labour) and unskilled labour ensures 1/(1− σi) > 0, and we
have σi < 1. Similar logic applies to ρi.
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and the nonmanufacturing sector. However, in the durable manufacturing sector, the results indicate a

substitution relationship between capital and skilled labour. These findings contribute to our understanding

of the complex interplay between capital and skilled labour and highlight the need for further research to

refine our understanding of these relationships in different economic sectors.

Figure 8: Cumulative impulse response functions of two estimations

Notes: The sample period is 1950-2001. The figure shows the impulse responses of skill premium, the ratio of

capital to skilled hours (K/S), and the relative total hours ratio (S/U) to the aggregate utilisation-controlled

technology change in disaggregate sectors. All series are in logarithmic growth, i.e., dj = ln(J/J(−1)). The

horizontal scale shows the number of years after the initial technology shock. The dashed lines represent the

95-percent confidence intervals.

Skill premium S/U K/S

estimates p-value estimates p-value estimates p-value
Aggregate 1.07 0.000 -1.24 0.000 0.8 0.000
Durable -0.04 0.771 -0.38 0.007 2.53 0.000
Nondurable -0.58 0.000 -0.16 0.265 -0.37 0.009
Nonmanufacturing 1.40 0.000 -1.06 0.000 0.49 0.001

Table 8: Point estimations for initial responses

Notes: The sample period is 1950-2001. This table shows the point estimates of the initial responses of skill
premium, skilled to unskilled relative hours (S/U), capital to skilled hours ratio (K/S) to utilisation-controlled
technology shock across sectors. All series are in logarithmic growth.

1.7 Robustness Check

The present study endeavors to identify the separate labour effort and capital’s workweek for skilled and

unskilled workers. Our findings indicate that the utilisation response to utilisation-controlled technology

advancement differs between skilled and unskilled workers across various sectors. In this Section, we conduct

robustness tests and present a range of SVAR specifications to examine the utilisation responses. The

technology series are considered as either white noise or as autoregressive, and shocks to variable J are
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allowed to affect technology with a two-lag structure. Figures 9 to 12 in Appendix B demonstrate the

robustness of our results through four different estimates of the utilisation response for both the aggregate

economy and the disaggregate sectors.

The representation with boxes displays the inferred response derived through a direct regression of util-

isation growth on growth in the current and eight lags of technology growth.This methodology employs a

significant number of degrees of freedom, with the sample period spanning from 1950 to 2001. The relatively

short sample period is the primary factor leading to the substantial magnitude of responses from direct

regression across sectors. The representation with triangles illustrates the results obtained from considering

technology as an exogenous white-noise process. The representation with circles represents our benchmark

SVAR results, which accommodates for autocorrelations but does not allow for feedback of shocks to utili-

sation on technology, i.e., the lagged growth in utilisation is not incorporated into the technology equation.

The representation with crosses demonstrates the results obtained from allowing for serial correlation and

(lagged) feedback of shocks to utilisation on technology.

In summary, the results indicate a consistent pattern across all cases, namely that the responses of

utilisation of high- and low-skilled workers to a technology improvement vary by sector. Specifically, In

the aggregate economy, the utilisation of high-skilled workers increases on impact, while that of low-skilled

workers decreases. In the durable sector, the utilisation rate of high-skilled workers exhibits a sharp decline,

while the utilisation rate of low-skilled workers remains relatively stable. In contrast, in the nondurable sec-

tor, the utilisation rate of high-skilled workers increases, whereas the utilisation rate of low-skilled workers

declines significantly. Finally, in the non-manufacturing sector, the utilisation rate of low-skilled workers

experiences a significant reduction, while the utilisation rate of high-skilled workers remains relatively un-

changed. Nevertheless, our estimates of the utilisation responses do not alter the significance of the initial

impact responses, which remain similar to our benchmark results (the point estimates for initial responses

are shown in Table 16 of Appendix B).

The sensitivity of the SVAR results was further examined by changing the order of variables in the SVAR

system. The impulse response results, as shown in Figures 2, 5, and 7, were re-estimated accordingly. In

the equation regressing utilisation-controlled technology growth (dz) on two lags of itself and growth of the

responding variable J (dj), the coefficient in front of dj and two lags of dj were restricted to zero, under

the assumption that technology growth is exogenous and not affected by the responding variables in the

contemporaneous period. Thus, when changing the order of variables in the SVAR, the coefficient in front

of dz in the equation of variable dj is restricted to zero instead. The re-estimation results after changing the

order were then compared with the original results from period 1 after the initial responses. The IRF results

after changing the order, as depicted in Figures 13 to 15, were found to be very similar to the original SVAR

results. Thus, the sensitivity analysis confirms the robustness of the original SVAR results, as changing the

order of variables does not substantially alter the findings.

1.8 Conclusion

This paper presents a novel approach for measuring utilisation-controlled neutral technology shocks that is

robust to factor heterogeneity. Specifically, the approach estimates the utilisation series for both high-skilled

and low-skilled labour,enabling a more detailed analysis of cyclical movements of utilisation at both the

aggregate and disaggregate levels.

Our study generates several key findings. First, at the aggregate level, our model generates results that

are consistent with the standard Real Business Cycle (RBC) model. However, we find that a utilisation-
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controlled technology shock leads to less business cycle fluctuations in output, inputs, employment, and

total hours than TFP. Secondly, our analysis indicates that firms tend to utilising existing high-skilled

workers and prolong the capital’s workweek associated with high-skilled workers in response to technological

advancements, while simultaneously reducing utilisation of both labour and capital associated with low-

skilled workers. Thirdly, we find that the responses of utilisation for high-skilled and low-skilled workers to a

technology advancement differ across sectors. In the durable sector, high-skilled utilisation declines sharply

while low-skilled utilisation remains relatively unchanged; in the nondurable sector, high-skilled utilisation

increases and low-skilled utilisation decreases significantly. For the non-manufacturing sector, low-skilled

utilisation falls significantly while high-skilled worker’s utilisation remains relatively unchanged.

Futhermore, this paper proposed three methords to analyzing the complementarity or substitution be-

tween capital and skilled workers at aggregate and disaggregate level. The results obtained from the three

analytical approaches are consistent and suggest that the cyclical movement of utilisation can provide ev-

idence of capital-skill complementarity in the aggregate economy, the nondurable manufacturing sector,

and the non-manufacturing sector. However, in the durable manufacturing sector, the results indicate a

substitution relationship between capital and skilled labour. These findings underscore the sector-specific

nature of the relationship between technology improvements and utilisation, highlighting the need for an

industry-focused analysis in comprehending the diverse utilisation patterns among workers of varying skill

levels.

In conclusion, this paper offers a nuanced perspective on the cyclical movements of utilisation at both

the aggregate and sectoral levels, emphasizing the importance of an industry-focused analysis for a com-

prehensive understanding of the utilisation patterns of workers with different skill levels. Furthermore, this

paper contributes to the understanding of the interplay between capital and skilled labour in the context of

technological progress, providing insights into the differential effects of technology shocks on workers with

varying skill levels across different economic sectors.

By shedding light on the impact of the complementarity/substitution between capital and skill on labour

utilisation, this paper expands our understanding of the complex dynamics between technology, capital, and

labour. In addition, our findings highlight how the CSC effect shapes the short-term responses of utilisation

to technology improvements, providing a valuable foundation for further investigation in this critical area.

Overall, this paper’s contribution to the literature on labour utilisation and technological progress pro-

vides important insights for policymakers and firms seeking to navigate the changing landscape of the modern

economy.

1.9 Looking Ahead

The scope of analysis in this chapter is confined to the period between 1949 and 2001, a temporal boundary

primarily determined by the availability of essential instrumental data, which is critical for the methodology

employed. In alignment with the approach outlined in Basu et al. (2006), this study addresses endogeneity

concerns that may arise due to possible correlations between the error term, defined here as utilisation-

adjusted technological shocks, and the growth rate of production inputs along with labour hours per worker

To address these endogeneity issues, Basu (2006) incorporates Hall-Ramey instruments, specifically the oil

prices and the growth in real government defense spending. These instruments are amenable to extension into

more recent periods. Nevertheless, this study encounters a methodological limitation concerning the third

instrumental variable, which involves updating the quarterly Federal Reserve ’monetary shocks’ based on an

identified VAR, as originally introduced by Burnside (1996). The availability of this particular instrument
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imposing a constraint on the temporal range of this chapter.

Moreover, diverging from Basu’s methodology, this study introduces various types of labour into the

model. This modification alters the regression function by integrating the growth rate of the ratio of capital

and labour input costs to the total input costs. Given that these ratios could be influenced by technological

shocks, the study necessitates the inclusion of three additional instruments. It is posited that the lagged

values of the growth rates of these ratios serve as effective instruments, as technological shocks in the current

period would not influence these ratios in preceding periods. These additional instruments are viable up to

the year 2010, in line with the availability of our primary EU KLEMS data.

Looking ahead, future research will aim to extend the data to more recent periods, enabling an in-depth

analysis of the cyclical fluctuations in the utilisation series for different types of workers. Instead of deriving

monetary shocks from a VAR framework that includes GDP, the GDP deflator, an index of commodity

prices, the 3-month T-bill rate, and M1, an alternative and more streamlined approach for extending the

monetary shock data could be adopted, as suggested in Bu et al. (2021). Bu et al. (2021) develops a series of

U.S. monetary policy shocks that seamlessly bridge periods of both conventional and unconventional policy-

making. Notably, this series is characterized by minimal data requirements and is devoid of significant central

bank information effects.

The methodology employed for constructing this measure of monetary policy shock draws upon the two-

step regression framework pioneered by Fama (1971). The initial step entails conducting time-series regres-

sions to ascertain the sensitivity of interest rates at varying maturities to Federal Open Market Committee

(FOMC) announcements. This step is crucial for quantifying the reaction of interest rates to monetary policy

decisions. To isolate the impact of monetary policy from other non-policy news, the approach incorporates

the heteroskedasticity-based estimator techniques outlined by Rigobon (2003, 2004), which effectively filter

out confounding variables. In the subsequent phase, the methodology involves regressing all relevant output

variables against the sensitivity indices derived from the first step, for each respective time point. This

process can generate a novel series of monetary shocks, represented as the array of estimated coefficients

from the second-step regressions, reminiscent of the Fama-MacBeth regression approach. Adopting this

methodology could significantly simplify the extension of the monetary shocks series to more contemporary

periods, enhancing the robustness and applicability of the research.

Appendix A

1. The data comprise 30 industries including 6 durable industries, 7 nondurable industries, and 17 non-

manufacturing industries. Table 46 gives the industry list .
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Durables
1 wood and cork (20)
2 basic metals and fabricated metal (27t28)
3 machinery nec (29)
4 electrical and optical equipment (30t33)
5 transport equipment (34t35)
6 manufacturing nec; recycling (36t37)

Nondurables
7 food beverages and tobacco (15t16)
8 textiles textile leather and footwear (17t19)
9 pulp paper paper printing and publishing (21t22)
10 coke refined petroleum and nuclear fuel (23)
11 chemicals and chemical products (24)
12 rubber and plastics (25)
13 other nonmetallic mineral (26)

Non-manufacture
14 sale maintenance and repair of motor vehicles (50)
15 wholesale trade and commission trade (51)
16 retail trade except of motor vehicles (52)
17 transport and storage (60t63)
18 post and telecommunications (64)
19 real estate activities (70)
20 renting of m&eq and other business activities (71t74)
21 agriculture hunting forestry and fishing (AtB)
22 mining and quarrying (C)
23 electricity gas and water supply €
24 construction (F)
25 hotels and restaurants (H)
26 financial intermediation (J)
27 public admin and defense; compulsory social security (L)
28 education (M)
29 health and social work (N)
30 other community social and personal services (O)

Table 9: Industry list

Notes: The code used in parenthesis is in the World KLEMS data base.

2. For each sector accounts in the World KLEMS 2013 release data set, it contains data for industry gross

output, inputs of capital, labour, energy and matrieals, employment, and value added, Table 10 gives

the variables list.

3. In the regression function 5, the logarithmic growth of gross output is defined using the quantity

index for output, denoted as GO QI.We represent the logarithmic growth of gross output as dyi =

ln(
GO QIi,t

GO QIi,t−1
). Similarly, the logarithmic growth of hours per worker is calculated as dhi = ln(

hi,t

hi,t−1
),

where hi represents the hours per worker. We can also determine the logarithmic growth rates for

employees, capital, and intermediate goods using dni = ln(
LAB QIi,t

LAB QIi,t−1
), dki = ln(

CAP QIi,t
CAP QIi,t−1

) and

dmi = ln(
II QIi,t

II QIi,t−1
) respectively. The share-weighted input dxi is constructed by aggregating the

growth rates of the three real inputs: capital, labour, and intermediate goods, as follows:

dxi = SK,idki + SLH ,i(dnH,i + dhH,i) + SLL,i(dnL,i + dhL,i) + SM,idmi
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Variable Name (Code) Note
Output (GO QI) Quantity index of output
Capital (CAP QI) Quantity index of capital
labour (LAB QI) Quantity index of labour

Intermediate (II QI) Quantity index of intermediate inputs
Value Added (VA QI) Quantity index of value added
Hours per worker (h) Calculate these by dividing number of hours (H EMP)

by number of workers (EMP)
Nominal Capital (CAP) Value of capital in current prices
Nominal Intermediate (II) Value of intermediate inputs in current prices

Total Hours (HEMP) Average number of hours worked per week
Employment (EMP) Total persons engaged

Wage Compensation (COMP) Labour compensation per hour worked (U.S. dollars)

Table 10: Variables list

Notes: The code used in parentheses is from the KLEMS database.

The shares associated with the costs of each input are calculated by dividing the nominal value of each

input by the sum of nominal values of all inputs:

sK,i =
CAPi

CAPi + LABi + IIi

SLH ,i =
LABH,i

CAPi + LABi + IIi

SLL,i =
LABL,i

CAPi + LABi + IIi

sM,i =
IIi

CAPi + LABi + IIi

where

LABi = LABH,i + LABL,i

LABH,i = COMPH,i ∗ EMPH,i ∗HEMPH,i ∗ 48/1000000

LABL,i = COMPL,i ∗ EMPL,i ∗HEMPL,i ∗ 48/1000000

24

24Multiplying by 48/1000000 is done to convert weekly labour compensation in U.S. dollars into annual labour compensation
in millions.
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Appendix B

Durable Nondurable Nonmanufacturing

A. Return-to-scale estimates
5 Wood 0.68*** 3 Food & Tobacco 0.26 1 agriculture hunting 0.05

(0.14) (1.43) (0.42)
11 Basic metals 1.00*** 4 Textiles 0.57** 2 mining and quarrying 0.173

(0.13) (0.26) (0.25)
12 Machinery nec 1.50*** 6 Printing & Publishing 1.99* 16 electricity gas and water 0.308

(0.29) (1.19) (1.25)
13 Electrical & optical equip 0.61 7 Apparel -0.19 17 constructions 0.94***

(0.57) (2.02) (0.04)
14 Transport equip 1.00*** 8 Chemicals 1.71*** 18 wholesale trade 1.95**

(0.11) (0.28) (0.85)
15 Manufacturing nec 0.85** 9 Rubber & Plastics 1.11*** 19 motor vehicles 1.14**

(0.28) (0.16) (0.40)
10 Other mineral 0.94*** 20 retail trade 1.74*

(0.25) (0.94)
21 hotels and restaurants 1.75*

(0.99)
22 transport and storage 1.22***

(0.24)
23 post and telecommunications 0.21

(1.17)
24 financial intermediations -0.06

(1.24)
25 real estate activities 0.09

(1.16)
26 other business activities 1.63**

(0.76)
27 public admin and defense 0.76***

(0.08)
28 educations 0.81*

(0.45)
29 health and social work 0.47

(0.41)
30 social&personal services 1.47**

(0.68)
Average 0.94 1.10 0.92
Median 0.93 1.03 0.88
Average (eliminate negative estimates) 0.94 0.91 0.97
Median (eliminate negative estimates) 0.93 0.94 0.94
B. Coefficients on hours per worker
high skill 1.11 -0.75 -0.37

(2.12) (3.52) (0.71)
low skill -0.47 2.57 0.14

(2.11) (4.48) (0.71)

Table 11: Two-skills estimation results without inputs costs share variables

Notes: Heteroskedasticity- and autocorrelation-robust standard errors are in parenthesis. Constant terms are not
shown. Coefficients multiplying out-per-worker, capital and labour costs shares are constrained to be equal within
three industry groups (durables, nondurables, and nonmanufacturing). *** represents significance at 1 percent
significance level, ** and * represents 5 percent and 10 percent significance level, respectively.
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Dicky fuller

statistic (Z(t)) p-value for Z(t)
-9.168 0.000

Table 12: Augmented Dicky Fuller test for utilisation-controlled technology growth series

KPSS

Lag order Test statistic Critical values for H0
0 0.0506 10%: 0.119
1 0.0649 5% : 0.146
2 0.0792 2.5%: 0.176
3 0.105 1% : 0.216

Table 13: KPSS test for utilisation-controlled technology growth series

dz(-1) dz(-2) dz(-3) dz(-4)

estimates p-value estimates p-value estimates p-value estimates p-value
Panel -0.07 0.384 -0.01 0.646 -0.02 0.451 0.03 0.330
Time series -0.23 0.063 -0.11 0.320 -0.30 0.080 0.00 1.000

Table 14: Autocorrelation test for utilisation-controlled technology growth series

Notes: This table summarized the autocorrelation tests for utilisation-controlled technolog growth series with
panel data and times series data. The sample period is 1949-2001 with panel data and it is 1950-2001 with time
series data. The time series utilisation-controlled technology growth series is obtained by aggregating industry-
level technology data by Domar-weight.
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Regressors

dz dz(-1) dz(-2) dz(-3) dz(-4) R-square Prob>F
Aggregate du h 0.491 0.153 0.064 -0.140 -0.080 0.318 0.014

p-value 0.001 0.298 0.536 0.311 0.567

du l -0.576 -0.076 0.042 0.047 0.060 0.351 0.002
p-value 0.000 0.604 0.689 0.718 0.658

Durable
du h -0.192 0.086 0.076 -0.231 -0.139 0.187 0.038
p-value 0.043 0.435 0.448 0.043 0.238

du l -0.045 0.015 0.006 0.044 0.004 0.155 0.114
p-value 0.109 0.451 0.802 0.054 0.863

Nondurable
du h 0.377 0.843 -0.042 0.055 -0.249 0.229 0.026
p-value 0.295 0.015 0.886 0.864 0.401

du l -0.766 -0.697 -0.096 -0.261 0.095 0.247 0.034
p-value 0.028 0.037 0.695 0.419 0.712

Nonmanufacturing
du h -0.027 -0.050 -0.051 -0.021 -0.027 0.098 0.496
p-value 0.451 0.116 0.148 0.508 0.382

du l -0.155 -0.006 0.049 0.019 -0.018 0.369 0.002
p-value 0.002 0.914 0.416 0.758 0.741

Table 15: Regression of utilisations for two types of skill levels on current and lagged utilisation-controlled
technology

Note: Each row shows a separate OLS regression of the utilisation for high-skilled workers (duh) and for low-
skilled workers dul (in growth rates) on current and lagged values of utilisation-controlled technology growth,
dz, plus a constant term and linear trend (not shown). Heteroskedasticity- and autocorrelation-robust standard
errors in parentheses. All regressions are estimated from 1950 to 2001.
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Figure 9: Alternative estimation of the utilisation for high skilled workers and low skilled workers responses
to a utilisation-controlled technology improvement in aggregate economy

Figure 10: Alternative estimation of the responses of utilisation for high-skilled workers and low-skilled
workers to a utilisation-controlled technology improvement in the durable manufacturing sector.
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Figure 11: Alternative estimation of the utilisation for high skilled workers and low skilled workers responses
to a utilisation-controlled technology improvement in nondurable manufacturing sector

Figure 12: Alternative estimation of the utilisation for high skilled workers and low skilled workers responses
to a utilisation-controlled technology improvement in non-manufacturing sector
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Figure 13: Impulse response to utilisation-controlled technology improvement-two skills estimation

Figure 14: Impulse response to utilisation-controlled technology improvement-two skills estimation
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Figure 15: Impulse response of utilisations to sector specified utilisation-controlled technology improvement
across Sectors

Aggregate Durable

High-skilled Low-skilld High-skilled Low-skilld
Initial response p-value Initial response p-value Initial response p-value Initial response p-value

Auto & feedback 0.378 0.007 -0.539 0.000 -0.208 0.142 -0.046 0.746
No auto&no feedback 0.375 0.008 -0.558 0.000 -0.208 0.141 -0.046 0.745
Bechmark 0.371 0.009 -0.562 0.000 -0.207 0.143 -0.045 0.750
Regression 0.465 0.001 -0.538 0.000 -0.199 0.051 -0.043 0.107

Non-durable Non-manufacture

High-skilled Low-skilld High-skilled Low-skilld
Initial response p-value Initial response p-value Initial response p-value Initial response p-value

Auto & feedback 0.216 0.126 -0.572 0.000 -0.027 0.85 -0.144 0.308
No auto&no feedback 0.214 0.131 -0.575 0.000 -0.026 0.854 -0.144 0.307
Bechmark 0.215 0.129 -0.572 0.000 -0.024 0.867 -0.142 0.314
Regression 0.377 0.261 -0.693 0.026 -0.027 0.482 -0.154 0.001

Table 16: Point estimation the initial responses of utilisations to utilisation-controlled technology shock
across sectors

Notes: The sample period is 1950-2001. This table shows the point estimates of the initial responses of utilisations
for two skills to utilisation-controlled technology shock across sectors. The responses are estimated by four different
estimates; including our benchmark estimates, implied regression, treating technology series as white-noise process
(i.e., with no autocorrelation and no feedback of response variables), and allowing for autocorrelation and feedback.
All series are in logarithmic growth.

Appendix C.1

Consider the aggregate production function,

Yi,t = F (K̃i,t, L̃i,H,t, L̃i,L,t,Mi,t, Zi,t)

Where
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L̃i,H,t = ϕi,H,thi,H,tNi,H,t

L̃i,L,t = ϕi,L,thi,L,tNi,L,t

K̃i,t = ϕi,K,H,tϕi,K,L,tKi,t

Taking log on both sides of production function gives (we eliminate industry and time subscript for

simplicity except where needed for clarity):

logY = logF (K̃, L̃H , L̃L,M,Z)

Then differentiate with respect to time ,

dYt/dt

Y
=

F1dK̃t/dt

F
+

F2d ˜LH,t/dt

F
+

F3d ˜LL,t/dt

F
+

F4dMt/dt

F
+

F5dZt/dt

F

Where

dK̃

dt
=

d(ϕK,HϕK,LK)

dt
=

dϕK,H

dt
ϕK,LK +

dϕK,L

dt
ϕK,HK +

dK

dt
ϕK,LϕK,H

dL̃H

dt
=

d(ϕHhHNH)

dt
=

dϕH

dt
hHNH +

dhH

dt
ϕHNH +

dNH

dt
ϕHhH

dL̃L

dt
=

d(ϕLhLNL)

dt
=

dϕL

dt
hLNL +

dhL

dt
ϕLNL +

dNL

dt
ϕLhL

Combining those equations, we find:

dY/dt

Y
=

F1

F
(
dϕK,H

dt
ϕK,LK +

dϕK,L

dt
ϕK,HK +

dK

dt
ϕK,LϕK,H)

+
F2

F
(
dϕH

dt
hHNH +

dhH

dt
ϕHNH +

dNH

dt
ϕHhH)

+
F3

F
(
dϕL

dt
hLNL +

dhL

dt
ϕLNL +

dNL

dt
ϕLhL)

+
F4

F

dM

dt
+

F5

F

dZ

dt

Rearrange gives,



47

dY/dt

Y
=

F1ϕK,LϕK,HK

F
(
dϕK,H/dt

ϕK,H
+

dϕK,L/dt

ϕK,L
+

dK/dt

K
)

+
F2L̃H

F
(
dϕH/dt

ϕH
+

dhH/dt

hH
+

dNh/dt

Nh
)

+
F3L̃L

F
(
dϕL/dt

ϕL
+

dhL/dt

hL
+

dNL/dt

NL
) +

F4M

F

dM/dt

M
+

F5Z

F

dZ/dt

Z

→

dY/dt

Y
=

F1K̃

F
(
dK/dt

K
+

dϕK,H/dt

ϕK,H
+

dϕK,L/dt

ϕK,L
)

+
F2L̃H

F
(
dϕH/dt

ϕH
+

dhH/dt

hH
+

dNh/dt

Nh
)

+
F3L̃L

F
(
dϕL/dt

ϕL
+

dhL/dt

hL
+

dNL/dt

NL
)

+
F4M

F

dM/dt

M
+

F5Z

F

dZ/dt

Z

(27)

with

F1K̃

F
=

F1ϕK,HϕK,LK

F
=

FKK

Y

F2L̃H

F
=

F2ϕHhHNH

F
=

FhH
hH

Y

F3L̃L

F
=

F3ϕLhLNL

F
=

FhL
hL

Y

F4M

F
=

FMM

Y

Suppose that firms take the price of all input J , PJi as given by competitive markets, and denote the

markup over marginal cost as µi. According to Basu and Fernald (2007), the first order condition for costs-

minimization implies the firm set the value of marginal product of factor J equal to a markup over the

factor’s input price, that is:

PiF
i
J = µiPJi (28)

For each factor J , we multiply both side of Equation 28 by Ki and divide both side by PiYi gives:

FKK

Y
= µ

PKK

PY
= µSK

FhH
hH

Y
= µ

PhH
hH

PY
= µSLH

FhL
hL

Y
= µ

PhL
hL

PY
= µSLL
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FMM

Y
= µ

PMM

PY
= µSM

Thus,

µSK =
F1K̃

F
(29)

µSLH
=

F2L̃H

F
(30)

µSLL
=

F3L̃L

F
(31)

µSM =
F4M

F
(32)

Substitute equations 58 to 61 into 27;

dY/dt

Y
= µSK(

dK/dt

K
+

dϕK,H/dt

ϕK,H
+

dϕK,L/dt

ϕK,L
)

+ µSLH
(
dϕH/dt

ϕH
+

dhH/dt

hH
+

dNh/dt

Nh
)

+ µSLL
(
dϕL/dt

ϕL
+

dhL/dt

hL
+

dNL/dt

NL
)

+ µSM
dM/dt

M
+

F5Z

F

dZ/dt

Z

(33)

Use dx to denote the growth rate of X (so, dx = dX/dt
X ), equation 33 can be rewritten as:

dy = µSK(dk + dϕK,H + dϕK,L)

+ µSLH
(dϕH + dhH + dnH) + µSLL

(dϕL + dhL + dnL) + µSMdm+
F5Z

F
dz

= µ(SKdk + SLH
(dhH + dnH) + SLL

(dhL + dnL) + SMdm)

+ µ(SKdϕK,H + SKdϕK,L + SLH
dϕH + SLL

dϕL) +
F5Z

F
dz

Appendix C.2

Labour utilisation

An representative firm’s cost-minimising problem is:

minϕk,ϕH ,ϕL,hH ,hL,I,DEt

∞∑
τ=t

[

τ−1∏
j=t

(1 + rj)
−1]

× [WH,τG(hH,τ , ϕH,τ )V (ϕK,H,τ )NH,τ +WL,τG(hL,τ , ϕL,τ )V (ϕK,L,τ )NL,τ

+WH,τNH,τΨ(
DH,τ

NH,τ
) +WL,τNL,τΨ(

DL,τ

NL,τ
) + PI,τKτJτ (

Iτ
Kτ

) + PMMτ ]
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s.t.

Yτ = F [ϕK,H,τϕK,L,τKτ , ϕH,τhH,τNH,τ , ϕL,τhL,τNL,τ ,Mτ , Zτ ]

Kτ+1 = Iτ + (1− δ)Kτ

Nτ+1,H = Nτ,H +Dτ,H

Nτ+1,L = Nτ,L +Dτ,L

Optimally conditions are:

λF1ϕK,LK = WHNHG(hH , ϕH)V ′(ϕK,H) (1)

λF1ϕK,HK = WLNLG(hL, ϕL)V
′(ϕK,L) (2)

λF2ϕHNH = WHNHGhH
(hH , ϕH)V (ϕK,H) (3)

λF3ϕLNL = WLNLGhL
(hL, ϕL)V (ϕK,L) (4)

λF2hHNH = WHNHGϕH
(hH , ϕH)V (ϕK,H) (5)

λF3hLNL = WLNLGϕL
(hL, ϕL)V (ϕK,L) (6)

Combine Equation 3 and Equation 5 gives,

ϕHGϕH
(hH , ϕH) = hHGhH

(hH , ϕH)

Denote ϕ∗
H , h∗

H , G∗
ϕH

= GϕH
(h∗

H , ϕ∗
H) and G∗

hH
= GhH

(h∗
H , ϕ∗

H) as steady state values, and in steady

state we have ϕ∗
HG∗

ϕH
= h∗

HG∗
hH

. Log-linearize above equation around the steady state gives:

ϕ∗
HG∗

ϕH
+G∗

ϕH
(ϕH − ϕ∗

H) + ϕ∗
HG∗

ϕHϕH
(ϕH − ϕ∗

H) + ϕ∗
HG∗

ϕHhH
(hH − h∗

H)

= h∗
HG∗

hH
+G∗

hH
(hH − h∗

H) + h∗
HG∗

hHhH
(hH − h∗

H) + h∗
HG∗

hHϕH
(ϕH − ϕ∗

H)

Rearrange,

ϕH − ϕ∗
H

ϕ∗
H

ϕ∗
H(G∗

ϕH
+ ϕ∗

HG∗
ϕHϕH

− h∗
HG∗

hHϕH
) =

hH − h∗
H

h∗
H

h∗
H(G∗

hH
+ hH

∗G∗
hHhH

− ϕ∗
HG∗

ϕHhH
)

Define denote dx as the growth rate of X at the steady state X−X∗

X∗ , then we can rearrange the equation

to:
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dϕH =
h∗
H(G∗

hH
+ hH

∗G∗
hHhH

− ϕ∗
HG∗

ϕHhH
)

ϕ∗
H(G∗

ϕH
+ ϕ∗

HG∗
ϕHϕH

− h∗
HG∗

hHϕH
)
dhH (7)

In steady state, we can define Υ = ϕ∗
HGϕH

(h∗
H , ϕ∗

H)− h∗
HGhH

(h∗
H , ϕ∗

H) = 0, then,

∂Υ

∂h∗
H

= ϕ∗
HG∗

ϕHhH
−G∗

hH
− h∗

HG∗
hHhH

∂Υ

∂ϕ∗
H

= G∗
ϕH

+ ϕ∗
HG∗

ϕHϕH
− h∗

HG∗
hHϕH

Using implicit function theorem, we find,

∂ϕ∗
H

∂h∗
H

= ϕ′
H(h∗

H) = −
∂Υ
∂h∗

H

∂Υ
∂ϕ∗

H

=
G∗

hH
+ h∗

HG∗
hHhH

− ϕ∗
HG∗

ϕHhH

G∗
ϕH

+ ϕ∗
HG∗

ϕHϕH
− h∗

HG∗
hHϕH

Substitute into Equation 7 gives,

dϕH =
h∗
Hϕ′

H(h∗
H)

ϕH(h∗
H)

dH

Define η =
h∗
Hϕ′

H(h∗
H)

ϕH(h∗
H) (note that ϕ∗

H = ϕH(h∗
H)), thus,

dϕH = ηHdhH

Similarly, combining Equation 4 and Equation 6 gives,

ϕLGϕL
(hL, ϕL) = hLGhL

(hL, ϕL)

Again, log-linearize around the steady state and define α =
h∗
Lϕ′

L(h∗
L)

ϕL(h∗
L) , we find,

dϕL = ηLdhL

Capital utilisation

For high skilled workers, combining Equation 1 and 3 gives,

λF1ϕK,LK

λF2ϕHNH
=

WHNHG(hH , ϕH)V ′(ϕK,H)

WHNHGhH
(hH , ϕH)V (ϕK,H)

Multiply both sides of above equation by
ϕK,H

hH
gives,

F1ϕK,LϕK,HK

F2ϕHNHhH
=

G(hH , ϕH)

hHGhH
(hH , ϕH)

· ϕK,HV ′(ϕK,H)

V (ϕK,H)
(8)

Define g(hH) =
hHGhH

(hH ,ϕH)

G(hH ,ϕH) as the elasticity of labour costs with respect to skilled hours; and define

v(ϕK,H) =
ϕK,HV ′(ϕK,H)

V (ϕK,H) as the elasticity of shift premium with respect to capital’s workweek associated to

high skilled workers. And recall that F1ϕK,LϕK,HK = F1K̃ and F2ϕHNHhH = F2L̃H . We can then write

equation 8 as,
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(F1K̃)/F

(F2L̃H)/F
=

v(ϕK,H)

g(hH)

Substitute equation 58 and 30 into Equation 8 gives,

SK

SLH

=
v(ϕK,H)

g(hH)
(9)

Similarly, for low skilled workers combining Equation 2 and 4 gives,

F1ϕK,LϕK,HK

F3ϕLNLhL
=

v(ϕK,L)

g(hL)

Because.
F1ϕK,LϕK,HK

F3ϕLNLhL
=

(F1K̃)/F

(F3L̃L)/F
=

µSK

µSLL

Thus we have,

SK

SLL

=
v(ϕK,L)

g(hL)
(10)

The steady-state version of Equation 9 is S∗
Kg(h∗

H) = S∗
LH

v(ϕ∗
K,H). Log-linearize Equation 9 around

steady state:

S∗
Kg(h∗

H) + g(h∗
H)(SK − S∗

K) + S∗
Kg(h∗

H)hH
(hH − h∗

H)

= S∗
LH

v(ϕ∗
K,H) + S∗

LH
v(ϕ∗

K,H)ϕK,H
(ϕK,H − ϕ∗

K,H) + v(ϕ∗
K,H)(SLH

− S∗
LH

)

Rearrange gives,

SK − S∗
K

S∗
K

S∗
K · g(h∗

H) +
hH − h∗

H

h∗
H

h∗
H · S∗

Kg(h∗
H)hH

=
SLH

− S∗
LH

S∗
LH

S∗
LH

· v(ϕ∗
K,H) +

ϕK,H − ϕ∗
K,H

ϕ∗
K,H

ϕ∗
K,H · S∗

LH
v(ϕ∗

K,H)ϕK,H

Define denote dx as the growth rate of X at the steady state X−X∗

X∗ , then we can rearrange the equation

to:

dsk · S∗
Kg(h∗

H) + dhH · h∗
HS∗

Kg(h∗
H)hH

= dsLH
· S∗

LH
v(ϕ∗

K,H) + dϕK,H · ϕ∗
K,HS∗

LH
v(ϕ∗

K,H)ϕK,H
(11)

Divide both side of Equation 11 by the steady-state version of Equation 10, S∗
Kg(h∗

H) = S∗
LH

v(ϕ∗
K,H),

gives,

dsk + dhH · h
∗
Hg(h∗

H)hH

g(h∗
H)

= dsLH
+ dϕK,H ·

ϕ∗
K,Hv(ϕ∗

K,H)ϕK,H

v(ϕ∗
K,H)

Define ϵH =
h∗
Hg(h∗

H)hH

g(h∗
H) as elasticity of g(h∗

H) and κH =
ϕ∗
K,Hv(ϕ∗

K,H)ϕK,H

v(ϕ∗
K,H) as elasticity of v(ϕ∗

K,H), we

have,
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dϕK,H =
1

κH
dsk +

ϵH
κH

dhH − 1

κH
dsLH

(12)

Similarly, define ϵL =
h∗
Lg(h∗

L)hL

g(h∗
L) as elasticity of g(h∗

L) and κL =
ϕ∗
K,Lv(ϕ∗

K,L)ϕK,L

v(ϕ∗
K,L) as elasticity of v(ϕ∗

K,L).

Then by the same logic as embodied in Equation 12, log-linearize Equation 10 and after some algebra gives,

dϕK,L =
1

κL
dsk +

ϵL
κL

dhL − 1

κH
dsLL

(13)

Regression function

Substituting dϕH , dϕL, dϕK,H and dϕK,L into the decomposed regression function:

dy = µ

(
SKdk + SLH

(dhH + dnH) + SLL
(dhL + dn) + SMdm

)
+ µ

(
SK

(
1

κH
dsk +

ϵH
κH

dhH − 1

κH
dsLH

)
+ SK

(
1

κL
dsk +

ϵL
κL

dhL − 1

κL
dsLL

)
+ SLH

ηHdhH + SLL
ηLdhL

)
+

F4Z

F
dz

Rearrange gives,

dy = µdx+

(
µSK

κH
+

µSK

κL

)
dsk +

(
µSKϵH
κH

+ µSLH
ηH

)
dhH − µSK

κH
dsLH

+

(
µSKϵL
κL

+ µSLL
ηL

)
dhL − µSK

κL
dsLL

+
F4Z

F
dz

Where

dx = SKdk + SLH
(dnH + dhH) + SLL

(dnL + dhL) + SMdm
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2 Examining the Nonlinear Relationship between Capital-Skill

Complementarity and Skilled-Unskilled Complementarity across

the U.S. Industries

2.1 Introduction

Over the last 60 years, the U.S. economy has experienced a steady increase in the supply of skilled workers

and unskilled workers, while the wages have not deteriorated. However, the skill-premium, defined as the

relative hourly wage of the skilled-to-unskilled workers, has been rising heavily since 1980. Many pieces of

literature emerged to explain the steady increase in the skill premium over time. A recent consensus is that

technology change favours skilled workers, makes the skilled workers more productive, and replaces the tasks

performed by the less skilled, thus exacerbating wage inequality by higher demand for the skilled and lower

demand for unskilled workers. This view is a company with the witness of rapid development in personal

computers, new machines and robotic appears, Krueger (1993) summarized this view by the title of ”How

computers have changed the wage structure”.

The view that technology development favors skilled workers has led to a literature postulating the exis-

tence of capital-skill complementarity. Capital-skill complementarity refers to the elasticity of substitution

between capital equipment and skilled labour being less than that between capital and unskilled labour.

The key implication of capital-skill complementarity is that technology development induces lower prices of

capital equipment, which increases the stock of equipment, further increasing the marginal product of skilled

workers but decreasing the marginal product of unskilled workers. Griliches (1969) formalized the hypothesis

of capital-skill complementarity, supported by their analysis of cross-sectional manufacturing data from the

United States, which suggested that capital and skilled workers are more complementary than capital and

unskilled workers. Since then, a significant amount of literature has emerged reinforce the existence of capital

skill complementarity. Flug and Hercowitz (2000) uses a panel data set of a wide range of countries and

finds a positive and strong effect of machinery investment on the relative demand for skilled labour. Krusell

et al. (2000) develop a four-factor aggregate production function, including skilled, unskilled labours, capital

equipment and capital structure, that allows for different elasticity of substitution among the input factors,

arguing that capital-skill complementarity helps explain the observed change in the skill premium in the U.S.

economy. Caselli and Coleman (2002) identify the efficiency embodied in unskilled labour, skilled labour

and capital in aggregate production function, finding that the efficiencies of skilled labour and capital have

risen over 1963-1992, while the efficiency of unskilled labour has been falling since 1970s. Polgreen and Silos

(2008) re-examine the findings of Krusell et al. (2000), confirming the existence of capital-skill complemen-

tarity. Hara et al. (2014) use a two-sector neoclassical general equilibrium model with two types of labour,

in which the CES production function allows for a degree of capital-skill complementarity, showing that the

decline in capital-skill complementarity can account for the observed changes in the skill premium in the

Japanese economy, with significant differences in the degree of capital-skill complementarity found in Japan.

The hypothesis of capital-skill complementarity has been extensively documented in the literature, and as a

result, there is a growing body of research focused on examining its empirical and quantitative implications

(see, for example, Lindquist (2004), Caselli and Wilson (2004)). Additionally, another literature centers on

the assumption of capital-skill complementarity as the primary driving force of the development process (see,

for example, Galor and Moav (2000), Galor and Moav (2004)).
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While there is a significant body of literature supporting the existence of capital-skill complementarity,

other studies find null or weak support for it. Goldin and Katz (1998) argue that technological developments

may not always increase the demand for skills; in fact, advances in technology may replace skilled workers.

They suggest that capital-skill complementarity may be a transitory phenomenon, as companies progress

through various stages of development, and skilled labour transitions from being more substitutable to

being complementary. For example, in the early era, when the factory replaced the artisan shop, the new

machines make the production process ”deskilling”, that is, the complex tasks previously performed by

the skilled workers have been simplified by breaking them into smaller and less-skilled requiring pieces,

declining the demand for skilled workers. Similar conclusions were made by Braverman (1998) and Marglin

(1974). Inspired by the findings of Goldin and Katz (1998), Duffy et al. (2004) emphasize the importance

of finding evidence of capital complementarity over long periods and across countries at different stages

of development. Thus, they examine the capital-complementarity hypothesis using a panel data set of 73

countries over 25 years and various specifications of aggregate production function, concluding that that the

evidence of the capital-skill complementarity hypothesis is weak. Ruiz-Arranz (2002) find that while capital-

skill complementarity accounts for at most 40 percent of the rise in the skill premium but only a small fraction

of equipment capital, information technology, is complementary to skilled labour. In the following years,

Caselli and Coleman (2006) exams the cross-country differences in the aggregate production function and

find that higher-income countries use skilled labour more efficiently than lower-income countries, while they

use unskilled labour relatively less efficiently. They attribute this phenomenon to the technology adoption

rather capital-skill complementarity. Balleer and Van Rens (2013) construct a quarterly skill premium

series for the U.S. economy and identify various technology shocks using a structural vector autoregression

framework. They find that in response to the investment-specific technology shocks, the skill premium

responds negatively. Their finding rejects the possibility of capital-skill complementarity and favours the

existence of capital-skill substitutability in the aggregate production technology.

Our work contributes to this literature by using industry level panel data in the U.S. economy to test

the hypothesis across various industries. Recent papers use highly nonlinear nested constant-elasticity-

of-substitution (CES) aggregate production function which are shown to be quite difficult to accurately

estimate, we instead use simple linear economic estimation techniques and show that significant progress can

be made in testing this hypothesis.25. Furthermore, previous research, typically based on aggregated data,

may neglect significant differences in input structures and technology development across industries, leading

to blurred relationships between input structures at the industry level. For example, Herrendorf et al. (2015)

demonstrate the importance of accounting for differences in technology and input structures by estimating

CES production functions for agriculture, manufacturing, and services on postwar US data. Their findings

reveal significant heterogeneity in capital share and the degree of substitution between capital and labour

across sectors. Additionally, Jorgenson and Timmer (2011) suggests an emphasis shift from manufacturing to

the production of the services. They find the agricultural sector has become smaller while services comprise

about three-quarters of GDP in advanced economies. Therefore, studies based only on manufacturing data

neglect the crucial role of various services industries, which account for a significant portion of total value-

added and hours worked in developed economies. In our paper, we estimate the model on a total of 26

industries that have been grouped into different categories using various threshold estimations, providing

insight into a range of important economic issues.

25Using nonlinear estimation techniques to obtain reliable estimates of the relative size of elasticity parameters can still be
cumbersome and problematic, as demonstrated by Duffy et al. (2004)
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The research we are conducting has a strong connection to two previous studies, namely Goldin and Katz

(1998) and Papageorgiou and Chemlarova (2005). Goldin and Katz used panel data from 1909 and 1919

at the industry level in the U.S. manufacturing sector to estimate the regression of skilled labour’s share of

total labour costs on the logarithm of skill premium and capital to output ratio. Their model was developed

based on the assumption of constant returns to scale and aimed to minimize costs. Their analysis indicates

that industries with a higher increase in the proportion of skilled workers in total labour costs experienced a

corresponding increase in capital to output ratio, implying that skilled labour and capital are complementary.

Similarly, Papageorgiou and Chemlarova utilized the same estimation technique on a cross-country dataset,

examining the hypothesis among both OECD and non-OECD countries, and among three regimes that were

endogenously determined through threshold estimations. In our study, we extended these works by applying

the linear estimation technique to panel data that covered 26 industries in the U.S. economy, including

non-manufacturing industries, durable goods, and non-durable goods, for 62 years spanning from 1949 to

2010. Furthermore, we classified the industries into several groups based on threshold estimations, and then

applied the estimation technique to each of these industry groups that were endogenously determined.

The main findings of the paper are as follows: Firstly, we discovered that splitting the full sample of 26

industries into manufacturing and non-manufacturing sectors without a clear criteria can result in misleading

results when testing the capital-skill complementarity hypothesis. Second, after employing the data-sorting

method developed by Hansen (2000), that allows the data to endogenously select groups. Our analysis

indicated that the threshold variable that could effectively cluster industries into two groups was the capital

to output ratio. Specifically, we found that industries with a low capital to output ratio (K/Y < 0.9897)

exhibited evidence of capital-skill complementarity, whereas industries with a high capital to output ratio

(K/Y > 0.9897) did not show any evidence of capital-skill complementarity. Instead, our results revealed

that capital and skilled labour were substitutes in these industries. Our third finding indicates that the

complementarity between skilled and unskilled workers is stronger in industries with a high capital to output

ratio compared to those with a low capital to output ratio. This can be attributed to the fact that most

industries in the high capital to output ratio group have lower levels of education with a smaller proportion

of skilled labour than industries in the low capital to output ratio group. Consequently, in the high capital

to output ratio group (industries with lower education level) there is a larger skill gap between skilled and

unskilled labour, leading to a more noticeable complementarity between the two types of workers. Finally,

our study identified a notable time break in the year 1980 for industries with a high capital to output ratio.

Our analysis showed that capital-skill substitution became more profound in this industry group from 1980

onwards compared to the period before 1980.

The paper is structured as follows: In Section 2.2, we present the approach utilized in this study and

provide details on the data and estimation method. Section 2.3 presents the findings on the non-linearity

in capital-skill complementarity/substitution across industries. Next, in Section 2.4, we discuss the non-

linearity in skilled and unskilled complementarity/substitution across industries. Section 2.5 focuses on the

time break in capital-skill complementarity/substitution. The robustness check is presented in Section 2.6.

In Section 2.7, we discuss the implications of our findings for the existing literature, and finally, Section 2.9

presents the conclusions of the study.

2.2 Methodology and Data

The method used to estimate the correlation between capital and skilled labour is based on the approach

presented in Brown and Christensen (1980). The estimation equation is inspired by a model where capital is
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considered the quasi-fixed factor and skilled and unskilled labour are the variable factors. If the total labour

cost function for a particular industry i has a translog form, then cost minimization under constant returns

to scale generate the following ’share equation’ for the skilled labour share of total costs in time t: 26

Sit = αi + ϕit+ γ11ln
(ws

wu

)
it
+ γ1kln

(K
Y

)
it

(34)

The skilled labour share of the total wage bill, denoted by Si,t, is a measure of the proportion of total

wage expenditure allocated to skilled labour in a given period t in a specific industry i. This measurement is

represented by Si,t =
ws,i,tSi,t

ws,i,tSi,t+wu,i,tUi,t
, where ws,i,t and wu,i,t represent the wages of skilled and unskilled

labour, respectively.
(

ws

wu

)
i,t

is the skill premium and
(

K
Y

)
i,t

is the capital to output ratio. The key

coefficients in this regression are γ11 and γ1k. The coefficient γ11 reflects the elasticity of substitution between

skilled and unskilled labour. If this elasticity is less than one, γ11 is positive, indicating that an increase in

the wage premium for skilled labour relative to unskilled labour leads to an increase in the skilled labour

share of the wage bill, which implies skilled-unskilled labour complementarity. Conversely, if the elasticity

of substitution is greater than one, γ11 is negative, suggesting that an increase in the wage premium leads

to a decrease in the skilled labour share of the wage bill, that is skilled-unskilled labour substitution.The

coefficient γ1k represents the degree of complementarity between skilled labour and capital. The logic is the

same as above; a positive value for this coefficient implies that an increase in the capital-output ratio leads

to an increase in the skilled labour share of the wage bill. This result reflects the idea that capital and skilled

labour are complementary in the production process, and an increase in the capital-output ratio leads to a

higher demand for skilled labour. ϕi measures the rate of skill-biased technological change in industry i.

Our estimation of the ’share equation’ (Equation 34) involves panel data on 26 industries with sample

period of 1949-2010. The data used in this study is sourced from the April 2013 release of the World KLEMS

database. This database, which was adapted from the database on U.S. productivity growth by industry

created by Dale Jorgenson and associates, provides detailed labour and capital inputs for the U.S. using

the North American Industry Classification System (NAICS). Our sample consists of industry-level data

on labour, capital inputs, and output for 26 industries, including 6 durable, 7 non-durable, and 13 non-

manufacturing industries. In our analysis, we use the capital services volume index (denoted by K) and the

gross output volume index (denoted by Y ).

This study’s labour data includes detailed information on labour compensation per hour, average weekly

working hours, and employment. The labour force is divided into six skill levels, including those with less

than a high school education, some high school education, high school graduates, some college education,

college graduates, and those with more than a college education. In line with established literature (such

as Krusell et al. (2000), Kawaguchi et al. (2014), Parro (2013)), workers with a college education or higher,

which is equivalent to at least 16 years of education, are classified as skilled labour, while unskilled labour

refers to workers without a college education. Individuals under the age of 16 or over 64 are excluded from

the analysis to ensure that the sample is consistent with the working-age population. To calculate skilled and

unskilled workers’ wage bills, we multiply their hourly wage by their weekly working hours and the number

of employees. We then compute the skilled labour share of the total wage bill by dividing the skilled workers’

wage bill by the total wage bill of both skilled and unskilled workers. The skill premium (ws

wu
) data is derived

by dividing the skilled labour hourly wage by the unskilled labour hourly wage. Lastly, the industry data are

aggregated into manufacturing and non-manufacturing sectors. Table 46 provides a detailed classification of

26A detailed derivation can be found in the Appendix of Papageorgiou and Chemlarova (2005).
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the industries.

2.3 Nonlinearity in Capital Skill Complementarity

2.3.1 Estimation Results for Manufacturing and Nonmanufacturing Sectors

In this section, we estimate the regression using the subsample, that is trivially divided into manufacturing

goods and non-manufacturing goods sectors. The results are presented in Table 17. The Equation 34 (Model

3) is our baseline model, in which we regress the skilled labour share of the total wage bill (S) on the log

of the skilled-to-unskilled labour wage rate (ws

wu
), and the log of capital to output ratio (KY ). To examine

the robustness of the results from the baseline model, we follow Goldin and Katz (1998) and exam five

modifications of Equation 34. We estimate a modification that drops the relative wage variable (ws

wu
) (Model

1), because the cross-sectional wage variation could be endogenous as it largely reflect skill differences.

Another modification is to drop the relative wage and add a logarithm of the output (Y ) variable (Model

2). Adding output variable is because during different stages of a business cycle, the demand for skilled

and unskilled labour may change. For instance, during an economic boom, there may be high demand for

skilled workers to develop new products or services, while during a recession, there may be more demand for

unskilled workers in industries such as construction and retail. Thus, adding output variable can account

for cyclical differences in the extend to which skilled and unskilled labour are quasi-fixed factor. This also

allows the possibility that the production function is non-homothetic. And the rest three models replace the

variable (Y ) by value added (V A) (Model 4 to Model 6).

For the manufacturing sector, in the baseline Model 3 (column 4), the coefficient γ1k is found to be -0.024,

suggesting no evidence of capital-skill complementarity and instead indicating a preference for substitution

between capital and skilled labour. Our findings are robust to alternative models, as shown in columns

2, 3 and 5 to 7, where the coefficient γ1k consistently exhibits a negative sign regardless of other controls.

Specifically, our estimates reveal values of -0.030 in Model 1, -0.018 in Model 2, -0.030 in Model 4, -0.017

in Model 5, and -0.027 in Model 6, all of which are statistically significant at the 1% level. In the non-

manufacturing sector, the results reveal a consistently positive and statistically significant coefficient γ1k,

indicating evidence of capital-skill complementarity in the production process. The coefficient in the baseline

Model 3 is 0.043, which is significant at 1 % level. Again, dropping the relative wage variable and inclusion

of output variable does not affect the key results; the coefficients are 0.057 in Model 1, 0.045 in Model 2,

0.051 in Model 4, 0.055 in Model 5, and 0.040 in Model 6, all of which are statistically significant at the

1% level. In both sectors, the coefficient estimates for the log of Y is positive and statistically significant in

Model 2 and 5, which provides evidence that the production function is non-homothetic.
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Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Manufacturing
ln(K/Y) -0.0304*** -0.0181*** -0.0239***
(std.) (0.0060) (0.0080) (0.0050)
ln(Y) 0.0136***
(std.) (0.0060)
ln(K/VA) -0.0297*** -0.0167*** -0.0268***
(std.) (0.0040) (0.0060) (0.0030)
ln(VA) 0.0133***
(std.) (0.0050)
ln(Ws/Wu) 0.1389*** 0.1337***
(std.) (0.0110) (0.0100)
t 0.0054*** 0.0049*** 0.0054*** 0.0053*** 0.0047*** 0.0053***
(std.) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
R-square 0.4605 0.4450 0.4467 0.3782 0.3649 0.3760
Obs 806 806 806 806 806 806
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Nonmanufacturing
ln(K/Y) 0.0573*** 0.0451*** 0.0432***
(std.) (0.0050) (0.0050) (0.0040)
ln(Y) 0.0518***
(std.) (0.0050)
ln(K/VA) 0.0509*** 0.0550*** 0.0396***
(std.) (0.0040) (0.0040) (0.0040)
ln(VA) 0.0424***
(std.) (0.0040)
ln(Ws/Wu) 0.1391*** 0.1392***
(std.) (0.0080) (0.0080)
t 0.0040*** 0.0025*** 0.0044*** 0.0040*** 0.0026*** 0.0044***
(std.) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R-square 0.2491 0.1809 0.3392 0.2414 0.1756 0.3299
Obs 806 806 806 806 806 806
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 17: Regression results for manufacturing and nonmanufacturing sectors

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). wu/ws is
skilled-unskilled wage premium, K/Y is capital–output ratio, and Y is output. V A is value added volume index.
Robust standard error are listed in the parenthesis ***Significantly different from 0 at the 1 % level.

2.3.2 Threshold Estimation

Unlike the previous section in which we arbitrarily split the data into manufacturing and nonmanufacturing

sectors, we follow Hansen (1999) and Hansen (2000) to endogenously determine the subsamples in the data

using the ’share equation’ (Equation 34). 27 Hansen develops a statistical theory of threshold estimation in

the linear regression context in which the fixed-effect estimation is considered, and an asymptotic distribution

theory for the regression estimates is developed. 28 In this study, we endogenously split the sectors using

27The threshold estimation analysis in this section is based on the baseline model (Model 3). In the robustness checking
section, threshold estimations are done using the alternative models (Model 2 and Model 5, Model 6). Due to the potential
inaccuracy of results from single-variable estimations, we did not perform threshold estimations based on Model 1 and Model
4.

28For a detailed discussion of the statistic theory for threshold estimation in linear regression, see Hansen (1999),Hansen
(2000) and Caner and Hansen (2004).
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capital to output ratio (K/Y ) as a potential threshold variable. We choose the capital to output ratio as the

potential threshold variable because industries with a high capital to output ratio are more capital-intensive,

implying that they may have a different pattern of substituting capital for labour from less capital-intensive

industries. We postulate that the industries with a higher capital to output ratio typically employ less-skilled

workers and rely more on capital-intensive technologies, implying less sophisticated production processes.

Conversely, industries with a lower capital to output ratio generally require more sophisticated skills and

a higher level of education among their workforce, as a result, the accumulation of capital necessitates the

employment of more highly skilled labour to operate and manage machinery and equipment. 29 Table 18

represents the threshold estimation results.

The results reveal the existence of a sample division based on the capital to output ratio, which segregates

our complete sample of 26 industries into two distinct groups: a low capital to output ratio group, charac-

terised by a capital-output ratio below the estimated threshold of 0.9897 and a high capital to output ratio

group with a capital-output ratio above this threshold. Notably, the estimated threshold value is statistically

significant. Additionally, our results indicate that the coefficient γ1k (i.e., coefficient in front of ln(K/Y ))

exhibits a positive sign for the low capital to output ratio group, suggesting that an increase in the capital

to output ratio leads to an increase in the skilled labour share of the wage bill for this group. Conversely,

for the high capital to output ratio group, the estimated coefficient is negative. Table 19 presents the clas-

sification of industries into two distinct groups based on the estimated threshold value. The categorization

is based on the median value of the capital-output ratio (K/Y ) cross time for each industry, as shown in

Table 37 in Appendix A. Specifically, in Table 19, industries with a median K/Y value greater than the

estimated threshold value of 0.9897 are classified into group 1, while industries with a median K/Y value

lower than the threshold are categorised into group 2. The industries that belong to the manufacturing sector

are highlighted in bold in the table, while those not highlighted in bold are classified as non-manufacturing

industries.

29We acknowledge that other potential threshold variables can be used further to investigate non-linearity in the capital–skill
complementarity. We leave this investigation for future research.
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Threshold estimator (level = 95) Estimates Lower Upper

0.9897 0.9866 0.992

Threshold effect test RSS MSE Fstat P-value
Single 5.4248 0.0035 811.68 0.000

Fixed-effects (within) regression
ln(K/Y) Estimates P-value
0 0.0744976 0.000
1 -0.6335534 0.000
ln(Ws/Wu)
0 0.0592849 0.000
1 0.1890651 0.000

R-squared 0.1126
Obs 1612
Prob>F 0.000

Table 18: Threshold estimation based on baseline model (Model 3)

Note: The sample period is 1949 to 2010. The threshold estimation is based on our baseline model (Model 3) with

capital to output ratio (K/Y ) as the threshold variable.

Group 1 Group 2

K/Y>0.9897 K/Y<0.9798
1 AtB agriculture hunting forestry and fishing 2 C mining and quarrying
9 25 rubber and plastics 3 15t16 food beverages and tobacco
13 30t33 electrical and optical equipment 4 17t19 textiles textile leather and footwear
15 36t37 manufacturing nec; recycling 5 20 wood and of wood and cork
21 H hotels and restaurants 6 21t22 pulp paper paper printing and publishing
22 60t63 transport and storage 7 23 coke refined petroleum and nuclear fuel

8 24 chemicals and chemical products
10 26 other nonmetallic mineral
11 27t28 basic metals and fabricated metal
12 29 machinery nec
14 34t35 transport equipment
16 E electricity gas and water supply
17 F construction
18 51 wholesale trade and commission trade
19 50 sale maintenance and repair of motor vehicles
20 52 retail trade except of motor vehicles
23 64 post and telecommunications
24 J financial intermediation
26 71t74 renting of m&eq and other business activities
30 O other community social and personal services

Table 19: Industry classification based on threshold estimation

Note: The sample period is 1949 to 2010. This table displays the industry classification based on the threshold

estimation on our baseline model (Model 3). Industries that are categorised as manufacturing industries are

highlighted in bold, while those categorised as non-manufacturing industries are not highlighted.

In order to conduct a more in-depth investigation of the potential nonlinearity in the capital-skill com-

plementarity relationship across industries, as determined by the endogenous threshold methodology, we

direct our focus towards estimating the regression coefficients of Model 1 through Model 6 for two distinct

groups. The resulting coefficient estimates are presented in Table 20. All models’ estimated coefficients are
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strongly significant except for Model 2 in group 1. Specifically, in group 1, the coefficient γ1k consistently

displays a negative sign across all six models analysed. On the other hand, for group 2, the coefficients γ1k

for all models are positive and strongly significant. The findings from the analysis reject the capital-skill

complementarity hypothesis for industries in group 1, and suggest that in industries with high capital to

output ratios, capital and skill are substitutable factors of production, as evidenced by the consistently neg-

ative coefficients of γ1k across all six models in group 1. On the other hand, in industries with low capital to

output ratios, the results favour the capital-skill complementary hypothesis, as supported by the consistently

positive coefficients of all models in group 2.

Furthermore, in Table 19, only three of the six industries (i.e., industries with id of 9, 13, and 15) in

group 1 are categorised as manufacturing, while the remaining belong to the non-manufacturing sector.

Additionally, the majority of industries classified as manufacturing are placed in group 2 based on the

threshold value. As shown in Table 17, manufacturing industries consistently exhibit a negative sign for the

coefficient γ1k. Moreover, only three industries in the manufacturing group are categorized into group 1,

which indicates a negative sign for γ1k when using threshold estimation. Thus, the arbitrary categorization

of industries into manufacturing and non-manufacturing sectors may lead to misleading findings. In order to

further investigate this issue, we have removed the industries in group 1 from both the manufacturing and

non-manufacturing categories and re-estimated Model 1 through Model 6. The results are presented in Table

21. Not surprisingly, after removing industries with id of 9, 13, and 15 from the manufacturing group, the

coefficient γ1k becomes positive and statistically significant for Model 1 to Model 3, although the coefficients

are generally small in magnitude. However, for Model 4 through Model 6, the coefficients remained negative

and strongly insignificant. For the non-manufacturing group, after removing industries with id of 1, 21, and

22, the coefficients γ1k remain significant and positive for all six models. In the non-manufacturing sector, it

was also observed that after removing these industries, the γ1k coefficients were larger than those estimated

in Table 17, in which the industries were arbitrarily classified. Specifically, they were approximately 0.06,

0.05, 0.04, 0.05, 0.06, and 0.04 for Model 1 through Model 6 for industries arbitrarily classified as non-

manufacturing, and approximately 0.06, 0.06, 0.04, 0.06, 0.07, and 0.04 for the industries after removing

industries 9, 13, and 15 from non-manufacturing industries. This is because the arbitrary classification

of industries into non-manufacturing includes industries 1, 21, and 22, which exhibit statistically negative

coefficients, leading to a lower overall value of γ1k when estimating the entire non-manufacturing group.

These findings suggest that the results obtained from simply splitting the entire sample into manufacturing

and non-manufacturing sectors do not carry significant implications. This observation is consistent with our

exploration of an endogenous grouping of the sample into subsets that adhere to distinct statistical models.

In Table 20, several points merit attention. Firstly, including the log of Y and V A in Model 2 and

Model 5 yields positive and significant coefficients in both group 1 and group 2. However, when removing

industries in group 1 from the manufacturing and non-manufacturing categories, the coefficients in front

of Y are positive in non-manufacturing industries but turn negative in manufacturing industries (see Table

21). This finding suggests that the production function in manufacturing industries may be homothetic after

removing the high capital to output ratio industries, while it remains non-homothetic in other industries.

Secondly, it was observed that in all models, the coefficient for ws/wu (i.e., γ11) is positive and significant,

indicating that the elasticity of substitution between skilled and unskilled labour is less than unity, implying

a complementary relationship between these labour inputs.

Finally, we observe that in Table 20, the coefficient in front of (ws/wu) (i.e., γ11) for group 2 is greater

than that for group 1. Specifically, the coefficient is approximately 0.15 in Model 3 and Model 6 for group
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2 and only 0.10 in both Models for group 1. This result suggests that skilled and unskilled labour exhibit

more noticeable complementarity in the industries belonging to group 2. Table 22 presents a listing of

industries in descending order of the skilled-to-unskilled employment ratio,30 with industries belonging to

group 1 being highlighted in bold. Notably, most of the industries in group 1 are characterised by relatively

low education levels with a relatively small proportion of skilled labour. The electrical and optical industry

is the only exception, as it exhibits a relatively higher fraction of skilled workers. The median skilled-to-

unskilled employment ratio for industries in group 1 is approximately 0.12, while it is 0.16 for industries in

group 2 (detail see Table 38 in Appendix A). Therefore, our findings indicate that in the industry group with

higher median levels of education (group 2) with a greater proportion of skilled workers, the complementarity

between skilled and unskilled labour is more noticeable compared to industries with lower median levels of

education (group 1). For a more detailed discussion on this topic, please refer to Section 2.4 of our study.

30We aggregated the skilled-to-unskilled employment ratio by summing the values across time for each year. Using the median
value of this ratio for each year did not affect the quality of the results.
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Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Group 1
ln(K/Y) -0.0627*** -0.0011 -0.0535***
(std.) (0.0138) (0.0149) (0.0133)
ln(Y) 0.0575***
(std.) (0.0072)
ln(K/VA) -0.0678*** -0.0321*** -0.0650***
(std.) (-0.0043) (-0.0089) (0.0041)
ln(VA) 0.0290***
(std.) (0.0064)
ln(Ws/Wu) 0.1090*** 0.0936***
(std.) (0.0183) (0.0143)
t 0.0048*** 0.0028*** 0.0048*** 0.0043*** 0.0033*** 0.0043***
(std.) (0.0001) (0.0003) (0.0001) (0.0001) (0.0002) (0.0001)
R-square 0.4329 0.2893 0.4945 0.1805 0.1578 0.2231
Obs 372 372 372 372 372 372
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Group 2
ln(K/Y) 0.0446*** 0.0444*** 0.0307***
(std.) (0.0050) (0.0049) (0.0043)
ln(Y) 0.0299***
(std.) (0.0037)
ln(K/VA) 0.0186*** 0.0365*** 0.0137***
(std.) (0.0032) (0.0035) (0.0027)
ln(VA) 0.0343***
(std.) (0.0033)
ln(Ws/Wu) 0.1513*** 0.1559***
(std.) (0.0070) (0.0070)
t 0.0040*** 0.0032*** 0.0044*** 0.0045*** 0.0033*** 0.0048***
(std.) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
R-square 0.3862 0.3221 0.4134 0.4151 0.3208 0.4308
Obs 1240 1240 1240 1240 1240 1240
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 20: Regression results for industries in group 1 and group 2

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio and Y is output. VA is value added volume index.
Robust standard error are listed in the parenthesis ***Significantly different from 0 at the 1 % level.
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Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Manufacturing (excluding industries in group 1)
ln(K/Y) 0.017** 0.011 0.014**
(std.) (0.007) (0.008) (0.006)
ln(Y) -0.023***
(std.) (0.007)
ln(K/VA) -0.002 -0.008 -0.001
(std.) (0.004) (0.006) (0.003)
ln(VA) -0.008
(std.) (0.007)
ln(Ws/Wu) 0.138*** 0.139***
(std.) (0.010) (0.010)
t 0.004*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(std.) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R-square 0.469 0.491 0.416 0.462 0.471 0.412
Obs 620 620 620 620 620 620
Prob>F 0.000 0.000 0.000 0.000 0.000 0.000

Nonmanufacturing (excluding industries in group 1)
ln(K/Y) 0.061*** 0.055*** 0.039***
(std.) (0.007) (0.006) (0.006)
ln(Y) 0.052***
(std.) (0.005)
ln(K/VA) 0.057*** 0.069*** 0.040***
(std.) (0.006) (0.005) (0.005)
ln(VA) 0.043***
(std.) (0.004)
ln(Ws/Wu) 0.159*** 0.157***
(std.) (0.010) (0.010)
t 0.004*** 0.002*** 0.005*** 0.004*** 0.002*** 0.004***
(std.) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
R-square 0.325 0.231 0.459 0.317 0.227 0.450
Obs 620 620 620 620 620 620
Prob>F 0.000 0.000 0.000 0.000 0.000 0.000

Table 21: Regression results for manufacturing and nonmanufacturing sectors excluding the industries in
group 1

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio. VA is value added volume index. Robust standard
error are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level and ** denotes
significantly different from 0 at the 5 %.
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code High-educationn industries (from high to low) N h/N l code Low-education industries (from high to low) N h/N l

71t74 renting of m&eq and other business activities 0.53898735 64 post and telecommunications 0.1937005
J financial intermediation 0.43572977 36t37 manufacturing nec; recycling 0.16915695
24 chemicals and chemical products 0.34472345 34t35 transport equipment 0.16527641
30t33 electrical and optical equipment 0.25687565 C mining and quarrying 0.15018373
50 sale maintenance and repair of motor vehicles 0.24410074 29 machinery nec 0.13274616
O other community social and personal services 0.23813289 52 retail trade except of motor vehicles 0.12841383
23 coke refined petroleum and nuclear fuel 0.23772318 60t63 transport and storage 0.12588585
21t22 pulp paper paper printing and publishing 0.20493153 25 rubber and plastics 0.11646072
E electricity gas and water supply 0.20355606 51 wholesale trade and commission trade 0.10645388

15t16 food beverages and tobacco 0.10210159
27t28 basic metals and fabricated metal 0.09297724
26 other nonmetallic mineral 0.0926741
F construction 0.08507863
H hotels and restaurants 0.08228209
20 wood and of wood and cork 0.06163423
AtB agriculture hunting forestry and fishing 0.05525503
17t19 textiles textile leather and footwear 0.04317118

Table 22: Skilled-to-unskilled employment ratio

Notes: The sample period is 1949 to 2010. This figure lists the industries with skilled-to-unskilled employment
ratio Nh/Nl. The industries in group 1 are listed in bold.

2.4 Nonlinearity in Skilled and Unskilled Complementarity

This section focuses on investigating the nonlinearity in the complementarity between skilled and unskilled

workers. As shown in Table 22, the majority of industries belonging to group 1 are characterized by relatively

lower levels of education and a smaller proportion of skilled workers compared to the majority of industries

in group 2. Moreover, Table 20 demonstrates that the coefficients in front of (ws/wu) (i.e., γ11) are greater

for group 2 than for group 1, indicating a more substantial complementarity between skilled and unskilled

workers in the industries belonging high education group (group 2) than the low education group (group 1).

The categorization of group 1 and group 2 in Table 20 is determined by the threshold estimation procedure

conducted with our baseline model (Model 3). However, in the robustness check section, we performed

threshold estimations for alternative models (Model 2, Model 5, and Model 6), and the results indicate that

the nonlinearity in the complementarity between skilled and unskilled labour across industries with different

education levels remains robust to different group classifications based on alternative threshold estimations.

For detailed information, please refer to Section 2.6.

To gain deeper insights into the relationship between the complementarity of the two types of workers

and education levels in industries, we conduct an alternative threshold estimation following the methodology

proposed by Hansen (2000), using the skilled-to-unskilled employment ratio in each industry as the threshold

variable. The results of the threshold estimation are presented in Table 23. The outcomes reveal the existence

of a threshold value based on the skilled-to-unskilled employment ratio, which effectively segregates the

complete sample of 26 industries into two distinct groups: industries with low education characterised by

a skilled-to-unskilled employment ratio below the estimated threshold of 0.1108 and industries with high

education characterised by a skilled-to-unskilled employment ratio above this threshold. Specifically, for

industries with a skilled-to-unskilled employment ratio larger than the threshold value, the coefficient in

front of ws/wu (i.e., γ11) is approximately 0.20, which is about four times greater than the coefficient for

industries with a skilled-to-unskilled employment ratio less than the threshold value, approximately 0.05. The

classification of industries based on the estimated threshold value is presented in Table 24. This classification

is based on the value of the aggregated skilled-to-unskilled employment ratio (S/U) for each industry, as
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indicated in Table 41 in Appendix A. 31

Through out Model 1 to Model 6, only our baseline model (Model 3) and Model 6 contains (ws/wu)

variable, we then re-estimate our baseline model (Model 3) and Model 6 for two groups split according to

threshold estimation using (S/U) as threshold variable, and the coefficient estimates obtained are presented

in Table 25. The results show that in both models the γ11 coefficients are positive and statistically significant

in both groups, indicating a complementary relationship between skilled and unskilled labour inputs, with

the elasticity of substitution between these labour inputs being less than unity. Furthermore, we observe that

the coefficient γ11 is approximately 0.11 for industries with relatively low education levels and about 0.15 for

industries with high education levels in both models. These findings provide evidence of the disparity in the

complementarity between skilled and unskilled labour in industries with varying education levels. Moreover,

the results are consistent with the observations from Table 22 and Table 20, suggesting that industries with

higher levels of education display a more noticeable complementarity between skilled and unskilled workers

than industries with a relatively lower proportion of skilled employees.

Threshold estimator (level = 95) Estimates Lower Upper

0.1108 0.1097 0.1115

Threshold effect test RSS MSE Fstat p-value
Single 1.831 0.001 1350.34 0.000

Fixed-effects (within) regression
ln(K/Y) estimates p-value
0 0.0279667 0.000
1 0.0467715 0.000
ln(Ws/Wu)
0 0.0523841 0.000
1 0.1998515 0.000

R-squared 0.9126
Obs 1860
Prob>F 0.000

Table 23: Threshold estimation based on baseline model (Model 3)

Note: The sample period is 1949 to 2010. The threshold estimation is based on our baseline model (Model 3) with

skilled-to-unskilled employment ratio as threshold variable.

31For each industry, we aggregated the skilled-to-unskilled employment ratio by summing the values across time for each
year. Using the median value of this ratio for each year did not affect the quality results.
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High education levels S/U>0.1108 Low education levels S/U<0.1108

id Code Industry id Code Industry
26 71t74 Renting of m&eq and other business activities 18 51 Sale maintenance and repair of motor vehicles and motorcycles; retail sale of fuel
24 J Financial intermediation 3 15t16 Food products beverages and tobacco
8 24 Chemicals and chemical products 11 27t28 Basic metals and fabricated metal products
13 30t33 Electrical and optical equipment 10 26 Other non-metallic mineral products
19 50 Wholesale trade and commission trade except of motor vehicles and motorcycles 17 F Construction
30 O Other community social and personal services 21 H Hotels and restaurants
7 23 Coke refined petroleum products and nuclear fuel 5 20 Wood and products of wood and cork
6 21t22 Pulp paper paper products printing and publishing 1 AtB Agriculture hunting forestry and fishing
16 E Electricity gas and water supply 4 17t19 Textiles textile products leather and footwear
23 64 Post and telecommunications
15 36t37 Manufacturing nec; recycling
14 34t35 Transport equipment
2 C Mining and quarrying
12 29 Machinery nec
20 52 Retail trade except of motor vehicles and motorcycles; repair of household goods
22 60t63 Transport and storage
9 25 Rubber and plastics products

Table 24: Industry classification based on skilled-to-unskilled employment ratio

Note: The sample period is 1949 to 2010. This table displays the industry classification based on the threshold

estimation on our baseline model (Model 3).

Model 3 Model 6

Variable High education group Low education group High education group Low education group
ln(K/Y) 0.0102*** 0.0029*** -0.0079*** -0.0066**
(std.) (0.0035) (0.0037) (0.0035) (0.0032)
ln(Ws/Wu) 0.1532*** 0.1099*** 0.1554*** 0.1093***
(std.) (0.0070) (0.0060) (0.0070) (0.0060)
t 0.0049*** 0.0033*** 0.0052*** 0.0035***
(std.) (0.0001) (0.0001) (0.0001) (0.0001)
R-square 0.450 0.750 0.458 0.745
Obs 1550 620 1550 620
Prob>F 0.0000 0.0000 0.0000 0.0000

Table 25: Regression results for high-education group and low-education group

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio. VA is value added volume index. Robust standard
error are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level and ** denotes
significantly different from 0 at the 5 %.

2.5 Time Break in Capital-Skill Complementarity

In Figure 16, we aggregate the skilled-to-unskilled relative employment ratio and the capital-to-output (K/Y )

ratio for industries in group 1 and group 2 and plot the series over the sample period. For industries in

group 2, the ratio of skilled to unskilled employment and the capital to output ratio both exhibited consistent

growth throughout the sample period. Nonetheless, there was a slight decline in the growth rate of the capital

to output ratio after 1980. In contrast, for the industries in group 1, the capital to output ratio remained

relatively flat between 1949 and 1980, and it started to decline from 1980 onwards. Additionally, the rate

of increase in the skilled-to-unskilled employment ratio was lower during the period around 1980 onwards.

These observations suggest the possibility of a time break in the non-linearity of the relationship between

capital stock and skilled labour throughout the sample period.

Motivated by the observations presented in Figure 16, in this section, we conduct a more detailed inves-

tigation of the potential non-linearity in the capital-to-skill complementarity/substitution relationship for

industries in group 1 and group 2 by re-estimating the threshold estimation using the year as the threshold

variable. The results of this analysis are presented in Table 26. The findings indicate that there exists a
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threshold split for the period before and after 1979 for group 1, although the p-value is relatively large (about

0.2). The coefficients in front of ln(K/Y ), i.e., γ1k, are approximately -0.06 for the period before 1980, and

it increases to about -0.08 from 1980 onwards, and these estimates are statistically significant. On the other

hand, for group 2, the p-value for the threshold estimation is 0.543, suggesting that there is strong evidence

for no split based on the year for the industries in group 2.

Table 27 presents the estimation results for industries in group 1 for two distinct periods based on the

time horizon threshold estimation. Our analysis revealed several key findings that are worth highlighting.

Firstly, the models consistently show negative coefficients (γ1k) in front of ln(K/Y ), which indicates that

capital and skilled labour are relatively more substitutive in group 1. This finding aligns with the consistently

negative coefficients observed in group 1 in Table 20. Moreover, the coefficient in Model 2 is not statistically

significant, while they are statistically significant at the 1% level in the remaining models (Model 1 and

Model 3 to Model 6). Secondly, the magnitude of the estimates for γ1k is very similar to those obtained

in group 1 from Table 20. In addition, Additionally, similar to the findings in Table 20, in our baseline

model (Model 3) and Model 6, the coefficient for ws/wu (γ11) is positive and statistically significant for

both periods, implying a complementary relationship between skilled and unskilled labour across the entire

sample period. Furthermore, the coefficient for ws/wu is smaller from 1980 onwards for both models (Model

3 and Model 6), indicating a potentially less profound complementarity between skilled and unskilled labour.

Thirdly, the coefficients in front of Y (Model 2) and front of V A (Model 5) are positive and significant. This

finding suggests that the production function in industries in group 1 may be non-homothetic, and this trend

persists throughout the entire sample period, and again, it is consistent with results in Table 20. Lastly, and

most importantly, our results indicate that the capital-skill substitution for industries in group 1 is more

pronounced between 1980 to 2010 than in the period before 1980. The coefficients γ1k are larger in absolute

value for the period from 1980 onwards than before 1980 for all models except for Model 4 32. The results

of our analysis, which indicate a more pronounced capital-skill substitution for industries in group 1 from

1980 onwards, are consistent with the more profound negative relationship between the capital to output

ratio and skilled-to-unskilled employment ratio observed in Figure 16. Additionally, this finding aligns with

the results obtained from the threshold estimation analysis presented in Table 26 for industries in group 1.

32Since the coefficients in Model 2 are not statistically significant, we disregard it for this analysis.



69

Figure 16: Skilled-to-unskilled relative employment ratio and capital-to-output ratio for group 1 and group
2
Notes: The sample period is 1949-2010. This figure plots the skilled-to-unskilled relative employment ratio

and capital to output ratio for group 1 (industries with K/Y > 0.9897) and group 2 (industries with
K/Y <= 0.9897).

Group 1 Group 2

Threshold estimator (level = 95) Estimates Lower Upper Estimates Lower Upper
1979 1976 1980 1980 1978 1981

Threshold effect test RSS MSE Fstat P-value RSS MSE Fstat P-value
Single 0.6476 0.0021 49.76 0.197 2.0321 0.0015 36.73 0.543

Fixed-effects (within) regression
ln(K/Y) estimates P-value ln(K/Y) estimates P-value
0 -0.0558492 0.000 0 0.0125871 0.001
1 -0.080821 0.000 1 -0.0015471 0.824
ln(Ws/Wu) ln(Ws/Wu)
0 0.0487648 0.013 0 0.141738 0.000
1 0.1962876 0.000 1 0.1829981 0.000

R-squared 0.5017 R-squared 0.3165
Obs 372 Obs 1426
Prob>F 0.000 Prob>F 0.000

Table 26: Threshold estimation based on baseline model (Model 3)

Note: The sample period is 1949 to 2010. The process of threshold estimation is founded on our baseline model

(Model 3) with the year as the threshold variable. Group1 and group 2 are splited based on threshold estimation

results with K/Y as threshold variable. Group 1 contains the industries with the aggregated value of K/Y larger

than 0.9798, the rest of industries are classfied into group 2.
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Specification Model 1 Model 2 Model 3

1949-1979 1980-2010 1949-1979 1980-2010 1949-1979 1980-2010
ln(K/Y) -0.0630*** -0.0720*** 0.0100 -0.0018 -0.0537*** -0.0588***
(std.) (0.0145) (0.0002) (0.0163) (0.0164) (0.0139) (0.0143)
ln(Y) 0.0619*** 0.0586***
(std.) (0.0079) (0.0079)
ln(K/VA)
(std.)
ln(VA)
(std.)
ln(Ws/Wu) 0.1136*** 0.0990***
(std.) (0.0193) (0.0217)
t 0.0048*** 0.0049*** 0.0025*** 0.0027*** 0.0049*** 0.0049***
(std.) (0.0002) (0.0002) (0.0003) (0.0003) (0.0001) (0.0002)
R-square 0.4365 0.3915 0.2735 0.2630 0.4975 0.4483
Obs. 341 341 341 341 341 341
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Specification Model 4 Model 5 Model 6
1949-1979 1980-2010 1949-1979 1980-2010 1949-1979 1980-2010

ln(K/Y)
(std.)
ln(Y)
(std.)
ln(K/VA) -0.0680*** -0.0678*** -0.0280*** -0.0310*** -0.0652*** -0.0653***
(std.) (0.0043) (0.0044) (0.0095) (0.0096) (0.0041) (0.0042)
ln(VA) 0.0325*** 0.0300***
(std.) (0.0069) (0.0070)
ln(Ws/Wu) 0.0967*** 0.0886***
(std.) (0.0149) (0.0167)
t 0.0043*** 0.0043*** 0.0031*** 0.0033*** 0.0044*** 0.0043***
(std.) (0.0001) (0.0001) (0.0003) (0.0003) (0.0001) (0.0001)
R-square 0.1700 0.1607 0.1402 0.1395 0.2144 0.1928
Obs. 341 341 341 341 341 341
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 27: Regression results for group 1 in periods 1949 to 1979 and 1980 to 2010.

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio and Y is output. VA is value added volume index.
Robust standard error are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level.

The regression results for group 2 for both distinct periods are summarized in Table 39 in the Appendix A.

Again, all estimates are statistically significant, and the magnitude of estimates is very similar to the estimates

obtained in group 2 from Table 20. Similar to the results of the time-horizon threshold estimation, there is no

apparent non-linearity in capital-skill complementarity for periods before and after 1980. Specifically, Model

1, Model 2, and Model 5 show that the coefficients γ1k are smaller in absolute value during the period from

1980 to 2010 than the period before 1980. On the other hand, in our baseline model (Model 3), Model 4, and

Model 6, the coefficients γ1k are larger for periods after 1980, with larger γ1k. However, the differences in

γ1k between the two periods are minimal across all models, indicating that there is no apparent non-linearity

in capital-skill complementarity for both periods.
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2.6 Robustness Check

This section is dedicated to investigating the robustness of the results. To achieve this, we employ several

alternative models to conduct threshold estimations, which enable us to scrutinize the non-linearity in

capital-skill complementarity across industries. We then perform a Chow test to check for structural breaks.

Furthermore, we examine the robustness of the non-linearity in skilled and unskilled complementarity using

alternative threshold estimations.

2.6.1 Threshold Estimations Using Alternative Models

In this section, we investigate the robustness of our threshold results by considering several alternative

specifications in addition to our baseline model (Model 3). Specifically, we analyse Model 2, Model 5, and

Model 6. Due to the potential inaccuracy of results from single-variable estimations, we did not perform

threshold estimations based on Model 1 and Model 4. The results of these analyses are presented in Table 28.

The key finding is that regardless of the model specifications employed, the outcomes imply a straightforward

division based on the ratio of capital to output. We obtain capital to output ratio threshold values of 0.8185,

0.8640, and 0.8721 for Model 2, Model 5, and Model 6, respectively. Table 40 (in Appendix A) displays the

classification of industries based on the threshold estimation results obtained from the alternative models.

As before, the industries listed in bold represent manufacturing industries.

For the classification based on Model 2, we observe that the high capital to output ratio group 1 now com-

prises ten industries, five of which are manufacturing industries and the remaining are non-manufacturing.

Conversely, the low capital to output ratio group 2 includes 16 industries, with eight of them being manu-

facturing industries. Notably, industries with ID numbers 10, 11, 29, and 30 move from group 2 to group

1 when we use Model 2 to conduct the threshold estimation compared using the benchmark Model 3. The

classification based on the threshold estimation obtained from Model 5 and Model 6 is the same, as these

models’ threshold values are very similar. Compared to the classification in Model 2, only the industry with

id number 11 moves out of group 1. To assess the robustness of our results for the high capital to output ratio

and low-intensity groups, we re-estimated Model 1 through Model 6 for group 1 (industries with high capital

to output ratio) and group 2 (industries with low capital to output ratio) using the threshold estimations

obtained from the alternative model specifications. The results of the estimations, with groups classified

based on Model 2, are presented in Table 29, while the results with groups classified based on Model 5 and

Model 6 are shown in Table 30.

The findings indicate that the coefficient estimates for both classifications bear a remarkable resemblance

to those provided in Table 20. Notably, in Table 29, the estimates for γ1k are consistently negative for group

1 and positive for group 2 across all six models. In group 1, the coefficients in all models but Model 2 and

Model 6 are statistically significant at the 1% level; the coefficient is significant at 5% level for Model 6,

and it is strongly insignificant in Model 2. And coefficients in group 2 are significant at 1% level across all

models. Furthermore, Table 30 reveals that for all six models, γ1k estimates are consistently positive for

group 2, while for group 1, they are negative for all models except Model 2 where it is positive but strongly

statistically insignificant. The coefficients are significant at the 1% level in the rest of the models for both

groups, except for Model 6 in group 1, which is significant at the 10% level. These findings reinforce our

primary result, which indicates that in industries with high capital to output ratios, capital and skill are

substitutable factors of production, while in industries with low capital to output ratios, capital and skill

are complementary. These robustness checks provide additional evidence supporting our key findings and
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underscore the reliability and validity of our results. In addition, the significance of the findings suggests that

the threshold estimation derived from our baseline model (Model 3) outperforms the estimations obtained

from Model 2, Model 5, and Model 6.
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Model 2

Threshold estimator (level = 95) Estimates Lower Upper
0.8185 0.8068 0.8200

Threshold effect test RSS MSE Fstat P-value
Single 3.1011 0.002 239.22 0.007

Fixed-effects (within) regression
ln(K/Y) estimates P-value
0 0.1028105 0.000
1 0.2491137 0.000
ln(Y)
0 0.0866742 0.000
1 0.1071001 0.000

R-squared 0.1427
Obs 1612
Prob>F 0.000

Model 5 Model 6
Threshold estimator (level = 95) Estimates Lower Upper Threshold estimator (level = 95) Estimates Lower Upper

0.864 0.8565 0.8681 0.8721 0.8652 0.874

Threshold effect test RSS MSE Fstat P-value Threshold effect test RSS MSE Fstat P-value
Single 3.1067 0.002 210 0.033 Single 6.3456 0.0041 654.22 0.000

Fixed-effects (within) regression Fixed-effects (within) regression
ln(K/VA) estimates P-value ln(K/VA) estimates P-value
0 0.0793396 0.000 0 0.1323592 0.000
1 -0.0024052 0.000 1 -0.132715 0.000
ln(VA) ln(Ws/Wu)
0 0.0855148 0.000 0 0.0373797 0.002
1 0.0944679 0.000 1 0.1352968 0.000

R-squared 0.0976 R-squared 0.0419
Obs 1612 Obs 1612
Prob>F 0.000 Prob>F 0.000

Table 28: Threshold estimations based on alternative models (Model 2, Model 5 and Model 6)

Note: The sample period is 1949 to 2010. The threshold estimations are based on alternative models (Model 2, Model 5 and Model 6) with capital to output

ratio (K/Y ) as threshold variable.
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Group 1 K/Y>0.8185

Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
ln(K/Y) -0.0445*** -0.0053 -0.0264***
(std.) (0.0073) (0.0078) (0.0067)
ln(Y) 0.0475***
(std.) (0.0047)
ln(K/VA) -0.0503*** -0.0130** -0.0444***
(std.) (0.0029) (0.0052) (0.0026)
ln(VA) 0.0345***
(std.) (0.0041)
ln(Ws/Wu) 0.1298*** 0.1124***
(std.) (0.0102) (0.0086)
t 0.0048*** 0.0031*** 0.0048*** 0.0045*** 0.0033*** 0.0046***
(std.) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
R-square 0.4883 0.3670 0.5149 0.2863 0.2352 0.3318
Obs 744 744 744 744 744 744
Porb.>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Group 2 K/Y<0.8185
Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
ln(K/Y) 0.0465*** 0.0471*** 0.0207***
(std.) (0.0062) (0.0061) (0.0057)
ln(Y) 0.0261***
(std.) (0.0046)
ln(K/VA) 0.0467*** 0.0533*** 0.0295
(std.) (0.0047) (0.0048) (0.0043)
ln(VA) 0.0201***
(std.) (0.0043)
ln(Ws/Wu) 0.1499*** 0.1436***
(std.) (0.0094) (0.0092)
t 0.0041*** 0.0034*** 0.0048*** 0.0040*** 0.0033*** 0.0046***
(std.) (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
R-square 0.3645 0.3080 0.4102 0.3407 0.3001 0.3860
Obs 868 868 868 868 868 868
Porb.>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 29: Regression results for group 1 and group 2 based on thereshold estimation of Model 2

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio and Y is output. VA is value added volume index.
Robust standard error are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level. **
denotes significant at the 5 % level.
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Group 1 K/Y>0.8721

Spesification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
ln(K/Y) -0.0307*** 0.0035 -0.0142***
(std.) (0.0080) (0.0083) (0.0073)
ln(Y) 0.0460***
(std.) (0.0049)
ln(K/VA) -0.0473*** -0.0100* -0.0421***
(std.) (0.0030) 0.0054 (0.0028)
ln(VA) 0.0349***
(std.) (0.0043)
ln(Ws/Wu) 0.1289*** 0.1117***
(std.) (0.0105) (0.0090)
t 0.0049*** 0.0033*** 0.0049*** 0.0046*** 0.0033*** 0.0047***
(std.) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
R-square 0.5088 0.3963 0.5326 0.3171 0.2631 0.3619
Obs 682 682 682 682 682 682
Porb.>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Group 2 K/Y<0.8640
Spesification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
ln(K/Y) 0.0465*** 0.0493*** 0.0246***
(std.) (0.0061) (0.0059) (0.0056)
ln(Y) 0.0323***
(std.) (0.0044)
ln(K/VA) 0.0470*** 0.0555*** 0.0302***
(std.) (0.0047) (0.0048) (0.0043)
ln(VA) 0.0272***
(std.) (0.0041)
ln(Ws/Wu) 0.1534*** 0.1491***
(std.) (0.0093) (0.0090)
t 0.0039*** 0.0030*** 0.0046*** 0.0039*** 0.0030*** 0.0044***
(std.) (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
R-square 0.3448 0.2736 0.3914 0.3248 0.2669 0.3696
Obs 930 930 930 930 930 930
Porb.>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 30: Regression results for group 1 and group 2 based on thereshold estimation of Model 5 and Model
6

Notes: Sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu is
skilled-unskilled wage premium, K/Y is capital–output ratio and Y is output. VA is value added volume index.
Robust standard error are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level. *
denotes significant at the 10 % level.

2.6.2 Chow Test for Structural Change

Secondly, we perform Chow tests for our six models to examine whether our arbitrarily chosen subsamples

(manufacturing and non-manufacturing) and endogenously determined groups (Group 1 and Group 2) are

structurally different. Table 31 displays the outcomes of the structural change test conducted for both the

manufacturing and non-manufacturing sectors. The test rejects no structural change for all six models.

Moreover, the coefficients γ1k for the manufacturing sector are negative across all six models and are statis-

tically significant when we use Model 1, Model 3, Model 4, and Model 6. At the same time, it is insignificant
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when we use Model 2 and Model 5. Conversely, the coefficients for the non-manufacturing industries are

statistically positive for all six models. Upon examining the results presented in Table 17, it is noteworthy

that both Model 2 and Model 5 perform relatively poorly compared to the other models in both sectors,

with the lowest adjusted R-squared values.

We have also tested the structural change between endogenously determined groups using Hansen (2000)

methodology based on our baseline model (Model 3) and alternative models (Model 2, Model 5 and Model

6). Table 32 displays the outcomes of a structural change test conducted on two groups, namely Group 1

and Group 2. The results are presented in three panels. The first panel depicts the test results when the

classification is determined based on the threshold estimation of the baseline model, which is Model 3. The

second panel presents the test results when the classification is based on Model 2. The third panel illustrates

the test results when the classification is based on Model 5 and Model 6. In all panels, the Chow test rejects

no structural change for all models. Furthermore, the coefficients γ1k exhibit consistent statistical significance

and negativity for group 1 (i.e., industries with high capital to output ratio) and statistical significance and

positive coefficients for group 2 (i.e., industries with low capital to output ratio). These findings align with

our baseline results and provide robust evidence of non-linearity in the capital-skill complementarity between

our endogenously determined groups.

Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Manufacturing & Non-manufacturing
Test statistic 47.750*** 24.710*** 38.980*** 142.010*** 66.390*** 127.890***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Manufacturing -0.009* -0.002 -0.009* -0.026*** -0.005 -0.024***
P-value (0.083) (0.747) (0.067) (0.000) (0.183) (0.000)
ln(K/Y) for Non-manufacturing 0.033*** 0.035*** 0.025*** 0.030*** 0.037*** 0.024***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 31: Chow tests testing structural change between manufacturing and nonmanufacturing sectors

Notes: The sample period is 1949-2010. This table shows the test results for structural change in manufacturing
and nonmanufacturing sectors. *** denotes significantly different from 0 at the 1 % level; ** denotes significant
at the 5 % level, and * denotes significant at the 10 % level.

2.6.3 LR-Tests for Non-nested Linear Regression Models

A careful look at the results from Table 20, Table 27, and Table 39 (in Appendix A), the results for group

1 whose that Model 3 performs best fit than the rest of the models with the largest adjusted R-squared.

However, the results for group 2 show that Model 6 has the best fit among all models. We employed a

likelihood ratio test to test for non-nested linear regression models to compare among models. 33 The

likelihood ratio test compares the fit of the two models by calculating the difference between their log-

likelihoods. This difference is known as the likelihood ratio statistic, and it is calculated as the log-likelihood

of the Model i minus the log-likelihood of the Model j. A small p-value indicates that the difference in fit

between the two models is statistically significant and that Model i is a better fit than Model j.

The likelihood ratio test was conducted on the industries belonging to group 1 and group 2, and the test

outcomes are presented in Table 33. The results for group 1 reveal that the test repudiates Model 2, Model

5, and Model 6, which aligns with our assertion that our baseline model (Model 3) dominates the rest of the

33Notice that out of six models, Model 2, Model 3, Model 5, and Model 6 are non-nested.
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Group 1 & Group 2 (Baseline Model)

Test statistic 45.930*** 13.440*** 36.220*** 198.760*** 88.920*** 206.850***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Group 1 -0.068*** -0.025* -0.056*** -0.064*** -0.053*** -0.060***
P-value (0.000) (0.077) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Group 2 0.026*** 0.028*** 0.020*** 0.018*** 0.022*** 0.015***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Group 1 & Group 2 (Model 2)

Test statistic 75.960*** 51.970*** 39.030*** 310.350*** 183.800*** 249.170***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Group 1 -0.043*** -0.030*** -0.028*** -0.050*** -0.034*** -0.044***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Group 2 0.027*** 0.032*** 0.018*** 0.033*** 0.038*** 0.026***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Group 1 & Group 2 (Model 5 & Model 6)

Test statistic 30.830*** 20.270*** 11.870*** 229.820*** 119.580*** 187.840***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ln(K/Y) for Group 1 -0.027*** -0.014*** -0.014* -0.048*** -0.027*** -0.042***
P-value (0.000) (0.000) (0.076) (0.000) (0.000) (0.000)
ln(K/Y) for Group 2 0.022*** 0.028*** 0.014*** 0.028*** 0.035*** 0.021***
P-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 32: Chow tests testing structural change between group 1 and group 2 based on various threshold
estimations

Notes: The sample period is 1949-2010. The table displays the outcomes of structural change tests conducted on
group 1 and group 2. The first panel depicts the test results when the classification is determined based on the
threshold estimation of the baseline model, which is Model 3. The second panel presents the test results when
the classification is based on Model 2. The third panel illustrates the test results when the classification is based
on Model 5 and Model 6. *** denotes significantly different from 0 at the 1 % level; ** denotes significant at the
5 % level, and * denotes significant at the 10 % level.
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models. However, the test results for group 2 contradict our hypothesis that the test indicates Model 5 as

the superior non-nested model.

Group 1 K/Y>0.9897 Model 3 v.s. Model 2 Model 3 v.s. Model 5 Model 3 v.s. Model 6

Test Statistic 24.96 160.05 181.18
P-value 0.000 0.000 0.000

Group 2 K/Y<=0.9897 Model 5 v.s. Model 2 Model 5 v.s. Model 3 Model 5 v.s. Model 6
Test Statistic 5.21 347.35 322.180
P-value 0.023 0.000 0.000

Table 33: Likelihood ratio test for non-nested models

Notes: Models 2,3,5, and Model 6 are non-nested models. The likelihood ratio statistic is calculated by, for
example, for Model 3 v.s. Model 2, the log-likelihood of Model 3 minums the log-likelihood of Model 2. A small
p-vale indicates that the difference in fit between the two models is statistically significant and that Model 3 is
better than Model 2.

2.6.4 Nonlinearity in Skilled and Unskilled Complementarity under Alternative Threshold

Estimations

In this section, we aim to investigate the robustness of the nonlinearity in skilled and unskilled complemen-

tarity across industries with different education levels under alternative threshold estimations.

In section 2.6.1, we conducted threshold estimations based on Model 2, Model 5, and Model 6 using

the capital to output ratio as the threshold variable. Based on the estimation outcomes, industries were

re-classified, and the new classifications are presented in Table 40. Furthermore, Table 29 and Table 30 show

the estimation results from Model 1 to Model 6 based on the updated classification of industries.

The outcomes from both tables (Table 29 and Table 30) indicate that the coefficient in front of (ws/wu)

(i.e., γ11) is positive and statistically significant. Moreover, the coefficient γ11 is larger in group 2 than

in group 1. Specifically, in Table 29, the γ11 coefficient for group 1 (industries with a capital to output

ratio larger than the threshold value) is approximately 0.13 and 0.11 for Model 3 and Model 6, respectively.

Meanwhile, for group 2 (industries with a capital to output ratio less than the threshold value), the γ11

coefficients are about 0.15 in Model 3 and 0.14 in Model 6. Similarly, in Table 30, the coefficients γ11 for

group 1 are about 0.13 and 0.11 for the two models and approximately 0.15 for group 2.

To assess the education levels of employees in the two groups based on alternative threshold estimations,

we calculated the median of aggregated skilled-to-unskilled employment ratio for each group under each

classification, and the results are presented in Table 34. The top panel of the table shows the outcomes for

groups based on the threshold estimation of Model 2. In group 1, the median skilled-to-unskilled employment

ratio is approximately 0.12, while the median for industries in group 2 is around 0.16. These findings suggest

that the employees in the industries belonging to group 1 have relatively lower education levels than those

in the industries belonging to group 2. The table’s bottom panel displays the outcomes for groups based

on the threshold estimation of Model 5 and Model 6. Like the top panel, the results demonstrate a notable

resemblance, where employees in group 1 have relatively lower education levels than those in group 2.

Specifically, the median value of the skilled-to-unskilled employment ratio is about 0.13 and 0.15 in group 1

and group 2, respectively.

These results suggest that the nonlinearity in skilled and unskilled complementarity across industries with

different education levels is robust to different group classifications based on alternative threshold estimations.
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That is, an industrial group with higher levels of education display a more noticeable complementarity

between skilled and unskilled workers than an industry group with a relatively lower proportion of skilled

employees.

Model 2

Group 1 K/Y>0.8185 Group 2 K/Y<0.8185
id code industry Median (S/U) code industry Median (S/U)
1 AtB agriculture hunting forestry and fishing 0.0553 2 C mining and quarrying 0.1502
3 15t16 food beverages and tobacco 0.1021 4 17t19 textiles textile leather and footwear 0.0432
7 23 coke refined petroleum and nuclear fuel 0.2377 5 20 wood and of wood and cork 0.0616
9 25 rubber and plastics 0.1165 6 21t22 pulp paper paper printing and publishing 0.2049
10 26 other nonmetallic mineral 0.0927 8 24 chemicals and chemical products 0.3447
11 27t28 basic metals and fabricated metal 0.0930 12 29 machinery nec 0.1327
13 30t33 electrical and optical equipment 0.2569 14 34t35 transport equipment 0.1653
15 36t37 manufacturing nec; recycling 0.1692 16 E electricity gas and water supply 0.2036
19 50 sale maintenance and repair of motor vehicles 0.2441 17 F construction 0.0851
21 H hotels and restaurants 0.0823 18 51 wholesale trade and commission trade 0.1065
22 60t63 transport and storage 0.1259 20 52 retail trade except of motor vehicles 0.1284
30 O other community social and personal services 0.2381 23 64 post and telecommunications 0.1937

median 0.1212 24 J financial intermediation 0.4357
26 71t74 renting of m&eq and other business activities 0.5390

median 0.1577

Model 5 & Model 6

Group 1 K/Y>0.8721 Group 2 K/Y<0.8640
id code industry Median (S/U) code industry Median (S/U)
1 AtB agriculture hunting forestry and fishing 0.0553 2 C mining and quarrying 0.1502
3 15t16 food beverages and tobacco 0.1021 4 17t19 textiles textile leather and footwear 0.0432
7 23 coke refined petroleum and nuclear fuel 0.2377 5 20 wood and of wood and cork 0.0616
9 25 rubber and plastics 0.1165 6 21t22 pulp paper paper printing and publishing 0.2049
10 26 other nonmetallic mineral 0.0927 8 24 chemicals and chemical products 0.3447
13 30t33 electrical and optical equipment 0.2569 11 27t28 basic metals and fabricated metal 0.0930
15 36t37 manufacturing nec; recycling 0.1692 12 29 machinery nec 0.1327
19 50 sale maintenance and repair of motor vehicles 0.2441 14 34t35 transport equipment 0.1653
21 H hotels and restaurants 0.0823 16 E electricity gas and water supply 0.2036
22 60t63 transport and storage 0.1259 17 F construction 0.0851
30 O other community social and personal services 0.2381 18 51 wholesale trade and commission trade 0.1065

median 0.1259 20 52 retail trade except of motor vehicles 0.1284
23 64 post and telecommunications 0.1937
24 J financial intermediation 0.4357
26 71t74 renting of m&eq and other business activities 0.5390

median 0.1502

Table 34: Median of skilled-to-unskilled employment ratio

Note: The sample period is 1949 to 2010. This table displays the median of the skilled-to-unskilled employment

ratio for industries belonging to group 1 and group 2. The group classification is based on the threshold estimation

of Model 2, Model 5 and Model 6.

2.6.5 Time Break

Finally, we assess the reliability of our findings that the substitution of capital for skilled labour in industries

in group 1 is more pronounced in the period after 1980 than before. To achieve this, we create a dummy

variable that takes on a value of unity for the period after 1980 and zero otherwise. By multiplying this

dummy variable by the logarithm of the ratio of capital-to-output (ln(K/Y )) and the logarithm of the ratio

of capital to value-added (ln(K/V A)), we can investigate whether the coefficients in front of these variables

differ before and after 1980. We then re-estimate Model 1 to Model 6 using these modified variables. The

results of these robustness tests are presented in Table 35.

In general, including the dummy variables does not alter the main findings; the results reported in Table

20 for group 1 remain robust. Specifically, the coefficients in front of the logarithm of the capital-output

ratio (ln(K/Y )) and the logarithm of the capital-value added ratio (ln(K/V A)) (i.e., γ1k) continue to be

consistently negative and statistically significant for all models except for Model 2, indicating that capital
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and skilled labour are substitutes. Furthermore, the coefficients in front of the logarithm of the ratio of

skilled-to-unskilled wages (ln(ws/wu)) (i.e., γ11) remain positive and statistically significant, indicating that

skilled and unskilled labour are complementary. Additionally, the coefficients in front of the logarithm

of output (ln(Y )) and the logarithm of value-added (ln(V A)) continue to be statistically significant and

positive, suggesting that the production function is non-homothetic.

To investigate the time break in the effect of the logarithm of the capital-output ratio (ln(K/Y )) on

variable the dependent variable S, we examine the coefficients of the interaction terms between ln(K/Y ) or

ln(K/V A) and the time dummy. Only Model 3 shows positive but insignificantly estimated coefficients in

front of the interaction term out of the six models. For the other five models, the coefficients are negative

and strongly significant. These findings suggest that the negative relationship between skilled-labour share

of the wage bill (S) and the log of capital-output ratio ln(K/Y ) is more pronounced after 1980 than before,

indicating that capital-skill substitution is more noticeable in the later period.

Specification Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

1980 0.0451*** 0.0580*** 0.0318*** 0.0437*** 0.0505*** 0.0328***
(std.) (0.0111) (0.0102) (0.0110) (0.0084) (0.0082) (0.0082)
ln(K/Y) -0.0634*** 0.0182 -0.0603*** -0.0679***
(std.) (0.0143) (0.0160) (0.0138) (0.0041)
ln(K/Y)*1980 -0.0124*** -0.0720*** 0.0172 -0.0031***
(std.) (0.0231) (0.0221) (0.0228) (0.0051)
ln(Y) 0.0643***
(std.) (0.0073)
ln(K/VA) -0.0247*** -0.0658***
(std.) (0.0092) (0.0040)
ln(K/VA)*1980 -0.0132*** 0.0046
(std.) (0.0053) (0.0050)
ln(VA) 0.0344***
(std.) (0.0066)
ln(Ws/Wu) 0.1041*** 0.0892***
(std.) (0.0186) (0.0144)

t 0.0037*** 0.0013*** 0.0040*** 0.0032*** 0.0020*** 0.0035***
(std.) (0.0003) (0.0004) (0.0003) (0.0002) (0.0003) (0.0002)
R-square 0.434 0.266 0.497 0.182 0.1468 0.229
Obs. 372 372 372 372 372 372
Prob>F 0.000 0.000 0.000 0.000 0.000 0.000

Table 35: Time break analysis

Notes: The sample period is 1949-2010. The dependent variable is the skilled-labour share of the wage bill (S).
ws/wu is skilled-unskilled wage premium, K/Y is capital–output ratio, and Y is output. VA is a value-added
volume index. 1980 is a dummy variable equal to one if the period is from 1980 onward. Robust standard errors
are listed in the parenthesis. *** denotes significantly different from 0 at the 1 % level. * denotes significant at
the 10 % level.

2.7 Discussion

Our main results can be summarized as follows: First, when we arbitrarily divide the entire sample into

manufacturing and nonmanufacturing sectors, the results indicate that manufacturing industries exhibit

capital-skill substitution while nonmanufacturing industries exhibit capital-skill complementarity. However,
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when we employ Hansen (2000) data-sorting methodology, we find evidence in favour of non-linearity in

capital-skill complementarity and the presence of two industry groups endogenously determined based on a

capital to output ratio. In addition, we find most of the industries in manufacturing sectors belong to the

relatively low capital to output ratio group. And when we remove the industries in which the capital to

output ratio is higher than the threshold value from the manufacturing sector, the results suggest that we

cannot reject the null hypothesis of capital-skill complementarity. Therefore, arbitrarily splitting industries

into manufacturing and nonmanufacturing sectors can lead to misleading results. This could be due to the

sensitivity of fixed effect estimation to the outliers and influential observations. The existence of capital-skill

complementarity in manufacturing sectors which is after refining is qualitatively consistent with existing

literature which provides evidence of capital-skill complementarity in the manufacturing sector in the U.S.

economy (for example, see Goldin and Katz (1998), Berman et al. (1994)).

Second, when we apply the estimation on to two groups which are endogenously determined, we find in

the industry groups with high capital to output ratio, the null hypothesis of capital-skill complementarity

hypothesis is rejected, but is not rejected in the industry group with low capital to output ratio. And we

also find that the industries belonging to the low capital to output ratio group have relatively higher average

education levels than the industries belonging to the high capital to output ratio group.

These results make sense because industries with relatively high capital to output ratios are those whose

production processes are less sophisticated and may rely more on capital-intensive technologies. These

industries predominantly include the production of rubber and plastics, hotels and restaurants, transport

and storage, agriculture, hunting, and optical equipment, as outlined in Table 19. When we employ the

threshold estimation on alternative models (Model 2, Model 5 and Model 6), the industries of food, beverages

and tobacco, coke refined petroleum, nonmetallic mineral, basic metals, maintenance, and personal services

are included in the high capital to output ratio industries (Table 40). These industries can be operated by

less-skilled workers, which explains why the average education levels of their workforce tend to be lower and

also explains the substitution between capital and skilled labour in those industries. Conversely, industries

with a relatively low capital to output ratio are generally associated with production processes that require

more sophisticated skills and thus require a higher level of education among their workforce. This leads to

the accumulation of capital and necessitates the employment of more highly skilled labour to operate and

manage machinery and equipment. As a result, a complementary relationship exists between capital and

skilled labour. In summary, technological advancements are associated with an increased demand for skilled

workers in industries characterized by lower capital-output ratios, and a heightened demand for unskilled

workers in industries exhibiting relatively higher capital-output ratios. The results of our study add to

the body of evidence supporting the concept of labour market polarization, which suggests that technology

is contributing to a growing polarization in the labour market, with employment opportunities becoming

concentrated at the higher and lower ends of the skill spectrum (see, for example, Autor et al. (2006), Autor

and Dorn (2013), Vom Lehn (2020)).

The third finding of our study indicates that skilled and unskilled workers are complementary for both

high and low capital to output ratio groups. This finding is consistent with the research conducted by

Goldin and Katz (1998) and Papageorgiou and Chmelarova (2005). Goldin and Katz analyse industry-

level panel data from 1909 and 1919 and found statistically significant positive coefficients in front of the

natural logarithm of the ratio of skilled-to-unskilled wages (ln(ws/wu)), which indicates skilled-unskilled

complementarity. Papageorgiou and Chmelarova conducted a cross-country analysis and found that skilled

and unskilled workers are complementary in both OECD and non-OECD countries. These results hold when
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samples are reclassified into three regimes based on literacy rate and initial per-capita output thresholds.

Our study also reveals that the complementarity between skilled and unskilled workers is more pronounced

in industries with low capital to output ratios compared to those with high ratios. This finding may be

attributed to the fact that, on average, the education levels of the workforce in high capital to output ratio

industries are relatively lower than those in low capital to output ratio industries in our dataset. Therefore,

the more significant discrepancy in skill levels between skilled and unskilled workers in industries with higher

education levels makes it more challenging to replace one type of worker with another, resulting in a more

profound complementarity between skilled and unskilled workers. This finding aligns with Mollick (2011)

who showed that the higher the threshold for defining skilled labour, the less likely is the switch between

types of labour.

Finally, inspired by the facts that in industries with high capital to output ratios, the capital to output

ratio remained stable until 1980, when it started to decline, and the rate of increase in skilled-to-unskilled

employment ratio slowed during this period. We estimate the six models before and after 1980 for two

industry groups. We find that there is no precise time break in capital-skill complementarity in industries

belonging to the group with the relatively low capital to output ratio; however, our analysis reveals that the

substitution between capital and a skilled workforce is more pronounced after 1980 than before in the high

capital to output ratio industry group. This finding aligns with the research of Goldin and Katz (1998), who

demonstrated that capital-skill complementarity was equally substantial during the periods of 1909-1919

and 1979-1989 in the U.S. manufacturing industry, but notably less so during 1959-1979 (refer to Goldin

and Katz, 1998, pp. 722–723). These results and ours imply that it could be erroneous to view capital-skill

complementarity/substitution as a universal phenomenon. Instead, our study suggests that the relationship

between capital and labour may differ over time and across various industries.

To ensure the reliability of our findings, we conducted extensive robustness analyses. Firstly, we em-

ployed an alternative model to assess the robustness of the threshold estimations derived from our baseline

model. Secondly, we tested the robustness of the capital-skill substitution/complementarity by performing

estimations using an alternative classification based on alternative threshold estimations. Additionally, we

conducted several Chow tests based on different models to examine the structural change in our samples.

Finally, we also tested for a time break in our subsample of group 1, which comprises industries with high

capital to output ratios. These analyses indicate that our empirical findings were shown to be quite robust

to alternative function forms, and the Chow test shows there is indeed a structure change between industries

with high and low capital to output ratios.

2.8 Intangible Capital

Intangible capital is primarily understood as the amassed expertise and knowledge derived from investments

in research and development, branding, and organizational structures. Typically, companies record this type

of capital as an expense, rather than as an asset. Intangible capital has increasingly been acknowledged

as playing a significant role in several macroeconomic trends, such as the declining labour share and a

slowdown in productivity growth. Solow (1957) famously noted that the impact of the computer revolution

is apparent in many areas, but not in productivity statistics. Since the 1980s, with the momentum of the

IT revolution, numerous studies have assessed the impact of IT capital on output growth using the Solow-

Jorgenson-Griliches Sources-of-Growth (SOG) framework (Jorgenson and Stiroh (2017), Oliner and Sichel

(2000), Jorgenson et al. (2002), Stiroh (2002)). However, intangible capital has traditionally been treated

as an expense on inputs rather than as an investment, which has led to the understatement of intangibles’
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significant contribution to economic growth. The work of Corrado et al. (2009) has shown that when

incorporating intangibles into the Sources-of-Growth (SOG) framework results in noticeably higher output

growth rates. Additionally, their research revealed that including intangibles leads to an increased share

of Gross Domestic Income (GDI) accruing to capital, while simultaneously reducing the share allocated to

labour income. Complementing these findings, Mitra (2019) demonstrated that an increase in the proportion

of intangible capital within production amplifies its effect on output. She also noted that the output in the

final goods sector initially decreases when there is a positive shock in intangible capital. This is attributed to

the redirection of resources towards the generation of more productive intangible capital, which temporarily

reduces the output of final goods following the shock in intangible capital.

The literature provides extensive support for the growing importance of intangible capital, which often

comes at the expense of labour and physical capital in production processes since the 1980s. Hall et al. (2000)

links the surge in stock values of firms that have adopted new technologies based on computer software to

a shift from traditional costs of inventories and equipment towards the accumulation of intangible assets,

introducing this shift as an increase in what is termed ’E-capital’. Nakamura et al. (2001) conducted an

estimation of intangible investment in the U.S. economy from three distinct perspectives. Each estimate

strongly suggests that annually, between 6 percent to 10 percent of the U.S. GDP is allocated to intangible

capital, with the potential for even higher figures. This investment in intangible assets began to increase

significantly around 1980. The study also indicates a lower-bound estimate for U.S. gross investment in

intangibles at 1.1 trillion dollars. Corrado et al. (2005) estimated that during the 1990s, business expenditure

on intangible assets increased in comparison to other significant components of overall aggregate demand.

Moreover, Corrado et al. (2009) observed a significant increase in intangible assets, which rose from 103.4

billion dollars in the 1970s to 349.3 billion dollars in the 1980s, with a continuing upward trend thereafter.

The ratio of intangible to tangible investment was 0.60 prior to 1980 and increased to 0.82 in the 1980s.

The shift from physical capital investment towards intangible capital has also had significant effects on

the labour market. Hall et al. (2000) notes that a sizeable portion of E-capital is related to the creation and

application of computers and software, tasks predominantly carried out by individuals with college degrees.

This has led to a notable increase in both the number and earnings of college-educated workers. As a result,

the earnings ratio comparing all college graduates to non-college-educated workers increased from 0.61 in

1990 to 0.89 in 1998. Mitra (2019), utilizing occupational data from the Current Population Survey (CPS),

discovered a significant rise in the proportion of jobs mainly linked with the production of intangibles, relative

to total employment, beginning around 1980. This observation aligns with the findings of McGrattan and

Prescott (2012), who demonstrated a notable shift in employment towards IT sectors during the 1990s.

This thesis reveals that in industries characterized by a relatively low capital to output ratio, capital

and skilled labor are complementary. Conversely, in capital-intensive industries, they tend to be substitutes.

It also highlights a decrease in the growth rate of the capital-to-output (K/Y) ratio in sectors with lower

physical capital intensity, alongside a downward trend in this ratio in highly capital-intensive industries

since the 1980s. These observations align with the emergence of the intangible capital revolution around the

same period, as previously documented. The observed change in the physical capital to output ratio may

indicate an escalating significance of intangible capital. This is particularly relevant for industries that rely

on sophisticated production processes, which are more profoundly influenced by the IT revolution and the

increasing emphasis on intangible investments. These trends suggest a shift in the nature of capital that

drives industry productivity, moving away from physical assets towards more intangible forms.

The complementarity between capital and skill in less capital-intensive industries post-1980s becomes
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more understandable when considering intangible capital. The result is linked to the escalating significance

of intangible capital, which necessitates a workforce with higher education levels, particularly for the devel-

opment of software and the operation of computers. As a result, there has been an increase in the share of

skilled labour income relative to total labor costs in these sectors. These shifts in labour market dynamics

underscore the direct impact of the rise of intangible capital on the demand for and compensation of skilled

labour.

Future studies could expand on the regression model used in this thesis to include the effects of intangible

investment on the share of skilled labour income in total labor costs. This would enable a more comprehensive

analysis of how intangible capital affects the relationship between the physical capital to output ratio and the

skilled labour income share. Additionally, it would be valuable to examine whether the inclusion of intangible

capital alters the observed patterns of capital-skill complementarity across different industry groups. Such

research could also quantify the extent to which increases in intangible and physical capital contribute to the

rise in the skilled labour income share, offering deeper insights into the evolving dynamics of labour markets

and capital investment.

2.9 Conclusion

The objective of this paper is to examine the validity of the Griliches’ capital-skill complementarity hypothesis

across various industries in the U.S. economy. Our study yields four primary results. Firstly, we employ

Hansen’s (2002) data-splitting methodology and discover evidence supporting parameter heterogeneity and

non-linearity in the capital-skill complementarity/substitution relationship. Specifically, industries with a

higher capital to output ratio demonstrate substitution between capital and skilled labour. In contrast, we

find that capital and skilled labour are complementary in the group with a lower capital to output ratio. Our

second finding is that skilled and unskilled labour are complementary in both industry groups. However,

the level of complementarity is more significant in the group with a relatively lower capital to output ratio

than the other group. Moreover, We observe that the average education levels of the workforce in the

industries belonging to the group with a lower capital to output ratio are higher than the other group in our

dataset. This suggests that the complementarity between skilled and unskilled labour is more pronounced

in industries with a higher-educated workforce. Furthermore, we confirmed this result by conducting a

threshold estimation using the skilled-to-unskilled relative employment ratio and an estimation based on the

industry classification according to the threshold value. Our final discovery was motivated by the observation

that in industries with high capital to output ratios, the ratio remained stable until 1980 before declining,

and the rate of skilled-to-unskilled employment ratio increase slowed during this period. This observation

implies that there may be non-linearity in the capital-skill substitution relationship within the high capital

to output ratio group over time. By re-estimating both industry groups before and after 1980, we confirm a

time break at the year 1980. We find that capital and skilled labour are more substitutable after 1980 than

before. There is no clear time break in the capital-skill complementarity relationship in the group with low

capital to output ratios. These results are quite robust to a range of sensitivity analyses.

Our research highlights the need for a theoretical framework to better comprehend the behavior of the

nonlinear relationship between capital-skill complementarity, skilled-unskilled complementarity, and the in-

dustry structure. We propose a model where capital-skill complementarity non-linearity, similar to those

identified in our study, arise naturally within the economic system. Furthermore, our findings emphasize the

importance of further investigation into capital-skill complementarity, as confirming the hypothesis would

have significant implications in determining the aggregate production function and re-evaluating existing em-
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pirical and theoretical research. These findings have important implications for understanding the aggregate

production function and for further empirical and theoretical research in this area.
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Appendix A

Manufacturing Non-manufacturing

id code Industry id code Industry
5 20 wood and of wood and cork 19 50 sale maintenance and repair of motor vehicles
11 27t28 basic metals and fabricated metal 18 51 wholesale trade and commission trade
12 29 machinery nec 20 52 retail trade except of motor vehicles
13 30t33 electrical and optical equipment 22 60t63 transport and storage
14 34t35 transport equipment 23 64 post and telecommunications
15 36t37 manufacturing nec; recycling 26 71t74 renting of m&eq and other business activities
3 15t16 food beverages and tobacco 1 AtB agriculture hunting forestry and fishing
4 17t19 textiles textile leather and footwear 2 C mining and quarrying
6 21t22 pulp paper paper printing and publishing 16 E electricity gas and water supply
7 23 coke refined petroleum and nuclear fuel 17 F construction
8 24 chemicals and chemical products 21 H hotels and restaurants
9 25 rubber and plastics 24 J financial intermediation
10 26 other nonmetallic mineral 30 O other community social and personal services

Table 36: Industry list

Notes: The dataset used in this study includes 26 industries, consisting of 6 durable industries, 7 non-durable
industries, and 13 non-manufacturing industries. The complete list of these industries is provided in this table.
The code enclosed in parentheses corresponds to the industry classification used in the World KLEMS database.
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id Industry Median(K/Y)

13 Electrical and optical equipment 1.8241
1 Agriculture hunting forestry and fishing 1.2829
22 Transport and storage 1.1483
21 Hotels and restaurants 1.0233
15 Manufacturing nec; recycling 1.0226
9 Rubber and plastics products 1.0148
10 Other non-metallic mineral products 0.98225
3 Food products beverages and tobacco 0.92932
7 Coke refined petroleum products and nuclear fuel 0.92323
19 Wholesale trade and commission trade except of motor vehicles and motorcycles 0.90817
30 Other community social and personal services 0.90769
11 Basic metals and fabricated metal products 0.85078
23 Post and telecommunications 0.78463
14 Transport equipment 0.7482
8 Chemicals and chemical products 0.72644
4 Textiles textile products leather and footwear 0.7249
20 Retail trade except of motor vehicles and motorcycles; repair of household goods 0.70386
2 Mining and quarrying 0.67298
16 Electricity gas and water supply 0.65183
18 Sale maintenance and repair of motor vehicles and motorcycles; retail sale of fuel 0.58122
17 Construction 0.50626
12 Machinery nec 0.50431
5 Wood and products of wood and cork 0.4795
24 Financial intermediation 0.42704
6 Pulp paper paper products printing and publishing 0.32645
26 Renting of m&eq and other business activities 0.31842

Table 37: Median of capital-to-ouput ratio across industries

Notes: The sample period is 1949 to 2010. For each industry, we calculate the median value of K/Y where K
and Y are volume indexes with 2005 as the base year. The industries are listed with the median value from high
to low.
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Model 3

Group 1 K/Y>0.9897 Group 2 K/Y<0.9798
id code industry Median (S/U) id code industry Median (S/U)
1 AtB agriculture hunting forestry and fishing 0.05525503 2 C mining and quarrying 0.15018373
9 25 rubber and plastics 0.11646072 3 15t16 food beverages and tobacco 0.10210159
13 30t33 electrical and optical equipment 0.25687565 4 17t19 textiles textile leather and footwear 0.04317118
15 36t37 manufacturing nec; recycling 0.16915695 5 20 wood and of wood and cork 0.06163423
21 H hotels and restaurants 0.08228209 6 21t22 pulp paper paper printing and publishing 0.20493153
22 60t63 transport and storage 0.12588585 7 23 coke refined petroleum and nuclear fuel 0.23772318

median 0.12117329 8 24 chemicals and chemical products 0.34472345
10 26 other nonmetallic mineral 0.0926741
11 27t28 basic metals and fabricated metal 0.09297724
12 29 machinery nec 0.13274616
14 34t35 transport equipment 0.16527641
16 E electricity gas and water supply 0.20355606
17 F construction 0.08507863
18 51 wholesale trade and commission trade 0.10645388
19 50 sale maintenance and repair of motor vehicles 0.24410074
20 52 retail trade except of motor vehicles 0.12841383
23 64 post and telecommunications 0.1937005
24 J financial intermediation 0.43572977
26 71t74 renting of m&eq and other business activities 0.53898735
30 O other community social and personal services 0.23813289

median 0.15773007

Table 38: Skilled-to-unskilled employment ratio

Note: The sample period is 1949 to 2010. This table displays median of skilled-to-unskilled employment ratio for

industries belonging to group 1 and group 2. The group classification based on our baseline model (Model 3). We

aggregated the skilled-to-unskilled employment ratio by summing the values across time for each year.
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Specification Model 1 Model 2 Model 3

1949-1979 1980-2010 1949-1979 1980-2010 1949-1979 1980-2010
ln(K/Y) 0.0466*** 0.0444*** 0.0463*** 0.0442*** 0.0295*** 0.0298***

(0.0052) (0.0051) (0.0051) (0.0050) (0.0045) (0.0045)
ln(Y) 0.0298*** 0.0301***

(0.0037) (0.0037)
ln(K/VA)

ln(VA)

ln(Ws/Wu) 0.1522*** 0.1507***
(0.0071) (0.0074)

t 0.0040*** 0.0041*** 0.0032*** 0.0033*** 0.0045*** 0.0045***
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001)

R-square 0.3735 0.3885 0.3096 0.3237 0.4062 0.4161
Obs. 1209 1209 1209 1209 1209 1209
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Specification Model 4 Model 5 Model 6
1949-1979 1980-2010 1949-1979 1980-2010 1949-1979 1980-2010

ln(K/Y)

ln(Y)

ln(K/VA) 0.0185*** 0.0186*** 0.0370*** 0.0366*** 0.0128*** 0.0130***
(0.0033) (0.0032) (0.0036) (0.0035) (0.0028) (0.0028)

ln(VA) 0.0346*** 0.0339***
(0.0034) (0.0033)

ln(Ws/Wu) 0.1574*** 0.1553***
(0.0071) (0.0074)

t 0.0045*** 0.0046*** 0.0032*** 0.0033*** 0.0048*** 0.0048***
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001)

R-square 0.4056 0.4188 0.3091 0.3236 0.4235 0.4349
Obs. 1209 1209 1209 1209 1209 1209
Prob>F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 39: Regression results for group 2 in 1949 to 1979 and 1980 to 2010.

Notes: The sample period is 1949-2010. The dependent variable is skilled-labour share of the wage bill (S). ws/wu

is skilled-unskilled wage premium, K/Y is capital–output ratio and Y is output. VA is value added volume index.
Robust standard errors are given in parentheses. *** denotes significantly different from 0 at the 1 % level.
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Model 2

Group 1 K/Y>0.8185 Group 2 K/Y<0.8185
id code industry code industry
1 AtB agriculture hunting forestry and fishing 2 C mining and quarrying
3 15t16 food beverages and tobacco 4 17t19 textiles textile leather and footwear
7 23 coke refined petroleum and nuclear fuel 5 20 wood and of wood and cork
9 25 rubber and plastics 6 21t22 pulp paper paper printing and publishing
10 26 other nonmetallic mineral 8 24 chemicals and chemical products
11 27t28 basic metals and fabricated metal 12 29 machinery nec
13 30t33 electrical and optical equipment 14 34t35 transport equipment
15 36t37 manufacturing nec; recycling 16 E electricity gas and water supply
19 50 sale maintenance and repair of motor vehicles 17 F construction
21 H hotels and restaurants 18 51 wholesale trade and commission trade
22 60t63 transport and storage 20 52 retail trade except of motor vehicles
30 O other community social and personal services 23 64 post and telecommunications

24 J financial intermediation
26 71t74 renting of m&eq and other business activities

Model 5 & Model 6

Group 1 K/Y>0.8721 Group 2 K/Y<0.8640
id code industry code industry
1 AtB agriculture hunting forestry and fishing 2 C mining and quarrying
3 15t16 food beverages and tobacco 4 17t19 textiles textile leather and footwear
7 23 coke refined petroleum and nuclear fuel 5 20 wood and of wood and cork
9 25 rubber and plastics 6 21t22 pulp paper paper printing and publishing
10 26 other nonmetallic mineral 8 24 chemicals and chemical products
13 30t33 electrical and optical equipment 11 27t28 basic metals and fabricated metal
15 36t37 manufacturing nec; recycling 12 29 machinery nec
19 50 sale maintenance and repair of motor vehicles 14 34t35 transport equipment
21 H hotels and restaurants 16 E electricity gas and water supply
22 60t63 transport and storage 17 F construction
30 O other community social and personal services 18 51 wholesale trade and commission trade

20 52 retail trade except of motor vehicles
23 64 post and telecommunications
24 J financial intermediation
26 71t74 renting of m&eq and other business activities

Table 40: Industry classification based on threshold estimations of Model 2, Model 5 and Model 6

Note: The sample period is 1949 to 2010. This table displays the industry classification based on the threshold

estimations on alternative models (Model 2, Model 5 and Model 6). Industries that are categorised as manufacturing

industries are highlighted in bold, while those categorised as non-manufacturing industries are not highlighted.



91

id Industry S/U

26 Renting of m&eq and other business activities 0.53898735
24 Financial intermediation 0.43572977
8 Chemicals and chemical products 0.34472345
13 Electrical and optical equipment 0.25687565
19 Wholesale trade and commission trade except of motor vehicles and motorcycles 0.24410074
30 Other community social and personal services 0.23813289
7 Coke refined petroleum products and nuclear fuel 0.23772318
6 Pulp paper paper products printing and publishing 0.20493153
16 Electricity gas and water supply 0.20355606
23 Post and telecommunications 0.1937005
15 Manufacturing nec; recycling 0.16915695
14 Transport equipment 0.16527641
2 Mining and quarrying 0.15018373
12 Machinery nec 0.13274616
20 Retail trade except of motor vehicles and motorcycles; repair of household goods 0.128413825
22 Transport and storage 0.12588585
9 Rubber and plastics products 0.11646072
18 Sale maintenance and repair of motor vehicles and motorcycles; retail sale of fuel 0.10645388
3 Food products beverages and tobacco 0.10210159
11 Basic metals and fabricated metal products 0.09297724
10 Other non-metallic mineral products 0.0926741
17 Construction 0.08507863
21 Hotels and restaurants 0.08228209
5 Wood and products of wood and cork 0.06163423
1 Agriculture hunting forestry and fishing 0.05525503
4 Textiles textile products leather and footwear 0.04317118

Table 41: Skilled-to-unskilled employment ratio for industries

Notes: The sample period is 1949 to 2010. For each industry, we aggregated the skilled-to-unskilled employment
ratio by summing the values across time for each year.



92

3 A Business Cycle Model with CES Production Function and

Calvo Price and Wage Setting

3.1 Introduction

When analyzing business cycles, it becomes apparent that there are discernible patterns of similarity in

the co-movements of macroeconomic time series. One prominent characteristic of business cycles is the

tendency for economic conditions and labour input to exhibit positive co-movement. However, there exists

a multitude of underlying factors that contribute to the occurrence of business cycles, each with varying

degrees of influence.

When technology improves, does employment of capital and labour rise in the short run, rely heavily on

the appropriate measure of aggregate technology. The Solow residual, proposed by Solow (1957), is one of the

well-known proxy for capturing the stochastic movements in the aggregate production technology process.

However, this measure has received a range of critiques. As highlighted by Basu and Kimball (1997), there

are three main explanations for the observed procyclicality of productivity. First, variations in measured

productivity may be driven by exogenous changes in production technology. Second, productivity can exhibit

a procyclical pattern due to increasing returns to scale, which lead to improved efficiency as the economy

operates at higher activity levels. Finally, if inputs are inaccurately measured, measured productivity may

display a procyclical pattern even if true productivity remains constant. It is emphasized that the gap

between actual and measured technology shocks most likely arises from unobserved changes. Therefore,

failing to consider the cyclical fluctuations of utilisation can lead to measurement errors when using Solow

residuals as a reflection of technology shocks and lead to mismeasured business cycle results. The importance

of accounting for variable utilisation in business cycle contexts has been widely recognized and extensively

discussed in Chapter 1.

Aligning with this topic, Basu et al. (2006) employees tools from Basu and Fernald (1997) and Basu

and Kimball (1997), who inturn build on Solow (1957) and Hall (1990) and construct an index of aggregate

technology change by controlling for cyclicality of the Solow residual coming from both non-constant returns

to scale and variable utilisations. Furthermore, their findings indicate that in the short run, technology

improvements lead to a substantial reduction in total hours worked. This observation stands in contrast

to the conventional parameterizations of the Real Business Cycle model, which suggest that technology

advancements should increase input utilisation across all time horizons. 34 Subsequent to the pioneering

work of Basu, Fernald, and Kimball, the adoption of a utilisation-adjusted series as a measure of total

factor productivity (TFP) has become customary in the analysis of the U.S. economy. Building upon this

framework, numerous scholarly works have undertaken extensive expansions and investigations in this field.

A body of literature has focused on examining the relationship between hours worked or employment

and positive technology shocks. For example, Collard and Dellas (2007) illustrate that empirical results have

suggested a persistent decline in employment in response to a positive technology shock, thereby questioning

the ability of the Real Business Cycle (RBC) model to adequately account for business cycles. However,

34Basu and Fernald (1997) emphasize the importance of considering sectoral heterogeneity and aggregation. They argue that
due to factors such as variations in market power across industries, the marginal productivity of an input may differ across
different uses. Consequently, the aggregate Solow residual, which represents the growth in aggregate total factor productivity
(TFP), depends on the sectors that experience the most significant changes in input utilisation during the business cycle. The
identification of aggregate technology is carried out by Basu et al. (2006) through the estimation of a regression equation,
following the approach outlined by Hall (1990), which incorporates a proxy for utilisation within each disaggregate industry.
Subsequently, aggregate technology change is defined as a weighted sum of the resulting residuals.
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they demonstrate that a standard, open economy, flexible price model can generate a negative employment

response to a positive technology shock and effectively capture the negative conditional correlation between

productivity and employment, particularly when trade elasticities are low. Khan and Tsoukalas (2013)

examine the short-run effects of productivity shocks on total hours worked at the industry level in the United

Kingdom, providing evidence that positive productivity shocks at the industry level lead to a reduction in

hours worked in the short term within the UK economy. Expanding upon this line of inquiry, Thomet

and Wegmueller (2021) extend the analysis to a wide range of countries and analyze how the response of

aggregate hours to permanent technology shocks compares across industrialized nations. Their study reveals

a remarkably similar short-run response of aggregate hours to a positive technology shock across countries,

with a significant decrease observed in 13 out of 14 OECD countries. Further exploration of the relationship

between total hours and technology shocks can be found in the works of Christiano et al. (2004), Cantore

et al. (2012, 2015, 2017), Uhlig (2004). Canova et al. (2010), Gaĺı (2005),Cacciatore et al. (2020), among

others.

Our study makes a contribution to the existing literature by analyzing the implications of technology

factors in business-cycle models, focusing specifically on examining the response of hours worked among

different skill levels of labour following a technology shock. To achieve this, we introduce Constant Elasticity

of Substitution (CES) production techniques. The primary objective of this research is to develop a stochastic

dynamic general equilibrium (DSGE) model that incorporates capital-skill complementarity in production,

Calvo prices, and nominal wage rigidity. The model is designed to provide insights into the observed negative

dynamics in the skilled to unskilled working hours ratio and the differential responses of hours worked by

skilled and unskilled workers to utilisation-adjusted technology shocks. We conduct simulations to calibrate

to the U.S. economy for four distinct scenarios, including a generalized Real Business Cycle (RBC) model, a

frictionless monopolistic competition model, a generalized model incorporating Calvo pricing (Calvo (1983)),

and a model incorporating both Calvo wage and price settings.

The study of capital-labour substitution in business cycle models is grounded in robust theoretical and

empirical justifications. The dynamics of hours worked are intricately linked to essential elements of the

production process, specifically the degree of substitutability or complementarity observed between different

factors. For instance, Cantore et al. (2014) incorporate Constant Elasticity of Substitution (CES) produc-

tion technologies into both Real Business Cycle (RBC) and New Keynesian (NK) models. Their findings

demonstrate that the response of hours worked is contingent upon the factor-augmenting nature of shocks

and the elasticity of capital-labour substitution in both model frameworks. Cantore et al. (2017) observe

that the response of hours worked to technology shocks in the postwar US economy has exhibited an upward

trend over time. They identify that the changes observed in the response of hours worked can be attributed

to the escalating magnitude of capital-labour substitution.

Our study differentiates itself from the existing literature illustrated above by explicitly distinguishing

labour inputs into skilled and unskilled categories, in contrast to previous works that typically consider

labour as an aggregate input. Our model shares similarities with the works of Vasilev (2022) and Lin and

Weise (2019). Vasilev (2022) develops a model with a richer government sector, monopolistic competition in

the product market, and price and wage rigidity based on the Calvo (1983) framework, aiming to replicate

observed variability and correlations within the Bulgarian labour market. On the other hand, Lin and Weise

(2019) introduces a New Keynesian model incorporating CES production technologies with both traditional

and robot capital. In contrast, our contribution lies in the development of a stochastic dynamic general

equilibrium (DSGE) model that integrates capital-skill complementarity in production, Calvo prices, and
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nominal wage rigidity. To the best of our knowledge, this is the first study to specifically focus on the

short-run responses of hours worked for skilled and unskilled workers, aiming to explain both the negative

responses of the skilled-to-unskilled hours ratio and the distinct direction of skilled and unskilled hours

responses to utilisation-adjusted technology advancements.

Our findings reveal that, with moderate capital-skill complementarity, both the generalized Real Business

Cycle (RBC) model and the frictionless monopolistic competition model can account for the negative response

of the skilled-to-unskilled hours ratio to technological advancements. However, these models fall short in

explaining the disparate responses of hours worked for different skill levels in the short run. In contrast, a

generalized model incorporating Calvo (1983) pricing successfully offers an explanation. Furthermore, we

enhance our analysis by considering a model that incorporates Calvo wage and price settings.

The remainder of this paper is structured as follows: Section 3.2 presents a comprehensive discussion

of the data and empirical results. In Section 3.3, the model frameworks are outlined and described. The

calibration procedure is elaborated upon in Section 3.4. Subsequently, in Sections 3.5, the principal findings

for the three models are presented. Section 5 encompasses sensitivity tests and an exploration of the role of

capital-skill complementarity in generating the results. Finally, Section 6 concludes the paper.

3.2 The Data and Empirical Results

The primary source of data for this study is the World KLEMS data 2013 release. This dataset provides

comprehensive industry-level measures of labour and capital inputs. Specifically, it includes information

on labour compensation per hour, the average number of hours worked per week, and employment figures.

The data is categorized into six skill levels, namely: less than high school, some high school, high school

graduate, some college, college graduate, and more than college. In line with existing literature (see Krusell

et al. (2000), Kawaguchi et al. (2014), Parro (2013), Perez-Laborda and Perez-Sebastian (2020)), we classify

workers who graduated from college and more than college (at least 16 years of school) as skilled labour; low

skilled labour is defined as workers without a college education. We drop the workers who are aged under

16 or above 64. Our sample period is from 1950 to 2001, and the data consist of 30 industries. Furthermore,

for each industry, the dataset provides labour compensation per hour, employment figures, and the average

number of hours worked per week for both skilled. These variables are utilised to derive aggregate measures

by aggregating the data across industries. Additional information regarding industry classification can be

found in in Appendix B, and aggregation can be found in Chapter 1 Section 1.2.
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Figure 17: Skill premium and skilled to unskilled hours worked ratio
Notes: The sample period is 1949-2001, and both ratios are normalized with 1950 = 1.

The left panel depicted in Figure 17 presents discernible patterns in the skill premium throughout the

observation period from 1950 to 2001. Initially, there was a substantial decline in the skill premium during

the 1950s, followed by a modest increase in the 1960s. Subsequently, the skill premium experienced a

period of decline throughout much of the 1970s, followed by an increase with some fluctuations since 1980.

In aggregate, the skill premium exhibited an overall upward trend over the entire duration of the study.

Conversely, the right panel of Figure 17 portrays the ratio of skilled labour hours to unskilled labour hours.

This ratio displays a clear ascending trend throughout the entire observation period, indicating a substantial

increase in the relative hours worked by skilled labour in comparison to unskilled labour. Notably, the

relative hours worked ratio of skilled to unskilled labour witnessed a growth of more than 100 percent.

In addition to analyzing the long-term trend, this study investigates the short-term dynamics by estimat-

ing the impulse response functions (IRFs) of several variables in response to a utilisation-controlled neutral

technology shock. The key variables of interest encompass hours worked, employment, and wages for both

skilled and unskilled workers, as well as the ratio of skilled to unskilled labour hours and the ratio of capital

inputs to the skilled labour hours.

The Solow residual, initially introduced by Solow (1957), has become the most widely recognized proxy

for measuring neutral technology progress. Solow utilised the Cobb-Douglas production function with con-

stant returns to scale to calculate the Solow residual, which represents the difference between output and the

combined inputs of capital and labour. However, the accuracy of the Solow residual as a measure of tech-

nology progress has been subject to criticism in various literature. Notable studies such as Gali (1999),Basu

and Kimball (1997),Basu and Fernald (1997),Basu et al. (2006) have highlighted several shortcomings of

the Solow residual. The main criticisms revolve around the neglect of varying degrees of returns to scale,

the role of input utilisation, and sectoral shifts within production functions. These limitations can lead to

misleading results when studying business cycles. To address these concerns, this paper adopts the concept

of utilisation-adjusted technology data, as introduced by Basu et al. (2006). The utilisation-adjusted TFP

shock, originally developed by Basu and Kimball (1997) and Basu et al. (2006), focused on the U.S. economy

during the period from 1949 to 1996. Basu’s work specifically covers this time frame for constructing the

utilisation-adjusted TFP series. In line with Basu’s identification method, this study extends the utilisation-

adjusted TFP series for the U.S. economy, encompassing the period from 1949 to 2001. The estimation
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Response p-value
Skill wage 0.270 0.056
Uskill wage 0.051 0.716
Skill hours worked -0.897 0.000
Uskill hours worked 0.449 0.001
Skill premium 0.686 0.000
Ratio of skilled to unskilled hours worked -1.391 0.000
Ratio of capital to skilled hours worked 0.637 0.000

Table 42: Point estimates of impact responses of variables to an utilisation-controlled technology shock

details and methodology are elaborated upon in the first chapter of this thesis. 35

To estimate the IRFs, we estimate a small bivariate SVAR. To begin, the utilisation-controlled technology

series appears to be stationary; in the Augmented Dicky-Fuller test, we strongly reject the null hypothesis of a

unit root at the conventional significance level for all six countries considered. Besides, by a KPSS test, we fail

to reject the null hypothesis of stationary. In the bivariate SVAR system, the equation of response variables

involves regressing the growth response variable, i.e., dx, on utilisation-controlled technology change, i.e.,

dz, and two lags of itself and dz. (For any variable X, we define dx as its logarithmic growth rate, namely

ln(Xt/Xt−1).) In the equation of utilisation-controlled technology change, we restricted the parameters on

the response variable and its lags to be zero and regressed utilisation-controlled technology growth on only

its two lags. This restriction consists of the assumption that the technology change is not affected by the

response variables.

Figure 18: Impulse response of aggregate variables to an utilisation-controlled technology shock
Notes: The sample period is 1949-2001. The figure shows the impulse responses of aggregate variables to an positive

utilisation-controlled technology shock. All responses variables and technology shock are in logarithmic growth rate.

The dotted lines represent the 95-percent confidence intervals.

When observing the impulse response functions (IRFs) of the aggregate variables to a positive utilisation-

controlled technology shock, as depicted in Fig 18, the findings align with the standard Real Business

35Huo et al. (2020) prolonged the utilisation-adjusted TFP data for the U.S. to a more recent period from 1978 to 2005.
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Cycle (RBC) model. All of the aggregate variables exhibit an immediate and positive response. Next, the

analysis focuses on the IRFs of specific variables, namely the skill premium, the ratio of skilled to unskilled

labour hours worked, and the ratio of capital inputs to skilled labour hours. These IRFs are presented in

Figure 19. In response to a positive utilisation-controlled technology shock, a sharp decrease is observed

in the skilled-to-unskilled hours ratio. Conversely, the capital-to-skilled hours ratio demonstrates a positive

response. Importantly, both responses exhibit strong statistical significance (refer to Table 43 for detailed

point estimates). Additionally, the skill premium experiences a statistically significant increase upon impact.

Subsequently, the response functions of hours worked, employment, and wages for both skilled and un-

skilled workers were further decomposed, and the outcomes are displayed in Figure 20. It is evident that

a positive utilisation-controlled technology shock induces opposite responses in skilled and unskilled hours

worked. Specifically, such a shock leads to an increase in total hours worked by unskilled workers, while

simultaneously decreasing the total hours worked by skilled workers in the short run. The statistical analysis

presented in Table 43 confirms that the responses in hours worked for both types of workers are highly signifi-

cant. Furthermore, the positive technological change shock generates a rise in wages for skilled workers, while

wages for unskilled workers exhibit minimal changes. The increase in skilled wages is statistically significant

at a 90% confidence level, whereas the rise in unskilled wages is found to be insignificant. These outcomes

align with the observed increase in the skill premium. Additionally, the employment responses for skilled

and unskilled workers demonstrate divergent patterns. The technology advancement shock initially reduces

skilled employment, while simultaneously increasing the employment of unskilled workers. In subsequent

periods, the demand for skilled workers surpasses that for unskilled workers, reaching its peak two periods

after the initial shock. It is worth noting that the impact responses of employment for both skill levels are

statistically significant, as indicated in Table 43.

In order to assess the robustness of the empirical findings, we conducted additional analyses using the

utilisation-controlled technology shock series proposed by Huo et al. (2020). By incorporating this alter-

native measure, we re-estimated the impulse response functions (IRFs) for the aforementioned variables to

technological advancements. The results of these re-estimations are presented in Figure 21. Remarkably,

the findings obtained from this alternative approach closely align with those reported in Figure 20. The

consistency between the two sets of results supports the robustness of the empirical findings. The observed

contrasting responses of hours worked for skilled and unskilled workers, along with the significant decrease

in the relative hours worked by skilled workers compared to unskilled workers in response to a utilisation-

controlled technology shock in the short run, serves as motivation for constructing a stochastic dynamic

general equilibrium (DSGE) model. This proposed model incorporates elements such as capital-skill com-

plementarity in production, Calvo prices, and nominal wage rigidity. The primary objective of this paper is

to provide an explanation for the negative response observed in the skilled-to-unskilled working hours ratio

and the divergent reactions of hours worked for skilled and unskilled workers.

By employing the DSGE framework, the paper seeks to offer a comprehensive understanding of the un-

derlying mechanisms driving these empirical findings. The model’s inclusion of capital-skill complementarity

allows for the analysis of how changes in technology affect the relative demand for skilled and unskilled

labour inputs. Additionally, the incorporation of Calvo prices and nominal wage rigidity accounts for the

sticky nature of prices and wages in the economy, enabling an examination of their impact on labour market

outcomes. Through the DSGE model, this study aims to contribute to the theoretical understanding of the

observed dynamics in the skilled-to-unskilled working hours ratio and the contrasting responses of hours

worked for skilled and unskilled workers. By providing a rigorous framework, the paper aims to shed light on
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Figure 20: Impulse response of wages, hours and employment for skilled and unskilled workers to an
utilisation-controlled technology shock
Notes: The sample period is 1949-2001. All responses variables and technology shock are in logarithmic

growth rate. The dotted lines represent the 95-percent confidence intervals.

the mechanisms driving these phenomena and offer insights into the broader implications for labour market

dynamics.

Figure 19: Impulse response of skilled to unskilled labour input share and skill premium to an utilisation-
controlled technology shock
Notes: The sample period is 1949-2001. All responses variables and technology shock are in logarithmic

growth rate. The dotted lines represent the 95-percent confidence intervals.

3.3 Model Setup

The economic framework employed in this study comprises a continuum of infinitely-lived households that

provide two distinct types of labour services: skilled labour and unskilled labour. Furthermore, the model

assumes the existence of a continuum of wholesalers, each specializing in the production of a single inter-

mediate good. These wholesalers employ both skilled and unskilled labour, as well as capital, as inputs.

The production technology employed by these wholesalers follows a constant elasticity of substitution (CES)



99

Figure 21: Impulse response of wages and employment for skilled and unskilled workers to an utilisation-
controlled technology shock estimated by Huo et al. (2020)

Notes: The sample period is 1949-2001. All responses variables and technology shock are in logarithmic growth

rate. The dotted lines represent the 95-percent confidence intervals.

Response p-value

Output 1.761 0.000
Input 0.149 0.292
Solow residual 0.695 0.000
Total hours 0.280 0.051
Employment 0.285 0.044
Capital 0.106 0.454

High skill wage 0.270 0.056
Low skill wage 0.051 0.716
High skill hours -0.897 0.000
Low skill hours 0.449 0.001
High skill employment -0.967 0.000
Low skill employment 0.507 0.000
Skill premium 0.686 0.000
Ratio of skilled to unskilled hours worked -1.391 0.000
Ratio of capital to skilled hours worked 0.637 0.000

Table 43: Point estimates

Note: This table summarizes the estimates of the impact responses for various variables to utilisation-controlled
technology shock.
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function. 36 Within this framework, each monopolistic wholesale firm possesses market power and exercises

control over the pricing of the intermediate good it produces. These firms set prices at a markup above their

marginal product, thereby operating with a degree of market power. Additionally, a representative retailer

exists, who combines the various intermediate goods to manufacture a homogeneous final good. Notably, the

market for final goods operates under conditions of perfect competition. The final goods produced by retail-

ers serve various purposes, including household consumption and investment. This allows for the allocation

of final goods to both meet the consumption needs of households and support investment activities.

3.3.1 Households

There are two types of households, indexed by H ∈ (S,U), representing skilled and unskilled households,

respectively, distinguished by their skill levels. In addition to their roles in the production process, households

share similar preferences and characteristics. At the outset, each household possesses a positive endowment

of physical capital, which is rented to the firm at the nominal rental rate Qt, resulting in capital income

equivalent to Qt ×KH,t. Consequently, households have the option to augment their capital stock through

investment decisions guided by a predetermined law of motion,

KH,t+1 = IH,t + (1− δ)KH,t

where 0 < δ < 1 is the depreciation rate of physical capital.

In addition to the rental income from capital, each household of type H receives a wage WH,t in exchange

for the hours worked. Furthermore, they own an equal share of the firm responsible for producing the final

goods, entitling them to dividend payments Dt. Each household engages in consumption represented by

CH,t and savings by investing in risk-free government bonds denoted as BH,t. These bonds offer a gross

nominal return of Rt. The aggregate price index for period t is denoted as Pt. Consequently, the budget

constraint for household type H in period t can be expressed as follows:

PtCH,t + PtKH,t+1 +BH,t+1 = WH,tHt +QtKH,t + Pt(1− δ)KH,t +RtBH,t +Dt

And households’ utility function are given by

U = Et

∞∑
t=0

βt

{
C1−σc

H,t

1− σc
− H1+ϕ

t

1 + ϕ

}

The operator Et denotes the expectations operator as of period t. The parameter 0 < β < 1 represents

the time discount factor. The parameter σc represents the relative risk aversion parameter. Additionally, ϕ

denotes the curvature of the function that captures the disutility of hours worked, reflecting the household’s

preference for leisure.

The objective for each household is to maximize utility by making choices regarding consumption (CH,t),

hours worked (Ht), capital accumulation (KH,t+1), and bond holdings (BH,t+1), subject to the budget

constraint. 37 The first-order conditions (FOCs) associated with this optimization problem can be expressed

as follows:

36Adoption of CES production technology is in line with numerous studies, see Duffy et al. (2004), Krusell et al. (2000),
Hara et al. (2014), Lindquist (2004), Maliar et al. (2020), Skaksen and Sorensen (2005), Maliar et al. (2020), Belianska (2020),
Vasilev (2018). Cantore et al. (2015) shows the model with CES production function fits U.S. data better than a standard
Cobb-Douglas production function.

37The discussion of optimal wage-setting is deferred to the next section.
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CH,t : C
−σc

H,t = λtPt

Ht : H
ϕ
t = λtWH,t

KH,t+1 : λt+1(Qt+1 + Pt+1(1− δ)) = λtPt

BH,t+1 : λt+1Rt+1 = λt

Upon rearranging the FOCs for households supplying skilled labour, we obtain the following expressions:

C−σc
s,t = βEt

{
C−σc

s,t+1Rt+1
Pt

Pt+1

}

C−σc
s,t = βEt

{
C−σc

s,t+1

(Qt+1

Pt+1
+ (1− δ)

)}

Ws,t

Pt
=

Sϕ
t

C−σc
s,t

Symmatrically, the FOCs for household who supplies unskilled labour are

C−σc
u,t = βEt

{
C−σc

u,t+1Rt+1
Pt

Pt+1

}

C−σc
u,t = βEt

{
C−σc

u,t+1

(Qt+1

Pt+1
+ (1− δ)

)}

Wu,t

Pt
=

Uϕ
t

C−σc
u,t

3.3.2 Optimal Wage Setting

It is assumed that each type of household, denoted by H ∈ (S,U), supplies differentiated labour services:

Si,t and Uj,t, where i, j ∈ [0, 1]. These differentiated labour services are traded in a monopolistic competitive

market, implying that households possess some degree of market power when determining their wages.

Following the approach of Vasilev (2018) and Junior (2016), the model assumes that the differentiated

labour services supplied by households are rented to a representative labour-aggregating firm. This firm

aggregates the differentiated labour inputs Si,t and Uj,t to derive the aggregate labour inputs St and Ut,

employing a constant-elasticity-of-substitution (CES) technology,

St =
(∫ 1

0

S
ϵw−1
ϵw

i,t di
) ϵw

ϵw−1

Ut =
(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) ϵw

ϵw−1
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It is assumed that the elasticity of substitution (ϵw) between the differentiated labour services is the same

for both types of labour. Each labour service, denoted by i and j, receives a nominal wage: Ws,i,t for skilled

labour and Wu,j,t for unskilled labour. The labour-firm is then faced with the task of optimizing its profit

by choosing the quantities of each differentiated labour service (Si,t and Uj,t). This optimization problem

can be formulated as follows:

max
Si,t

Ws,tSt −
∫ 1

0

Ws,i,tSi,tdi

max
Si,t

Ws,t

(∫ 1

0

S
ϵw−1
ϵw

i,t di
) ϵw

ϵw−1 −
∫ 1

0

Ws,i,tSi,tdi

Symmetrically, labour-aggregating firm aggregate differentiated unskilled labour service:

max
Uj,t

Wu,t

(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) ϵw

ϵw−1 −
∫ 1

0

Wu,j,tUj,tdj

The FOCs for each type of differentiated labour services are,

Si,t : Ws,t

(∫ 1

0

S
ϵw−1
ϵw

i,t di
) 1

ϵw−1

S
−1
ϵw
i,t −Ws,i,t = 0

Uj,t : Wu,t

(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) 1

ϵw−1

U
−1
ϵw
j,t −Wu,j,t = 0

Combining above first-order conditions with the aggregation constraints for both types of labour services

respectively, we can express aggregate hours for each types of labour as follows:

Si,t : Ws,tS
1

ϵw
t S

−1
ϵw
i,t −Ws,i,t = 0

Uj,t : Wu,tU
1

ϵw
t U

−1
ϵw
j,t −Wu,j,t = 0

After some algebra, the demand for Si,t and Uj,t can be expressed as:

Si,t =
(Ws,i,t

Ws,t

)−ϵw
St

Uj,t =
(Wu,j,t

Wu,t

)−ϵw
Ut

Now substitute above expression into labour-aggregating firm’s zero profit conditions and solve for the

aggregate wage rates as a function of differentiated labour wage rates,

Ws,t =
(∫ 1

0

W 1−ϵw
s,i,t di

) 1
1−ϵw

Wu,t =
(∫ 1

0

W 1−ϵw
u,j,t dj

) 1
1−ϵw

In terms of wage rigidity, this study follows the framework introduced by Calvo (1983). According

to this framework, it is assumed that, in each period, only a fraction 1 − θHw , H ∈ (S,U) of households,
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randomly selected from the population, have the opportunity to re-optimize their posted nominal wages. 38

The remaining households, θHw keep the same wage level as the previous period, i.e., Ws,i,t = Ws,i,t−1 and

Wu,j,t = Wu,j,t−1. For a household i supplying skilled labour services, when resetting its wage in period t,

let W ∗
s,i,t represent the newly set wage. The household chooses W ∗

s,i,t to maximize the expected discounted

sum of utilities generated over the period during which the wage remains unchanged at Ws,i,t, which was set

in the current period. This maximization is subject to the sequence of labour demand schedules and budget

constraints that are in effect while W ∗
s,i,t remains unchanged. 39

max
W∗

s,i,t

Et

{ ∞∑
k=0

(βθsw)
kU(Cs,i,t+k, Si,t+k)

}
s.t.

Si,t+k =
( W ∗

s,i,t

Ws,t+k

)−ϵw
St+k

Pt+kCs,i,t+k+Pt+kKs,i,t+k+1+Bs,i,t+k+1 ≤ Qt+kKs,i,t+k+W ∗
s,i,tSi,t+k+Pt+k(1−δ)Ks,i,t+k+Rt+kBs,i,t+k+Dt

The FOC associated with the problem above is given by

∞∑
k=0

(βθsw)
kEt

{
Si,t+k

[
Us(Cs,i,t+k, Si,t+k)Mw +

W ∗
s,i,t

Pt+k
Uc(Cs,i,t+k, Si,t+k)

]}
= 0

where Mw = ϵw
ϵw−1 .

Letting MRSs,i,t+k = −Us(Cs,i,t+k,Si,t+k)
Uc(Cs,i,t+k,Si,t+k)

denote the marginal rate of substitution between consumption

and skilled labour hours in period t+ k for the household supplying skilled labour and resetting the wage in

period t, we can rewrite the optimality condition as follows:

∞∑
k=0

(βθsw)
kEt

{
Si,t+kUc(Cs,i,t+k, Si,t+k)

(W ∗
s,i,t

Pt+k
−MwMRSs,i,t+k

)}
(35)

In the case of full wage flexibility, where θsw = 0, the markup between the real wage and the marginal

rate of substitution is given by Mw = ϵw
ϵw−1 , representing the desired gross wage markup. By log-linearizing

Equation 35 around the steady state and performing some algebraic manipulations, we obtain the following

approximate wage-setting rule (using lowercase letters to denote logarithmic variables):

w∗
s,i,t = µw + (1− βθsw)

∞∑
k=0

Et

{
mrss,i,t+k + pt+k

}
(36)

where µw = logMw = log
(

ϵw
ϵw−1

)
Letting mrst+k define the economy’s average marginal rate of substitution. The form of assumed utility

function combined with the aggregation constraint of household, implies the (log) marginal rate of substitu-

tion in period t+ k for household i can be written as a function of average marginal rate of substitution as

follow:

38Under the assumption of full consumption risk sharing across households, all households resetting their wage in any given
period will choose the same wage because they face an identical problem.

39The maximization problem for households who supply unskilled labour services is symmetric to the households that supply
skilled labour.
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mrss,i,t+k = mrss,t+k − ϵwϕ(w
∗
s,i,t+k − ws,t+k)

Hence, Equation 36 can be rewritten as (since a fraction of 1−θsw of households choose the same nominal

wage, i.e., w∗
s,i,t = ws,t, the subscript i is eliminated thereafter),

w∗
s,t = βθswEt{w∗

s,t+1}+ (1− βθsw)(ws,t − (1 + ϵwϕ)
−1µ̂t

w) (37)

where µ̂t
s = µs

t − µw denotes the deviation of the economy’s (log) average wage markup, i.e., µs
t =

(ws,t − pt)−mrss,t from its steady state µw.

Given the assumed Calvo wage setting rules, the evolution of the aggregate wage can be written as:

W 1−ϵw
s,t =

∫ θs
w

0

W 1−ϵw
s,t−1 di+

∫ 1

θs
w

(W ∗
s,t)

1−ϵwdi

W 1−ϵw
s,t = [W 1−ϵw

s,t−1 ]
θs
w

0 + [(W ∗
s,t)

1−ϵw ]1θs
w

W 1−ϵw
s,t = θswW

1−ϵw
s,t−1 + (1− θsw)(W

∗
s,t)

1−ϵw

Ws,t =
[
θswW

1−ϵw
s,t−1 + (1− θsw)(W

∗
s,t)

1−ϵw
] 1

1−ϵw

Log-linearize the above equation around the zero wage inflation steady state yield:

ws,t = θswws,t−1 + (1− θsw)w
∗
s,t (38)

Combining Equation 38 and 37 and letting πs
t = ws,t − ws,t−1 denote the skilled labour wage inflation

yields the wage inflation equation,

πs
t = βEt{πs

t+1} − λsµ̂t
s

where λs =
(1−θs

w)(1−βθs
w)

θs
w(1+ϵwϕ)

Symmetrically, for household supplies unskilled labour service the wage inflation equation is,

πu
t = βEt{πu

t+1} − λuµ̂t
u

where λu =
(1−θu

w)(1−βθu
w)

θu
w(1+ϵwϕ)

3.3.3 Retailer (Final goods producer)

The industry structure setup follows Dixit and Stiglitz (1977); assumes a continuum of wholesaler (interme-

diate goods producer), each produces a single intermediate goods with identical CES production technology

and sell each intermediate good to retailer. Assume a retailer (final good producer) uses intermediate goods

as input to produce final good. The final good producer produce in perfect competitive market thus takes

prices as given. In contrast, intermediate good producers produce in the environment of monopolistic com-

petition and have market power over setting their prices.

Final good firm’s production function is
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Yt =
(∫ 1

0

Y
ϵ−1
ϵ

m,t dm
) ϵ

ϵ−1

where Yt represents the output of the final good in period t, and Ym,t, where m ∈ [0, 1], denotes the

output of the wholesaler producing the differentiated intermediate goods. The parameter ϵ > 1 represents

the elasticity of substitution between the differentiated intermediate wholesale goods.

The final goods producer operates in a perfectly competitive market and seeks to maximize its prof-

its, taking the prices of intermediate goods Pm,t and the price of the final good Pt as given. Thus, the

maximization problem faced by the final goods producer can be expressed as follows:

max
Ym,t

PtYt −
∫ 1

0

Pm,tYm,tdm

Plug the aggregate production technology expression back into the objective function yields,

max
Ym,t

Pt

(∫ 1

0

Y
ϵ−1
ϵ

m,t di
) ϵ

ϵ−1 −
∫ 1

0

Pm,tYm,tdm

By taking the first-order condition and performing some algebraic manipulations, we can derive the

expression for wholesale goods demand, which is proportional to the demand for final goods and the relative

price level.

Ym,t =
(Pm,t

Pt

)−ϵ

Yt

By substituting this expression back into the zero-profit condition, we can derive the expression for the

price of the retail goods (aggregate price) in terms of the prices of the intermediate goods.

Pt =
(∫ 1

0

P 1−ϵ
m,t dm

) 1
1−ϵ

3.3.4 Wholesaler (Intermediate Goods Producer)

Assuming a continuum of intermediate goods firms indexed by m ∈ [0, 1], each firm produces an intermediate

good using identical constant-elasticity-of-substitution (CES) technology.

Ym,t = At

{
µUσ

m,t + (1− µ)
[
λKρ

m,t + (1− λ)Sρ
m,t

]σ
ρ
} 1

σ

µ, λ ∈ (0, 1);σ, ρ ∈ (−∞, 1), σ, ρ ̸= 0

The chosen form of the production function allows for capturing capital-skill complementarity, as the

elasticity of substitution between capital and skilled labour and the elasticity of substitution between skilled

and unskilled labour can be separated. The degree of elasticity of substitution between unskilled labour,

physical capital, and skilled labour is determined by parameters σ and ρ. Specifically, 1
1−σ represents the

elasticity of substitution between capital (or skilled labour) and unskilled labour, while 1
1−ρ represents the

elasticity of substitution between capital and skilled labour. Consistent with the existing literature on

capital-skill complementarity, such as Krusell et al. (2000), Lindquist (2004), Johnson (1997), and Duffy

et al. (2004), this study assumes 1
1−σ > 1

1−ρ and σ > ρ, indicating that capital and skill are complementary.
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3.3.4.1 Aggregate Price Dynamics

Following the framework proposed in Calvo (1983), each wholesale firm has the opportunity to reset its price

with a probability of (1 − θ) in any given period, regardless of the time elapsed since the last adjustment.

Consequently, in each period, a fraction of (1− θ) of wholesale firms, randomly drawn from the population,

are able to reset their prices, while the remaining fraction θ of firms will maintain their prices unchanged.

The aggregate price is shown as follows:40

P 1−ϵ
t =

∫ θ

0

P 1−ϵ
t−1 dm+

∫ 1

θ

(P ∗
t )

1−ϵdm

P 1−ϵ
t = [P 1−ϵ

t−1 ]
θ
0 + [(P ∗

t )
1−ϵ]1θ

P 1−ϵ
t = θP 1−ϵ

t−1 + (1− θ)(P ∗
t )

1−ϵ

Pt =
[
θP 1−ϵ

t−1 + (1− θ)(P ∗
t )

1−ϵ
] 1

1−ϵ

Log-linearize above aggregate wage dynamic expression around the zero inflation steady state to obtain,

π̂p
t = (1− θ)(p̂∗t − p̂t−1)

41 (39)

where x̂t denotes the deviation of Xt from its steady state, i.e., x̂t = log(Xt/X)

3.3.4.2 Optimal Inputs Demand

As pointed out earlier, each wholesale firm produces a single intermediate good with identical constant-

return-to-scale CES production technology. Thus, the marginal cost function coincides with the average

cost function, and total total cost equals the product of marginal cost times quantity. The first stage of

the wholesale firm’s problem is to choose the quantity of capital and labour (i.e., both skilled and unskilled

labour) inputs to minimize real total cost subject to the production constraint. Because each wholesale firm

meets the same cost minimization problem, the choice of capital and labour inputs will be the same among

wholesale firms, thus it eliminates the individual firm footscript m in the following equations.

min
St,Ut,Kt

Qt

Pt
Kt +

Ws,t

Pt
St +

Wu,t

Pt
Ut

s.t.

Yt = At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ
} 1

σ

The first-order conditions, after some algebraic manipulation are

Ws,t

Qt
=

(1− λ)Sρ−1
t

λKρ−1
t

(40)

40Note that since all wholesale firms resetting prices will choose an identical price, the subscript m is omitted in the following
expression.

41In zero inflation steady state, Πp = Pt
Pt−1

= P
P

= 1, thus π̂p
t = log(

Π
p
t

Πp ) = logΠp
t = πp

t
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Ws,t

Wu,t
=

(1− µ)[λKρ
t + (1− λ)Sρ

t ]
σ−ρ
ρ (1− λ)Sρ−1

t

µUσ−1
t

(41)

Above equation can be rewritten as

Ws,t

Wu,t
=

(1− µ)(1− λ)

µ

[
λ
(Kt

St

)ρ
+ (1− λ)

]σ−ρ
ρ
(Ut

St

)1−σ

Krusell et al. (2000) call the first component (1−µ)(1−λ)
µ

[
λ
(

Kt

St

)ρ
+ (1− λ)

]σ−ρ
ρ

as the capital-skill com-

plementarity effect, that is when σ > ρ (i.e., capital-skill are complementary), a rise in the ratio of capital to

skilled labour input will raise the skill premium. And the second component
(

Ut

St

)1−σ

is called the relative

supply effect; that is, a rise in the unskilled to skilled labour input ratio will raise the skill premium for any

acceptable values of σ and ρ.

To derive the real marginal cost function, use Equations 40 and 41 to solve for Kt and Ut as a function

of St, then substitute into production function and let output to be unit to obtain the skilled labour input

that produces one unit of output S∗
t . Substitute it back to the expression of Kt and Ut to obtain K∗

t and

U∗
t . Finally, the real marginal cost for each wholesale firm can be expressed as,

MCt = ws,tS
∗
t + wu,tU

∗
t + qtK

∗
t

where

ws,t = Ws,t/Pt, wu,t = Wu,t/Pt, qt = Qt/Pt

S∗
t = A−1

t

{
ΩH

(σ−ρ)σ
ρ(σ−1)

t

(wu,t

ws,t

) σ
σ−1

+ (1− µ)H
σ
ρ

t

}− 1
σ

U∗
t = S∗

t

{1− µ

µ
H

σ−ρ
ρ

t (1− λ)
wu,t

ws,t

} 1
σ−1

K∗
t = S∗

t

( λws,t

qt(1− λ)

) 1
1−ρ

Ω = µ
(1− µ

µ

) σ
σ−1

(1− λ)
σ

σ−1

Ht = (1− λ) + λ
( λws,t

q(1− λ)

) ρ
1−ρ

The optimal demand for each input can be derived from the dual problem; the profit maximization one:

max
Sm,t,Um,t,Km,t

Pm,tYm,t −Ws,tSm,t −Wu,tUm,t −QtKm,t

With Ym,t =
(

Pm,t

Pt

)−ϵ

Yt, we can obtain Pm,t = Pt

(
Yt

Ym,t

) 1
ϵ

, and then the above equation can be expressed

as,

max
Sm,t,Um,t,Km,t

Pt

( Yt

Ym,t

) 1
ϵ

Ym,t −Ws,tSm,t −Wu,tUm,t −QtKm,t
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Dividing both sides of the first-order conditions by aggregate price level yield,

Pm,t

Pt
=

ϵ

ϵ− 1

Ws,t/Pt

MPNs,m,t

Pm,t

Pt
=

ϵ

ϵ− 1

Wu,t/Pt

MPNu,m,t

Pm,t

Pt
=

ϵ

ϵ− 1

Qt/Pt

MPKm,t

Since
Pm,t

Pt
= ϵ

ϵ−1MCt, the first-order conditions can be rewritten as follow, that is the real wages and

rental costs are simply given by the multiplication product of marginal cost and the marginal product of

labour and capital.

Ws,t

Pt
= MCtAt

{
µUσ

m,t+(1−µ)
[
λKρ

m,t+(1−λ)Sρ
m,t

]σ
ρ
} 1−σ

σ

(1−µ)
[
λKρ

m,t+(1−λ)Sρ
m,t

]σ−ρ
ρ

(1−λ)Sρ−1
m,t (42)

Wu,t

Pt
= MCtAt

{
µUσ

m,t + (1− µ)
[
λKρ

m,t + (1− λ)Sρ
m,t

]σ
ρ
} 1−σ

σ

µUσ−1
m,t (43)

Qt

Pt
= MCtAt

{
µUσ

m,t + (1− µ)
[
λKρ

m,t + (1− λ)Sρ
m,t

]σ
ρ
} 1−σ

σ

(1− µ)
[
λKρ

m,t + (1− λ)Sρ
m,t

]σ−ρ
ρ

λKρ−1
m,t (44)

3.3.4.3 Optimal Price Setting

Similar to optimal wage setting, each monopolistic wholesale firm is assumed to possess market power when

determining the prices for the intermediate goods it produces. In this context, a wholesale firm indexed by

m chooses the price Pm,t in period t to maximize the present value of real profits generated while the price

remains in effect.

max
Pm,t

∞∑
k=0

(βθ)kEt

{(Pm,t

Pt+k
−MCt+k

)
Ym,t+k

}
s.t.

Ym,t+k =
(Pm,t

Pt+k

)−ϵ

Yt+k

Denote the solution as P ∗
m,t and the FOC is,

Et

∞∑
k=0

(βθ)k
{(P ∗

m,t

Pt+k
− ϵ

ϵ− 1
MCt+k

)
Ym,t+k

}
42

Note that all wholesale firms that reset their prices apply the same markup on the same marginal cost.

Therefore, in all periods, P ∗
m,t represents the identical price for the 1 − θ firms that reset their prices. In

the subsequent derivations, the subscript m is omitted. By log-linearizing the aforementioned first-order

42In basic monopolist competition, there is no price stickiness, all terms with k > 0 are zero, the equation is reduced

to
P∗
m,t

Pt
= ϵ

ϵ−1
MCt. Without price stickiness, all wholesale firms can freely adjust prices, thus P ∗

m,t = Pt, the first-order

condition can be further reduced to MC = ϵ−1
ϵ

.
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condition around the steady state of flexible prices (i.e., the basic monopolistic competition case), we obtain

the following expression (after some algebraic manipulation):

p̂∗t − p̂t−1 = βθEt(p̂∗t+1 − p̂t) + πp
t + (1− βθ)m̂ct

Combining with equation 39 yields the price inflation equation,

π̂t = βEt{π̂t+1}+
(1− βθ)(1− θ)

θ
m̂ct

3.3.5 Stochastic Process

The total factor productivity At is assumed to follow AR(1) process in logs,

ln(At) = ρAln(At−1) + et

where et ∼ N (µ, , σ2
e) represents random shocks to the total factor productivity process, which induces

unexpected changes. The parameter ρA captures the persistence associated with these random shocks. It is

assumed that the productivity shocks are stationary, satisfying the condition |ρA| < 1.

3.3.6 Monetary Policy

Monetary authority adjust short term nominal interest rates in accordance with the standard Taylor rule:

Rt+1

R
=
(Rt

R

)γR
(Πt

Π

)γπ
(Yt

Y

)γy

(45)

3.3.7 Closing the Model

In the model setup, final good produced by the retailer is used for private consumption and investment of

skilled and unskilled households, thus,

Yt = Cs,t + Cu,t + Is,t + Iu,t (46)

where Cs,t and Cu,t are aggregate consumption index given by,

Cs,t =
(∫ 1

0

Cs,i,tdi
) ϵ

ϵ−1

(47)

Cu,t =
(∫ 1

0

Cu,j,tdj
) ϵ

ϵ−1

(48)

And Is,t and Iu,t are aggregate investment index with the same as above aggregation technology. The

associated capital law of motion defined as,

Ks,t+1 = (1− δ)Ks,t + Is,t (49)

Ku,t+1 = (1− δ)Ku,t + Iu,t (50)
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And the aggregate capital input used by intermediate good firm is the sum of capital rented by skilled

and unskilled households

Kt = Ks,t +Ku,t (51)

The complete derivation of the models can be found in Appendix A.

3.4 Calibration

The model is calibrated using annual US data. The parameter values associated with the model are either

commonly referred to in existing literature or set to replicate empirical findings at the steady state. The

time discount factor is set to β = 0.99, which corresponds to an approximate 4 percent steady-state return

on financial assets. The risk aversion parameter is set to σc = 1, and the Frisch elasticity of labour supply

is set to ϕ = 1, following Gaĺı (2007). Based on data from the CPS MORG survey, it is observed that

approximately 21 percent of workers have a college education, while the remaining 69 percent are unskilled

workers. Therefore, the input share of unskilled workers is calibrated as µ = 0.62, and the input share of

capital is set to λ = 0.8, as in Belianska (2020). The depreciation rate of equipment is chosen as δ = 0.125,

following Greenwood et al. (1997).

For the substitution parameters, the elasticity of substitution between skilled labour and capital is set

to ρ = −0.495, while the elasticity of substitution between unskilled labour and capital (or skilled labour)

is set to σ = 0.401. These parameter values are estimated by Krusell et al. (2000) and are commonly used

in the existing literature. With these substitution parameters, the elasticity of capital to skilled labour is
1

1−ρ = 0.67, and the elasticity of capital to unskilled labour is 1
1−σ = 1.67. Regarding the interest rate rule

coefficients, an interest rate smoothing parameter γR is set to 0.9, and we set γy = 0.3, and γΠ = 1.5, as in

Belianska (2020).

Next, the elasticity of substitution between differentiated intermediate goods is set to ϵ = 6, following

Gaĺı (2007). The elasticity of substitution between differentiated labour services is set to ϵw = 5. The degree

of price stickiness is generally high, aligning with the range of estimates found in U.S. data (see, e.g., Galı

and Gertler (1999), Galı et al. (2001), Sbordone (2002), Eichenbaum and Fisher (2004), Ravenna and Walsh

(2006), Dennis (2006)). Consistent with empirical evidence and following Gaĺı (2007), the price stickiness

parameter is assumed to be θ = 0.698. According to Parker and Vissing-Jorgensen (2010), the wages of

top-earning workers tend to be more sensitive to technology shocks. Therefore, in line with this finding, we

assume asymmetric wage rigidity, where unskilled wages are more sticky. Specifically, we set θsw = 0.65 and

θuw = 0.8, following the parameter values used in the calibration conducted by Belianska (2020). For the

exogenous technology process, a persistence value of 0.95 is chosen, with an average standard deviation set

to 0.01248. The calibrated values of the model parameters are summarized in Table 44.

3.5 Results

This paper’s goal is to develop a stochastic dynamic general equilibrium model that includes capital-skill

complementarity in production, Calvo pricing, and nominal wage rigidity. The model’s primary purpose is

to elucidate the observed negative response in the skilled-to-unskilled working hours ratio and the differing

responses in working hours between skilled and unskilled labour. We simulate four distinct scenarios: a

generalized Real Business Cycle (RBC) model, a frictionless monopolistic competition model, a generalized
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Parameter Value Description
σ 0.41 Elasticity substitution between capital and unskill
ρ -0.495 Elasticity substitution between capital and skill
β 0.99 Time discount factor
λ 0.8 Input share of capital
µ 0.62 Input share of unskill
δ 0.125 Capital depreciation rate
ϕ 1 Frisch lasticity of labour supply
σc 1 Risk aversion parameter
ϵ 6 Elasticity of substitution between intermediate goods
ϵw 5 Elasticity of substitution between labour services
θ 0.698 Price rigidities
θsw 0.65 Degree of wage rigidities for skilled workers
θuw 0.8 Degree of wage rigidities for unskilled workers
ρA 0.95 AR(1) parameter
γR 0.9 Interest rate smooting
γπ 1.5 Taylor-coefficient on inflation
γy 0.3 Taylor-coefficient on output

Table 44: Parameter calibration

model with Calvo pricing (based on Calvo, 1983), and a model that integrates both Calvo wages and price

settings.

Our findings indicate that the generalized model with Calvo pricing effectively explains both the negative

reaction in the skilled-to-unskilled hours ratio and the divergent responses in hours worked by the two labour

types. The other three models, while capable of accounting for the negative hours ratio response, do not

fully address the distinct directional responses of skilled and unskilled labour hours.

Given the limited literature on incorporating a Constant Elasticity of Substitution (CES) production

function with different types of labour, our analysis of the generalized RBC and monopolistic competition

models provides benchmark results for our proposed model. Furthermore, we explore a model that com-

bines a CES production function with differentiated labour types, Calvo pricing, and wage rigidity. To our

knowledge, this is the first instance of constructing a model with these specific features.

3.5.1 Calvo Pricing

Figure 22 presents the results for the generalized model with Calvo pricing. One notable distinction from the

standard model with Calvo pricing is the adoption of a CES production function with three factors instead

of the Cobb-Douglas. In addition, we incorporate the Calvo pricing mechanism for intermediate goods. The

absence of continuous price adjustments by firms implies that the average markup between the real prices of

inputs and the marginal products of inputs in the economy will vary over time. Consequently, the markup

will generally deviate from the constant frictionless markup observed in the monopolistic competition case.
43. When considering the distortion caused by sticky prices, the markup is defined as the product of the real

marginal cost and the inverse of the frictionless markup. This inefficiency can result in either higher or lower

43In the case of monopolistic competition, the frictionless markup depends on the elasticity of substitution between the

differentiated intermediate goods, given by −Un,t

Uc,t
= Wt

Pt
= ϵ−1

ϵ
MPNt. It is important to note that in equilibrium, the

marginal rate of substitution −Un,t

Uc,t
and the marginal product of labour exhibit increasing and decreasing (or non-increasing)

patterns, respectively, with respect to hours. The presence of markup distortion in this setting results in an inefficiently low

level of hours and output, i.e., −Un,t

Uc,t
= Wt

Pt
= ϵ−1

ϵ
MPNt < MPNt
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levels of output and employment compared to the efficient levels observed in the RBC model, depending on

the specific value of the markup. 44

In Figure 22, advancements in technology trigger an initial period of heightened investment, subsequently

resulting in an increase in capital. This increase in investment offsets the decrease in consumption and con-

tributes to a boost in output. When examining the impact of technological improvements on consumption

patterns across different skill levels, we observed a distinct divergence. Specifically, in response to technolog-

ical advancements, consumption among highly skilled individuals increases, while it decreases for those with

lower skills in the short term. This phenomenon can be largely attributed to the effects of wealth redistri-

bution. Due to capital-skill complementarity, new technologies often replace tasks traditionally performed

by unskilled labour, while simultaneously enhancing the efficiency of skilled workers. Consequently, firms

increasingly prefer skilled labour, as the marginal productivity of skilled workers is amplified. This shift

leads to higher wages for skilled workers and a decrease in wages for their unskilled counterparts. Unskilled

workers, facing an immediate drop in income, might also contend with uncertainties regarding their future

earnings. This fear, especially if it extends to concerns about long-term unemployment or further wage cuts,

can result in a temporary reduction in their consumption levels. Conversely, skilled workers benefit from a

boost in income, enhancing their financial security and expectations about future earnings. This increased

sense of financial stability, in turn, leads to an increase in their consumption in the short run.

The response of hours worked for skilled and unskilled workers is in opposite directions. Skilled hours

experience a sharp decline immediately and subsequently display a steady increase over time before reverting

to steady-state level. Conversely, unskilled hours initially increase and then revert back to the steady-state

level. This short-term decline in skilled hours and increase in unskilled hours lead to a pronounced decrease

in the ratio of skilled to unskilled hours. The short-run responses of hours can be explained by the combined

effects of three factors. Firstly, the Capital-Skill Complementarity (CSC) effect plays a role: a positive

technology shock enhances the productivity of skilled workers while reducing that of unskilled workers. This

leads skilled workers to complete their workload more efficiently, resulting in a decrease in skilled hours in

the short run. Conversely, the lower productivity of unskilled workers leads to an increase in unskilled hours.

Secondly, the higher marginal productivity of skilled workers relative to unskilled workers incentivizes firms

to prefer skilled workers over unskilled workers, leading to a substitution effect from unskilled to skilled

workers. This effect contributes to an increase in skilled wages and a decrease in unskilled wages in the short

run. Thirdly, with heightened productivity, firms are capable of manufacturing at reduced costs, potentially

resulting in lower prices. However, due to nominal rigidity, there might be a delay or incomplete adjustment

in prices to reflect this increased productivity. As a consequence, firms require fewer labour inputs to

maintain the same level of output. In the short run, this situation could lead to the layoff of skilled workers,

as they are not only more productive but also command higher wages, making them costlier for firms to

employ. The proposition of a decline in skilled employment in the initial period is consistent with empirical

findings that demonstrate a decrease in the employment of skilled workers, as depicted in Figure 20. The

negative impact of price stickiness and CSC on skilled hours offsets the positive substitution effect, resulting

in a decrease in total hours worked by skilled workers in the initial period. Conversely, the positive CSC

44As demonstrated in Gaĺı (2007), with the presence of sticky prices, we have −Un,t

Uc,t
= Wt

Pt
= ϵ

ϵ−1
MCtMPNt, which violates

the efficiency condition in the RBC case, i.e., −Un,t

Uc,t
= Wt

Pt
= MPNt, as long as 1

MCt
̸= ϵ

ϵ−1
. Once again, in equilibrium, the

marginal rate of substitution −Un,t

Uc,t
and the marginal product of labour exhibit increasing and decreasing (or non-increasing)

patterns, respectively, with respect to hours. The level of output and employment can be either larger or smaller than the
efficient level, depending on the value of ϵ

ϵ−1
MCt. This discrepancy could lead to either excessively low or excessively high

levels of aggregate hours and output.
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and negative substitution effect on unskilled hours contribute to an increase in unskilled hours in the short

run. In the subsequent periods, the initial impact of the CSC effects diminishes as the change in marginal

productivity of labour approaches its limit. The substitution effect gradually becomes the dominant factor,

leading to an increase in skilled hours and a decrease in unskilled hours. As skilled hours increase, the

marginal product of skilled labour declines, resulting in a decrease in the skilled wage, while the unskilled

wage experiences the opposite response.

In our findings, the initial decrease in skilled hours and rise in unskilled hours lead to a rise in the capital-

to-skilled labour input ratio and a decline in the ratio of skilled to unskilled hours. These observations indicate

the presence of both the capital-skill complementarity effect and the relative supply effect, both acting in

tandem to enhance the skill premium. Table 45 presents a summary of the point estimates for the impact

responses of labour market variables obtained from the data compared to the responses computed from our

generalized model with Calvo pricing. Overall, the model aligns closely with the data. However, there are

some discrepancies observed. Specifically, the model tends to overestimate the increase in skill wage while

underestimating the decline in unskilled wage. Consequently, this leads to an overestimation of the rise in

the skill premium.

Figure 22: Impulse response functions to utilisation-controlled technology shock in the generalized model
with Calvo (1983) pricing
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data model
Skill wage 0.270 0.917
Unskill wage 0.051 -0.017
Skill hours worked -0.897 -0.458
Unskill hours worked 0.449 0.460
Skill premium 0.686 0.933
Ratio of skilled to unskilled hours worked -1.391 -0.917
Ratio of capital to skilled hours worked 0.637 0.613

Table 45: Point estimates; model compared to the data

In a standard New Keynesian model featuring Calvo pricing, the response to a positive technology shock

may present complex dynamics for key macroeconomic variables. Hours worked often initially decline due to

increased productivity allowing the same level of output with less labour. Output typically increases as the

economy becomes more productive. However, due to sticky prices, the immediate response may be muted

compared to models without such frictions. Consumption generally rises as households anticipate higher

future incomes from the productivity increase. Investment can also increase as firms anticipate greater prof-

itability from more efficient production processes and may invest in new technologies and capital. However,

these responses can vary based on the specific assumptions of the model, particularly how expectations are

formed and the degree of price rigidity. These responses have been discussed in the literature, including in

Ireland (2004), Jung (2022), Dedola and Neri (2007).

Our model’s results largely align with the standard New Keynesian model’s predictions, except it diverges

in the initial muted response of output to a technology shock. The standard model suggests firms may reduce

their workforce due to lower equipment costs and higher productivity if demand does not increase sufficiently.

In contrast, our results show that firms may lay off some high-skilled workers due to price stickiness, while

the employment of low-skilled workers is not as affected. Furthermore, the increased productivity of high-

skilled workers may counterbalance the initial muted output. This response could be compared to findings

in existing works such as those by Gali (1999), Peersman and Straub (2006), Smets and Wouters (2003),

Christiano et al. (2005), which analyze the implications of technology shocks in New Keynesian frameworks.

Furthermore, our model exhibits a divergence in the initial aggregate consumption response compared to

that of the standard New Keynesian model. As described in the previous paragraph, our analysis examines

in detail how consumption among skilled and unskilled workers responds to technological improvements. The

initial aggregate responses of consumption are influenced by the consumption reactions of each type of labour

and also depend on the proportion of skilled to unskilled labour within the total employment. Therefore,

incorporating different skills level into the model may result in a difference in aggregate consumption response

in the initial period compared to the standard model.

4 Extensions

4.1 Generalized RBC and Monopolist Competition Models

Considering the scarce research on integrating a Constant Elasticity of Substitution (CES) production func-

tion that includes various kinds of labour, our examination of the extended Real Business Cycle (RBC)

and monopolistic competition models delivers foundational outcomes that set the standard for our suggested

model. In the generalized RBC model, we assume two representative households that maximize the weighted
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sum of expected utilities by choosing consumption, labour supply, and capital given prices and wages. Ad-

ditionally, we consider a representative firm that maximizes its real profit by selecting labour demand for

two types of workers and capital, given the price level. This frictionless model does not incorporate dis-

tortions associated with monopolistic competition or staggered price and wage settings. Consequently, the

marginal rate of substitution is equal to the marginal product of labour, and the marginal product of capital

corresponds to the real rental costs. The key distinction between the RBC model used in this paper and

the standard Real Business Cycle model is the extension of the production function. Instead of employing a

Cobb-Douglas production function, our model incorporates a more general three-factor production function

that accounts for capital-skill complementarity.

Figure 23 displays the impulse response results of a positive technology shock in the generalized RBC

model. The findings suggest that the shock results in higher wages for both skilled and unskilled workers.

This wage boost, in turn, encourages workers to contribute more hours, leading to elevated levels of output

and an increased capital stock. With the rise in income, both skilled and unskilled workers have increased

their consumption, and the technological improvements have further stimulated investment. Notably, the

response of skilled hours is relatively smaller than that of unskilled hours in the initial period, leading to a

slight decrease in the skilled to unskilled hours ratio.

These outcomes can be attributed to three key factors. Firstly, the positive technology shock stimulates

higher demand for production inputs, which consequently raises the demand for both skilled and unskilled

hours. Secondly, the presence of capital-skill complementarity (CSC) influences the response. Specifically, the

shock enhances the productivity of skilled workers but reduces that of unskilled workers. This productivity

differential leads to a decrease in skilled hours in the short run, as skilled workers can accomplish their

workload more efficiently with fewer hours. Conversely, unskilled workers require more hours to complete

their tasks. Thirdly, the higher marginal productivity of skilled workers relative to unskilled workers prompts

firms to substitute unskilled workers with skilled workers.

In the short run, the dominance of the capital-skill complementarity (CSC) effect over the substitution

effect is observed due to the inefficiency in reallocating employment between the two skill types. The

negative CSC effect on skilled hours and the positive CSC effect on unskilled hours are unable to fully offset

the positive impact of the technology shock. Consequently, the combined effect leads to a smaller increase

in skilled hours compared to unskilled hours, ultimately resulting in a mild decline in the skilled to unskilled

hours ratio in the initial period. Over time, the initial impact of the CSC effects diminishes as the changes

in marginal productivity approach their limits. The substitution effect gradually becomes the dominant

factor, resulting in an increase in skilled hours and a decrease in unskilled hours in subsequent periods.

Additionally, the higher demand for skilled workers leads to a greater increase in their wages compared to

unskilled workers, contributing to an overall rise in the skill premium.

Additionally, as shown by Krusell et al. (2000), the skill premium can be expressed as follows:

ws,i,t

wu,i,t
=

(1− µi)(1− λi)

µi

[
λi

(
Ki,t

Si,t

)ρi

+ (1− λi)

]σi−ρi
ρi
(
Si,t

Ui,t

)σi−1

Given that σ < 1, µ < 1, λ < 1, an increase in the ratio of skilled to unskilled hours (S/U) will, ceteris

paribus, result in a decrease in the skill premium for any acceptable values of σ. 45 This is referred to as

the relative supply effect by Krusell et al. (2000). Furthermore, if σ > ρ, an increase in the ratio of capital

45Positive elasticity of substitution between capital (or skilled labour) and unskilled labour ensures 1/(1 − σi) > 0, and we
have σ < 1.



116

stock to skilled hours K/S will, ceteris paribus, result in an increase in the skill premium, which is referred

to as the capital-skill complementarity effect. Our findings indicate that the positive response of the ratio

of capital to skilled hours worked and the negative skilled to unskilled hours ratio align with the relative

supply effect and the capital-skill complementarity effect, respectively. These effects work together in the

same direction and contribute to an increase in the skill premium.

Figure 23: Impulse response functions to utilisation-controlled technology shock in generalized RBC model

The impulse response functions for the monopolistic competition model are presented in Figure 24. In

this model, the firm side is characterized by a continuum of wholesalers and a retailer. The retailer operates

in a perfectly competitive market and utilises intermediate goods as inputs to produce final goods. On the

other hand, wholesalers operate in a monopolistic competition market, with each wholesaler producing a

unique intermediate good and selling it to the retailer. We keep assuming there is no staggered price setting.

Consequently, each intermediate goods firm can freely adjust the prices of its goods in each period. The

presence of market power gives rise to a markup between the real wages and the marginal product of labour,

as well as between the real costs of capital and the marginal product of capital. This markup distortion

results in an inefficient level of output. In Figure 24, we observe that the responses of all variables exhibit

similar patterns to those in Figure 23. However, due to the inefficiency induced by market power distortion,

the level of output and capital in the monopolistic competition model is lower compared to the RBC model.

Our findings correspond closely with the predictions of the standard Real Business Cycle (RBC) model

and the monopolistic competition framework, with the distinctive aspect being our consideration of the

dynamics across two distinct skill levels. These two models do not adequately explain the differing responses

of hours worked by various skill levels to the technology shock, in contrast to the Calvo pricing model

discussed in the previous section. The main objective of analyzing these two models is to establish benchmark
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results for the DSGE model that incorporates varying skill levels.

Figure 24: Impulse response functions to utilisation-controlled technology shock in the monopolist competi-
tion model

4.2 Calvo Pricing and Wages

Next, we investigate a model that merges a CES production function with differentiated labour types,

Calvo pricing, and inflexible wages. As far as we are aware, this represents the initial effort to develop a

model encompassing these particular characteristics. Instead of the representative household assumed in the

generalized model with Calvo pricing, we assume two types of infinitely lived agents supply differentiated

labour services, and workers can reset their wages following the Calvo-wage setting. The primary distinction

between our model and the prevailing DSGE model incorporating sticky prices and nominal wage rigidity

(see, for example, Lin and Weise (2019), Calvo (1983)) lies in the explicit differentiation of labour supply

into two distinct skill levels. Additionally, we introduce varying degrees of wage stickiness for each type of

worker. Figure 25 represents the impulse response results.

As the shocks propagate throughout the economy, the staggered wage adjustments create delays in the

impact responses of both skilled and unskilled wages to the technology shock. In comparison to the sticky

price model, the initial period of adjustment reveals a mild increase in skilled wages, while unskilled wages

largely remain at the steady-state level. Notably, due to the relatively lower stickiness of skilled wages

compared to unskilled wages, the former exhibit relatively higher sensitivity to the shocks. This discrepancy

in wage stickiness considerably impacts the influence on skilled wages, exceeding the effects observed on

unskilled wages. Specifically, skilled wages exhibit a substantial reduction, while unskilled wages experience

minimal changes during the initial period, in contrast to the levels observed in the sticky price model. In

the subsequent periods, wages begin to adjust, with skilled wages surging to their peak and unskilled wages
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declining towards their lowest point, before the responses converge towards patterns similar to those observed

in the sticky price model.

The staggered nature of wage adjustments contributes to a delay in the increase of output and investment,

as firms may hesitate to expand production or invest in new projects until they have a clearer understanding

of labour costs and overall economic conditions. Furthermore, there is an observable decline in aggregate

consumption in the short run, attributed to reduced spending among both skilled and unskilled workers. For

low-skilled workers, the lack of initial wage change heightens income uncertainty, leading to a reduction in

consumption. In the case of high-skilled workers, the staggered nature of wage adjustments results in only

a modest increase in their wages. Our model suggests that this leads to a decrease in their consumption

in the initial period. This prediction, however, may not fully align with standard New-Keynesian thinking.

Typically, a modest wage increase is not expected to result in decreased consumption among skilled workers.

Instead, it might lead to a slower growth in consumption due to uncertainties about future income and the

stability of these wage increases.

In the standard New-Keynesian framework, the consumption response of high-skilled workers to wage

changes typically does not entail a decrease, especially when wages increase, albeit modestly. The usual

expectation is for their consumption to either rise, albeit less than anticipated, or remain steady. The diver-

gence of our model’s predictions from these standard expectations suggests an area for further exploration.

Therefore, the nuances in the consumption patterns of high-skilled workers in response to staggered wage

adjustments, as predicted by our model, present an interesting avenue for future research.

The staggered nature of wage also have impact on hours worked. In the initial period, there is a notable

reduction in the wage gap between skilled and unskilled workers compared to the previous model. As

a result, skilled workers become relatively more affordable, leading to a more pronounced substitution of

unskilled workers with skilled workers. This increased positive substitution effect on skilled hours counteracts

the negative impacts of sticky prices and the capital-skill complementarity (CSC) effect on skilled hours.

Consequently, the net effect is a mild increase in skilled hours in the short run instead of a substantial decline

as observed in the previous sticky price model. On the other hand, as more unskilled workers have been

substituted away, the level of unskilled hours decreases in comparison to the level observed in the sticky price

model. The presence of nominal wage rigidity diminishes the disparity in hours worked and wages between

skilled and unskilled workers in the short run. Consequently, the decline in the ratio of skilled to unskilled

hours worked and the increase in the skill premium are less pronounced compared to the outcomes observed

in the sticky price model.

Our study parallels Lin and Weise (2019), who developed a New Keynesian model incorporating a CES

production function that includes both human labour and robotics. While our model mirrors Lin’s in

examining the impact of wage rigidity on the allocation between diverse production inputs, our findings

diverge significantly in their implications. Lin and Weise (2019) observed that wage rigidity, alongside a

reduction in overall price levels, leads to higher real wages and lower rental rates, thus making human labour

more expensive and incentivizing a shift towards robotics, thereby increasing the robot-to-human labour

ratio. Contrarily, our analysis reveals that technological improvements, when coupled with short-term wage

rigidity, do not elevate skilled labour wages as expected, rendering skilled labour more cost-effective relative

to its prior state. This dynamic fosters a pronounced transition from unskilled to skilled labour, unveiling

a distinct mechanism of labour substitution. Despite these discrepancies, a conceptual connection exists

between our results and Lin’s, underscoring how wage adjustments can influence labour substitution across

different scenarios and contexts.
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To the best of our knowledge, we are the pioneers in developing a DSGE model that integrates a CES

production function with two types of labor skills, along with Calvo pricing and wage setting. The estab-

lishment of this model enables a more thorough analysis of business cycle outcomes, particularly regarding

the responses of labor hours across different skill levels. However, this model falls short of replicating the

empirical results it seeks to explain in this chapter.

Figure 25: Impulse response functions to utilisation-controlled technology shock in the model with Calvo
wages and Calvo prices

5 The Role of Capital-Skill Complementarity

The model incorporates capital-skill complementarity by representing it through the elasticity of substitution

between capital and skilled labour, denoted as 1
1−ρ . Figure 26 illustrates the responses of skilled and unskilled

hours worked, as well as the skilled to unskilled hours ratio, to technological advancements in sticky price

model. These responses are examined by varying the aforementioned elasticity. The benchmark calibration

of the elasticity of capital and skilled labour is 1
1−ρ = 0.668, with ρ = −0.495, while the elasticity of capital

and unskilled labour is 1
1−σ = 1.69, with σ = 0.41. We examine two additional cases: strong complementarity

with 1
1−ρ = 0.37 and ρ = −1.7 (indicated by the red dotted line with cross), and weak complementarity

with 1
1−ρ = 1.14 and ρ = 0.12 (represented by the blue dashed line). The corresponding impulse response

functions (IRFs) for these cases are plotted in Figure 26 alongside the benchmark model for comparison.

A higher degree of capital-skill complementarity i.e., weak elasticity of substitution between capital and

skilled labour, induces a more substantial substitution effect from unskilled to skilled workers, reflecting

firms’ preference for skilled workers over unskilled workers. This heightened positive substitution effect on

skilled hours counteracts the negative influence of sticky prices and increased working efficiency on skilled
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hours, as observed in the benchmark case. Consequently, the initial period following the technology shock

witnesses a mild increase in skilled hours, deviating from the initial decline observed in the benchmark

case. Conversely, the higher degree of capital-skill complementarity leads firms to substitute more unskilled

workers away, resulting in a smaller increase in unskilled hours compared to the benchmark case in the

initial period. The narrowing gap in the initial responses between hours worked for the two skill levels

results in a reduced decline in the skilled to unskilled hours ratio during the initial period following the

technology shock. Similarly, the case with a lower degree of capital-skill complementarity exhibits notable

similarities. Specifically, in response to technological advancement, a lower degree of substitution effect from

unskilled hours to skilled hours leads to a more pronounced decrease in skilled hours and a greater increase

in unskilled hours on impact. The widened gap in the initial responses of hours worked for the two labour

types further contributes to a more substantial decline in the skilled to unskilled hours ratio, contrasting

with the benchmark model.

In the subsequent period, the magnitude of the increase in skilled hours is more pronounced for the case

of weak capital-skill complementarity and comparatively weaker for the case of strong capital-skill comple-

mentarity. One possible explanation is that stronger capital-skill complementarity enhances the productivity

of skilled workers. Consequently, firms require a lesser number of skilled workers to accomplish production

tasks compared to the benchmark case. Conversely, in situations with lower capital-skill complementarity,

firms necessitate a greater number of skilled workers to fulfill the workload, as skilled workers are not as

productive as in the benchmark case. This leads to a more significant increase in skilled hours relative to

the levels observed in the benchmark case.

Figure 27 displays the impulse response functions (IRFs) obtained by varying the elasticity of substitu-

tion between capital and skilled labour in the model with sticky prices and sticky wages. Again, the results

for strong complementarity are denoted by the red line with a cross, while the results for weak complemen-

tarity are represented by the blue dashed line. Notably, the patterns exhibited in the IRFs demonstrate

remarkable similarity, as observed in Figure 26. For instance, in the case of a higher degree of capital-skill

complementarity, the intensified substitution effects from unskilled workers to skilled workers resulting from

stronger capital-skill complementarity lead to a more pronounced increase in skilled hours during the initial

period, compared to the benchmark case. Conversely, due to more unskilled hours have been substituted

away, unskilled hours experience a smaller increase. Moreover, the narrowing gap in the initial responses

between hours worked for the two skill levels contributes to a reduced decline in the skilled to unskilled

hours ratio during the initial period. Additionally, the deeper increase in skilled hours observed in the case

of weak capital-skill complementarity in the subsequent period, compared to both the benchmark and strong

capital-skill complementarity cases, can be explained by similar factors outlined in Figure 26.



121

Figure 26: The role of CSC in Calvo prices model
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Figure 27: The role of CSC in Calvo prices and Calvo wages model

6 Conclusion

The aim of this study is to develop a stochastic dynamic general equilibrium (DSGE) model that integrates

capital-skill complementarity in production, Calvo prices, and nominal wage rigidity. The model is designed

to offer insights into the negative dynamics observed in the skilled to unskilled working hours ratio and the

differential responses of hours worked by skilled and unskilled workers. Four distinct scenarios are simulated,

including a generalized Real Business Cycle (RBC) model, a frictionless monopolistic competition model,

a generalized model incorporating Calvo (1983) pricing, and a model incorporating Calvo wage and price

settings.

We discovered that, with moderate capital-skill complementarity, both the generalized Real Business

Cycle (RBC) model and the frictionless monopolistic competition model can elucidate the negative response

of the skilled to unskilled hours ratio to technological advancements. The primary explanation lies in the

fact that technological advancements are accompanied by increased productivity among skilled workers

relative to unskilled workers. As a result, skilled workers can fulfill workloads more efficiently, leading to a

smaller increase in skilled hours compared to unskilled hours in response to technological advancements and

subsequently resulting in a decline in the skilled to unskilled hours ratio during the initial period. However,

we found that these two models fail to explain the divergent responses of hours worked for the two skill levels.

In contrast, a generalized model incorporating Calvo (1983) pricing is capable of providing an explanation.

Sticky prices induce firms to reduce skilled workers due to both cost considerations and the higher efficiency
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of skilled workers. In addition, we also consider a model that incorporates Calvo wage and price settings to

further enrich our analysis.

By exploring different modeling scenarios, we uncover the varying impacts of technological advancements

on hours worked by different skill levels and highlight the importance of sticky prices and wages in explaining

these dynamics.

7 Appendix A

7.1 RBC Model with CES Production Function

7.1.1 Representative Households

The maximization of a homogeneous utility function subject to a budget constraint is undertaken by two

representative households, representing skilled and unskilled individuals, indexed by H ∈ (S,U),

MaxHt,CH,t,KH,t+1,BH,t+1

{
Et

∞∑
t=0

βt

{
C1−σc

H,t

1− σc
− H1+ϕ

t

1 + ϕ

}}

s.t.

PtCH,t + PtKH,t+1 +BH,t+1 = WH,tHt +QtKH,t + Pt(1− δ)KH,t +RtBH,t +Dt

F.O.Cs:

CH,t : C
−σc

H,t = λtPt

Ht : H
ϕ
t = λtWH,t

KH,t+1 : λt+1(Qt+1 + Pt+1(1− δ)) = λtPt

BH,t+1 : λt+1Rt+1 = λt

Rearrange above first order conditions for skilled worker gives, i.e., H = S,

C−σc
s,t = βEt

{
C−σc

s,t+1Rt+1
Pt

Pt+1

}

C−σc
s,t = βEt

{
C−σc

s,t+1

(Qt+1

Pt+1
+ (1− δ)

)}

Ws,t

Pt
=

Sϕ
t

C−σc
s,t



123

Symmetrically, the first-order conditions for household who supplies unskilled labour are, i.e., H = U ,

C−σc
u,t = βEt

{
C−σc

u,t+1Rt+1
Pt

Pt+1

}

C−σc
u,t = βEt

{
C−σc

u,t+1

(Qt+1

Pt+1
+ (1− δ)

)}

Wu,t

Pt
=

Uϕ
t

C−σc
u,t

7.1.2 Representative Firm

A representative firm chooses St,Kt, Ut to maximize its profit,

MaxSt,Kt,Ut

{
At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ
} 1

σ − Qt

Pt
Kt −

Ws,t

Pt
St −

Wu,t

Pt
Ut

}
F.O.Cs:

St :
Ws,t

Pt
= At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ

} 1−σ
σ

· (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ−ρ
ρ · (1− λ)Sρ−1

t

Ut :
Ws,t

Pt
= At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ

} 1−σ
σ

· µUσ−1
t

Kt :
Ws,t

Pt
= At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ

} 1−σ
σ

· (1− µ)
[
λKρ

t + (1− λ)Sρ
]σ−ρ

ρ · λKρ−1
t

7.1.3 Market Clearing and Stochastic Process

ln(At) = ρAln(At−1) + et

Ks,t+1 = (1− δ)Ks,t + Is,t

Ku,t+1 = (1− δ)Ku,t + Iu,t

Kt = Ks,t +Ku,t

Yt = Cs,t + Cu,t + Is,t + Iu,t
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7.2 Monopolist Competition with CES production Function

7.2.1 Representative Households

The model for representative households in this context aligns with the structure outlined in the previously

discussed Real Business Cycle (RBC) model.

7.2.2 Final Goods Producer

Final good producer is perfectly competitive and maximize its profits, taking as given intermediate goods

prices Pm,t and the final good price Pt. Thus, its maximization problem is,

max
Ym,t

PtYt −
∫ 1

0

Pm,tYm,tdm

s.t.

Yt =
(∫ 1

0

Y
ϵ−1
ϵ

m,t dm
) ϵ

ϵ−1

where Yt is final good output in period t, and Ym,t,m ∈ [0, 1] is the output of wholesaler. ϵ > 1 is the

elasticity of substitution between differentiated intermediate wholesale goods. Plug the aggregate production

technology expression back into the objective function yields

max
Ym,t

Pt

(∫ 1

0

Y
ϵ−1
ϵ

m,t dm
) ϵ

ϵ−1 −
∫ 1

0

Pm,tYm,tdm

F.O.C:

Pt

(∫ 1

0

Y
ϵ−1
ϵ

m,t dm

) ϵ
ϵ−1−1

Y
ϵ−1
ϵ −1

m,t = Pm,t

Substitute
∫ 1

0
Y

ϵ−1
ϵ

m,t dm = Y
ϵ−1
ϵ

t in gives,

Pt

(
Y

ϵ−1
ϵ

t

) ϵ
ϵ−1−1

Y
ϵ−1
ϵ −1

m,t = Pm,t

Rearrange gives,

Ym,t =
(Pm,t

Pt

)−ϵ

Yt

Zero profit condition for final goods producer is,

PtYt =

∫ 1

0

Pm,tYm,tdm

Substitute Ym,t =
(

Pm,t

Pt

)−ϵ

Yt in,

PtYt =

∫ 1

0

Pm,t

(Pm,t

Pt

)−ϵ

Ytdm
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Rearrange leads to,

Pt =
(∫ 1

0

P 1−ϵ
m,t dm

) 1
1−ϵ

7.2.3 Wholesalers (Intermediate Goods Producers)

Assume a continuum of intermediate goods firms indexed by m ∈ [0, 1], each firm produce a intermediate

good using identical constant-elasticity-substitution (CES) technology,

Ym,t = At

{
µUσ

m,t + (1− µ)
[
λKρ

m,t + (1− λ)Sρ
m,t

]σ
ρ
} 1

σ

Intermediate goods firms maximize the profit function taking Ws,t,Wu,t and Qt as given,

Pm,tYm,t −Ws,tSm,t −Wu,tUm,t −QtKm,t

From Ym,t =
(

Pm,t

Pt

)−ϵ

Yt we could obtain Pm,t = Pt

(
Yt

Ym,t

) 1
ϵ

, substitute in maximization problem gives,

MaxSm,t,Um,t,Km,t

(
Pt

( Yt

Ym,t

) 1
ϵ

Ym,t −Ws,tSm,t −Wu,tUm,t −QtKm,t

)
F.O.Cs:

Sm,t : PtY
1
ϵ

t

(
1− 1

ϵ

)
Y

− 1
ϵ

m,t

∂Ym,t

∂Sm,t
= Ws,t

Um,t : PtY
1
ϵ

t

(
1− 1

ϵ

)
Y

− 1
ϵ

m,t

∂Ym,t

∂Um,t
= Wu,t

Km,t : PtY
1
ϵ

t

(
1− 1

ϵ

)
Y

− 1
ϵ

m,t

∂Ym,t

∂Km,t
= Qt

Denote
∂Ym,t

∂Um,t
= MPNu,m,t,

∂Ym,t

∂Sm,t
= MPNs,m,t,

∂Ym,t

∂Km,t
= MPKm,t, and substitute Pm,t = Pt

(
Yt

Ym,t

) 1
ϵ

in gives,

Pm,t =
ϵ

ϵ− 1

Ws,t

MPNs,m,t

Pm,t =
ϵ

ϵ− 1

Wu,t

MPNu,m,t

Pm,t =
ϵ

ϵ− 1

Qt

MPKm,t

Dividing both sides by Pt,

Pm,t

Pt
=

ϵ

ϵ− 1

Ws,t/Pt

MPNs,m,t

Pm,t

Pt
=

ϵ

ϵ− 1

Wu,t/Pt

MPNu,m,t
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Pm,t

Pt
=

ϵ

ϵ− 1

Qt/Pt

MPKm,t

Without price stickiness, each intermediate firm can freely adjust the price, thus the profit maximization

problems are identical to all intermediate firms,

Pt =
(∫ 1

0

P 1−ϵ
m,t dm

) 1
1−ϵ

=
( 1

N

N∑
i=1

P 1−ϵ
m,t

) 1
1−ϵ

=
( 1

N
·NP 1−ϵ

m,t

) 1
1−ϵ

= Pm,t

Substitute Pt = Pm,t in the first order conditions,

1 =
ϵ

ϵ− 1

Ws,t/Pt

MPNs,m,t

1 =
ϵ

ϵ− 1

Wu,t/Pt

MPNu,m,t

1 =
ϵ

ϵ− 1

Qt/Pt

MPKm,t

Rearranging gives,
Ws,t

Pt
=

ϵ− 1

ϵ
MPNs,m,t

Wu,t

Pt
=

ϵ− 1

ϵ
MPNu,m,t

Qt

Pt
=

ϵ− 1

ϵ
MPKm,t

7.2.4 Market Clearing and Stochastic Process

ln(At) = ρAln(At−1) + et

Ks,t+1 = (1− δ)Ks,t + Is,t

Ku,t+1 = (1− δ)Ku,t + Iu,t

Kt = Ks,t +Ku,t

Yt = Cs,t + Cu,t + Is,t + Iu,t

7.3 Model with Calvo pricing and CES Production Function

7.3.1 Representative Households

The model for representative households in this context aligns with the structure outlined in the previously

discussed monopolist competition model.
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7.3.2 Final Goods Producer

The model for the final goods producer in this context aligns with the structure outlined in the previously

discussed monopolist competition model.

7.3.3 Wholesalers (Intermediate Goods Producers)

Assume a continuum of intermediate goods firms indexed by m ∈ [0, 1], each firm produce a intermediate

good using identical constant-elasticity-substitution (CES) technology and each intermediate goods firm

maximize the profit function,

MaxSm,t,Um,t,Km,t

(
Pt

( Yt

Ym,t

) 1
ϵ

Ym,t −Ws,tSm,t −Wu,tUm,t −QtKm,t

)
F.O.Cs are,

Pm,t

Pt
=

ϵ

ϵ− 1

Ws,t/Pt

MPNs,m,t

Pm,t

Pt
=

ϵ

ϵ− 1

Wu,t/Pt

MPNu,m,t

Pm,t

Pt
=

ϵ

ϵ− 1

Qt/Pt

MPKm,t

Since
Pm,t

Pt
= ϵ

ϵ−1MCt, the first-order conditions can be rewritten as follow,

Ws,t

Pt
= MCtMPNs,m,t

Wu,t

Pt
= MCtMPNu,m,t

Qt

Pt
= MCtMPKm,t

To derive the real marginal costs, we set up the minimization problem for each wholesale firm (because

each wholesale firm meets the same cost minimization problem, the choice of capital and labour inputs will

be the same among wholesale firms, thus it eliminates the individual firm footscript m in the following

equations),

min
St,Ut,Kt

Qt

Pt
Kt +

Ws,t

Pt
St +

Wu,t

Pt
Ut

s.t.

Yt = At

{
µUσ

t + (1− µ)
[
λKρ

t + (1− λ)Sρ
t

]σ
ρ
} 1

σ

The first-order conditions, after some algebraic manipulation are

ws,t

qt
=

(1− λ)Sρ−1
t

λKρ−1
t
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ws,t

wu,t
=

(1− µ)[λKρ
t + (1− λ)Sρ

t ]
σ−ρ
ρ (1− λ)Sρ−1

t

µUσ−1
t

Where

ws,t = Ws,t/Pt, wu,t = Wu,t/Pt, qt = Qt/Pt

From the f.o.c.s we can solve Kt and Ut as function of St,

Kt = St

( λws,t

qt(1− λ)

) 1
1−ρ

Ut = St

{
1− µ

µ

[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
]σ−ρ

ρ · (1− λ)
wu,t

ws,t

} 1
σ−1

SubstituteKt, Ut in production function and set it to unit, and letK∗
t ,U

∗
t , S

∗
t denote the capital, unskilled

and skilled inputs that produce one unit of product,

Yt = At

{
µ(U∗

t )
σ + (1− µ)

[
λ(K∗

t )
ρ + (1− λ)(S∗

t )
ρ
]σ

ρ
} 1

σ

= 1

Yt = At

{
µ

{
S∗
t

{1− µ

µ

[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
]σ−ρ

ρ · (1− λ)
wu,t

ws,t

} 1
σ−1

}σ

+(1− µ)
[
λ
(
S∗
t

( λws,t

qt(1− λ)

) 1
1−ρ
)ρ

+ (1− λ)(S∗
t )

ρ
]σ

ρ

} 1
σ

= 1

Soving for S∗
t :

At

{
µ(S∗

t )
σ
{1− µ

µ

[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
]σ−ρ

ρ · (1− λ)
wu,t

ws,t

} σ
σ−1

+(1− µ)(S∗
t )

σ
[
λ
( λws,t

qt(1− λ)

) ρ
1−ρ

+ (1− λ)
]σ

ρ

} 1
σ

= 1

S∗
t At

{
µ
{1− µ

µ

[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
]σ−ρ

ρ · (1− λ)
wu,t

ws,t

} σ
σ−1

+(1− µ)
[
λ
( λws,t

qt(1− λ)

) ρ
1−ρ

+ (1− λ)
]σ

ρ

} 1
σ

= 1

S∗
t = A−1

t

{
µ
{1− µ

µ

[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
]σ−ρ

ρ · (1− λ)
wu,t

ws,t

} σ
σ−1

+(1− µ)
[
λ
( λws,t

qt(1− λ)

) ρ
1−ρ

+ (1− λ)
]σ

ρ

}− 1
σ



129

S∗
t = A−1

t

{
µ
(1− µ

µ

) σ
σ−1
[
(1− λ) + λ

( λws,t

qt(1− λ)

) ρ
1−ρ
] (σ−ρ)σ

ρ(σ−1) · (1− λ)
σ

σ−1

(wu,t

ws,t

) σ
σ−1

+(1− µ)
[
λ
( λws,t

qt(1− λ)

) ρ
1−ρ

+ (1− λ)
]σ

ρ

}− 1
σ

Denote

Ω = µ
(1− µ

µ

) σ
σ−1

(1− λ)
σ

σ−1

Ht = (1− λ) + λ
( λws,t

q(1− λ)

) ρ
1−ρ

Thus,

S∗
t = A−1

t

{
ΩH

(σ−ρ)σ
ρ(σ−1)

t

(wu,t

ws,t

) σ
σ−1

+ (1− µ)H
σ
ρ

t

}− 1
σ

Substitute S∗
t into Kt and Ut we will obtain K∗

t , U
∗
t ,

U∗
t = S∗

t

{1− µ

µ
H

σ−ρ
ρ

t (1− λ)
wu,t

ws,t

} 1
σ−1

K∗
t = S∗

t

( λws,t

qt(1− λ)

) 1
1−ρ

The real marginal cost for each wholesale firm is,

MCt = ws,tS
∗
t + wu,tU

∗
t + qtK

∗
t

7.3.4 Optimal Price Setting

Consider a wholesale firm m choose price Pm,t in period t to maximize the current market value of the real

profits generated while the price remains effective,

max
Pm,t

∞∑
k=0

(βθ)kEt

{(Pm,t

Pt+k
−MCt+k

)
Ym,t+k

}

s.t.

Ym,t+k =
(Pm,t

Pt+k

)−ϵ

Yt+k

where MCt is the real marginal cost and it is the same among wholesale firms.

Denote the solution as P ∗
m,t and the first-order condition is,
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Et

∞∑
k=0

(βθ)k
{ 1

Pt+k
Ym,t+k +

P ∗
m,t

Pt+k
· (−ϵ)

(P ∗
m,t

Pt+k

)−ϵ−1 1

Pt+k
Yt+k

−MCt+k · (−ϵ)
(P ∗

m,t

Pt+k

)−ϵ−1 1

Pt+k
Yt+k

}
= 0

Substituting Ym,t+k =
(

P∗
m,t

Pt+k

)−ϵ

Yt+k in gives,

Et

∞∑
k=0

(βθ)k
{ 1

Pt+k

(P ∗
m,t

Pt+k

)−ϵ

Yt+k +
P ∗
m,t

Pt+k
· (−ϵ)

(P ∗
m,t

Pt+k

)−ϵ−1 1

Pt+k
Yt+k

−MCt+k · (−ϵ)
(P ∗

m,t

Pt+k

)−ϵ−1 1

Pt+k
Yt+k

}
= 0

Rearranging,

Et

∞∑
k=0

(βθ)k
{(P ∗

m,t

Pt+k

)1−ϵ

(P ∗
m,t)

−1Yt+k + (−ϵ)
(P ∗

m,t

Pt+k

)1−ϵ

(P ∗
m,t)

−1Yt+k

−MCt+k · (−ϵ)
(P ∗

m,t

Pt+k

)−ϵ

(P ∗
m,t)

−1Yt+k

}
= 0

Et

∞∑
k=0

(βθ)k

{(
(1− ϵ)

(P ∗
m,t

Pt+k

)1−ϵ

(P ∗
m,t)

−1 + ϵ
(P ∗

m,t

Pt+k

)−ϵ

(P ∗
m,t)

−1MCt+k

)
Yt+k

}
= 0

Et

∞∑
k=0

(βθ)k

{((P ∗
m,t

Pt+k

)1−ϵ

− ϵ

ϵ− 1

(P ∗
m,t

Pt+k

)−ϵ

MCt+k

)
Yt+k

}
= 0 (52)

Again, substituting Ym,t+k =
(

P∗
m,t

Pt+k

)−ϵ

Yt+k in gives,

Et

∞∑
k=0

(βθ)k
{(P ∗

m,t

Pt+k
− ϵ

ϵ− 1
MCt+k

)
Ym,t+k

}
= 0

In basic monopolist competition, there is no price stickiness, all terms with k > 0 are zero, the equation

is reduced to
P∗

m,t

Pt
= ϵ

ϵ−1MCt. Without price stickiness, all wholesale firms can freely adjust prices, thus

P ∗
m,t = Pt, the first-order condition can be further reduced to MC = ϵ−1

ϵ .

Next, rewrite Equation 52 as,

Et

∞∑
k=0

(βθ)k
{(P ∗

m,t

Pt+k

)1−ϵ

Yt+k

}
= Et

∞∑
k=0

(βθ)k
{ ϵ

ϵ− 1

(P ∗
m,t

Pt+k

)−ϵ

MCt+kYt+k

}
Log-linearized above equation around the flexible prices steady state (i.e., basic monopolistic competition

case) gives (note that in the flexible prices steady state, each wholesale firm can freely adjust their prices,

thus we have P ∗
m,t = Pt = Pt+k = P ), 46

46Without price stickiness, each intermediate firm can freely adjust their prices, thus the profit maximization problems are

identical to all intermediate firms, thus, Pt =
( ∫ 1

0 P 1−ϵ
m,t dm

) 1
1−ϵ

=
(

1
N

∑N
i=1 P

1−ϵ
m,t

) 1
1−ϵ

=
(

1
N

·NP 1−ϵ
m,t

) 1
1−ϵ

= Pm,t.
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Et

∞∑
k=0

(βθ)k
(P
P

)1−ϵ

(Yt+k − Y ) + Et

∞∑
k=0

(βθ)kY (1− ϵ)
(P
P

)−ϵ 1

P
(P ∗

m,t − P )

+Et

∞∑
k=0

(βθ)kY (1− ϵ)
(P
P

)−ϵ(
− P

P 2

)
(Pt+k − P )

= Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1

(P
P

)−ϵ

Y (MCt+k −MC) + Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1

(P
P

)−ϵ

MC(Yt+k − Y )

+Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC · Y · (−ϵ)

(P
P

)−ϵ−1 1

P
(P ∗

m,t − P )

+Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC · Y · (−ϵ)

(P
P

)−ϵ−1(
− P

P 2

)
(Pt+k − P )

Rearranging,

Et

∞∑
k=0

(βθ)k(Yt+k − Y ) + Et

∞∑
k=0

(βθ)kY (1− ϵ)
1

P
(P ∗

m,t − P )

+Et

∞∑
k=0

(βθ)kY (1− ϵ)
(
− 1

P

)
(Pt+k − P )

= Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
Y (MCt+k −MC) + Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC(Yt+k − Y )

+Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC · Y · (−ϵ)

1

P
(P ∗

m,t − P )

+Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC · Y · (−ϵ)

(
− 1

P

)
(Pt+k − P )

Et

∞∑
k=0

(βθ)kY
{Yt+k − Y

Y
+ (1− ϵ)

P ∗
m,t − P

P
− (1− ϵ)

Pt+k − P

P

}
= Et

∞∑
k=0

(βθ)k
ϵ

ϵ− 1
MC · Y

{MCt+k −MC

MC
+

Yt+k − Y

Y
− ϵ ·

P ∗
m,t − P

P
+ ϵ · Pt+K − P

P

}
In steady state ϵ

ϵ−1MCt = 1, above equation can be rewritten as,

Et

∞∑
k=0

(βθ)k
{Yt+k − Y

Y
+ (1− ϵ)

P ∗
m,t − P

P
− (1− ϵ)

Pt+k − P

P

}
= Et

∞∑
k=0

(βθ)k
{MCt+k −MC

MC
+

Yt+k − Y

Y
− ϵ ·

P ∗
m,t − P

P
+ ϵ · Pt+K − P

P

}
Use x̂t to denote Xt−X

X , then,
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Et

∞∑
k=0

(βθ)k
{

ˆyt+k + (1− ϵ) ˆp∗m,t − (1− ϵ) ˆpt+k

}
= Et

∞∑
k=0

(βθ)k
{

ˆmct+k + ˆyt+k − ϵ · ˆp∗m,t + ϵ · ˆpt+k

}
Rearranging,

Et

∞∑
k=0

(βθ)k( ˆp∗m,t − ˆpt+k) = Et

∞∑
k=0

(βθ)k ˆmct+k

Et

∞∑
k=0

(βθ)k ˆp∗m,t = Et

∞∑
k=0

(βθ)k ˆmct+k + Et

∞∑
k=0

(βθ)k ˆpt+k

Substitute Et

∑∞
k=0(βθ)

k ˆp∗m,t =
1

1−βθ
ˆp∗m,t in gives,

1

1− βθ
ˆp∗m,t = Et

∞∑
k=0

(βθ)k ˆmct+k + Et

∞∑
k=0

(βθ)k ˆpt+k

ˆp∗m,t = (1− βθ)Et

∞∑
k=0

(βθ)k ˆmct+k + (1− βθ)Et

∞∑
k=0

(βθ)k ˆpt+k (53)

And note that,

(1− βθ)Et

∞∑
k=0

(βθ)k ˆpt+k = (1− βθ)p̂t + (1− βθ)(βθ)Et ˆpt+1 + (1− βθ)(βθ)2Et ˆpt+2...

= p̂t − (βθ)p̂t + (βθ)Et ˆpt+1 − (βθ)2Et ˆpt+1 + (βθ)2Et ˆpt+2 − (βθ)3Et ˆpt+2...

= ˆpt−1 + p̂t − ˆpt−1 + (βθ)Et( ˆpt+1 − p̂t) + (βθ)2Et( ˆpt+2 − ˆpt+1) + ...

Since π̂t = p̂t − ˆpt−1, thus we have, 47

(1− βθ)Et

∞∑
k=0

(βθ)k ˆpt+k = ˆpt−1 + π̂t + (βθ)Et( ˆπt+1) + (βθ)2Et( ˆπt+2) + ...

(1− βθ)Et

∞∑
k=0

(βθ)k ˆpt+k = ˆpt−1 + Et

∞∑
k=0

(βθ)k ˆπt+k

Substitute above equation into Equation 53, (subsequently, we eliminate the index m because of the

symmetric equilibrium assumption),

p̂∗t = ˆpt−1 + Et

∞∑
k=0

(βθ)k ˆπt+k + (1− βθ)Et

∞∑
k=0

(βθ)k ˆmct+k

Above equation can be rewritten as,

p̂∗t = ˆpt−1 + π̂t + (1− βθ)m̂ct + Et

∞∑
k=1

(βθ)k ˆπt+k + (1− βθ)Et

∞∑
k=1

(βθ)k ˆmct+k (54)

47Define Πt = Pt
Pt−1

, log-linearize around the steady state gives, Πt − Π = 1
P
(Pt − P ) − P

P2 (Pt−1 − P ). In steady state we

have Π = P
P

= 1, thus we have, Πt−Π
Π

= 1
P
(Pt − P )− 1

P
(Pt−1 − P ). And we use x̂t to denote Xt−X

X
, thus, π̂t = p̂t − ˆpt−1.
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Forward the above equation one term gives,

Et
ˆp∗t+1 = p̂t + Et ˆπt+1 + (1− βθ)Et ˆmct+1 + Et

∞∑
k=1

(βθ)k ˆπt+k+1 + (1− βθ)Et

∞∑
k=1

(βθ)k ˆmct+k+1

It can be rewritten as,

Et
ˆp∗t+1 = p̂t + Et

∞∑
k=0

(βθ)k ˆπt+k+1 + (1− βθ)Et

∞∑
k=0

(βθ)k ˆmct+k+1

Multiply both sides by βθ gives,

βθEt
ˆp∗t+1 = βθp̂t + Et

∞∑
k=0

(βθ)k+1 ˆπt+k+1 + (1− βθ)Et

∞∑
k=0

(βθ)k+1 ˆmct+k+1

→

βθEt
ˆp∗t+1 = βθp̂t + Et

∞∑
k=1

(βθ)k ˆπt+k + (1− βθ)Et

∞∑
k=1

(βθ)k ˆmct+k (55)

From Equation 54, we can obtain,

Et

∞∑
k=1

(βθ)k ˆπt+k + (1− βθ)Et

∞∑
k=1

(βθ)k ˆmct+k = p̂∗t − ˆpt−1 − π̂t − (1− βθ)m̂ct (56)

Then, substituting Equation 56 into Equation 55,

βθEt
ˆp∗t+1 = βθp̂t + p̂∗t − ˆpt−1 − π̂t − (1− βθ)m̂ct

p̂∗t − ˆpt−1 = βθEt( ˆp∗t+1 − p̂t) + π̂t + (1− βθ)m̂ct (57)

Following the formalism proposed in Calvo (1983), each wholesale firm may reset its price only with

probability (1− θ) in any given period, independent of the time elapsed since the last adjustment. Thus, in

each period a measure (1− θ) of wholesale firms drawn randomly from the population can reset their prices,

while the remaining fraction θ of firms will keep their prices unchanged. The aggregate price is 48,

P 1−ϵ
t =

∫ θ

0

P 1−ϵ
t−1 dm+

∫ 1

θ

(P ∗
t )

1−ϵdm

= [P 1−ϵ
t−1 ]

θ
0 + [(P ∗

t )
1−ϵ]1θ

= θP 1−ϵ
t−1 + (1− θ)(P ∗

t )
1−ϵ

Pt =
[
θP 1−ϵ

t−1 + (1− θ)(P ∗
t )

1−ϵ
] 1

1−ϵ

48Given the fact that all wholesale firms re-setting prices will choose an identical price P ∗
t , it eliminated m footscript in the

following expression.
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Pt

Pt−1
=
[
θ + (1− θ)

( P ∗
t

Pt−1

)1−ϵ] 1
1−ϵ

( Pt

Pt−1

)1−ϵ

= θ + (1− θ)
( P ∗

t

Pt−1

)1−ϵ

Π1−ϵ
t = θ + (1− θ)

( P ∗
t

Pt−1

)1−ϵ

Where Πt = Pt/Pt−1 is the gross inflation rate between t − 1 and t. Log-linearze the above expression

around the flexible prices steady state to obtain,

(1− ϵ)Π−ϵ(Πt −Π) = (1− θ)(1− ϵ)
(P
P

)−ϵ 1

P
(P ∗

t − P )− (1− θ)(1− ϵ)
(P
P

)−ϵ P

P 2
(Pt−1 − P )

Π−ϵ(Πt −Π) = (1− θ)
(P
P

)−ϵ 1

P
(P ∗

t − P )− (1− θ)
(P
P

)−ϵ P

P 2
(Pt−1 − P )

In steady state Π = P
P = 1, thus,

Πt −Π

Π
= (1− θ)

1

P
(P ∗

t − P )− (1− θ)
1

P
(Pt−1 − P )

Use x̂t to denote Xt−X
X , then,

π̂t = (1− θ)(p̂∗t − p̂t−1) (58)

Combine Equation 57 with Equation 58 yeild the price inflation equation,

π̂t

1− θ
= βθEt

( π̂t+1

1− θ

)
+ π̂t + (1− βθ)m̂ct (59)

π̂t = βθEt{π̂t+1}+ (1− θ)π̂t + (1− βθ)(1− θ)m̂ct

π̂t = βEt{π̂t+1}+
(1− βθ)(1− θ)

θ
m̂ct

7.3.5 Market Clearing, Stochastic Process

ln(At) = ρAln(At−1) + et

Yt = Cs,t + Cu,t + Is,t + Iu,t

Ks,t+1 = (1− δ)Ks,t + Is,t

Ku,t+1 = (1− δ)Ku,t + Iu,t
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Kt = Ks,t +Ku,t

7.4 Calvo Pricing and Calvo Wages with CES Production Function

7.4.1 Households

The labour-aggregating firm chooses each types of differentiated labour service Si,t, Uj,t, for i, j ∈ [0, 1] to

maximize its profit. For skilled labour,

max
Si,t

Ws,tSt −
∫ 1

0

Ws,i,tSi,tdi

s.t.

St =
(∫ 1

0

S
ϵw−1
ϵw

i,t di
) ϵw

ϵw−1

Ut =
(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) ϵw

ϵw−1

The objective function can be rewritten as,

max
Si,t

Ws,t

(∫ 1

0

S
ϵw−1
ϵw

i,t di
) ϵw

ϵw−1 −
∫ 1

0

Ws,i,tSi,tdi

Symetrically, labour-aggregating firm aggregate differentiated unskilled labour service,

max
Uj,t

Wu,t

(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) ϵw

ϵw−1 −
∫ 1

0

Wu,j,tUj,tdj

The first-order conditions for each type of differentiated labour services are,

Si,t : Ws,t

(∫ 1

0

S
ϵw−1
ϵw

i,t di
) 1

ϵw−1

S
−1
ϵw
i,t −Ws,i,t = 0

Uj,t : Wu,t

(∫ 1

0

U
ϵw−1
ϵw

j,t dj
) 1

ϵw−1

U
−1
ϵw
j,t −Wu,j,t = 0

From St =
( ∫ 1

0
S

ϵw−1
ϵw

i,t di
) ϵw

ϵw−1

to obtain
( ∫ 1

0
S

ϵw−1
ϵw

i,t di
) 1

ϵw−1

= S
1

ϵw
t , thus above equations can be rewrit-

ten as,

Si,t : Ws,tS
1

ϵw
t S

−1
ϵw
i,t −Ws,i,t = 0

Uj,t : Wu,tU
1

ϵw
t U

−1
ϵw
j,t −Wu,j,t = 0

After some algebra, the demand for Si,t and Uj,t can be expressed as:

Si,t =
(Ws,i,t

Ws,t

)−ϵw
St
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Uj,t =
(Wu,j,t

Wu,t

)−ϵw
Ut

Labour-aggregating firm behave competitively, thus zero profit condition gives,

Ws,tSt −
∫ 1

0

Ws,i,tSi,tdi = 0

Wu,tUt −
∫ 1

0

Wu,j,tUj,tdj = 0

→

Ws,tSt −
∫ 1

0

Ws,i,t

(Ws,i,t

Ws,t

)−ϵw
Stdi = 0

Wu,tUt −
∫ 1

0

Wu,j,t

(Wu,j,t

Wu,t

)−ϵw
Utdj = 0

→

W 1−ϵw
s,t =

∫ 1

0

W 1−ϵw
s,i,t di = 0

W 1−ϵw
u,t =

∫ 1

0

W 1−ϵw
u,j,t dj = 0

→

Ws,t =
(∫ 1

0

W 1−ϵw
s,i,t di

) 1
1−ϵw

Wu,t =
(∫ 1

0

W 1−ϵw
u,j,t dj

) 1
1−ϵw

Consider a household i who supplies skilled labour services resetting its wage in period t, and let W ∗
s,i,t

denote the newly set wage. The household will choose W ∗
s,i,t to maximize the expected discounted sum of

utilities. The maximization is subject to the sequence of labour demand schedules and budget constraints

that are effective while W ∗
s,i,t remains in place, 49

max
W∗

s,i,t

Et

{ ∞∑
k=0

(βθsw)
kU(Cs,i,t+k, Si,t+k)

}

s.t.

49The maximization problem for households who supply unskilled labour services is symmetric to the households that supply
skilled labour.
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Si,t+k =
( W ∗

s,i,t

Ws,t+k

)−ϵw
St+k

Pt+kCs,i,t+k+Pt+kKs,i,t+k+1+Bs,i,t+k+1 ≤ Qt+kKs,i,t+k+W ∗
s,i,tSi,t+k+Pt+k(1−δ)Ks,i,t+k+Rt+kBs,i,t+k+Ds,i,t+k

F.O.Cs:

Cs,i,t+k : Uc(Cs,i,t+k, Si,t+k) = λt+kPt+k (60)

W ∗
s,i,t :

∞∑
k=0

(βθsw)
kEt

{
Us(Cs,i,t+k, Si,t+k) ·

∂Si,t+k

∂W ∗
s,i,t

+ λt+k

(
Si,t+k +W ∗

s,i,t

∂Si,t+k

∂W ∗
s,i,t

)}
= 0 (61)

From Si,t+k =
(

W∗
s,i,t

Ws,t+k

)−ϵw
St+k we can obtain,

∂Si,t+k

∂W ∗
s,i,t

= −ϵw

( W ∗
s,i,t

Ws,t+k

)−ϵw−1( 1

Ws,t+k

)
St+k = − ϵw

W ∗
s,i,t

Si,t+k (62)

Substitute Equation 62 and Equation 60 into Equation 61 to obtain,

∞∑
k=0

(βθsw)
kEt

{
Us(Cs,i,t+k, Si,t+k) ·

∂Si,t+k

∂W ∗
s,i,t

+
1

Pt+k
Uc(Cs,i,t+k, Si,t+k)

(
Si,t+k +W ∗

s,i,t

∂Si,t+k

∂W ∗
s,i,t

)}
= 0

→

∞∑
k=0

(βθsw)
kEt

{
Us(Cs,i,t+k, Si,t+k) ·

(
− ϵw

W ∗
s,i,t

)
Si,t+k

+
1

Pt+k
Uc(Cs,i,t+k, Si,t+k)

(
Si,t+k +W ∗

s,i,t

(
− ϵw

W ∗
s,i,t

)
Si,t+k

)}
= 0

→

∞∑
k=0

(βθsw)
kEt

{
Us(Cs,i,t+k, Si,t+k) ·

(
− ϵw

W ∗
s,i,t

)
Si,t+k

+
1

Pt+k
Uc(Cs,i,t+k, Si,t+k)

(
Si,t+k(1− ϵw)

)}
= 0

→
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∞∑
k=0

(βθsw)
kEt

{
Si,t+k

[
Us(Cs,i,t+k, Si,t+k)

(
− ϵw

W ∗
s,i,t

)
+

1− ϵw
Pt+k

Uc(Cs,i,t+k, Si,t+k)
]}

= 0

→

∞∑
k=0

(βθsw)
kEt

{
Si,t+k

[
Us(Cs,i,t+k, Si,t+k)

( ϵw
ϵw − 1

)
+

W ∗
s,i,t

Pt+k
Uc(Cs,i,t+k, Si,t+k)

]}
= 0

Letting MRSs,i,t+k = −Us(Cs,i,t+k,Si,t+k)
Uc(Cs,i,t+k,Si,t+k)

, the optimality condition above can be rewritten as,

∞∑
k=0

(βθsw)
kEt

{
Si,t+k

[
−MRSs,i,t+kUc(Cs,i,t+k, Si,t+k)

( ϵw
ϵw − 1

)
+

W ∗
s,i,t

Pt+k
Uc(Cs,i,t+k, Si,t+k)

]}
= 0

→

∞∑
k=0

(βθsw)
kEt

{
Si,t+kUc(Cs,i,t+k, Si,t+k)

(W ∗
s,i,t

Pt+k
−
( ϵw
ϵw − 1

)
MRSs,i,t+k

)}
= 0 (63)

In the flexible price steady state, all terms with k > 0 are zeros, thus,

W ∗
s,i,t

Pt
=

Ws,i

P
=

ϵw
ϵw − 1

MRSs,i

Taking log on both sides of above equation, and denote x = log(X), µw = log( ϵw
ϵw−1 ),

ws − p = µw +mrss,i (64)

Denote Mw = ϵw
ϵw−1 , and log-linearize Equation 63 around the steady state gives,

∞∑
k=0

(βθsw)
kEt

{
Uc(Cs,i, Si)

(Ws,i

P
−MwMRSs,i

)
(Si,t+k − Si)

}

+

∞∑
k=0

(βθsw)
kEt

{
Si

(Ws,i

P
−MwMRSs,i

)(
Uc(Cs,i,t+k, Si,t+k)− Uc(Cs,i, Si)

)}

+

∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

1

P
(W ∗

s,i,t −Ws,i)

}

−
∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

Ws,i

P 2
(Pt+k − P )

}

−
∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

(
MwMRSs,i,t+k −MwMRSs,i

)}
= 0
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Substitute
Ws,i

P = ϵw
ϵw−1MRSs,i = MwMRSs,i in above equation,

∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

1

P
(W ∗

s,i,t −Ws,i)
}
−

∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

Ws,i

P 2
(Pt+k − P )

}
−

∞∑
k=0

(βθsw)
kEt

{
SiUc(Cs,i, Si)

(
MwMRSs,i,t+k −MwMRSs,i

)}
= 0

Cancle the constant term,

∞∑
k=0

(βθsw)
kEt

{ 1

P
(W ∗

s,i,t −Ws,i)
}
−

∞∑
k=0

(βθsw)
kEt

{Ws,i

P 2
(Pt+k − P )

}
−

∞∑
k=0

(βθsw)
kEt

(
MwMRSs,i,t+k −MwMRSs,i

)
= 0

→

∞∑
k=0

(βθsw)
kEt

{Ws,i

P

W ∗
s,i,t −Ws,i

Ws,i

}
=

∞∑
k=0

(βθsw)
kEt

{Ws,i

P

Pt+k − P

P

}
+

∞∑
k=0

(βθsw)
kEt

(
MwMRSs,i

MwMRSs,i,t+k −MwMRSs,i

MwMRSs,i

)
= 0

Since
Ws,i

P = MwMRSs,i, canceling the terms on both sides,

∞∑
k=0

(βθsw)
kEt

{W ∗
s,i,t −Ws,i

Ws,i

}
=

∞∑
k=0

(βθsw)
kEt

{Pt+k − P

P

}
+

∞∑
k=0

(βθsw)
kEt

(MwMRSs,i,t+k −MwMRSs,i

MwMRSs,i

)
= 0

→

1

1− βθsw

W ∗
s,i,t −Ws,i

Ws,i
=

∞∑
k=0

(βθsw)
kEt

{Pt+k − P

P
+

MwMRSs,i,t+k −MwMRSs,i

MwMRSs,i

}

→

W ∗
s,i,t −Ws,i

Ws,i
= (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{Pt+k − P

P
+

MwMRSs,i,t+k −MwMRSs,i

MwMRSs,i

}

Since
W∗

s,i,t−Ws,i

Ws,i
≈ log

(
W∗

s,i,t

Ws,i

)
= w∗

s,i.t − ws,i, similarly, Pt+k−P
P ≈ pt+k − p,

MwMRSs,i,t+k−MwMRSs,i

MwMRSs,i
≈
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mrss,i,t+k −mrss,i, and then,

w∗
s,i.t − ws,i ≈ (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k − p+mrss,i,t+k −mrss,i)

}

= (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k +mrss,i,t+k

}
+ (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
−mrss,i − p

}

= (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k +mrss,i,t+k

}
+ (1− βθsw)

1

(1− βθsw)
(−mrss,i − p)

→

w∗
s,i.t = (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k +mrss,i,t+k

}
+ ws,i −mrss,i − p

Taking log on both sides of
Ws,i

P = MwMRSs,i gives ws,i − p = log(Mw) +mrss,i. Substitute in above

equation to obtain,

w∗
s,i.t = (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k +mrss,i,t+k

}
+ log(Mw)

Denote µw = log(Mw) = log( ϵw
ϵw−1 ), then,

w∗
s,i.t = µw + (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
pt+k +mrss,i,t+k

}
(65)

Assuming utility function is specialized to be of the form.

U(Cs,i,t, Si,t) =
C1−σc

s,i,t

1− σc
−

S1+ϕ
i,t

1 + ϕ

Thus,

MRSs,i,t = −Us(Cs,i,t, Si,t)

Uc(Cs,i,t, Si,t)
=

Sϕ
i,t

C−σ
s,i,t

Taking log on both sides, and setting t = t+ k,

mrss,i,t+k = σccs,i,t+k + ϕsi,t+k



141

The assumption of complete asset markets and separability between consumption and hours imply that

consumption is independent of the wage history of a household, i.e., Ci,t+k = Ct+k for ∀k, thus,

mrss,i,t+k = σccs,t+k + ϕsi,t+k

Define the economy’s average marginal rate of substitution as,

mrss,t+k = σccs,t+k + ϕst+k

And from Si,t+k =
(

W∗
s,i,t

Ws,t+k

)−ϵw
St+k we can obtain, si,t+k = −ϵw(w

∗
s,i,t − ws,t+k) + st+k. Hence,

mrss,i,t+k = mrss,t+k + ϕ(si,t+k − st+k) = mrss,t+k − ϵwϕ(w
∗
s,i,t − ws,t+k)

Substituting above equation into Equation 65,

w∗
s,i.t = µw + (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
mrss,t+k − ϵwϕ(w

∗
s,i,t − ws,t+k) + pt+k

}

→

(1 + ϵwϕ)w
∗
s,i.t = (1− βθsw)

∞∑
k=0

(βθsw)
kEt

{
µw +mrss,t+k + ϵwϕws,t+k + pt+k

}

→

w∗
s,i.t =

1− βθsw
1 + ϵwϕ

∞∑
k=0

(βθsw)
kEt

{
µw +mrss,t+k + ϵwϕws,t+k + pt+k

}
Let µ̂t

s = µs
t − µw denotes the deviations of the economy’s (log) average wage markup as µs

t = ws,t −
pt −mrss,t from its steady state level µw, hence above equation can be rewritten as,

w∗
s,i.t =

1− βθsw
1 + ϵwϕ

∞∑
k=0

(βθsw)
kEt

{
(1 + ϵwϕ)ws,t+k − ˆµt+k

s
}

→

w∗
s,i.t =

1− βθsw
1 + ϵwϕ

((
(1 + ϵwϕ)ws,t − µ̂t

s
)
+

∞∑
k=0

(βθsw)
k+1Et

{
(1 + ϵwϕ)ws,t+k+1 − ˆµs

t+k+1

})

= (1− βθsw)ws,t −
1− βθsw
1 + ϵwϕ

µ̂t
s +

1− βθsw
1 + ϵwϕ

∞∑
k=0

(βθsw)
k+1Et

{
(1 + ϵwϕ)ws,t+k+1 − ˆµs

t+k+1

}
= (1− βθsw)ws,t −

1− βθsw
1 + ϵwϕ

µ̂t
s + βθswEt{w∗

s,i,t+1}

Rearranging.



142

w∗
s,i.t = βθswEt{w∗

s,i,t+1}+ (1− βθsw)(ws,t − (1− ϵwϕ)
−1µ̂t

s)

As 1−θsw fraction of household chooses the same wage, w(s, j, t)
∗ = w(s, t)

∗, and the remaining household

θw set their wage equal to the wage observed in the previous period. thus, above equation can be rewritten

as,

w∗
s.t = βθswEt{w∗

s,t+1}+ (1− βθsw)(ws,t − (1− ϵwϕ)
−1µ̂t

s) (66)

Given the assumed Calvo wage setting rules, the evolution of the aggregate wage can be written as 50,

W 1−ϵw
s,t =

∫ θs
w

0

W 1−ϵw
s,t−1 di+

∫ 1

θs
w

(W ∗
s,t)

1−ϵwdi

W 1−ϵw
s,t = [W 1−ϵw

s,t−1 ]
θs
w

0 + [(W ∗
s,t)

1−ϵw ]1θs
w

W 1−ϵw
s,t = θswW

1−ϵw
s,t−1 + (1− θsw)(W

∗
s,t)

1−ϵw

Ws,t =
[
θswW

1−ϵw
s,t−1 + (1− θsw)(W

∗
s,t)

1−ϵw
] 1

1−ϵw

W 1−ϵw
s,t = θswW

1−ϵw
s,t−1 + (1− θsw)(W

∗
s,t)

1−ϵw

Log-linearize the previous equation around the zero wage inflation steady state yield

(1− ϵw)W
−ϵw
s (Ws,t −Ws) = θsw(1− ϵw)W

−ϵw
s (Ws,t−1 −Ws) + (1− θsw)(1− ϵw)W

−ϵw
s (W ∗

s,t −Ws)

(Ws,t −Ws) = θsw(Ws,t−1 −Ws) + (1− θsw)(W
∗
s,t −Ws)

Ws,t −Ws

Ws
=

θsw(Ws,t−1 −Ws)

Ws
+

(1− θsw)(W
∗
s,t −Ws)

Ws

As Xt−X
X ≈ log(1 + Xt−X

X ) = log(Xt

X ) = log(Xt)− log(X), thus above equation can be rewritten as,

log(Ws,t)− log(Ws) = θsw

(
log(Ws,t−1)− log(Ws)

)
+ (1− θsw)

(
log(W ∗

s,t − log(Ws))
)

log(Ws,t) = θswlog(Ws,t−1) + (1− θsw)log(W
∗
s,t)

ws,t = θswws,t−1 + (1− θsw)w
∗
s,t (67)

From Equation 67 to obtain w∗
s,t =

ws,t−θs
wws,t−1

1−θs
w

, and combine with Equation 66 gives,

50Given the fact that all households who re-setting wages will choose an idential wage W ∗
s,t, it eliminated i footscript in the

following expression.
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ws,t − θswws,t−1

1− θsw
= βθswEt

{ws,t+1 − θswws,t

1− θsw

}
+ (1− βθsw)(ws,t − (1− ϵwϕ)

−1µ̂t
s)

ws,t − θswws,t−1 = βθswEt{ws,t+1 − θswws,t}+ (1− θsw)(1− βθsw)(ws,t − (1− ϵwϕ)
−1µ̂t

s)

ws,t − θswws,t−1 = βθssEt{ws,t+1} − βθsw · θswws,t + (1− θsw)(1− βθsw)ws,t −
(1− θsw)(1− βθsw)

1 + ϵwϕ
µ̂s
t

ws,t

θsw
− ws,t−1 = βEt{ws,t+1} − βθswws,t +

(1− θsw)(1− βθsw)

θsw
ws,t −

(1− θsw)(1− βθsw)

θsw(1 + ϵwϕ)
µ̂s
t

ws,t

θsw
−ws,t−1 = βEt{ws,t+1}−βEt{ws,t}+βEt{ws,t}−βθswws,t+

(1− θsw)(1− βθsw)

θsw
ws,t−

(1− θsw)(1− βθsw)

θsw(1 + ϵwϕ)
µ̂s
t

As βEt{ws,t+1}−βEt{ws,t} = βEt{ws,t+1−ws,t} = βEt

{
log
(

Ws,t+1

Ws,t

)}
= βEt{log(Πs

t+1)} = βEt{πs
t+1},

and denote λs =
(1−θs

w)(1−βθs
w)

θs
w(1+ϵwϕ) , and above equation can be rewritten as,

ws,t

θsw
− ws,t−1 = βEt{πs

t+1}+ βEt{ws,t} − βθswws,t +
(1− θsw)(1− βθsw)

θsw
ws,t − λsµ̂s

t

ws,t − (1− θsw)(1− βθsw)ws,t − βθswws,t + β(θsw)
2ws,t

θsw
− ws,t−1 = βEt{πs

t+1} − λsµ̂s
t

ws,t − ws,t + βθswws,t + θswws,t − β(θsw)
2ws,t − βθswws,t + β(θsw)

2ws,t

θsw
− ws,t−1 = βEt{πs

t+1} − λsµ̂s
t

Rearrange gives,

ws,t − ws,t−1 = βEt{πs
t+1} − λsµ̂s

t

Since ws,t − ws,t−1 = log
(

Ws,t

Ws,t−1

)
= log(Πs

t ) = πs
t , thus,

πs
t = βEt{πs

t+1} − λsµ̂s
t

where

λs =
(1− θsw)(1− βθsw)

θsw(1 + ϵwϕ)

and

µ̂s
t = µs

t − µw = ws,t − pt −mrss,t − µw = ws,t − pt −mrss,t − (ws − p−mrss) = ŵs,t − p̂t − ˆmrss,t

Symmetrically, for household supplies unskilled labour service the wage inflation equation is,

πu
t = βEt{πu

t+1} − λuµ̂t
u
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where λu =
(1−θu

w)(1−βθu
w)

θu
w(1+ϵwϕ)

7.4.2 Final Goods Producer

The model for the final goods producer in this context aligns with the structure outlined in the previously

discussed generalized Calvo pricing model.

7.4.3 Wholesalers (Intermediate Goods Producers)

The model for the final goods producer in this context aligns with the structure outlined in the previously

discussed generalized Calvo pricing model.

7.4.4 Market Clearing, Stochastic Process

ln(At) = ρAln(At−1) + et

Yt = Cs,t + Cu,t + Is,t + Iu,t

Ks,t+1 = (1− δ)Ks,t + Is,t

Ku,t+1 = (1− δ)Ku,t + Iu,t

Kt = Ks,t +Ku,t
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8 Appendix B

1 wood and cork (20)
2 basic metals and fabricated metal (27t28)
3 machinery nec (29)
4 electrical and optical equipment (30t33)
5 transport equipment (34t35)
6 manufacturing nec; recycling (36t37)
7 food beverages and tobacco (15t16)
8 textiles textile leather and footwear (17t19)
9 pulp paper paper printing and publishing (21t22)
10 coke refined petroleum and nuclear fuel (23)
11 chemicals and chemical products (24)
12 rubber and plastics (25)
13 other nonmetallic mineral (26)
14 sale maintenance and repair of motor vehicles (50)
15 wholesale trade and commission trade (51)
16 retail trade except of motor vehicles (52)
17 transport and storage (60t63)
18 post and telecommunications (64)
19 real estate activities (70)
20 renting of m&eq and other business activities (71t74)
21 agriculture hunting forestry and fishing (AtB)
22 mining and quarrying (C)
23 electricity gas and water supply €
24 construction (F)
25 hotels and restaurants (H)
26 financial intermediation (J)
27 public admin and defense; compulsory social security (L)
28 education (M)
29 health and social work (N)
30 other community social and personal services (O)

Table 46: Industry list

Notes: The code used in parentheses corresponds to the code used in the World KLEMS database.
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Conclusion

This thesis encompasses a series of scholarly papers that investigate a wide range of topics pertaining to

the intricate interplay among technology shocks, labour and capital utilisation, and capital-skill complemen-

tarity in the context of labour market dynamics.

Chapter 11 builds upon the research conducted by Basu (2006) and introduces a method for measuring

utilisation-adjusted neutral technology shocks that remains robust when considering different skill levels.

This approach estimates the utilisation series separately for high-skilled and low-skilled labour, enabling a

more comprehensive examination of the cyclical variations in utilisation at both the aggregate and sector

levels. Our study reveals several important findings. Firstly, at the aggregate level, our model aligns with the

standard Real Business Cycle (RBC) model, yet we observe that a utilisation-controlled technology shock

induces less pronounced fluctuations in output, inputs, employment, and total hours compared to Total

Factor Productivity (TFP) shocks. Secondly, our analysis demonstrates that in the short run, firms tend

to utilise resources of existing high-skilled workers and extend the working hours of capital associated with

high-skilled workers in response to technological advancements. Simultaneously, there is a reduction in the

utilisation of both labour and capital associated with low-skilled workers. Thirdly, we find that the responses

of utilisation for high-skilled and low-skilled workers to technological advancements vary across different

sectors. And these findings provide insights into the nature of capital-skill complementarity/substitution

across different industry sectors within the U.S. economy. These insights serve as the inspiration for the

subsequent exploration of this issue in Chapter 2.

Chapter 2 examines the validity of Griliches’ capital-skill complementarity hypothesis across various in-

dustries in the US economy. Our analysis yields four key findings. Firstly, using Hansen’s data-splitting

methodology, we find evidence supporting parameter heterogeneity and non-linearity in the capital-skill com-

plementarity/substitution relationship. Industries with higher capital-to-output ratios exhibit capital-skill

substitution, while industries with lower ratios demonstrate complementarity. Secondly, we observe comple-

mentarity between skilled and unskilled labour in both industry groups, with the level of complementarity

being more pronounced in the lower capital-to-output ratio group. Additionally, industries with lower cap-

ital to output ratios have a higher average education level, suggesting a stronger complementarity between

skilled and unskilled labour in industries with a more highly educated workforce.

Chapter 3 builds upon the empirical findings discussed in Chapter 11. After estimating the utilisation-

technology shock series while considering the heterogeneity in labour inputs for two skill levels, this chapter

proceeds to examine the Impulse Response Functions (IRFs) of total hours worked for both high and low

skilled workers in response to the utilisation-adjusted technology shock series. Remarkably, the results

reveal distinct directional responses of hours worked for workers with different skill levels, resulting in a

significant decline in the skilled-to-unskilled ratio immediately after the shock. Based on these empirical

findings, the objective of this chapter is to develop a stochastic dynamic general equilibrium (DSGE) model

which incorporates capital-skill complementarity in production, Calvo prices, and nominal wage rigidity to

offer valuable insights into the negative dynamics observed in the skilled-to-unskilled working hours ratio

and the differential responses of hours worked by skilled and unskilled workers. We found that generalized

RBC and monopolist competition models fail to explain the divergent responses of hours worked for the

two skill levels. In contrast, a generalized model incorporating Calvo (1983) pricing is capable of providing

an explanation. Sticky prices induce firms to reduce hours worked of skilled workers in the short run

in response to technological advancements. This reduction occurs due to both cost considerations and the

higher efficiency of skilled workers when capital-skill complementarity is present. In addition, we also consider
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a model that incorporates Calvo wage and Calvo pricing settings to further enrich our analysis.

This thesis makes contributions to the field of labour economics and macroeconomics by examining the

implications of technology shocks, labour and capital utilisation, and capital-skill complementarity for labour

market dynamics.
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