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Abstract

The Datom is a novel design for a programmable matter robotic agent,
proposed by Piranda and Bourgeois (2022), that can move and reconfigure
by deforming its outer shell. This paper explores how the kinematic be-
haviour of the single Datom, paired with the stiffness of its actuators, can
determine the stiffness of the structures the agents create. We propose
a simplified mathematical model based on conservation of elastic energy
that can characterise the stiffness of lattice structures created by Datoms.
The model is validated experimentally to demonstrate that it provides
good predictions, especially as the size of the lattice increases. Further-
more, an implementation for a stiffness tunable reconfigurable lattice is
proposed and a functioning proof-of-concept prototype is introduced in
this paper.

1 Introduction

The concept of modular robotics was first introduced in the late 1980s to de-
scribe a reconfigurable robotic system that can use a set of modules to achieve
higher flexibility while compromising specificity [1]. Modular robots share a lot
of commonalities with swarm robots, but have one fundamental difference: all of
the modular robots need to remain connected at all time to retain functionality.
On the other hand, swarm robotics relies on individual agents that can operate
independently of one another, although these are sometime classified as mobile
modular robotic systems [2, 3]. There are two main architectures for modular
robots: chain and lattice. The former uses chains of modules to create tree like
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structures with open kinematics chains. The latter is composed of an ordered
arrangement of modules. In this evolving field, lattice type modular robots
have become the main focus of Programmable Matter research. This field is
concerned with developing small homogeneous robots capable of reconfigura-
tion to create dynamic 3D structures. The self reconfiguration capabilities can
be used for locomotion [4], mechanical actuation [5], self repair [6], task specific
reconfiguration and shape formation [7].

Lattice type modular robots still face many challenges because of the com-
plexity they present, both at a physical and control level. The main chal-
lenge of the hardware is designing and manufacturing devices at cm and mm
scale capable of latching and actuating the movement relative to one another,
while keeping it affordable [8–10]. Likewise, control and software is concerned
with developing the algorithms that orchestrate the movement of hundreds, or
possibly thousands of agents. Furthermore, only a small part of the research
community seems to be focusing on implementing stiffness modulation for pro-
grammable matter. Some functional devices have been developed for modular
robots [11–14], but none of them are capable of autonomous self reconfiguration.
Stiffness modulation will significantly improve the use cases for programmable
matter. It will enable the development of devices that can be adapted to the
user or to the external circumstances not purely through geometric adaptation
but with modification to the physical properties of the lattice, creating a robotic
meta-material. This could also be used to create otherwise impossible physical
properties [15].

Almost all of the proposed architectures for programmable matter use fully
rigid agents, which are easier to control during reconfiguration, but make it
impossible to modify the stiffness of the final object without modifying its
structure. However, the Datom architecture was recently proposed as a novel
geometry for programmable matter agents [16]. This design exploits a novel
movement-by-deformation concept to make reconfiguration more reliable by en-
suring a connection between Datoms is always present during movement, espe-
cially during transition between different positions in the structure. Algorithms
for how a group of Datoms reconfigure by moving elements to create complex
geometries and structures has already been explored [16,17], but they focus only
on geometric reconfiguration. This paper shifts the focus from the kinematic ca-
pabilities of the design towards its physical capabilities. It aims to characterise
the stiffness of the lattices Datoms can create, and how it can be modulated
by controlling the stiffness of the individual units in order to implement pro-
grammable matter that can both change its shape as well as its stiffness.

2 Datom design and manufacturing

This section briefly describes the main aspects of the Datom design firstly pro-
posed in [16], to define the geometry and terminology used in the rest of the
paper. Each Datom, shown in Fig.1a, is composed of a shell and a core assembly.
The entirety of the shell assembly is made out of 6 Actuator faces (A-faces), 12
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(a) (b) (c) (d)

Figure 1: Details regarding the Datoms design and the structures the agents
can create. (a) A single Datom with all it’s components: A) A-face. B) Link.
C) C-face. D) Actuator, E) Core. (b) Configuration of A-plates, C-plates and
links making up a shell ring. The radius of the Datom is defined as half of the
distance between opposing C-Faces. (c) Datoms connected together to form a
a face centred cubic lattice. (d) Two-dimensional lattice lying on the XZ plane
highlighting the spacing between Datoms.

Connector faces (C-faces) and 24 links, respectively coloured green, orange and
black in Fig.1a. All the components of the shell are connected through revolute
joints. The joints between links and A-Faces include a geometrical feature to
limit the relative movement of the 2 components to 90◦ with respect to the outer
normal to the A-face. The revolute joint between link and C-plate is limited to
±90◦ relative to the plane of the plate. These features are needed to make sure
that when the actuator is fully contracted, the 4 C-faces surrounding it are fully
constrained and precisely located on a single plane, as it can be seen in Fig. 2a.
This is essential for Datom on Datom movement since it makes 8 C-faces line
up, 4 for each Datom.

It is also useful to think of the shell assembly as 3 rings made up of 4 A-
faces and 4 C-faces, shown in Fig. 1b, with 1 ring for each Cartesian plane. The
origin of the coordinate system is placed in the centre of the Datom and the
axis pass through the centres of opposite A-faces. The core assembly contains
the core and 6 actuators, coloured respectively yellow and silver. The original
design proposes shape memory alloy springs to implement a bistable toggle
linear actuator that can toggle between fully contracted and fully extended.
Our implementation replaces the actuators with normal springs at first. This
allows us to explore the passive behaviour of the agents and the lattices they
can create. Successively springs are replaced with pneumatic actuator for the
proof of concept device described in Section 5. All of the shell components have
been 3D printed using PLA in a Ultimaker S5 FDM printer, except for the steel
dowel pins that are used for the revolute joints

Datoms can pack in the three-dimensional space by connecting to other
Datoms through the C-faces in all directions. This configuration forms a face-
centred cubic lattice, as shown in Fig. 1c. When describing a lattice of Datoms,
as shown in Fig. 1d, the size of the lattice in a given Cartesian direction is
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defined as the number of lattice units the lattice spans across that axis.

3 Datoms for stiffness tunable programmable mat-
ter

This section will cover how the Datoms mechanical structure can be harnessed to
implement stiffness tunable programmable matter. Specifically, the kinematics
of the Datom deformation will be characterised and will be used to express the
relationship between the stiffness of individual Datoms and the stiffness of the
structure they collectively form.

(a) (b)

Figure 2: Representation of the two possible modes in which datoms can deform.
A) Active deformation where the actuator is fully retracted and pull the A-face
into the core causing the surrounding C-faces to lie on the same plane. B)
Passive deformation caused by an external force which will cause a movement
of the dome until the limits of the joints are reached.

3.1 Datom deformation modes

The Datom shell has two deformation modes, which can be identified based
on the source of the force driving deformation: internal actuators or external
agent/force.

We define Active Deformation, shown in Fig. 2a as the deformation caused
from internal actuation, when an A-face is pulled towards the centre of the
Datom by the connected actuator. This mode of deformation is the one that is
used to move Datoms relative to one another and navigate around the structure.

We define Passive Deformation, shown in Fig. 2b as the deformation caused
from an external force, which can be observed when the multiple Datoms con-
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nected together are subjected to an external force applied along one of the
Cartesian axes. We are particularly interested in this mode, as it will allow us
to develop a model for how the stiffness of the individual Datoms determines
the stiffness of the lattice. For this mode, we have to further distinguish the
behaviour of Datoms at the boundary of the structure and the ones that are
fully surrounded by other Datoms. The latter behaviour is characterised in
section 3.3.

3.2 Lattice boundary stiffness

The Datoms at the boundaries of the lattice behave differently than the ones on
the inside. The springs connected to the A-faces facing out of the lattice all react
independently to an external force, as they are not mechanically coupled to any
other spring in the lattice. Also, the force transfers to the spring through the
A-face linearly, meaning the stiffness of the half dome exposed at the boundary
of the lattice is simply the stiffness of the internal spring.

3.3 Lattice bulk stiffness

This section will discuss the relation between the stiffness and deformation of
the Datom and the stiffness of the lattice. For the purpose of this initial study,
we consider the Datoms and the lattice to be ideal, using the following sets
of assumptions: i) all the bodies are perfectly rigid, ii) all the joints have no
mechanical play or backlash, iii) all connections between adjacent C-faces are
perfectly rigid, and iv) the system is frictionless.

3.3.1 Deformation Kinematics

When an external force is applied to the lattice, it is transferred from Datom
to Datom through the C-plates. The applied force will then cause the internal
springs to deform. If a force is applied along one of the Cartesian axes, all
the Datoms in the lattice will deform uniformly. We can therefore perform our
analysis on an individual Datom at first. The first thing to note is that the
shell-ring normal to the force is minimally affected; This is because all of the
A-faces of the shell ring are being pushed outwards radially from the centre of
the Datom by the moving linkages but cannot move because of the kinematic
constraints designed into the joints discussed in Sec. 2. Therefore the shell ring
normal to the force is considered rigid for the purpose of our analysis. Moreover,
the remaining 2 shell-rings deform uniformly due to the radial symmetry of the
Datom and of the loading conditions. We can therefore analyse the deformation
on one quarter of one of the shell-ring, as shown in Fig. 3. In this scenario,
forces are transmitted through the lattice via the C-faces.

For the purpose of our analysis, the origin of the coordinate system is placed
at the centre of revolution of joint J1. The dimension of all the Datom’s com-
ponents, the faces and the links whose length is defined in Eqs (1) and (2)
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respectively, are related to its radius (r), which is defined as the half distance
between two opposite C-faces. All thes parameters are given in [16] as

L1 = L2 = r
2−
√

2

3
√

2− 1
= l (1)

C = r
2

3
√

2− 1
= f (2)

A force F applied to the C-face, as shown in Fig. 3d and 3c, causes J3 to
move in the negative z direction, and due to the rotation limits in place in
J4, the joint J4 does not rotate. Therefore, L2 and A act as a single body
constrained prismatically along the z direction. We can then characterise the
system based on the angles of J1 and J2, while knowing that the end of C, which
is coincident with J3, is constrained to only move along the z with the ordinate
value constrained between 0 and f . The angles for J1Θ and J2Θ can be derived
by using the geometric solution for the inverse kinematics of a link serial robot

J3 = (f ∗ cos
π

4
, 0 ≤ z ≤ f) (3)

J2Θ = cos−1 x
2 + z2 − l2 − c2

2lc
(4)

J1Θ = tan−1 x

z
+ tan−1 c sin J2Θ

l + c cos J2Θ
(5)

These equations can be solved for a fixed x = f ∗ cos π4 and the resulting z
represents the length of the spring.

The last factor to consider is the revolution constraints of the joint J2. Specif-
ically, J2Θ is constrained between π/2 and 3π/2. Solving Eq: (4) for J2Θ = π

2
gives us a spring extension of ≈ 0.449r. This means that when a force is applied
to the C-face the spring can compress to a maximum of 23% compared to when
the mechanism is at rest and spring length is ≈ 0.616r.

3.3.2 Datom stiffness from kinematics

The kinematics of the individual Datom can be applied to all of the other
Datoms in the lattice if the set of assumptions discussed in Section 3.3 is valid.
From Fig. 4 we can observe that for each layer of Datoms, as the lattice is
compressed, the distance between the rings normal to the stress changes. This
value can be expressed as the normal component of the length of C plus 2 times
the vertical component of L1, i.e.

D = 2l sin J1Θ + f sin (J1Θ + J2Θ) (6)

By utilising equations 4-5 we can characterise the deformation of a 2 level
lattice against the spring resulting in the curve shown in Fig. 4c
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This curve represents the relationship between the deformation of one tier
of a Datom lattice and the deformation of the springs involved. We can see that
the relationship can be represented linearly by a line with slope 0.898 and no
intercept. The relationship between deformation of the lattice (∆l) and spring
(∆s) can be used to calculate the stiffness of the lattice (Kl) from the stiffness
of the spring (Ks) through conservation of elastic energy. Indeed, under our
assumptions, the energy stored in the lattice (Ul) must be equal to the energy
stored in the spring (Us), therefore


Ul = Us

Ul = 1
2Kl∆

2
l

Us = 1
2Ks∆

2
s

∆s = 0.898∆l

(7)

.

⇒ Kl = 0.8982Ks (8)

3.3.3 Two-Dimensional lattice

Let us first consider a two-dimensional plane of ideal Datoms that follows the
previous assumptions and is placed in the following scenario. The lattice lies on
the XZ plane and spans Dx lattice units along the x axis and Dz along the z
axis. A uniform force is applied in z direction. In this scenario, only the springs
oriented along z are deformed. We can then calculate the stiffness of the lattice
through conservation of energy. Indeed, that the elastic potential energy of the
lattice (Ul) must be the sum of the elastic potential energy stored in the springs
(Us). The number of engaged springs (ns) is given by

ns = Dx × (Dz − 1) (9)

For a two-dimensional lattice, the relationship between ∆l and ∆s given in
equation (7) needs to be expanded to account for the z dimension of the lattice,
thus obtaining

∆s =
0.898

Dz − 1
∆l (10)

which, in turns, implies that the stiffness of the two-dimensional lattice can be
expressed as

Kl = Ks
0.8982Dx

Dz − 1
(11)
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3.3.4 Three-Dimensional lattice

The model discussed above can be expanded to three-dimensional lattices, by
expanding the lattice in the remaining Cartesian direction and stacking more
planes to form a face-centred cubic lattice. For the three-dimensional lattice
to be able to deform, the Datoms in the lattice need to disconnect all C-faces
belonging to the shell rings normal to the stress. This is necessary to allow the
lattice to expand along the normal plane as it is compressed, as shown in Fig. 5.
Forces can still be transferred from Datom to Datom through the remaining 8 C-
faces maintaining connection to the Datom above and below in the lattice. We
can adapt Eq. 11 to account for the dimension of the lattice in the y direction,
represented by Dy, thus obtaining

Kl = Ks
0.8982DxDy

Dz − 1
(12)

4 Experimental validation

The mathematical model introduced in Section 3 was experimentally validated
by manufacturing lattices of Datoms’ shells and performing uniaxial compression
tests on them.

4.1 Specimen

The specimen was designed to simulate a Datom with a radius of 6 cm. To
simplify manufacturing and reduce uncertainties due to spurious compression
modes, the specimen was reduced to a two-dimensional representation, as shown
in Fig. 6a. Such implementation also allowed it to fit it within the testing vol-
ume constraints of the Universal Testing Machine (UTM) used for the tests, and
remove components potentially introducing unwanted friction. This represen-
tation uses vertical steel rods to retain the prismatic constraint of the A-faces
and uses horizontal steel rods to maintain alignment for Datoms on the same
horizontal plane. The addition of these guides will allow us to simulate the
constraint of an infinite 2D lattice on a finite model. The model Datoms are
connected to one another with screws for a rigid connection. The Datoms that
are placed at the boundary of the lattice have a rigid half to remove the lattice
boundary stiffness component from the experiment, as shown in Fig.6a. All
components have been 3D printed to enable quick manufacturing, all revolute
joint use steel dowel pins and lubrication to reduce friction and backlash in the
assembly. The model removes 2 springs in each Datom, only keeping the vertical
ones. The spring and faces that would have been part of the shell ring normal
to the stress have been simplified to a rigid member as explained in Sec. 3.3.
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4.2 Method

The experiments have been conducted using an Instron 3345 UTM equipped
with a 5KN load cell. Tests have been conducted using three batches of springs
(a, b, c) of different stiffness: Ka = 0.37N/m, Kb = 0.93N/m, Kc = 2.48N/m.
All springs in every batch have been tested and chosen so as to be within 5% of
the nominal value. All experiments have been carried out with a loading speed
of 1000 mm/min to reduce the influence of friction on the system. Each spring
has been tested with four different 2D lattice configurations: 3 by 2, 3 by 3, 3
by 4, and 3 by 5. Each specimen configuration has been tested ten times.

4.3 Results

All specimens display linear behaviour within the movement limits dictated
by the mechanism, see Fig. 6b. Furthermore, the data from the experiment
has been post-processed to obtain stiffness values for all specimens. The post-
processing consists of, firstly, removing data points at the beginning of the run
where the specimen is settling, and secondly, fitting a line to the remaining
points. The slope of that line is the stiffness of the specimen. The results
for each specimen are averaged, and the mean is compared to the predicted
specimen stiffness. All of the results are shown in Fig.7. We can observe that
for smaller lattice configurations, the model under-predicts with a large error,
but as the dimensions of the lattice increase the prediction approximates the
characteristics of the lattice with progressively smaller error. The discrepancy
between the prediction and the experimental results at smaller dimensions is due
to the model not accounting for the behaviour of the agents at the boundary
layer, which are less constrained and have some A-faces subject to twisting
inducing the joints to seize. This behaviour becomes less prominent as the
size of the lattice increases. As the final goal of programmable matter is to
have an extremely dense arrangements of agents, the model provides a close
approximation in those scenarios.

5 Proof of Concept for Stiffness Tunable Pro-
grammable Matter

This section proposes a potential design to demonstrate stiffness tunable pro-
grammable matter.

5.1 Specimen

Six Datom have been manufactured for the proof of concept. These Datoms
have a radius of 6cm and have been connected to form a diamond configuration
with one Datom at the bottom and one at the top of the lattice and 4 placed
between them. 10 single action pneumatic cylinders, with a 16mm bore and
10mm travel (SMC CQ2B16-10S) in the normally retracted configuration, have
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been used to act as the variable stiffness actuators involved in the deformation
caused from applied vertical stress. Therefore, the 4 Datoms in the middle
layer have been fitted with 2 actuators each, while only one is used for the top
and bottom Datoms. These allow the stiffness of the lattice to be modulated
through the pressure in the chamber. The 10 actuators have been connected in
parallel to a compressor so that all of the chamber are pressurised uniformly.

5.2 Method

The lattice has been placed in a fixture that allows for weights to be placed
on top of the lattice, recording the deformation after reaching steady state.
The actuators in the lattice have been pressurised to the following pressures of
0.1, 0.2, 0.3 and 0.4MPa, without any load placed on top. For each pressure
value the resting lengths have been recorded and successively weights have been
placed on top of the lattice, from 2kg to 8 kg in 2kg increments. The setup is
displayed in Fig. 8a

5.3 Results

The experiment show that as the pressure in the actuator’s chambers increases,
so does the stiffness of the lattice. Indeed, the lattice stiffness at 0.1MPa is
∼ 6.15N/mm and increases up to ∼ 20N/mm at 0.4MPa. The lattice also
maintains a linear stiffness at the tested pressure values, as shown by Fig. 8b.

6 Conclusions

The mathematical model presented in this paper can be used to calculate the
stiffness of a uniform Datom lattice with known dimensions under uniform load-
ing conditions. This relationship is shown to be linear, which is highly advanta-
geous for an implementation of the device for real world operations. The exper-
imental results show that the model can be used to predict the stiffness of large
lattices, massively simplifying the stiffness control of large lattice configurations.
Following these findings, a proof of concept device consisting of 6 Datoms has
been used to demonstrate that the stiffness of the lattice can be easily tuned
using a pneumatic variable stiffness actuator. The device shows that the ba-
sic working principle is sound and confirms that the Datom architecture [16]
not only exhibits excellent reconfiguration capabilities, but also represents a
promising avenue to introduce stiffness modulation in programmable matter.
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(a) (b)

(c) (d)

Figure 3: Section of the Datom taken into account for the kinematic study.
In the free body diagrams the revolution limits for the revolution joints are
represented by the angle of the white sector of the circle placed on the joint. (a)
Component view at rest. (b) FBD at rest. (c) Component view compressed.
(d) FBD compressed.
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(a) (b)

(c)

Figure 4: Relationship between lattice and actuator compression. Side by side
view of the resting (a) and compressed (b) lattice. Magnification displays the
change in distance between the shell ring normal to the compression. The graph
(c) shows the Relationship between lattice compression (∆l

r ) and Datom spring

compression (∆s

r ) and its linear approximation. Both axes have been divided
by the radius of the Datom to make the graph dimensionless.
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(a) (b)

(c)

Figure 5: Side by side view of a section of 3D lattice compressed and at rest.(a)
Render of a section of a three-dimensional lattice while at rest. All off the
C-faces are in contact. (b) Render of a section of a three-dimensional lattice
deformed by a force going into the page. The C-faces on the shell rings normal
to the force have separated. (c) Perspective render of a deformed 3D lattice
with zoomed details showing how the C-faces on the shell-ring normal the stress
have disconnected to allow for the deformation and how the C-faces remain
connected allowing for forces to transmit throught the lattice.
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(a) (b)

Figure 6: Figures and graphs from the compression testing of the 2D lattice.
(a) 3 by 4 lattice during testing with the Instron machine, at rest (A) and com-
pressed (B). (b) Graph displaying the experimental results from the compression
test for the 3 different spring in a 3 by 3 lattice. The lattice has clear linear
stiffness.
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Figure 7: Results from 2D lattice test. The boxplot shows how the experimental
values collected compare to the predicted stiffness values. As the dimension of
the lattice increases, the prediction error decreases.

17



(a) (b)

Figure 8: 3D lattice testing and results. (a) 3D lattice compression test. The
figures show the proof of concept lattice at 0.3MPa actuator pressure and loaded
with: A) 2kg B) 4kg C) 6kg D) 8kg. Those lead respectively to deflections of
1mm, 3mm, 5mm, and 6mm. (b) Force displacement curve of the lattice at
different actuator pressures. The lattice behaves like a linear spring for the
tested pressures.
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