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Abstract

The Datom is a novel design for a programmable matter robotic agent, pro-
posed by Piranda and Bourgeois (2022), that can move and reconfigure by
deforming its outer shell. This paper explores how the kinematic behaviour
of the single Datom, paired with the stiffness of its actuators, can determine
the stiffness of the structures the agents create. We propose a simplified
mathematical model based on conservation of elastic energy that can char-
acterise the stiffness of lattice structures created by Datoms. The model is
validated experimentally to demonstrate that it provides good predictions,
especially as the size of the lattice increases. Furthermore, an implementa-
tion for a stiffness tunable reconfigurable lattice is proposed and a functioning
proof-of-concept prototype is introduced in this paper.

Keywords: Cellular and Modular Robots, Compliant Joints and
Mechanisms, Modeling, Control, and Learning for Soft Robots.

1. Introduction

The concept of modular robotics was first introduced in the late 1980s
to describe a reconfigurable robotic system that can use a set of modules to
achieve higher flexibility while compromising specificity

Lattice type modular robots still face many challenges because of the
complexity they present, both at a physical and control level. The main
challenge of the hardware is designing and manufacturing devices at cm and
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mm scale capable of latching and actuating the movement relative to one
another, while keeping it affordable

Almost all of the proposed architectures for programmable matter use
fully rigid agents, which are easier to control during reconfiguration, but make
it impossible to modify the stiffness of the final object without modifying its
structure. However, the Datom architecture was recently proposed as a novel
geometry for programmable matter agents

2. Datom design and manufacturing

This section briefly describes the main aspects of the Datom design firstly
proposed in

It is also useful to think of the shell assembly as 3 rings made up of 4
A-faces and 4 C-faces, shown in Fig. 1b, with 1 ring for each Cartesian plane.
The origin of the coordinate system is placed in the centre of the Datom and
the axis pass through the centres of opposite A-faces. The core assembly con-
tains the core and 6 actuators, coloured respectively yellow and silver. The
original design proposes shape memory alloy springs to implement a bistable
toggle linear actuator that can toggle between fully contracted and fully ex-
tended. Our implementation replaces the actuators with normal springs at
first. This allows us to explore the passive behaviour of the agents and the
lattices they can create. Successively springs are replaced with pneumatic
actuator for the proof of concept device described in Section 5. All of the
shell components have been 3D printed using PLA in a Ultimaker S5 FDM
printer, except for the steel dowel pins that are used for the revolute joints

Datoms can pack in the three-dimensional space by connecting to other
Datoms through the C-faces in all directions. This configuration forms a
face-centred cubic lattice, as shown in Fig. 1c. When describing a lattice
of Datoms, as shown in Fig. 1d, the size of the lattice in a given Cartesian
direction is defined as the number of lattice units the lattice spans across
that axis.

3. Datoms for stiffness tunable programmable matter

This section will cover how the Datoms mechanical structure can be har-
nessed to implement stiffness tunable programmable matter. Specifically, the
kinematics of the Datom deformation will be characterised and will be used
to express the relationship between the stiffness of individual Datoms and
the stiffness of the structure they collectively form.
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Figure 1: Details regarding the Datoms design and the structures the agents can create.
(a) A single Datom with all it’s components: A) A-face. B) Link. C) C-face. D) Actuator,
E) Core. (b) Configuration of A-plates, C-plates and links making up a shell ring. The
radius of the Datom is defined as half of the distance between opposing C-Faces. (c)
Datoms connected together to form a a face centred cubic lattice. (d) Two-dimensional
lattice lying on the XZ plane highlighting the spacing between Datoms.

3.1. Datom deformation modes

The Datom shell has two deformation modes, which can be identified
based on the source of the force driving deformation: internal actuators or
external agent/force.

We define Active Deformation, shown in Fig. 2a as the deformation caused
from internal actuation, when an A-face is pulled towards the centre of the
Datom by the connected actuator. This mode of deformation is the one that
is used to move Datoms relative to one another and navigate around the
structure.

We define Passive Deformation, shown in Fig. 2b as the deformation
caused from an external force, which can be observed when the multiple
Datoms connected together are subjected to an external force applied along
one of the Cartesian axes. We are particularly interested in this mode, as it
will allow us to develop a model for how the stiffness of the individual Datoms
determines the stiffness of the lattice. For this mode, we have to further
distinguish the behaviour of Datoms at the boundary of the structure and
the ones that are fully surrounded by other Datoms. The latter behaviour is
characterised in section 3.3.

3.2. Lattice boundary stiffness

The Datoms at the boundaries of the lattice behave differently than the
ones on the inside. The springs connected to the A-faces facing out of the
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Figure 2: Representation of the two possible modes in which datoms can deform. A)
Active deformation where the actuator is fully retracted and pull the A-face into the core
causing the surrounding C-faces to lie on the same plane. B) Passive deformation caused
by an external force which will cause a movement of the dome until the limits of the joints
are reached.

lattice all react independently to an external force, as they are not mechan-
ically coupled to any other spring in the lattice. Also, the force transfers to
the spring through the A-face linearly, meaning the stiffness of the half dome
exposed at the boundary of the lattice is simply the stiffness of the internal
spring.

3.3. Lattice bulk stiffness

This section will discuss the relation between the stiffness and deformation
of the Datom and the stiffness of the lattice. For the purpose of this initial
study, we consider the Datoms and the lattice to be ideal, using the following
sets of assumptions: i) all the bodies are perfectly rigid, ii) all the joints have
no mechanical play or backlash, iii) all connections between adjacent C-faces
are perfectly rigid, and iv) the system is frictionless.

3.3.1. Deformation Kinematics

When an external force is applied to the lattice, it is transferred from
Datom to Datom through the C-plates. The applied force will then cause
the internal springs to deform. If a force is applied along one of the Cartesian
axes, all the Datoms in the lattice will deform uniformly. We can therefore
perform our analysis on an individual Datom at first. The first thing to note
is that the shell-ring normal to the force is minimally affected; This is because
all of the A-faces of the shell ring are being pushed outwards radially from the
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centre of the Datom by the moving linkages but cannot move because of the
kinematic constraints designed into the joints discussed in Sec. 2. Therefore
the shell ring normal to the force is considered rigid for the purpose of our
analysis. Moreover, the remaining 2 shell-rings deform uniformly due to
the radial symmetry of the Datom and of the loading conditions. We can
therefore analyse the deformation on one quarter of one of the shell-ring, as
shown in Fig. 3. In this scenario, forces are transmitted through the lattice
via the C-faces.

(a) (b) (c) (d)

Figure 3: Section of the Datom taken into account for the kinematic study. In the free
body diagrams the revolution limits for the revolution joints are represented by the angle
of the white sector of the circle placed on the joint. (a) Component view at rest. (b) FBD
at rest. (c) Component view compressed. (d) FBD compressed.

For the purpose of our analysis, the origin of the coordinate system is
placed at the centre of revolution of joint J1. The dimension of all the
Datom’s components, the faces and the links whose length is defined in
Eqs (1) and (2) respectively, are related to its radius (r), which is defined
as the half distance between two opposite C-faces. All thes parameters are
given in

L1 = L2 = r
2−

√
2

3
√
2− 1

= l (1)

C = r
2

3
√
2− 1

= f (2)

A force F applied to the C-face, as shown in Fig. 3d and 3c, causes J3 to
move in the negative z direction, and due to the rotation limits in place in
J4, the joint J4 does not rotate. Therefore, L2 and A act as a single body
constrained prismatically along the z direction. We can then characterise
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the system based on the angles of J1 and J2, while knowing that the end of
C, which is coincident with J3, is constrained to only move along the z with
the ordinate value constrained between 0 and f . The angles for J1Θ and J2Θ
can be derived by using the geometric solution for the inverse kinematics of
a link serial robot

J3 = (f ∗ cos π
4
, 0 ≤ z ≤ f) (3)

J2Θ = cos−1 x
2 + z2 − l2 − c2

2lc
(4)

J1Θ = tan−1 x

z
+ tan−1 c sin J2Θ

l + c cos J2Θ
(5)

These equations can be solved for a fixed x = f ∗ cos π
4
and the resulting

z represents the length of the spring.
The last factor to consider is the revolution constraints of the joint J2.

Specifically, J2Θ is constrained between π/2 and 3π/2. Solving Eq: (4) for
J2Θ = π

2
gives us a spring extension of ≈ 0.449r. This means that when a

force is applied to the C-face the spring can compress to a maximum of 23%
compared to when the mechanism is at rest and spring length is ≈ 0.616r.

3.3.2. Datom stiffness from kinematics

The kinematics of the individual Datom can be applied to all of the other
Datoms in the lattice if the set of assumptions discussed in Section 3.3 is
valid. From Fig. 4 we can observe that for each layer of Datoms, as the
lattice is compressed, the distance between the rings normal to the stress
changes. This value can be expressed as the normal component of the length
of C plus 2 times the vertical component of L1, i.e.

D = 2l sin J1Θ + f sin (J1Θ + J2Θ) (6)

By utilising equations 4-5 we can characterise the deformation of a 2
level lattice against the spring resulting in the curve shown in Fig. 4c

This curve represents the relationship between the deformation of one
tier of a Datom lattice and the deformation of the springs involved. We
can see that the relationship can be represented linearly by a line with slope
0.898 and no intercept. The relationship between deformation of the lattice
(∆l) and spring (∆s) can be used to calculate the stiffness of the lattice (Kl)
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(a) (b)

(c)

Figure 4: Relationship between lattice and actuator compression. Side by side view of
the resting (a) and compressed (b) lattice. Magnification displays the change in distance
between the shell ring normal to the compression. The graph (c) shows the Relationship
between lattice compression (∆l

r ) and Datom spring compression (∆s

r ) and its linear ap-
proximation. Both axes have been divided by the radius of the Datom to make the graph
dimensionless.

from the stiffness of the spring (Ks) through conservation of elastic energy.
Indeed, under our assumptions, the energy stored in the lattice (Ul) must be
equal to the energy stored in the spring (Us), therefore
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Ul = Us

Ul =
1
2
Kl∆

2
l

Us =
1
2
Ks∆

2
s

∆s = 0.898∆l

(7)

.

⇒ Kl = 0.8982Ks (8)

3.3.3. Two-Dimensional lattice

Let us first consider a two-dimensional plane of ideal Datoms that follows
the previous assumptions and is placed in the following scenario. The lattice
lies on the XZ plane and spans Dx lattice units along the x axis and Dz

along the z axis. A uniform force is applied in z direction. In this scenario,
only the springs oriented along z are deformed. We can then calculate the
stiffness of the lattice through conservation of energy. Indeed, that the elastic
potential energy of the lattice (Ul) must be the sum of the elastic potential
energy stored in the springs (Us). The number of engaged springs (ns) is
given by

ns = Dx × (Dz − 1) (9)

For a two-dimensional lattice, the relationship between ∆l and ∆s given
in equation (7) needs to be expanded to account for the z dimension of the
lattice, thus obtaining

∆s =
0.898

Dz − 1
∆l (10)

which, in turns, implies that the stiffness of the two-dimensional lattice can
be expressed as

Kl = Ks
0.8982Dx

Dz − 1
(11)

3.3.4. Three-Dimensional lattice

The model discussed above can be expanded to three-dimensional lattices,
by expanding the lattice in the remaining Cartesian direction and stacking
more planes to form a face-centred cubic lattice. For the three-dimensional
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(a) (b)

(c)

Figure 5: Side by side view of a section of 3D lattice compressed and at rest.(a) Render of
a section of a three-dimensional lattice while at rest. All off the C-faces are in contact. (b)
Render of a section of a three-dimensional lattice deformed by a force going into the page.
The C-faces on the shell rings normal to the force have separated. (c) Perspective render
of a deformed 3D lattice with zoomed details showing how the C-faces on the shell-ring
normal the stress have disconnected to allow for the deformation and how the C-faces
remain connected allowing for forces to transmit throught the lattice.

lattice to be able to deform, the Datoms in the lattice need to disconnect all
C-faces belonging to the shell rings normal to the stress. This is necessary
to allow the lattice to expand along the normal plane as it is compressed,
as shown in Fig. 5. Forces can still be transferred from Datom to Datom
through the remaining 8 C-faces maintaining connection to the Datom above
and below in the lattice. We can adapt Eq. 11 to account for the dimension
of the lattice in the y direction, represented by Dy, thus obtaining
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Kl = Ks
0.8982DxDy

Dz − 1
(12)

4. Experimental validation

The mathematical model introduced in Section 3 was experimentally val-
idated by manufacturing lattices of Datoms’ shells and performing uniaxial
compression tests on them.

4.1. Specimen

The specimen was designed to simulate a Datom with a radius of 6 cm.
To simplify manufacturing and reduce uncertainties due to spurious compres-
sion modes, the specimen was reduced to a two-dimensional representation,
as shown in Fig. 6a. Such implementation also allowed it to fit it within the
testing volume constraints of the Universal Testing Machine (UTM) used
for the tests, and remove components potentially introducing unwanted fric-
tion. This representation uses vertical steel rods to retain the prismatic
constraint of the A-faces and uses horizontal steel rods to maintain align-
ment for Datoms on the same horizontal plane. The addition of these guides
will allow us to simulate the constraint of an infinite 2D lattice on a finite
model. The model Datoms are connected to one another with screws for a
rigid connection. The Datoms that are placed at the boundary of the lattice
have a rigid half to remove the lattice boundary stiffness component from the
experiment, as shown in Fig.6a. All components have been 3D printed to
enable quick manufacturing, all revolute joint use steel dowel pins and lubri-
cation to reduce friction and backlash in the assembly. The model removes 2
springs in each Datom, only keeping the vertical ones. The spring and faces
that would have been part of the shell ring normal to the stress have been
simplified to a rigid member as explained in Sec. 3.3.

4.2. Method

The experiments have been conducted using an Instron 3345 UTM equipped
with a 5KN load cell. Tests have been conducted using three batches of
springs (a, b, c) of different stiffness: Ka = 0.37N/m, Kb = 0.93N/m,
Kc = 2.48N/m. All springs in every batch have been tested and chosen so as
to be within 5% of the nominal value. All experiments have been carried out
with a loading speed of 1000 mm/min to reduce the influence of friction on
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the system. Each spring has been tested with four different 2D lattice con-
figurations: 3 by 2, 3 by 3, 3 by 4, and 3 by 5. Each specimen configuration
has been tested ten times.

(a) (b)

Figure 6: Figures and graphs from the compression testing of the 2D lattice. (a) 3 by
4 lattice during testing with the Instron machine, at rest (A) and compressed (B). (b)
Graph displaying the experimental results from the compression test for the 3 different
spring in a 3 by 3 lattice. The lattice has clear linear stiffness.

4.3. Results

All specimens display linear behaviour within the movement limits dic-
tated by the mechanism, see Fig. 6b. Furthermore, the data from the exper-
iment has been post-processed to obtain stiffness values for all specimens.
The post-processing consists of, firstly, removing data points at the begin-
ning of the run where the specimen is settling, and secondly, fitting a line to
the remaining points. The slope of that line is the stiffness of the specimen.
The results for each specimen are averaged, and the mean is compared to
the predicted specimen stiffness. All of the results are shown in Fig.7. We
can observe that for smaller lattice configurations, the model under-predicts
with a large error, but as the dimensions of the lattice increase the prediction
approximates the characteristics of the lattice with progressively smaller er-
ror. The discrepancy between the prediction and the experimental results at
smaller dimensions is due to the model not accounting for the behaviour of
the agents at the boundary layer, which are less constrained and have some
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Figure 7: Results from 2D lattice test. The boxplot shows how the experimental values
collected compare to the predicted stiffness values. As the dimension of the lattice in-
creases, the prediction error decreases.

A-faces subject to twisting inducing the joints to seize. This behaviour be-
comes less prominent as the size of the lattice increases. As the final goal of
programmable matter is to have an extremely dense arrangements of agents,
the model provides a close approximation in those scenarios.

5. Proof of Concept for Stiffness Tunable Programmable Matter

This section proposes a potential design to demonstrate stiffness tunable
programmable matter.

5.1. Specimen

Six Datom have been manufactured for the proof of concept. These
Datoms have a radius of 6cm and have been connected to form a diamond
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(a) (b)

Figure 8: 3D lattice testing and results. (a) 3D lattice compression test. The figures show
the proof of concept lattice at 0.3MPa actuator pressure and loaded with: A) 2kg B) 4kg
C) 6kg D) 8kg. Those lead respectively to deflections of 1mm, 3mm, 5mm, and 6mm. (b)
Force displacement curve of the lattice at different actuator pressures. The lattice behaves
like a linear spring for the tested pressures.

configuration with one Datom at the bottom and one at the top of the lat-
tice and 4 placed between them. 10 single action pneumatic cylinders, with a
16mm bore and 10mm travel (SMC CQ2B16-10S) in the normally retracted
configuration, have been used to act as the variable stiffness actuators in-
volved in the deformation caused from applied vertical stress. Therefore, the
4 Datoms in the middle layer have been fitted with 2 actuators each, while
only one is used for the top and bottom Datoms. These allow the stiffness
of the lattice to be modulated through the pressure in the chamber. The 10
actuators have been connected in parallel to a compressor so that all of the
chamber are pressurised uniformly.

5.2. Method

The lattice has been placed in a fixture that allows for weights to be
placed on top of the lattice, recording the deformation after reaching steady
state. The actuators in the lattice have been pressurised to the following
pressures of 0.1, 0.2, 0.3 and 0.4MPa, without any load placed on top. For
each pressure value the resting lengths have been recorded and successively
weights have been placed on top of the lattice, from 2kg to 8 kg in 2kg
increments. The setup is displayed in Fig. 8a
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5.3. Results

The experiment show that as the pressure in the actuator’s chambers
increases, so does the stiffness of the lattice. Indeed, the lattice stiffness at
0.1MPa is ∼ 6.15N/mm and increases up to ∼ 20N/mm at 0.4MPa. The
lattice also maintains a linear stiffness at the tested pressure values, as shown
by Fig. 8b.

6. Conclusions

The mathematical model presented in this paper can be used to calculate
the stiffness of a uniform Datom lattice with known dimensions under uniform
loading conditions. This relationship is shown to be linear, which is highly
advantageous for an implementation of the device for real world operations.
The experimental results show that the model can be used to predict the
stiffness of large lattices, massively simplifying the stiffness control of large
lattice configurations. Following these findings, a proof of concept device
consisting of 6 Datoms has been used to demonstrate that the stiffness of the
lattice can be easily tuned using a pneumatic variable stiffness actuator. The
device shows that the basic working principle is sound and confirms that the
Datom architecture
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