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Abstract

Using contingent-claims valuation, we introduce novel hedge ratios for credit

exposures using put options. Option hedge ratios are generally in line with the

empirical sensitivities of credit spread changes to put option returns and, relative

to stock hedge ratios, produce further reductions in volatility for a portfolio

of North American firms. We show that option hedge ratios capture option-

specific credit exposure related to the VIX index and the default spread, which

is unaccounted for by Merton (1974)’s equity hedge ratios alone. Combining

stocks and put options for credit risk hedging can be done effectively using the

volatility smirk.
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I Introduction

Since the publication of the seminal paper by Modigliani and Miller (1958) on

the theory of optimal capital structure, extensive attention has been drawn to the

relationship between debt and equity values. Based on the option pricing theory

developed by Black and Scholes (1973) and Merton (1973), Merton (1974) introduced

the first structural model of credit risk building on the notion that equity and debt can

be valued as options on the firm value.1 A few years later, Geske (1979) developed a

structural model to price options on options (or compound options). If a stock can be

regarded as a call option on the value of the firm, an option on the stock is equivalent

to an option on an option.

In this paper, we use contingent-claims valuation to introduce novel hedge ratios

that can be used to neutralize market value changes of credit exposures using equity

put options. This is an important topic for practitioners who are mainly interested in

developing their hedging techniques and cross-market arbitrage as well as economists

who are concerned about the accuracy of the models. Specifically, we derive theoretical

hedge ratios of bond credit spreads to equity options by combining the structural

models of Merton (1974) and Geske (1979) in order to study the sensitivities of credit

spreads to equity options. To this end, we analytically solve the partial derivative of

the bond credit spread with respect to the option price using the credit spread implied

by Merton (1974)’s model as well as the option price implied by Geske (1979)’s model.

While previous studies have analyzed the ability of Merton (1974)’s model to generate

1Since Merton (1974), structural models of credit risk have evolved to include stochastic interest
rates (Longstaff and Schwartz, 1995), stochastic jump-diffusion process for the firm value (Zhou, 2001;
Cremers et al., 2008b; Huang and Huang, 2012), dynamic capital structure (Leland and Toft, 1996),
stationary leverage ratios (Collin-Dufresne and Goldstein, 2001) and strategic default (Anderson
and Sundaresan, 1996; Mella-Barral and Perraudin, 1997). More recent models have attempted
to incorporate macroeconomic conditions to explain credit spreads (Chen et al., 2009; Chen, 2010;
Bhamra et al., 2010).
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accurate sensitivities of debt to equity values (Schaefer and Strebulaev, 2008; Che and

Kapadia, 2012; Bao and Hou, 2017; Huang et al., 2020; Huang and Shi, 2021), we

are the first to test whether the compound option model of Geske (1979) produces

accurate sensitivities of credit spreads to option values.2

There are two main theoretical reasons that justify an investigation of credit

hedging strategies based on the use of options rather than stocks. First,

out-of-the-money (OTM) put options can help insure against large price shocks

(jumps) which are potentially more clearly associated with credit risk. Particularly,

it is the price of deep OTM puts which should reflect more accurately information

on credit risk, rather than stock price fluctuations, which can instead be affected

by many other factors (Carr and Wu, 2011). Second, in a more realistic world

of incomplete capital markets characterized by limits-to-arbitrage and information

asymmetry, option payoffs cannot be perfectly replicated by underlying assets, and

hence options are not redundant assets (Ross, 1976; Back, 1993). An informed investor

may strategically choose to trade in the option market, if it is sufficiently liquid, to

exploit the higher leverage embedded in options (Black, 1975; Easley et al., 1998), or

to disguise her information signal in the presence of noise traders (An et al., 2014).

As a potential consequence and consistent with these two theoretical reasons, option

prices may reflect information about volatility or jumps that is not reflected in stocks

or, more generally, information that is not already incorporated into the price of the

2In a recent paper, Geske et al. (2016) study the pricing performance of the compound option
model and find that, relative to the model of Black and Scholes (1973), pricing errors of individual
stock options can be reduced across all strikes and maturity dates and that greater improvements
are achieved for long-term options and for firms with higher levels of market leverage. On the other
hand, structural models of credit risk are generally unable to accurately replicate corporate bond
prices and most of them underestimate credit spreads (Jones et al., 1984; Eom et al., 2004; Huang
and Huang, 2012).
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underlying asset and, therefore, improve hedging effectiveness.3

We test the empirical validity of our option-based hedge ratios on a sample of 230

firms for which data on both American put options on stocks and CDS spreads on

corporate bonds are available during the period August 2001 to December 2021. We

find that the sensitivities of CDS spread changes to option returns are generally in

line with the models using both model-free calibration of the parameters and their

maximum likelihood estimation in an internally consistent manner. Differently from

the case of stocks, we find that hedge ratio regressions can improve adjusted R-squared

values (up to 5-8 percentage points for BBB-rated and A-rated firms, respectively)

relative to empirical regressions of credit spread changes on option returns and interest

rate changes. This improvement in the ability of the regression model to explain more

of the variability of the credit spread changes is corroborated by a comparative analysis

of hedging effectiveness between model-based equity hedge ratios and model-based

option hedge ratios. In an out-of-sample analysis, the latter reduce volatility by an

additional 5% for the full portfolio of firms (reducing the root mean square error of

the CDS portfolio by 22%). The empirical counterparts of both stock and put hedge

ratios deliver a similar reduction in root mean square error (of about 25% relative to

an unhedged CDS portfolio including the entire sample of firms), with stock empirical

hedge ratios delivering the best hedging performance particularly when based on a

sample of long-term options.

3If options were really redundant assets, the introduction of option trading should not produce
any statistically significant effects on returns and volatility of the underlying stocks. However, Conrad
(1989) and Skinner (1989) document significant price effects on the underlying stock associated with
option introduction. Empirical evidence on the presence of informed trading in the option market is
mixed: while there is a growing body of evidence that various option-based variables can predict future
stock returns (Ofek et al., 2004; Cao et al., 2005; Pan and Poteshman, 2006; Cremers and Weinbaum,
2010; Xing et al., 2010; Bali and Hovakimian, 2009; Johnson and So, 2012; Stilger et al., 2017), a few
studies show that no informed trading seems to be present in the option market (Muravyev et al.,
2013; Collin-Dufresne et al., 2021).
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Our empirical findings suggest that both stock and option markets can be useful

for hedging credit risk. More importantly, options may contain useful information

which is non-overlapping with equity markets and is particularly suitable to learn

about credit risk. We investigate this point further with additional empirical tests

and find that option returns can explain an additional 5% of the variations in CDS

spread changes that are left unexplained by firm-specific stock market variables. More

importantly, we find that the source underlying the variation in the option hedge

ratios that contribute to this additional explanatory power is due to the option-only

component of the hedge ratios, that is the reciprocal of the put option delta (or stock-

option hedge ratio) implied by the compound option model of Geske (1979). This

component, that captures leverage effects introduced by the strike price of the first

option (the stock) and directly transmitted to option prices (the option on the stock), is

related to credit risk factors including the VIX index and the default spread, consistent

with the ability of the compound option model to generate a stock stochastic volatility

process induced by these leverage effects.

Having ascertained that options are useful for hedging credit risk, we then

strategically combine them with stocks in the hedging portfolios and find that the

best hedging performance is obtained when the trading decisions on both instruments

are made based on changes in the volatility smirk. We find that the latter can positively

predict the gap in hedging errors between stocks and options in the time series. Based

on this, a market timing strategy that buys (shorts) puts (stocks) when the changes

in the volatility skew in a given month are above (below) their 75th (25th) percentile,

and that otherwise invests 50% in puts and 50% in stocks, produces further reductions

in portfolio volatility for both model hedge ratios and empirical hedge ratios relative

5

Electronic copy available at: https://ssrn.com/abstract=3184004



to a strategy that, each month, is 100% invested in either stocks or options.

More generally, our hedge ratios are fundamentally different from what has been

suggested by past studies (Carr and Wu, 2011; JPMorgan, 2006), according to which

the composition of the replicating option portfolio is determined ex-ante by the loss

expected at default which is uncertain due to recovery risk.4 Rather than hedging the

default loss, we instead propose hedging changes in the market value of a long credit

risk position.5,6 Our empirical analysis suggests that adopting this mark-to-market

hedging approach would involve a reduction in hedging costs of almost 90% for a

portfolio of short CDS positions (which includes our sample of firms) on a notional

amount of $10 million per contract.7

Our work is most germane to the studies of Schaefer and Strebulaev (2008), Huang

and Shi (2021), Che and Kapadia (2012) and Huang et al. (2020) who analyze the

empirical sensitivities of debt to equity values finding that they are in line with the

sensitivities implied by Merton (1974)’s model. Schaefer and Strebulaev (2008) and

Huang and Shi (2021) show that Merton (1974)’s model provides accurate predictions

4In particular, the number of put options to buy depends on the assumptions related to the
recovery rate on the underlying corporate bond in the occurrence of a default event.

5The mark-to-market hedging approach we propose acknowledges the possibility that credit risk
comes in different forms that may not necessarily be linked to the occurrence of a credit event
but simply to the increased collateral requirements due to adverse market value changes and rating
migration risk. See, for instance, Stulz (2010) for a detailed description of the events surrounding the
Fed bailout of the American International Group in 2008.

6Using the risk-neutral measure of the credit loss from the implicit put option (required to compute
the firm’s debt value based on Merton (1974)) allows us to avoid using simplistic assumptions on
the bond recovery rates of defaulting firms. These can be hard to identify given their systematic
time variations over the business cycle and across seniority levels (Altman et al., 2005), and across
industries (Acharya et al., 2007) that are often ignored in risk management models.

7From a practitioner’s perspective, hedging corporate credit risk could be achieved by simply
buying CDS contracts. However, this would not allow traders to arbitrage between credit and
equity and/or equity option markets. Our theoretical hedge ratios enable innovative capital structure
arbitrage trades between credit instruments and equity options. In particular, market credit spreads
could be compared to option-implied credit spreads and the amount of options to be traded could
be based on our theoretical hedge ratios. A recent example of how to obtain option-implied credit
spreads is discussed by Culp et al. (2018). Capital structure arbitrage is traditionally implemented
trading CDS and equities using Merton-based equity hedge ratios as detailed, for instance, by Yu
(2006) and Duarte et al. (2007).
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of the sensitivity of both corporate bond returns and credit spread changes to changes

in equity values. Che and Kapadia (2012) and Huang et al. (2020) confirm the ability

of the Merton model to explain also the sensitivities of CDS spreads to equity returns.

In addition, Huang et al. (2020) propose a new approach for estimating the main

parameters and conduct specification tests of five different structural credit risk models

based on the use of generalized method of moments. They find that the Merton model

fares better than more sophisticated credit risk models in terms of hedging effectiveness

as measured by reduced hedging errors. Differently from these papers, our focus is on

hedging credit spreads with equity options by introducing novel hedge ratios which

blend together the structural credit risk model of Merton (1974) with the compound

option pricing model of Geske (1979). Hence, we contribute to the structural credit

risk modeling literature by investigating the sensitivity of debt to equity option values.

Our paper is also different from Schaefer and Strebulaev (2008) and Huang and Shi

(2021) because we consider, similarly to Huang et al. (2020), hedging CDS spread

changes (rather than corporate bond returns or credit spread changes) and provide

direct evidence on hedging effectiveness. However, differently from Huang et al. (2020),

we adopt an alternative consistent estimation technique for Merton (1974)’s model

parameters based on maximum likelihood estimation and we extend their analysis on

the hedging effectiveness by comparing the hedging performance of both stocks and

options. Unlike the papers above, we propose an effective way to combine equities and

options for credit risk hedging based on the use of the volatility smirk.
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II Literature on Credit and Option Markets

Academic studies on the relationship between credit markets and equity options are

limited. Carr and Wu (2010) introduce a methodology that allows joint valuation

of CDS and equity options. In another related paper, Carr and Wu (2011) also

establish a robust theoretical link between deep OTM American put options and CDS.

In particular, under the assumption that the stock price drops to zero at default, a long

position in a put option (scaled by its strike) replicates the payoff of a standardized

credit contract. Empirical tests also show that estimates of option-implied and

CDS-implied unit recovery claims (or URC) are not statistically different from each

other, confirming that the two markets strongly co-move. Berndt and Ostrovnaya

(2014) examine CDS spreads and option prices and show that both markets react faster

than the equity market prior to the release of negative credit news. Collin-Dufresne

et al. (2012) use index option prices and corporate bond credit spreads to infer market

and firm-level dynamics, respectively. Then they use these to jointly price S&P 500

index options and CDO tranches of corporate debt. Seo and Wachter (2018) build a

mathematical model based on time-varying probabilities of economic catastrophe to

price CDX index senior tranches before and during the 2008-2009 financial crisis. They

show that these instruments are extremely deep OTM put options on the U.S. economy.

Culp et al. (2018) compare credit spreads based on traded corporate bonds with credit

spreads based on pseudo bonds computed from equity options. The latter are based

on Merton (1974)’s insight that the value of risky debt is equivalent to a riskless

bond minus the value of a put option on the firm’s assets. They show that observed

credit spreads and pseudo credit spreads share common time-series characteristics

documenting a high degree of integration between the corporate bond and equity
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option markets. Kuehn et al. (2017) show how to retrieve the default probabilities

and loss rates from CDS spreads and equity put option prices. Similar to the Black

and Scholes (1973)’s option-implied volatility surface, Kelly et al. (2016) construct a

credit-implied volatility surface from observable CDS spreads using Merton (1974)’s

model formula for credit spreads. Reindl et al. (2017) infer bankruptcy costs from

equity and equity put option prices during the 2008-2010 period for a sample of S&P

500 firms.

A number of empirical studies on the determinants of credit spreads have

documented a positive incremental effect of option-implied volatilities and jump risk

measures on credit spread levels (Cremers et al., 2008a; Cao et al., 2010) as well as

changes (Collin-Dufresne et al., 2001). In particular, Cremers et al. (2008a) use panel

regressions of credit spreads on both historical and option-implied proxies of return

volatility and volatility skew. They find that both implied volatility and (to a lesser

extent) implied volatility skew dominate their historical counterparts for long-maturity

bonds and lower-rated debt. Similarly, Cao et al. (2010) find that option-implied

volatilities dominate historical volatility in firm-by-firm time-series regressions of

CDS spread levels and that this finding is particularly strong for lower-rated firms.

Further investigation of their results reveals that the explanatory power of the implied

volatility derives from its greater ability to forecast future volatility and to capture

a time-varying volatility risk premium. Collin-Dufresne et al. (2001) confirm the

importance of option-implied volatility (proxied by changes in the VIX index) and

jump risk (proxied by the change in the slope of the “smirk” of implied volatilities of

S&P 500 futures options) for explaining credit spread changes. Related to these papers,

Cao et al. (2011) and Cremers et al. (2008b) also show that credit spread levels’ pricing
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errors of structural models of credit risk can be reduced by calibrating them with

measures of option-implied volatility and option-implied risk premia, respectively.8

III Hedging Credit with Puts using Structural

Models

This section describes how we derive theoretical hedge ratios of bond credit spreads to

put options using the structural models of Merton (1974) and Geske (1979). According

to these models, the firm value V represents the underlying state variable required to

specify the models’ main outputs. In particular, the bond credit spread and the option

value are both a function of the variable V, which is assumed to follow a diffusion-type

stochastic process. In Merton’s model, V determines a firm’s default, which occurs

whenever its value falls below the face value of debt. In Geske’s model, V determines

whether the option should be exercised when it expires or it should remain unexercised.

As the firm value represents the only driving stochastic factor of these two models, the

elasticity of the bond credit spread (CS ) to the value of the option (P) is related to

the sensitivity of both the spread and the option price to V by the following relation:

hrP =
∂CS

∂P
P =

(
∂CS

∂V

/
∂P

∂V

)
P (1)

where ∂ represents the partial derivative symbol.

As they define the weights in the hedging portfolio, we refer to these sensitivities

8Other papers investigating the determinants of credit (or CDS) spreads are by Elton et al. (2001),
Campbell and Taksler (2003), Longstaff et al. (2005), Das and Hanouna (2009), Ericsson et al. (2009)
and Zhang et al. (2009). These studies also include firm leverage, interest rates, the slope of the
term structure of interest rates and the return on the S&P 500 index as additional state variables to
explain variations in spreads.
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as hedge ratios. While these sensitivities can be estimated by a linear regression of

bond credit spread changes on the returns of a put option on the firm’s stock, time

variation in the elasticity can only be captured by the theoretical hedge ratios based

on structural models. In Appendix A, we show the steps taken to solve the two partial

derivatives in Equation (1) which provide the following solution for the theoretical

hedge ratios (hrP ):

hrP =
∂CS

∂P
P =

1

τ

ϕ[h2(d,σ
2
V τ)]

V σV

√
τ

+ 1

De
−rτ (Φ[h1(d, σ

2
V τ)]− ϕ[h1(d,σ

2
V τ)]

σV

√
τ

)

Φ[h2(d, σ
2
V τ)] +

1
d
Φ[h1(d, σ

2
V τ)]

1

Θ[−(h3(d̄, σ
2
V τ1) + σV

√
τ1), h1(d, σ

2
V τ);−

√
τ1/τ ]

P (2)

where

d =
De−rτ

V
,

d̄ =
V̄ e−rτ1

V
,

h1(d, σ
2
V τ) =

−(σ2
V τ/2− ln(d))

σV

√
τ

,

h2(d, σ
2
V τ) =

−(σ2
V τ/2 + ln(d))

σV

√
τ

,

h3(d̄, σ
2
V τ1) =

−(σ2
V τ1/2 + ln

(
d̄
)
)

σV
√
τ1

,

V = current value of the firm’s assets,

V̄ = value of V such that

V Φ[h2(d, σ
2
V τ) + σV

√
τ − τ1]−De−r(τ−τ1)Φ[h2(d, σ

2
V τ)]−K = 0,

D = face value of the debt,
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r = the risk-free rate of interest,

τ = maturity date of the debt,

τ1 = maturity date of the put option,

σ2
V = the instantaneous variance of the return on the assets of the firm,

K = strike price of the put option,

ϕ[·] = univariate normal density function,

Φ[·] = univariate cumulative normal distribution function,

Θ[·] = bivariate cumulative normal distribution function.

As ∂CS
∂V

< 0 and ∂P
∂V

< 0, hedge ratios implied by the theory predict a positive

relationship between changes in option values and bond credit spread changes (∂CS
∂P

>

0).

IV Sample Selection and Data Construction

We obtain our data on U.S. dollar-denominated CDS spreads from Bloomberg. Our

sample consists of monthly observations from August 2001 to December 2021. The

information about CDS spreads is extracted using five-year maturity contracts (as

they are the most actively traded) on senior unsecured debt. We start with an initial

sample of 1,476 corporate reference entities with CDS contracts traded. From these,

we were able to identify 503 North American firms with available Standard & Poor’s

credit rating, having at least 24 months of CDS spreads as well as equity market

data (stock prices, trading volumes and outstanding number of shares adjusted for

stock dividends and splits) in the Center for Research on Security Prices (CRSP)

database based on their Committee on Uniform Security Identification Procedures
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(CUSIP) number. After removing firms with no accounting data on company debt

from Compustat, we are left with 379 firms.

Using the CUSIP identifier, we match CDS data with option data from

OptionMetrics using the Security file, the Security Price file, the Distribution file

and the Option Price file all available in the database. As we want to focus on highly

liquid contracts, we select put options with short maturities that either expire the next

month or two months after the trading date. Then we use the selected put contract to

create a monthly time series of option returns matched with the monthly time series

of CDS spread changes. In particular, the options are purchased the first day after

the expiration of the previous month’s option which is usually on the next Monday

following the third Friday of each month. We get information about the following

characteristics of the put options: strike price, maturity, moneyness, open interest,

traded volume, implied volatility and delta.

We follow previous papers (Goyal and Saretto, 2009) and apply the following filters

to the option data: the bid price is positive and strictly smaller than the ask price,

the traded volume and the open interest are both positive and the bid-ask spread is

lower than the minimum tick size (which is equal to $0.05 for options trading below

$3 and $0.10 in any other case). We also eliminate prices violating arbitrage bounds.

To construct our time series of options we need to choose only one put option contract

among all those traded on the day when we purchase the option. In selecting the

options, we prefer those with a 2-month maturity (rather than the 1-month contracts)

in order to avoid the use of holding-to-maturity option returns that have been shown

to be affected by biases at expiration (Ni et al., 2005).9 Whenever a 2-month maturity

9Selecting 2-month maturity options to compute 1-month holding-period returns also allows us
to mitigate the incidence of many repeated values of -100% returns that particularly affect OTM
expirations.
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option that meets our filtering criteria is not available in a given month, we select a

1-month contract that does meet the same criteria. Given the established link between

CDS contracts and OTM put options (Carr and Wu, 2011), we build a monthly time

series of put options which are, on average, OTM.10 We start by selecting put options

with moneyness (defined as the ratio of strike to stock price) lower than 0.90. In

the eventuality that no option is traded on a given day with such moneyness levels,

we replace it with an option with moneyness lower than 0.925. If there is still no

option available, we select one with moneyness lower than 0.95. If there are no options

available with this moneyness level, we select one with moneyness lower than 0.975.

If still we cannot find options, we select one put option with moneyness lower than 1.

This algorithm allows us to create, for each firm in our sample, a continuous monthly

time series of option returns based on a sample of put options which are, on average,

OTM.

Hence, each month, we select one put option with the highest open interest that

meets all the above characteristics. After applying the previous option filters, we lose

10Our focus on short-maturity OTM puts also mitigates any issue related to the possibility of
early exercise (Barraclough and Whaley, 2012). For these contracts, both the probability of early
exercise and the forgone net interest income from failure to exercise before the expiration would be
smaller. Furthermore, the main parameter in our analysis that could be affected by early exercise
of put options is the firm’s asset volatility, which depends on the option-implied volatility. The fact
that this is computed by OptionMetrics using binomial trees that account for dividend payments,
also alleviates our concerns on this issue. While there are other papers that did not directly address
the early exercise issue of put options (Hu and Jacobs, 2020; Goyal and Saretto, 2009), the papers
that attempted to deal with it have found that adjusting for early exercise has minor empirical
consequences (Broadie et al., 2007; Boyer and Vorkink, 2014).
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an additional 149 firms, leaving us with a final sample of 230 firms.11 Given that the

traded equity option contracts are American while our theoretical hedge ratios are

derived for European options, we convert American option prices into European prices

by following the procedure adopted by Trolle and Schwartz (2009).

From Table 1 we can observe that most firms in our final sample are rated BBB

(118 firms) and A (70 firms). The remaining firms are AAA-rated (only 1 firm),

AA-rated (10 firms), BB-rated (26) and B-rated (5 firms).12 Credit ratings are from

Bloomberg and are based on the Standard & Poor’s credit rating agency. In order to

assign credit ratings to each firm, we transform them into numerical values, take an

average over the period for which CDS and put option data is available and convert the

number back into a rating.13 Table 1 also reports summary statistics on our sample of

put options. The mean maturity and moneyness of the put contracts are 43 calendar

11Our final sample of 230 firms over 20 years compares favorably with other studies that have jointly
analyzed CDS and equity options: for example, Kuehn et al. (2017) and Berndt and Ostrovnaya (2014)
use data on 106 and 144 firms for a much shorter sample period, respectively. Carr and Wu (2010)
collect data for 8 reference firms during a 4-year period while Carr and Wu (2011)’s sample includes
121 firms for a period of three and a half years. Differently from ours, the latter study focuses on
deep OTM puts and long maturity contracts (with a time-to-maturity of at least 360 days) in order to
minimize the maturity mismatch with the corresponding CDS contract. This comes at the expense
of liquidity as the authors are not able to observe a continuous time series of put prices for most
of the 121 firms in their sample (the average number of firms they can observe each week is 28).
Furthermore, the maturity mismatch between puts and CDS is not really a concern for our empirical
analysis as the compound option model we use allows for the existence of a mismatch between a
shorter maturity put option and a longer debt maturity that we set equal to the maturity of the CDS
contract.

12The subsample of firms rated AAA-AA is very small. This is due to (1) our definition of the
rating portfolios which relies on the average rating of the issuer over the sample period and (2) the
application of the option filtering criteria required to produce a homogeneous sample of put options.
Previous papers on the hedging performance of Merton (1974)’s model have instead used stocks that
do not undergo a similar strict filtering procedure as options and define rating portfolios based on
the first date when a bond is present in the data set (Schaefer and Strebulaev, 2008; Huang and Shi,
2021), based on the last available rating (Huang et al., 2020) or based, as we do, on the average rating
over time (Che and Kapadia, 2012). Despite these differences, our sample size compares favorably
with studies that also used CDS data: for instance, Huang et al. (2020) have a total of 93 firms (7 of
which rated AAA-AA), while Che and Kapadia (2012) use a sample of 207 firms with 33 firms rated
A or higher.

13The main empirical findings of this paper are based on the use of average ratings. However, as
a robustness, we repeat the empirical analysis using the rating available at the end of the sample
period for each firm and obtain very similar results. These results are available on request from the
authors.
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days and 0.946, respectively. The mean delta and open interest are -0.30 and 4,135,

respectively. The mean open interest varies considerably across rating categories: it is

the highest for the best-rated firms (and equal to 9,036) and the lowest for BBB-rated

firms (equal to 2,691).

We compute monthly put option returns by dividing the change in option price (or

the difference between the option payoff at maturity and the option price if a 1-month

contract is selected in a given month) by the option price on the trading date. To

mitigate the influence of outliers in the regressions, we winsorize CDS spread changes

at the 1% and 99% levels and put returns at the 99% level.

Table 2 describes the main summary statistics for both CDS and option data in

Panel A and B, respectively. The average CDS spread change for the entire portfolio of

firms is negative and ranges from about zero basis points for the AAA-AA companies

to -4.718 basis points for BB-rated and B-rated companies. The standard deviation of

CDS spread changes is 12.6 basis points for the whole sample of firms and increases

as the credit rating deteriorates. The probability distribution of CDS spread changes

is non-normal as shown by the positive values of skewness and high levels of kurtosis.

Similar to CDS spread changes, mean put option returns are negative and range from

about -24% for the highest-rated firms to -17% for worst-rated firms. Similar to

CDS spread changes, option returns are also positively skewed with positive kurtosis

confirming that option returns are highly non-normal. The average returns’ patterns

of put options in our study are in line with the work by Hu and Jacobs (2020) who

find a strong positive relationship between average put option returns and underlying

volatility.

Previous papers have shown that OTM put option prices can be affected by
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liquidity conditions, customer demand and intermediary constraints (Gârleanu et al.,

2009; Chen et al., 2019). Similarly, CDS spreads can be affected by illiquidity of the

underlying bonds (Chen et al., 2018). These liquidity effects could affect the hedging

performance of put options for CDS portfolios. For these reasons, we also compute

some liquidity measures for both the CDS and put options used in our sample. In

particular, we report summary statistics on the bid-ask spreads (computed as the

ratio of the difference between the ask and bid quotes to the midpoint of the bid and

ask quotes), the CDS-bond basis (defined as the CDS spread minus the spread of the

underlying bond over the risk-free rate)14 and the put option excess implied volatility

computed similar to Gârleanu et al. (2009) by taking the difference between the put

implied volatility and the GARCH(1,1) expected volatility estimated from five years

of daily underlying stock returns leading up to the option trading date. Table 2 shows

that lower-rated firms have narrower mean CDS bid-ask spreads but a wider CDS-bond

basis consistent with Acharya and Johnson (2007) and Bai and Collin-Dufresne (2019),

respectively. Put options of lower-rated firms are less liquid than higher-rated firms as

shown by higher mean bid-ask spreads and are affected by a more negative net demand

as proxied by the excess implied volatility. This demand patterns are consistent with

those described by Gârleanu et al. (2009) according to which equity options do not

appear expensive on average like index options.

14We match the bond yield to the 5-year CDS maturity by interpolating the 5-year maturity
whenever sufficient bond data from Refinitiv Eikon is available in a given month for each issuer. We
use the 5-year Treasury zero rates as a proxy for the risk-free rate.
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V Empirical Analysis

This section includes the main empirical results of this paper. We compare the

empirical sensitivities of CDS spreads to put option values with the sensitivities implied

by the structural models of Merton (1974) and Geske (1979). We also analyze hedging

of CDS spread changes with equities. The hedging effectiveness of both empirical as

well as model hedge ratios are assessed. Finally, we examine the incremental role of

options over equities and the relationship between informed trading proxies and the

hedging error gap between stocks and options.

A. Contingent Claims Approach and Sensitivities of Debt to

Equity Options

A.1 Empirical Sensitivities of Credit Spreads to Put Options

We start by estimating the sensitivity of CDS spreads to changes in the value of the

firm by regressing, for each firm j, CDS spread changes (∆CDSj,t) on the returns on

options on stocks issued by the firm (retoptionj,t
). Similar to Schaefer and Strebulaev

(2008), our regressions also control for changes in the riskless interest rate by including

the change in the 10-year constant maturity Treasury bond rate (∆r10t ). In particular,

we estimate the following time-series regression model for each firm in our sample:

∆CDSj,t = αj + βj,Oretoptionj,t
+ βj,r∆r10t + ϵj,t (3)

Panel A of Table 5 reports average estimated coefficients and their t-statistics,

which are computed in the same way as in Schaefer and Strebulaev (2008). These

t-statistics account for the cross-sectional variation in the time-series regression
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coefficient estimates and correct for potential correlations between estimates of hedge

ratios for different issuers. The estimated coefficients on option returns and the change

in the riskless rate are highly significant for the whole sample and for all rating

categories. Interestingly, the estimated coefficients for both explanatory variables

become larger for lower credit rating categories. These results are economically

significant: focusing on the whole sample of firms, a 1% increase in the riskless rate

reduces CDS spreads by 12 basis points, whereas a 100% increase in option returns

increases CDS spreads by about 5 basis points. The two factors explain approximately

16% of the variation in the spreads, with higher adjusted R2 for the lowest-rated firms.

The negative correlation between CDS spreads and the risk-free rate is in line with

the findings by Ericsson et al. (2009) and Longstaff and Schwartz (1995).

A.2 Analysing Theoretical Hedge Ratios

In order to study the ability of structural models to provide good predictions of hedge

ratios, we estimate the following regression model:

∆CDSj,t = αj + αj,OhrPj,t
retoptionj,t

+ βj,r∆r10t + ϵj,t (4)

where hrPjt
is the theoretical hedge ratio for firm j at time t that we defined in Equation

(2). If the combined models of Merton (1974) and Geske (1979) were accurate, αj,O

would not be statistically different from one. Before estimating the regression model

in Equation (4), a number of parameters have to be estimated for each firm including:

the market leverage (D/V ), the asset volatility (σV ), the time-to-maturity of the debt

(τ), the time-to-maturity of the put option (τ1), the strike price of the option (K) and

the risk-free rate of interest (r).
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We estimate D/V by taking the ratio of the book value of debt (the sum of

Compustat quarterly items for long-term debt and debt in current liabilities)15 to

the market value of assets (the product between the number of shares outstanding

and the stock price taken from CRSP plus the book value of debt). The Compustat

data refer to the most recent quarterly accounting report, whereas the CRSP data are

obtained on the observation date.

As our main objective is to assess the ability of both Merton (1974)’s and Geske

(1979)’s models to generate accurate sensitivities of credit spreads to put option values,

we need to take special care to avoid that our results are somehow contaminated by the

fact that we use these same models to estimate the main inputs required to determine

the theoretical hedge ratios. For example, because these sensitivities also depend

on the estimated asset volatility, we are careful not to use any of these models for

the purpose of generating the asset volatility input. Instead, we follow a model-free

approach similar to Schaefer and Strebulaev (2008) that captures debt risk as well

as the covariation between equity and debt. Specifically, we compute a firm’s asset

volatility from the following formula:

σ2
Vj,t

=

(
1−

Dj,t

Vj,t

)2

σ2
Ej,t

+

(
Dj,t

Vj,t

)2

σ2
Dj,t

+ 2

(
Dj,t

Vj,t

)(
1−

Dj,t

Vj,t

)
σEDj,t

(5)

where σEj,t
and σDj,t

represent the time t volatility of firm j ’s equity and debt returns,

respectively. σEDj,t
is the time t covariance between the returns on firm j ’s debt and

equity.

In our main analysis, we use the option-implied volatility (provided by Option-

Metrics) as a proxy for the equity volatility because it has been shown to dominate

15We use items 45 and 51 for debt in current liabilities and long-term debt, respectively.
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its historical counterpart in explaining bond yield spreads and CDS spreads (Cremers

et al., 2008a; Cao et al., 2010). In order to estimate the debt return volatility, we

collect, for each firm, the following bond data from Refinitiv Eikon: dealer quotes,

outstanding amounts, coupon and accrued interest. In order to mitigate the effect of

stale prices, we use end-of-month quotes and compute debt returns by value-weighting

individual bond returns, where the market values of bonds are determined using bond

quoted prices and the face values of bond amounts (Choi, 2013; Choi and Richardson,

2016).16 We first calculate the time-series volatility of debt returns for each firm if at

least 15 monthly observations are available. We then average these volatilities across

all firms with the same credit rating, so that the volatility of firm j ’s debt at month

t is equal to the average volatility for the rating category of firm j. The covariance

between equity and debt returns, σEDj,t
, is estimated in a similar way to σDj,t

.

We use 5-year as the time-to-maturity of the debt as this is the most liquid segment

of the term structure of CDS spreads and the most widely used in previous empirical

studies on CDS. The time-to-maturity of the option is either 1-month or 2-month

depending on the traded option contract selected in a given month. The strike price

of the option is that of the put contract selected each month and is needed to estimate

V̄ which is a required input in Equation (2). We use historical Treasury zero yields

with a time to maturity of 5 years as a proxy for the risk-free rate of interest.

Table 3 reports estimates of leverage ratios, volatilities and other firm character-

16We apply the following filtering criteria when collecting bond data: only SEC-registered dollar-
denominated and fixed-coupon issues are included; issues with total notional amount less than $10
million are excluded and bonds with option-like features and floating-rate coupons are also removed.
We then calculate individual bond returns between months t-1 and t as follows:

rt =
Pt +AIt + It × C/FR

Pt−1 +AIt−1

− 1

where Pt is the quoted price of each bond at the end of month t, AIt is the accrued interest accumulated
in month t, C is the annual coupon rate and FR is the coupon frequency per year. It is an indicator
variable taking the value of 1 if the coupon is due between t-1 and t, and zero otherwise.
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istics. Equity volatilities (implied from put options) and asset volatilities increase for

lower-rated firms. The relatively higher value of leverage for the A-rated portfolio

(relative to BBB firms) reflects the effect of including financial firms in our sample.17

Lower-rated firms have generally lower market capitalization, higher stock turnover

and higher book-to-market ratios.18 These patterns are consistent with those shown

by Schaefer and Strebulaev (2008) and Bao and Hou (2017).

Panel A of Table 4 shows summary statistics for estimated hedge ratios based on

Equation (2) using option-implied volatility (hrP (σ
A
IMP )) as an input for the estimation

of a firm’s asset volatility (computed as from Equation (5)). Hedge ratios increase

monotonically as the credit rating declines from about 0.3 basis points for AAA-

AA category to 8.6 basis points for the BB-B category. A time-series plot of these

hedge ratios is shown in Figure 1a for a portfolio including the whole sample of firms.

From the plot, it can be observed that hedge ratios increase during periods of market

turbulence: for example, they rise to almost 10 basis points around the dotcom bubble

and the stock market crash of August 2011; they reach their highest levels (of over

40 basis points) during the financial crisis of 2007-2009 and the covid outbreak of

March 2020. In Panel B of Table 4 we present summary statistics for hedge ratios

estimated using the option-implied volatility as a proxy for a firm’s asset volatility:

they present the same monotonic pattern but are higher than hedge ratios that are

based on Equation (5) across all rating categories.

17Excluding these financial firms from our sample results in leverage ratios monotonically increasing
as the credit rating deteriorates, which is in line with past studies.

18Book-to-market ratios for each firm are obtained directly from Compustat.

22

Electronic copy available at: https://ssrn.com/abstract=3184004



A.3 Testing Structural Models Predictions of Hedge Ratios

Next we directly test whether the theoretical hedge ratios of bond credit spreads are

consistent with the empirical sensitivities of CDS spreads to equity puts. To this end,

we estimate the regression model in Equation (4) for each firm j using the hedge ratio

based on our estimate of asset volatility, hrP = hrP (σ
A
IMP ). If the structural models

of Merton (1974) and Geske (1979) produce accurate predictions of these sensitivities,

then the estimated coefficient αj,O should not be statistically different from one.

We follow Schaefer and Strebulaev (2008) and use average hedge ratios for each

rating class as an estimate of hrPj,t
in order to mitigate the noise which may affect

the firm-specific estimates of asset volatility. In particular, we start by estimating the

theoretical hedge ratios for each firm j from the asset volatility estimate. We then

compute, for each month, the hedge ratio averaged across firms that are in the same

rating portfolio as firm j.19 This average hedge ratio is used for the regression model

in Equation (4).

Panel B of Table 5 provides the results of the hedge ratio regressions. In the case

of the whole sample, the mean estimate of αj,O is not statistically different from one

(1.02 with t-statistic against unity of 0.24). A more careful examination of the results

reveals that the combined structural models of Merton (1974) and Geske (1979) provide

accurate predictions of put option sensitivity of CDS spreads for all rating categories.

The mean estimate of αj,O varies between 0.94 (for BBB-rated firms) and 1.12 (for

BB-B-rated firms). An interesting observation to make relates to the adjusted R2 of

the regressions. In particular, for the whole sample, they can be up to 5 percentage

points higher than the adjusted R2 obtained for the empirical sensitivity regressions

19Subrating categories are ignored in our analysis. This means that, for example, AA- or AA+
would both be classed as AA. We treat the remaining subratings in a similar manner.
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shown in Panel A of the same table. This increase in explanatory power is attributable

to hedge ratios of A-rated and BBB-rated firms, and is interesting as it is specific

of option sensitivities and less evident when predicting the equity sensitivity using

Merton (1974)’s model as shown below in Section B. and as already documented for

bond returns and bond spread changes by Schaefer and Strebulaev (2008) and Huang

and Shi (2021). This difference suggests that nonlinearities play a more significant

role when put options are used in place of equities to hedge credit exposures, and

capturing these nonlinearities produces an increase in the explanatory power for CDS

spread changes. More than for stocks, this pattern also reveals the importance of

using appropriate models that are able to capture these nonlinearities. Geske (1979)’s

model (combined with the Merton model) is able to achieve this by introducing leverage

effects that produce a stochastic volatility process for the return on the firm’s stock

and, in turn, affect the price of the put option on the stock.

B. Hedging Credit with Stocks

Past papers have investigated the ability of Merton (1974)’s model to generate accurate

sensitivities of corporate bond returns to equity (Schaefer and Strebulaev, 2008),

corporate bond credit spread changes to equity (Huang and Shi, 2021) or CDS spread

changes to equity (Che and Kapadia, 2012; Huang et al., 2020). We carry out a

similar analysis using our sample of CDS firms. We start by defining the model hedge

ratios (hrS) exploiting the dependence of debt to the firm value V, which is the only

stochastic variable in Merton (1974):
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hrS =
∂CS

∂E
E = −1

τ

ϕ[h2(d,σ
2
V τ)]

V σV

√
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+ 1

De
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2
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2
V τ)]
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√
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)

Φ[h2(d, σ
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V τ)] +

1
d
Φ[h1(d, σ

2
V τ)]

1

Φ[h1(d, σ
2
V τ)]

E (6)

where all variables are as previously defined and derivation details can be found in

Appendix B. The parameters required to estimate these hedge ratios are the same as

those discussed in Section V.A.2 .

Empirical sensitivities of CDS spreads to stock returns are computed using the same

approach adopted in Section V.A.1 . Panel A of Table 6 reports average coefficient

estimates (and their t-statistics) from time-series regressions of CDS spread changes

on a constant, stock returns and changes in the riskless interest rate. We find that

the coefficients on both stock returns and the riskless rate are highly significant for

the whole sample and for each rating category. In particular, for the whole sample,

a 1% increase in stock returns decreases CDS spreads by almost 1 basis point. The

magnitude of this negative relationship increases as the company rating deteriorates.

Similarly, a 1% increase in the risk-free rate produces a reduction in CDS spreads of

about 12 basis points and the impact of this effect is greater for lower-rated firms.

We use Equation (6) to compute the sensitivity of CDS spread changes to changes

in the value of a firm’s equity. We then test the accuracy of these sensitivities based

on Merton (1974) by running the following regression model:

∆CDSj,t = αj + αj,ShrSs,t
(σA

IMP )retstockj,t + βj,r∆r10t + ϵj,t (7)

where retstockj,t and hrSs,t
are the stock log-return (in percentage) and the mean

theoretical hedge ratio for all firms in rating s at time t, respectively.
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If Merton (1974)’s model hedge ratios are accurate, we would expect to estimate a

value of αj,S not statistically different from one.

Panel B of Table 6 shows that the estimated coefficient αj,S is not statistically

different from one for the whole sample as well as for each rating group. The alignment

between the empirical sensitivities and those based on Merton (1974) is also confirmed

by similar adjusted R2 values obtained from the regression models in both Panel A

and B of the table, with the exception of the lowest-rated firms for which empirical

regressions show a much higher adjusted R2.

Our findings confirm for our sample of firms that Merton (1974)’s model is able

to generate accurate predictions of the debt-to-equity sensitivity in line with previous

studies (Schaefer and Strebulaev, 2008; Che and Kapadia, 2012; Huang et al., 2020;

Huang and Shi, 2021).

C. Hedging Effectiveness

The significant increase in explanatory power for CDS spread changes attributable to

the option model hedge ratios and not similarly observed for stock model hedge ratios

(as documented from the adjusted R2 in Table 5 and 6) prompts us to investigate

further whether the hedging effectiveness of a short position in a portfolio of CDS

contracts improves when the replicating portfolio is constructed using the option model

hedge ratios rather than the stock model hedge ratios.

In order to perform this analysis, we assume that the main aim of a CDS dealer is

to minimize the monthly volatility of a hedged short CDS portfolio position including

N reference entities. Each of the N contracts is for a notional amount of $10 million

and is hedged with δj,t put option contracts. We compute the mean portfolio hedging
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error (et) on each month t as follows:

et =
1

N

N∑
j=1

[−(CV (CDSj,t+1)− CV (CDSj,t)) + δj,t∆Poptionj,t+1
], (8)

where δj,t represents the number of put option contracts on firm j ’s stock which are

required to hedge a short position in one CDS contract at time t,20 CV (CDSj,t) is the

mark-to-market value of the CDS contract and ∆Poptionj,t+1
is the change in option

price (or the difference between the option payoff at maturity and the option price on

the trading date if a 1-month contract is selected in a given month). If CDS contracts

are hedged using stocks instead of options, in Equation (8) we replace ∆Poptionj,t+1

with retstockj,t+1
(the net stock return on firm j over period t+1) and δj,t would instead

represent the dollar amount of equity of firm j required to hedge a short position in

one CDS contract at time t.21 Once the trading positions are opened each month, we

do not rebalance them until the next-month expiration date.22

The two main challenges we now face relate to the computation of both CV (CDSj,t)

and δj,t. The former requires the use of a CDS pricing model. The latter is complicated

by the fact that our theoretical hedge ratios (as well as the empirical hedge ratios) are

expressed in basis points. Hence, they cannot directly tell us the number of options

or shares of the stock required for hedging a short CDS position.

We address the first challenge by using the ISDA CDS standard model that can

be implemented on Bloomberg’s ‘CDSW’ function. We use this model to compute the

20Clearly, in case of no hedging, we have that δj,t = 0.
21The value of δj,t is computed either from empirically observed sensitivities or from the structural

models using Equation (2) for options or Equation (6) for stocks.
22Our choice of a monthly rebalancing frequency is the result of a trade-off between hedging

accuracy and trading costs. In particular, Boyer and Vorkink (2014) show that average option bid-ask
spreads are wide and are especially so for short-term OTM options providing investors with substantial
skewness. As wide bid-ask spreads would make the hedging strategy overly expensive, we refrain from
implementing it using higher rebalancing frequencies.
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CDS duration (D) which we define as the average change in the mark-to-market value

for a plus/minus 1 basis point change in the CDS spread:23

Dj,t =
1

2
[|CV (CDSj,t + 1)− CV (CDSj,t)|+ |CV (CDSj,t)− CV (CDSj,t − 1)|]. (9)

According to this pricing model, a change in the value of the CDS contract will depend

on the current level of the spread. For each CDS portfolio and each month, we then

compute the mark-to-market value of the CDS portfolio by multiplying the average

CDS spread by the average duration of the portfolio.

We use the duration of a CDS contract also to deal with our second challenge.

In particular, we compute the total dollar amount to be invested in put options (or

of stock shares to be shorted) by multiplying the model (or empirical) hedge ratio

(expressed in basis points) by the CDS duration computed as in Equation (9). In the

case of puts, we can obtain the total number of put options to buy (δj,t) by simply

dividing this total dollar amount by the put option price.24

We finally examine the magnitude of hedging errors by computing the root mean

square error (RMSE) as follows:

RMSE =

√√√√ 1

T

T∑
t=1

e2t , (10)

where T is the number of months for which hedging errors can be computed.

Table 7 reports the RMSE of the monthly hedging errors for the unhedged case,

23More detailed information on the ISDA pricing model (including documentation and source code)
can be found at www.cdsmodel.com. The same model has been previously used in a similar way by
Kapadia and Pu (2012), Che and Kapadia (2012) and Huang et al. (2020) to study Merton (1974)’s
hedge ratios of CDS spreads to equity.

24The average duration for our sample of firms is 4,699. The average durations for each rating
categories are 4,890, 4781, 4,675 and 4,378 for AAA-AA, A, BBB, and BB-B, respectively.
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hedging using theoretical hedge ratios based on stocks (Model-S) and put options

(Model-P) and hedging using empirical sensitivities based on stocks (Empirical-S) and

put options (Empirical-P). Panel A is based on the whole sample period, whereas

Panel B produces out-of-sample empirical hedge ratios using time-varying estimated

coefficients βj,O from the regression model in Equation (3), where option returns are

replaced with stock returns for the case of equity hedging. Time variation in coefficient

estimates is obtained by estimating the regression model each month using a rolling

window of four years of monthly data.25

The first interesting thing to notice is that hedging credit risk with both put options

or stocks allows to reduce the RMSE of the CDS portfolio. Secondly, option model

hedge ratios are more effective than equity model hedge ratios at reducing hedging

errors: in particular, for the entire portfolio of firms, RMSE values are 19% (14%) lower

than the unhedged case if put options (equities) are used for hedging credit exposures.

Hence, option-based hedging allows a further 5% reduction in RMSE relative to equity-

based hedging. Thirdly, empirical hedge ratios based on either equity or options

generally produce a similar reduction in RMSE values of about 25% even though

for the lowest rating portfolios, equity-based hedging can reduce RMSE values up to

a further 10% relative to option-based hedging. These findings are confirmed for both

the in-sample (Panel A) and out-of-sample (Panel B) analysis.

Our baseline results rely on short-dated options and longer-term 5-year CDS

contracts. One may wonder whether potential longer-term factors affecting CDS

spread changes could distort their relationship with put option returns. We investigate

this possibility in Panel C of Table 7 where we reduce the gap in maturities between

25By creating time variation in the empirical hedge ratios, we insure a fair race between the latter
and the model hedge ratios that are time-varying by construction. The results in Panel A of Table 7
are instead based on fixed empirical hedge ratios that are constant throughout the sample period.
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CDS contracts and put options by using a sample of longer-dated options. Overall, the

results on the hedging effectiveness are consistent with those based on the short-dated

options but show a better performance of option model hedge ratios as well as empirical

stock hedge ratios, suggesting that nonlinearities of option hedging can be better

captured by using the models rather than empirical regressions.

D. Do Options Have Incremental Explanatory Power for CDS

Spread Changes?

Option valuation models are derived under assumptions that render options redundant

securities. However, a number of empirical studies have shown that option trading

affects returns and the volatility of the underlying stocks highlighting that options

are not merely redundant assets (Conrad, 1989; Skinner, 1989). Furthermore, the

empirical results discussed in previous sections suggest that there might be something

unique about the equity option market that makes it particularly suitable to learn

about credit risk on top of equity prices.

In order to disentangle the incremental information content of options relative to

stocks, we estimate the following time-series regression for each firm j :

ϵj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ vj,t (11)

where ϵj,t are the residuals from Equation (7) that are orthogonal to the returns on

the issuing firm’s equity, retoptionj,t
are the put option returns and hrPs,t

are the mean

theoretical hedge ratios at time t for all reference entities in rating s. We employ three

different specifications of this regression model: one which assumes constant hedge
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ratios (hrPs,t
= 1), a second specification which captures time variation in hedge ratios

(hrPs,t
= hrPs,t

) as defined in Equation (2) and a final specification which uses the

option-only component of the theoretical hedge ratios (hrPs,t
= hrPs,t

− ∂CS
∂V

∂V
∂E

) as

the explanatory variable of the regression model. The latter test is made possible

because the theoretical hedge ratios we defined in Equation (1)-(2) allow us to isolate

the option hedging component from the equity hedging component.26

Panel A of Table 8 shows the estimated coefficients, their corresponding t-statistics

and the adjusted R-squared values from the regressions estimated for our sample of

firms. We can clearly notice that, for all specifications, the option returns are highly

significant and the adjusted R2 values suggest that the option market is able to explain

up to an additional 5% of the variations in CDS spread changes that the stock market

is unable to explain. Furthermore, the option-only component of the theoretical hedge

ratios, that is the product between the reciprocal of the put option delta implied

by the compound option model of Geske (1979) and the model-based option price,

accounts for the entire additional explanatory power (of 2%) of the model hedge

ratios.27 In order to further understand the sources of this additional explanatory

power attributable to the option market, we augment the regression model in Equation

(11) with the following credit-related and non-credit-related variables as suggested by

previous studies (Collin-Dufresne et al., 2001; Schaefer and Strebulaev, 2008): the

26It can be shown that the theoretical hedge ratios in Equation (2) can also be computed as the
product of three partial derivatives (∂CS

∂V
∂V
∂E

∂E
∂P ) after inverting Equation (A.3) of Appendix A for

V (P ) and substituting this into Equation (B.2) of Appendix B. As such, they incorporate the first two
partial derivatives used to compute the equity hedge ratios (as defined in Equation (6)). Hence, by
simply taking the difference between the total hedge ratios from Equation (2) and the product of the
first two partial derivatives (∂CS

∂V
∂V
∂E ), we can retrieve the option-only component of the theoretical

hedge ratios (or the reciprocal of the stock-option hedge ratio multiplied by the model put price).
27In unreported results, we also estimated a multivariate model including both stock returns and

option returns (together with the change in the riskless rate) to explain CDS spread changes and
found that the adjusted R-squared values increase by a few percentage points relative to regression
specifications which separately consider option and stock hedge ratios. These results confirm that
options reflect credit-related information that is additional to that contained in equity prices.
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change in the bond market illiquidity measure of Hu et al. (2013) (∆NOISE), the

Fama-French Small minus Big (SMB) and High Minus Low (HML) factors, the

change in Moody’s BAA-AAA yield spread (∆DEF ), the change in the difference

between the 3-month LIBOR rate and the 3-month Treasury bill rate (∆TED), the

change in the difference between the 3-month LIBOR rate and the 3-month overnight

index swap rate (∆LIBOR − OIS), the return on the S&P 500 index (S&P ), the

change in the VIX index of implied volatility of options on the S&P 100 index

(∆V IX), the change in the slope of the term structure (∆Slope), the change in

the difference between the 3-month repo rate and the 3-month Treasury bill rate

(∆REPO− TBILL), the return on an equally-weighted stock index of prime dealers

identified by a list compiled by the Federal Reserve Bank of New York (PBI). Panel B

of Table 8 shows that option returns become insignificant in bivariate regressions when

∆DEF , S&P and ∆V IX are included. When all these variables are added together

(as shown in the last column of Panel B) in a multivariate regression, they remain

significant while the option returns flip sign.28 We then conclude that considering

options in addition to equities when hedging credit risk allows us to learn more about

credit risk by capturing additional structural factors that can be used to enhance

the risk management of credit exposures. This finding may also provide further

evidence that capturing stochastic asset volatility is important consistent with Huang

and Huang (2012), Du et al. (2019) and Kita and Tortorice (2021).

28We obtain similar results if we replace hrPs,t
= hrPs,t

with hrPs,t
= hrPs,t

− ∂CS
∂V

∂V
∂E in Equation

(11).
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E. Economic Reasoning for the Use of Options vs. Stocks

As discussed in the introduction, one of the reasons for choosing to hedge credit

exposures with options (rather than stocks) relates to the possibility that informed

traders may prefer to trade first in the option market if sufficiently liquid (Easley

et al., 1998) and depending on the size of noise trading present in this market relative

to the equity market (An et al., 2014). In this eventuality, option prices would provide

additional information that is not yet reflected in stock prices and may improve hedging

effectiveness. In order to test this prediction, we compute two measures that have been

related to informed trading activity in the option market, namely the volatility spread

(VSpread) and the volatility smirk or skew (VSkew) investigated by Cremers and

Weinbaum (2010) and Xing et al. (2010), respectively. We compute these variables

following Andreou et al. (2023): in particular, VSpread is computed as the difference

in at-the-money (ATM) implied volatilities between a call and a put option with 30

days to maturity and an absolute value of delta equal to 0.50. VSkew is computed as

the difference between the implied volatility of a put option with 30 days to maturity

and a delta of -0.20 and the ATM implied volatility, where the latter is computed as

the average implied volatility of a call and a put option with an absolute value of delta

equal to 0.50 and 30 days to maturity. The data used to compute the two measures

are based on the Volatility Surface file from OptionMetrics.

Each month we compute a cross-sectional average of these variables and, from

the resulting time series, then use the changes in these variables to predict next

month’s hedging error gap between the stock and option market. We define the

hedging error gap as the difference in the absolute values between stock hedging

errors and option hedging errors, where hedging errors are defined in two alternative
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ways. First, we compute them as the absolute value of the difference between

empirical hedge ratios (hrSs,t,EMP
for stocks and hrPs,t,EMP

for puts) and theoretical

hedge ratios (hrSs,t,MODEL
for stocks and hrPs,t,MODEL

for puts). Second, we compute

them as the absolute value of the difference between the empirical and model

hedging errors according to Equation (8), namely |eSt,EMP
− eSt,MODEL

| for stocks

and |ePt,EMP
− ePt,MODEL

| for puts. Furthermore, the hedging errors are computed

in an out-of-sample fashion where empirical hedge ratios are based on estimated

coefficients from monthly rolling regressions using a rolling window of four years of

monthly data. Hence, based on these alternative definitions of hedging errors, the

hedging error gap (representing the dependent variable of the time-series predictive

regression) is defined either as |hrSs,t,EMP
−hrSs,t,MODEL

|− |hrPs,t,EMP
−hrPs,t,MODEL

| or

|eSt,EMP
− eSt,MODEL

| − |ePt,EMP
− ePt,MODEL

|.

Figure 1b shows the time-series pattern of the hedging error gap. While on average

the gap is very close to zero (its sample median is only $61), it becomes very negative

(of at least $70,000) around the Lehman collapse in October 2008, the stock market

crash of August 2011 and the covid outbreak of March 2020. The highest gap level

of almost $73,000 occurs on the month following the covid outbreak. The time-series

regression estimates are reported in Table 9 and show that skew changes predict an

increase in hedging errors between stocks and options, regardless of the way hedging

errors are computed. For instance, from Panel A, a 1% increase in skew increases

by about 3 basis points the gap in hedge ratio difference between stocks and options.

Similarly, from Panel B, a 1% increase in skew increases by almost $2,000 the gap

in hedging errors’ difference between stocks and options. Changes in the volatility

spread are significant for the full sample of firms at the 10% level if hedging errors
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are computed as from Equation (8). The predictive power derives from the largest

portfolios, namely the A-rated and BBB-rated firms.29

Next, we repeat the hedging effectiveness analysis implementing market timing

strategies based on the changes in informed trading proxies. In particular, we buy

(short) puts (stocks) if volatility skew or volatility spread changes in a given month

are higher (lower) than their mean change up to that month. Comparing Panel B of

Table 7 with Panels A and C of Table 10 shows that, based on the use of model hedge

ratios, the RMSE values of this timing strategy are reduced by a further 4-5% relative

to a strategy that shorts stocks each month to hedge CDS spread changes regardless of

the informed trading environment. The same strategy would generate similar RMSE

values to a strategy that buys puts each month to hedge CDS spread changes. If we

instead use empirical hedge ratios to implement the same strategies, we would obtain

reduced RMSE values of about 3% relative to a strategy that either buys puts or shorts

stocks each month of the sample period.

We also implement an alternative market timing strategy that buys (shorts) puts

(stocks) when volatility skew or volatility spread changes in a given month are above

(below) their 75th (25th) percentile using information up to that month. Otherwise, for

volatility skew or volatility spread changes that lie between the percentiles, the CDS

portfolio is hedged by investing both in puts and stocks using constant 50% weights.

Comparing again Panel B of Table 7 with Panels B and D of Table 10, in addition

to improvements in the performance of empirical hedge ratios, we also obtain slightly

better results in model hedging when using skew changes for market timing relative

29We also estimated a multivariate regression to control for additional factors that could affect the
hedging error gap including the S&P 500 returns, the change in the default spread, the excess implied
volatility and the change in VIX. While no major differences are observed on the predictive power
of the volatility spread, unreported results show that the skew change is the most powerful predictor
together with the VIX change with significant estimates at the 1% and 5% level, respectively.
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to strategies that either buy puts or short stocks on each month of the sample period.

While the results in Table 7 are based on 100% investments in either puts or

stocks, the last three panels of Table 10 explore combined portfolios of stocks and

puts using constant weights in each month of the sample period: we can observe that

increasing the option weight in the combined portfolio delivers a reduction in RMSE

values particularly if model hedge ratios are used. In other words, increasing the stock

weight is detrimental to the performance of model hedge ratios. However, we instead

observe reductions in RMSE values when adding stocks to the portfolio based on the

market timing strategies relying on skew changes: for instance, the strategy used in

Panel B of Table 10 would use stocks to hedge CDS exposures 72% of the months in the

out-of-sample period (using a weight of either 100% or 50%). This finding suggests that

the volatility smirk can be used to hedge credit exposures more effectively capturing

valuable informed trading information. Also, in line with the predictive regressions

results, the largest improvements in hedging effectiveness are observed for the largest

portfolios, namely A-rated and BBB-rated portfolios.

VI Robustness Checks and Further Analyses

This section provides a brief description of the robustness checks and additional

analyses we performed. The results are discussed in more detail in the Internet

Appendix.

Additional descriptive statistics. Our sample of CDS firms is limited by the

availability of put option data. In Section 1.1 of the Internet Appendix, we provide

summary statistics for an extended sample of CDS firms which confirm similar patterns

to those observed for our final sample of firms matched to option data. We also provide
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summary statistics for the corporate bond sample, the alternative option samples and

informed trading proxies we used in our analysis.

Robustness on hedging errors. In Section 1.2 of the Internet Appendix, we report

additional out-of-sample RMSE estimates of hedging credit based on the use of stocks

and put options using alternative estimation windows. We confirm our main findings

on hedging effectiveness documented in Section V.C. We also provide additional

evidence on the relationship between informed trading and the hedging error gap

between stocks and options, which become much stronger for the volatility skew when

excluding the observations on the Lehman collapse.

Other determinants of credit spreads. In Section 1.3 of the Internet Appendix, we

confirm the importance of some additional determinants of credit spreads documented

by past papers (Collin-Dufresne et al., 2001; Ericsson et al., 2009). Their addition to

our baseline regression model does not affect the role of option returns that remain

highly significant. We also study the differential impact that these other determinants

of credit spreads have on residual CDS changes, that is residuals which are orthogonal

either to the returns on the issuing firm’s equity or put option returns.

Dealing with noise in calibration and estimation. We relied on model-free

calibration choices for the main parameters of the structural models of Merton (1974)

and Geske (1979). In order to mitigate concerns about noisy hedge ratios due to our

“ad-hoc” modelling choices, we confirm our main findings by estimating the models’

parameters consistently using the maximum likelihood estimation (MLE) adopted by

Duan (1994) and Ericsson and Reneby (2005). Furthermore, Broadie et al. (2009)

showed that standard statistical tests that involve option returns are noisy. In order to

alleviate this concern and the effect of nonlinearities of option payoffs on our empirical
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estimates, we use the structural models to simulate monthly CDS spread changes and

option returns. We find that the estimates of hedge ratios obtained from regressing

simulated CDS spread changes on simulated put returns are in line with those obtained

from the regressions based on the original sample of data. We report these additional

results in Section 1.4 of the Internet Appendix.

Default-loss hedging. In Section 1.5 of the Internet Appendix, we compare the

mark-to-market hedging approach with the more standard and applied default-loss

hedging method described in JPMorgan (2006) and based on the theoretical work by

Carr and Wu (2011). We show that these two approaches are substantially different

as the former aims to neutralize losses in market values of a short position in a CDS

contract, while the latter aims to neutralize the loss at default.

The costs of hedging. In Section 1.6 of the Internet Appendix, we analyze hedging

costs of three alternative strategies: stock hedging based on Merton (1974)’s model

hedge ratios, put hedging based on our model hedge ratios combining Merton (1974)

and Geske (1979) and put hedging based on JPMorgan (2006). We show that mark-

to-market put option hedging based on our model hedge ratios represents the cheapest

way of hedging credit exposures.

Excluding financial firms. Our main results are confirmed when we exclude

financial firms from our sample of firms as discussed in Section 1.7 of the Internet

Appendix. This exclusion can be justified by their peculiar capital structure (Adrian

and Shin, 2014) and is consistent with previous studies on the hedging performance

of structural models (Eom et al., 2004; Huang and Huang, 2012; Geske et al., 2016;

Schaefer and Strebulaev, 2008; Huang et al., 2020; Huang and Shi, 2021).

Holding-to-maturity returns. In Section 1.8 of the Internet Appendix, we confirm
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our main results when we use holding-to-maturity returns (rather than holding period

returns) that are typically used by academic studies on options.

VII Conclusion

We introduce novel hedge ratios that determine the sensitivities of corporate bond

credit spreads to put option values by combining the structural credit risk model of

Merton (1974) and the compound option pricing model of Geske (1979). Adopting

two alternative calibration approaches, we show that these sensitivities are generally

consistent with the empirical sensitivities obtained from regressing CDS spread changes

on put option returns. Relative to model-based equity hedge ratios, model-based

option hedge ratios decrease portfolio volatility by a further 5% for our sample of firms.

We also document the ability of the option market to explain an additional 5% of the

variation in the CDS spread changes which is left unexplained by the equity market.

The source of this additional explanatory power is linked to the option-only component

of the hedge ratios, namely the reciprocal of the put option delta (or stock-option

hedge ratio), which is related to aggregate credit factors such as the VIX index and

the default spread. Overall, our findings suggest that the structural credit risk model

of Merton (1974) can be improved in terms of its ability to capture additional credit

exposure if option-specific information is combined with equity-specific information.

We also show that the choice between equity hedging and option hedging of credit risk

exposures can be made effectively based on the changes in the volatility smirk that

are shown to predict the gap in hedging errors between stocks and equity options in

the time series.
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(b) Hedging error gap between stocks and put options

Figure 1: Time series of hedge ratios and hedging error gap

This figure plots average model put option hedge ratios (in basis points) and the gap in hedging errors

(in U.S. dollars) related to hedging a short position in a portfolio of CDS contracts using either stocks

or put options. The top panel shows the time series of average theoretical hedge ratios of credit

spreads to put options computed using Equation (2) for the whole sample of 230 firms. The bottom

panel displays the time series of the hedging error gap defined as the difference in the absolute values

between stock hedging errors and option hedging errors, namely |eSt,EMP
− eSt,MODEL

| − |ePt,EMP
−

ePt,MODEL
|. Stock/put hedging errors are computed according to Equation (8) as the absolute value of

the difference between the empirical and model hedging errors, namely |eSt,EMP
−eSt,MODEL

| for stocks
and |ePt,EMP

− ePt,MODEL
| for puts. The hedging errors are computed in an out-of-sample fashion

where empirical hedge ratios are based on estimated coefficients from monthly rolling regressions using

a rolling window of four years of monthly data. The sample period is from August 2001 to December

2021.
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Table 1: Summary statistics for the final sample of put options

This table reports summary statistics for the final sample of put options obtained from

OptionMetrics during the period August 2001-December 2021. In particular, mean and

median values are reported for option maturity (on the trading date), moneyness (defined as

the ratio of strike to stock price), open interest and delta. The statistics are first computed

for each firm using the time series of each variable and then averaged across firms. Each

firm is assigned a credit rating based on its average rating across years for which both CDS

and option data are available. Nobs is the number of observations.

All AAA-AA A BBB BB-B

No. firms 230 11 70 118 31
Nobs 24,249 1,327 8,332 12,248 2,342
Mean maturity 42.979 48.254 44.908 41.860 41.009
Median maturity 41.715 53.636 46.164 38.894 38.177
Mean moneyness 0.946 0.951 0.946 0.947 0.939
Median moneyness 0.951 0.955 0.952 0.952 0.942
Mean open interest 4,135 9,036 5,696 2,691 4,367
Median open interest 2,541 5,733 3,732 1,546 2,505
Mean delta -0.300 -0.272 -0.284 -0.308 -0.316
Median delta -0.284 -0.260 -0.270 -0.292 -0.293
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Table 2: Summary statistics on monthly returns and liquidity proxies for
CDS and options

This table reports summary statistics on the monthly time series of CDS spread changes

and CDS liquidity proxies (in Panel A), as well as put option returns and option liquidity

proxies (Panel B) for the final sample of firms over the period August 2001-December 2021.

The CDS-bond basis is defined as the difference between the CDS spread and the spread of

the underlying bond over the risk-free rate. The option expensiveness is measured as the

difference between the implied volatility of the put option and the GARCH(1,1) expected

volatility. The bid-ask spreads for both options and CDS are computed as the ratio of the

difference between ask and bid quotes to the midpoint of the bid and ask quotes. The statistics

are given for the time series of the variables of each portfolio after averaging their values

across firms in each month. Each firm is assigned a credit rating based on its average rating

across years for which both CDS and option data are available. Firms is the number of firms

in each portfolio. The statistics for each rating group exclude months for which observations

are not available for at least one of the rating portfolios.

All AAA-AA A BBB BB-B

Panel A: CDS data

CDS spread changes (in basis points)
Mean -0.547 0.032 -0.097 -0.222 -4.718
Standard Deviation 12.627 4.163 8.002 12.428 33.139
Skewness 1.400 2.130 1.305 1.507 0.372
Kurtosis 8.635 16.054 5.865 8.627 1.191
5% Quantile -17.321 -4.499 -11.906 -16.122 -49.065
95% Quantile 18.048 5.237 14.327 18.726 61.223

CDS bid-ask spread
Mean 0.126 0.226 0.138 0.110 0.073
Standard Deviation 0.047 0.122 0.050 0.038 0.026
Skewness 1.163 1.082 0.754 0.914 1.092
Kurtosis 2.187 0.803 -0.126 1.673 0.978
5% Quantile 0.066 0.090 0.077 0.059 0.043
95% Quantile 0.205 0.462 0.235 0.175 0.126

CDS-bond basis (in basis points)
Mean -88.667 -70.060 -71.200 -88.673 -91.614
Standard Deviation 104.515 178.792 94.036 101.814 159.621
Skewness -2.250 -4.130 -2.927 -2.375 -4.147
Kurtosis 4.221 17.623 8.529 5.879 18.805
5% Quantile -374.964 -520.408 -315.044 -312.463 -378.266
95% Quantile -16.370 5.725 -15.741 -17.012 17.896

Panel B: Option data

Option returns
Mean -0.167 -0.234 -0.246 -0.169 -0.169
Standard Deviation 0.950 0.873 0.782 0.765 0.943
Skewness 3.746 2.512 2.559 2.529 2.374
Kurtosis 20.276 7.147 7.595 8.259 6.714
5% Quantile -0.867 -0.950 -0.889 -0.860 -0.914
95% Quantile 1.631 1.599 1.500 1.376 1.993

Option bid-ask spread
Mean 0.133 0.084 0.104 0.161 0.156
Standard Deviation 0.035 0.051 0.037 0.031 0.051
Skewness 0.757 1.400 0.650 0.602 0.836
Kurtosis 5.335 2.442 -0.171 1.250 2.171
5% Quantile 0.077 0.030 0.052 0.117 0.081
95% Quantile 0.187 0.184 0.170 0.209 0.241

Option expensiveness
Mean -0.036 0.072 -0.008 -0.041 -0.175
Standard Deviation 0.139 0.055 0.145 0.121 0.239
Skewness -2.376 -1.159 -3.540 -2.542 -2.814
Kurtosis 9.957 4.964 17.877 11.009 11.408
5% Quantile -0.260 -0.011 -0.222 -0.206 -0.603
95% Quantile 0.111 0.148 0.118 0.094 0.053

Firms 230 11 70 118 31
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Table 3: Summary statistics on firm characteristics

This table reports the summary statistics on estimates of leverage, size, turnover, book-to-market ratio

and volatilities for the final sample of firms over the period August 2001-December 2021. Leverage is

defined as the ratio between the book value of liabilities and the market value of assets. Size is proxied

by the natural logarithm of the firm’s market capitalization. Turnover is the ratio of the stock’s monthly

trading volume to the number of shares outstanding. Book-to-Market is the book-to-market ratio. σE
IMP

is the equity volatility implied from the put option as provided from OptionMetrics. σA
IMP is the estimated

asset volatility computed using the implied equity volatility (σE
IMP ) as a proxy for σEj,t

in Equation (5).

We first compute the mean leverage, size, turnover, book-to-market ratio and volatilities across firms

included in a given portfolio in each month, and then provide the statistics for the time series of the

variables of each portfolio. Each firm is assigned a credit rating based on its average rating across years

for which both CDS and option data are available. Firms is the number of firms in each portfolio. The

statistics for each rating group exclude months for which observations are not available for at least one

of the rating portfolios.

All AAA-AA A BBB BB-B

Leverage
Mean 0.342 0.123 0.321 0.302 0.467
Standard Deviation 0.098 0.021 0.059 0.052 0.136
5% Quantile 0.256 0.092 0.249 0.241 0.320
95% Quantile 0.540 0.157 0.460 0.423 0.759

Size
Mean 24.586 25.853 24.925 23.781 22.902
Standard Deviation 0.446 0.335 0.411 0.374 0.618
5% Quantile 24.044 25.438 24.315 23.142 21.927
95% Quantile 25.458 26.455 25.653 24.360 23.792

Turnover
Mean 0.009 0.004 0.007 0.009 0.017
Standard Deviation 0.003 0.002 0.003 0.003 0.007
5% Quantile 0.005 0.002 0.004 0.006 0.007
95% Quantile 0.015 0.007 0.014 0.014 0.030

Book-to-Market
Mean 0.546 0.308 0.464 0.579 0.726
Standard Deviation 0.117 0.104 0.080 0.099 0.358
5% Quantile 0.425 0.149 0.353 0.454 0.365
95% Quantile 0.819 0.404 0.638 0.786 1.541

σE
IMP

Mean 0.324 0.223 0.291 0.325 0.456
Standard Deviation 0.117 0.074 0.111 0.105 0.183
5% Quantile 0.224 0.153 0.202 0.232 0.297
95% Quantile 0.557 0.371 0.507 0.516 0.811

σA
IMP

Mean 0.211 0.197 0.195 0.228 0.261
Standard Deviation 0.065 0.065 0.060 0.060 0.066
5% Quantile 0.135 0.134 0.143 0.170 0.187
95% Quantile 0.325 0.314 0.300 0.334 0.375

Firms 230 11 70 118 31
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Table 4: Hedge Ratios

This table reports the summary statistics on estimated hedge ratios using the combined models

of Merton (1974) and Geske (1979) and computed as in Equation (2). Hedge ratios are

estimated assuming two alternative methods to compute asset volatility. In Panel A, we use

σA
IMP as the estimated asset volatility computed using the implied equity volatility (σE

IMP ) as

a proxy for σEj,t
in Equation (5). In Panel B, σA

IMP is set equal to σE
IMP . We first compute

the mean hedge ratios across firms included in a given portfolio in each month, and then

provide the statistics for the time series of each portfolio’s hedge ratios. Each firm is assigned

a credit rating based on its average rating across years for which both CDS and option data

are available. Firms is the number of firms in each portfolio. Hedge ratios are given in basis

points. The statistics for each rating group exclude months for which observations are not

available for at least one of the rating portfolios.

All AAA-AA A BBB BB-B

Panel A: hrP = hrP (σ
A
IMP )

Mean 2.940 0.263 1.624 3.162 8.558
Standard Deviation 5.692 1.338 4.037 5.765 9.195
5% Quantile 0.133 0.000 0.011 0.095 0.755
95% Quantile 10.831 1.086 6.735 11.949 25.529

Panel B: hrP = hrP (σ
E
IMP )

Mean 12.548 0.689 8.652 12.459 31.196
Standard Deviation 14.751 2.853 11.788 14.882 26.454
5% Quantile 2.375 0.000 1.356 1.947 8.330
95% Quantile 38.674 2.809 33.215 40.401 75.500

Firms 230 11 70 118 31
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Table 5: Regression of CDS changes on put option returns

This table reports the results of regressing CDS spread changes on put option returns and Treasury

rate changes during the period August 2001-December 2021. In Panel A, we estimate the following

time-series regression for each firm j:

∆CDSj,t = αj + βj,Oretoptionj,t
+ βj,r∆r10t + ϵj,t

In Panel B, we estimate the following time-series regression for each firm j:

∆CDSj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ βj,r∆r10t + ϵj,t

where hrPs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s and

σA
IMP is estimated according to Equation (5). If the combined models of Merton (1974) and Geske

(1979) were accurate, αj,O would not be statistically different from one. The average regression

coefficients from the time-series regressions are reported. The t-statistics are provided in parenthesis

and calculated in the same way as in Schaefer and Strebulaev (2008). ∆r10t is the change in the

10-year constant maturity U.S. Treasury bond rate. retoptionj,t
is the return on the put option.

The t-statistics for αj,O are with respect to the difference from unity. All coefficients are in basis

points. Nobs is the average of the number of observations per firm in each portfolio.

All AAA-AA A BBB BB-B

Panel A: Empirical sensitivities

Intercept
-0.12 0.14 0.44 0.01 -1.99
(-0.68) (0.91) (2.47) (0.05) (-2.39)

retoption
5.14 1.30 2.85 5.08 11.90

(38.17) (9.78) (19.70) (26.98) (19.45)

∆r10
-12.16 -4.92 -5.44 -13.26 -25.68
(-17.01) (-8.19) (-7.42) (-14.15) (-7.24)

Adj R2 0.16 0.12 0.13 0.16 0.24

Panel B: Hedge ratio regressions

Intercept
-0.24 -0.12 0.35 -0.27 -1.51
(-1.33) (-0.78) (2.02) (-1.10) (-1.72)

retoption
1.02 1.00 1.10 0.94 1.12
(0.24) (-0.00) (0.50) (-1.27) (1.75)

∆r10
-16.67 -5.98 -9.46 -17.86 -32.22
(-23.35) (-10.00) (-13.12) (-19.45) (-8.89)

Adj R2 0.21 0.12 0.21 0.21 0.23

Nobs 105.43 120.64 119.03 103.80 75.55
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Table 6: Regression of CDS changes on stock returns

This table reports the results of regressing CDS spread changes on stock returns and Treasury rate

changes during the period August 2001-December 2021. In Panel A, we estimate the following

time-series regression for each firm j:

∆CDSj,t = αj + βj,Sretstockj,t
+ βj,r∆r10t + ϵj,t

In Panel B, we estimate the following time-series regression for each firm j:

∆CDSj,t = αj + αj,ShrSs,t
(σA

IMP )retstockj,t
+ βj,r∆r10t + ϵj,t

where hrSs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s

and σA
IMP is estimated according to Equation (5). If Merton (1974)’s model hedge ratios are

accurate, we would expect to estimate a value of αj,S not statistically different from one. The

average regression coefficients from the time-series regressions are reported. The t-statistics are

provided in parenthesis and calculated in the same way as in Schaefer and Strebulaev (2008). ∆r10t
is the change in the 10-year constant maturity U.S. Treasury bond rate. retstockj,t

is the stock

log-return (in percentage). The t-statistics for αj,S are with respect to the difference from unity.

All coefficients are in basis points. Nobs is the average of the number of observations per firm in

each portfolio.

All AAA-AA A BBB BB-B

Panel A: Empirical sensitivities

Intercept
-0.63 -0.07 0.08 -0.52 -2.83
(-3.79) (-0.49) (0.47) (-2.23) (-3.75)

retstock
-0.86 -0.28 -0.54 -0.89 -1.67

(-51.65) (-10.11) (-25.65) (-34.97) (-28.36)

∆r10
-11.63 -5.10 -5.08 -13.69 -20.93
(-17.34) (-8.55) (-7.14) (-15.34) (-6.43)

Adj R2 0.22 0.13 0.18 0.23 0.34

Panel B: Hedge ratio regressions

Intercept
-0.79 -0.23 -0.10 -0.67 -3.03
(-4.56) (-1.53) (-0.58) (-2.79) (-3.68)

retstock
1.00 1.47 0.98 0.95 1.08
(0.00) (0.89) (-0.14) (-1.01) (1.41)

∆r10
-16.89 -5.47 -9.08 -19.05 -30.33
(-23.96) (-9.01) (-12.84) (-20.76) (-8.57)

Adj R2 0.21 0.11 0.21 0.21 0.25

Nobs 105.43 120.64 119.03 103.80 75.55
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Table 7: Hedging effectiveness

This table reports the root mean square error (RMSE) in U.S. dollars of the hedging error for an

equally weighted portfolio of CDS contracts across each rating category and for the whole sample

of firms. Each CDS portfolio is hedged dynamically using both equity put options and the equity

market. Option hedging is based on empirical hedge ratios (Empirical-P) as from Equation (3) as

well as theoretical hedge ratios (Model-P) computed as from Equation (2). Equity hedging is based

on empirical hedge ratios (Empirical-S) as from Equation (3), where option returns are replaced

by stock returns, as well as theoretical hedge ratios (Model-S) computed as from Equation (6).

Positions are rebalanced each month. We also report the RMSE of an unhedged CDS portfolio.

Panel A reports RMSE values for the full sample period. Panel B shows results for an out-of-

sample analysis where empirical hedge ratios are based on estimated coefficients from monthly

rolling regressions using a rolling window of four years of monthly data. Panel C performs a

similar out-of-sample analysis but using long-term equity put options.

Unhedged Model-P Empirical-P Model-S Empirical-S

RMSEu RMSEh
RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1

Panel A: In-sample analysis

All 57,996 47,099 -0.19 43,775 -0.25 49,731 -0.14 42,996 -0.26
AAA-AA 19,577 19,071 -0.03 18,500 -0.06 19,644 0.00 18,179 -0.07
A 47,878 40,908 -0.15 37,661 -0.21 41,925 -0.12 38,494 -0.20
BBB 58,449 45,215 -0.23 50,989 -0.13 48,830 -0.16 45,068 -0.23
BB-B 126,723 112,132 -0.12 107,725 -0.15 110,952 -0.12 97,263 -0.23

Panel B: Out-of-sample analysis
All 59,528 46,196 -0.22 44,850 -0.25 49,136 -0.17 44,864 -0.25
AAA-AA 21,222 20,360 -0.04 20,476 -0.04 20,596 -0.03 19,868 -0.06
A 49,736 41,152 -0.17 36,525 -0.27 42,136 -0.15 37,673 -0.24
BBB 59,709 43,908 -0.26 47,460 -0.21 47,772 -0.20 46,243 -0.23
BB-B 121,555 102,601 -0.16 87,663 -0.28 103,302 -0.15 74,839 -0.38

Panel C: Out-of-sample analysis based on long-term options
All 59,350 45,161 -0.24 44,532 -0.25 48,717 -0.18 42,407 -0.29
AAA-AA 21,222 21,133 -0.00 21,687 0.02 20,906 -0.01 19,761 -0.07
A 49,614 40,189 -0.19 37,706 -0.24 42,266 -0.15 35,059 -0.29
BBB 59,118 44,672 -0.24 46,574 -0.21 47,155 -0.20 43,614 -0.26
BB-B 120,968 100,681 -0.17 83,809 -0.31 103,296 -0.15 84,124 -0.30
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Table 8: Regression of unexplained CDS spread changes on option returns

Panel A of this table shows the results of regressing the residuals CDS spread changes (obtained from
Equation (7)) on option returns during the period August 2001-December 2021. We estimate the
following time-series regression for each firm j:

ϵj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ vj,t

where hrPs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s, σA

IMP is

estimated according to Equation (5) and retoptionj,t
is the put option return. Panel B reports results

for multivariate regressions which also consider other possible credit-related and non-credit-related
spread determinants including the change in the bond market illiquidity measure of Hu et al. (2013)
(∆NOISE), the Fama-French Small minus Big (SMB) and High Minus Low (HML) factors, the
change in Moody’s BAA-AAA yield spread (∆DEF ), the change in the difference between the 3-month
LIBOR rate and the 3-month Treasury bill rate (∆TED), the change in the difference between the
3-month LIBOR rate and the 3-month overnight index swap rate (∆LIBOR−OIS), the return on the
S&P 500 index (S&P), the change in the VIX index of implied volatility of options on the S&P 100
index (∆V IX), the change in the slope of the term structure (∆Slope), the change in the difference
between the 3-month repo rate and the 3-month Treasury bill rate (∆REPO−TBILL), the return on
an equally-weighted stock index of prime dealers (PBI). The average regression coefficients from the
time-series regressions are reported. The t-statistics are provided in parenthesis and calculated in the
same way as in Schaefer and Strebulaev (2008).

Panel A: Univariate regressions
hrPs,t

= 1 hrPs,t
= hrPs,t

hrPs,t
= hrPs,t

− ∂CS
∂V

∂V
∂E

Intercept 0.46 0.24 0.28
(2.70) (1.36) (1.59)

hrP × retoption 2.75 0.26 0.21
(22.41) (3.75) (4.58)

Adj R2 0.05 0.02 0.02

Panel B: Multivariate regressions based on hrPs,t
= hrPs,t

Intercept 0.14 0.21 0.23 0.27 -0.00 0.20 0.66 0.01 0.18 0.23 0.27 0.50
(0.80) (1.23) (1.33) (1.59) (-0.01) (1.15) (3.85) (0.06) (1.01) (1.26) (1.56) (2.97)

hrP × retoption 0.15 0.26 0.26 0.02 0.17 0.17 -0.11 -0.07 0.27 0.29 0.24 -0.20
(1.97) (3.75) (3.80) (0.23) (2.40) (2.38) (-1.43) (-0.88) (3.89) (4.64) (3.50) (-2.50)

∆NOISE 3.48
(12.05)

SMB -0.15
(-3.04)

HML -0.10
(-1.86)

∆DEF 22.77 16.94
(22.98) (16.25)

∆TED 14.70
(6.38)

∆LIBOR−OIS 12.01
(3.40)

S&P -1.03 -0.55
(-23.74) (-8.40)

∆V IX 0.67 0.15
(19.01) (2.95)

∆Slope 5.05
(5.20)

∆REPO − TBILL 1.34
(0.53)

PBI -0.09
(-4.75)

Adj R2 0.05 0.02 0.03 0.11 0.05 0.07 0.09 0.08 0.02 0.03 0.02 0.15
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Table 9: Informed trading and hedging error gap between stocks and options

This table reports estimation results of univariate time-series regressions that use informed trading

proxies (observed on option trading dates) to predict the hedging error gap between stocks and put

options for an equally weighted portfolio of CDS contracts across each rating category and for the

whole sample of firms. We use two main informed trading proxies, namely the changes in volatility

skew (VSkew) and volatility spread (VSpread) computed as in Andreou et al. (2023). In particular,

we compute changes in VSkew (∆VSkew) and VSpread (∆VSpread) as the difference between the

value of each informed trading proxy on the current month’s option expiration date and its value

on the previous month’s trading date. We use these changes to predict next month’s gap in hedging

errors between stocks and put options. Stock/put hedging errors are defined in two alternative

ways. First, we compute them as the absolute value of the difference between empirical hedge ratios

(hrSs,t,EMP
for stocks and hrPs,t,EMP

for puts) and theoretical hedge ratios (hrSs,t,MODEL
for stocks

and hrPs,t,MODEL
for puts). Second, we compute them as the absolute value of the difference between

the empirical and model hedging errors according to Equation (8), namely |eSt,EMP
−eSt,MODEL

| for
stocks and |ePt,EMP

−ePt,MODEL
| for puts. The hedging error gap is then defined as the difference in

the absolute values between stock hedging errors and option hedging errors. We report estimation

results using two definitions of the hedging error gap, based on our definitions of hedging errors:

Panel A uses |hrSs,t,EMP
− hrSs,t,MODEL

| − |hrPs,t,EMP
− hrPs,t,MODEL

| as the dependent variable,

while Panel B uses |eSt,EMP
−eSt,MODEL

|−|ePt,EMP
−ePt,MODEL

| as the dependent variable. For put
options, empirical hedge ratios are based on Equation (3) and theoretical hedge ratios are computed

according to Equation (2). For stocks, empirical hedge ratios are based on Equation (3), where

option returns are replaced by stock returns, and theoretical hedge ratios are computed as from

Equation (6). The hedging errors in the panels are computed in an out-of-sample fashion where

empirical hedge ratios are based on estimated coefficients from monthly rolling regressions using a

rolling window of four years of monthly data. The t-statistics provided in parentheses are based on

Newey and West (1987) standard errors with 7 lags.

All AAA-AA A BBB BB-B

Panel A: |hrSs,t,EMP
− hrSs,t,MODEL

| − |hrPs,t,EMP
− hrPs,t,MODEL

|
∆VSkew
Slope 2.71 0.13 2.53 2.64 -1.49
t-stat (2.23) (0.25) (2.30) (1.74) (-3.26)

Adj R2 0.04 -0.01 0.06 0.03 0.01

∆VSpread
Slope 0.19 0.56 3.48 -3.74 -2.52
t-stat (0.10) (0.88) (1.58) (-1.64) (-1.36)

Adj R2 -0.01 -0.00 0.02 0.02 0.00

Panel B: |eSt,EMP
− eSt,MODEL

| − |ePt,EMP
− ePt,MODEL

|
∆VSkew
Slope 1,789.19 -94.26 1,255.37 1,916.30 -860.25
t-stat (1.88) (-0.32) (1.25) (1.67) (-1.54)

Adj R2 0.08 -0.00 0.06 0.07 0.01

∆VSpread
Slope 3,034.50 -418.42 2,464.44 640.80 46.91
t-stat (1.67) (-1.21) (1.60) (0.63) (0.05)

Adj R2 0.05 0.00 0.05 -0.00 -0.01
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Table 10: Hedging effectiveness of portfolios combining stocks and options

This table reports the root mean square error (RMSE) in U.S. dollars of the hedging error for an

equally weighted portfolio of CDS contracts across each rating category and for the whole sample of

firms. Each CDS portfolio is hedged dynamically using a portfolio including both put options and

stocks. In addition to creating hedging portfolios that use constant weights for puts and stocks, we

also implement market timing strategies based on two informed trading proxies, namely the changes

in volatility skew (VSkew) and volatility spread (VSpread) computed as in Andreou et al. (2023).

Option hedging is based on empirical hedge ratios as from Equation (3) as well as model hedge ratios

computed as from Equation (2). Equity hedging is based on empirical hedge ratios as from Equation

(3), where option returns are replaced by stock returns, as well as model hedge ratios computed as

from Equation (6). Panel A reports results for a market timing strategy that buys (shorts) puts

(stocks) if skew changes in a given month are above (below) their mean. Panel B reports results for

a market timing strategy that buys (shorts) puts (stocks) if skew changes in a given month are above

(below) their 75th (25th) percentile. Otherwise, for skew changes that lie between the percentiles,

the CDS portfolio is hedged by investing both in puts and stocks using constant 50% weights. As

in the first two panels, Panels C and D report results for similar market timing strategies that are

instead based on VSpread changes. The remaining panels show results for hedging portfolios that

invest, each month, in both puts and stocks applying different combinations of constant weights.

Positions are rebalanced each month. We also report the RMSE of an unhedged CDS portfolio. All

RMSE values are based on an out-of-sample analysis where empirical hedge ratios are estimated

from monthly rolling regressions using a rolling window of four years of monthly data. The mean

and percentiles of the informed trading proxies used as signals for the market timing strategies

are computed each month in a recursive fashion using information up to the trading date. In

parenthesis, we report the percentage change in the RMSE from an exposure that is unhedged

(RMSEu) to one that is hedged (RMSEh), namely RMSEh

RMSEu
− 1.

All AAA-AA A BBB BB-B

Unhedged 59,528 21,222 49,736 59,709 121,555

Panel A: Buy (short) puts (stocks) when ∆Skew is above (below) mean

Model
46,282 20,739 40,689 44,107 102,463
[-0.22] [-0.02] [-0.18] [-0.26] [-0.16]

Empirical
42,816 20,230 34,634 45,330 83,052
[-0.28] [-0.05] [-0.30] [-0.24] [-0.32]

Panel B: Buy (short) puts (stocks) when ∆Skew is high (low)

Model
45,985 20,651 40,548 43,644 102,762
[-0.23] [-0.03] [-0.18] [-0.27] [-0.15]

Empirical
42,613 20,000 34,500 45,084 83,504
[-0.28] [-0.06] [-0.31] [-0.24] [-0.31]

Panel C: Buy (short) puts (stocks) when ∆VSpread is above (below) mean

Model
46,764 20,629 40,926 44,755 103,391
[-0.21] [-0.03] [-0.18] [-0.25] [-0.15]

Empirical
43,016 19,946 34,932 45,305 84,230
[-0.28] [-0.06] [-0.30] [-0.24] [-0.31]

Panel D: Buy (short) puts (stocks) when ∆VSpread is high (low)

Model
47,167 20,687 41,054 45,429 102,655
[-0.21] [-0.03] [-0.17] [-0.24] [-0.16]

Empirical
42,587 19,889 34,627 44,819 82,082
[-0.28] [-0.06] [-0.30] [-0.25] [-0.32]

Panel E: Constant weights - 75% puts, 25% stocks

Model
46,650 20,331 41,146 44,489 102,108
[-0.22] [-0.04] [-0.17] [-0.25] [-0.16]

Empirical
44,308 20,144 36,220 46,592 82,208
[-0.26] [-0.05] [-0.27] [-0.22] [-0.32]

Panel F: Constant weights - 50% puts, 50% stocks

Model
47,297 20,361 41,310 45,338 102,060
[-0.21] [-0.04] [-0.17] [-0.24] [-0.16]

Empirical
44,128 19,929 36,313 46,093 78,115
[-0.26] [-0.06] [-0.27] [-0.23] [-0.36]

Panel G: Constant weights - 25% puts, 75% stocks

Model
48,128 20,450 41,641 46,438 102,460
[-0.19] [-0.04] [-0.16] [-0.22] [-0.16]

Empirical
44,315 19,837 36,803 45,976 75,606
[-0.26] [-0.07] [-0.26] [-0.23] [-0.38]
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Appendix

A Deriving Hedge Ratios of Credit Spreads to

Equity Options

In this section we show how to derive theoretical hedge ratios of corporate bond credit

spreads to equity options. First, we define the hedge ratio based on put options, hrP :

hrP =
∂CS

∂P
P (A.1)

where CS and P represent the bond credit spread and the put option price,

respectively. ∂ is the partial derivative symbol.

Merton (1974) and Geske (1979) express corporate debt prices and equity option

prices as a function of a firm’s asset value, respectively.

In particular, Merton (1974) shows that corporate debt of face value D is equal to

risk-free debt discounted at the risk-free rate r minus a European put option on the

firm’s asset value V with asset returns’ volatility σV . The corporate bond yield spread

of maturity τ can be expressed as:

CS(τ) = −1

τ
ln

(
Φ[h2(d, σ

2
V τ)] +

1

d
Φ[h1(d, σ

2
V τ)]

)
(A.2)

where Φ[·] is the univariate cumulative normal distribution function and

d =
De−rτ

V
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h1(d, σ
2
V τ) =

−(σ2
V τ/2− ln(d))

σV

√
τ

h2(d, σ
2
V τ) =

−(σ2
V τ/2 + ln(d))

σV

√
τ

Geske (1979) shows that an equity option can be regarded as an option on an

option on the firm’s asset value (compound option). For the case of a put option of

maturity τ1 with strike price K, P would be equal to the following expression:

P = De−rτΘ[−h3(d̄, σ
2
V τ1), h2(d, σ

2
V τ);−

√
τ1/τ ] (A.3)

−VΘ[−(h3(d̄, σ
2
V τ1) + σV

√
τ1), h1(d, σ

2
V τ);−

√
τ1/τ ] +Ke−rτ1Φ[−h3(d̄, σ

2
V τ1)]

where Θ[·] is the bivariate cumulative normal distribution function and

d̄ =
V̄ e−rτ1

V

h3(d̄, σ
2
V τ1) =

−(σ2
V τ1/2 + ln

(
d̄
)
)

σV
√
τ1

V̄ is the value of V where the option is just at the money at time τ1 and is the

solution to the following equation:

V Φ[h2(d, σ
2
V τ) + σV

√
τ − τ1]−De−r(τ−τ1)Φ[h2(d, σ

2
V τ)]−K = 0

Given the dependence of both the credit spread and the put option price on the
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firm’s asset value V , we can now re-write Equation (A.1) as a function of two partial

derivatives:

hrP =
∂CS

∂P
P =

(
∂CS

∂V

/
∂P

∂V

)
P (A.4)

We first derive the first partial derivative of the credit spread with respect to V .

This gives:

∂CS

∂V
= −1

τ

ϕ[h2(d,σ
2
V τ)]

V σV

√
τ

+ 1

De
−rτ (Φ[h1(d, σ

2
V τ)]− ϕ[h1(d,σ

2
V τ)]

σV

√
τ

)

Φ[h2(d, σ
2
V τ)] +

1
d
Φ[h1(d, σ

2
V τ)]

(A.5)

where ϕ[·] is the univariate normal density function.

Next we compute the second partial derivative and obtain the following:

∂P

∂V
= −Θ[−(h3(d̄, σ

2
V τ1) + σV

√
τ1), h1(d, σ

2
V τ);−

√
τ1/τ ] (A.6)

We can now group the solutions to the two partial derivatives as from Equations

(A.5) and (A.6) to compute the final hedge ratio:

hrP =
1

τ

ϕ[h2(d,σ
2
V τ)]

V σV

√
τ

+ 1

De
−rτ (Φ[h1(d, σ

2
V τ)]− ϕ[h1(d,σ

2
V τ)]

σV

√
τ

)

Φ[h2(d, σ
2
V τ)] +

1
d
Φ[h1(d, σ

2
V τ)]

1

Θ[−(h3(d̄, σ
2
V τ1) + σV

√
τ1), h1(d, σ

2
V τ);−

√
τ1/τ ]

P (A.7)
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B Deriving Hedge Ratios of Credit Spreads to

Equity

In this section we show how to derive theoretical hedge ratios of corporate bond credit

spreads to equity. The hedge ratio based on stocks, hrS, is given by the following

expression:

hrS =
∂CS

∂E
E (B.1)

where CS and E represent the bond credit spread and the stock price, respectively.

Under Merton (1974), the equity value of a firm is a European call option on the

asset value V :

E = V Φ[h1(d, σ
2
V τ)]−De−rτΦ[h2(d, σ

2
V τ)] (B.2)

We can exploit the equity’s dependence on V and write Equation (B.1) as a function

of two partial derivatives:

hrS =
∂CS

∂E
E =

(
∂CS

∂V

/
∂E

∂V

)
E (B.3)

The solution to the partial derivative of the credit spread with respect to V is given

in Equation (A.5) of Appendix A.

We compute the partial derivative of the firm’s equity with respect to V and obtain

the following:

∂E

∂V
= Φ[h1(d, σ

2
V τ)] (B.4)

64

Electronic copy available at: https://ssrn.com/abstract=3184004



Combining Equations (A.5) and (B.4), we obtain the following final hedge ratio:

hrS = −1

τ

ϕ[h2(d,σ
2
V τ)]

V σV

√
τ

+ 1

De
−rτ (Φ[h1(d, σ

2
V τ)]− ϕ[h1(d,σ

2
V τ)]

σV

√
τ

)

Φ[h2(d, σ
2
V τ)] +

1
d
Φ[h1(d, σ

2
V τ)]

1

Φ[h1(d, σ
2
V τ)]

E (B.5)
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1 Further Analysis

This Internet Appendix presents additional descriptive statistics for the variables used

in the paper. We present additional results on hedging effectiveness based on the

use of alternative estimation windows to determine out-of-sample RMSE values. We

also examine the role of the Lehman default on the predictive ability of informed

trading proxies for the hedging error gap between the equity and option market. We

investigate additional determinants of credit spreads and the incremental explanatory

role of options for credit spread changes. Next, we test the accuracy of the model

hedge ratios by adopting an alternative calibration method for the main parameters of

the structural models based on maximum likelihood estimation as well as a simulation

analysis that deals with possible noise in standard statistical tests when option returns

are used. We then explore default-loss hedging of CDS using put options and determine

the hedging costs using both stocks and put options. Finally, we check the accuracy

of the model hedge ratios based on options by excluding the financial firms from our

sample and by using holding-to-maturity option returns.

1.1 Additional Descriptive Statistics

Our final sample of firms with available data on both CDS spreads and put option

prices is limited by the availability of put option data. In Table 1.1, we provide

summary statistics on CDS variables and firm characteristics for an extended sample

of 503 firms which is not restricted by option data limitations. We can observe that

the patterns of each variable are similar to those presented for the final sample of firms

that do have option data. Generally, the statistics show that the extended sample of

firms have slightly more negative mean CDS spread changes and CDS-bond basis, they
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are slightly smaller in size and with higher stock volatility. Interestingly, relative to the

other rating portfolios, a much larger proportion of firms rated BB or B are dropped

from the initial sample due to option data limitations as well as missing accounting

data. We also included two CCC-rated firm in the lowest-rated portfolio of firms

together with BB-rated and B-rated firms.

In Table 1.2, we present the summary statistics on the sample of corporate bonds

issued by the 230 firms included in our final sample. They show that 4,711 bonds

were issued in total with slightly over 50% of them issued by A-rated companies

alone. Consistent with Bao and Hou (2017), the maturity of the bonds is smaller for

speculative grade firms (and on average greater than 10 years) with an annual coupon

rate of 5.9% and increasing for lower-rated firms, and a nominal value of almost $450

million that decreases for lower-rated firms. The mean total bond return is 0.37% and

monotonically increases as the portfolio rating worsens.

Table 1.3 provides summary statistics for the alternative option samples on holding-

to-maturity as well as long-term put options also used in our analysis in Section 1.8

of this Internet Appendix and in Panel C of Table 7 of the paper, respectively. Panel

A of Table 1.3 shows that holding-to-maturity options have a monthly expiration but

otherwise very similar characteristics to the options with a 2-month maturity used in

our baseline analysis. Long-term options in Panel B have on average about yearly

expirations, smaller moneyness, open interest and absolute value of delta.

Table 1.4 presents summary statistics on the informed trading proxies, namely

volatility skew (VSkew) and volatility spread (VSpread), used for the analysis in

Section V.E. of the paper. Consistent with previous papers (Xing et al., 2010; Cremers

and Weinbaum, 2010; Andreou et al., 2023), we find that the volatility skew is, on

68

Electronic copy available at: https://ssrn.com/abstract=3184004



average, positive at 5.2% and monotonically decreasing with the credit quality of the

firms, whereas the volatility spread is on average negative at about -0.2% but much

more negative for lower-rated firms. The changes in VSkew (VSpread) are, on average,

positive (negative) for the entire portfolio of firms, although we observe a positive mean

volatility spread change for the worst-rated firms.

1.2 Robustness on Hedging Errors

The results described in Section V.C. and reported in Table 7 of the paper are based

on empirical hedge ratios that are estimated using rolling windows of four years of

monthly data. To check the robustness of our main findings, we also use alternative

estimation windows and repeat the hedging effectiveness analysis whose results are

reported in Table 1.5. We can observe that the RMSE estimates are largely consistent

with estimates reported in Panel B of Table 7. We also implemented the same analysis

using recursive estimation windows and obtained very similar results.1

The financial crisis of 2007-2008, and particularly the collapse of Lehman Brothers,

greatly affected investors’ attitudes towards risk and raised doubts about the validity

of their pricing models including structural models of credit risk (Birru and Figlewski,

2012; Boyarchenko, 2012). For this reason, we further investigate the ability of our

informed trading proxies (VSkew and VSpread) in predicting the hedging error gap

between stocks and put options when we remove the observations in September,

October and November 2008 surrounding the Lehman default. Panel A of Table 1.6

shows that, while the predictive role of volatility spread changes becomes insignificant,

changes in volatility skew predict a higher hedging error gap between stocks and

1These additional results are available on request from the authors.
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options, with almost a fourfold increase in significance relative to that shown in Table

9 of the paper. Consistent with this result, a visual inspection of Figure 1b in the

paper reveals that, following significant increases in the volatility skew, the gap in

hedging errors becomes more negative (contrary to the positive relationship that we

observe in the whole sample period), This suggests that the gap between option model

hedge ratios and empirical hedge ratios becomes significantly bigger than the gap

between stock hedge ratios and their empirical counterpart. Possible explanations for

this wider disagreement between model and empirical sensitivities in the option market

relative to the stock market could relate to rational market-making activity or investor

irrationality in the option market as discussed by Birru and Figlewski (2012). These

explanations would be consistent with conditions of reduced stability in the option

market relative to the stock market. We obtain consistent results in Panel B of Table

1.6, where we start the out-of-sample period following the Lehman default (in January

2009), instead of directly removing the monthly observations surrounding the bank’s

collapse.

1.3 Other Determinants of Credit Spreads

We evaluate the effect of additional control variables that previous studies have used

to explain credit spread changes (Collin-Dufresne et al., 2001; Ericsson et al., 2009).

In particular, we consider the changes in the slope of the yield curve (which is defined

as the difference between the 10-year and the 2-year Treasury rates), the return on

the S&P 500 index and the changes in the VIX index of implied volatility of options

on the S&P 100 index. The monthly time series of interest rates as well as the S&P

500 returns are downloaded from Datastream. The time series of the VIX index is
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obtained from the Chicago Board Options Exchange.

Table 1.7 shows the results of the multivariate regression model. We find that the

estimated coefficient on the change in the 10-year interest rate is, on average, about 5

basis points higher than the estimated value in Table 5 for all firms in our sample. We

also observe that the coefficients on option returns are a bit lower by 2.5 basis points but

still highly significant. The estimated coefficients on the remaining control variables are

in line with those reported by Ericsson et al. (2009) and Collin-Dufresne et al. (2001)

for their regressions of CDS (and credit) spread changes, respectively: for example, the

coefficients on the VIX changes are similar to that reported by Collin-Dufresne et al.

(2001) and insignificant for lowest-rated firms. Our estimated effect of a 1% increase in

the S&P 500 return on CDS spread changes is negative and of about 1.35 basis points

which is in line with estimates obtained by Collin-Dufresne et al. (2001). Consistent

patterns can be observed for the slope of the yield curve. The adjusted R-squared

values of our regression models range from 0.28 (for the BBB rating category) to 0.37

(for the lowest-rated firms) and are very similar to the range of values Ericsson et al.

(2009) report (between 0.30 and 0.32).

Next, we perform an additional analysis to test whether equity options contain

useful information to explain the variation of CDS spread changes which is incremental

to that contained in the underlying equities.

To this end, we estimate the following regression model:

∆CDSj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ βj,r∆r10t + ϵj,t (1.1)

where retoptionj,t
and hrPs,t

are the option return and the mean theoretical hedge ratio

for all firms in rating s at time t, respectively.
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We then explore the determinants of the residual CDS changes from both Equation

(7) of the paper and Equation (1.1) above. The former are the residuals which are

orthogonal to the returns on the issuing firm’s equity whereas the latter are the

residuals which are orthogonal to the issuing firm’s put option returns. Based on

previous studies (Collin-Dufresne et al., 2001; Schaefer and Strebulaev, 2008), we

consider the following determinants of credit spreads: the Fama-French Small minus

Big (SMB) and High Minus Low (HML) factors, the return on the S&P 500 index

(S&P ), the change in the VIX index of implied volatility of options on the S&P 100

index (∆V IX), and the change in the slope of the term structure (∆Slope). We

also include the change in the bond market illiquidity measure of Hu et al. (2013)

(∆NOISE) in order to capture any trading frictions or shortage of arbitrage capital

affecting the ability of institutional investors to keep an asset’s market prices in line

with their fundamentals.2 Related to credit risk trading, arbitrage activity could affect

CDS spreads (Oehmke and Zawadowski, 2017) as well as the relation between cash

bonds and CDS contracts as documented by Bai and Collin-Dufresne (2019).

The results reported in Table 1.8 clearly show that orthogonal CDS spread changes

are exposed to these market-wide factors in ways which cannot be related to the

structural models of Merton (1974) and Geske (1979). However, we can also observe

some interesting differences: first, CDS spread changes which are orthogonal to equity

returns are less exposed to the SMB factor than CDS spread changes orthogonal to

put option returns; the latter are instead less exposed to the VIX index and the HML

factor. In other words, option hedge ratios reflect information related to the VIX index

2The Fama-French factors are obtained from the data library of Kenneth French’s website (http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french), while the NOISE measure is obtained
from Jun Pan’s website (http://en.saif.sjtu.edu.cn/junpan/).
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and the value premium that equity hedge ratios alone are not able to capture.3

1.4 Dealing With Noise in Calibration and Estimation

In our baseline analysis, we relied on model-free calibration choices for the main

parameters of the structural models of Merton (1974) and Geske (1979). This “ad-hoc”

method of calibration is in keeping with previous studies on the sensitivities of credit

to equity returns (Schaefer and Strebulaev, 2008). However, if the main objective

of these structural models is to capture the relationship between CDS spreads and

option returns and there is some concern about noise in hedge ratios caused by

model misspecification, one could implement these structural models consistently. In

particular, we estimate the main model parameters which include the face value of debt

D, the asset volatility σV as well as the state variable V using maximum likelihood

estimation (MLE) following the approach used by Duan (1994) and Ericsson and

Reneby (2005). We use the monthly data available for each firm during the whole

sample period to estimate the models’ parameters. These are then used as inputs to

determine the theoretical hedge ratios computed as from Equation (2) of the paper.

Finally we estimate the time-series regressions based on Equation (4) of the paper and

report the results in Table 1.9. We can observe that the mean value of the coefficient

αj,O for the full sample of firms is 1.11 which is relatively close to 1.02 (reported in

Panel B of Table 5 of the paper). Also, for all rating categories the average coefficient

of the parameters is similar using both methods (model-free calibration or MLE),

3In order to confirm our findings, we also estimated a multivariate regression which included
directly the CDS-bond basis (with a highly significant negative coefficient estimate) in replacement of
the NOISE measure. However, about 40% of the observations from the initial sample are lost due to
missing data on the basis caused by bond data limitations for the estimation of the interpolated 5-year
bond yield. The estimations are similar to those in Table 1.8 with the only difference that ∆V IX
becomes insignificant when the residuals from Equation (1.1) are used as the dependent variable in
the regression suggesting that option hedge ratios are able to capture information related to the VIX
index that equity hedge ratios alone are unable to incorporate.
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even though for the hedge ratios of the lowest-rated portfolio the null relative to the

difference from 1 is rejected at the 5% level.

Standard statistical tests are noisy when they involve option returns which are

affected by nonlinear payoffs (Broadie et al., 2009). As a robustness, and to rule out

the possibility that our statistical tests are sample-dependent, we perform a simulation

exercise, where the models of Merton (1974) and Geske (1979) are used to simulate

artificial paths for CDS spreads and put option prices. From this analysis, we are

able to capture the effect of nonlinearities on the option payoff on our empirical

estimates and to extend our evidence beyond our initial dataset. In particular, we

randomly select 10,000 observations from our time-series data. For each randomly

drawn observation, we retrieve the firm value, quasi-market leverage and asset volatility

based on their MLE estimates (following Duan (1994) and Ericsson and Reneby (2005))

as well as the risk-free rate, time to maturity of the CDS and the put option, the strike

price of the put and the firm’s rating class.4 We use these input parameters in Merton’s

and Geske’s models. Using the diffusion-type stochastic processes for the firm’s asset

value assumed by the models, we simulate 20 years (similar length to our sample period

2001-2021) of monthly CDS spreads and put prices, and from these, the monthly CDS

changes and option returns (based on the simulated equity prices derived from the

Merton model and used to compute the option payoff at maturity). We then estimate

the hedge ratio hrP by running a regression of the CDS spread changes on option

returns for each of the 10,000 simulations similar to Equation (3) of the paper. Table

1.10 shows the mean values of the coefficient hrP and of the adjusted R-squared. For

4Similar to Schaefer and Strebulaev (2008), this is done to simulate similar firm characteristics
to our dataset. However, differently from their study, we do not rely on ad-hoc choices of the model
parameters and simulate from the true D, σV and V that produce the observed CDS spreads and
put option prices implementing the models in an internally consistent manner.
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the portfolio including all sample firms, we find that the mean value of hrP (of 4.08)

is close to the empirical estimates from Panel A of Table 5 (of 5.14) shown in the final

row of the table. A two-sample t-test reveals that the mean values of the simulated

and empirical hedge ratios are not different for AAA-AA and A rated firms at 10%

confidence level. They are also not statistically different at the 5% confidence level for

BBB-rated firms but equality of the means is rejected for BB-B firms.

1.5 Default-Loss Hedging

Building on the theoretical work by Carr and Wu (2011) on the robust link between

equity put options and standardized credit insurance contracts, JPMorgan (2006) show

how to hedge credit risk trading regular single-name CDS contracts and put options.

In particular, the number of put contracts to be purchased to hedge a long credit risk

position (short CDS position) can be computed as follows:

Puts =
Notional × (1−R)

100× (K − ED)
(1.2)

where Notional is the notional principal of the CDS contract, R is the recovery rate

on the corporate bond (underlying the CDS contract) issued by the reference entity, K

is the strike price of the put option and ED represents the stock price of the reference

entity in the occurrence of a credit event. We follow JPMorgan (2006) and set R and

ED equal to 0.5 and $0.5, respectively. We set Notional equal to $10 million.

This approach assumes a default-neutral portfolio structure because the number

of put contracts to buy is defined to achieve a gain in default which is the same as

the default loss on the short position of the CDS contract. In other words, the default

loss to be paid by the protection seller is set to be the same as the default gain on the
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puts.

We investigate the effectiveness of this approach to hedge changes in the market

value of the CDS contract from the perspective of a CDS seller. In Equation (8) of

the paper we set δj,t equal to the number of put contracts to buy on firm j ’s stock at

time t computed according to Equation (1.2).

Based on the whole sample period, Table 1.11 shows sizeable increases in RMSE

values of well over 100%. This result is not surprising if we consider that the main

aim of this hedging method is to neutralize the default loss amount, rather than losses

in the mark-to-market value of a short position in a CDS contract. From this point

of view, the hedging approach we introduce in this paper can be regarded as a valid

alternative to existing credit risk hedging methods based on the use of options.

1.6 The Costs of Hedging

We determine the hedging costs of three alternative hedging strategies which include

trading stocks based on Merton (1974)’s model hedge ratios, stock options based on

our theoretical hedge ratios combining Merton (1974) and Geske (1979), and stock

options as described in JPMorgan (2006).

Figure 1.1 shows the dollar amount required to hedge a short CDS portfolio based

on the various hedging strategies. For the theoretical hedge ratios, this is computed by

multiplying the mean model hedge ratio (in basis points) by the mean CDS duration

of the portfolio. For the default-loss hedging approach, we follow JPMorgan (2006)

and multiply the output of Equation (1.2) by the product of 100 and the put price

(averaged across reference entities included in the portfolio).

For the entire sample period, hedging with options using our theoretical hedge
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ratios would have represented the cheapest alternative at each point in time. On the

other hand, hedging with stocks would have been the most expensive alternative for

BBB and BB-B portfolios and for most of the sample period, except for some instances

during the tranquil period prior to the 2007-2008 financial crisis and in the later years

of the sample period preceding the covid outbreak.

Table 1.12 provides more detailed summary statistics on hedging costs including

the number of shares or put options required by each hedging strategy. It can also

be noted that hedging costs increase considerably for portfolios including lower-rated

firms.

1.7 Excluding Financial Firms

Our sample of firms contains financial firms that are known for their peculiar capital

structure: they are highly leveraged with greater capacity to mitigate financial

risks (Adrian and Shin, 2014). These peculiarities could affect the strength of the

relationship between leverage and default risk that is embedded in the models of

Merton (1974) and Geske (1979). Consistent with past studies on the empirical

pricing or hedging performance of structural models (Eom et al., 2004; Huang and

Huang, 2012; Geske et al., 2016; Schaefer and Strebulaev, 2008; Huang et al., 2020;

Huang and Shi, 2021), we exclude stocks of financial firms (SIC codes 6000-6999) from

our analysis. Table 1.13 reports hedge ratio regression estimates for the sample of

non-financial firms using the standard model-free calibration of the main parameters

(D, σV and V ) of the theoretical hedge ratio (Panel A) as well as the calibration of the

same parameters based on MLE (Panel B). The financial firms in our sample are rated

either A (16 firms) or BBB (14 firms) and the regression estimates for these portfolios
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are then affected by their exclusion. Overall, our main findings are confirmed. Relative

to estimates reported in Panel B of Table 5 of the paper, we do not observe any major

changes in terms of statistical significance. Relative to Table 1.9, we observe a higher

mean estimate of αj,O for the BBB-rated firms which however, remains not significantly

different from 1 at the 5% level.

1.8 Holding-To-Maturity Returns

Academic studies typically use hold-to-maturity option returns (instead of holding

period returns) because of reduced trading costs and to avoid the theoretical and

statistical issues affecting higher-frequency option returns (Broadie et al., 2009).

Although our analysis so far has been based on monthly returns (computed from

holding 2-month put contracts) and, hence, avoided the aforementioned theoretical

and statistical issues, we also test the ability of the theoretical option hedge ratios

to replicate the empirical sensitivities of CDS spread changes to put option returns

using only next-month expiration put options to compute the monthly option returns.

Table 1.14 reports estimation results from hedge ratio regressions using both the ad-hoc

model-free choices for the input parameters (D, σV and V ) of the model hedge ratios

(Panel A) as well as the internally-consistent parameters based on MLE (Panel B). In

both cases, the results are consistent with those reported in previous sections, despite

showing higher t-statistics for the null relative to the difference from 1 of the estimated

coefficient for the lowest-rated firms.
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Figure 1.1: Time series of hedging costs

This figure plots the costs (in U.S. dollars) of hedging a short position in a portfolio of CDS contracts

including the whole sample of 230 firms. It displays the time series of hedging costs based on mark-

to-market equity and option hedging using our theoretical hedge ratios, as well as default-loss option

hedging as described in JPMorgan (2006). The sample period is from August 2001 to December 2021.

82

Electronic copy available at: https://ssrn.com/abstract=3184004



Table 1.1: Summary statistics on monthly CDS changes, liquidity proxies
and firm characteristics for an extended sample of CDS firms

This table reports summary statistics on the monthly time series of CDS spread changes and

CDS liquidity proxies (in Panel A), as well as firm characteristics (Panel B) for an extended

sample of firms over the period August 2001-December 2021. The bid-ask spread is computed

as the ratio of the difference between ask and bid quotes to the midpoint of the bid and ask

quotes. The CDS-bond basis is defined as the difference between the CDS spread and the

spread of the underlying bond over the risk-free rate. Leverage is defined as the ratio between

the book value of liabilities and the market value of assets. Size is proxied by the natural

logarithm of the firm’s market capitalization. Turnover is the ratio of the stock’s monthly

trading volume to the number of shares outstanding. Book-to-Market is the book-to-market

ratio. σE
HIST is the historical equity volatility computed using the sample volatility over a

five-year rolling window of monthly data. The statistics are given for the time series of the

variables of each portfolio after averaging their values across firms in each month. Each

firm is assigned a credit rating based on its average rating across years for which both CDS

and option data are available. Firms is the number of firms in each portfolio. The statistics

for each rating group exclude months for which observations are not available for at least

one of the rating portfolios.

All AAA-AA A BBB BB-B-CCC

Panel A: CDS variables

CDS spread changes (in basis points)
Mean -0.896 -0.854 -1.240 -1.760 -3.925
Standard Deviation 17.629 6.748 8.500 13.764 33.237
5% Quantile -27.454 -8.710 -14.810 -22.776 -59.416
95% Quantile 26.068 7.654 12.970 18.984 48.024

CDS bid-ask spread
Mean 0.119 0.201 0.143 0.116 0.077
Standard Deviation 0.045 0.098 0.054 0.044 0.028
5% Quantile 0.063 0.080 0.075 0.065 0.045
95% Quantile 0.190 0.385 0.240 0.184 0.120

CDS-bond basis (in basis points)
Mean -100.083 -58.725 -89.337 -110.218 -108.612
Standard Deviation 124.605 134.273 141.622 146.302 179.062
5% Quantile -432.977 -401.630 -478.673 -477.004 -295.808
95% Quantile -23.224 5.126 -17.217 -17.361 -1.410

Firms 503 16 121 231 135

Panel B: Firm characteristics

Leverage
Mean 0.315 0.154 0.265 0.308 0.442
Standard Deviation 0.038 0.031 0.027 0.041 0.065
5% Quantile 0.262 0.109 0.223 0.254 0.354
95% Quantile 0.384 0.200 0.309 0.384 0.574

Size
Mean 23.221 25.533 24.237 22.982 21.973
Standard Deviation 0.379 0.252 0.420 0.385 0.330
5% Quantile 22.530 25.134 23.534 22.272 21.486
95% Quantile 23.735 25.898 24.848 23.460 22.318

Turnover
Mean 0.009 0.004 0.007 0.008 0.016
Standard Deviation 0.003 0.002 0.003 0.003 0.006
5% Quantile 0.005 0.003 0.004 0.005 0.008
95% Quantile 0.015 0.007 0.012 0.013 0.026

Book-to-Market
Mean 0.564 0.275 0.432 0.601 0.745
Standard Deviation 0.106 0.069 0.066 0.094 0.287
5% Quantile 0.460 0.168 0.347 0.492 0.510
95% Quantile 0.747 0.381 0.547 0.804 1.152

σE
HIST

Mean 0.370 0.263 0.320 0.348 0.521
Standard Deviation 0.066 0.083 0.069 0.059 0.099
5% Quantile 0.271 0.177 0.215 0.265 0.389
95% Quantile 0.455 0.428 0.451 0.429 0.706

Firms 379 11 98 193 77
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Table 1.2: Summary statistics for the final sample of corporate bonds

This table reports summary statistics for the final sample of corporate bonds issued by the 230

firms included in our baseline analysis. Bond data is obtained from Refinitiv Eikon during

the period August 2001-December 2021. In Panel A, we report mean and median values

for bond maturity at issuance (in calendar years), the annual coupon rate (in percentage)

and the nominal value of the amount outstanding (in millions of US dollars). In Panel

B, we report summary statistics on the monthly time series of corporate bond returns (in

percentage). The statistics in Panel A are first computed for each firm averaging across

bonds and then averaged across firms, while those in Panel B are given for the time series

of portfolio returns after averaging the returns across firms in each month. Each firm is

assigned a credit rating based on its average rating across years for which both CDS and

option data are available. The statistics given in Panel B for each rating group exclude

months for which observations are not available for at least one of the rating portfolios.

All AAA-AA A BBB BB-B

Panel A: Bond characteristics
Number of bonds 4,711 292 2,504 1,610 305
Mean maturity 14.418 14.089 14.513 14.874 12.587
Median maturity 12.739 8.609 12.263 13.556 12.170
Mean coupon 5.853 4.420 5.410 6.054 6.596
Median coupon 5.934 4.642 5.520 6.154 6.490
Mean nominal value 447.486 635.958 544.808 393.327 370.143
Median nominal value 386.991 579.717 456.824 348.028 304.097

Panel B: Bond returns (%)
Mean 0.374 0.074 0.241 0.412 0.938
Standard Deviation 2.032 1.562 1.860 2.987 5.637
5% Quantile -1.781 -2.423 -1.924 -1.747 -2.562
95% Quantile 3.153 2.788 2.546 2.702 4.344
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Table 1.3: Summary statistics for alternative option samples

This table reports summary statistics for the final sample of holding-to-maturity options

(Panel A) as well as long-term put options (Panel B) obtained from OptionMetrics during

the period August 2001-December 2021. In particular, mean and median values are reported

for option maturity (on the trading date), moneyness (defined as the ratio of strike to stock

price), open interest and delta. The statistics are first computed for each firm using the time

series of each variable and then averaged across firms. Each firm is assigned a credit rating

based on its average rating across years for which both CDS and option data are available.

Nobs is the number of observations.

All AAA-AA A BBB BB-B

Panel A: Holding-to-maturity options

Mean maturity 27.825 27.808 27.777 27.879 27.735
Median maturity 25.967 26.000 25.957 25.979 25.933
Mean moneyness 0.957 0.963 0.957 0.958 0.952
Median moneyness 0.960 0.966 0.961 0.961 0.953
Mean open interest 4,534 9,984 6,441 2,896 4,537
Median open interest 2,914 7,222 4,387 1,746 2,500
Mean delta -0.308 -0.277 -0.288 -0.318 -0.326
Median delta -0.290 -0.257 -0.270 -0.301 -0.304

Panel B: Long-term options
Mean maturity 346.982 531.820 407.873 306.103 306.128
Median maturity 336.865 539.727 406.396 289.996 293.652
Mean moneyness 0.845 0.804 0.829 0.858 0.843
Median moneyness 0.849 0.797 0.830 0.865 0.847
Mean open interest 2,656 4,702 3,211 1,420 5,407
Median open interest 1,409 2,460 1,699 582 3,532
Mean delta -0.250 -0.213 -0.233 -0.261 -0.262
Median delta -0.229 -0.184 -0.210 -0.241 -0.242
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Table 1.4: Summary statistics on informed trading proxies

This table reports the summary statistics related to our main informed trading proxies. VSkew is defined

as the difference between the implied volatility of a put option with 30 days to maturity and a delta of

-0.20 and the ATM implied volatility, where the latter is computed as the average implied volatility of

a call and a put option with an absolute value of delta equal to 0.50 and 30 days to maturity. VSpread

is defined as the difference in ATM implied volatilities between a call and a put option with 30 days to

maturity and an absolute value of delta equal to 0.50. We first compute the mean VSkew and VSpread

across firms included in a given portfolio in each month, and then provide the statistics for the time

series of VSkew and VSpread of each portfolio. Each firm is assigned a credit rating based on its average

rating across years for which both CDS and option data are available. Firms is the number of firms in

each portfolio. Panel A and Panel B provide statistics for the variables’ levels and changes, respectively.

All statistics are given in percentage. The statistics for each rating group exclude months for which

observations are not available for at least one of the rating portfolios.

All AAA-AA A BBB BB-B

Panel A: Levels

VSkew
Mean 5.214 4.009 4.662 5.208 6.676
Standard Deviation 2.294 2.106 2.238 2.096 3.846
5% Quantile 2.924 1.774 2.475 2.938 2.919
95% Quantile 9.536 8.197 9.223 9.556 15.452

VSpread
Mean -0.191 -0.140 -0.145 -0.193 -0.623
Standard Deviation 0.876 0.721 0.713 0.850 1.899
5% Quantile -1.356 -1.126 -1.002 -1.355 -3.012
95% Quantile 0.787 0.875 0.766 0.859 1.208

Panel B: Changes

∆VSkew
Mean 0.223 0.172 0.251 0.090 0.273
Standard Deviation 2.148 1.868 1.674 1.438 4.666
5% Quantile -1.918 -2.382 -1.740 -1.831 -4.293
95% Quantile 2.668 3.302 3.396 2.867 4.560

∆VSpread
Mean -0.077 -0.054 -0.115 -0.089 0.217
Standard Deviation 1.063 1.159 1.114 1.128 1.994
5% Quantile -1.573 -1.845 -1.368 -1.617 -2.057
95% Quantile 1.453 1.659 1.194 1.685 2.862

Firms 230 11 70 118 31
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Table 1.5: Hedging effectiveness - alternative estimation windows

This table reports the root mean square error (RMSE) in U.S. dollars of the hedging error for an

equally weighted portfolio of CDS contracts across each rating category and for the whole sample

of firms. Each CDS portfolio is hedged dynamically using both equity put options and the equity

market. Option hedging is based on empirical hedge ratios (Empirical-P) as from Equation (3) of

the paper as well as theoretical hedge ratios (Model-P) computed as from Equation (2) of the paper.

Equity hedging is based on empirical hedge ratios (Empirical-S) as from Equation (3), where option

returns are replaced by stock returns, as well as theoretical hedge ratios (Model-S) computed as from

Equation (6) of the paper. Positions are rebalanced each month. We also report the RMSE of an

unhedged CDS portfolio. RMSE values are reported for an out-of-sample analysis where empirical

hedge ratios are based on estimated coefficients from monthly rolling regressions using a rolling

window of two years of monthly data (Panel A), three years of monthly data (Panel B), five years

of monthly data (Panel C) and six years of monthly data (Panel D).

Unhedged Model-P Empirical-P Model-S Empirical-S

RMSEu RMSEh
RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1 RMSEh

RMSEh

RMSEu
− 1

Panel A: 2-year window

All 57,159 44,807 -0.22 43,604 -0.24 47,505 -0.17 44,176 -0.23
AAA-AA 20,192 19,379 -0.04 19,682 -0.03 19,606 -0.03 19,012 -0.06
A 47,175 39,113 -0.17 36,212 -0.23 40,034 -0.15 37,517 -0.20
BBB 57,485 42,903 -0.25 45,768 -0.20 46,445 -0.19 44,929 -0.22
BB-B 125,649 108,708 -0.13 98,757 -0.21 109,088 -0.13 85,858 -0.32

Panel B: 3-year window
All 58,496 45,736 -0.22 45,232 -0.23 48,522 -0.17 44,617 -0.24
AAA-AA 20,723 19,885 -0.04 20,143 -0.03 20,119 -0.03 19,463 -0.06
A 48,423 40,116 -0.17 37,407 -0.23 41,065 -0.15 37,587 -0.22
BBB 58,699 43,601 -0.26 46,683 -0.20 47,259 -0.19 45,371 -0.23
BB-B 123,849 106,124 -0.14 96,390 -0.22 106,460 -0.14 81,860 -0.34

Panel C: 5-year window
All 61,326 47,548 -0.22 46,361 -0.24 50,586 -0.18 45,948 -0.25
AAA-AA 21,864 20,973 -0.04 21,255 -0.03 21,217 -0.03 20,624 -0.06
A 51,305 42,442 -0.17 37,576 -0.27 43,458 -0.15 38,461 -0.25
BBB 61,513 45,182 -0.27 48,591 -0.21 49,176 -0.20 46,703 -0.24
BB-B 123,276 103,389 -0.16 82,607 -0.33 104,223 -0.15 69,576 -0.44

Panel D: 6-year window
All 63,080 48,739 -0.23 48,052 -0.24 51,906 -0.18 47,775 -0.24
AAA-AA 22,538 21,614 -0.04 21,194 -0.06 21,867 -0.03 20,695 -0.08
A 52,878 43,677 -0.17 38,533 -0.27 44,733 -0.15 39,213 -0.26
BBB 63,392 46,426 -0.27 46,672 -0.26 50,580 -0.20 43,592 -0.31
BB-B 121,530 99,837 -0.18 81,253 -0.33 100,998 -0.17 66,302 -0.45
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Table 1.6: Informed trading and hedging error gap between stocks and
options when excluding the Lehman collapse

This table reports estimation results of univariate time-series regressions that use informed trading

proxies (observed on option trading dates) to predict the hedging error gap between stocks and put

options for an equally weighted portfolio of CDS contracts across each rating category and for the

whole sample of firms. We use two main informed trading proxies, namely the changes in volatility

skew (VSkew) and volatility spread (VSpread) computed as in Andreou et al. (2023). In particular,

we compute changes in VSkew (∆VSkew) and VSpread (∆VSpread) as the difference between the

value of each informed trading proxy on the current month’s option expiration date and its value

on the previous month’s trading date. We use these changes to predict next month’s gap in hedging

errors between stocks and put options. Stock/put hedging errors are computed as the absolute value

of the difference between the empirical and model hedging errors according to Equation (8) of the

paper, namely |eSt,EMP
− eSt,MODEL

| for stocks and |ePt,EMP
− ePt,MODEL

| for puts. The hedging

error gap is then defined as the difference in the absolute values between stock hedging errors and

option hedging errors. For put options, empirical hedge ratios are based on Equation (3) of the

paper and theoretical hedge ratios are computed according to Equation (2) of the paper. For stocks,

empirical hedge ratios are based on Equation (3), where option returns are replaced by stock returns,

and theoretical hedge ratios are computed as from Equation (6) of the paper. The hedging errors

in Panels A do not include observations in September, October and November 2008 affected by

the Lehman bankruptcy and are computed in an out-of-sample fashion where empirical hedge ratios

are based on estimated coefficients from monthly rolling regressions using a rolling window of four

years of monthly data. The hedging errors in Panel B are computed in an out-of-sample fashion

where empirical hedge ratios are based on estimated coefficients from monthly rolling regressions

using a rolling window of seven years and a half of monthly data. In this case, out-of-sample

hedging errors start in January 2009. The t-statistics provided in parentheses are based on Newey

and West (1987) standard errors with 7 lags.

All AAA-AA A BBB BB-B

Panel A: Excluding Lehman default

∆VSkew
Slope 2,551.88 51.90 1,998.96 2,659.23 -325.95
t-stat (7.14) (0.19) (4.34) (4.45) (-0.80)

Adj R2 0.20 -0.01 0.16 0.18 -0.00

∆VSpread
Slope 1,878.57 -304.25 2,581.58 -159.11 -908.06
t-stat (1.06) (-0.89) (1.43) (-0.25) (-1.09)

Adj R2 0.02 -0.00 0.05 -0.01 -0.00

Panel B: Starting the out-of-sample period in 2009

∆VSkew
Slope 2,236.18 112.35 1,958.86 2,432.69 -45.00
t-stat (4.91) (0.36) (4.94) (3.73) (-0.22)

Adj R2 0.21 -0.01 0.17 0.21 -0.01

∆VSpread
Slope 1,836.35 -365.37 2,724.43 -590.25 -2,154.28
t-stat (0.98) (-0.96) (1.55) (-0.83) (-0.90)

Adj R2 0.03 -0.00 0.07 0.00 0.00
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Table 1.7: Other Determinants of Credit Spreads

This table reports the results of regressing CDS spread changes on put option returns, Treasury

rate changes and other determinants of credit spreads during the period August 2001-December

2021. Average regression coefficients from firm-by-firm time-series regressions are reported. The

t-statistics are provided in parenthesis and calculated in the same way as in Schaefer and Strebulaev

(2008). ∆r10 is the change in the 10-year constant maturity U.S. Treasury bond rate. retoption
is the put option return. ∆Slope is the change in the slope of the term structure (defined as the

difference between the 10-year and the 2-year Treasury rates). S&P is the return on the S&P 500

index. ∆V IX is the change in the VIX index of implied volatility of options on the S&P 100 index.

Nobs is the average of the number of observations per firm in each portfolio.

All AAA-AA A BBB BB-B

Intercept
0.20 0.07 0.44 0.34 -0.83
(1.15) (0.47) (2.50) (1.40) (-1.02)

retoption
2.63 0.21 1.00 2.74 6.75

(17.99) (1.60) (6.34) (13.35) (10.23)

∆r10
-7.38 -5.25 -1.45 -11.36 -6.37
(-6.31) (-5.46) (-1.27) (-7.36) (-1.09)

∆Slope
3.33 5.29 0.90 7.38 -7.31
(2.16) (4.36) (0.56) (3.56) (-0.98)

S&P
-1.35 -0.43 -0.74 -1.22 -3.55

(-20.01) (-8.19) (-10.85) (-13.49) (-10.81)

∆V IX
0.14 0.07 0.21 0.18 -0.16
(2.67) (1.94) (3.86) (2.68) (-0.62)

Adj R2 0.30 0.31 0.29 0.28 0.37
Nobs 105.43 120.64 119.03 103.80 75.55
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Table 1.8: Information Content of Equity and Options on the Determinants
of Credit Spreads

This table reports the results of regressing the residuals CDS spread changes obtained either from

Equation (7) of the paper or Equation (1.1) on other potential determinants during the period

August 2001-December 2021. We estimate the following time-series regression for each firm j:

ϵj,t = αj + βjotherj,t + vj,t

where otherj,t represents the set of regressors including the change in the bond market illiquidity

measure of Hu et al. (2013) (∆NOISE), the Fama-French Small minus Big (SMB) and High

Minus Low (HML) factors, the return on the S&P 500 index (S&P), the change in the VIX index

of implied volatility of options on the S&P 100 index (∆V IX), the change in the slope of the

term structure (∆Slope) defined as the difference between the 10-year and the 2-year Treasury

rates. Average regression coefficients from firm-by-firm time-series regressions are reported. The

t-statistics are provided in parenthesis and calculated in the same way as in Schaefer and Strebulaev

(2008).

Dependent Variable: Residuals from Equation (7) Residuals from Equation (1.1)

Intercept
0.48 0.68
(2.82) (3.95)

∆NOISE
1.70 1.04
(6.06) (3.61)

SMB
-0.03 -0.09
(-0.59) (-1.94)

HML
0.12 0.08
(2.29) (1.52)

S&P
-0.73 -1.04

(-11.61) (-16.22)

∆V IX
0.16 -0.12
(3.13) (-2.21)

∆Slope
8.68 8.22
(8.77) (8.09)

Adj R2 0.13 0.11
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Table 1.9: Hedge ratio regressions based on MLE of model parameters

This table reports the results of regressing CDS spread changes on put option returns and Treasury

rate changes during the period August 2001-December 2021. We estimate the following time-series

regression for each firm j:

∆CDSj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ βj,r∆r10t + ϵj,t

where hrPs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s and σA

IMP

is estimated using the maximum likelihood estimation (MLE) of Duan (1994). If the combined models

of Merton (1974) and Geske (1979) were accurate, αj,O would not be statistically different from one.

The average regression coefficients from the time-series regressions are reported. The t-statistics are

provided in parenthesis and calculated in the same way as in Schaefer and Strebulaev (2008). ∆r10t is

the change in the 10-year constant maturity U.S. Treasury bond rate. retoptionj,t
is the return on the

put option. The t-statistics for αj,O are with respect to the difference from unity. Nobs is the average

of the number of observations per firm in each portfolio.

All AAA-AA A BBB BB-B

Intercept
-0.24 -0.13 0.34 -0.26 -1.51
(-1.33) (-0.85) (1.97) (-1.08) (-1.71)

retoption
1.11 1.03 1.20 1.04 1.19
(1.30) (0.04) (0.86) (0.75) (2.50)

∆r10
-16.96 -5.96 -9.54 -18.09 -33.37
(-23.68) (-9.93) (-13.21) (-19.64) (-9.18)

Adj R2 0.21 0.11 0.21 0.21 0.23
Nobs 105.43 120.64 119.03 103.80 75.55
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Table 1.10: Regression of CDS changes on put returns with simulated data

This table reports the results of regressing simulated CDS spread changes using Merton

(1974)’s model on simulated put option returns using Geske (1979)’s model. We randomly

choose 10,000 observations from the sample used in the time-series regression analysis (based

on Table 5 of the paper) and allocate them to one of the following rating classes: AAA−AA,

A, BBB and BB−B. Next, we generate the time series of CDS changes and put returns as

follows. For each randomly-drawn observation, we use the corresponding firm-specific quasi-

market leverage and asset volatility both estimated using the maximum likelihood estimation

(MLE) of Duan (1994), the time-to-maturity of the CDS together with the market interest

rate as parameters in the Merton model. Using the Merton model we then generate 20 years

of monthly CDS spread levels and, from these, monthly changes. We also use the strike price

and the time-to-maturity of the option and together with the simulated Merton-based equity

prices, we obtain the simulated monthly option returns. Finally, we estimate the hedge ratio

hrP based on the following time-series regression for each firm j:

∆CDSj,t = αj + hrj,P retoptionj,t
+ βj,r∆r10t + ϵj,t

∆CDSj,t is the change in the CDS spread. ∆r10t is the change in the 10-year constant

maturity U.S. Treasury bond rate. retoptionj,t
is the return on the put option. We report the

coefficient on hrP obtained by taking the average of individual regression coefficients. The

average adjusted R-squared from the individual time-series regressions is also reported. The

t-statistics (in parenthesis) are calculated in the same way as in Schaefer and Strebulaev

(2008).

All AAA-AA A BBB BB-B

hrP from simulation 4.08 2.14 2.94 4.10 7.09
(49.56) (10.20) (30.48) (37.14) (17.01)

Adj. R2 0.24 0.19 0.23 0.24 0.25

hrP from Table 5 (Panel A) 5.14 1.30 2.85 5.08 11.90
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Table 1.11: Effectiveness of default-loss hedging with puts

This table reports the root mean square error (RMSE) in U.S. dollars of the hedging error for an

equally weighted portfolio of CDS contracts across each rating category and for the whole sample

of firms. Each CDS portfolio is hedged dynamically using equity put options. Hedge ratios are

computed as from Equation (1.2) and based on default-loss hedging as described in JPMorgan

(2006). Positions are rebalanced each month. We also report the RMSE of an unhedged CDS

portfolio. RMSE values are for the full sample period.

Unhedged Model

RMSEu RMSEh
RMSEh

RMSEu
− 1

All 57,996 278,539 3.80
AAA-AA 19,577 138,829 6.09
A 47,878 287,462 5.00
BBB 58,449 303,611 4.19
BB-B 126,723 211,003 0.67

Table 1.12: Hedging costs

This table reports the costs of hedging under three alternative hedging strategies: default-loss hedging

with put options as described in JPMorgan (2006); mark-to-market hedging with put options using

our theoretical hedge ratios computed as from Equation (2) of the paper; mark-to-market hedging

with stocks using theoretical hedge ratios as defined in Equation (6) of the paper. Mean theoretical

hedge ratios of each CDS portfolio (expressed in basis points) are converted into dollar amounts by

multiplying them by the average duration of the CDS portfolio. Default-loss hedge ratios provide the

number of put options contracts to purchase and are converted into dollar amounts by multiplying

them by the average put price of each CDS portfolio. Hedging costs are reported in U.S. dollars.

The number of shares or put options required by the hedging strategies are also reported.

Default-Loss Mark-to-Market Mark-to-Market
Put hedge No. puts Put hedge No. puts Stock hedge No. shares

All 122,605 1,064 13,283 94 131,517 2,644
AAA-AA 80,354 836 1,737 8 15,086 242
A 107,036 857 7,973 44 81,129 1,469
BBB 125,886 1,113 14,981 105 146,047 3,125
BB-B 195,126 2,317 34,051 400 340,971 14,384
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Table 1.13: Hedge ratio regressions excluding financial firms

This table reports the results of regressing CDS spread changes on put option returns and Treasury

rate changes during the period August 2001-December 2021. We estimate the following time-series

regression for each firm j:

∆CDSj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ βj,r∆r10t + ϵj,t

where hrPs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s and

σA
IMP is estimated according to Equation (5) of the paper. If the combined models of Merton (1974)

and Geske (1979) were accurate, αj,O would not be statistically different from one. The average

regression coefficients from the time-series regressions are reported. The t-statistics are provided

in parenthesis and calculated in the same way as in Schaefer and Strebulaev (2008). ∆r10t is the

change in the 10-year constant maturity U.S. Treasury bond rate. retoptionj,t
is the return on the

put option. The t-statistics for αj,O are with respect to the difference from unity. Panel A reports

estimates based on the model-free calibration of the model parameters, whereas Panel B is based on

MLE estimation of the main parameters. All coefficients are in basis points. Nobs is the average

of the number of observations per firm in each portfolio.

All AAA-AA A BBB BB-B

Panel A: Model-free calibration

Intercept
-0.34 -0.12 0.27 -0.34 -1.51
(-1.74) (-0.78) (1.53) (-1.31) (-1.72)

retoption
0.96 1.00 0.80 0.99 1.12

(-0.41) (-0.00) (-0.65) (-0.13) (1.75)

∆r10
-16.80 -5.98 -8.02 -17.91 -32.22
(-21.50) (-10.00) (-10.86) (-18.49) (-8.89)

Adj R2 0.22 0.12 0.23 0.22 0.23

Panel B: Maximum likelihood estimation

Intercept
-0.34 -0.13 0.27 -0.33 -1.51
(-1.73) (-0.85) (1.50) (-1.29) (-1.71)

retoption
1.06 1.03 0.87 1.12 1.19
(0.52) (0.04) (-0.36) (1.69) (2.50)

∆r10
-17.09 -5.96 -8.03 -18.11 -33.37
(-21.80) (-9.93) (-10.82) (-18.66) (-9.18)

Adj R2 0.21 0.11 0.21 0.21 0.23

Nobs 101.88 120.64 115.02 100.92 75.55
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Table 1.14: Hedge ratio regressions using holding-to-maturity option returns

This table reports the results of regressing CDS spread changes on put option returns and Treasury

rate changes during the period August 2001-December 2021. We estimate the following time-series

regression for each firm j:

∆CDSj,t = αj + αj,OhrPs,t
(σA

IMP )retoptionj,t
+ βj,r∆r10t + ϵj,t

where hrPs,t
is the mean theoretical hedge ratio at time t for all reference entities in rating s and

σA
IMP is estimated according to Equation (5) of the paper. If the combined models of Merton (1974)

and Geske (1979) were accurate, αj,O would not be statistically different from one. The average

regression coefficients from the time-series regressions are reported. The t-statistics are provided

in parenthesis and calculated in the same way as in Schaefer and Strebulaev (2008). ∆r10t is the

change in the 10-year constant maturity U.S. Treasury bond rate. retoptionj,t
is the return on the

put option. The t-statistics for αj,O are with respect to the difference from unity. Panel A reports

estimates based on the model-free calibration of the model parameters, whereas Panel B is based on

MLE estimation of the main parameters. All coefficients are in basis points. Nobs is the average

of the number of observations per firm in each portfolio.

All AAA-AA A BBB BB-B

Panel A: Model-free calibration

Intercept
-0.26 -0.20 0.28 -0.33 -1.25
(-1.41) (-1.31) (1.57) (-1.31) (-1.39)

retoption
0.99 0.59 0.94 0.98 1.30

(-0.11) (-0.65) (-0.29) (-0.42) (3.62)

∆r10
-15.97 -5.84 -8.66 -17.94 -28.77
(-21.51) (-9.56) (-11.23) (-18.89) (-7.53)

Adj R2 0.20 0.10 0.20 0.21 0.23

Panel B: Maximum likelihood estimation

Intercept
-0.26 -0.20 0.28 -0.34 -1.24
(-1.41) (-1.31) (1.56) (-1.32) (-1.37)

retoption
1.09 0.68 1.03 1.10 1.38
(1.05) (-0.39) (0.13) (1.46) (4.19)

∆r10
-16.21 -5.85 -8.74 -18.14 -29.64
(-21.77) (-9.55) (-11.33) (-19.06) (-7.73)

Adj R2 0.20 0.10 0.19 0.21 0.22

Nobs 104.79 120.45 119.59 102.13 75.40
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