
1

Clinical Prompt Learning
with Frozen Language Models

Niall Taylor1* Yi Zhang1* Dan W Joyce1,3

Ziming Gao1 Andrey Kormilitzin1§ Alejo Nevado-Holgado1§

1Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
2NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK

3Department of Primary Care and Mental Health, University of Liverpool, L69 3GF

Abstract—When the first transformer-based language models
were published in the late 2010s, pre-training with general text
and then fine-tuning the model on a task-specific dataset often
achieved state-of-the-art performance. However, more recent
work suggests that for some tasks directly prompting the pre-
trained model matches or surpasses fine-tuning in performance
with few or no model parameter updates required. The use of
prompts with language models for NLP tasks is known as prompt
learning. We investigated the viability of prompt learning on
clinically meaningful decision tasks and directly compared this
with more traditional fine-tuning methods. Results show that
prompt learning methods were able to match or surpass the
performance of traditional fine-tuning with up to 1000 times
fewer trainable parameters, less training time, less training data,
and lower computation resource requirements. We argue that
these characteristics make prompt learning a very desirable
alternative to traditional fine-tuning for clinical tasks, where the
computational resources of public health providers are limited,
and where data can often not be made available or not be used
for fine-tuning due to patient privacy concerns. Complementary
code to reproduce the experiments presented in this work can be
found at: https://github.com/NtaylorOX/Public_Clinical_Prompt.

Index Terms—Prompt learning, pre-trained language models,
clinical decision support, few-shot learning

I. INTRODUCTION

Both academic and industry research have become domi-
nated by the use of transformer-based Pre-trained Language
Models (PLMs). These are large neural networks that have
been pre-trained on massive amounts of openly available text
data (e.g. the pile [1]). Subsequently, these are often adapted
for various downstream Natural Language Processing (NLP)
tasks. These models slightly vary in their architecture, size,
and language modelling objectives. Architectures are often
either encoder-only (e.g. BERT [2]), encoder-decoder (e.g.
T5 [3]), or decoder-only (e.g. the GPT family [4]). In terms
of parameterisation and the size of the training dataset, the
best-known PLMs can range from 110M parameters and be
pre-trained on approximately 3.3B tokens (e.g. BERT [2],
[5]), to 540B parameters and trained on approximately 780B
tokens (e.g. PALM [6]). Yet for some others, their size and
architecture are kept proprietary and are unknown (e.g. GPT-4
[7]). To adapt a model to a specific application, these PLMs
are often first downloaded from an online hub (e.g. from

* These authors contributed equally to this work.
§ These authors contributed equally and share last authorship.

HuggingFace [8]) and further trained or fine-tuned for a given
task (e.g. sequence classification by introducing additional
neural network layers downstream of the base PLM) or, more
recently, via forms of prompt learning.

Independently of their architecture, size, or how they are
adapted to the new task, PLMs typically do not perform well
on domains that have limited openly available corpora. One
very important example is electronic health records (EHRs) in
medical applications [9], [10], where specialised and idiosyn-
cratic language is used and writing style (for example, the use
of domain-specific abbreviations) differs from that found in
open source corpora. For instance, BERT models pre-trained
on open-source general text and then adapted to specialised
clinical text do not achieve state-of-the-art performance [11],
[12]. To address this limitation, many groups have developed
domain-specific PLMs, which are pre-trained on a large col-
lection of biomedical and clinical text [10], [13]–[19]. We will
refer to these as clinical PLMs. These clinical PLMs can then
be adapted to a specific clinical task with more success than
PLMs trained on general text.

Even with domain-specific pre-training, fine-tuning (to fur-
ther adapt a clinical PLM for a downstream task) will typically
require re-training all parameters of the PLM, which can
be computationally expensive, time-consuming, and unsuit-
able for resource-constrained environments. Furthermore, fine-
tuning can lead to catastrophic forgetting of the pre-trained
knowledge, over-fitting to the smaller fine-tuning dataset, and
achieve lower generalisability to samples of the new task that
were not present in the fine-tuning dataset [20]–[22]. In the
case of clinical PLMs, this lack of generalisability has been
observed, for instance, when fine-tuning on American English
clinical text and then validating on British English clinical text
[23].

To avoid the problems of traditional fine-tuning, prompt
learning has emerged as a promising alternative to adapt PLMs
to downstream NLP tasks. By reformulating the downstream
task as a language modelling text-to-text prediction task [3],
[24], [25], prompt learning uses the PLM without having to in-
troduce task-specific layers on top. A few reliable approaches
to prompt learning have already emerged, such as prompting
few-shot examples [4], prompt-tuning [26], prompting task
explanations [27], p-tuning [28], chain-of-thought [29], self-
reflection [30]. These approaches have largely been tested
in tasks for which there are plentiful open source data, but

2

they have been scarcely explored in the clinical domain. Not
having to fine-tune the entire PLM is especially attractive in
this domain, where data and computing resources are limited.
Nevertheless, much of the prompt learning research thus far
has relied upon the largest PLMs (e.g. PaLM [6], GPT-3 [4]),
which even without any fine-tuning requires massive storage
and computational power (to serve a 175B size model it would
require approximately 350GB of vRAM and the weights of the
model alone around 300GB in memory). There has been little
exploration of prompt learning approaches with smaller PLMs
such as BERT.

In this study, we explore the suitability of prompt learning
to adapt PLMs to clinical classification tasks. We compare
prompt learning to the more traditional fine-tuning approach,
e.g. using a classification head on top of the PLM. We also
directly compare the performance of each approach when
the PLM itself is fine-tuned or frozen during adaptation to
the downstream tasks. We assess each approach in terms of
its performance, training speed, required number of samples,
and required number of parameters. We also assess different
types of prompting, such as manual, soft, or mixed prompts.
Our findings show that prompt learning can outperform tra-
ditional fine-tuning on various clinical tasks, making it a
more resource-efficient and privacy-preserving alternative for
clinical settings. This study provides a framework for applying
prompt learning to other PLMs and downstream classification
tasks, suited to resource-constrained environments such as the
clinical domain.

II. RELATED WORK

Numerous studies have examined prompt learning in well-
established NLP benchmarks, such as the Stanford Sentiment
Treebank v2 (SST2) dataset and the General Language Un-
derstanding Evaluation (GLUE) dataset [4], [24]–[26], [31],
[32]. A consistent finding across these studies is that prompt
learning can achieve performance comparable to traditional
fine-tuning when using some specific types of prompt learning,
such as few-shot prompts or prompt tuning [32]. However,
prompt learning appears similarly sensitive to the PLMs pre-
training. One recent study used few-shot prompt learning to
adapt one of the largest PLMs (GPT-3) to clinical tasks,
observing a decrease in performance compared to similar tasks
from the general domain [33]. This indicates that even the
largest PLMs may not yield optimal results when directly
applied to specialised domains, necessitating the development
of domain-specific PLMs.

In a recent study, prompt learning was employed to assess
zero-shot performance on a clinical task using various clinical
and non-clinical PLMs using natural language prompts [34].
The authors found that clinical PLMs outperformed general
PLMs for a given task. Our work builds upon these findings
by introducing different prompt learning training strategies
and then analysing their performance across different clinical
decision tasks. Furthermore, we investigate the impact of few-
shot settings on both prompt learning and fine-tuning.

Other parameter-efficient methods to adapt a PLM to a new
task include inter-layer adapters [35] and LoRA [36]. How-
ever, prompt learning still has the capacity to leverage expert

knowledge, which is especially beneficial in domains where
there are highly trained human experts, such as the medical
domain. This knowledge can be leveraged by designing the
prompts in collaboration with human experts, which can help
build prompts that maximise performance. Consequently, we
reserve the examination of alternative methods (other than
prompt-based methods)for future research endeavours.

The key contributions of this work are:
• Multiple prompt learning strategies trained for various

clinical classification tasks
• Direct comparison of prompt learning versus traditional

fine-tuning for adapting PLM’s to clinical downstream
tasks

• We are the first to apply prompt learning directly to an
EHR dataset in the form of Mimic-III

• Introduction of an ICD-9 based triage task for the
MIMIC-III dataset

III. METHODS

A. Experimental Design

Throughout this paper, we will be compared two approaches
for adapting a PLM to a clinical downstream task. One
approach is the more traditional method of combining the
base PLM with a classification head on top, as described in
Fig. 1 below. The other approach is prompt learning, which
introduced prompts and verbalizers to the PLM and does not
require an additional classification head, as described in Fig.
2 and Fig. 3. For both approaches, the PLM base can remain
frozen or be fully fine-tuned (all parameters updated) during
the task adaptation. The four key experimental setups are
shown in Table I.

TABLE I
EXPERIMENTAL SETUPS FOR ADAPTING A PLM TO DOWNSTREAM

CLINICAL TASKS. PLM PARAMS ARE THE MODEL PARAMETERS OF THE
BASE PLM

Approach PLM params
PLM + Prompt learning Frozen
PLM + Prompt learning Fine-tuned
PLM + Classification head Frozen
PLM + Classification head Fine-tuned

B. PLM with a classification head

A PLM can be adapted to a new task, such as sequence
classification, by introducing additional layers on top of the
PLM in the form of a classification head (traditional fine-
tuning). In our implementation, the PLM is fed with an input
sample x, which consists of a string of w number of words
converted to tokens using the PLMs tokenizer which has a
fixed vocabulary V . Mathematically, we say that x ∈ Vw.
The exact vocabulary of a PLM depends on the tokenization
method used, although the BERT-based models reported upon
in this work use a word-piece tokenizer [2], [14]. This PLM
fPLM (·) then transforms the input x into a list of so-
called embeddings Ei, one per token i. Each embedding is

3

a numerical representation of the corresponding token, and it
consists of a vector of m numbers:

fPLM (x) = [E1,E2, ...,Ew] (1)

where fPLM (·) : Vw −→ Rw×m, Ei ∈ Rm for all i, and [...]
represent concatenation of vectors.

Next, the output of the PLM is fed to a pooling function
fpool(·), which averages all the embeddings along the word
dimension to obtain a single vector representation e of the
whole input*:

fpool ([E1,E2, ...,Ew]) = e (2)

where fpool(·) : Rw×m −→ Rm, and e ∈ Rm.
Finally, the output of the pooling function is fed to the

classification head fhead(·), which has the task of calculating
the logits yj of each of the possible c classes j ∈ C. A softmax
operation is applied to the logits to produce a normalized
probability score that x belongs to each of c possible classes.
Mathematically, for one sample with vector representation e,
the probability of the sample belonging to class j is:

fhead(e) = [y1, y2, ..., yc] ,

P (j) = softmax([y1, y2, ..., yc]) =
exp(yj)∑c
k=1 exp(yk)

where fhead(·) : Rm −→ Rc, and yj ∈ R for all j. The
classification head can have any number of layers (depth)
d ∈ N, we opted for d = 2. The full architecture is represented
diagrammatically in Fig. 1. Please note that in the following
figures: Fig. 1, 2, 3 the blue boxes refer to data, and the black
boxes refer to transformation or operations. In Fig. 2, 3 the
green boxes refer to the manual prompt template, the orange
box refers to the masked token position and the purple box
refers to soft or trainable prompt components.

 Patient is complaining of severe chest pain

Pre-trained Language Model

Whole Sentence Embedding

Classfication Head

Back propagation

(Optional)
Back propagation

Pooling Function

Fig. 1. Illustration of the traditional fine-tuning method with a PLM +
classification head. The option to freeze the PLM is shown in dotted lines.
Here [CLS] and [SEP] tokens are special tokens for BERT-based models added
to the beginning and end of sequences, respectively.

*different methods for obtaining a single vector representation of a
sequence exist

C. Prompt Learning

Prompt learning can be achieved via the following steps:
given an input text x, we modify it to a prompt format
x′ = fp(x), where fp, often called a template, will normally
prepend, append, or insert a number of additional token
embeddings to the original input along with a masked token,
denoted by <[MASK]>. We then feed x′ into the PLM to
predict the masked token, which is the same as the Masked
Language Modelling (MLM) pre-training objective of most
BERT-based models. For simplicity, in this section we use
h(x) = [E1,E2, . . . ,Eh] ∈ Rw×m to denote the embedding
of an input sequence x of length w. The possible values to
be predicted depend on the PLM’s vocabulary V , as defined
by the tokenizer used for pre-training. A second and crucial
step is to map tokens or words in the known vocabulary of
the PLM to class labels in the downstream task, achieved
with a mapping g : V 7→ C, where C is the set of classes.
This is known as verbalization. The verbalizer can be seen
as a mapping between single, or multiple different tokens to
distinct class labels. We denote the mapping from the hidden
representation of <[MASK]> as fmask : Rw×m → Rm, where
w is the sequence length of x′. The embedding or hidden state
represented at the <[MASK]> position output by the PLM is
then passed through a feed-forward classification head, and
probabilities related to the derived label tokens are retrieved
and used to determine the predicted token and in-effect class.

A simple prompt-based clinical classification example could
be to determine whether a patient has heart disease with class
labels as sick and healthy, a prompt learning setup could be as
follows: Take the template “<clinical text> <prompt=“Patient
is”> <[MASK]>”, where <clinical text> represents the original
input text, the <[MASK]> token is the label or class to
predict. The verbalizer will map certain tokens to each class of
sick and healthy separately, essentially a dictionary mapping
e.g. { “Healthy”: ‘fine’, and “Sick”: ‘unwell’}. Subsequently,
if the token predicted at the <[MASK]> position is ‘fine’
then this will be mapped to the Healthy class. Thus, the
sentence “Patient is complaining of severe chest pain.” will
first be wrapped by the pre-defined template as “Patient is
complaining of severe chest pain. Patient is <[MASK]>”.
The wrapped sentence is then tokenized and fed into the
PLM to predict the probability distribution over the PLM’s
vocabulary on the <[MASK]> token position, although only
the probabilities of the tokens (‘fine’ and ‘unwell’) that are
mapped to each class that are contained in V are considered,
and the model should have a higher probability for “unwell”
and predict the class “sick”. We offer an illustration of the
basic prompt framework in Fig. 2.

Within the broad prompt learning framework there are a
large number of possible design configurations. For brevity
we will distinguish manual templates and verbalizers, from
soft templates and verbalizers.

1) Manual prompt learning: We refer to the prompt learn-
ing strategy with handcrafted templates and verbalizers as
manual templates and manual verbalizers respectively. This
strategy was first proposed as Pattern-Exploiting Training
(PET) [37]. A manual template has the form of x′ =

4

Patient is complaining of severe chest pain. Patient is [MASK]

Masked Language Model

Probability Distribution over Vocabulary:

(O
ptional)

 B
ack propagation

[MASK]Input text sequence Manual prompt

Prompt input

Verbalizer Filtering:

Verbalizer Mapping:

Pre-trained Language Model

Fig. 2. Illustration of the manual template and verbalizer components in the
prompt learning framework.

{[P0, P1, . . . , Pj] ,x, [Pj+1, Pj+2, . . . , Pk] , [MASK]}, where
for i ∈ {0, 1, . . . , k}, Pi denotes the token of the template.
As x′ is fed to the PLM to get h(x′), the prompt tokens
Pi are also mapped to the embedding space of the PLM. We
denote the set of words in the verbalizer for each class y ∈ C
to be Vy , which means each class may have multiple assigned
words. The step in which the words are mapped to each class is
called verbalizer filtering, denoted by g′ : V 7→ VC , where VC

is the set of classes with their assigned words. The probability
of each class given the input x and its prompt x′ is thus:

P (y | x) =
exp

(
1

|Vy|
∑

t∈Vy PM (t | x′)
)

∑|C|
i=1 exp

(
1

|Vi|
∑

t∈Vi PM (t | x′)
) .

Manual templates and verbalizers are discrete and bound to
the PLMs pre-trained vocabulary, so there are no additional
parameters to train, although fine-tuning the PLM is still
possible. The engineering of the manual prompt learning is
not straight forward, with large variations in performance
emerging from small changes to the tokens, and typically
domain expertise is required.

2) Soft prompt learning: One can however sacrifice the
human interpretability of the manual prompt learning com-
ponents and use trainable or soft prompt components (similar
to prompt tuning [26]). Soft prompt learning operates simi-
larly to the manual approach, but replaces the fixed manual
components with trainable or soft embeddings (continuous
vectors) of the same dimension as the original PLM embed-
dings. The error from the downstream task can then be back-
propagated to update only these new embeddings of the soft
template and verbalizer. The soft prompt template is achieved
by using trainable embeddings via the following form:
x′ = {[S0, S1, . . . , Sj] ,x, [Sj+1, Sj+2, . . . , Sk] , [MASK]},

where for i ∈ {0, 1, . . . , k}, Si denotes the token of the soft
template. As x′ is fed to the PLM to get h(x′), the prompt
tokens Si are also mapped to the embedding space, where
we can assume h(Si) to be optimized during training and
such tokens are denoted as <[soft]> in the template format.
Optionally, Si can be initialized from an existing word token
embedding from the PLM, like in a manual template, or a
random vector with the same dimension.

A template where all tokens are <[soft]> is called a soft
template, while a template with a mixture of manual and
<[soft]> tokens is called a mixed template. An illustration of
the data flow for a mixed template and soft verbalizer setup
is presented in Fig.3.

Back propagation

Patient is complaining of severe chest pain. [soft]

[MASK]

Pre-trained Language Model

Patient is

Input text sequence Manual prompt Soft prompt

[MASK]

Masked Language Model

Soft verbalizer

inner product & softmax

Prompt input

(O
ptional)

 B
ack propagation

Fig. 3. Illustration of a mixed template and soft verbalizer in the prompt
learning framework. If the <[soft]> token S0 is not defined manually in
advance, the embedding h(S0) ∈ Rm will be randomly initialized in the
hidden space.

Similarly, a soft verbalizer can be interpreted as replacing
assigned class label words from the manual verbalizer with
trainable vectors (embeddings) for each class. Therefore, when
using the soft verbalizer there is no need to build the mapping
from vocabulary V to class labels C as there was for the manual
verbalizer. A caveat of this is that these trainable vectors
do not implicitly have semantic meaning as they were not
trained through a language modelling objective. The resulting
verbalizer then becomes a matrix operator Θ ∈ Rn×m, where
n represents the number of classes and m represents the
dimension of the generated embeddings. We denote the i-th
row of Θ as θi for each trainable embedding of class i. Then
the output is processed with fmask : Rw×m → Rm, where w is
the sequence length of x′. Therefore, the probability of class
y given the input x and its prompt x′ can be calculated by

P (y | x) =
exp

(
θ⊤y fmask(h(x

′))
)∑n

i=1 exp
(
θ⊤i fmask(h(x′))

) .
D. Pre-trained Language Models

To investigate prompt learning in a setting similar to the
environment in which it may be deployed (e.g. in a clini-
cal environment), we chose BioClinicalBERT [11], [14]: a
clinical PLM pre-trained on a large collection of PubMed
abstracts and full articles [11], followed by further training
on all MIMIC-III notes. PLMs have been shown to benefit

5

from domain specific pre-training [16] – here, we investigate
whether prompt learning can utilise PLMs for downstream
tasks and to compare performance to traditional fine-tuning
with a classification head. Results throughout the main body of
this paper will focus on BioClinicalBERT, however results for
a selection of similarly sized clinical and non-clinical PLMs
are presented in Appendix C.

E. Clinical Dataset

We used the Medical Information Mart for Intensive Care
III (MIMIC-III) [38], a medical dataset developed by the MIT
Lab for Computational Physiology. It is comprised of de-
identified EHRs associated with 38,597 critical care patients
and 58,976 intensive care unit (ICU) admissions at the Beth
Israel Deaconess Medical Center between 2001 and 2012.
Data includes demographics, vital signs, laboratory tests,
medications, caregiver notes, imaging reports, and mortality
in and out of hospital. While the clinical tasks presented
here may benefit from utilising the multi-modal data available
for each patient, we focus on the use of free text clinical
notes. Full details and code for reproducing these datasets and
experiments is provided by authors.†

IV. EXPERIMENTS - CLINICAL TASKS

a) ICD-9 50: Within the MIMIC-III data are standard-
ised International Classification of Diseases version 9 (ICD-9)
codes, which are used to record diagnosis and procedures. A
common task is to classify the ICD-9 diagnosis code based
on a patients data for billing reasons, and it has been an
objective to do so with the unstructured text data alone [39].
There are approximately 2,000 unique diagnosis codes present
in the MIMIC-III dataset with a very skewed distribution,
resulting in an extreme multi-class problem which is beyond
the scope of this paper. For our classification task we opted
to subset the top 50 most frequent ICD-9 diagnosis codes that
have a corresponding set of clinical notes, as has been done
previously [39]–[41].

b) ICD-9 Triage task: A potential concern with the
ICD-9 diagnosis code classification task is that the codes
themselves may be mentioned explicitly in the notes [39]‡, and
further, simply classifying patients’ ICU discharge notes into
ICD-9 diagnosis codes lacks ecological validity as a clinical
decision support task. For example, within a hospital setting,
patients admitted to an ICU will be treated and then “stepped
down” (discharged) to another ward or team to progress their
treatment when they no longer require ICU. We collaborated
with clinicians to design a novel task that aims to make the
classification task more similar to the decision making process
of arranging patient flow during discharge from the ICU. For
example, a patient being discharged from the ICU after a
cardiac event may be stepped down to a cardiology team (if
the admission to ICU resulted from primary heart failure) or
general internal medicine (if the cardiac event was secondary

†complementary code to reproduce experiments is provided at: https://
github.com/NtaylorOX/Public_Clinical_Prompt

‡it was shown samples where diagnosis was not mentioned explicitly only
had a slight drop in performance

to e.g. sepsis or multi-organ failure). Similarly, a patient
admitted to ICU with obstetric complications will likely be
stepped-down to a maternity ward. In essence we grouped
together the ICD-9 diagnosis codes into “teams” that reflect
the post-ICU triage destination (or “patient-flow”) decision
making found in hospital settings.

For this task we selected the top 20 most frequent ICD-
9 diagnosis codes in MIMIC-III and a clinician provided
triage groups based on which a team would likely continue
the patient’s care on being stepped down from ICU. The
training classes are therefore many-to-one mappings of ICD-
9 codes to “discharge destination teams” and we derived
the following seven post-ICU destination teams: Cardiology,
Obstetrics, Respiratory Medicine, Neurology, Gastroenterol-
ogy, Acute or Internal Medicine, and Oncology. The resulting
dataset consists of 15,000 clinical notes across the 7 triage
categories. For further details see Appendix B.

c) In hospital mortality: A frequently used benchmark
clinical support task with the MIMIC-III dataset is the predic-
tion of whether a patient will survive their hospital episode.
Within the MIMIC-III database are structured data relating to
the mortality status of a patient, which paired with a date and
timestamp allows for easy labelling of the data. Only notes
prior to the mortality flag are considered, and some simple
regular expression rules were used to filter any notes that
had explicit mentions of a patient’s death, similar to that of
previous work [39], [42].

d) Length of stay in ICU (LoS): Predicting how long
a patient will require treatment in the ICU is of significant
value to hospitals who aim to optimise the flow of patients
in resource-limited settings (that is, there are usually very few
ICU beds compared to the hospital’s overall bed capacity). We
model this as a four way classification task, binning length of
stay in the following categories: Under 3 days, 3 to 7 days,
1 week to 2 weeks, and more than 2 weeks [39]. These are
given class labels of 0, 1, 2, 3 respectively.

e) Full and few-shot training: We will be comparing the
evaluation performance of the modelling approaches in full
and few-shot training setups. An important note for our few-
shot experiments is that sample size will refer to the number of
samples per class for the training set, i.e. N = s× c where N
is the total training set, s is the sample size per class and c is
the number of unique classes§. All evaluation results presented
are on the full held-out test sets for each task with the different
training sample sizes.

V. RESULTS

A. Comparison of different prompt learning setups

The number of possible combinations of templates and
verbalizers in the prompt learning framework is vast, and
exploring all is beyond the scope of this work. As such we
have opted to utilise previous research to derive the most
suitable prompt learning setups for our use case. We conducted
an initial experiment comparing the performance of six prompt
learning combinations on one clinical task to establish the best

§Note in some instances not all classes can fill the sample size, so for
some few-shot experiments there will remain a class imbalance

6

performing combination, which we carried through to the other
clinical tasks. We chose the ICD-9 Triage task as the baseline
task due to it being a relatively straight forward multi-class
classification problem with a reasonably balanced distribution
of classes when compared to the other tasks. The prompt
learning setups were all possible combinations of a manual,
mixed or soft template with a manual or soft verbalizer. The
results are summarised in Table II, where prompt combination
can be read as (template, verbalizer) i.e. a manual template
with a soft verbalizer is (manual, soft). Note that there is
no results for a (manual, manual) prompt combination. This
is because when the PLM parameters are frozen with this
prompt combination there would be no parameters to update
with respect to the clinical task. As this experiment aimed
to investigate how training and evaluation performance was
affected by different prompt learning setups, we do not report
results where no training has occurred.

TABLE II
TABLE COMPARING DIFFERENT PROMPT LEARNING SETUPS ON ICD-9

TRIAGE TASK. PLM PARAMS REFERS TO WHETHER THE PLM BODY WAS
FROZEN OR FINE-TUNED DURING TRAINING. FOR PROMPT

COMBINATIONS, T REPRESENTS TEMPLATE AND V REPRESENTS
VERBALIZER.

PLM params Prompt combination(T,V) Balanced accuracy

Fine-tuned (manual, manual) 0.8765
(manual, soft) 0.8818

(mixed, manual) 0.8817
(mixed, soft) 0.8824

(soft, manual) 0.8860
(soft, soft) 0.8954

Frozen (manual, soft) 0.7524
(mixed, manual) 0.8474

(mixed, soft) 0.8724
(soft, manual) 0.8591

(soft, soft) 0.8900

The evaluation performance between the different prompt
template and verbalizer combinations were very similar when
the PLM was fine-tuned, but when the PLM is frozen large
differences emerged. This is linked in part to the varying
number of trainable parameters introduced by each prompt
learning set up (manual components do not introduce any),
as well as the known limitation of prompt engineering where
subtle changes to prompts can lead to performance differences
[43]. Whilst the soft template and soft verbalizer combination
performed the best overall, we opted to the combination of
mixed template and soft verbalizer as our prompt learning
benchmark going forward. The mixed template offers a degree
of human level interpretability by allowing the injection of
domain specific prompt tokens, whilst maintaining the power
of trainable soft token embeddings alongside. For examples of
mixed templates used for the tasks, see Appendix ??.

B. Prompt learning versus Classification head

We report balanced accuracy across different training sam-
ple sizes for the four clinical tasks for the clinical PLM with
either prompt learning or a classification head in Fig. 4. Each
framework utilises the exact same PLM and results for both
fine-tuning and freezing the entire PLM are presented. In the

case of the frozen PLM, only the parameters introduced by the
classification head or prompt learning components are updated
during training. We found that prompt learning can match or
improve on using a classification head, with a much smaller
gap in performance between the frozen and fine-tuned PLM
setting across few-shot and full training setups.

0.25

0.50

0.75

PLM + Classification head

IC
D

-9 50

PLM + Prompt learning

0.25

0.50

0.75

IC
D

-9 Triage

0.25

0.50

0.75

LoS

16 32 64 128 Full

0.25

0.50

0.75

16 32 64 128 Full

M
ortality

PLM
Fine-tuned
Frozen

Sample size

Ba
la

nc
ed

 a
cc

ur
ac

y

Fig. 4. Balanced accuracy for training the PLM with prompt learning (left)
and a classification head (right) across the four clinical tasks given by each
row. The “Full” sample size refers to a full training data set which varies in
size from task to task. The color of the line refers to whether the underlying
PLM was frozen or fully fine-tuned during training.

Performance for any experimental setup on the length of
stay and mortality prediction is relatively poor, whilst being
in line with previous research [39]. This leaves little room
for interpretation of how one training approach may enhance
the task performance, with only subtle differences between the
use of prompt learning and a classification head. The two tasks
related to ICD-9 diagnosis codes show clear differences be-
tween the experimental setups, with prompt learning achieving
a higher performance across the sample sizes when the PLM
was frozen during training.

C. Training hyperparameter search
Prompt learning and traditional fine-tuning each have large

hyperparameter spaces. Initial experiments used sensible hy-
perparameters based on previous research [8], [44], and using
prompt learning or a classification head achieved similar per-
formance when the PLM was fine-tuned, see Fig. 4. However,
when freezing the PLMs, prompt learning appeared superior
even with substantially fewer task specific trained parameters.
In order to ensure the performance differences were not due to
poor hyperparameter choices, we conducted a hyperparameter
search within our single GPU’s capabilities. We chose the
ICD-9 Triage task as the test suite. The hyperparameter search
space is provided in Table III.

The results of the subsequent optimized models for the ICD-
9 Triage task are presented in Table IV. Further details of the
hyperparameter search and results are presented in Appendix
A.

7

TABLE III
HYPERPARAMETER SEARCH SPACE USED FOR OPTMIZATION OF PROMPT

LEARNING AND CLASSIFICATION HEAD FINE-TUNING

Parameter Search space

classifier learning rate log.uniform[1× 10−5, 3× 10−1]
batch size [4, 8, 16]
gradient accumulation steps range[2, 10]
dropout range[0.1, 0.5]
optimizer categorical[adamw, adafactor]
prompt learning rate log.uniform[1× 10−5, 3× 10−1]
verbalizer learning rate log.uniform[1× 10−5, 1× 10−1]

TABLE IV
EVALUATION METRICS FOR THE ICD9 TRIAGE TASK AFTER TRAINING

WITH DERIVED OPTIMAL HYPERPARAMETERS USING PROMPT LEARNING
OR A CLASSIFICATION HEAD WITH FROZEN PLMS

Approach Balanced accuracy F1 weighted AUC

PLM + Classification head 0.8162 0.8919 0.9811
PLM + Prompt learning 0.8698 0.9246 0.9889

D. Sensitivity analyses

Results suggested that on all tasks prompt learning out-
performed the traditional fine-tuning model when using a
frozen PLM, see Fig. 4. A possible explanation may be the
larger number of parameters (introduced by the classification
head) in traditional fine-tuning leads to over fitting. To reason-
ably determine the effect of varying quantities of additional
trainable parameters for both prompt learning and traditional
fine-tuning, we varied the number of additional parameters
introduced and compared the performance on the ICD-9 Triage
task, see Fig. 5. Concretely, adjusting the number of trainable
parameters for traditional fine-tuning involves adjusting the
number of layers and hidden dimension size of the classifica-
tion head. For prompt learning adjusting number of trainable
parameters requires just changing the number of soft template
tokens and whether to include a soft verbalizer (manual tem-
plates and verbalizers have no trainable parameters). A training
set of 128 samples per class was used as this approached
peak performance without requiring a full training run. Note
that prompt learning with the fewest trainable parameters (N
params = 1,536) achieves comparable performance to the
traditional fine-tuning model with 1000 times the number of
trainable parameters (N params = 1,552,007).

The variability in prompt learning performance based on the
template and verbalizer has been well established [24], [44],
[45]. We opted to focus on the use of a mixed template format
which is based around designing a common sense manual
template for the task alongside soft tokens (embeddings) as
described in Fig. 3. To determine whether mixed templates
benefit from a common sense or domain specific manual
template, we compared performance of different templates,
including one with a mix of unrelated and random tokens.
Results are shown in Table V and we can see that having just
one soft token or a set of random and unrelated manual tokens
leads to a drop in performance.

3.5 4.0 4.5 5.0 5.5 6.0
Number of trainable parameters (Log10)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ba
la

nc
ed

 a
cc

ur
ac

y

Method
PLM + Classification head
PLM + Prompt learning

Fig. 5. Balanced accuracy for prompt learning versus traditional fine-tuning
with a classification head, each with increasing number of trainable parameters
on top of frozen PLM. For readability, logarithmic scale is used on the x-axis.

TABLE V
BALANCED ACCURACY FOR DIFFERENT MIXED PROMPT TEMPLATES FOR

THE ICD-9 TRIAGE TASK.

Prompt text Balanced accuracy

<[soft]>: "This" <[MASK]> 0.8195

<[soft]>: "This" patient <[soft]>:"should go to" <[MASK]>. 0.8539

<[soft]>: "This" patient should <[soft]>:"go to" <[MASK]>. 0.8491

<[soft]>: "This" patient should <[soft]>:"go to this medical team
based on symptoms of their illness" <[MASK]>.

0.8624

random words here <[soft]>:"random" <[MASK]>. 0.8346

TABLE VI
MEMORY STORAGE, TRAINING TIMES IN MEGA BYTES (MB) AND GPU

VRAM REQUIRED FOR PARAMETERS INTRODUCED BY PROMPT LEARNING
AND A CLASSIFICATION HEAD USED FOR FINE-TUNING

BIOCLINICALBERT ON THE ICD-9 TRIAGE TASK. TRAINED PARAMS
REFER TO THE SET OF MODEL PARAMETERS THAT ARE UPDATED WITH
RESPECT TO THE DOWNSTREAM TASK DURING TRAINING. TRAINING

TIMES ARE BASED ON 1 EPOCH WITH BATCH SIZE OF 8

Trained params N trained params(#) Storage(MB) Train time(secs) GPU vRAM(GB)
Soft prompt 7144 0.012 83 4.6
Classification head 595,975 2.26 90 5.2
PLM + soft prompt 108.3× 106 415.7 110 11.2
PLM + classification head 108.9× 106 475.5 115 11.6

E. Comparing compute and storage requirements

The storage requirements for the additional parameters
introduced by prompt learning and the classification head is
an order of magnitude smaller than for the PLM itself. When
keeping the PLM frozen during training for downstream tasks,
these additional parameters can be portable and remain specific
to a given task, whilst preserving a static PLM. This can enable
efficient re-use of the same base model for different tasks and
datasets. The comparison of the number of introduced trainable
parameters for traditional fine-tuning and prompt learning with
comparable evaluation performance is presented in Table VI.

VI. DISCUSSION

The experiments presented directly compare adapting a
PLM to a clinical downstream task using either prompt learn-
ing or a more traditional classification head. The objective was

8

to ascertain whether the performance for prompt learning in
general domain text datasets translates to the clinical domain.
We present four clinical decision tasks related to patient
outcomes in both full training and few-shot setups. Prompt
learning can typically match the performance of traditional
fine-tuning, and even outperform traditional fine-tuning in the
few-shot setting. Most notably the performance of prompt
learning when the PLM was entirely frozen was able to
out-performing traditional fine-tuning with considerably fewer
trainable parameters, see Fig. 5. The trade-off between per-
formance, efficiency in training, portability and re-usability
of the underlying language model is important to consider.
In resource light environments, where new data may be
ingested frequently or the style of data or desired task may
change regularly, then training and storing only the prompts
or whichever task specific parameters have been introduced is
more desirable than re-training the entire PLM each time.

The exact reason as to why prompt learning leads to better
performance through injecting trainable parameters within the
PLMs input, as opposed to a classification layer on top, is not
clear. One could postulate that embedding the task in a format
similar to that of the original pre-training objective used for
the PLM better aligns the task. Further research is required to
investigate this more extensively.

A. Limitations

a) Pre-training data leakage: The choice of clinical
PLM for the reported MIMIC-III tasks was BioClinicalBERT
[14], which itself had been pre-trained on MIMIC-III notes.
This may in turn have made the tasks easier or inflated the
evaluation performance. Especially for the prompt learning
approach which re-frames the downstream objective to be
similar to the original pre-training objective. Nevertheless, we
do show that prompt learning still outperformed traditional
fine-tuning with other clinical, or non-clinical PLMs where
data leakage is not an issue in Appendix C.

b) Task performance variance: We presented four clin-
ical tasks derived from MIMIC-III notes data, and whilst we
achieved results in line with previous research [39], the relative
performance on the length of stay and mortality prediction
tasks were quite poor regardless of the framework. This limits
the interpretability of framework differences in performance,
and whether one is more suitable to some tasks than others.
Similarly, we found that using a hyperparameter search for
the ICD-9 Triage task improved the frozen PLM performance
of the traditional fine-tuning approach by a reasonable margin
and a more extensive hyperparameter search may shift this
further. Nevertheless, this was also true for the prompt learning
approach, but these models appeared far more robust to
changes in hyperparameters and still required substantially
fewer trained parameters.

B. Conclusion

Our study found that prompt learning outperformed a tradi-
tional fine-tuning approach when the PLMs are frozen prior to
training on the downstream task. Prompt learning also requires
fewer trainable parameters to achieve superior performance

when compared to training a classifier head with a frozen
PLM. The ability to utilise a single frozen PLM and share
or reuse the embeddings across a number of task specific
modules, each with their own trainable prompt, is desirable for
clinical applications. In the field of clinical decision support
tools, a computationally efficient and interpretable model with
good sufficient performance but with the facility to be used
a CPU is prima-facie more desirable than a trillion-parameter
model that requires high-performance computing clusters with
large arrays of GPUs. The prompt learning framework is an
evolving paradigm with variants being introduced regularly,
thus we cannot claim to have covered the entire scope of
prompt learning in this work. We have opted to use the most
readily available and resource efficient prompt approach to
achieve our results. This work can act as a basis for further
clinical prompt learning work, and may encourage the use
of relatively small domain-specific PLMs rather than relying
on large, general, domain-independent PLMs. Future work
would benefit from exploring a wider range of task, and other
parameter-efficient methods.

ACKNOWLEDGEMENT

NT is supported by the EPSRC Center for Doctoral Training
in Health Data Science (EP/S02428X/1). AK, ANH, YZ and
DWJ were supported in part by the NIHR AI Award for
Health and Social Care (NIHR-AI-AWARD0-2183); AK and
ANH declare a research grant from GlaxoSmithKline. The
views expressed are those of the authors and not necessarily
those of the UK National Health Service, the NIHR, the UK
Department of Health, or the University of Oxford.

REFERENCES

[1] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy,
“The Pile: An 800GB Dataset of Diverse Text for Language
Modeling,” Dec. 2020, arXiv:2101.00027 [cs]. [Online]. Available:
http://arxiv.org/abs/2101.00027

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[3] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” J. Mach. Learn.
Res., vol. 21, pp. 140:1–140:67, 2020. [Online]. Available: http:
//jmlr.org/papers/v21/20-074.html

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-
Shot Learners,” Jul. 2020, arXiv:2005.14165 [cs]. [Online]. Available:
http://arxiv.org/abs/2005.14165

[5] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What
Does BERT Look at? An Analysis of BERT’s Attention,” in
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. Florence, Italy: Association
for Computational Linguistics, 2019, pp. 276–286. [Online]. Available:
https://www.aclweb.org/anthology/W19-4828

9

[6] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Brad-
bury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya,
S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robin-
son, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M.
Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child,
O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat,
M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and
N. Fiedel, “PaLM: Scaling Language Modeling with Pathways,” Oct.
2022, arXiv:2204.02311 [cs].

[7] OpenAI, “GPT-4 Technical Report,” Mar. 2023, arXiv:2303.08774 [cs].
[Online]. Available: http://arxiv.org/abs/2303.08774

[8] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-
of-the-Art Natural Language Processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https:
//aclanthology.org/2020.emnlp-demos.6

[9] W. Han, B. Pang, and Y. N. Wu, “Robust transfer learning with
pretrained language models through adapters,” in Proceedings of
the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 854–861. [Online].
Available: https://aclanthology.org/2021.acl-short.108

[10] O. Rohanian, M. Nouriborji, H. Jauncey, S. Kouchaki, I. C. C. Group,
L. Clifton, L. Merson, and D. A. Clifton, “Lightweight Transformers for
Clinical Natural Language Processing,” Feb. 2023, arXiv:2302.04725
[cs]. [Online]. Available: http://arxiv.org/abs/2302.04725

[11] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“Biobert: a pre-trained biomedical language representation model for
biomedical text mining,” CoRR, vol. abs/1901.08746, 2019. [Online].
Available: http://arxiv.org/abs/1901.08746

[12] K. Huang, J. Altosaar, and R. Ranganath, “Clinicalbert: Modeling
clinical notes and predicting hospital readmission,” 2019. [Online].
Available: https://arxiv.org/abs/1904.05342

[13] E. Lehman, E. Hernandez, D. Mahajan, J. Wulff, M. J. Smith, Z. Ziegler,
D. Nadler, P. Szolovits, A. Johnson, and E. Alsentzer, “Do We Still
Need Clinical Language Models?” Feb. 2023, arXiv:2302.08091 [cs].
[Online]. Available: http://arxiv.org/abs/2302.08091

[14] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi,
T. Naumann, and M. McDermott, “Publicly available clinical BERT
embeddings,” in Proceedings of the 2nd Clinical Natural Language
Processing Workshop. Minneapolis, Minnesota, USA: Association for
Computational Linguistics, Jun. 2019, pp. 72–78. [Online]. Available:
https://aclanthology.org/W19-1909

[15] Y. Peng, S. Yan, and Z. Lu, “Transfer learning in biomedical
natural language processing: An evaluation of BERT and ELMo
on ten benchmarking datasets,” in Proceedings of the 18th BioNLP
Workshop and Shared Task. Florence, Italy: Association for
Computational Linguistics, Aug. 2019, pp. 58–65. [Online]. Available:
https://aclanthology.org/W19-5006

[16] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy,
D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt language
models to domains and tasks,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 8342–8360.
[Online]. Available: https://aclanthology.org/2020.acl-main.740

[17] M. Senior, M. Burghart, R. Yu, A. Kormilitzin, Q. Liu, N. Vaci,
A. Nevado-Holgado, S. Pandit, J. Zlodre, and S. Fazel, “Identifying
predictors of suicide in severe mental illness: a feasibility study of
a clinical prediction rule (oxford mental illness and suicide tool or
oxmis),” Frontiers in psychiatry, vol. 11, p. 268, 2020. [Online].
Available: https://www.frontiersin.org/article/10.3389/fpsyt.2020.00268

[18] N. Vaci, I. Koychev, C.-H. Kim, A. Kormilitzin, Q. Liu, C. Lucas,
A. Dehghan, G. Nenadic, and A. Nevado-Holgado, “Real-world effec-
tiveness, its predictors and onset of action of cholinesterase inhibitors
and memantine in dementia: retrospective health record study,” The
British Journal of Psychiatry, vol. 218, no. 5, pp. 261–267, 2021.

[19] K. Huang, J. Altosaar, and R. Ranganath, “ClinicalBERT: Modeling

Clinical Notes and Predicting Hospital Readmission,” Apr. 2019.
[Online]. Available: http://arxiv.org/abs/1904.05342

[20] S. Chen, Y. Hou, Y. Cui, W. Che, T. Liu, and X. Yu, “Recall and learn:
Fine-tuning deep pretrained language models with less forgetting,”
in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 7870–7881. [Online].
Available: https://aclanthology.org/2020.emnlp-main.634

[21] S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman,
and N. A. Smith, “Annotation artifacts in natural language inference
data,” in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, Jun. 2018, pp.
107–112. [Online]. Available: https://aclanthology.org/N18-2017

[22] T. Niven and H.-Y. Kao, “Probing neural network comprehension of
natural language arguments,” in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, Jul. 2019, pp. 4658–4664.
[Online]. Available: https://aclanthology.org/P19-1459

[23] M. Hofer, A. Kormilitzin, P. Goldberg, and A. Nevado-Holgado, “Few-
shot learning for named entity recognition in medical text,” arXiv
preprint arXiv:1811.05468, 2018.

[24] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous
prompts for generation,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 4582–4597. [Online].
Available: https://aclanthology.org/2021.acl-long.353

[25] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
“Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing,” 2021. [Online]. Available:
https://arxiv.org/abs/2107.13586

[26] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale
for parameter-efficient prompt tuning,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 3045–3059. [Online].
Available: https://aclanthology.org/2021.emnlp-main.243

[27] B. Paranjape, J. Michael, M. Ghazvininejad, L. Zettlemoyer, and
H. Hajishirzi, “Prompting Contrastive Explanations for Commonsense
Reasoning Tasks,” Jun. 2021, arXiv:2106.06823 [cs]. [Online].
Available: http://arxiv.org/abs/2106.06823

[28] X. Liu, K. Ji, Y. Fu, W. L. Tam, Z. Du, Z. Yang, and J. Tang,
“P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning
Universally Across Scales and Tasks,” Oct. 2021. [Online]. Available:
http://arxiv.org/abs/2110.07602

[29] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” Jan. 2023, arXiv:2201.11903 [cs]. [Online].
Available: http://arxiv.org/abs/2201.11903

[30] N. Shinn, B. Labash, and A. Gopinath, “Reflexion: an autonomous agent
with dynamic memory and self-reflection,” Mar. 2023, arXiv:2303.11366
[cs]. [Online]. Available: http://arxiv.org/abs/2303.11366

[31] V. Sanh, A. Webson, C. Raffel, S. Bach, L. Sutawika, Z. Alyafeai,
A. Chaffin, A. Stiegler, A. Raja, M. Dey, M. S. Bari, C. Xu,
U. Thakker, S. S. Sharma, E. Szczechla, T. Kim, G. Chhablani,
N. Nayak, D. Datta, J. Chang, M. T.-J. Jiang, H. Wang, M. Manica,
S. Shen, Z. X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj,
J. Rozen, A. Sharma, A. Santilli, T. Fevry, J. A. Fries, R. Teehan,
T. L. Scao, S. Biderman, L. Gao, T. Wolf, and A. M. Rush,
“Multitask prompted training enables zero-shot task generalization,” in
International Conference on Learning Representations, 2022. [Online].
Available: https://openreview.net/forum?id=9Vrb9D0WI4

[32] X. Liu, K. Ji, Y. Fu, W. L. Tam, Z. Du, Z. Yang, and J. Tang,
“P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks,” 2021. [Online]. Available:
https://arxiv.org/abs/2110.07602

[33] M. Moradi, K. Blagec, F. Haberl, and M. Samwald, “Gpt-3 models
are poor few-shot learners in the biomedical domain,” 2021. [Online].
Available: https://arxiv.org/abs/2109.02555

[34] S. Sivarajkumar and Y. Wang, “Healthprompt: A zero-shot learning
paradigm for clinical natural language processing,” 2022. [Online].
Available: https://arxiv.org/abs/2203.05061

[35] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-Efficient Transfer

10

Learning for NLP,” Jun. 2019, arXiv:1902.00751 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1902.00751

[36] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-Rank Adaptation of Large Language
Models,” Oct. 2021, arXiv:2106.09685 [cs]. [Online]. Available:
http://arxiv.org/abs/2106.09685

[37] T. Schick and H. Schütze, “Exploiting cloze-questions for few-shot
text classification and natural language inference,” in Proceedings of
the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume. Online: Association
for Computational Linguistics, Apr. 2021, pp. 255–269. [Online].
Available: https://aclanthology.org/2021.eacl-main.20

[38] A. E. Johnson, T. J. Pollard, L. Shen, L. W. H. Lehman, M. Feng,
M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark,
“Mimic-iii, a freely accessible critical care database,” Scientific Data,
vol. 3, 5 2016.

[39] B. van Aken, J.-M. Papaioannou, M. Mayrdorfer, K. Budde, F. A. Gers,
and A. Löser, “Clinical Outcome Prediction from Admission Notes using
Self-Supervised Knowledge Integration,” Feb. 2021, arXiv:2102.04110
[cs]. [Online]. Available: http://arxiv.org/abs/2102.04110

[40] Z. Yuan, C. Tan, and S. Huang, “Code synonyms do matter: Multiple
synonyms matching network for automatic icd coding,” 2022. [Online].
Available: https://arxiv.org/abs/2203.01515

[41] S. Wang, M. B. A. McDermott, G. Chauhan, M. Ghassemi,
M. C. Hughes, and T. Naumann, “Mimic-extract: A data extraction,
preprocessing, and representation pipeline for mimic-iii,” in Proceedings
of the ACM Conference on Health, Inference, and Learning, ser. CHIL
’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 222–235. [Online]. Available: https://doi.org/10.1145/3368555.
3384469

[42] W. Boag, D. Doss, T. Naumann, and P. Szolovits, “What’s in a note?
unpacking predictive value in clinical note representations,” AMIA
Summits on Translational Science Proceedings, vol. 2018, p. 26, 2018.

[43] R. Ma, X. Zhou, T. Gui, Y. Tan, L. Li, Q. Zhang, and
X. Huang, “Template-free Prompt Tuning for Few-shot NER,”
in Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies. Seattle, United States: Association for
Computational Linguistics, 2022, pp. 5721–5732. [Online]. Available:
https://aclanthology.org/2022.naacl-main.420

[44] N. Ding, S. Hu, W. Zhao, Y. Chen, Z. Liu, H.-T. Zheng, and M. Sun,
“OpenPrompt: An Open-source Framework for Prompt-learning,” Nov.
2021. [Online]. Available: http://arxiv.org/abs/2111.01998

[45] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing,” Jul. 2021, arXiv:2107.13586 [cs].
[Online]. Available: http://arxiv.org/abs/2107.13586

[46] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates with
sublinear memory cost,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15
Jul 2018, pp. 4596–4604. [Online]. Available: https://proceedings.mlr.
press/v80/shazeer18a.html

[47] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
[Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7

[48] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann,
J. Gao, and H. Poon, “Domain-specific language model pretraining for
biomedical natural language processing,” 2020.

APPENDIX A
TRAINING DETAILS

We implement our experiments using a combination of
the OpenPrompt framework [44], transformers, and pytorch-
lightning packages. All code utilised the PyTorch framework
for deep learning. For prompt learning, we use Adafactor
[46] optimizer for soft and mixed templates, and AdamW
[47] optimizer for language models and soft verbalizers. For
traditional fine-tuning, we use AdamW optimizer for MLP
heads and language models. To keep training of all setups
consistent we ran experiments using a Nvidia RTX 1080 Ti

GPU. Further details of training and hyperparameters can be
in the complimentary code repository. Unless otherwise stated,
all evaluation metrics reported used the held-out test set and
used the best performing checkpoint for each of the model
training setups.

Table A.1 shows the derived optimal hyperparameters for
each training paradigm based on the hyperparameter random
search. The search consisted of 100 training runs using
randomly generated hyperparameters from the search space
shown in Table III. Due to relatively limited computational
resource, this was only performed for the ICD-9 Triage task
and a sub-sample of the training data was used, similar to that
of our few-shot experiments with 128 samples per class.

TABLE A.1
OPTIMIZED HYPERPARAMETERS FOR EACH TRAINING PARADIGM

hp Traditional fine-tuning Prompt learning

learning rate 0.0048 0.0121
batch size 8 4
gradient accumulation steps 4 3
dropout 0.382 0.1536
optimizer adamw adafactor
verbalizer learning rate n/a 0.007

APPENDIX B
DATASET DETAILS

a) Mortality and Length of Stay: A combination of
available clinical notes pertaining to the outcome of interest
were used, including admission and discharge summaries.
Each task dataset was created separately and a 70-10-20 split
of training-validation-test sets was used. We followed the data
engineering steps outlined in the clinical outcomes paper [39].

b) ICD-9 50 and ICD-9 Triage: The ICD-9 50 task used
discharge summary notes corresponding to the top 50 most
frequently occurring ICD-9 diagnosis codes. The production of
the ICD-9 Triage task was derived from taking the top 20 ICD-
9 diagnosis codes. From this sub-sample, a clinician derived
suitable groups representing the destination team on discharge
from ICU: Cardiology, Obstetrics, Respiratory Medicine, Neu-
rology, Gastroenterology, Acute or Internal Medicine, and
Oncology.

See Fig. B.1 showing class distributions for each of the
clinical tasks presented in this paper.

APPENDIX C
PROMPT LEARNING VERSUS TRADITIONAL FINE-TUNING

WITH OTHER PLMS

The PLM used for the results in the main body of the paper
was the BioClinicalBERT [14], which has been pre-trained
on Mimic-III notes themselves. Whilst this was arguably
advantageous for both traditional fine-tuning and prompt
learning, it may have overly favoured prompt learning due
to the reformulation of the classification task as a Masked
Language Modelling (MLM) objective. Therefore we present
results of another biomedical BERT model from Microsoft,
the PubMedBERT, which was pre-trained from scratch using
abstracts from PubMed [48] in Table C.1. To a similar end,

11

41
40

1
03

89
41

07
1

V3
00

1
42

41
51

88
1

V3
00

0
V3

10
1

43
1

42
40

50
70

42
80 43

0
48

6
41

01
1

41
04

1
57

89
58

49
19

83
57

70
99

85
9

99
66

2
43

41
1

03
84

2
56

21
2

42
73

1
43

49
1

43
73

57
12

V3
40

1
42

71
51

88
4

85
22

1
43

21
42

82
3

03
84

9
41

51
9

99
81

1
03

81
1

44
14

43
31

0
16

23
57

15 04
2

53
24

0
03

80
39

62
44

10
1

57
61

29
18

10

500

1000

1500

2000

2500

3000

3500

co
un

t

ICD9 50

Ca
rd

iol
og

y

Ob
st

et
ric

s

Re
sp

ira
to

ry

Ne
ur

olo
gy

Ga
st

ro
en

te
ro

log
y

Ac
ut

eM
ed

ici
ne

On
co

log
y

0

2000

4000

6000

8000

co
un

t

ICD9 triage

0 1
0

10000

20000

30000

40000

co
un

t

Mortality

1 2 3 0
0

2500

5000

7500

10000

12500

15000

co
un

t

Length of stay

Fig. B.1. Distribution of classes for each clinical task prior to few-shot downsampling

we also present results for non-clinical PLMs of a similar
model size in Table C. It can be seen that prompt learning
still outperformed traditional fine-tuning by a large margin on
the ICD-9 Triage task, in line with our other results.

TABLE C.1
BALANCED ACCURACY RESULTS FOR PROMPT LEARNING AND

TRADITIONAL FINE-TUNING USING MICROSOFT’S PUBMEDBERT

Sample size Traditional fine-tuning Prompt learning

16 0.1554 0.2249
32 0.1521 0.3749
64 0.4048 0.4621
128 0.5621 0.7814

TABLE C.2
BALANCED ACCURACY FOR PROMPT LEARNING AND TRADITIONAL

FINE-TUNING WITH NON-CLINICAL PLMS ON THE ICD-9 TRIAGE TASK.
THESE RESULTS USED A SAMPLE SIZE OF 128 PER CLASS FOR TRAINING

AND EVALUATED ON THE WHOLE TEST SET

Model Traditional fine-tuning Prompt learning

bert-base-uncased 0.2541 0.6301
roberta-base 0.3451 0.7989
gpt2 0.3812 0.8613
opt-125m 0.3233 0.7231

