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Abstract—This paper presents a novel radio frequency fin-
gerprint (RFF) enhancement strategy by exploiting the physical
unclonable function (PUF) to tune the RF hardware impairments
in a unique and secure manner, which is exemplified by taking
power amplifiers (PAs) in RF chains as an example. This
is achieved by intentionally and slightly tuning the PA non-
linearity characteristics using the active load-pulling technique.
The motivation driving the proposed research is to enlarge
the RFF feature differences among wireless devices of same
vendor, in order to massively improve their RFF classification
accuracy in low to medium signal to noise ratio (SNR) channel
conditions. PUF is employed to dynamically tune the PA’s RFF
feature which guarantees the security since the PUF response
cannot be cloned. Specifically, a ring oscillator (RO)-based PUF
is implemented to control the PA non-linearity by selecting
unique but random configuration parameters. This approach is
proposed to amplify the distinctions across same model PAs,
thereby enhancing the RFF classification performance. In the
meantime, our innovative strategy of PUF-assisted RFF does not
noticeably compromise communication link performance which
is experimentally tested. The resulting RFF features can be
extracted from the received distorted constellation diagrams
with the help of image recognition-based machine learning
classification algorithms. Extensive experimental evaluations are
carried out using both cable-connected and over-the-air (OTA)
measurements. Our proposed approach, when classifying eight
PAs from a same vendor, achieves 11% to 24% average clas-
sification accuracy improvement by enlarging the RFF feature
differences arising from the PA non-linearity.

Index Terms—Active load-pulling, convolution neural network
(CNN), non-linear memory effect, physical unclonable function
(PUF), radio frequency fingerprinting (RFF).
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THE Internet of Things (IoT) network has rapidly become
a business enabler as their prevalence brings great con-

venience to people’s daily lives. However, many IoT devices
are low cost and only equipped with limited computational
and energy resources. Such limitations result in various vul-
nerabilities to cyber attacks [1], as they cannot afford crypto-
graphic schemes. For example, device authentication is usually
achieved via cryptographic challenge response protocol, which
will require a common key shared in advance. Unfortunately,
such secure key distribution is quite challenging for IoT
devices [2].

Radio frequency fingerprint identification (RFFI) is an
emerging non-cryptographic solution for device authentica-
tion [3], [4]. In particular, the radio frequency fingerprint
(RFF) refers to the unique hardware impairments inherently
presented in analog transmit RF chains, which are fabricated
subject to variations in the manufacturing process [5], [6].
These impairments are minute, which result in slight distor-
tions of the transmit signal waveforms but do not compromise
communication quality. Furthermore, they are unique to each
transmitter, which can be extracted by the receiver and utilized
as device identities (IDs) to facilitate secure network access
authentications [7]. Compared to the traditional authentication
methods, RFFI does not rely on shared secrets such as pass-
words or cryptographic keys, which makes it very suitable for
low cost IoT devices. Hence, there have been active research
efforts on studying RFFI with IoT technologies, including
WiFi [8], ZigBee [9], [10], LoRa [11]–[13], Bluetooth [14],
etc.

The hardware impairments of transmitters include I/Q im-
balance [9], oscillator imperfection, i.e, frequency offset and
phase noise [15], power amplifier (PA) non-linearity [16]–
[20], antenna characteristics [13], [21], [22], etc. Among them,
PAs exist in most wireless transmitter chains and are the
major contributors to signal non-linearity, hence the PA non-
linearity has been widely studied for RFFI [16]–[20]. However,
these systems could operate only in high signal to noise
ratio (SNR) conditions, hardly experienced in any practical
wireless systems. Our previous work in [19] attempted to
improve the RFFI performance in relatively low SNR regions
by exploiting the non-linear memory effect of the transmission
links consisting of matched pulse shaping filters and non-linear
PAs.

There are usually multiple manufacturers and vendors for
the same type of wireless technologies. It is more difficult
to classify devices from the same manufacturer because they
are from the same production line which results in very
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TABLE I
OUR PROPOSED WORK IN COMPARISON WITH THE EXISTING RFF ENHANCEMENT WORKS.

Works RFF enhancement technique Extra hardware? Computational
complexity Cost Identification method Scalability

[8] Metasurface
circuit

Yes
(Low-cost meta-

surface)
High Medium Shifting antenna resonant

frequency
Low to
medium

[23] PUF assist
RFFI

Yes
(PUF circuit) High Low PUF-controlled PA’s out-

band spectral regrowth Low

[25]-[28] RF-PUF No High Low
Mutual authentication

(Decrypted PUF response +
RFF feature)

Medium

Our work PUF assist
RFFI

Yes
(PUF & signal

loopback circuits)
Medium Low PUF-controlled PA’s non-

linear memory effect High

minute differences among them. Some dedicated experiments
are designed to study the behavior of oscillator imperfection
and PA non-linearity, which can focus on a particular type of
hardware impairments. In [15], the unique characteristics of
the phase noise that is generated in RF carrier oscillators were
extracted for RFF. The reported classification performance for
the cable-connected measurement among 8 oscillators of the
same model indicated a low classification error at the SNR of
35 dB. The work in [19] demonstrated it is more difficult to
classify PAs of the same model compared to PAs of different
models, especially in low SNR scenarios. It achieved 90%
classification accuracy at an SNR of about 10 dB among a mix
of PAs from the same and different vendors. Observed from the
confusion matrix presented in [19], most classification errors
in low SNR regions occurred among devices of the same PA
model. This will further deteriorate when a greater number of
the same model devices are classified. There are also studies
about commercial off-the-shelf IoT devices, which include all
the hardware impairments. For example, the work in [11]
classified 15 LoRa devices which were from three vendors.
The misclassification mainly occurred among the devices of
the same model. Such limitations result in challenges in
practical applications as it is common to classify hardware
platforms/components from the same manufacturer.

There are a few approaches proposed to introduce external
impairments [8] and reconfigure existing hardware impair-
ments [23]. These approaches adjust the operation condition
of the RF devices slightly, hence, the unique RFF feature
can be enlarged without compromising wireless link perfor-
mance. In addition, in Table I our proposed work is compared
with the existing works on RFF enhancement techniques.
The RFF enhancement technique, computational complexity,
cost, identification method and scalability of these works are
presented. The work [8] embedded a metasurface to the
transmitter antenna and this could inject new RFF features
into radiated signals. In this topology, in order to reduce the
insertion-loss the RF substrates and low-loss components have
to be used in this metasurface, thus, inevitably increasing
its cost. This approach is also susceptible to fabrication and
component variations. For example, a variance of 0.1 pF
capacitance within the metasurface elements can cause a
frequency shift of approximately 150 MHz. In addition, this
work requires complex electromagnetic (EM) simulations of
large electric size and iterative optimization algorithms, which

can be computationally intensive. In the work [23], the authors
proposed to embed a PUF circuit to slightly adjust the PA
bias through a digital to analog converter, so that the PA out-
band spectrum regrowth became more distinguishable among
the same-brand devices. The challenge here is that there are
only very limited choices of PA biasing conditions that satisfy
good in-band signal quality for maintaining wireless links
and distinguishable out-band spectrum regrowth for RFF use.
Thus, this may not be applicable in wireless networks wherein
a large number of wireless devices need to be identified
through RFF features. In addition, in some cases, the out-band
spectrum regrowth may cause interference to other adjacent
channels.

PUF is a hardware security technology, which is constructed
using a digital circuit that is sensitive to minute variations in
the semiconductor fabrication process, e.g., doping concen-
tration [24]. Works in [25]–[28] utilized mutual authentication
approach as referred to RF-PUF. However, those works treated
their RFF schemes as the RF-based PUF but there was
no PUF circuitry involved. The identification node in this
approach needs to decrypt the PUF response and extract the
RFF features from the received signals. The computational
complexity depends on the size of the dataset used for training
the machine learning algorithms, and also depends on the
algorithms selected to decrypt the PUF output response and
the RFF feature extraction for node identification.

To address the above-mentioned challenges, this paper
exploits the active load-pulling technique and PUF to en-
large RFF feature differences for RF devices of the same
brand/model in a unique and secure way, in order to sig-
nificantly improve RFFI performance in low SNR scenarios.
Specifically, the PA output load impedance in a traditional
transmitter is commonly fixed to 50 Ω. This paper proposes
to actively alter the output impedance of the PA as a means to
enlarge RFF features, which is achieved by the active load-
pulling technique. Such adjustment has to be individually
fixed for each device while undisclosed to all nodes within
the wireless networks (including the devices to be identified),
which is imperative to mitigate security risks of being cloned,
hence PUF is exploited. We built a testbed involving eight
PAs with the same model and carried out a comprehensive
experimental evaluation. To achieve this, only a low-cost PUF
circuit and a signal loopback circuit (e.g., circulator) are
required. The computational complexity of this work arises
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from the PUF implementations and the processing required to
analyze transmitter non-linear memory effect RFF feature for
node identification. All these can be done offline. The main
contributions of our work are summarized as follows.

• The active load-pulling technique is leveraged to enlarge
the PA RFF features, which can considerably improve the
classification performance for the same brand devices.
The PA output load impedance can be determined in
PA load-pull contours, providing a broader range of
options compared to the alteration of PA bias, without
compromising communication qualities.

• PUF circuits are employed to select the active load-
pulling configuration in a unique and secret manner. A
ring oscillator-based PUF (RO-PUF) is used. An output
is randomly generated, which is used to select a config-
uration for PAs.

• Extensive experimental evaluation has been carried out
through both cable-connected and over-the-air (OTA)
experiments. In the cable-connected experiments, the
classification accuracy reached over 90% for the SNR of
13 dB. In the OTA experiments, the proposed approach
achieved classification accuracies of 89% at the SNR of
26 dB for LOS and 64% at the SNR of 15 dB for non-
line-of-sight (NLOS) transmission scenarios.

• Our proposed approach achieved a notable classifica-
tion improvement in comparison to the conventional
method without enlarging PA RFF features. Our approach
achieved average classification accuracy improvements of
approximately 22%, 17%, and 12% at SNRs of 0 dB, 5
dB and 10 dB in the cable-connected experiment, respec-
tively, compared to the conventional method. The OTA
experiment witnessed about 11% to 24% improvements
in the average classification accuracy.

The rest of the paper is organized as follows. Section II in-
troduces the overall architecture of the proposed PUF-assisted
RFFI system. Section III elaborates the PA characteristics and
the active load-pulling theory, as these are the main feature
techniques for enhancing RFF feature for secure device iden-
tification. The PUF-control and RFFI protocol are discussed
in Section IV and Section V, respectively. Section VI gives
the experimental evaluation, both in cable-connected and OTA
environments. Finally, conclusions are drawn in Section VII.

II. OVERVIEW OF PROPOSED RFFI SYSTEM

As portrayed in Fig. 1, an RFFI system includes N devices
under test (DUTs) and a receiver. The DUT transmitter is
subject to hardware impairments, resulting from variations
of manufacturing processes. Such impairments distort the
transmitted waveforms slightly but are generally unnoticeable
with regard to wireless link performance. In an RFFI system,
upon receiving the signals, a receiver aims to identify the
DUTs’ identity by exploiting the differences among the DUTs’
hardware impairments.

A. Transmitters in RFFI Systems
From our previous work [19], the classification performance

using the PA non-linearity is very limited in low SNR con-
ditions, especially when the PAs are of the same model. In
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Fig. 1. Workflow of RFFI.

Tx Chain
𝒙𝑖𝑛

𝒙𝑜𝑢𝑡

RF 

Circulator

PA

PUF

Circuits

Cin

a

b

R Mag./Phase Tuner

Aejθ

PUF

Control

Fig. 2. PUF-assisted PA active load-pulling for RFFI.

order to enhance the classification performance under such
a challenging scenario, this paper proposes to use the active
load-pulling technique to slightly adjust the PA characteristics,
see the shaded area in Fig. 2. Here a module of PUF-controlled
magnitude and phase tuner is added to assist in the adjustment
of PA loads without compromising link quality. With the slight
changes of the PA loads, the RFF features can be enlarged.
The PA non-linearity characteristics as well as the active load-
pulling technique will be explained in detail in Section III.

The other key design consideration to ensure security is that
once the pool of selectable loads is determined, the choice
among these loads for a certain device has to be fixed but
random, and unknown to any nodes in the network. This
proposition rules out any chances of these settings being
leaked and forged by malicious parties. This, fortunately, can
be achieved by a PUF circuit whose uniqueness, producing
fixed outputs, and unclonable, corresponding to random and
unknown features, is a perfect fit. PUF is a digital circuit,
commonly implemented in field programmable gate array
(FPGA) or application-specific integrated circuit (ASIC), that
exploits variations in the manufacturing process to generate
unique unclonable digital fingerprints. Such variations exist
in electronic components, particularly at the microelectronic
level, which cannot be estimated or controlled. As depicted in
Fig. 3, when the same challenge sequence, denoted as Cin, is
input to the same PUF design in the different digital boards,
a unique unclonable digital fingerprint R for each individual
device is generated. The PUF design used in our work will be
further introduced in Section IV.

B. Receiver and RFFI Protocol

Once the receiver collects the signals from the DUT trans-
mitter, the captured signals are down-converted and synchro-
nized. After that, the RFFI protocol will carry out RFF feature
extraction and classification. Deep learning has been widely
adopted thanks to its excellent classification capability, such
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Fig. 3. PUF illustration.

as convolution neural network (CNN) [13], [19], [22], [29].
The RFFI protocol design will be given in Section V.

III. POWER AMPLIFIER CHARACTERISTICS AND ACTIVE
LOAD-PULLING EFFECT

In our work, we exploit the PA non-linearity, especially
the dynamically adjusted non-linearity through active load-
pulling technique, for the RFFI application, see Fig. 2 and
the description in Section II. For a better understanding, the
PA characteristics and the active load-pulling concept are
presented in this section.

A. Power Amplifier Characteristics

The amplitude modulation to amplitude modulation
(AM/AM) and amplitude modulation to phase modulation
(AM/PM) are the important characteristics used to describe
the PA input-to-output non-linear behaviors. The AM/AM (and
AM/PM) quantifies the extent to which the output signal power
(and phase) varies as a function of the input signal power.
There are a number of PA behavioral models that provide a
mathematical approximation to describe those AM/AM and
AM/PM characteristics, such as Ghorbani [30], Saleh [31],
Rapp [32], and Bessel-Fourier [33]. As reported in [33], [34],
these models exhibit distinct strengths and limitations.

• The Rapp model fluctuates in the transition between
linear and saturation regions;

• The Saleh model has great performance to fit the linear
curves;

• The Ghorbani model is particularly well suited for the
non-linear region;

• The Bessel-Fourier approach can accurately fit the entire
PA operation region with a sacrifice on higher fitting
complexity, i.e., more coefficients need to be determined.

Since the purpose of our work here is to study PA behav-
ior for RFFI applications, and the PA behavior fitting can
be performed offline, the more accurate Bessel-Fourier PA
behavioral model is thus adopted in our work.

In our study, the AM/AM and AM/PM curves for the
PAs under test are firstly measured using a Vector Network
Analyzer (VNA), and they are subsequently Bessel-Fourier
fitted using the model below

B(ρ)ejF (ρ) =

L∑
l=1

βlJ1(α · l · ρ), (1)

where ρ is the magnitude of the PA’s input signal, B(·) and
F(·) respectively represent the measured AM/AM and AM/PM
of the PA under test, and J1(·) refers to the Bessel function of
the first kind with L being the length of the Bessel series. βl

and α are the coefficients to be determined, and l is the index
of the Bessel terms. In this work, L of 30 is used hereafter to
obtain accurate fitting results.

B. PA Load-pull

Load-pull is a method of evaluating PA performance, such
as output power, efficiency, gain, linearity, etc, for a large
number of PA output load impedances. The loads are com-
monly selected within a pre-defined region in the Smith chart,
which is a graphic tool for microwave engineers that assists the
transformation between impedance and reflection coefficients.
The results, e.g., of output power, efficiency, or gain, are
contour plotted in the Smith chart, within which every point
is associated with a load impedance ZL [35]. In our work,
we used an automatic Maury load tuner [36] to conduct the
PA load-pull measurement. 8 PAs of the same brand (PGA-
105+ from Mini-Circuits [37]) are employed. As examples,
the measured load-pull results at 2.4 GHz operation frequency
for the output power at 1 dB compression point, denoted as
Pout 1dB , are illustrated in Fig. 4 for the PA-1, PA-3, and
PA-6. Pout 1dB refers to the output power at which the PA
gain is 1 dB less than the PA gain in the linear region. It
indicates the output power capacity of the PA. In Fig. 4, the
x- and y- axes are the real and imaginary parts of the PA
output reflection coefficient ΓL, which is defined as the voltage
ratio of the reflected waveform a and the forward waveform
b, seen in Fig. 2. The waveforms a and b are the notations
used in the RF microwave community. In physics, a signal
wave describes the amplitude and phase (relative to a common
phase reference) of an EM wave in a transmission line system.
Given that the EM wave has a propagation direction (along
the direction of the cross product of the electric field and
the magnetic field), the waves a and b also have directions,
which are labelled in Fig. 2. The mathematical expression of
calculating the reflection coefficient ΓL is

ΓL = a/b. (2)

It is worth noting that here a and b are phasor representations,
namely they are complex numbers containing only amplitude
and initial phase of the corresponding waveforms at the
operation frequency of interest. The PA load impedance ZL

can be calculated from the reflection coefficient ΓL, expressed
as

ZL = Z0
1 + ΓL

1− ΓL
, (3)

where Z0 is the system characteristic impedance. In this work,
the commonly used 50 Ω is assumed. We choose Pout 1dB

as the key PA characteristic, other than gain, efficiency or
linearity, because in low-cost low-power IoT devices, the
output power is most critical.

In Fig. 4, the color bar indicates the Pout 1dB in dBm.
Thus, the PA with every load impedance on each contour in
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(a) (b) (c)
Fig. 4. Measured Pout 1dB load-pull contours associated with the (a) PA-1, (b) PA-3, and (c) PA-6. The gap between contour lines is 1 dB.

the load-pull plot can give identical output power. The center
origin (0, 0) in the Smith chart is labeled as Γ0 = 0 (red solid
dot in the graphs), which, using (3), also corresponds to the
load impedance Z0. In these load-pull examples in Fig. 4, the
50 Ω load gives 19 dBm Pout 1dB to the PA-1 and the PA-
3, and about 20 dBm to the PA-6. Though there are some
differences among these load-pull plots for different PAs, as
expected the overall performance distribution on the Smith
chart looks similar.

C. Active Load-pulling Effect

The load tuner equipment can be used for load-pull mea-
surement, but it is impractical to be integrated into a transmit-
ter. Hence, we explore an alternative approach of the active
load-pulling technique, which adjusts the output impedance
by injecting coherent signals at the PA output in the reverse
direction, instead of altering the impedance of loads using
reconfigurable devices in passive load tuners. This active load-
pulling concept and block diagram, as well as the photograph
of the experimental setup, are shown in Fig. 5. A universal
software radio peripheral (USRP) X310, supporting two syn-
chronized transmit chains, was used to generate two identical
RF signals, one, denoted as xin, being injected into the PA
input, and the other being scaled with Aejθ to produce the sig-
nal xe, which is expressed in (4). The module of PC emulated
PUF response is used the stored PUF responses to control
the ’Mag/Phase Tuner’ required for PA active load-pulling.
Since the purpose of the experiment in Fig. 5 is to demonstrate
the PA active load-pulling concept and its impact on wireless
link and RFF feature extraction, this PUF simplification is
justifiable. In a practical system implementation, this, however,
will be reverted back to the hardware PUF circuit to ensure
security. More detailed information on PUF implementation
can be found in Section IV.

xe = xin · Aejθ (4)

This signal xe is then routed to the PA output in the backward
direction using an RF circulator. The RF circulator, a three-port
component, ensures signals only travel in a certain direction,
see the arrow inside the circulator in Fig. 5(a). In this example,
the circulator only allows the PA output signal b to flow to
the 50 Ω load (or the antenna as illustrated in Fig. 2), and it
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RF 

Circulator

PA

a

b

USRP X310

Oscilloscope

P1

P2

P3

P1 P2

P3P4
Coupler

𝒙𝑒

50 Ω

Load

Mag./Phase Tuner

Ae 
jθ

PC emulated PUF response

𝒙𝑖𝑛

(a)

USRP

Directional

Coupler
CirculatorPA

Oscilloscope

Power 

supply

PA

Tx

Chan1 Chan2

Circulator

Rx

Tunable 

attenuator

PA

Tx

Chain1 Chain2

Circulator

Rx

Tunable 

attenuator

USRP

Directional

Coupler
Circulator

PA

Oscilloscope

Power 

supply

Pre-stored 

PUF response

(b)
Fig. 5. (a) Block diagram and (b) photograph of the active load-pulling
experiment.

directs the xe (the output of Mag/Phase Tuner) to only flow
to the PA output in the reverse direction, i.e., generating the
signal a. A directional coupler is inserted at the PA output
in the experiment to monitor and measure a and b using a
two-port oscilloscope. In a practical design, this coupler can
be removed.

The backward waveform a at the PA output, seen in Fig. 5(a)
can be calculated as in

a = xe · Scir 13 · Scpl 12, (5)

where Scir wo and Scpl wo are the S-parameters of the circu-
lator and the coupler from port o to port w (o, w ∈ {1, 2, 3}
for the circulator and o, w ∈ {1, 2, 3, 4} for the coupler).

Once the non-linear PA characteristics have been obtained
using the Bessel-Fourier fitting via (1), the PA output b can
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be calculated using

b = B (ρin) e
j[(φin+F (ρin)], (6)

where ρin and φin represent the magnitude and the phase of
the PA input signals xin.

From the above discussions and (2) to (6), we can see that
the PA load impedance can be pulled around by choosing
appropriate Aejθ, i.e., active load-pulling. Even though the PA
loads can be pulled anywhere, in order not to compromise the
communication link quality, the selectable output reflection
coefficients ΓL needs to be located around the output power
contour line that passes through the origin Γ 0. This guarantees
that the changes of PA loads do not affect the PA output
power, comparing with the conventional 50 Ω system. Thus, in
principle it can be infinite number of possible PA load choices,
while in practice the number is limitted by the resolution of
magnitude and phase control of Aejθ.

It is expected that the differences in the PA non-linear
characteristics associated with these different loads are more
distinct. Taking PA-1 as an example, the AM/AM and AM/PM
characteristics were measured for 6 different selected ΓL,
and the Bessel-Fourier fitted curves are shown in Fig. 6. It
can be observed that different ΓL affects PA characteristics,
especially the AM/PM, which will eventually contribute to
enlarged RFF features for secure device identification.

IV. PUF-ASSISTED ACTIVE LOAD-PULLING

In the above section, it has been shown that the active
load-pulling technique can be used to adjust the PA non-
linearity without compromising output power. In order for
these changes of PA non-linearity characteristics to be used for
RFFI, the control of the changes has to be secure. In our design
we propose to use PUF circuitry in each DUT to generate a
unique and unknown address for selecting a value of Aejθ that
corresponds to a selectable ΓL in a pre-stored look-up table.
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Fig. 7. RO-PUF (a) circuit design and (b) FPGA implementation.

A. PUF Circuit

Numerous PUF designs have been developed, such as arbiter
PUF, static random-access memory (SRAM) PUF, and RO-
PUF [38]. Among them, the RO-PUF is one of the most widely
studied PUF designs thanks to its simplicity and excellent
reliability [38], and it is chosen for our application.

Our RO-PUF design is composed of 32 ROs, 2 multiplexers,
2 counters, one comparator, one shift register (SR), one refer-
ence counter (RC), one linear feedback shift register (LFSR)
and one control unit (CU). The simplified block diagram and
the implementation layout are shown in Fig. 7. Each RO delay
line consists of 1 AND gate and 3 NOT gates. Overall, the
proposed RO-PUF only requires a look-up table of a size of
269 and extra 170 flip-flops. Those digital resources can be
readily available in many digital chips in low-cost IoT devices.

Algorithm 1 describes the operation of the developed RO-
PUF for generating one output bit R. An 8-bits Cin is first
initiated in CU module, and it is then divided into 4 most
significant bits (MSB) and 4 least significant bits (LSB) by
LFSR. The 4 MSB (and LSB), acting as the selection address,
make multiplexer output the response from one of the selected
ROs in the group RO-A (and RO-B). After counting the
number of rising edges within the time period of which the RC
reaches its maximum, the outputs of Counter0 and Counter1
are compared to generate one PUF output bit R of ‘0’ or
‘1’. The above process is repeated for K times for different
Cin in order to produce a random bit sequence of length K.
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Algorithm 1 RO-PUF Operation for One Challenge Input
Input: 8-bit Cin

Output: 1-bit R
1: Initialization: enable, reset, RC, Counter0, Counter1.
2: Divide 8-bit Cin into 4-bit CMSB and CLSB in LFSR.
3: Start 32 ROs.
4: Input C{MSB,LSB} to select one out of 16 ROs in {RO-

A; RO-B}.
5: while RC < maximum value do
6: Count rising edges of selected ROs in {RO-A;RO-B}

with Counter{0; 1}.
7: RC = RC + 1.
8: end while
9: if Counter0 > Counter1 then

10: R = 0
11: else
12: R = 1
13: end if
14: Reset

TABLE II
MEASURED OUTPUT BIT R OF IMPLEMENTED RO-PUF AMONG 8 FPGA

BOARDS.
Cin

in Dec B#1 B#2 B#3 B#4 B#5 B#6 B#7 B#8

1 1 1 1 0 0 1 1 0
2 0 1 1 1 1 0 1 0
3 1 1 0 0 1 0 0 1
4 1 0 0 1 1 1 1 0
5 0 0 0 1 1 1 0 1
6 0 1 1 1 0 1 1 0
7 1 1 1 0 1 0 0 0
8 0 1 1 1 1 0 1 0
9 1 0 0 1 0 0 0 0

.

.

.
64 1 0 1 1 0 1 1 0

128 0 1 1 0 1 1 0 0
160 1 1 0 0 1 1 0 0
224 0 1 0 1 0 0 1 1

Note: B#u refers to the uth FPGA board.

As examples, the output bit R of 8 PUF implementations for
different Cin are listed in Table II.

The number of bits of Cin in our design is determined by
the number of RO chains. Specifically, the designed RO-PUF
consists of 32 ROs which are organized into two sets of 16
chains each. In order to select one of the 16 chains, a 4-bit
input is required. Thus, in total, 8-bit Cin is needed to operate
this designed PUF.

The PUF performance is evaluated through its uniqueness
and reliability. The uniqueness evaluates how easily the re-
sponses of different PUF implementations can be differentiated
when the same challenge input is used. The uniqueness is
often calculated using the inter-Hamming Distance betweem
the output bit sequence of different PUF instances, and it is
expresses as follows

Uniquness =
2

M(M − 1)

M−1∑
u=1

M∑
j=u+1

HD
(
R⃗u, R⃗j

)
N

×100%,

(7)
where M is the number of FPGA board, HD referrs to
the Hamming Distance function to calculate the number of
positions at which the corresponding bits are different, R⃗u =
(Ru1, Ru2, ..., Ru6) is the output bit sequence of the uth PUF
board of length N (N is selected to be 6 in our study), and
R⃗j is the output bit sequence of the jth PUF board. For an
ideal PUF with completely random responses, the expected
uniqueness value is 50%, indicating that any two responses
are expected to differ in half of their bits.

The reliability assesses the robustness of a PUF design,
i.e., the same input challenge applied on the PUF circuit is
expected to always generate the same output. The metric for
assessing the reliability of the PUF circuit is intra-Hamming
Distance that compares multiple output bit sequences from the
same PUF instance under different conditions. The calculation
of the reliability can be expressed as follows

Reliability =

1− 1

k

k∑
i=1

HD
(
R⃗u, R⃗

′
u,i

)
N

× 100%, (8)

where k is the number of output bit sequences that have been
collected from the same PUF, R⃗′

u,i is the ith sample of R⃗′
u.

The ideal reliability of the PUF circuit is 100%.
In our PUF design among 8 FPGA implementations, the

average uniqueness is around 54%, and the average reliability
reaches up to 99%. The results show decent PUF performance.
There are plenty of other PUF circuit topologies, and normally
there is a trade-off between PUF performance and circuit
complexity. We choose RO-PUF in our design due to its
simplicity and decent performance, which is sufficient to be
used as our proof-of-concept to demonstrate PUF-assisted
RFF.

B. PUF Control

Upon identification of the ΓL that can be selected from
the poll, for example, the circles depicted on the contours in
Fig. 4, it is imperative to adjust the different PA devices of the
same brand to align with one of these loads by utilizing the
active load-pulling technique as discussed in Section III-C.
This adjustment needs to be fixed for each PA, but random
and unknown to every party in the network, including the
PAs themselves. This is achieved using our designed RO-PUF
circuitry.

For our RFFI application, the minimum required number
K of different Cin is determined by the number M of pre-
determined selectable ΓL for each DUT, namely 2K ≥ M.
In our study, we choose 6 selectable ΓL for each DUT,
so at least 3 different input challenges Cin are needed. In
order to get more equal chances of each of the 6 ΓL being
selected, we choose 6 different input challenges Cin out of
256 possibilities, some of which are measured and listed in



8

Algorithm 2 The workflow of the PUF control for the active
load-pulling at the transmitter. M = 8 and K = 6.

Input: R⃗ = (R1, R2, R3, R4, R5, R6)
Output: Output: Aejθ

1: Converting R⃗ to a decimal value, dR
2: Mapping dR to ΓLk

• 0 to 10 to ΓL1

• 11 to 21 to ΓL2

• 22 to 32 to ΓL3

• 33 to 43 to ΓL4

• 43 to 54 to ΓL5

• 55 to 63 to ΓL6

3: Using (2), (4)-(6), mapping ΓLk to Aeθ

Table II. In the design, 8-bit Cin means 28 = 256 different
challenge inputs. Since our RO-PUF circuit is symmetric, in
terms of the first 16 ROs and the second 16 ones, statistically
Cin can be randomly selected when the number of devices is
large.

Due to the nature of anti-counterfeiting, for the same input,
different devices will have different outputs although they have
the same PUF design implemented. Therefore, the attacker
has very limited opportunity of copying or cloning the PUF
response to get access by mimicking a genuine wireless device.

The algorithm of our designed PUF control is given in
Algorithm 2. After converting the PUF output bit sequence
(R1,R2, ...,R6) to a decimal number, they are mapped to K = 6
pre-selected ΓL by (quasi-) equally divide 26 into K sections.
This selected ΓLk, fixed but unknown, is then mapped to Aejθ

using relationships as described in (2), and (4)-(6). In this
way, the PA output load impedance is pulled to ΓLk, which
is unknown and different to different DUTs. As an example,
Table III gives the mapping from C⃗in = (Cin1,Cin2, ...,Cin6)
to R⃗ = (R1,R2, ...,R6), to ΓLk, and ultimately to Aejθ as
required to control PA active load-pulling. In summary, what
really affects the RFFI performance in our work is the selected
PA active load impedance. As it is explained in Section IV and
Algorithm 2, a PUF output is mapped to ΓLk which will alter
the PA non-linearity. A list of selectable ΓLk is pre-generated,
as explained in Section IV-B. Here, even if the PUF outputs
are similar, e.g., with only one bit difference, these outputs
can still be effectively mapped to totally different ΓLk.

V. RFFI PROTOCOL

A. Overview

As shown in Fig. 8, a deep learning-based RFFI protocol,
adopted in our work, consists of two stages, training and
classification. In the training stage, the receiver collects suffi-
cient packets from each DUT to build a training dataset. The
raw IQ samples are first converted to a colored-constellation
diagram (CCD), which is a 2-D image in I/Q plane and it will
be explained in Section V-B. A CNN classifier will then be
trained, whose model details will be introduced in Section V-C.
During the classification stage, the receiver captures a signal
from a DUT, generates CCD, and then passes it to the trained

Classification

Training

Training Dataset

CCD 

Generation

Model Training

Predicted 

label

Fig. 8. Deep learning-based RFFI protocol.

classifier. The receiver will then predict the identity of the
DUT.

B. CCD Generation

In our previous work [19], it was found that when non-
linear PAs are cascaded with pulse shaping filters, the signals
experience memory effects which result in irregular symbol
clusters in constellation diagrams. When the data sequence is
predetermined, extracting RFF features directly from raw I/Q
samples in a time sequence becomes feasible. However, in
our study, we aim to keep the method more generic, i.e., data
sequence is dynamic and unknown. The raw I/Q data for each
transmission thus are different because of the random nature
of the symbols in the data streams. In this sense, using I/Q
data in time domain for RFF becomes inapplicable.

Following similar link-level simulation procedures de-
scribed in [19], the CDs in the I/Q plane, using 16-QAM as an
example in this paper, were obtained. They are subsequently
converted to colored density plots, referred to as CCDs. The
CCDs are able to highlight the unique and irregular shapes, as
well as the symbol cluster density distributions, of the constel-
lation symbols for RFF classification [19]. The mathematical
expression for the CCD generation can be described as

g
[ d

(q)
max/2

|P (q)−z(q)|

]
, (9)

where z(q) are received symbols in the qth constellation cluster
(q = 1, ..., Q, with Q being 16 for the 16-QAM scheme) whose
noiseless and interference-free reference constellation point is
P (q). In the qth constellation cluster, the maximum symbol
offset is d

(q)
max, with its half being taken as a ratio reference.

g[·] is the heat map scale function, returning color density scale
from 0 to 1 covering all z(q) distributions in the I/Q plane. In
our work, the resulting CCDs are saved as JPEG image files.
The dimension of CCD image determines the CNN training
complexity. The larger the dimension, the more computation
resources are required, see the CNN training times in Table IV.
For this trail test, the CNN training network parameters were
set as follows: initial learning rates of 0.1, maximal epoch of
60, and the minimum batch size of 64. Increasing the CCD
image pixel size can improve validation accuracy to a certain
extent. However, excess image details could potentially make
CNN focus on non-important features, which is also evidenced
in Table IV. Considering the results in the table, the CCD
dimension of [295×295] was chosen in our study.
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TABLE III
EXAMPLE OF MAPPING (Cin1,Cin2, ..., Cin6), TO (R1, R2, ..., R6), TO ΓLk , AND ULTIMATELY TO Aejθ FOR PA-1 ACTIVE LOAD-PULLING.

(Cin1,Cin2, ..., Cin6)
in Dec. (6, 5, 2, 128, 1, 3) (128, 1, 8, 9, 5, 6) (224, 64, 3, 1, 2, 6) (1, 6, 128, 7, 224, 3) (160, 3, 5, 2, 6, 128) (1, 9, 128, 3, 4, 7)

(R1, R2, ..., R6) in Dec. 3 16 28 37 48 55
k 1 2 3 4 5 6

ΓLk −0.033 + j0.058 −0.044− j0.054 −0.085 + j1.48 −0.333− j0.008 −0.008 + j0.255 −0.0015− j0.0.047

Aejθ 0.845ej212
◦

0.85ej190
◦

0.75ej146
◦

0.63ej54.4
◦

0.75ej9.9
◦

0.93ej−131◦

TABLE IV
CNN TRAINING TIME AND VALIDATION ACCURACY WITH DIFFERENT

CCD IMAGE SIZES.
Image size Training time Validation accuracy
[192×192] 775s 93.32%
[224×224] 948s 93.46%
[295×295] 1426s 94.68%
[350×350] 3021s 94.57%

(a) (b)

(c) (d)
Fig. 9. CCDs associated with the ΓL{1,3,4,6} of PA-1. SNR is set to 30 dB
in the simulation. (a) ΓL1. (b) ΓL3. (c) ΓL4. (d) ΓL6.

As examples, the simulated CCDs based on the mea-
sured AM/AM and AM/PM characteristics of the PA-1 for
ΓL{1,3,4,6} are plotted in Fig. 9. It can be seen that there are
visible differences in CCDs, demonstrating the effectiveness
of changing ΓL on enlarging RFF features.

C. CNN Classifier

CNN is utilized to extract and classify the RFF feature
exhibited in the CCDs. The resulting CCDs are input to the
classification system, which performs feature weight calcu-
lation and outputs a class or probability of the input image
belonging to a pre-trained class.

In our study, the constructed CNN classification system
consists of 4 convolution layers, 3 max-pooling layers, and

1 fully connected layer. The input image size is set to (295,
295, 3), corresponding to (height, width, RGB). The Rectified
Linear Unit (ReLU) activation function is set within the
convolution layers. Moreover, the fully connected layer uses
the softmax activation function to perform the classification
among the target devices. The filter size in each convolutional
layer is set to (3 × 3) in order to capture the details of the
proposed RFF in the CCDs, with the corresponding number
of filters being set to 32, 64, 128 and 256. In addition, during
the training of the proposed CNN network set, we perform
a parameter sweep to find its optimal hyperparameters. The
hyperparameters include the number and size of filters for
each convolutional layer, the initial learning rate, the minimum
batch size, and the maximal epoch.

VI. EXPERIMENTAL EVALUATION

In this section, the performance of the proposed RFFI
system is evaluated in the cable-connected and OTA measure-
ments.

A. Setup

1) Device Configuration: The configuration of the exper-
iments for the proposed PUF-assisted RFF transmitter is
depicted in Fig. 2. For cable-connected measurements, the
antenna is replaced with a direct RF coaxial cable connection.
In the experiments, the sampling rate is set to 2 Msps, and the
roll-off factor β, symbol span D, and symbol duration T of the
RRC filter are set to 0.5, 8, and 100 ms, respectively. With
deliberately chosen long symbol duration T, the inter-symbol
interference (ISI) is dominantly contributed by the non-linear
memory effect because of the cascade of the transmitter RRC,
the non-linear PA, and the receiver RRC. This reduces the
potential ISI effect from the multi-path channels.

2) CNN Configuration: Training dataset: The receiver data
are collected for selected ΓLk (k = 1, 2, ..., 6) of each PA
under test in high SNR condition, i.e., 40 dB, under both
cable-connected and OTA measurements. The additive white
Gaussian noise (AWGN) is subsequently applied to these
high SNR symbols, artificially producing numerous training
samples with varied SNRs. In this work, the SNR range for
the training samples is set to 0 dB to 35 dB with a step of
1 dB, 50 data packets per SNR value, or equivalently CCDs,
are generated for each of the 6 chosen ΓL for each PA. The
training dataset consists of all samples associated with the
8 PAs. The samples in the dataset are randomly divided into
80% and 20% for training and validation. Test dataset: For the
test dataset, the receiver data are collected from each targeted
PA with the selected ΓLk, and they are converted to CCDs.
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TABLE V
CNN TRAINING HYPERPARAMETERS.

Training hyperparameters Range Optimal value
Optimizer (Rmsprop, Adam, Sgd) Sgd

Initial learning (0.1, 0.001, 0.0001) 0.0001
Mini-batch size (32, 64, 128, 256) 128

Maximal epochs (60–150) 150
Filter size (3, 6, 9) 3

No. filter 1st layer (16, 32) 32
No. filter 2nd layer (32, 64, 128) 64
No. filter 3rd layer (64, 128, 256) 128
No. filter 4th layer (128, 256, 512) 256

For each target PA under test, the test dataset comprises 200
packets per SNR value.

The minimum batch size, the maximal epoch, and the initial
learning rate are set to 128, 150, and 1 × 10−4, respectively.
All the deep learning models were trained and tested on a PC
with NVIDIA GeForce GTX 4060 GPU using Matlab deep
learning toolbox1. The hyperparameters of the proposed CNN
architecture are listed in Table V.

B. PA Active Load-Pulling Test

Using the active load-pulling setup in Fig. 5, 6 measured
ΓL for each PA are selected, and their AM/AM and AM/PM
curves are measured, and Bessel-Fourier fitted, see the exam-
ple for the PA-1 in Fig. 10. It is worth pointing out that the PA
output reflection coefficients ΓLk in Fig. 6 are obtained using
a Maury passive load tuner. The PA load-pull results are shown
in Fig. 4, from which the selectable PA load impedance (or
reflection coefficients ΓL) is labelled. Those PA characteristics
shown in Fig. 6 are used in the simulations presented in Fig. 9.
While in Fig. 10, the 6 selectable ΓL were generated using the
active load-pulling effect, instead of using a passive load tuner.
This is a more practical method in IoT applications as only
minimum hardware add-ons (e.g., circulator and Mag/Phase
control devices) are required. However, this, unfortunately, is
less accurate than the passive method due to the variation
and non-ideal property of the extra hardware employed. Thus,
in Fig. 10 the 6 selectable ΓL generated using this active
load-pulling method are slightly different from those selected
in Fig. 6. There are subsequently used in the experimental
validation presented in the following subsections. Despite
these differences, all selected ΓL meet RFF requirements,
ensuring minimal impact on the link performances.

C. Cable-Connected Evaluation

The cable-connected measurement is first conducted in
order to provide a baseline assessment of the proposed RFFI
system, removing other factors introduced by the characteris-
tics of the antenna and the wireless multi-path channel. This
allows us to better understand the capabilities of the proposed
RFFI system.

A photograph of the cable-connected experiment is shown
in Fig. 11. The transmitter, consisting of a USRP X310, a PA
under test, a circulator, and a tunable attenuator, is directly

1https://uk.mathworks.com/help/deeplearning/
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Fig. 10. Bessel-Fourier fitted AM/AM and AM/PM measurement curves with
6 varied ΓL for PA-1.
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Fig. 11. Photograph of the cable-connected experiment setup.

connected to a receiver (USRP N200) via a well-matched RF
coaxial cable. The tunable attenuator here is added to adjust
the SNR of the received signals, which can create test datasets
with different SNR levels.

Our initial measurement focused on the evaluation of the
effects of the 6 different ΓL on the non-linear memory RFF
features for each PA. Specifically, each PA output reflection
coefficient is set to each of the pre-selected ΓLk (k =
1, 2, ..., 6) by leveraging the active load-pulling technique
outlined in Section III-C. The measured constellation diagrams
for the PA-1 associated with the 6 ΓL are exemplified in
Fig. 12, while the converted CCDs are showcased in Fig. 14.
These results suggest that the active load-pulling technique
can modify the non-linear characteristics of the PA by tuning
the coefficient Aejθ.

In order to demonstrate that the proposed active PA load-
pulling does not severely compromise link performance, the
link bit error rates (BERs) have been calculated that are based
on the measured data in the cable-connected experiment. For
the BERs shown in Fig. 13 for the PA-{3, 6} with different PA
loads, i.e., 50 Ω load and the other 6 selectable active loads,
it can be seen that in low to medium SNR up to 10 dB, the
system performance is reduced by only about 1 to 2 dB. In
the high SNR region, the links with load-pulling PAs appear to
have a higher noise floor compared with the fixed 50 Ω system.

https://uk.mathworks.com/help/deeplearning/
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Fig. 12. Measured 16-QAM CDs for the cable-connected link with PA-1. Six
ΓL shown in Fig. 10 were studied. PA output power was kept identical to
around 16 dBm.

This phenomenon is likely attributed by the extra interference
due to the non-ideal isolation of the RF circulator. Overall, it is
important to highlight that the utilization of the PUF-assisted
RFF approach, facilitated through active load-pulling to adjust
PA output impedance does not noticeably compromise the link
performance. The observed degradation of 1 to 2 dB can be
tolerated by wireless receivers.

Furthermore, we generated sufficient CCD images for train-
ing and test. The classification accuracy versus SNR for each
PA, which is obtained by averaging among 6 varied ΓLk, is
shown in Fig. 15. The training dataset for this test comprises
10,800 packets for each PA, structured into 6 ΓL, each
containing 1,800 packets. The configuration of this training
dataset is denoted as the training set#1. From the results, we
can see that compared with other PAs, the PA-3 is slightly less
sensitive to the load changes, and the average classification ac-
curacy for each of the remaining PAs is higher than 90% when
SNR is no lower than 21 dB. Overall, this demonstrates the
effectiveness of enlarging RFF feature differences by actively
altering the PA output impedance without compromising the
link power budget.

We also evaluated the effects of active load-pulling on
different PAs. For one experiment, each PA is randomly
assigned with a ΓLk, which forms eight new PA models, given
as {PAi,ΓLk}. We then collected training and test dataset and
performed classification. Such experiments were repeated for
20 rounds with random selections of ΓLk. The training dataset
configuration for this test comprises 14,400 packets, structured
into 8 PAs with ΓLk. The configuration of this training dataset
is denoted as the training set#2.

The average classification accuracy over 20 tests is shown in
Fig. 16. The proposed PUF-assisted RFF methodology signif-
icantly outperforms the conventional 50-Ω load system in the
cable-connected experiment, especially in low SNR regions.
As examples, about 22%, 17%, and 12% improvements are
achieved at SNRs of 0 dB, 5 dB, and 10 dB, respectively. The
accuracy is higher than 90% when SNR is no lower than 21
dB.
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Fig. 13. Calculated BER curves associated with different PA loads, based on
the measured data in cable-connected experiment, (a) PA-3; (b) PA-6.

(a) (b)

(c) (d)
Fig. 14. Measured CCDs associated with the different ΓL of PA-1. The
measured SNR is around 35 dB. (a) ΓL1. (b) ΓL3. (c) ΓL4. (d) ΓL6.
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Fig. 15. Average classification accuracies among 6 varied ΓL for each of the 8 PAs in the cable-connected measurements.
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Fig. 16. Average classification accuracy in cable-connected and OTA mea-
surements.

D. OTA Experimental Evaluation

To study the RFFI performance in a real wireless link, OTA
experiments were conducted, which include all other effects
from antennas and wireless channels. During this process, the
receiver collects the wirelessly transmitted signals from the
target DUTs with varied ΓL. The experiment photo is given
in Fig. 17. Both LOS and NLOS link environments were
investigated. The target DUTs and the receiver were positioned
in a lab with common lab furniture and equipment around.
At the transmitter and receiver ends, two vertically polarized
microstrip patch antennas were deployed, with a realized
gain of approximately 4.5 dBi at the operation frequency of
2.4 GHz. For the LOS scenario, transmission distances of 1
meter, 3 meters, and 5 meters were studied, corresponding to
measured SNRs of 26, 20, 11 dB, respectively. Regarding the
NLOS measurements, the receiver was located at two labeled
locations, as indicated in Fig. 17. The measured SNRs of the
two NLOS scenarios were found to be around 15 dB and 12 dB
for locations 1 and 2. During the OTA measurement, the ΓL of
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Fig. 17. Photograph of the OTA experiment setup.

the DUTs were adjusted by the active load-pulling technique
in a similar way as in the cable-connected experiment. In the
training stage, an LOS link enjoying higher than 40 dB SNR
was used. The classification errors are randomly distributed
among devices, which indicates their hardware RFF feature
differences are enlarged.

Same as the cable-connected measurements, in the OTA
measurements, each of the eight PA models was paired with
a selectable ΓL, and 20 tests were performed. The average
classification accuracy is also shown in Fig. 16. In the LOS
scenario, the accuracy is 88.43% at SNR of 26 dB, and 64%
at SNR of about 15 dB for the NLOS scenario. The OTA
experiment demonstrated about 11% to 24% improvement in
average classification accuracy with the proposed PUF-assisted
RFFI system under both LOS and NLOS OTA scenarios,
compared to PAs under test having ZL of 50 Ω. In contrast,
the average classification drops to 60% in the OTA experiment
at 15 dB SNR.

The confusion matrix can provide more details on classi-
fication performance, e.g., where the most mis-classification
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Fig. 18. Confusion matrices in OTA measurements averaged among 20 random rounds. (a) The proposed approach, LOS-5m, average accuracy: 55%. (b)
The proposed approach, LOS-1m, average accuracy: 88.43%. (c) The conventional apprach (ΓL = 0), LOS-1m, average accuracy: 65.2% (d) The proposed
approach, NLOS-2, average accuracy: 52.4%. (e) The proposed approach, NLOS-1, average accuracy: 64%. (f) The conventional approach (ΓL = 0), NLOS-1,
average accuracy: 50.5%

happens. The resulting confusion matrices based on these 20
rounds of random ΓL selections in the OTA measurements are
exemplified in Fig. 18, for both our proposed approach and the
conventional method (ΓL = 0). By comparing Figs. 18(b) and
18(c) (and also Figs. 18(e) and 18(f)), our proposed approach
has much better classification performance, in terms of the
overall classification accuracy and the distribution of misclas-
sification. For example, in Fig. 18(c), lots of misclassification
happened between PA-1 and PA-7 as well as PA-7 and PA-8,
which is not acceptable. Our proposed approach does not have
dominant misclassification between any two PAs, as observed
from Fig. 18(a), (b), (e), and (f), thanks to the enlarged the RFF
feature differences among wireless devices of same vendor.

VII. CONCLUSION

In this paper, a novel approach of utilizing PUF to as-
sist the enlargement of the RFF feature differences among
wireless devices of the same vendor was proposed. The PA’s
characteristic is affected by its output reflection coefficient
ΓL (or equivalently the output load impedance ZL), which
can be tuned by exploiting the active load-pulling effect. We
implemented RO-PUF to configure the PA output reflection
coefficient ΓL in a secure and unique way. The resulting
enlarged PA RFF feature differences with varied PA output ΓL

was used for RFFI . We converted received signals to CCD and
designed a CNN-based deep learning model for classification.

The proposed RFFI approach was validated through the cable-
connected and OTA experiments to classify eight PA models
from the same vendor. In the cable-connected experiment, the
proposed scheme achieved over 90% classification accuracy
for SNRs of greater than 13 dB. In the OTA experiments, the
average classification accuracy for the LOS scenario was 89%
at SNR of 26 dB, and 64% at SNR of 15 dB for the NLOS
scenario. This classification accuracy drop in the OTA exper-
iment may be attributed to factors such as antenna impedance
mismatch, multipath channels, and interference from ambient
wireless systems operating at 2.4 GHz. Further investigations
are needed to address these challenges and develop mitigation
strategies. Compared to the conventional systems without
enlarging RFF features, our proposed approach achieved 11%
to 24% average classification accuracy improvement in the
OTA tests.
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