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Abstract

The widespread threat posed by slope structure failures to human lives and property safety is

widely acknowledged. Additionally, natural soil often displays spatial variability due to geological

deposition and other factors. Therefore, predicting the seismic response of slopes subjected to

ground motions and inversely analyzing the spatial distribution of soils remains an unresolved

issue. In the present work, a shaking table experimental test is first designed and carried out, in

which a soft-soil slope dynamic system is established. To capture the seismic response of the soft-

soil slope, specifically the experimental characteristic of acceleration and soil pressure response

in both spatial domain and time domain, a series of sensors were pre-embedded in the slope.

Subsequently, a model updating approach is proposed for slope seismic analysis that incorporates

spatial variability of soil. In addition, to enhance computational efficiency, the dimensionality

reduction of Karhunen-Loève expansion method is introduced to reduce inverse analysis parame-

ters. Based on 34 samples collected from experimental data, it is shown that near-fault pulse-like

ground motions deliver greater concentrated energy, causing more severe damage to slope struc-

tures, especially the topsoil layer. Furthermore, using data obtained from a shaking table test

subjected to ground motion RSN 158H1 from the PEER NGA-West2 database as an example, it

is also shown that the proposed approach demonstrates high accuracy in predicting the spatial

distribution of the maximum shear modulus in soil slope dynamic systems. The present work
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not only addresses the challenges posed by mainshock-aftershock effects but also highlights the

potential of model updating approaches to enhance the understanding of slope behavior under

seismic loading conditions.

Keywords: Shaking table test, Model updating, Bayesian analysis, Markov chain Monte Carlo,

Seismic hazard

1. Introduction1

Landslides triggered by earthquakes have caused significant damage and loss of life around2

the world. Understanding the mechanisms and evaluating seismic responses that contribute to3

earthquake-induced landslides is critical for mitigating their impacts and reducing the risk of4

future disasters [1, 2, 3]. In fact, earthquakes often constitute a continuous process, wherein a5

mainshock is usually followed by a series of aftershocks [4, 5]. Additionally, regions within the6

same seismic zone frequently experience multiple earthquake events. Subjected to the influence7

of multiple earthquake events, slope structures previously damaged by the seismic excitation8

may be incapable of withstanding the impact of the next seismic event, potentially resulting in9

complete failure [6]. This vulnerability is particularly pronounced in the case of soft-soil slopes,10

where the seismic amplification effect of the soft soil can significantly amplify cumulative damage11

[7, 8]. Therefore, predicting the seismic responses caused by seismic excitations is critical for12

the safety of structures. However, the majority of studies have focused on the effects of multiple13

earthquake events mostly for steel structures, wood structures, single-degree-of-freedom systems,14

etc. There is a significant scarcity of research concerning the damage to slope structures under15

seismic excitations.16

Currently, ground motions can be primarily classified into two categories based on the presence17

of pulses; these are pulse-like ground motion (PLGM) and non-pulse ground motion (NPGM).18

However, near-fault pulse-like ground motions that feature a long-period and high-amplitude pulse19

in velocity signal potentially cause more severe damage. Some studies have already been done in20

this area including topics such as generation principle [9], identification [10], numerical simulation21

[11], and impacts on structures [12, 13]. Nonetheless, despite attempts to quantify the impacts of22

PLGMs and NPGMs on actual slope structures through numerical simulations, the understanding23

of this critical issue remains unclear. In this context, the objective is to derive evolving rules under24

different seismic excitations. This is crucial for a better understanding of slope failure mechanisms,25

providing the foundation for improving numerical models. Achieving this goal necessitates the26
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implementation of relevant experimental studies. As for experimental study, Bao et al. [14]27

investigated the effect of near-fault ground motions with disparate intensities; Bao et al. [15]28

also examined the influence of PLGMs but, in general, additional research effort should be put29

towards the exploration of the seismic response of soft-soil slope dynamic systems under PLGMs30

and NPGMs.31

In terms of the relevant numerical analysis, the response and reliability of slope structures32

subjected to seismic ground motions have consistently been a topic of interest among scholars. In33

the analysis of slope dynamic reliability, it is important to note that the majority of existing as-34

sessment models are built upon the Newmark-type procedure (e.g. [16, 17, 18]). In comparison to35

the latter, numerical stress-strain analysis can often offer more precise estimations of the dynamic36

behavior of slope systems [19, 20]. Moreover, in current numerical-based research, it is commonly37

assumed that soil properties within the soil strata are uniform, and the uncertainty associated38

with soil parameter variations is often simply disregarded. The inherent spatial variability of39

soil characteristic parameters has not yet been incorporated into the current probability-based40

numerical methods [21, 22]. In reality, this spatial variability of soil composition often exhibits41

significant variations spanning several orders of magnitude, which can indeed impart certain influ-42

ences on the analysis outcomes [23, 24, 25]. The potential impact of non-uniform soil properties43

on seismic hazards in slope dynamic systems remains uncertain. However, the spatial distribution44

field of soils in actual site is typically unknown. Therefore, determining how to inversely analyze45

the spatial distribution field of soil properties in the investigation site is critical.46

In this context, adopting a model updating approach can well address the above issues. In47

geotechnical engineering, predictions of slope models often differ significantly from the measured48

results. Thus, the model updating approach can assist engineers in calibrating geotechnical ma-49

terial parameters or numerical models by incorporating test data, monitoring data, and field50

observation data [26, 27, 28]. Bayesian methods stand out as a frequently employed strategy in51

model updating, providing a probabilistic perspective to address the challenges of refining models52

[29, 30, 31]. The most common method of Bayesian updating is carried out through sampling53

techniques, such as Markov chain Monte Carlo (MCMC) methods. Uribe et al. [32] explored54

how varying the prior random field model influences the resolution of Bayesian inverse problems.55

However, incorporating the spatial variability of the soil into Bayesian updating introduces a56

significant increase in parameter dimensions, increasing, subsequently, the associated computa-57
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tional cost [33]. Conventional Bayesian methods often struggle to effectively address this issue58

[34]; especially, maintaining the stationarity and achieving convergence of Markov chains in high-59

dimensional spaces presents a formidable challenge [35]. The intricacy of Bayesian updating tends60

to increase when handling discrete outputs in high-dimensional spaces. This, in turn, results in61

a heavy computational burden for likelihood function evaluations [33]. In such cases, due to the62

curse of dimensionality in both modeling and simulation, even efficient surrogate model methods63

may fail to achieve their anticipated potential. Hence, the present study introduces the integration64

of K-L dimensionality reduction techniques into the framework for discrete processes, enabling the65

use of low-dimensional models to reduce the associated computational costs.66

In this paper, aiming at addressing the aforementioned challenges, a shaking table experimental67

test is first designed and carried out, in which a soil slope dynamic system is established. To cap-68

ture the seismic response of a soft-soil slope dynamic system, particularly the experimental char-69

acteristics of acceleration, stability, and residual deformation, a series of sensors are pre-embedded70

in the slope to acquire 34 sets of data samples. Subsequently, a real-time model-updating-based71

adaptive approach is proposed, which incorporates soil spatial variability and introduces the con-72

cept of dimensionality reduction for K-L expansion method for geotechnical structures subjected73

to sequential seismic motions. By doing so, the herein proposed approach accurately predicts the74

potential seismic responses of soil structures and inversely analyzes the spatial distribution field75

of real-site soil parameters. Finally, the feasibility of the proposed approach is validated through76

the analysis of a soft-soil slope, coupled with the acquired data from shaking table tests.77

2. Experimental setup78

2.1. Shaking table test79

Influenced by the Honghe fault zone, Honghe Autonomous Prefecture of Yunnan Province,80

China, and its surrounding areas have been severely affected by historical earthquakes leading to81

landslides and loss of property [36]. In the present study, red clay soil which is used as test soil82

was obtained from the Duodi Village, Honghe Autonomous Prefecture, Yunnan Province [37, 38].83

Taking into account that particle size composition is an important indicator for determining soil84

type, the herein used particle size composition is characterized by Bettersize 2600 laser particle85

size analyzer. The detection principle of the machine is to use a monochromatic laser of a certain86

wavelength as a light source. The spatial distribution of the diffracted and scattered light energy87
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is only related to the particle size, so that the particle size distribution (PSD) curve of the soil88

is obtained (e.g. [39, 40, 41]). Moreover, the measuring range of the analyzer is lies in the range89

of 0.02-2600 µm and contains 100 particle size classes. The PSD curve of the test soil is shown90

in Figure 1. The PSD curve indicates that the particle diameters of the tested soil samples fall91

within the range of clay where the diameter is less than 75 µm.92
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Figure 1: Particle size distribution of the test soil.

The length of the used model box is 90 cm, determining a similarity ratio of 50. Due to the93

nonlinear nature of soil properties, the similarity relationship between the scaled model and the94

prototype site is established via the Buckingham law [42, 43]. The mechanical parameter similarity95

relationship between the scaled model’s soil and that of the prototype site, as outlined in Table96

1, is employed for reference.97

2.2. Layout of sensors98

To capture the seismic response of clay soil, a series of sensors are pre-embedded in the slope99

model. The piezoelectric accelerometers are utilized to record the seismic responses of acceleration100

which are designed with shear structures that exhibit desirable features, such as low base strain,101

high immunity to temperature changes, compact size, and consistent performance. Further, to102

record the seismic response of mechanical properties, four dynamic earth pressure gauges are also103

pre-embedded in the slope. Additional information about the parameters of the used sensors are104

listed in Table 2. Note that the dynamic earth pressure gauge is buried vertically, aligned with105

the bottom surface, and its probe was parallel to the left side boundary of the model box. The106

specific locations of sensors are illustrated in Figure 2.107
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Table 1: Similarity relationship of soil mechanical parameters between the scaled model and the prototype site.

Scaling factor λ Scaling law Scaling factor λ Scaling law

Cohesion c λc/(λlλgλρ)=1 Acceleration a λa/(λlλ
2
f )=1

Stress σ λσ/(λlλgλρ)=1 Elastic modulus E λE/(λlλgλρ)=1
Gravitational acceleration g λg/(λlλ

2
f )=1 Time t λt/(λ

0.5
l λ−0.5

g )=1

Mechanical parameter Symbol Dimension (MLT) Scaling factors

Length l [L] λl=50
Density ρ [M][L]−3 1
Cohesion c [M][L]−1[T]−2 λc=λlλgλρ=50
Gravitational acceleration g [L][T]−2 1
Friction angle φ - 1
Elastic modulus E [M][L]−1[T]−2 λE=λlλgλρ=50
Strain ε - 1
Stress σ [M][L]−1[T]−2 λσ=λlλgλρ=50
Acceleration a [L][T]−2 1
Time t [T] λt=(λa/λl)

−0.5=7.07
Frequency f [T]−1 λf=(λa/λl)

0.5=0.14
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Figure 2: Schematic of geometry and sensor installation for shaking table test. (a) Sketch view of slope model; (b)
sensors arrangement.

Table 2: Sensors parameters.

Name Sensor type Measuring range Frequency Amount

Piezoelectric accelerometer 1A119E 0 - 500 m/s2 0.5 - 12000 Hz 7

Dynamic earth pressure gauge CYY9 -50 - +50 kPa 1 - 3000 Hz 4

2.3. Input ground motion108

To investigate the seismic responses of the slope, ground motion records in a typical earthquake,109

namely the Imperial Valley-06 Earthquake, are adopted from the Pacific Earthquake Engineering110

Research Center (PEER) NGA-West2 databases [44]. The ground motion RSN 158 H1 is included,111
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where 158 accounts for the Recorded Sequence Number (RSN) and ‘H1’ represents the horizontal112

1 in the PEER NGA-West2 Flatfile. Based on the original ground motion, the peak ground113

acceleration (PGA) of recorded ground motion is amplitude modulated. Overall, six cases are114

considered, as shown in Table 3. The velocity, acceleration, spectral acceleration, and Fourier115

spectrum of the selected ground motions are illustrated in Figure 3. It is pointed out that, the116

mainshock sequence and the aftershock sequence are normally distinct. For the objectives of117

the present study, which predominantly aims to verify the proposed methodology, a simplified118

assumption is adopted. Specifically, it is assumed that the aftershock sequence is identical with119

the mainshock sequence and that the amplitude is adjusted through the PGA. Moreover, in order120

to reduce as much as possible the experimental error caused by the reflections of the seismic121

excitation on boundaries, a polymer latex film is placed in the model box during tests.122
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Figure 3: Velocity (v), acceleration (a), 5% damped spectral acceleration (Sa) and Fourier spectrum (Ef ) of
selected ground motions in shaking table tests. (a) RSN 158 Horizontal 1, (b) RSN 159 Horizontal 1, (c) RSN
160 Horizontal 1, (d) RSN 161 Vertical, (e) RSN 164 Horizontal 1, (f) RSN 166 Vertical in PEER NGA-West2
databases.
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Table 3: Designed cases for the shaking table tests.

No. RSN Type Duration (s) Input peak acceleration (IPA)

Case 1 158H1 PLGM 15 0.36g, 0.30g, 0.22g, 0.18g, 0.08g

Case 2 160H1 PLGM 38 0.30g, 0.27g, 0.22g, 0.15g, 0.07g

Case 3 159H1 PLGM 28 0.30g, 0.21g, 0.18g, 0.14g, 0.09g

Case 4 164H1 NPGM 64 0.37g, 0.27g, 0.22g, 0.16g, 0.07g

Case 5 161V NPGM 17 0.16g, 0.13g, 0.11g, 0.09g, 0.05g

Case 6 166V NPGM 29 1.19g, 1.02g, 0.84g, 0.65g, 0.50g, 0.37g,

0.30g, 0.22g, 0.15g

2.4. Procedure of test123

The Shake Table II system developed by Canadian Quanser Inc. is used to carry out the124

shaking table tests and a high-speed camera is positioned on top of the model box to observe125

the deformation of the entire model. Additional information about the shake table is provided in126

Table 4, while information about the dynamic data acquisition system, the high-speed camera,127

the Shake Table II system and the sensors is depicted in Figure 4.128

The data acquisition procedure comprised the following steps:129

(1) Measurement of the geometric dimensions of the model along the inner wall of the model130

box.131

(2) Placement of the polymer latex film at the designated location within the model box to132

simulate the flexible boundary.133

(3) Introduction of prepared soil samples into the model box, followed by compaction. To134

ensure the optimal degree of compaction, each layer is compacted to a controlled thickness of 5135

cm.136

(4) Installation of sensors at selected positions during the construction of the model.137

(5) Verification to ensure the precision of the sensor signals. This is conducted upon completion138

of the model assembly, and involved connecting the sensors to the dynamic data acquisition system.139

(6) Application of seismic load under various operating conditions and collection of data from140

each sensor channel.141
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Table 4: Shaking table parameters.

Parameter Value Unit Parameter Value Unit

Length 61 cm Width 46 cm

Height 13 cm Area of payload 46 × 46 cm2

Maximum payload 15 kg Maximum stroke of table 7.5 cm

Working frequency range 0 - 20 Hz Maximum full load acceleration 2.5 g

High-speed camera

Shaking table

Model box

Sensors

Polymer latex film

Loading direction

Data acquisition system

Laptop

(a)

Sensor 

A5
β

Slope angle = 30°

(b)

(c)

Dynamic data 

acquisition interface

(d)

(e)

Figure 4: Shaking table test system. (a) Overall model status; (b) model dimension; (c) dynamic data acquisition
system; (d) acquisition interface; (e) sensor.

3. Model updating approach for slope seismic analysis142

3.1. Random field discretization with dimensionality reduction method143

In model updating, the initial step involves establishing the prior distribution. We consider144

a prior distribution as a random field represented with the K-L expansion. Herein, we employ145

the squared exponential autocorrelation function ρ(x, y) to describe the autocorrelations between146

points as147

ρ(x, y) = exp

{
−π(∆x

Θx

)2 − π(
∆y

Θy

)2
}

(1)

where Θx, and Θy are the scale of fluctuation (SOF) along x-, and y-axis; ∆x, and ∆y denote the148

difference in absolute distance between two points along x-, and y-axis. The most commonly used149
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methods for the problem of random fields generation include, indicatively, the covariance matrix150

decomposition method [45], the spectral decomposition method [46], the Karhunen-Loève (K-L)151

expansion method [47], optimal linear estimation method [48], and the modified linear estimation152

method [49]. Herein, the K-L expansion method is adopted to generate the random field. The153

two-dimensional Gaussian random field generated using the K-L expansion can be expressed as154

U(x, y; θ) = µ(x, y) + σ(x, y)
∞∑
i=1

√
λiφi(x, y)θi (2)

where U represents the variable; µ(x, y) and σ(x, y) denote the mean and standard deviation of155

the random field, respectively. Further, θi is the i-th independent and unrelated normal random156

variable, and λi and φi(x, y) are the i-th eigenvalue and corresponding eigenvector of ρ(x, y),157

respectively. The eigenvalues and eigenfunctions are derived as the solutions to the Fredholm158

second-kind integral equations159

∫
D

ρ(x1, y1;x2, y2)φi(x1, y1)dx1dy1 = λiφi(x2, y2) (3)

where D denotes the discrete region; (x1, y1) and (x2, y2) denote the coordinates of any two points160

within the two-dimensional computational domain. Compared to other discretization methods for161

random fields, the advantage of the K-L expansion method lies in its ability to achieve relatively162

high computational accuracy with fewer random variables, avoiding in such way the need to163

derive the complete set of eigenvalues. Besides, the dimensionality reduction of the K-L expansion164

method can be utilized to convert the target of inverse analysis from complex high-dimensional165

spatial variables to simpler low-dimensional normal random variables, thus enabling Bayesian166

probabilistic inverse analysis. Hence, we adopt a dimensionality reduction of the K-L expansion167

and utilize its truncated form to generate the random field in the form168

U(x, y; θ) = µ(x, y) + σ(x, y)
n∑

i=1

√
λiφi(x, y)θi (4)

where n denotes the truncation order. In general, the n should be sufficient to retain at least 95%169

of the total variance of the actual variability compared to the overall variability; that is170

∑n
i=1 λi∑∞
i=1 λi

= 0.95 (5)
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and the process diagram for the dimensionality reduction of the K-L expansion is illustrated in171

Figure 5.172
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Figure 5: The process scheme for dimensionality reduction of K-L expansion method.

3.2. Bayesian model updating algorithm173

The adaptive Bayesian updating with structural reliability methods - subset simulation (aBUS-174

SuS) method is capable of effectively analyzing high-dimensional rare failure problems, leading175

to increasing the speed of approximation in the failure domain of the sample space. Herein, we176

will provide a detailed introduction to the Bayesian updating with structural reliability methods177

(BUS) algorithm coupled with subset simulation (SuS) for addressing Bayesian inverse problems.178

The impact of site-specific data on uncertainty parameter distribution can be assessed through the179

evaluation of the posterior probability density function (PDF) denoted as f
′′
X(x) for the random180

variable X. Utilizing Bayes’ theorem, the estimation of f
′′
X(x) is181

f
′′

X(x) = aL(x)f
′

X(x) (6)

where a represents a normalization constant; f
′
X(x) is the prior PDF; L(x) denotes the likelihood182

function; The detailed definition of the likelihood function will be provided in Section 4.1. L(x)183

is proportional to the probability of the event; X equals the site-specific information for x; that is184

L(x) ∝ P (Z | X = x) (7)
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where Z represents observation event and P (·) represents the probability of event. Specifically,185

the BUS first defines an equivalent failure (ΩZ) as186

ΩZ = {w − cL(x) < 0} (8)

where w is the simulation value of a random variable W , uniformly distributed in the interval187

[0, 1]; c is the likelihood multiplier. In SuS, the probability P (Z) is expressed as the product of188

larger conditional probabilities associated with a series of nested intermediate events, allowing for189

estimation as190

P (Z) = P [w − cL(x) < 0] = P (Z1)
m∏
i=2

P (Zi | Zi−1) (9)

where m represents the count of subset levels necessary to reach the failure domain, with each191

subset level comprising Nl samples; Z1 ⊃ Z2 ⊃ ... ⊃ Zm represent intermediate events denoted by192

Zi = {w − cL(x) < gi}, where gi signifies the thresholds with the condition g1 > g2 > ...gm−1 >193

0 ≥ gm; P (Zi | Zi−1) is conditional probability of Zi given Zi−1; the gi values can be selected to194

achieve a target value, p0, for the intermediate conditional probability.195

To determine the initial threshold, g1, Monte Carlo sampling is employed on samples condi-196

tioned on a specific event. Subsequently, for estimating subsequent thresholds, gi(i = 2, . . . ,m),197

MCMC sampling is utilized on samples conditioned on intermediate events. In this context, the198

component-wise Metropolis–Hastings algorithm is utilized to obtain samples within intermediate199

domains. That has been demonstrated to be effective in sampling from high-dimensional con-200

ditional distributions [50].To ensure computational precision and efficiency in subset simulation201

computations, it is crucial to first determine the appropriate value of c. Nevertheless, in most202

cases, it is not straightforward to find an analytical solution for the maximum likelihood function,203

which complicates its determination. In the present study, an adaptive approach is employed to204

automatically deduce the value of c, and more details can be found in Betz et al. [51], that is205

−lnci = max[−lnci−1, {ln(L(xi,k))}] (10)

where i = 1, 2, ...,m and k = 1, 2, ..., Nl; ci−1 is the likelihood multiplier in the i-th subset level.206

Additionally, combining with Eq. 2, it is easy to transform the issue from the origin random207
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variable X to the variable U = [U1, ..., Un]:208

X = T(U1, ..., Un) (11)

where T denotes classic transformations, e.g., marginal transformation in Nataf model. The209

implementation of the proposed method is provided for completeness. A brief description is also210

shown in Figure 6.211

Set up the likelihood function and calculate Z

for Nl samples

Set up the numerical model, integrate information 

on uncertain parameters, and generate Nl samples 

from the prior distribution f’X (x)

Calculate the initial value for c based on Eq. 10

Generation of the conditional samples of the 

intermediate failure events

zUpdate of the likelihood multiplier c

Calculate the probability of occurrence 

of a site-specific information event and 

obtain posterior samples

Figure 6: Flow chart of the proposed approach.

4. Numerical implementation of model updating approach212

4.1. Prior knowledge and likelihood function213

In the present study, the slope response data obtained during shaking table tests are used as214

site information. For instance, consider the peak acceleration value ap. Then, the relationship215

between the i-th set of measured values ap,i and the corresponding calculated values ap(qi) at216

position qi can be expressed as217

ap,i = ap(qi) + εi, i = 1, 2, ..., nd (12)
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where εi denotes measurement error. Taking into account the correlation among measurement218

errors in two sets of arbitrary experimental data, the likelihood function associated with n sets of219

experimental data is formulated as220

L(x) = k exp

{
−1

2
[ap − ap(q)]

TΣ−1[ap − ap(q)]

}
(13)

where k = [(2π)−
nd
2 |Σ|

1
2 ]−1; ap = [ap,1, ap,2, ..., ap,n]

T is the experimental data sample vector;221

q = [q1, q2, ..., qnd
]T represents the position vector of experimental points. Further, Σ−1 represents222

the inverse matrix of the autocovariance matrix Σ, composed of the variance σ2 of the measure-223

ment errors recorded by each monitoring instrument and the correlation coefficient between the224

measurement errors.225

4.2. Random field construction226

The non-linear dynamic behavior of soil follows the hyperbolic-hysteretic model as illustrated227

in Figure 7. The hyperbolic-hysteretic model has been verified for its effectiveness on kaolin and228

clays based on a series of centrifuge tests conducted by Banerjee et al. [52] and Liu and Zhang229

[53]. Chen et al. [54] have also verified the seismic response of soil-buried tunnels on the basis of230

hyperbolic-hysteretic model. The maximum (or small-strain) shear modulus Gmax of hyperbolic-231

hysteretic model is given by232

Gmax = A× (p
′
)n (14)

where p
′
represents the mean effective normal stress, and A and n denote calibration parameters.233

The wide applicability of Eq. 14 has been demonstrated by its adoption in numerous studies234

(e.g. [52, 55]). Following Liu and Zhang [53], the spatial variability of Gmax has a significant235

effect on soil seismic response, and neglecting this effect leads to an inaccurate assessment of the236

risk of slope failure. According to previous studies [56], the value of n is typically considered237

fixed, with a common choice being 0.653. However, the value of A often exhibits a significant238

range of variation. Notably, a variation of one order of magnitude is observed in certain soils.239

Therefore, the spatial variability of Gmax is reflected in the A value. The mean value of A was240

set to 2060, in line with the work conducted by Liu and Zhang [53]. A coefficient of variation241

(COV) of 0.2 is adopted for A in agreement with the COV values reported by Schevenels et al.242

[57] and Ayad et al. [58], who also modeled Gmax as a random field. It is important to note243

14



that the mean effective normal stress p
′
in Eq. 14 varies with depth, typically increasing, which244

leads to additional variability in Gmax. Consequently, the overall variability of Gmax surpasses245

that of A depending on the depth range under consideration. When dealing with in-situ test data,246

it is crucial to acknowledge the potential amplification of variance due to measurement errors,247

as discussed in Phoon and Kulhawy [59]. The present study has not separately accounted for248

measurement errors. In summary, to reduce the uncertainties brought by the spatial variability249

of Gmax, the Gmax random field is incorporated into the proposed model updating approach. On250

basis of prior knowledge regarding Gmax, the random field is simulated, with typical realization251

presented in Figure 8, where darker zones indicate larger Gmax values.252

Initial loading curve

First loading hysteresis cycle

Reloading path

Unloading path

q

qr1

qr2

r2

n-th loading hysteresis cycle

r1 s

Figure 7: Clay soil dynamic constitutive model.

4.3. Model description253

In this section, the potential of the herein proposed model updating approach is demonstrated254

by considering the problem of the seismic response evaluation of a slope dynamic system. To this255

end, a finite element model is established using the commercial finite element software ABAQUS256

version 6.14. The mesh scale and the details of the boundary conditions are depicted in Figure257

8. The model has seven accelerometers installed as sensors, while it contains 5453 elements with258

15



87.9
80.9
73.9
66.9
59.9
52.9
45.9
39.0
32.0
25.0
18.0
11.0
4.0

Gmax : MPa

Rollers

Slope angle: 30°

Free boundary

Fixed

20
20

30 35
90

Free boundary

Figure 8: A typical realization for Gmax random field.

types of four-node plane strain element (CPE4R). To mitigate the discretization errors arising259

from random field discrete processes, the mesh scale is configured at 4.2% of the correlation260

length for effective control [60]. The analysis comprises the following two steps. First, an initial261

stress equilibrium is achieved, and then, a nonlinear time history analysis of the ground motion262

is conducted. Based on the mechanical parameters of the red clay used in the experiment, the263

numerical simulation parameters are configured as listed in Table 5. The left and right boundaries264

are characterized by free-roller boundary conditions, whereas the bottom exhibits complete fixity.265

The input ground motion is applied in the horizontal direction. To maintain consistency with the266

shaking table experiment, the same input ground motion selected from the PEER NGA-West2267

database, as well as the acceleration time history, and the frequency spectrum were employed.268

These are depicted in Figure 3.269

5. Results and discussions270

As mentioned in Section 2, it is imperative to examine the dynamic characteristics of slopes,271

focusing on the acceleration evolution, the slope dynamic stability, and the amplification effects272

across various slope regions. The findings presented in this section are derived from the analysis273

of 34 seismic response cases.274
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Table 5: Soil mechanical parameters and modeling information.

Mechanical parameter Symbol Unit Value

a. Deterministic parameters
Density ρ g/cm3 1.6
Poisson’s ratio µ - 0.3
Dilation angle ψ ° 0
Friction angle φ ° 25
Effective gravity γ kN/m3 6
Coefficient of earth pressure at rest K0 - 0.5774
Slope height H m 20
Slope angle α ° 30

b. Statistical properties of random field for Gmax of inhomogeneous soils
Mean average of A - - 2060
Coefficient of variation COVA - 0.2
Horizontal correlation length ΘH m 16
Vertical correlation length ΘV m 1.5

5.1. Experimental characteristics for the slope dynamic system275

5.1.1. Seismic evolution of acceleration276

In this section, the acceleration response is analyzed by examining different accelerometers277

positioned at various locations in the model. Specifically, accelerometers positioned at surface278

(A1), top (A2), middle (A3), and bottom (A4) are considered to investigate the patterns and279

trends in the acceleration response. The response peak acceleration (RPA) for each of these cases280

is illustrated in Figure 9. The results indicate that, as the loading intensity increases, the peak281

acceleration at different locations also increases correspondingly. Further, it is evident from Figure282

9 that, for a given loading intensity, the type of input seismic excitation significantly influences283

the RPA values. Specifically, the RPA induced by PLGM is greater than, or at least equal to the284

corresponding value of the NPGM. For instance, the RPA values for cases subjected to PLGMs285

and NPGMs with the loading intensity of 0.30g and 0.22g, respectively, at different elevations (i.e.286

h = 40 cm, h = 30 cm, and h = 20 cm) are selected and their RPA values are listed in Table287

6. In Table 6, Nos. 1 - 3 are the RPA obtained from cases subjected to PLGMs, and they are288

all greater than those subjected to NPGMs (No. 4). Also, the RPA values of Nos. 5 and 6 are289

greater than these of Nos. 7 and 8. The phenomenon is enhanced in the experimental cases with290

higher loading intensities. Specifically, with an increase in height (e.g. h/H = 1.0), there is a more291

significant growth in the acceleration values, and when the loading intensity exceeds 0.2g, this292
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growth becomes substantially amplified. In other words, a site amplification effect is observed in293

the acceleration values. This observation highlights that the shear modulus of the soil varies at294

different depths. The acceleration response of slope dynamic system subjected to RSN 158H1 with295

a loading intensity of 0.22g is shown as a representative example in Figure 10. When comparing296

A1 (h/H=1.0), A5 (h/H=0.5), and A7(h/H=0), it becomes evident that an increased elevation297

leads to an acceleration amplification at every time point. Furthermore, despite the similarity of298

the Fourier spectra in Figure 10, there is a consistent amplification across all frequency domains.299
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Figure 9: Relationship between the RPA and the vertical elevations of the slope model.

In the ensuing analysis, the seismic amplification effect is evaluated by introducing the acceleration-300

amplification factor, which is defined as301

Faa =
Pr

Pinput

(15)

where Pr and Pinput are the peak value of the recorded signal and the peak value of input seismic302

excitation, respectively. The variation of the Faa with respect to different values of the vertical303

elevation is shown in Figure 11. Clearly, as the vertical elevation of the sensor position increases,304

the Faa value also increases. During the testing process for all cases, the acceleration amplification305
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(a)

(b)

(c)

Figure 10: Dynamic response of acceleration and Fourier spectrum under RSN 158H1 with 0.36g loading intensity
at (a) A1; (b) A5; (c) A7.

effect is observed. This phenomenon is consistent with the observation by Chen et al. [61], which306

proves the effectiveness and reliability of the herein reported experimental results. Furthermore,307

Figure 11 illustrates a significant increase in the Faa at h/H=1.0 under PLGMs, as compared to308

h/H=0.75. At h/H=1.0, under the same loading intensity (e.g. 0.30g), the Faa values for Case 3 are309

slightly larger than those for Case 6, indicating that PLGMs may have a more destructive impact310

on the topsoil layer. The variation trends of the Faa for the cases subjected to PLGMs (Cases 1311

- 3) is more regular and similar as compared to the cases when the Faa is subjected to NPGMs312

(Cases 4 - 6). Notably, the maximum observed Faa value occurs specifically under a PLGM in313

Case 3, with a value of 1.88. During the transition from h/H=0.75 to h/H=0.5, PLGMs exhibit314

a steeper slope compared to NPGMs, indicating a more severe impact. In addition, due to the315

characteristics of PLGM, the peak ground displacement (PGD) for NPGM (recorded sequence316

RSN 166V, Case 6) is 2.85 cm under IPA equal to 0.30g. However, the PGD for PLGM (e.g.317

recorded sequence RSN 158H1, Case 1) with the same IPA magnitude (i.e., 0.30g) is 6.87 cm,318

which is 2.41 times larger than the PGD of NPGM. That is, PLGMs possess higher and more319

concentrated energy. This explains why PLGM can induce a more destructive impact despite its320

shorter duration (i.e. the duration of the selected PLGM RSN 158H1 is 15 s, while that of NPGM321
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RSN 166V is 29 s), emphasizing its adverse effects on the slope structure.322
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Figure 11: Relationship between acceleration-amplification factor (Faa) and the vertical elevations (h).

Table 6: RPA at different elevations (h).

No. Case Type Loading intensity h =40 cm h =30 cm h =20 cm

1 Case 1 PLGM 0.30g 0.46g 0.37g 0.31g

2 Case 2 PLGM 0.30g 0.46g 0.45g 0.37g

3 Case 3 PLGM 0.30g 0.45g 0.39g 0.32g

4 Case 6 NPGM 0.30g 0.39g 0.35g 0.29g

5 Case 1 PLGM 0.22g 0.33g 0.31g 0.24g

6 Case 2 PLGM 0.22g 0.33g 0.32g 0.24g

7 Case 4 NPGM 0.22g 0.31g 0.30g 0.23g

8 Case 6 NPGM 0.22g 0.29g 0.26g 0.23g

5.1.2. Stability of the slope dynamic system323

Figure 12 shows the peak pressure responses at different locations under various loading inten-324

sities. The pressure responses demonstrate a nonlinear relationship, as the soil pressures along the325
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same vertical line do not increase linearly with depth, and no significant site amplification effects326

are observed. Notably, the maximum peak value of 388 Pa is recorded at P3 for Case 3 under a327

loading intensity of 0.18g. This high value can be attributed to the horizontal burial of P3 at the328

foot of the slope, where increased pressure occurs when the slope experiences cracking or tends329

to slide during the test. To describe the level of dispersion of data distribution for soil pressure330

response, the concept of interquartile range (IQR) is introduced and defined as:331

IQR = Q3 −Q1 (16)

where Q3 denotes the value at the seventy-fifth percentile when the data is sorted in ascending or-332

der; Q1 represents the first quartile of the dataset. A larger IQR value indicates greater dispersion333

of data, implying a wider range of numerical distribution that contains more outliers and extreme334

values. Conversely, a smaller IQR value suggests lower dispersion of data, with a narrower range335

of numerical distribution that contains fewer outliers and extreme values.336
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Figure 12: Peak pressure responses for cases under various loading intensities at (a) P2, (b) P3, (c) P4, (d) P6.

As illustrated in Figure 13, the IQR value of Case 3, subjected to a PLGM (IPA = 0.3g) at337
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h/H=0.5, is 0.126 kPa, while for Case 6, subjected to a NPGM, the IQR value is 0.055 kPa. This338

means that the IQR value of PLGM is roughly 2.30 times greater than that of NPGM. It can be339

observed that the soil pressure response to PLGMs has more data points within a larger interval340

compared to the pressure responses of NPGMs. The mean value of soil pressure under a NPGM is341

closer to zero than under a PLGM, as illustrated in Figures 13(b) and (c). Note, in passing, that342

the mean values at P2 and P6, which are very close to zero, are not marked in the figure. In other343

words, PLGMs tend to generate pressure distributions with larger peak values, while NPGMs344

exhibit more concentrated pressure distributions with values oscillating near 0 kPa. Therefore,345

considering the response of soil pressure and acceleration, it can be concluded that PLGMs are346

more likely to carry higher and more concentrated energy. That is, compared to NPGMs, PLGMs347

have a more severe detrimental impact on soil structures.348
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Figure 13: Distribution of pressure values under a 0.30g loading intensity of NPGMs and PLGMs at (a) P2; (b)
P3; (c) P4; (d) P6.

5.1.3. Damage and residual deformation349

In this section, the damage and residual deformation of clay slopes in the context of seismic350

response are examined. Case 6 is undertaken subjected to an NPGM (recorded sequence RSN351
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166V) in order to discern the damage pattern of the clay slope. Moreover, Case 6 incorporates352

loading intensities of 1.19g, 1.02g, 0.84g, 0.65g, 0.50g, 0.37g, 0.30g, 0.22g, and 0.15g. Herein, a353

high-speed camera is employed to capture real-time images of the slope shoulder under varying354

loading intensities. The specific area of capture is illustrated in Figures 14(a) and (b). The355

ultimate overall crack is developed on the surface of the slope shoulder. The dynamic system fails356

and dynamic stress ultimately exceeding soil strength, with an overall crack length of 50 cm and357

a depth of 120 mm (see Figure 14(c)). The specific process is as follows: at the loading intensity358

of 1.19g, a fine crack emerges on the top surface of slope as illustrated in Figure 14(d). As the359

loading process progressed, the crack is gradually connected at 1.02g, and a crack is formed from360

the middle to both ends of the slope at the top free surface as summarized in Figure 14(e). The361

specific locations of cracks are found at the intersection of the horizontal crest and the inclined free362

surface of the slope. More specifically, when the loading intensity is 0.84g, the width and length363

of cracks were thickened, as compared with the cracks obtained under 1.19g and 1.02g loading364

intensity (see Figure 14(f)). It has been observed that the interaction between tensile and shear365

forces during loading leads to performance degradation of dynamic systems, making this location366

a critical failure surface.367
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Figure 14: The process of fracture expansion as the increase of loading intensity. (a) Length of the specific area of
high-speed camera capture; (b) width of the specific area of high-speed camera capture; (c) overall morphology of
crack propagation; (d) stage 1; (e) stage 2; (f) stage 3.
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5.2. Numerical results368

As discussed in Section 4, the data acquired from the shaking table test subjected to ground369

motion RSN 158H1 from PEER NGA-West2 database are employed, to demonstrate the capability370

of the proposed computational approach in predicting the seismic response of slope and inverse371

analysis of the maximum shear modulus distribution in slope dynamic system. Additional detailed372

information regarding the ground motion RSN 158H1 is illustrated in Figure 3 (a). Typically, the373

mainshock sequence and aftershock sequence are different. However, for the present study, which374

primarily aims to validate the proposed methodology, a simplified assumption is employed. The375

assumption involves using the aftershock sequence kept the same as mainshock sequence but376

controlling the amplitude through PGA to align with the shaking table tests. Besides, before377

entering each simulation, it is assumed that the slopes have reached a state of consolidation378

stability under the influence of self-weight stresses in the soil, without considering changes in379

the in-situ stress and soil properties. Therefore, the initial stress equilibrium is established first,380

followed by the application of seismic loads. The specific implementation process is illustrated in381

Figure 15. Specifically, the loading condition of 0.18g, denoted as IPA = 0.18g, is referred to as the382

calibration period. During this period, the distribution of the maximum shear modulus is updated383

based on the collected acceleration response values. At this period, the RPA data gathered at384

positions A1, A2, A3, and A4 are 0.28g, 0.24g, 0.21g, and 0.18g, respectively. Subsequently, the385

period with aftershocks at 0.08g (IPA = 0.08g) is designated as the validation period, during which386

the updated distribution of the maximum shear modulus is used for prediction. The collected387

data of RPA at A1, A2, A3, and A4 during the validation period are 0.14g, 0.12g, 0.09g, and388

0.08g, respectively. Due to the time gap between the mainshock and aftershock, it is possible to389

continuously update the distribution of maximum shear modulus based on seismic response data390

collected at each stage.391

In the inverse analysis using the proposed approach, the number of samples for each layer392

in the subset simulation is set to Nl = 500, and the initial conditional probability is set to393

p0 = 0.1. Figure 16 illustrates the convergence process of the proposed model updating approach394

for calibration period. It can be observed that after 500 iterations, the RPA value has converged395

to 0.28g, consistent with the experimental record data at A1, demonstrating the validity of the396

calculations. In addition, utilizing RPA data allows for the real-time updating of low-dimensional397

K-L random variables. Based on the posterior samples of low-dimensional random variables,398
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Figure 15: Illustration of slope multi-stage inverse analysis.

the posterior distribution of Gmax at various points in space is obtained, as shown in Figure399

17. Based on this distribution of Gmax, conducting aftershock analysis under an IPA of 0.08g400

yields a PGA result of 0.13g at point A1. Comparing this with the RPA value collected by401

accelerometers, which is 0.14g, it can be concluded that the predictive accuracy of the proposed402

approach reaches 93%. When compared to the typical random field in Figure 8, after considering403

real-site response data, there is a noticeable reduction in the posterior standard deviations of the404

parameters, reflecting a decrease in parameter uncertainty. Furthermore, the results of the Gmax405

parameter inversion vary across different locations in space, which is due to the varying influence of406

the soil at different locations on the acceleration response. In addition, there are more significant407

changes in the mean values of the Gmax for the soil near the data collection points compared to408

the prior mean values. This demonstrates the necessity to consider material spatial variability in409

stochastic analyses, highlighting limitations in traditional deterministic inverse analysis methods410

or probabilistic inverse analysis methods that treat parameters as random variables.411
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Figure 16: Convergence process at A1 of proposed model updating approach.
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Figure 17: Posterior means and standard deviations for maximum shear modulus Gmax of all variables via model
updating approach. (a) Posterior means; (b) posterior standard deviations.

6. Conclusions412

In this paper, a shaking table experimental test is first carried out, in which a slope dynamic413

system is investigated. Then, a stochastic model updating approach for slope seismic analysis414

combining subset simulations with adaptive Bayesian updating with structural reliability methods415

and dimensionality reduction of K-L expansion is proposed. The approach aims at updating the416

spatial distribution of soils for predicting the seismic response of slopes. In addition, by acquiring417

data from shaking table experiments, the numerical implementation of model updating approach418

is presented to demonstrate the implementation of this approach, showcasing its effectiveness and419

feasibility. The conclusions are summarized as follows.420

First, pertinent experimental shaking table test results show that PGA at all monitor positions421

in the clay slope increased accordingly with the increments of loading intensities. Further, the422

acceleration increases non-linearly with the depth of the strata. In the lower sections with shallower423

depths, the acceleration is relatively lower, whereas at higher elevations, the amplification effect424

becomes more pronounced. This observation indicates that the shear modulus of the soil exhibits425

spatial variability and is associated with depth.426
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From the seismic evolution of acceleration response and pressure response obtained by exper-427

imental results, regarding the assessment of various input ground motion types, the IQR value of428

PLGM is roughly 2.30 times greater than that of NPGM. That is, PLGMs carry higher and more429

concentrated energy, resulting in a more severe detrimental impact on slope structures, especially430

on the topsoil layer compared to NPGMs.431

On the basis of the proposed approach, the seismic response of a slope subjected to earthquake432

sequence could be predicted and the uncertainty caused by spatial variability of shear modulus433

can be well considered and updated. Further, by acquiring data from shaking table tests, an434

illustrative example of a slope model is given to demonstrate the feasibility of the proposed ap-435

proach. Regarding the prediction of peak acceleration response, the proposed approach achieves436

a predictive accuracy of 93%. The results indicate that the proposed approach is a promising and437

reliable method for predicting seismic response for dynamic systems.438
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puter Methods in Applied Mechanics and Engineering. 2020;358:112632.530

33. Liu Y, Li L, Chang Z. Efficient Bayesian model updating for dynamic systems. Reliability531

Engineering & System Safety. 2023;236:109294.532

30



34. Jiang SH, Wang L, Ouyang S, Huang J, Liu Y. A comparative study of Bayesian inverse533

analyses of spatially varying soil parameters for slope reliability updating.Georisk: Assessment534

and Management of Risk for Engineered Systems and Geohazards. 2022;16(4):746–765.535

35. Jiang SH, Huang J, Qi XH, Zhou CB. Efficient probabilistic back analysis of spatially varying536

soil parameters for slope reliability assessment. Engineering Geology. 2020;271:105597.537

36. Luo J, Pei X, Evans SG, Huang R. Mechanics of the earthquake-induced Hongshiyan landslide538

in the 2014 Mw 6.2 Ludian earthquake, Yunnan, China. Engineering Geology. 2019;251:197–539

213.540

37. Maejima Y, Nagatsuka S, Higashi T. Mineralogical composition of iron oxides in red-and541

yellow-colored soils from Southern Japan and Yunnan, China. Soil Science and Plant Nutri-542

tion. 2000;46(3):571–580.543

38. Ma S, Huang M, Hu P, Yang C. Soil-water characteristics and shear strength in con-544

stant water content triaxial tests on Yunnan red clay. Journal of Central South University.545

2013;20(5):1412–1419.546

39. Shein E. The particle-size distribution in soils: problems of the methods of study, interpreta-547

tion of the results, and classification. Eurasian Soil Science. 2009;42(3):284–291.548

40. Yang F, Zhang GL, Yang F, Yang RM. Pedogenetic interpretations of particle-size distribution549

curves for an alpine environment. Geoderma. 2016;282:9–15.550

41. To P, Scheuermann A, Williams D. Quick assessment on susceptibility to suffusion of551

continuously graded soils by curvature of particle size distribution. Acta Geotechnica.552

2018;13(5):1241–1248.553

42. Turan A, Hinchberger SD, El Naggar H. Design and commissioning of a laminar soil container554

for use on small shaking tables. Soil Dynamics and Earthquake Engineering. 2009;29(2):404–555

414.556

43. Pu X, Wan L, Wang P. Initiation mechanism of mudflow-like loess landslide induced by the557

combined effect of earthquakes and rainfall. Natural Hazards. 2021;105(3):3079–3097.558

44. Ancheta TD, Darragh RB, Stewart JP, et al. NGA-West2 Database. Earthquake Spectra.559

2014;30(3):989-1005.560

31



45. Cao Z, Wang Y, Li D. Quantification of prior knowledge in geotechnical site characterization.561

Engineering Geology. 2016;203:107–116.562

46. Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spec-563

tral representation. Applied Mechanics Review. 1996.564

47. Montoya-Noguera S, Zhao T, Hu Y, Wang Y, Phoon KK. Simulation of non-stationary non-565

Gaussian random fields from sparse measurements using Bayesian compressive sampling and566
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