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Abstract—Chromosome karyotyping is an important yet labor-
intensive procedure for diagnosing genetic diseases. Automating
such a procedure drastically reduces the manual work of cy-
tologists and increases congenital disease diagnosing precision.
Researchers have contributed to chromosome segmentation and
classification for decades. However, very few studies integrate the
two tasks as a unified, fully automatic procedure or achieved
a promising performance. This paper addresses the gap by
presenting: 1) A novel chromosome segmentation module named
ChrRender, with the idea of rendering the chromosome in-
stances by combining rich global features from the backbone
and coarse mask prediction from Mask R-CNN; 2) A devised
chromosome classification module named ChrNet4 that pays
more attention to channel-wise dependencies from aggregated in-
formative features and calibrating the channel interdependence;
3) An integrated Render-Attention-Architecture to accomplish
fully automatic karyotyping with segmentation and classification
modules; 4) A strategy for eliminating differences between
training data and segmentation output data to be classified.
These proposed methods are implemented in three ways on the
public Q-band BioImLab dataset and a G-band private dataset.
The results indicate promising performance: 1) on the joint
karyotyping task, which predicts a karyotype image by first
segmenting an original microscopical image, then classifying each
segmentation output with a precision of 89.75% and 94.22%
on the BioImLab and private dataset, respectively; 2) On the
separate task with two datasets, ChrRender obtained AP50
of 96.652% and 96.809% for segmentation, ChrNet4 achieved
95.24% and 94.07% for classification, respectively. The COCO
format annotation files of BioImLab used in this paper are
available at https://github.com/Alex17swim/BioImLab The study
introduces an integrated workflow to predict a karyotyping image
from a Microscopical Chromosome Image. With state-of-the-art
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performance on a public dataset, the proposed Render-Attention-
Architecture has accomplished fully automatic chromosome kary-
otyping.

Index Terms—Chromosome karyotyping, fully automatic, clas-
sification, instance segmentation.

I. INTRODUCTION

There are 46 chromosomes from a normal human cell,
which can be divided into 22 pairs of autosomes and the
23rd pair of sex chromosomes [1]. Chromosomes can only be
visible and distinguished in the metaphase of the cell cycle.
There are three standard techniques for staining the metaphase
chromosome to make them visible under a microscope: (1)
mFISH: multicolor fluorescence in situ hybridization with five
color dyes [2], [3], (2) Q-Band: staining with the fluorescent
dye nitrogen mustard quinacrine [4], and (3) G-band: staining
with the dye of Giemsa [1]. The microscopical chromosome
image (MCI, as Fig. 4 (a)) is the metaphase cell image
taken through the microscope. It separates the chromosomes
from it and rearranges the chromosomes by their type. A
Karyotyping Image (KI, as Fig. 4 (f)) is formed by lining
up the chromosomes according to their type. For decades,
cytologists have used karyotyping images to diagnose genetic
diseases via checking numerical or structural abnormality [5],
[6], such as prenatal screening for Down’s syndrome (21st
chromosome), Sex chromosome abnormality (23rd or 24th),
Edward’syndrome (18th), Patau’syndrome (13th), cri du chat
syndrome (5th), or cancer caused by neoplasia-associated
chromosomal rearrangements [7]. The karyotyping procedure
plays an important role in processing the images and diagnos-
ing the diseases, which is not only tedious and labor-intensive
but also error-prone due to the fatigue of operators [8]. Many
studies have contributed to the development of computer-
based automatic processes. The computer-aided karyotyping
process often involves segmentation and classification [1]
[8]. Chromosome segmentation on MCI is the first step in
karyotyping. By classifying each pixel from a potential in-
dividual chromosome, a normal MCI can be segmented into
46 Individual Chromosome Images (ICIs, as Fig. 4 (c)). The
major challenge in this task is to distinguish the touching
or overlapping chromosomes from clusters [9]. A typical
procedure for conventional methods consists of the following
steps [10]: (1) pre-process, (2) binary and morphological, (3)
contour to identify the boundary, (4) curvature graph with the
cut point, (5) possible separation line over the overlapped
region, (6) cut-points identification and drawing, (7) final
separation on the overlapped region.
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Traditional procedures for computer-aided chromosome
classification include pre-processing, feature extraction, and
classification [1]. Poletti et al. researched a public Q-band
chromosome dataset (BioImLab [11]) and obtained an average
classification accuracy of 94% on 5474 chromosomes [4] in
2012. Their method first estimated the medial chromosome
axis, extracted image features, and appraised the orientation
by rescaling and normalizing. Finally, they devised a neural
network to predict the label. Wang et al. proposed a patch-
based algorithm for classifying chromosome images from
the public dataset Multiplex-fluorescence in situ hybridiza-
tions (M-FISH) [12] in 2017. Their method was based on
high-order singular value decomposition. In the experiments,
they achieved a higher correct classification ratio than other
methods such as sparse representation classification and im-
proved adaptive fuzzy c-means clustering (IAFCM). Wang
et al. proposed an artificial neural networks architecture for
chromosome classification [13] in 2009. The blocks in the
first stage classified chromosomes into seven classes. The
second stage blocks assign each chromosome a label from
the seven classes. They improved the accuracy from 67.5%
to 97.5% with the second layer of seven classifiers. Qin et
al. proposed a method named Varifocal-Net to classify the
type and polarity of individual chromosomes [14] in 2018.
Their approach consisted of two networks for global and local
feature extracting. Experiments on a private dataset of 1909
karyotype images reported 99.2% accuracy with metric of
per patient case. Lin et al. studied both classification and
segmentation of chromosome images with a deep learning
strategy [15], [16]. They achieved an accuracy of 95.98% in 24
types classification task [15], and 94.09% accuracy in cluster
type identification task [16] which classified a chromosome
cluster into four classes, i.e., the chromosome of ‘single’,
‘touching’, ‘overlapping’, ‘touching and overlapping’. The
tasks of 24 chromosome types classification experimented on
a dataset consisting of 2990 individual chromosomes from
65 normal karyotype images. Another task of identifying five
chromosome cluster types was carried out on a dataset with
6592 samples from 500 staid microphotograph images. They
received 8.5% and 1.92% accuracy improvements compared
to the baseline, respectively.

Deep learning (DL) technology has achieved great success
in computer vision since 2012. One of the most important
DL techniques is the deep convolutional network [17]. DL
improves the performance of chromosome karyotyping sig-
nificantly [8], [18], [19]. Pardo et al. used spectral together
with spatial information. They proposed an ‘end to end se-
mantic segmentation’ approach in 2018 [18], which used the
foundations of the classical CNN architecture of VGG [20]
and SPP [21]. They measured their results in terms of correct
classification ratio, i.e., the ratio of all the correctly classified
chromosomes pixels divided by the toto chromosome pixels.
Results on the whole 84 Vysis images were 83.91%, and
87.41% on the set with 18 low-quality images removed.

Redmon et al. proposed a one-stage architecture, i.e.,
YOLO, to obtain the category probability and location co-
ordinates, eliminating the need for region proposals [22].
YOLO has been used in breast cancer detection [23], nucleus

detection for tumor [24], and pedestrian detection [25], [26].
Bai et al. devised a three-step architecture in 2020 by

employing UNET and YOLOv3 network [27] . Their dataset
consisted of 130 G-band chromosome images augmented
to 1300 images, including 27600 individual chromosomes.
The percentage of correctly extracted chromosomes achieved
99.3%, i.e., 2283 chromosomes were extracted from 2300.

Several researchers have contributed to the fully automatic
karyotyping with a combination of chromosome segmentation
and classification in a joint task. Ning et al. developed an inte-
grated workflow in 2020 [19], using the Mask R-CNN [28] to
segment the input MCI and a devised CNN module to classify
the sub-images. Due to the lack of annotation data, they used a
combination dataset consisting of real images and synthesized
images for the segmentation task. A best AP50 score of
95.644% was obtained in the study. The proposed multi-input
CNN with Geometric Optimization network accepts three
types of images, including original, straightened, and cropped.
After being trained on 480000 samples, they reported 95.67%
of precision, 95.52% of recall, and 95.60% F1-score. Mano
et al. studied a method to detect numerical abnormalities in
2020 [8]. Their main idea is (1) to use YOLOv2 [29] followed
by post-processing to separate individual chromosomes, and
(2) to update the VGG19 [20] for chromosome classification.
They separated all 1350 chromosomes from 29 MCIs in the
test set with perfect results (e.g., 100% accuracy) on a private
dataset from the Center of Excellence in Genomic Medicine
Research, containing 147 non-overlapped metaphase images.
Their method obtained a classification accuracy of 95.04%,
recall of 94.84%, the precision of 94.90% on the private
dataset, and 94.11% of classification accuracy, 93.86% of re-
call, 94.51% of precision on the public dataset BioImLab. Xiao
et al. enumerated chromosomes from a dataset of 1375 MCIs
in 2020 [30]. By adding a Hard Negative Anchors Sampling to
the regional proposal network, their model ‘DeepACEv2’ may
extract partial chromosomes. The segmentation task achieved
a Whole Correct Ratio (the percentage of images in the testing
set with NO error instances) of 71.39% and an mAP of
99.60%. At the same time, the reference baseline of Faster
RCNN-101 also obtained an mAP of 99.39%. Nevertheless,
both [19], [8], and [30] did not report the accuracy of fully
karyotyping, i.e., the classification results on the segmentation
output from the same public dataset (e.g. BioImLab).

Somasundaram et al. introduced a method that outperforms
previous algorithms’ classification accuracy, achieving 98.7%
accuracy, an area under the curve of 0.97, and an abnormality
detection accuracy of 98.4% [31]. Madian et al. have a partic-
ular focus on chromosomes that are straight, bent, or severely
bent [32]. Their proposed method is particularly effective in
pinpointing the centromeres of chromosomes regardless of
their degree of bending. Devaraj et al. proposed algorithm
including curvature analysis, overlap and touch region detec-
tion, axis tracking, and hypothesis split for chromosome seg-
mentation [33]. The overall accuracy for separating touching
chromosomes is 98.06%, while for overlapped chromosomes
is 96.79%.

In the field of computer-assisted chromosome karyotyping,
most researchers focus on a single task of either segmentation
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[16] or classification [1]. However, the practical utilization
of classification is on the segmentation results, which differ
significantly from the classification dataset obtained by seg-
menting individual chromosomes from a karyotyping image.
Few researchers report the performance of implementing a
classification model of the segmentation outputs from a pub-
licly available dataset [14] [30], making their work difficult to
evaluate.

This study bridges the gap by combining the segmentation
and classification tasks into an integrated architecture named
Render-Attention-Architecture, a fully karyotyping Architec-
ture that employs the Render strategy for segmentation tasks
and Attention structure for the classification task. Experiments
are implemented on the public Q-band BioImLab and G-
band private datasets. The contributions of the present work
are threefold. First, it obtain the crisp edges of segmented
instances by using the idea of constructing 2D images from 3D
objects. Second, it proposes an efficient architecture to produce
KI from MCI with an integrated chromosome segmentation
and classification workflow. It demonstrates the effectiveness
of the rotating & cropping process in the fully karyotyping
task. Finally, it devises a network for the chromosome classi-
fication task, built by stacking the proposed ChrBlock, which
contains an attention structure.

The rest of this paper is organized as follows: Section II
explains the proposed methods and the experiment design. The
results listed in Section III demonstrate the efficiancy of the
architecture. Our work is concluded in Section IV.

II. MATERIALS AND METHODS

A. Chromosome datasets

Two datasets are used in this study, containing both seg-
mentation and classification data, and are empirically split into
three sets: training (85%), validating (5%), and testing (10%).
The first is the public Q-band BioImLab dataset. It has been
used in many studies since 2008 [8], [9], [11]. Segmentation
data of BioImLab contains 117 cells, and each cell has one KI
and at least one MCI. Hence there are 117 KIs and 162 MCIs.
Of all KIs, 83 correspond to a single MCI, 24 correspond to
two, nine correspond to three, and one KI corresponds to four.
After scrutinizing all MCIs of BioImLab, six images were
found containing less than 15 ICIs each. They were retained
in the training set since they are from cells with more than
one MCI.

A normal cell corresponds to an MCI and 46 ICIs (it can be
more or less than 46 ICIs for an abnormal cell.). The MCI or
ICIs from the same cell is named ‘one case,’ identified with a
unique case name. In this view, 5474 ICIs were separated from
119 cases of the BioImLab classification data. Two cases have
neither corresponding KI nor MCI. The testing and evaluating
set for segmentation contain 16 (10%, case NO. 5, 10, 18, 28,
34, 41, 44, 57, 62, 65, 66, 68, 78, 84, 89, and 96) and eight
(5%) MCIs which randomly picked from 83 single MCIs. The
rest 138 (85%) cases were used as the training set. The second
G-band dataset is provided by a company in Suzhou, China.
It consists of 841 MCIs and 38686 ICIs. The criterion of the
sub-set setting is the same as BioImLab. The images in the

classification training set are flipped to reduce the influence
of the ‘top and bottom’ problem but not flipped in evaluating
and testing set. Note that the cases from the testing set for
both classification and segmentation tasks are the same, which
guarantees the testing data are never fed into the network
before testing for both segmentation and classification.

The background of the raw images was adjusted to contrast
by the scanning device (Leica CytoVision) to make the back-
ground whiter and the foreground darker. In the segmentation
training procedure, the images were first enhanced by resizing
to 256 pixels in height and width, then random flipping
by 0.5. In the classification training procedure, the images
were cropped with redundant edges and rotated to vertical,
as detailed explained in II-B2.

B. Methods

The overall schematic representation of the proposed
Render-Attention-Architecture is given in Fig. 1, which is
fed with an MCI and outputs a processed KI. It is based
on harnessing a segmentation module with two additional
modules, i.e., a classification module and a rotating & cropping
module.

1) Segmentation Model: Segmentation architecture with
DL can be divided into a ‘one-stage strategy’, which predicts
bounding boxes and calculates class probabilities simultane-
ously, and a ‘two-stage strategy’, which includes additional
‘box proposal’ stages to predict bounding boxes. ‘Two-stage’
strategy generally performs better on the localization than
‘one-stage’, although often slower [28], [34].

With DL methods, the predicted object boundaries are not
always fine enough, with each pixel being assigned with only
a unique label [35]. The issue is amplified in the chromosome
segmentation task due to a few facts, e.g., chromosomes
may be touching or overlapping with each other; pixels in
an overlapping region belong to multiple instances. In chro-
mosome segmentation, boundary details contribute essential
information to distinguish different instances.

Consider rendering a 3D model into a 2D image. The
continuous input of physical occupancy can be represented
by physical and geometric reasoning from a physical entity.
In contrast, the rendered 2D output can be a regular grid,
which is non-uniform and discrete. Recently, researchers have
tackled the issue of non-uniform representations with the idea
of octrees [36], mesh [37], and neural network [38].

Analogously, the input of underlying continuous MCI entity
can be encoded by feature maps from a two-stage segmenta-
tion network (e.g., mask R-CNN [28]), and the output of ICIs
instance grid can be rendered by visiting the real-value of
feature maps via interpolation (e.g., bilinear interpolation). By
borrowing the structure of PointRend [35], the segmentation
module ‘ChrRender’ was designed in this paper, using hyper-
parameters and pre-trained parameters from Detectron 2 [39].
The architecture of ChrRender is given in the left part of Fig.
1, with procedures as follows:

1, predict the chromosome instance label, bounding box and
coarse masks by mask R-CNN [28].
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Fig. 1: The overall structure of Render-Attention-Architecture: (1) the left box with a light blue border shows the segmentation
module. It employs Point Render to output render mask instead of coarse mask in Mask R-CNN [19], [28]. The segment
predictions are separated for classification. (2) the right box with a green border demonstrates the classification network
consisting of three phases. The basic ChrBlock Unit stacks four stages in the middle phases. (3) a ‘rotating & cropping’
module in the middlebox with a red border is implemented to connect the segmentation module and the classification module
to make the segmentation task’s output data coincident with the classification task’s input.

2, with the strategy of adaptive subdivision [28], iteratively
render each coarse mask as given in Fig. 2. The point-
wise feature combines (concatenates) the coarse mask
with the extracted fine feature vector, as defined in:

Pk =

Wk,Hk∑
i,j

C(i,j) + F(i+u,j+v) (1)

where Pk is the point-wise feature of the kth instance;
(i, j) is the point location of the kth instance whose
size is Wk × Hk; C(i,j) is the coarse mask value
of point (i, j); (u, v) is the relative location from the
point (i, j), u ∈ [0, 1) and v ∈ [0, 1), note 1 is
the maximum distance between two points location;
(i + u, j + v) is the absolute location of interpo-
lated point; F(i+u,j+v) is the fine feature value which
calculated by bilinear interpolated from four neigh-
bor points (xi, yj), (xi, yj+1), (xi+1, yj), (xi+1, yj+1)),
which is defined as:

F(i+u,j+v) =

(1− u)(1− v)f(i, j) + (1− u)vf(i, j + 1)

+ u(1− v)f(i+ 1, j) + uvf(i+ 1, j + 1)

(2)

where f(i, j) is the pixel value of point (i, j).
3, replace the N points in a coarse mask with re-classified

N points, and output the render mask as the final seg-
mentation output, boundaries of which are crisper.

Fig. 2: The procedure of rendering coarse masks to.

2) Rotating & Cropping module: In the task of chromo-
some classification, the input ICI data are different to KIs in
which the chromosomes have been rotated vertically. Hence
the segmented ICIs need to be rotated for proper rotating be-
fore being input into the classification procedure. In addition,
during the rotating of ICIs, there will be redundant edge filling
to the image, which provides little valuable information for the
classification task.

The differences between ICIs from classification datasets
and segmentation output are likely to lead to poor performance
of integrated fully automatic karyotyping. Results in left of
Table I indicate that to get the best performance, rotating &
cropping should be implemented in both training and inference
procedures.

In study [19], Ning et al. feed the classification module



5

TABLE I: The left table is the results of three combinations with rotating & cropping strategy. With model ChrNet4, strategy
C outperforms A on the Q-band BioImLab dataset with 27.44%, i.e., from 67.8% to 95.24%. The values in bold give the best
results, while red is from the basic strategy A, i.e., neither rotating nor cropping in both training and testing procedures.
The right table is the predicted bounding box results of three models on two datasets (ds): Q-band BioImLab (Q) and G-band
private (G). FasterR, MaskR, and ChrR is short for Faster-RCNN101, Mask-RCNN50, and ChrRender, respectively. The values
in bold illustrate that ChrRender outperforms Faster-RCNN101.

strategy dataset train
strategy

testing
strategy

class
accuracy (%)

A Q-band
BioImLab

none none 67.80
B none rotate+crop 65.36
C rotate+crop rotate+crop 95.24
A G-band

private

none none 93.43
B none rotate+crop 88.62
C rotate+crop rotate+crop 94.07

module ds mAP AP50 AP75 APs APm
FasterR

Q
73.752 96.627 87.754 75.780 73.525

MaskR 75.279 95.518 91.375 77.281 73.123
ChrR 75.872 96.652 90.507 77.086 75.200

FasterR
G

81.039 95.769 91.209 77.488 82.007
MaskR 81.810 96.789 92.523 77.915 82.744
ChrR 82.232 96.809 92.530 78.306 83.058

with triple ICIs (original, straightened, cropped), reducing the
non-coincident influence between the training and testing data.
We take a step further by making the classification training
data and the segmentation test data consistent in chromosome
orientation (vertical) and margin distance.

The ‘rotating & cropping’ component consists of the fol-
lowing two steps:

1, position an image with Canny and Hough Lines methods.
The algorithm is described in algorithm 1:

Algorithm 1 Image rotating
Input: img0: an original single chromosome image array

[h, w, c]
Output: img2: a positioned image array [h, w, c]

1: extract the chromosome edge with Canny method
2: extract lines with Hough line transformation method
3: for ρ, θ in lines[0] do
4: a = cosine(θ), b = sine(θ)
5: x0 = a ∗ ρ, y0 = b ∗ ρ
6: calculate two vertexes (x1, y1), (x2, y2) via
x0, y0, a, b

7: calculate tanh value tanh of (x1, y1), (x2, y2)
8: calculate degree angle from tanh
9: rotate image with degree angle and save it as img2

10: return img2

2, crop the positioned ICI by removing redundant edge
areas.

3) Classification Model: He et al. studied the Residual
Block in their proposed ResNet in 2016 [40]. They solved
the training degradation problem and made ResNet one of
the baseline modules in many CNN classification tasks. Xie
et al. improved ResNet with exposed ‘cardinality’ dimension
and proposed ResNeXt module in 2017 [41]. By setting a
cardinality (group) value of 32 and base width value of 4,
ResNeXt has a similar number of parameters as ResNet50, but
with higher accuracy. Jie et al. proposed SENet by stacking
the Squeeze-and-Excitation unit in 2018 [42], which won first
place in the ILSVRC in that year.

In this study, inspired by ResNet, ResNeXt, and SeNet, a
classification network named ChrNet4, which is a CNN Net-
work for Chromosome classification with base width four in
ChrBlocks, was proposed. The overall architecture of ChrNet4

is given in the right part of Fig. 1 which is bordered dark green.
ChrNet4 is built on the ChrBlock, which consists of:

• three successive convolutional layers with kernel sizes
one by one, three by three, and one by one, respectively.

• a batch normalization layer following each convolutional
layer and activated by a Relu layer.

• an attention layer is given in Fig. 3 (a), consisting of an
average pooling layer, two linear layers followed by a
leak Relu and a sigmoid activation, respectively.

Fig. 3 (b) describes the concise architecture of ChrNet4,
which can be divided into three phases:

• in the 1st phase, the input image size was shrunk to 112×
112 by a convolutional layer, then 56 × 56 by a max-
pooling layer.

• in the 2nd phase, the ChrBlock has four stages. Each stage
was constructed by accumulating the ChrBlock twice,
three times, and twice, respectively. The input channels
of the four stages are 64, 128, 256, and 512 in sequence.
The cardinality dimension G and base width W are set
to 32 and 4, respectively [41]. The equivalent expression
of the ChrBlock input channel C is computed by:

C = c× W

C0
×G

where channel c ∈ [64, 128, 256, 512]; first channel C0 is
64, which is the output channel of stage 1.

• in the 3rd phase, an average pooling layer is followed
by a fully connected layer, which outputs the final 24
dimension prediction of 24 chromosome classes.

4) Loss: The joint loss in (3) was implemented for the
classification module. The left term is cross-entropy loss, and
the right term is center loss, which was studied in previous
papers [43], [44]. Center loss can improve the classification
performance by condensing the inner-class feature, as well as
enlarging the inter-class distance.

L = −
C∑
i=1

yilogSi + α

B∑
j=1

∥∥xj − cyj

∥∥2
2

(3)

where C and B stand for the number of classes and batch
size, respectively. yi ∈ {0, 1}, where 1 stands for a positive
sample from class i, and 0 for negative. Si is the ith softmax
layer output. xj is the jth sample feature vector, and cyj

is
the yj th class feature center. α ∈ (0, 1) is used to control the
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(a) (b)

Fig. 3: Structure of ‘chrblock’: (a) demonstrates the ‘attention layer’. (b) shows the chrblock structure: the left two columns
compose the first phase; the middle four columns are stage 1, stage 2, stage 3 and stage 4 of the second phase; the right most
column is the 3rd phase.

weight of seocond term (center loss) in (3). The value of α is
set as the same value used in [43], which is 0.5.

C. Metric

The following metrics are commonly used in object detec-
tion studies [45] which are also used in this study.

• True positive (TP) is the number of correct predictions,
false positive (FP) is the number of wrong predictions,
true negative (TN) is the number of true negative pre-
dictions, and false negative (FN) is the number of false
negative predictions. Precision P = TP/(TP + FP ),
recall R = TP/(TP + FN).

• IoU (Intersection over Union) defined in (4) is a measure-
ment based on the Jaccard Index, which is a coefficient of
similarity for two sets of data. IoU counts the overlapping
area between the predicted bounding box Bp and the
ground-truth bounding box Bgt and is divided by the
area of union between them. Given a threshold thr (0.30,
etc.), a predicted object area and ground truth area with
IoU > thr are considered as TP, otherwise as FP.

J(Bp, Bgt) = IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
=
overlap

union
(4)

• Given N predictions, in which each TP prediction corre-
sponding to a unique Recall value R and Precision P (R),
Average Precision (AP) is defined as:

AP = APall =
∑
n

(Rn+1 −Rn)Pinterp(Rn+1)

where n ∈ N , and Pinterp(Rn+1) = max
R̃:R̃>Rn+1

P (R̃).

For total C classes and i ∈ C,

mAP =
1

C

C∑
i=1

APi (5)

Besides mAP, AP50, AP75, APs and APm [45] are also used
to evaluate the segmentation performance. The results of joint
karyotyping in this study are assessed by a Fully Karyotyping
Accuracy (FKA), which is the ratio of correctly predicted ICI
number divided by the total number of ground truth (always
be 46; the Fully Karyotyping Precision and Recall are also
divided by 46), and an Only Classifying Accuracy (OCA) is
the ratio divided by segmentation output number (may not be
46).

III. RESULTS

Three segmentation methods and four classification modules
are implemented to compare the performance of the proposed
methods on two datasets. Following this, the classification
results of segmentation output are reported, with metrics
of both Fully Karyotyping Accuracy and Only Classifying
Arrucacy defined in section II-C.

A. Segmentation results: From MCI to Segmented Bounding
Box

To train and evaluate the segmentation module, first, pre-
trained parameters were loaded from ImageNet [38] of De-
tectron 2 [31]. Then, the modules were fine-trained with
50000 iterations by feeding with chromosome segmentation
data. Finally, the parameters with the best performance on
the evaluating set were used for the joint fully automatic
karyotyping.

The right of Table I gives the segmentation performance of
three segmentation modules: Faster RCNN-101, Mask RCNN,
and ChrRender. Comparing the previous studies with the same
metric, ChrRender performs better:
(1) Xiao et al. reported mAP with an increase of 0.21%
percent (99.39% to 99.60%) as compared to the baseline
Faster RCNN-101 over a dataset which contains 1375 G-band
images [30]. With the same baseline Faster RCNN-101 and
metric mAP, ChrRender achieve 2.12% increasement (73.752
to 75.872) on BioImLab and 0.842% (81.039 to 82.232) on
private dataset, which both surpass 0.21% reported in [30].
Besides, ChrRender also achieves 0.025% (96.627 to 96.652)
and 2.753% (87.754 to 90.507) increase on BioImLab, as well
as 1.04% (95.769 to 96.809) and 1.321% (91.209 to 92.530) on
private dataset, with metric of AP50 and AP75 respectively.
Compared to the 71.39% of ‘Whole Correct Ratio’ (WRC)
obtained in [30], WRC is 54.1% on the private dataset in this
research, ‘Missing Single Rate’ is 21.2% and ‘Missing One
at the most Rate’ is 75.3% (54.1 % (WRC, missing zero) +
21.2% (missing one)). We found the baseline Faster RCNN-
101 obtained mAP of 99.39% in [30]. In our study, however,
its mAP is 81.039% on the private dataset in this research,
which indicates our private dataset is more challenging. In
the BioImLab test set, the same baseline Faster RCNN-101
got mAP 73.752%, and the best result of correctly segmented
ICIs is 43, i.e., WRC is 0.

(2) Ning et al. reported AP50 95.644% in the segmentation
task over 443 images, in which 100 images were used for
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testing [19]. This work report better performance, which
is 96.652% on Q-band BioImLab and 96.809% on G-band
private dataset.

(3) Although Mano et al. reported the perfect result
(AP=0.9923) on the segmentation task in their report [8],
there are rarely overlapped chromosomes in MCI. They report
only classification results on the more challenging dataset
BioImLab but not with the segmentation results.

(4) Wang et al. [46] reported segmentation results of AP50
95.9% on the same BioImLab dataset, which sligthly beghined
96.652% in this work.

B. Classification Results: From ICI to KI

The different classification modules and their performance
are listed in Table II. On BioImLab, the proposed ChrNet4
achieved 95.24% classification accuracy, which surpassed pre-
vious studies (94% in [4], 94.11% in [8]) on the same dataset.
As one of the key values of this work is to combine segmen-
tation with classification, the performance of the classification
task is expected to be evaluated on segmentation results from
which metrics have to be manually calculated due to lack of
ground truth label. To release the heavy work of doing that,
the models are still evaluated on the classification dataset but
processed by rotating & cropping strategy. The strategy is also
used on segmentation outputs and subsequent aligning of the
classification input with segmentation outputs. The metrics can
be automatically calculated.

Considering ‘with pre-trained parameters’, ‘use Center
Loss’, and ‘employ rotating & cropping component’, five
strategies of training model refer to: (a) without any; (b)
only with ‘pre-trained’; (c) with ‘pre-trained’ and ‘rotating &
cropping’; (d) with all; (e) with ‘Center Loss’ and ‘rotating &
cropping’. It is found in Table II that:

* from strategy (a) to (d), results stepped improved for
all baseline models, except (c) to (d) for ResNet50. (a)
reports the worst results below 40%, and (d) demonstrates
more than 91% on Accuracy, Recall, and Precision.

* with the pre-trained parameters, i.e., from (a) to (b),
the performance dramatically enhanced for all baseline
models by doubling.

* the ‘rotating & cropping’ process, i.e., from (b) to (c),
contributes more than 20% classification accuracy for
ResNet50 and SeNet50, and 13% for ResNeXt50.

* when Center Loss is added, i.e., from (c) to (d), the
performance of ResNeXt50 and SENet50 will increase
1%, but ResNet50 declines 2%.

* without pre-trained parameters, but with Center Loss and
‘rotating & cropping’, i.e., from (d) to (e), all baseline
models’ performance increase slightly on the BioImLab
except RexNext50 which declines 1%, and increase about
3% on the private dataset. This indicates that if adequate
data is available, a model could perform better with-
out transfer learning, i.e., without pre-trained parameters
from a universal dataset such as ImageNet.

* with strategy (e), the proposed ChrNet4 performs better
than all baseline modules on both datasets, as demon-
strated in the last two lines at the bottom.

TABLE II: The results of different classification methods on
two datasets: Acc is accuracy, Rec is recall, and P is precision.
The italic float numbers indicate they are from the G-band
private dataset. The float number in bold are the best results
in the group. Parameters size (MB) are 62.39 for ChrNet4,
89.96 for ResNet50, 87.85 for ResNeXt50, and 99.46 for
SENet50.

model dataset+
strategy Acc (%) Rec (%) P(%)

ResNet50

BioImLab + (a) 32.34 32.63 26.55
BioImLab + (b) 72.42 72.63 73.93
BioImLab + (c) 93.75 93.83 95.30
BioImLab + (d) 91.30 91.42 92.92
BioImLab + (e) 91.71 91.55 93.22

Private + (d) 91.43 91.32 92.29
Private + (e) 93.25 93.02 94.06

ResNeXt50

BioImLab + (a) 35.05 35.63 28.98
BioImLab + (b) 79.21 79.04 78.73
BioImLab + (c) 92.26 92.38 93.86
BioImLab + (d) 93.34 93.44 94.35
BioImLab + (e) 92.26 92.22 94.08

Private + (d) 90.84 90.84 91.95
Private + (e) 93.55 93.24 93.97

SENet50

BioImLab + (a) 13.86 13.67 07.56
BioImLab + (b) 71.06 71.32 70.91
BioImLab + (c) 91.58 91.71 93.98
BioImLab + (d) 93.21 93.08 95.27
BioImLab + (e) 93.07 93.17 95.46

Private + (d) 90.28 90.04 91.12
Private + (e) 93.68 93.33 93.82

ChrNet4 BioImLab+ (e) 95.24 95.32 97.01
Private + (e) 94.07 93.76 94.18

C. Fully Karyotyping Results: From MCI to KI

The procedure of Render-Attention-Architecture is demon-
strated in Fig. 4: an original microscopical image (a) is fed
into the segmentation module, (b) is the segmentation results
with the mask; next, the individual chromosomes (c) are
extracted and positioned (d); the images were then cropped
by removing redundant edge areas (e) (cropped ICIs). Finally,
the cropped ICIs are fed to the classification module to identify
their types and form the predicted karyotyping image (f)
(predicted KI). FKA and OCA are employed to evaluate the
performance. Specialists examined the results of the fully
karyotyping procedure, given in table III.

Table III indicates that with the proposed Render-Attention-
Architecture, FKA and OCA achieved 83.70% and 85.65%
on BioImLab, 89.05% and 89.26% on the private dataset,
respectively. Fig. 5 (a) and (b) demonstrates the confusion
matrix on the testing sets of two datasets. Suppose a predicted
ICI is not ensured for correct or does not belong to any class,
which is likely caused by poor segmentation. In that case,
it will be classified as background to calculate recall and
precision. It is also found in Fig. 5:
(1) In BioImLab dataset (Fig. 5 (a)), 616 (83.70%) ICIs are
successfully recognized among all 736 images, 120 (16.30%)
ICIs failed, in which 36 (5%) are labelled as background.
Chromosomes from No. 21 only obtain a 37.5% correct rate
(12 out of 32), indicating it is the most challenging class. It
is also used in diagnosing Down’s syndrome. Chromosomes
from No. 14 are wrongly predicted as No. 15 for ten times out
of 32, and it is further discussed in Fig. 5 (c) to (j).
(2) Among 3910 ICIs from the private dataset (Fig. 5 (b)),
3482 (89.05%) are correctly classified, and 428 (10.95%) are
the wrong classification in which 230 (5.88%) ICIs assigned
as background. No. 24 is the most confusing chromosome,
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TABLE III: The results of prediction of MCI with Render-Attention-Architecture: The results were identified and provided
by specialists. The head of ‘> 42’ indicated that in one case, at least 42 ICIs (91.3% of 46) were corrected classified in the
predicted KI, and ‘< 33’ denotes no more than 33 (71.7% of 46) were identified. The column of the head is the number of
cases that match the condition.

dataset total
case

> 42
(91.3%)

> 37 (80.4%)
< 42 (91.3%)

> 33 (71.7%)
< 37 (80.4%)

< 33
(71.7%) OCA (%) Fully Karyotyping

Accuracy (%) (FKA) Recall (%) Precision (%)
BioImLab 16 5 7 2 2 85.65 83.70 83.85 89.75

private 85 48 25 8 4 89.26 89.05 88.73 94.22

(a) MCI (b) mask

(c) ICI (d) rotating (e)

(f) KI

Fig. 4: Example of joint karyotyping procedure on case No.78
of BioImLab: (a): microscopical chromosome image, (b):
segmentation results with masks, (c): individual chromosome
image separated from (b), (d): image of (c) after ‘rotating’, (e):
image cropping by removing redundant edge background from
(d), (f): final classification results. All classified ICIs were put
together. Only 44 ICIs were segmented from No.78, and 43
were correctly classified. Chromosome 21a, marked with red,
was wrongly classified as 15; the chromosomes of 19b and
22a, marked with blue, were not segmented out.

wrongly predicted to the background 23 times out of 170,
partly caused by a cut-off in the segmentation procedure.

IV. DISCUSSION AND CONCLUSIONS

Class Activation Mapping (CAM) was proposed by Zhou
et al. in 2016 to expose the implicit attention of an image for
the CNN network by localizing deep representation [47]. By
using Grad-CAM [48] to add a heat-map, the most focused
area can be recognized when a model is predicting the label
of an input image. Fig. 5 (c) to (j) demonstrates the CAM
examples from case 44 in BioImLab, in which all ICIs of
class 14 are classified as 15. The heat-map images appear
more colorful in the right bottom part (red and green) than
the top (blue), indicating the network focuses more on these
areas. We assume that one reason for ICIs from class 14 being
wrongly predicted as class 15 in Fig. 5 (c) to (j) is that the
right bottom parts are too similar.

To the best of our knowledge, this work is the first to achieve
fully automatic karyotyping (from MCI to KI) with the metric
of fully karyotyping precision beyond 89% on two challenging
datasets and chromosomes were stained with different tech-
niques, i.e., 89.75% on the public Q-band BioImLab dataset
and 94.22% on a G-band private dataset. A medical doctor
verifies the results. Mano et al. report a classification accuracy
of 95.04% on the CEGMR dataset [8]. Still, the following lim-
itations are worth noting: (1) The method describes obtaining
KI by classifying segmentation output from MCI and shows
a simulated graphical user interface. However, it needs to be
clarified in the experimental section whether the results of
the classification task are obtained on the segmented output
or only on the classified dataset. (2) There are few cases of
chromosome overlap in MCI in CEGMR, therefore, sidesteps
the challenge of chromosome segmentation task, and the more
challenging BioImLab dataset was only used for classification
in the work of [8], as presented on pages 11 and 15 and in
Figure 20. Our research remedies these shortcomings: (1) The
performance of the classification task is reported separately for
the classification dataset and the segmentation output. (2) The
experimental dataset is more challenging, containing touching
and overlapping chromosomes in MCI. One is a public dataset
(BioImLab), which allows the results to be compared with
other studies.

This research proposes a novel approach to improve the
edge fineness of chromosome segmentation instances and
integrate segmentation and classification tasks to achieve a
fully automatic karyotyping architecture. This paper has solved
the complex problems encountered in the clinical application
of automatic karyotyping to a large extent. With the automatic
predicted karyotyping images, the computer-assisted task of
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Fig. 5: (a) and (b) are Confusion matrix from two datasets:
The horizontal axis is the predicted label of ICIs, and the
vertical axis is the true label, ‘BG’ is short for ‘background,’
which does not belong to any class. The diagonal represents
the correct predictions, and the others are wrong predictions.
(c) to (j) are Example of heat-map images from BioImLab:
The coloured image is the CAM results of the grey ICI left to
it. The label below each image is the ground truth label. (c)
and (e) are wrongly predicted as class 15, marked with capital
‘A’ or ‘B.’ In this case, 42 ICIs are successfully predicted from
46 segment predictions, i.e., both FAR and OCA are 91.30%.

specific chromosome abnormal detection can be further inves-
tigated.

Although the fully automatic karyotyping method presented
in this study achieved good results and hence may have
practical value, the methods can be further improved in a
few aspects: (1) The segmentation architecture is likely to
be improved by studying the chromosome hard anchor [30]
to optimize bounding box proposals and, consequently, to
increase the capability of recognizing long curved chromo-
somes. (2) Taking an MCI (cell) as the fundamental object,
the predicted KI classifies 23 classes, with each class con-
taining two ICIs (for a normal cell). This characteristic can
be used and explored by studying the ‘cell loss’ or taking
additional predictions (e.g., top three classification prediction)
into account.
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