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Abstract. Transfer learning is an important step to extract meaning-
ful features and overcome the data limitation in the medical Visual
Question Answering (VQA) task. However, most of the existing med-
ical VQA methods rely on external data for transfer learning, while
the meta-data within the dataset is not fully utilized. In this paper,
we present a new multiple meta-model quantifying method that effec-
tively learns meta-annotation and leverages meaningful features to the
medical VQA task. Our proposed method is designed to increase meta-
data by auto-annotation, deal with noisy labels, and output meta-models
which provide robust features for medical VQA tasks. Extensively exper-
imental results on two public medical VQA datasets show that our ap-
proach achieves superior accuracy in comparison with other state-of-the-
art methods, while does not require external data to train meta-models.
Source code available at: https://github.com/aioz-ai/MICCAI21_MMQ.

Keywords: visual question answering· meta learning.

1 Introduction

A medical Visual Question Answering (VQA) system can provide meaningful
references for both doctors and patients during the treatment process. Extracting
image features is one of the most important steps in a medical VQA framework
which outputs essential information to predict answers. Transfer learning, in
which the pretrained deep learning models [36,9,24,13,12] that are trained on the
large scale labeled dataset such as ImageNet [32], is a popular way to initialize
the feature extraction process. However, due to the difference in visual concepts
between ImageNet images and medical images, finetuning process is not sufficient
[26]. Recently, Model Agnostic Meta-Learning [6] (MAML) has been introduced
to overcome the aforementioned problem by learning meta-weights that quickly
adapt to visual concepts. However, MAML is heavily impacted by the meta-
annotation phase for all images in the medical dataset [26]. Different from normal
images, transfer learning in medical images is more challenging due to: (i) noisy

https://github.com/aioz-ai/MICCAI21_MMQ


2 Authors Suppressed Due to Excessive Length

labels may occur when labeling images in an unsupervised manner; (ii) high-
level semantic labels cause uncertainty during learning; and (iii) difficulty in
scaling up the process to all unlabeled images in medical datasets.

In this paper, we introduce a new Multiple Meta-model Quantifying (MMQ)
process to address these aforementioned problems in MAML. Intuitively MMQ
is designed to: (i) effectively increase meta-data by auto-annotation; (ii) deal
with the noisy labels in the training phase by leveraging the uncertainty of
predicted scores during the meta-agnostic process; and (iii) output meta-models
which contain robust features for down-stream medical VQA task. Note that,
compared with the recent approach for meta-learning in medical VQA [26], our
proposed MMQ does not take advantage of additional out-of-dataset images,
while achieves superior accuracy in two challenging medical VQA datasets.

2 Literature Review

Medical Visual Question Answering Based on the development of VQA in
general images, the medical VQA task inherits similar techniques and achieves
certain achievements [2,18,28,1,45,19]. Specifically, the attention mechanisms
such as MCB [7], SAN [43], BAN [15], or CTI [5] are applied in [28,1,45,26,41]
to learn joint representation between medical visual information and questions.
Additionally, in [18,45,28,17], the authors take advantage of transfer learning
for extracting medical image features. Recently, approaches which directly solve
different aspects of medical VQA are introduced, including reasoning [17,44], di-
agnose model behavior [40], multi-modal fusion [35], dedicated framework design
[20,8], and generative model for dealing with abnormality questions [31].

Meta-learning Traditional machine learning algorithms, specifically deep
learning-based approaches, require a large-scale labeled training set [21,25,3,23,4].
Therefore, meta-learning [42,34,11,14], which targets to deal with the problem
of data limitation when learning new tasks, is applied broadly. There are three
common approaches to meta-learning, namely model-based [33,22], metric-based
[16,39,38,37], and optimization-based [30,6,27]. A notable optimization-based
work, MAML [6], helps to learn a meta-model then quickly adapt it to other
tasks. The authors in [26] used MAML to overcome the data limitation problem
in medical VQA. However, their work required the use of external data during
the training.

3 Methodology

3.1 Method overview

Our approach comprises two parts: our proposed multiple meta-model quan-
tifying (MMQ - Figure 1) and a VQA framework for integrating meta-models
outputted from MMQ (Figure 2). MMQ addresses the meta-annotation problem
by outputting multiple meta-models. These models are expected to robust to
each other and have high accuracy during the inference phase of model-agnostic
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tasks. The VQA framework aims to leverage different features extracted from
candidate meta-models and then generates predicted answers.

Fig. 1. Multiple Meta-model Quantifying in medical VQA. Dotted lines denote looping
steps, the number of loop equals to m required meta-models.

Fig. 2. Our VQA framework is designed to integrate robust image features extracted
from multiple meta-models outputted from MMQ.

3.2 Multiple meta-model quantifying

Multiple meta-model quantifying (Figure 1) contains three modules: (i) Meta-
training which trains a specific meta-model for extracting image features used
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in medical VQA task by following MAML [6]; (ii) Data refinement which
increases the training data by auto-annotation and deal with the noisy label
by leveraging the uncertainty of predicted scores; and (iii) Meta-quantifying
which selects meta-models whose robust to each others and have high accuracy
during inference phase of model-agnostic tasks.

Algorithm 1: Model-Agnostic for data refinement

Input: ρ(T ) distribution over tasks; data pool D; meta-model weights θ
Output: Updated data pool D′

1 Sample batch of tasks Ti ∼ ρ(T )
2 Establish list A with contains list of (Score S, Label L) of each sample in data

pool D. (S,L) is from the predicted process of Classifier C of each task Ti.
3 Set α and β be uncertainty checking threshold.
4 For all task Ti do
5 For all image Ik in Ti batch do

6 (Sik, Lik)← Ci(Ti, θ, Ik). Where Ci is the i-th classifier of task Ti.
7 Append (Sik, Lik) into A[Ik].
8 Establish new version of Meta data split M′ and new version of Unlabeled

data split U ′ of D
9 For all element A[Ij ] in list A do

10 If A[Ij ] in Meta data split M of D
11 If ∃A[Ij ]{S} < α and A[Ij ]{L} is A[Ij ]{GTj}. Where GTj is the

ground-truth label of Ij .
12 Append (Ij , A[Ij ]{L}) into U ′

13 Remove (Ij , A[Ij ]{L}) from M
14 If A[Ij ] in Unlabeled data split U of D
15 If ∃A[Ij ]{S} > β
16 Append argmaxA[Ij ]{S}(Ij , A[Ij ]{L}) into M′

17 Uf = U - M′ + U ′. Where Uf is the updated Unlabeled data split of D′.
18 Mf = M - U ′ + M′. Where Mf is the updated Meta data split of D′.
19 returnMf ,Uf of D′

Meta-training We generally follow MAML [6] to do meta-training. Let
fθ be the classification meta-model. Hence, θ represents the parameters of fθ
while {θ′0, θ′1, ...θ′x} is the adapting parameters list of classification models for
x given tasks Ti and their associated dataset {Dtri ,Dvali }. Specifically, for each
iteration, x tasks are sampled with y examples of each task. Then we calculate
the gradient descent ∇θLTi

(fθ(Dtri )) of the classification loss LTi
and update

the corresponding adapting parameters as follow.

θ′i = θ − α∇θLTi
(fθ(Dtri )) (1)

At the end of each iteration, the meta-model parameters θ are updated through-
out validation sets of all tasks sampled to learn the generalized features as:

θ ← θ − β∇θ
∑
Ti

LTi(fθ′i(D
val
i )) (2)
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Unlike MAML [6] where only one meta-model is selected, we develop the follow-
ing refinement and meta-quantifying steps to select high-quality meta-models
for transfer learning to the medical VQA framework later.

Data refinement After finishing the meta-training phase, the weights of
the meta-models are used for refining the dataset. The module aims to expand
the meta-data pool for meta-training and removes samples that are expected to
be hard-to-learn or have noisy labels (See Algorithm 1 for more details).

Meta-quantifying This module aims to identify candidate meta-models
that are useful for the medical VQA task. A candidate model θ should achieve
high performance during the validating process and its features distinct from
other features from other candidate models.

To achieve these goals, we design a fuse score SF as described in (3).

SF = γSP + (1− γ)

m∑
t=1

1− Cosine (Fc, Ft)∀Fc 6= Ft (3)

where SP is the predicted score of the current meta-model over ground-truth
label; Fc is the feature extracted from the aforementioned meta-model that needs
to compute the score; Ft is the feature extracted from t-th model of the list of
meta-model Θ; Cosine is using for similarity checking between two features.

Since the predicted score SP at the ground-truth label and diverse score are
co-variables, therefore the fuse score SF is also covariate with both aforemen-
tioned scores. This means that the larger SF is, the higher chance of the model
to be selected for the VQA task. Algorithm 2 describes our meta-quantifying
algorithm in details.

3.3 Integrate quantified meta-models to medical VQA framework

To leverage robust features extracted from quantified meta-models, we introduce
a VQA framework as in Figure 2. Specifically, each input question is trimmed to
a 12-word sentence and then zero-padded if its length is less than 12. Each word
is represented by a 300-D GloVe word embedding [29]. The word embedding is
fed into a 1024-D LSTM to produce the question embedding fq.

Each input image is passed through n quantified meta-models got from the
meta-quantifying module, which produce n vectors. These vectors are concate-
nated to form an enhanced image feature, denoted as fv in Figure 2. Since this
vector contains multiple features extracted from different high-performed meta-
models and each model has different views, the VQA framework is expected to
be less affected by the bias problem. Image feature fv and question embedding
fq are fed into an attention mechanism (BAN [15] or SAN [43]) to produce a
joint representation fa. This feature fa is used as input for a multi-class classi-
fier (over the set of predefined answer classes [18]). To train the proposed model,
we use a Cross Entropy loss for the answer classification task. The whole VQA
framework is then fine-tuned in an end-to-end manner.
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Algorithm 2: Meta-quantifying algorithm

Input: Data pool DT ; list of meta-model Θ ∈ [θ0, θ1, ..., θm] where m denotes
the number of candidate meta-models; number of quantified model n.

Output: List of Quantified meta-models Θn ∈ [θ0, θ1, ..., θn]. n < m.
1 For all n meta-models, sample batch of tasks Ti ∼ ρ(T )
2 Establish list A with contains list of (Score SP , Feature F ) of each sample in

quantify data pool DT . (SP , F ) is got from the predicted process of Classifier
C of each task Ti. SP is the predicted score at ground-truth label.

3 Set γ be effectiveness - robustness balancing hyper-parameter.
4 Establish Fuse Score list LSF for all meta-model in Θ.
5 For all task Ti do
6 For all image Ik in Ti batch do
7 For all meta-model Θt in Θ do

8 (Sik, F ik)Θt ← Ci(Ti, θ, Ik). Where Ci is the i-th classifier of task Ti.
9 Append (Sik, F ik)Θt into A[Ik].

10 For all meta-model Θt in Θ do
11 For all A[Ik] do

12 SΘt
F ← Compute fuse score using Equation (3).

13 LΘt
SF

+ = SΘt
F .

14 LSF ← Sort LSF decreasingly along with corresponding θ.
15 return Θn ← n-first meta-models selected from LSF .

4 Experiments

4.1 Dataset

We use the VQA-RAD [18] and PathVQA [10] in our experiments. The VQA-
RAD [18] dataset contains 315 images and 3,515 corresponding questions. Each
image is associated with more than one question. The PathVQA [10] dataset
consists of 32,799 question-answer pairs generated from 1,670 pathology images
collected from two pathology textbooks, and 3,328 pathology images collected
from the PEIR digital library.

4.2 Experimental details

Meta-training. Similar to [26], we first create the meta-annotation for training
MAML. For the VQA-RAD dataset, we re-use the meta-annotation created by
[26]. Note that we do not use their extra collected data in our experiment. For
the PathVQA dataset, we create the meta-annotation by categorizing all training
images into 31 classes based on body parts, types of images, and organs.

For every iteration of MAML training, 5 tasks are sampled per iteration in
RAD-VQA while in PathVQA, this value is 4 instead. For each task, in RAD-
VQA, we randomly select 3 classes from 9 classes while in PathVQA we select
5 classes from 31 aforementioned classes. For each class, in RAD-VQA, we ran-
domly select 6 images in which 3 images are used for updating task models and
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the remaining 3 images are used for updating meta-model. In PathVQA, the
same process is applied with 20 random selected images, 5 of them are used for
updating task models and the remains are used for updating meta-model.

Data refinement. The meta-model outputted from the meta-training step
is then used for updating the data pool through the algorithm described in
Section 3.2. The refined data pool is then leveraged as the input for the meta-
training step to output another meta-model. This loop is applied by a maximum
of 7 times to output up to 7 different meta-models.

Meta-quantifying. All meta-models got from the previous step are passed
through the Algorithm 2 to quantify their effectiveness. A maximum of 4 models
which have high performance is applied to VQA training.

VQA training. After selecting candidate meta-models from the meta quan-
tifying module, we use their trained weights to initialize the image feature ex-
traction component in the VQA framework. We then finetune the whole VQA
model using the VQA training set. The output vector of each meta-model is
set to 32-D in PathVQA and 64-D in VQA-RAD dataset. We use 50% of meta-
annotated images for training meta-models. The effect of meta-annotated images
can be found in our supplementary material.

Baselines. We compare our MMQ results with recent methods in medical
VQA: MAML [6], MEVF [26], stacked attention network (StAN) with VGG-
16 [10], and bilinear attention network (BiAN) with Faster-RCNN [10]. Two
attentions methods SAN [43] and BAN [15] are used in MAML, MEVF, and
MMQ. Note that, StAN and BiAN only use pretrained models from the Ima-
geNet dataset, MEVF [26] uses extra collected data to train their meta-model,
while our MMQ relies solely on the images from the dataset. For the question
feature extraction, all baselines and our method use the same pretrained models
(i.e., Glove [29]) and then finetuning on VQA-RAD or PathVQA dataset.

4.3 Results

Table 1 presents comparative results between different methods. The results
show that our MMQ significantly outperforms other meta-learning methods by
a large margin. Besides, the gain in performance of MMQ is stable with different
attention mechanisms (BAN [15] or SAN [43]) in the VQA task. It worth noting
that, compared with the most recent state-of-the-art method MEVF [26], we
outperform 5.3% in free-form questions of the PathVQA dataset and 9.8% in
the Open-ended questions of the VQA-RAD dataset, respectively. Moreover, no
out-of-dataset images are used in MMQ for learning meta-models. The results
imply that our proposed MMQ learns essential representative information from
the input images and leverage effectively the features from meta-models to deal
with challenging questions in medical VQA datasets.

4.4 Ablation study

Table 2 presents our MMQ accuracy in PathVQA dataset when applying m
times refining data and n quantified meta-models. The results show that, by
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Table 1. Performance comparison on VQA-RAD and Path-VQA test set. (*) indicates
methods used pre-trained model on ImageNet dataset. We refine data 5 times (m = 5)
and use 3 meta-models (n = 3) in our MMQ.

Reference

Methods

Attention

Method

PathVQA VQA-RAD

Free-

form

Yes/

No

Over-

all

Open-

ended

Close-

ended

Over-

all

StAN [10](*) SAN 1.6 59.4 30.5 24.2 57.2 44.2

BiAN [10](*) BAN 2.9 68.2 35.6 28.4 67.9 52.3

MAML [6]
SAN 5.4 75.3 40.5 38.2 69.7 57.1

BAN 5.9 79.5 42.9 40.1 72.4 59.6

MEVF [26]
SAN 6.0 81.0 43.6 40.7 74.1 60.7

BAN 8.1 81.4 44.8 43.9 75.1 62.7

MMQ (ours)
SAN 11.2 82.7 47.1 46.3 75.7 64.0

BAN 13.4 84.0 48.8 53.7 75.8 67.0

using only 1 quantified meta-model outputted from our MMQ, we significantly
outperform both MAML and MEVF baselines. This confirms the effectiveness of
the proposed MMQ for dealing with the limitation of meta-annotation in medical
VQA, i.e., noisy labels and scalability. Besides, leveraging more quantified meta-
models also further improves the overall performance.

We note that the improvements of our MMQ are more significant on free-
form questions over yes/no questions. This observation implies that the free-form
questions/answers which are more challenging and need more information from
input images benefits more from our proposed method.

Table 2 also shows that increasing the number of refinement steps and the
number of quantified meta-models can improve the overall result, but the gain
is smaller after each loop. The training time also increases when the number of
meta-models is set higher. However, our testing time and the total number of
parameters are only slightly higher than MAML [6] and MEVF [26]. Based on
the empirical results, we recommend applying 5 times refinement with a maxi-
mum of 3 quantified meta-models to balance the trade-off between the accuracy
performance and the computational cost.

5 Conclusion

In this paper, we proposed a new multiple meta-model quantifying method to
effectively leverage meta-annotation and deal with noisy labels in the medical
VQA task. The extensively experimental results show that our proposed method
outperforms the recent state-of-the-art meta-learning based methods by a large
margin in both PathVQA and VQA-RAD datasets. Our implementation and
trained models will be released for reproducibility.
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Table 2. The effectiveness of our MMQ under m times refining data and n quantified
meta-models on PathVQA test set. BAN is used as the attention method.

Methods m n
Free-

form

Yes/

No

Over-

all

Train time

(hours)

Test time

(s/sample)

#Paras

(M)

MAML [6] 5.9 79.5 42.9 2.1 0.007 27.2

MEVF [26] 8.1 81.4 44.8 2.5 0.008 27.9

MMQ (ours)

3 1 10.1 82.1 46.2 5.8 0.008 27.8

4 2 12.0 83.0 47.6 7.3 0.009 28.1

5 3 13.4 84.0 48.8 8.9 0.010 28.3

7 4 13.6 84.0 48.8 12.1 0.011 28.5
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Abstract. In this supplementary material, we provide further analy-
sis of MMQ to verify its effectiveness for the medical VQA task. In
particular, we illustrate the network structure to extract features from
meta-models. We clarify the general setup and the details of the meta-
annotation step in the PathVQA dataset. We also analyze the effect of
different amounts of meta-annotated images for training meta-models.
The experiments are conducted using the PathVQA and VQA-RAD
datasets.

1 Network to extract features from meta-models

Figure 1 shows the network to extract features from the meta-model in our VQA
framework. It consists of four 3×3 convolutional layers with stride 2 and is ended
with a mean pooling layer; each convolutional layer has 64 filters and is followed
by a ReLu layer.

Fig. 1. Feature extraction network from meta-models.

2 General setup

The image size is set at 84 × 84. The proposed MMQ is implemented using
PyTorch. The experiments are conducted on a single NVIDIA 1080Ti with 11GB
RAM. In all MMQ experiment setups, α, β, and γ are equalled to 0.01, 0.001,
and 0.5, respectively. There is no fine-tuning process for these hyper-parameters
since we use the default α, β values in MAML plus balanced initial γ for training
and still achieve good results.
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3 Meta-annotation details for PathVQA dataset

For the PathVQA dataset, we create the meta-annotation by manually categoriz-
ing all training images into 31 classes based on body parts, types of images, and
organs. These classes are: dense cell, drawing, process tree, x-ray mouth, x-ray
ribs, RGB bone, RGB brain, RGB endocrine, RGB heart, RGB intestine, RGB
kidney, RGB liver, RGB lung, RGB mouth, RGB skull, RGB uterus, RBG arms,
RGB baby, RGB head, RGB skin, sparse cell, chart, x-ray legs, RGB prostate,
RGB spleen, RBG body, RGB legs, x-ray arms, RBG oral, RGB pancreas, RGB
penis.

These meta-labels, our source code and trained models will be release for
reproducibility.

4 Meta-data vs. Unlabeled data in MMQ

Table 1 illustrates the performance of MMQ with different amounts of meta-
annotated images for training meta models. Since our data refinement module
(See Algorithm 1 in our paper) expands current meta-data as well as removes un-
certainty samples simultaneously, keeping the balance in the number of samples
between meta-data and unlabeled data at the initial step is worthy. Empirical
results also imply that the initial data balance between two data pools greatly
increases the effectiveness of our proposed MMQ.

Table 1. Performance (%) comparison on VQA-RAD and Path-VQA test set when
using MMQ with different amount of meta-annotated images for training meta-models.
These results reported after 5 times refining data and 3 quantified meta-models are
picked up.

% annotated

data

Attention

Mechanism

PathVQA VQA-RAD

Free-

form

Yes/

No

Over-

all

Open-

ended

Close-

ended

Over-

all

25 %
SAN 7.2 82.8 45.1 44.7 72.4 61.4

BAN 9.8 83.1 46.5 48.8 74.6 64.3

50%
SAN 11.2 82.7 47.1 46.3 75.7 64.0

BAN 13.4 84.0 48.8 53.7 75.8 67.0

75%
SAN 10.1 82.7 46.5 46.3 74.6 63.3

BAN 12.9 83.3 48.2 48.8 78.8 66.2

100%
SAN 10.6 82.8 46.8 47.2 74.6 63.6

BAN 13.6 83.2 48.5 48 78.9 66.6
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5 Visualization for data refinement

For visualization, Figure 2 shows the images removed from the meta-annotated
dataset due to their high uncertainty score. Additionally, Figure 3 illustrates the
images and their labels which are annotated automatically by passing unlabeled
image data through the 1-st refinement step. These illustrations indicate that
our MMQ successfully extend dataset by labelling meta-data automatically as
well as remove samples with noisy labels.

(a) (b) (c) (d) (e)

Fig. 2. The visualization images from meta-annotated data which are removed during
the first refinement step, i.e., caused by their high uncertainty scores . Their labels are:
(a) Dense Cell, (b) Process Tree, (c) X-ray Mouth, (d) RBG Brain, and (e) RBG
Kidney, consequently. Best viewed in color.
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(a) (b) (c) (d) (e)

Fig. 3. The visualization images from unlabeled data which are chosen to add into
meta-annotated data during the first refinement step. Their labels are: (a) Dense Cell,
(b) Drawing, (c) X-ray Mouth, (d) RBG Bone, and (e) RBG Skin, consequently. Best
viewed in color.
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