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Abstract

The increasing size and complexity of modern systems presents engineers with the
inevitable challenge of developing more efficient yet comprehensive computational tools
that enable sound analyses and ensure stable system operation. The previously introduced
resilience framework for complex and sub-structured systems provides a solid foundation
for comprehensive stakeholder decision-making, taking into account limited resources. In
their work, a survival function approach based on the concept of survival signature models
the reliability of system components and subsystems. However, it is limited to a binary
component and system state consideration. This limitation needs to be overcome to ensure
comprehensive resilience analyses of real world systems. An extension is needed that
guarantees both maintaining the existing advantages of the original resilience framework,
yet enables continuous performance consideration.

This work introduces the continuous-state survival function and concept of the Di-
agonal Approximated Signature (DAS) as a corresponding surrogate model. The pro-
posed concept is based on combinatorial decomposition adapted from the concept of
survival signature. This allows for the advantageous property of separating topological
and probabilistic information. Potentially high-dimensional coherent structure functions
are the foundation. A stochastic process models the time-dependent degradation of the
continuous-state components. The proposed approach enables direct computation of the
continuous-state survival function by means of an explicit formula and a stored DAS,
avoiding costly online Monte Carlos Simulation (MCS) and overcoming the limitation
of a binary component and system state consideration during resilience optimization for
sub-structured systems. A proof of concept is provided for multi-dimensional systems and
an arbitrary infrastructure system.
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ent Structure Function, Resilience Optimization, System Reliability, Monte Carlo Simu-
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1 Introduction

Engineering systems, such as infrastructure networks and complex machines, are ubiquitous
worldwide and form the backbone of modern societies. As societies grow, these systems be-
come increasingly sophisticated in size and complexity. Evidently, the stable operation of such
systems is crucial for the economy and an undisturbed and safe everyday life of civilians. This
challenge is exacerbated by exposure to an increasingly inhospitable, changing and uncertain
environment. It is evident that it is exceedingly difficult if not impossible to identify and prevent
all potential adverse impacts. The focus in design and maintenance of complex systems has to
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be extended from a pure failure prevention and failure persistence strategy to the capabilities
of adaptation and recovery. The concept of resilience meets exactly these needs both from a
technical and economic point of view and ensures steady functioning [1, 2, 3]. Consequently,
there is an increasing need for sophisticated and efficient computational tools that adapt this
perspective in order to exploit the potential emerging benefits in engineering practice.

A fundamental precondition for the assessment of resilience of complex systems is an appro-
priate quantitative resilience metric. In [4, 5, 6], the authors present a broad review of current
resilience metrics. In [7], Linkov and Trump provided a critical analysis of resilience definitions
and metrics found in literature, their practical application and specifically compare them to
the concept of the traditional notion of risk. Hosseini et al. presented in [5] a categorization
scheme for resilience quantification approaches. Among these, performance-based resilience
metrics are the most common and are based on comparing the performance of a system before
and after an adverse event. Theoretically, such an adverse event could correspond to rare shock
events on a large time scale or persistent degrading effects on an infinitesimally small time
scale. Further subcategories distinguish between time in-/dependence and characterization as
deterministic or probabilistic. As motivated in [5] and [8], it is assumed that a performance-
based and time-dependent metric is capable of considering the following system states before
and after a disruptive event:

• The initial state that remains unchanged until the occurrence of an effectively disruptive
event, characterized by system reliability, that is interpreted as the ability of the system
to sustain typical performance prior to a disruptive event [5, 9].

• The disrupted state, determined by the system robustness, i.e., the ability of the system
to mitigate an effectively disruptive event and its counterpart, vulnerability, represented
by a potential loss of performance after the occurrence of a disruptive event [10, 11].

• The recoverability of the system characterizes the duration of the degraded state and the
recovery to a new stable state [8, 10].
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Figure 1: The concept of resilience - three essential phases, adapted from [8].

Figure 1 illustrates these system states and their transitions simplified for a single effectively
disruptive event and its potentially infinitesimal small period. Note that the terminologies con-
cerning the governing properties, phases and states presented here, although in their physical
interpretation perceived alike or at least similarly, are discussed in literature partly controver-
sially. Thus, for example, what is described here, and, e.g., in [11], as system robustness is
referred to as resistance of a system, as in [12]. In fact, the boundaries between the interpre-
tations of reliability and robustness are fluid when extending the conventional perspective as
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shall be seen in the further course of this work. For the developments subsequently proposed,
it is critical to define a concise interpretation of reliability from a probabilistic perspective. In
accordance with [13], let reliability refer to the probability of a system or some entity under
consideration to uninterruptedly perform a certain specified function during a stated interval
of a life variable, e.g., time, within a certain specified environment.

In the field of engineering, resilience as a concept has consistently gained popularity in
recent years [4, 14]. There are numerous ways to improve the resilience of systems. How-
ever, there are limits to available resources, and resilience cannot be increased indefinitely.
Therefore, it is important not only to be able to differentiate and balance between different
resilience-enhancing measures, but also to take into account their monetary aspects [15, 16].
In [17], Salomon et al. present a method for determining the most cost-efficient allocation
of resilience-enhancing investments. Further, current research related to resilience focuses on
improved metrics for quantifying resilience, such as those proposed in [18], and overarching
frameworks for stakeholder decision-making, such as for transportation networks in the pres-
ence of seismic hazards [19]. Other recent studies have examined the complexity of real-world
infrastructure systems, the consequences of failures, recovery sequences, and various external-
ities. For instance, in [20], the authors demonstrated the tremendous complexity of modern
critical infrastructures and their multifactorial nature as cyber-human-physical systems, and
explored appropriate modeling and resilience analysis techniques. Moreover, the studies [21]
and [22] address the implications for decision-making considering stakeholder priorities and en-
hancement or recovery strategies. Climate change challenges have been explored in the context
of resilience, e.g., in [23]. A comprehensive literature review of resilience assessment frameworks
balancing both resources and performance can be found in [24].

Salomon et al. recently introduced in [25] an efficient resilience framework for large, com-
plex and sub-structured systems, providing a solid foundation for comprehensive stakeholder
decision-making, taking into account limited resources. In their work, a survival function ap-
proach based on the concept of survival signature, first introduced in [26], models the reliability
of system components and subsystems of investigated systems. This reliability approach sep-
arates information on the topological (sub)system reliability and the component failure time
behavior. Thereby, the survival signature captures the topological information in an efficient
manner [27] and thus, can be seen as a type of surrogate modeling technique. This allows for
significantly reduced computational effort when it comes to repeated model evaluations, as the
demanding evaluation of the topological system model is circumvented [28]. This is all the more
relevant the larger and more complex the system under consideration is. The repeated model
evaluations are of crucial importance when the parameters examined during the resilience op-
timization affect the probability structure of the system components. This results in a high
number of changes in the probability structure during the resilience analysis, which can be ide-
ally covered by the separation property of the survival signature with minimal computational
effort.

A major restriction of the survival signature in its original form is the limitation to a bi-
nary component and system state consideration. Consequently, the resilience framework for
complex and sub-structured systems in [25] is subject to the same constraints during resilience
optimization. However, for a comprehensive resilience analysis of real world systems, a contin-
uous component and system performance state consideration is an indispensable prerequisite.
Therefore, an extension is needed that guarantees both the already existing advantages of the
resilience framework in [25] based on the original form of the survival signature, yet enables
continuous performance consideration.

The most widespread reliability assessment methods follow a binary-state consideration,
i.e., reducing the consideration of system performance to the set of the two states of either
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perfect functioning or complete failure, compare [29]. Jain et al. states that the “Majority
of the existing models have computed system reliability at a holistic level but fail to consider
the interactions at component and sub-system levels [...].” In [30], Yang & Xue highlight
the importance of a continuous-state consideration in reliability analysis. It is evident that
the consideration of continuous component and (sub)system states is equally important for
resilience analysis and thus indispensable for realistic resilience optimization. In the last years
several researchers proposed various concepts that bring the survival signature to a multi-state
consideration, e.g., see [31, 32, 33, 34], which can be seen as a first step in development, towards
continuous consideration and potential implementation into proposed resilience framework for
sub-structured complex systems [25].

In the current work, theoretical fundamentals are first summarized. Then the concept of
the DAS is introduced as a new surrogate modeling approach, based on the concept of survival
signature and potentially high-dimensional coherent structure functions describing the relation-
ship between degrading components and corresponding continuous-state system performance.
The proposed approach enables direct computation of continuous-state survival function by
means of an explicit formula and a stored DAS, thus avoiding a costly online MCS and over-
coming the limitation of a binary component and system state consideration. A proof of concept
is provided for multi-dimensional systems consisting of min- and max-operators, where exact
results are obtained. Further, the applicability of the concept is investigated for an arbitrary
infrastructure system. Finally, a conclusions and outlook are presented.

2 Theoretical Fundamentals

2.1 Structure Function

According to [35], the performance of a system depends only on its components, i.e., their
states, and their interactions. Then, a vector x(t) can be seen as the component state vector of
the system assigning a state to each component. x(t) should dependent on the environmental
conditions. As a result, the system performance can be described as a function of the com-
ponent state vector. Suppose that a component state is modeled via probability distributions
in dependence on component properties, environmental effects, and time. Then, the system
performance function solely describes the system structure, corresponding to the arrangement
of the components and their interactions. Such a system performance model can be considered
as the well-known system structure function. In the current work, the structure function is
assumed to be time-independent.

2.1.1 Binary-State Structure Function

The structure function of a system is a fundamental concept to represent system topology in
reliability analysis. For a binary-state system the structure function can be defined as follows.
Let a system consist of n components of the same type. Further, let x = (x1, x2, . . . , xn) ∈
{0, 1}n be the corresponding state vector of the n components, where xi = 1 indicates a working
state of the i-th component and xi = 0 indicates a nonworking state. Then, the structure
function ϕ is a function of the state vector defining the operating status of the considered
system:

ϕ := ϕ(x) : {0, 1}n → {0, 1}, (1)

as proposed, e.g., in [26] Accordingly, ϕ(x) = 1 denotes a working system and ϕ(x) = 0 specifies
a nonworking system relative to the state vector x.
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Let a system consist of components of different types, i.e., K ≥ 2. Then, the number
of system components is denoted by n =

∑K
k=1 nk, where nk is the number of components

of type k ∈ {1, 2, . . . , K}. Accordingly, the state vector for each type is specified by xk =
(xk,1, xk,2, . . . , xk,nk

).

2.1.2 Multi-State Structure Function

Analogously, the structure function can be defined for a discrete multi-state consideration.
Then, the system and component states degrade from a perfect state over a set of intermediate
states to the state of complete failure:

ϕ := ϕ(x) : {0, . . . ,M}n → {0, . . . ,M}, (2)

compare [36].

2.1.3 Continuous-State Structure Function

When following a continuous multi-state consideration, the set of possible system and compo-
nent states are all elements of the interval between 0 and 1. Such a consideration relates to the
performance function well-known in structural reliability when normalized for minimum and
maximum parameter values, e.g., as proposed in [37]:

ϕ := ϕ(x) : [0, 1]n → [0, 1]. (3)

2.2 Coherent System

A special case of the general system is the class of coherent systems. Note that binary-state,
discrete multi-state, as well as continuous multi-state structure functions can be coherent. In
accordance with Hudson & Kapur [38], this class can be defined as follows. A (discrete or
continuous multi-state) system is defined to be coherent if the three subsequent conditions are
fulfilled:

• ϕ(x) is surjective. Consequently, for each system state m there exists at least one state
vector x for which ϕ(x) = m.

• ϕ(x) ≤ ϕ(y) if x ≤ y, i.e., ϕ is monotone and non-decreasing.

• The set C of all components contains no inessential components, i.e., each component
influences the system performance at some point.

2.3 Concept of Binary-State Survival Signature

The concept of the survival signature is a promising approach for a more efficient evaluation of
system reliability, especially when it comes to repeated model evaluations. Introduced in [26],
this concept enables to compute the survival function of a system. The approach attracted
increasing attention over the last decade due to its advantageous features compared to tradi-
tional methods [27]. One of its benefits is the efficiency in repeated model evaluations due to a
separation of the probability structure of system components and the topological system relia-
bility. In addition, the survival signature significantly condenses information on the topological
reliability for systems with multiple component types. Components are of the same type if their
failure times are independent and identically distributed (iid) or exchangeable. This distinction
is important when modeling dependent component failure times [39]. For more information on
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claimed exchangeability in practice, see [39, 28]. In the following the derivation of the concept
of survival signature is shown for a binary-state system with a single component type and mul-
tiple component types, respectively, based on Coolen et al. [26]. More detailed information
about further applications and the derivation of the concept can be found in [26, 39, 40].

Consider a coherent system with a given structure function as described in subsubsec-
tion 2.1.1. Given a binary-state vector specifying the state of n components in total, there are(
n
l

)
state vectors x with exactly l components with xi = 1, i.e.,

∑n
i=1 xi = l. Let the set of

these state vectors refer to as Sl. Assume that the failure times of the components specifying
x over time are iid. Consequently, all possible state vectors are equally likely to occur and,
hence, it can be stated that

Φ(l) =

(
n

l

)−1 ∑
x∈Sl

ϕ(x), (4)

where ϕ(x) is the binary-state structure function. Then, Φ(l) denotes the probability that a
system is working given that exactly l of its components working for l = 1, . . . , n. Note that
the survival signature depends only on the topological reliability of the system, independent of
the time-dependent failure behavior of its components, hereafter referred to as the probability
structure of the system. It holds that Φ(0) = 0 and Φ(n) = 1 due to the coherent system
property. The expression given in Equation 4 closely relates to the signature, introduced by
Samaniego in [41].

The probability structure of system components specifies the probability that a certain
number of components of type k are working at time t. Let Ct ∈ {0, 1, . . . , n} be the number
of components functioning at time t > 0. Further, the probability distribution of the compo-
nent failure time is described by the cumulative density function (CDF) F (t). Therefore, the
probability structure for l ∈ {0, 1, . . . , n} is given as

P (Ct = l) =

(
n

l

)
[F (t)]n−l[1− F (t)]l. (5)

The topological reliability described by Eqn. (4) and the probability structure characterizing
the component failure times can be brought together to obtain the survival function as

R(t) = P (Tf > t) =
n∑

l=0

Φ(l)P (Ct = l) , (6)

where Tf denotes the random system failure time. Clearly, the two terms on the right-hand side
of the equation have different roles: The term Φ(l) represents the topological reliability and
is determined by the structure function of the system, defining how the system functionality
depends on the function of its components. The other term P (Ct = l) describes component
failure behavior and is referred to as the probability structure of the system. Consequently,
the concept of survival signature separates the time-independent topological reliability and the
time-dependent probability structure. Thus, the survival signature computed once in a pre-
processing step can be reused for further evaluations of the survival function. The survival
signature can be stored in a matrix, summarizing the topological reliability. The utilization
of this matrix circumvents the repeated evaluation of the typically computationally expensive
structure function. Note that precisely these properties give the concept of survival signature an
advantage over conventional methods when system simulations must be performed repeatedly
[27].

The survival function R(t) is a well-known concept in reliability engineering that is also
referred to as reliability function [42, 43]. It is typically interpreted as the mathematical for-
malization of the definition of reliability provided in section 1 and quantifies the system failure
time to be greater or equal to t. It relates to the CDF F (t) as R(t) = 1− F (t).
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It is also possible to define the concept of survival signature for K ≥ 2, with K being the
number of component types. In this case, the survival signature summarizes the probability
that a system is working as a function depending on the number of working components lk for
each type k = 1, . . . , K, see [26] for more details.

2.4 Concept of Continuous-State Survival Signature

The original concept of survival signature achieves considerable efficiency advantages when
computing system reliability but is limited to a binary-state consideration. However, a multi-
state or even continuous-state consideration might be beneficial for the assessment of most
real-world systems in terms of safety and cost efficiency. In the last years several researchers
proposed various concepts that bring the survival signature to a multi-state consideration, see
[31, 33, 34].

In [32], Liu et al. introduced an approach for the concept of survival signature in the
context of continuous-state systems, for which the component functionality is characterized by
a stress-strength relation. The strength of the components are assumed to be iid, while the
strength X and the stress Y acting on the components are statistically independent. The state
of a component is defined via a kernel function K : R+ → S through the relation η = K(Z)
with the random variable Z = X/Y . Thereby, S ∈ {0, 1, 2, . . . ,M} and S ∈ [0, 1], respectively,
depending on a discrete or continuous multi-state consideration. The researchers provided
formulas to compute the survival signature for discrete multi-state systems similar to [31] in a
combinatorial manner but directly based on the number of path sets. Analogously, the survival
signature for continuous multi-state systems is given as

ρns(n) = P (ε ≥ s | N(s, n) = ns)

= δns(n)/

(
n

ns

)
(7)

with

N(s, n) =
n∑

i=1

I(η ≥ s) (8)

that is the number of components in state s of in total n components and δns(n) being the
number of path sets for which exactly ns components are in state s or above. The time-
independent probability that the system is at least in state s or above can then be given as

R(s) =
n∑

ls=0

ρls(n)

(
n

ls

)
P (N(s, n) = ns) , (9)

where ls is the number of components functioning in state s. Again, the left term represents the
inherently time-independent topological reliability, while the right term refers to the probability
structure that is time-independent in this case due to specific the stress-strength relation of
components established in [32].

Despite an extension to discrete and continuous multi-state consideration, the authors lim-
ited their considerations in [32] to a time-independent reliability analyses. Thereby, R(s)
quantifies the probability that the entity under consideration performs in state s, compare
R(t) that measures the probability of the system failure time is greater or equal to time t.
In addition, a stress-strength relation characterizing probabilistic properties of components
must be established as prerequisite in order to determine the component probability structure
P (N(s, n) = ns).
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3 Proposed Methodology

In this section, the continuous-state survival function is defined. In contrast to the previ-
ously outlined approaches that are either probability measures of state s or time t, this notion
depends on both s and t simultaneously. For comparison with the subsequently presented
methodology, a true solution estimate based on MCS is proposed in order to evaluate the
continuous-state survival function. Eventually, the DAS is introduced as surrogate model to
compute the continuous-state survival function efficiently.

3.1 Continuous-State Survival Function

In this work, the probability P (us ≥ s|t) that the state of some entity under consideration us

is greater or equal to s at given time t is referred to as the continuous-state survival function
of this entity and is denoted by

R(s, t) = P (Us ≥ s|t). (10)

Thereby, the continuous-state survival function constitutes a time-dependent probability mea-
sure that characterizes the distribution of performance states of the considered entity over time.
From another perspective, the continuous-state survival function can be interpreted as

R(s, t) = P (Ut ≥ t|s), (11)

where Ut is the random variable characterizing the time to failure of the condition that the
state of the entity is greater than s. Despite this perspective does not find application in this
work, the consideration is decisive for the terminology. In fact, the original and well-known
survival function can be extended to this notion when conditioning the considered lifetime to
a state s in the interval [0, 1] instead of a binary condition of operating or not operating.

In the context of systems that consist of components facing disruptive events, the entity
under consideration may correspond to either a system or one of its components. Thereby,
R(s, t) can be established in several ways. The first attempt to quantify R(s, t) could be a
fully empirical approach, measuring the frequency of the system or component state us. Given
the typically limited number of samples, engineers in most cases face the challenge of modeling
a stochastic process based on limited data or expert knowledge and to utilize it as basis for
sampling performances as an alternative. Besides that, the continuous-state survival function
can be evaluated based on a given structure function ϕ(x), as presented in subsection 2.1,
that represents system topology, i.e., component interaction, and a given probability structure
describing the degrading component performance over time. The latter approach involving
ϕ(x) will be focal point for all subsequent developments.

Consider a system with a coherent and time-invariant structure function ϕ(x). Then
us = ϕ(x) and the corresponding continuous-state survival function can be given by R(s, t) =
P (ϕ(x) ≥ s|t). Figure 2 shows the contour line of an exemplary 2D system for a given state
s. Thereby, ∂Ωs := {x | ϕ(x) = s} represents this contour line as the set of state vectors
that meet exactly the system performance ϕ(x) = s with x = (x1, x2, . . . , xn) and xi ∈ [0, 1].
Ωs := {x | ϕ(x) ≥ s} corresponds to the set of state vectors that fulfill the criteria ϕ(x) ≥ s.
Given ϕ(x), an exact solution for R(s, t) can be obtained by evaluating the integral of the
time-dependent probability density at the state vectors belonging to Ωs. Denote the underly-
ing probability distribution as fxi

(xi | t) – potentially time-dependent – describing the state
xi of component i. Further, let Ω = [0, 1]n be the set of all possible component states and
assume the component states to be independently distributed. Then, the true solution of the
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Figure 2: Examples for ∂Ωs and Ωs shown in a contour plot of an exemplary 2D-system with
the structure function ϕ(x) evaluated for an arbitrary state s.

continuous-state survival function is given as the integral over Ωs ⊆ Ω:

R(s, t) =

∫
Ωs

fx(x | t)dx

=

∫
Ω

I(ϕ(x) ≥ s)f(x | t)dx,
(12)

where fx(x | t) =
⋂n

i=1 fxi
(xi | t) is the conditional joint probability density characterizing

the probability of the component state vector x. Further, I(·) ∈ {0, 1} denotes the indicator
function.

In fact, the identification of ∂Ωs := {x | ϕ(x) = s}, that corresponds to the well-known
limit state function, in order to quantify the probability mass assigned to the elements in Ωs is
a challenging task, particularly for nonlinear functions. MCS is applied to obtain an estimate
of the true solution, since there is no closed form available to solve this general and possibly
multi-dimensional problem. It holds true that

R(s, t) =

∫
Ω

I(ϕ(x) ≥ s)fx(x | t)dx

=
1

NMCS

NMCS∑
j=1

I(ϕ(xj) ≥ s | t),
(13)

where NMCS is the number of component state samples xj ∈ Ω ∼ fx(x | t) used for MCS,
when NMCS →∞.

3.2 Surrogate Model: The Concept of Diagonal Approximated Sig-
nature

The concept of the DAS is introduced as a surrogate modeling approach that enables the compu-
tation of the true continuous-state survival function or at least an approximation of it depend-
ing on the characteristics of ϕ(x). Similarly to the concepts of binary- and discrete/continuous
multi-state survival signatures, the concept of the DAS is based on a decomposition of working
components, compare l that is the number of components working, as in Equation 6, and ls
that is the number of components functioning in state s, as in Equation 9, respectively. This
leads to a separation property of these concepts that enables to store information on the sys-
tem topology, i.e., the functional interaction of components, and retrieve it in repeated model
evaluations more efficiently than compared to the evaluation via the original structure function.
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3.2.1 Fundamental Statement

With regard to the current developments, several categorizations for three properties of a
coherent system structure function are introduced. As first property, the diagonal state sign
can be defined: A coherent structure function is referred to as diagonally state positive if it
holds that ϕ(xs) > s ∀s ∈ [0, 1] with xs = (x1, x2, . . . , xn) and xi = s where n is the number
of system components. Analogously, the terms diagonally state neutral and diagonally state
negative correspond to the conditions ϕ(xs) = s and ϕ(xs) < s, respectively. Secondly, note
that a structure function is called diagonally state invariant in particular if it is diagonally
state neutral. In contrast, the property of the diagonal state variance can also be assigned
as diagonally state variant if the structure function is partly diagonally state positive, neutral
and negative. The third property can be assigned as diagonally state extreme if it holds that
ϕ(xs) ≥ s ∀s ∈ [0, 1] with xs = (x1, x2, . . . , xn) and xi ∈ {0, s}. This condition would imply
that the structure function is also diagonally state constant, i.e., ϕ(xs) ≥ s ∀s ∈ [0, 1] with
xs = (x1, x2, . . . , xn) and xi ∈ [0, s]. Let these specifications relate to the diagonal state
order. As an example, both of these properties can be specified as diagonally state neutral
and diagonally state extreme for structure functions that are solely composed by min- or max-
operators, i.e., compositions of ϕe(x) = min(xf , xg) ∈ [0, 1] and ϕh(x) = max(xj, xk) ∈ [0, 1]
with xf , xg, xj, xk ∈ [0, 1]. In addition to such systems, Liu et al. also investigated k −
consecutive− out− of − n− systems which are diagonally state neutral and diagonally state
extreme, compare [32]. The min- and max-operators can be interpreted as analogy of series
and parallel operators known from the binary-state consideration, as stated in[30]. The binary
operators often appear in reliability block diagrams.

Assume a coherent structure function to be diagonally state neutral or at least positive and
at least diagonally state constant. Then, the basic concept of the DAS can be stated as

R(s, t) =

∫
Ωs

fx(x | t) dx

=
n∑

ls=0

(n
ls
)∑

p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls ,
(14)

where Φ(ls, p) represents the DAS and Rx(s | t) = Rxi
(s | t) = P{xi | xi ≥ s, t} corresponds

to the probability that a component is in state s or above at time t given that all component
states are iid or exchangeable. Thereby, Φ(ls, p) stores values representing an approximation
of the limit state function, i.e., ∂Ωs that is the set of component state vectors fulfilling the
condition ϕ(x) = s. For a given state s, the p-th permutation of the overall

(
n
ls

)
permutations

defines a subspace Ωs,ls,p ⊆ Ωs,ls ⊆ Ωs ⊆ Ω determined by ls that is the number of components
working in state s. All state vectors in the set of Ωs,ls,p fulfill the condition ϕ(x) ≥ s. Let the
value of Φ(ls, p) for subspace Ωs,ls,p be the minimum value of n − ls components of the state
vector x in the interval [0, s)n−ls for which the condition ϕ(x) ≥ s is met, while ls components
are fixed in state s. The developed algorithm for computing the values Φ(ls, p) ensures that
the continuous-state survival function R(s, t) can only be underestimated in the worst case.

3.2.2 Derivation of the Fundamental Statement

The derivation of Equation 14 can be given as follows. Let I = {1, 2, . . . , n}, where n = |I|,
and (k1, k2, . . . , kn) ∈ Kp :=

(
I
ls

)
. Then, Kp is the index set of all possible permutations of the

state vector for a given number of components functioning in state s with in total
(
n
ls

)
elements,

and the index p ∈ {1, 2, . . . ,
(
n
ls

)
} corresponds to the p-th permutation. At first, consider the
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decomposition of Ωs, the set of state vectors for which the condition ϕ(x) ≥ s is fulfilled, into its
subspaces when given ls components functioning in state s. The decomposition is formulated
as

Ωs = {x | ϕ(x) ≥ s} =
n⋃

ls=0

Ωs,ls = Ωs,0 ∪
n−1⋃
ls=1

Ωs,ls ∪ Ωs,n

=

(n0)⋃
p=1

{xk1 , . . . , xkn < s ∧ ϕ(x) ≥ s}

∪
n−1⋃
ls=1

(n
ls
)⋃

p=1

{
xk1,...,xki ≥ s ∧ xki+1

, . . . , xkn < s ∧ ϕ(x) ≥ s
}

∪
(nn)⋃
p=1

{xk1 , . . . , xkn ≥ s ∧ ϕ(x) ≥ s}

=
n⋃

ls=0

(n
ls
)⋃

p=1

Ωs,ls,p,

(15)

where {ki+1, . . . , kn} = (I/Kp). Note that the subspace Ωs,ls is also decomposed into the sub-
spaces Ωs,ls,p defined via all possible permutations p of the state vector for ls given components
functioning in state s or above and the corresponding n − ls components functioning in state
< s.

Secondly, the set-theoretical decomposition
⋃n

ls=0

⋃(n
ls
)

p=1 Ωs,ls,p proposed in Equation 15 is
utilized to decompose the time-dependent state probability and to separate the probability
structure and the information on the limit state function. This spatial decomposition depending
on a given state s and time t is now utilized to form sums of mutually exclusive event sets as:

R(s, t) =

∫
Ωs

f(x | t) dx

= P (Ωs|t) = P (
n⋃

ls=0

(n
ls
)⋃

Kp=( I
ls
)

Ωs,ls,p|t)

=
n∑

ls=0

(n
ls
)∑

p=1

∫
Ωs,ls,p

f(x | t) dx.

(16)

The claim that the coherent structure function is diagonally state neutral or positive and
at least diagonally state constant implies that Ωs,ls,p = [ai(ls, p), bi(ls, p)]

n. The boundary
points ai(ls, p) and bi(ls, p) characterize the subspace Ωs,ls,p and depend on ls the number of
components functioning in state s and the permutation p. Further, assume that the components
are independent and identically distributed, i.e., x1, x2, . . . , xn = x ∼ fx(xi | t). Consequently,

11



it can be stated that∫
Ωs,ls,p

f(x | t) dx =

∫
Ωs,ls,p

f1(x1 | t)f2(x2 | t) · · · fn(xn | t) dx1dx2 . . . dxn

=
n∏

i=1

∫ bi(ls,p)

ai(ls,p

fi(xi | t)dxi =
n∏

i=1

∫ bi(ls,p)

ai(ls,p

fx(xi | t)dxi

=
n∏

i=1

Fx(bi(ls, p) | t)− Fx(ai(ls, p) | t)

=
n∏

i=1

1−Rx(bi(ls, p) | t)− (1−Rx(ai(ls, p)) | t)

=
n∏

i=1

Rx(ai(ls, p) | t)−Rx(bi(ls, p) | t).

(17)

The expression proposed in Equation 14 involving the time-dependent state probability
distribution results from Equation 17 when considering two reformulations: At first, note the
simplification Rx(aj(ls, p))−Rx(bj(ls, p)) = Rx(s)−Rx(1) = Rx(s) for the j-th component of the
overall ls ∈ {0, 1, . . . , n} components functioning in state greater or equal to s. At second, it can
be stated that the DAS Φ(ls, p) = ak(ls, p) as Rx(ak(ls, p))−Rx(bk(ls, p)) = Rx(Φ(ls, p))−Rx(s)
for the k-th component of the overall n− ls components in state < s. Consequently,∫

Ωs,ls,p

f(x | t) dx =
n∏

i=1

Rx(ai(ls, p) | t)−Rx(bi(ls, p) | t)

= [Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .
(18)

Then, Equation 16 and Equation 18 are brought together to finally obtain the expression
presented in Equation 14:

R(s, t) =
n∑

ls=0

(n
ls
)∑

p=1

∫
Ωs,ls,p

f(x | t) dx

=
n∑

ls=0

(n
ls
)∑

p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .

(19)

Note that the topological information captured beforehand in Φ(ls, p) is then retrieved and
inserted into the probability structure in order to evaluate R(s, t).

3.2.3 Basic Algorithm for Evaluating the DAS

At a first attempt, the approximation of Φ(ls, p) can be achieved via the numerical scheme pro-
posed in Algorithm 1. The presented Algorithm 1 poses a basic optimization scheme for finding
the values Φ(ls, p) for given state s. The proposed algorithm yields an exact representation of
the limit state function at state s if the coherent structure function is diagonally state extreme
and an approximated representation for diagonally state constant systems.

Considering Algorithm 1, ϕ(·) corresponds to the coherent structure function of the system
and x0 = (x1, x2, . . . , xn) with xi ∈ {NaN, s}, where x0 contains ls times s and n − ls times
NaN . Further, s indicates the state under consideration. The tuple (ls, p) is characterized by
the number of components in state s and their arrangement in the vector x0. If the vector
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Algorithm 1 Evaluation of Φ(ls, p)

function evaluateDiagonalApproximatedSignature(ϕ(),x0, s, hmax)
▷ fixed point evaluation

if all(x0. == s) then
if ϕ(x0) ≥ s) then
return s

end if
end if

▷ start iteration
v, v1 ← s ▷ initialize auxiliary iteration variables
h← 0 ▷ initialize iteration counter
systemstate← ϕ(DetermineStateVector(x0, v1))
while h ≤ hmax do

if systemstate < s then
v1 ← v − s

2h

else if systemstate ≥ s then
v ← v1
v1 ← v − s

2h

end if
systemstate← ϕ(DetermineStateVector(x0, v1))
h← h+ 1

end while
return v1

end function
▷ auxiliary function

function DetermineStateVector(x0, v1)
return fill(x0[x0. == NaN ], v1)

end function

13



x0 = (x1, x2, . . . , xn) with xi = s fulfills the condition ϕ(x0) ≥ s, the structure function
is at least diagonally state neutral for the given state s and s can be returned as value for
Φ(ls, 1) with ls = n. For every other vector, the algorithm starts its search at s, next it
checks the minimum value 0 and than evaluates the interval in between until it stops. The
algorithm stops when meeting the condition ϕ(x0) = s or after a specified number of iterations
hmax. Thereby, the step size is reduced in each iteration by 1/2 and the last value v that met
the requirement ϕ(DetermineStateVector(x0, v1)) ≥ s is maintained and candidates are
rejected if ϕ(DetermineStateVector(x0, v1)) < s. The Algorithm 1 yields exact results
if the system is diagonally state extreme, since both extreme cases, i.e., Φ(ls, p) = s and
Φ(ls, p) = 0, are evaluated. For diagonally state constant structure functions the iteration
achieves an underestimating approximation with an accuracy depending on h. The algorithm
can be further improved by including the stopping criteria for a sufficiently small improvement
between h and h+ 1.

3.2.4 Extended Statements

Equation 14 and Equation 19, respectively, as well as the Algorithm 1 form the basis for all
further developments of the concept of DAS. However, the established expression still appears
to be computationally expensive, as the sum over all permutations becomes increasingly de-
manding for systems comprising a large number of components. Therefore, a naive approach is
introduced based on counting the occurrences of equal values of Φc(ls, p) in the subspace Ωs,ls

to further reduce the computational effort: Let Ψ(ls, j) = (|Cj|, vj) be the so-called condensed
DAS that assigns a tuple for ls ∈ {0, 1, . . . , n} and j ∈ {1, 2, . . . , J}, where J is the number of
unique values vj of Φ(ls, p) for a fixed ls and p ∈ {1, 2, . . . ,

(
n
ls

)
}. Thereby, vj indicates the j-th

unique element in the set Cj that is formally defined as Cj := {(ls, p) : Φ(ls, p) = vj}. Then,

R(s, t) =
n∑

ls=0

(n
ls
)∑

p=1

[Rx(Φ(ls, p) | t)−Rx(s | t)]n−ls [Rx(s | t)]ls

=
n∑

ls=0

J∑
j=1

Ψ(ls, j)[1] [Rx(Ψ(ls, j)[2] | t)−Rx(s | t)]n−ls [Rx(s | t)]ls

=
n∑

ls=0

J∑
j=1

|Cj| [Rx(vj | t)−Rx(s | t)]n−ls [Rx(s | t)]ls .

(20)

For most systems, the application of Equation 20 will lead to a tremendous reduction of com-
putational cost since typically J << |{(ls, p)}| for a fixed ls and p ∈ {1, 2, . . . ,

(
n
ls

)
}.

For systems with high |Cj| per ls but many values of vj ∈ [0, 1] in direct neighborhood
to each other, vj can be rounded up for r digits. Formally, this is defined as Cj,r := {(ls, p) :
Φ(ls, p) = vj,r}, where vj,r is a rounded value of vj up to r-th digit. Correspondingly, Ψr(ls, j) =
(|Cj,r|, vj,r). Considering the Algorithm 1, the corresponding values Φ(ls, p) were evaluated
during the iteration and yield an approximation. This introduces an approximation error and
a trade-off between computational cost and accuracy has to be made. The continuous-state
survival function will be underestimated in the worst case, since vj,r > vj ⇒ R(vj,r) − R(s) ≤
R(vj)−R(s). Consequently, the concept of DAS can be formulated as an inequality for at least
diagonally state neutral coherent structure functions that are not diagonally state constant.
For such systems a subspace of Ωs,ls,p might be neglected. The hypervolume that is neglected
and consequently by which the continuous-state survival function is underestimated depends
on the shape and curvature of the corresponding limit state function. This probably large-scale
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approximation error results from the facts that these systems are no longer diagonally state
constant and the DAS values are evaluated along the state diagonals of the individual subspaces
Ωs,ls,p. Nevertheless, an underestimation of the continuous-state survival function is provided
in the worst case. This property is of crucial importance in engineering practice to prevent an
unconscious risk from being taken. Let the following inequality be referred to as the concept
of the naive first-order DAS. It holds true that

R(s, t) ≥
n∑

ls=1

(n
ls
)∑

p=1

[Rx(Φ(ls, p) | t)−RX(s | t)]n−ls [Rx(s | t)]ls

≥
n∑

ls=0

J∑
j=1

Ψr(ls, j)[1] [Rx(Ψr(ls, j)[2] | t)−Rx(s | t)]n−ls [Rx(s | t)]ls ,

(21)

where Rx(s | t) = Rxi
(s | t) = P{xi | xi ≥ s, t}, i.e., all component states are iid. The

statement above refers to as first-order approach since higher-order approaches are plausible.
One could consider convolutions of subspaces via a recursive formula. Let Φ1(ls, p) denote the
first-order DAS. Then, statements involving higher-order DAS such as Φh(ls, p) would rely on
the subordinate values Φh−1(ls, p). However, the development of such higher-order schemes is
beyond the scope of this paper.

4 Case Studies

In this section, various system models are established that are designed for a proof of concept
and a test of applicability of the developed approaches. Subsequently, the numerical results are
presented.

4.1 System Structure Functions

Here, the structure functions are presented that will be studied to achieve a proof of concept
and test the applicability of the approach. Note that the structure functions model the system
topology, i.e., the functional interaction of components with each other.

4.1.1 Proof of Concept: Min- and Max-Systems

The min- and the max-operator are crucial in the context of continuous-state system relia-
bility as these correspond to the fundamental series- and parallel-operator well-known from
the binary-state consideration of system functionality. Typically, they appear in the context
of reliability block diagrams. Several systems composed by these operators are established in
order to proof the fundamental methodologies proposed in section 3. The following coherent
structure functions composed by min- and max-operators are considered:

• 2-Component-Min-System

The system is composed by two continuous-state components with xi ∈ [0, 1]. The com-
ponents are linked by a min-operator. Both components are considered to be of the
same type. The 2-Component-Min-System can be interpreted as the analog to a series-
connection in the binary-state case. The structure function ϕ(x) ∈ [0, 1] can be defined
in a functional form as

ϕ(x) = min(x1, x2). (22)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in Figure 3.
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Component Type 1

Figure 3: System composed by a min-operator with two components.

• 2-Component-Max-System

The system is composed by two continuous-state components with xi ∈ [0, 1]. The com-
ponents are linked by a max-operator. Both components are considered to be of the
same type. The 2-Component-Max-System can be interpreted as the analog to a parallel-
connection in the binary-state case. The structure function ϕ(x) ∈ [0, 1] can be defined
in a functional form as

ϕ(x) = max(x1, x2). (23)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in Figure 4.

Component Type 1

Figure 4: System composed by a max-operator with two components.

• 8-Component-MinMax-System

The system is composed by eight continuous-state components with xi ∈ [0, 1]. The
components are linked by min-operators, as well as, max-operators. All components are
considered to be of the same type. This system can be interpreted as the analog to a
reliability block diagram that is composed by eight components. The structure function
ϕ(x) ∈ [0, 1] can be defined in a functional form as

ϕ(x) = max(min(max(x1, x2, x3), x5, x8),min(x4,max(x6, x7))). (24)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in Figure 5.

Component Type 1

Figure 5: System composed by min- and max-operators with eight components, adapted
from [25].

• 21-Component-MinMax-System

The system is composed by 21 continuous-state components with xi ∈ [0, 1]. The com-
ponents are linked by min-operators, as well as, max-operators. All components are
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considered to be of the same type. This system can be interpreted as the analog to a
reliability block diagram that is composed by 21 components. The structure function
ϕ(x) ∈ [0, 1] can be defined in a functional form as

ϕ(x) =min(max(min(x1,max(x6, x7)),min(max(x2, x3),min(max(x4, x5),

max(x6, x7)), x8)),max(min(max(x9, x10),max(x14, x15, x16)),

max(min(max(x11, x12), x17),min(x13,max(x18, x19)))),max(x20, x21)).

(25)

This structure function is diagonally state neutral, consequently, also diagonally state
invariant, and diagonally state extreme. A graphical representation is given in Figure 6.

Component Type 1

Figure 6: System composed by min- and max-operators with 21 components, adapted from [25].

4.1.2 Test of Applicability: Infrastructure System

In today’s highly developed world, complex systems such as infrastructure networks and in-
dustrial plants are omnipresent and of vital importance to the functioning of modern societies.
Consequently, the resilience of these systems is of utmost importance as well. Therefore, in
the following, an arbitrarily chosen infrastructure network, represented by a graph, is consid-
ered. Figure 7 illustrates the graph of this exemplary system. Hereafter, This system is referred
to as 18-Component-Infrastructure-System.

A

B C
D

E

F
G

H

K

I
J

L
M

N

O

Figure 7: Arbitrary infrastructure system.

The graph consists of 15 nodes (capital letters, e.g., A) and 18 weighted edges (links between,
e.g., A− B), where the nodes may represent cities in the system and the edges may represent
transit links, as an example. The weights of the traffic routes can be interpreted as the travel
time T required to complete this route.
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As, e.g., in [44], [17] and [25], for the analysis of this infrastructure system it is assumed
that it has a performance function defined by the so-called network efficiency. According to
Latora and Marchiori [45], the network efficiency E represents a qualitative indicator of the
connectivity of a network and is defined as:

E(G) =
1

N(N − 1)

∑
i ̸=j∈V

1

dWij
, (26)

with G denoting the considered graph, V is the set of nodes, i.e., cities, N = |V | the number of
cities and dWij the weighted path length between city i and city j, that is, the path with shortest
travel time between these two cities. A detailed review of algorithms for efficiently determining
the path length dWij , such as the Floyd, Dijkstra, or Bellman-Ford algorithms, can be found,
e.g., in [46] and [47]. Furthermore, the authors in [45] and [48] proposed the utilization of a
normalized network efficiency Eglob:

Eglob(G) =
E(G)

E (Gideal)
. (27)

E
(
Gideal

)
is here the network efficiency of the graph in ideal state, i.e., all edges and nodes

are present and fully operative. As a basis for calculating dWij with respect to degrading edges,
assume a monotonic functional relationship between the performance of the degrading edge
and the travel time assigned to that edge. Therefore, a transformation function that maps

travel time T

degradation d

functionality f

time t

1

0
0 0

standard T 

+ X%

standard T 
tmax 1

Figure 8: Relation of the edge degradation and travel time T for infrastructure graph systems.

the component functionality f ∈ [0, 1] to a component degradation d ∈ [0, 1] via d = 1 − f
is introduced. Further, the component degradation is mapped to the travel time T via an
arbitrary function depicted in Figure 8 on the right. Note that the function has to ensure
the requirement that the system structure function is at least diagonally state neutral. This
function has an exponential shape, For d = 0, the travel time of the edge is equal to the
standard travel time assigned as weight to the edge beforehand. The travel time increases up
to a value of standard travel time plus 800% of the standard travel time as maximum.

4.2 Stochastic Modeling of the Component Degradation Process

As fundamental step for computing the continuous-state survival function via a structure func-
tion ϕ(x), the probability structure characterizing the component state vector x in a proba-
bilistic manner over time has to be established. In the case of the DAS, this corresponds to the
continuous-state survival function, while sampling during MCS requires probability densities as
fundamental form. As outlined in subsection 3.1, there exist a variety of approaches to generate
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the basic probability structure. In this work, an arbitrary stochastic process is proposed for
illustrative purposes.

The stochastic degradation of components is modeled by combining an inverse Gamma pro-
cess and a Gamma process. These types of processes are widely spread in stochastic degradation
modeling [49, 50, 51]. Correspondingly, let Z ∼ InverseGamma(α, 1) and Y ∼ Gamma(β, 1) be
the random variables. Then, a random variable characterizing component degradation following
a Beta process results when sampled as

X =
Z

Z + Y
∼ Beta(α, β), (28)

see [52].
MCS is applied to obtain a true solution estimate. In this case, the iid component state

vector x = [0, 1]n is sampled with respect to Equation 28 for all obtained numerical results that
are subsequently presented. Consequently, the state of the i-th component is characterized as
xi = X. Thereby, NMCS state samples are generated for each component in the online phase.

In the case of the DAS, a continuous-state survival function describes the probabilistic char-
acteristics of a component. Accordingly, the continuous-state survival function of a component
can be established by solving the integral

Rx(s, t) = P (X ≥ s | t) =
∫
X

I(X ≥ s | t) = 1

NDAS

N∑
j=1

I(xj ≥ s | t), (29)

where X denotes the random peformance variable characterizing the component state, I cor-
responds to the indicator function, s is the considered state threshold, and t corresponds to
the currently considered time. Further, NDAS refers to the number of MCS samples utilized to
estimate the true solution of the continuous-state survival function for components and xj is
the j-the state sample, compare Equation 13. It is possible that NDAS ̸= NMCS.

As exemplary parameters, α = 0.15 and α = 0.6 were arbitrarily selected. Further, In-
verseGamma(α, 1.5) was assumed, skewing the Beta process to the left. These parameters
were applied for all presented case studies.

4.3 Numerical Results

In this section all computed results are presented. Convergence studies for the number of
samples as well as studies concerning the computation time with respect to the number of
samples and the number of states were conducted. Further, contour plots of the continuous-
state survival function approximated by the DAS and contour plots depicting the corresponding
error are provided. Note that the code utilized to compute the following numerical results was
not optimized in terms of computational efficiency for the DAS and included print statements
for computations based on MCS and DAS. Further, the code was not parallelized and variations
in the capacity of working memory were unavoidable during the studies concerning convergence
and computation time. Besides the study of computation time in terms of the number of
considered states, all plots were generated with this number set to 101 states.

4.3.1 2-Component-Min-System

At first, consider the results computed for the continuous-state survival function of the 2-
Component-Min-System. In Figure 9, the approximation of the continuous-state survival func-
tion by means of the concept of DAS is depicted. The contour plot shows R(s, t) with a step
size of 0.1. In this example, the sample size N = NMCS = NDAS equals 51 000. No significant
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 9: 2-Component-Min-System: DAS condensed approximation of continuous-state sur-
vival function and the corresponding error.

differences between the computation via MCS, DAS and condensed DAS (indicated by DASC)
could be observed during the study. Consequently, it is sufficient to consider a single contour
plot out of three. As it can be observed in the figure, slight variations occur along the contour
curves. Figure 9b shows the error between the true solution estimate obtained by means of MCS
and the approximation via the condensed DAS. In theory, the DAS should yield exact results
when for the underlying sampling process NDAS → ∞. This can be verified by the obtained
results, as contour plot of the error purely exhibits variations with a maximum magnitude of
0.012 due to the variance in sampling process of the underlying component degradation. It can
be presumed that the error vanishes completely for NMCS = NDAS →∞.

This becomes even more evident when considering Figure 10. The convergence study was
conducted for sample sizes in the interval [1 000, 51 000] with a step size of 10 000. Three
different error measures were taken into account, namely, the Mean Absolute Error (MAE),
the Mean Squared Error (MSE), and the Root Mean Square Error (RMSE). Thereby, the
errors between MCS true solution estimate and both the approximations via DAS and via
condensed DAS were considered. They represent the total error over the entire spatial and
temporal domain under consideration. The error norms are common measures for evaluating
the performance of estimators such as the MCS. As expected, all indicators converge against
zero for an increasing sample size. The results emphasize that the developed approach neither
suffers from significant outliers nor a bad approximation in average. Figure 11 shows studies
concerning the computation time with respect to the number of samples N , see in Figure 11a,
as well as to the number of considered states, see Figure 11b. The study with respect to sample
size were considered analogously to the convergence study with sample sizes NMCS and NDAS

between 1 000 and 51 000 with a step size of 1 000. For the study of computation time in terms
of the number of considered states, the sample size N was set to 11 000. It can be observed
that the MCS exhibits a steep linear relation between the total computation time in the online
phase and the number of samples as well as a similar factorized linear relation between the
online computation time and the number of states. Both DAS and DASC are constant with
respect to the sample size. A slight linear relation can be observed in the plot considering the
number of states. In both plots the DAS and DASC exhibit computation time in the same
magnitude around 0 that is lower than the one achieved by MCS already for N = 1000. This
results from the fact that the sums over n = 2 and max(|

(
n
ls

)
|) = 3 for the DAS as well as n = 2
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Figure 10: 2-Component-Min-System: Convergence study of MCS true solution estimate vs.
DAS approximation of the continuous-state survival function with MAE, MSE and RMSE as
error measures in terms of sample size NMCS, while NDAS = 100 000.

and J = 2 for the DASC are computationally not demanding compared to 1 000 evaluations of
the structure function.
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Figure 11: 2-Component-Min-System: Study of computation time for MCS true solution esti-
mate, DAS approximation, and DAS condensed approximation of the continuous-state survival
function...

4.3.2 2-Component-Max-System

Secondly, consider the computed results for the continuous-state survival function of the 2-
Component-Max-System. Again, Figure 12 shows the approximation of the continuous-state
survival function by means of the DASC while Figure 12b depicts the corresponding error.
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(a) Continuous-state survival function by means
of DASC.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

−0.012

−0.008

−0.004

0

0.004

0.008

e(R(s,t))

timeline t

st
at

es
 s

(b) Error between MCS estimate and DASC ap-
proximation.

Figure 12: 2-Component-Max-System: DAS condensed approximation of continuous-state sur-
vival function and the corresponding error.

Considering Figure 12a, the continuous-state survival function indicates higher reliability and
robustness of the 2-Component-Max-System compared to the 2-Component-Min-System as
expected. Not only is the domain for which R(s, t) = 1 larger but also the domain between the
contour curves. In this example, the sample size N = NMCS = NDAS equals 51 000. Similarly
to the previous case study, slight variations occur along the contour curves. The error exhibits
variations only due to the variance of the underlying sampling processes in the same magnitude
of 0.012 as for the previous example.

Considering Figure 13 it becomes evident that also for this case study e(R(s, t)) → 0
if NDAS → ∞. The results, obtained for all error measures, are as expected and similar
to the previous case study. With regard to Figure 14, the sample sizes for both studies of
computation time, compare Figure 14a and Figure 14b, are the same as in the previous example.
Besides larger variations due to the in time varying capacity of the local working memory, the
computation time required in the online phase are similar to the previous example. The MCS
exhibits a linear relation for both sample size and number of states. In contrast, the DAS and
DASC shows a constant relation, see Figure 14a. In terms of increasing states, a slight linear
relation with significantly lower computation times can be observed, as illustrated in Figure 14b.

4.3.3 8-Component-MinMax-System

Again, Figure 15 verifies the expected behavior of the DAS and the DASC. In this example,
the sample size N = NMCS = NDAS equals 51 000. The contour plot of the continuous-
state survival function in Figure 15a appears as a mixture of an 8-Component-System solely
composed by min-operators as minimum and an 8-Component-System solely composed by
max-operators. The error in Figure 15a has the same maximum magnitude of 0.0012 as in
the previous examples. The region with the largest errors lies between the contour curves
with R(s, t) < 1 and R(s, t) > 0. Considering the previous contour plot of the error, this
high magnitude region shifts to the bottom left for a Min-System and to the upper right for a
Max-System.

When considering Figure 16, the behavior of all three error measures appears similar to
the previous examples. This is counterintuitive as one would expect an increasing error when
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Figure 13: 2-Component-Max-System: Convergence study of MCS true solution estimate vs.
DAS approximation of the continuous-state survival function with MAE, MSE and RMSE as
error measures in terms of sample size NMCS, while NDAS = 100 000.
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(a) ...with respect to the number of samples N .
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(b) ...with respect to the number of considered
states.

Figure 14: 2-Component-Max-System: Study of computation time for MCS true solution esti-
mate, DAS approximation, and DAS condensed approximation of the continuous-state survival
function...

sampling in higher dimensions, compare [53]. But this seems not to hold true for diagonally
state invariant structure functions. The ranges of sample sizes for both studies of computation
time shown in Figure 17 are the same as in the previous example. Analogously to the previous
examples, the computation times of the MCS are characterized by a similar linear relation with
respect to both sample size and number of considered states. In contrast, DAS and DASC
are constant in their relation with respect to the sample size. In terms of the number of
considered state, both DAS and DASC follow linear relations. It is noteworthy, that the factor
of the linear relation of the DAS seems significantly larger than before. Also in terms of the
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 15: 8-Component-MinMax-System: DAS condensed approximation of continuous-state
survival function and the corresponding error.
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Figure 16: 8-Component-MinMax-System: Convergence study of MCS true solution estimate
vs. DAS approximation of the continuous-state survival function with MAE, MSE and RMSE
as error measures in terms of sample size NMCS, while NDAS = 100 000.

sample size the computational time during the online phase significantly increased for the DAS.
It can be observed that for N = 1000 the DAS is outperformed by the MCS approach. This
result is reasonable as the number of permutations tremendously increase for higher dimensions
corresponding to the binomial coefficient

(
n
ls

)
, besides the already increasingly demandaning sum

over n leading to the slightly increased linear relation of the DASC. Nevertheless, the DASC
still possesses a low factor in its linear relation while maintaining exact results.
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(a) ...with respect to the number of samples N .
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(b) ...with respect to the number of considered
states.

Figure 17: 8-Component-MinMax-System: Study of computation time for MCS true solution
estimate, DAS approximation, and DAS condensed approximation of the continuous-state sur-
vival function...

4.3.4 21-Component-MinMax-System

For this case study, the fundamental concept of DAS was omitted due to the combinatorial
complexity of

(
n
ls

)
becoming computationally too demanding, resulting in unreasonable com-

putational time. Consequently, solely the condensed DAS is applied as surrogate modeling
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 18: 21-Component-MinMax-System: DAS condensed approximation of continuous-state
survival function and the corresponding error.

approach. Considering Figure 18a and comparing it to the previous examples, the continuous-
state survival function appears as a mixture of min- and max-operators as expected. It is
observable that the domain in between of the contour curves are smaller than in the previous
examples. In this example, the sample size N = NMCS = NDAS equals 100 000. The sample
size was increased to maintain a similar magnitude of errors as can be observed in Figure 18b.

For the convergence study depicted in Figure 19, the number of samples was increased for the
entire range. The evaluated sample sizes lie in the interval [20 000, 200 000] with a corresponding
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Figure 19: 21-Component-MinMax-System: Convergence study of MCS true solution estimate
vs. DAS approximation of the continuous-state survival function with MAE, MSE and RMSE
as error measures in terms of sample size NMCS, while NDAS = 100 000.

step size of 20 000. The DASC also converges to zero for this high-dimensional structure function
that is diagonally state neutral and diagonally state extreme as composed by min- and max-
operators. This coincides with the theory established in section 3: The DAS and DASC yield
the true solution of such systems or at least an estimate only in dependence on the variance of
the underlying estimator of the component probability structure. For the study of computation
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(a) ...with respect to the number of samples N .
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Figure 20: 21-Component-MinMax-System: Study of computation time for MCS true solution
estimate, DAS approximation, and DAS condensed approximation of the continuous-state sur-
vival function...

time regarding the number of considered states, the sample sizeN was set to 100 000. In terms of
computation time, higher variance can be observed in Figure 20 then in the previous examples.
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This relates to the variance in capacity of the deployed working memory. Again, a steep
linear relation can be observed for the MCS in terms of an increasing sample size. The DASC
exhibits a constant relation for NDAS due to its independence. The expected linear relation of
the DASC concerning the number of considered states significantly increased compared to the
previous examples. Despite the tremendous increase of computational complexity, the DASC
still outperforms the MCS globally. Only for smaller sample sizes where larger error magnitudes
can be observed the MCS shows slightly shorter computation times compared to the constant.

4.3.5 18-Component-Infrastructure-System

For this example, solely the DASC and the rounded DASC (referred to as DASCR) were
considered. To compute the underlying DAS for this example the maximum number of iteration
steps hmax was set to 100.
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(a) Continuous-state survival function by means
of DASC.
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(b) Error between MCS estimate and DASC ap-
proximation.

Figure 21: 18-Component-Infrastructure-System: Contiunous-state survival functions com-
puted by means of DASC and the corresponding error.

The continuous-state survival function obtained by means of the DASC is depicted in Fig-
ure 21a. The contour plot appears reasonable. As expected, the DASC achieves an approxi-
mation that in the worst case underestimates the true solution but never overestimates it. The
theoretical findings can be verified when considering Figure 21b. The contour plot of the error
between the MCS true solution estimate and the approximation is positive over the entire do-
main. Dark blue indicates an error magnitude of zero while dark purple represents magnitudes
in the scale of machine precision.

The applied scheme already yields satisfying results taking into account that it is only a
first-order scheme for at least diagonally state neutral structure functions. However, a higher-
order implementation could significantly decrease the error in the remaining domain. In general,
the proposed methodology is also applicable to diagonally state negative structure functions
when adjusting the corresponding formula. For this example, it was ensured that the structure
function is at least diagonally state neutral by accordingly specifying the exponential transfor-
mation function mapping component degradation to travel time. Figure 22 shows the true
solution estimate of the continuous-state survival function obtained by means of MCS. The
region of significant magnitudes of the error between the MCS and the DASC occurs as the
underlying structure function is no longer diagonally state constant. As the structure function
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Figure 22: 18-Component-Infrastructure-System: MCS true solution estimate.
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 23: 18-Component-Infrastructure-System: Continuous-state survival functions com-
puted by means of DASCR with r = 5 and the corresponding error.

is still at least diagonally state neutral this is the only source for errors besides the natural
variance of the stochastic degradation process.

The DASCR was applied to further increase the computational efficiency. In the following,
the potential decrease of accuracy is studied. The proposed methodology still ensures pure
underestimation of the true solution. For r = 5, compare Equation 21, the computation time
already decreases significantly while the contour plots of the error appear similar, see Figure 23b.

For r = 3, the computation time can be further reduced as J decreases significantly.
Thereby, it can be observed that the accuracy increases as all regions of error contour curves
decrease in terms of their area, see Figure 24. The same observation can be made for r = 2: A
tremendous reduction of computation time could be achieved as the DASCR further condenses
the information in the DASC. By applying r = 2, J could be significantly decreased for all s
along the diagonal of the state space and all ls. In addition, it is noteworthy that the accuracy
further increases, compare Figure 25 with Figure 24 and Figure 23.
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 24: 18-Component-Infrastructure-System: Continuous-state survival functions com-
puted by means of DASCR with r = 3 and the corresponding error.
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(a) Continuous-state survival function by means
of DASCR.
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(b) Error between MCS estimate and DASCR ap-
proximation.

Figure 25: 18-Component-Infrastructure-System: Continuous-state survival functions com-
puted by means of DASCR with r = 2 and the corresponding error.

5 Discussion

5.1 Case Studies

The case studies show that the DAS converges to the true solution of the continuous-state
survival function for all MinMax-Systems regardless of their dimensionality. The global error
vanishes for N →∞ as can be seen in the convergence studies. As the sample size NDAS for the
establishment of Rx(s, t) is assigned to be large, the convergence of the MCS solutions to the
DAS solution can be observed for all case studies conducted for the proof of concept. Besides
the theoretical prove, these results underline the capability of the concept of DAS to achieve
exact results for diagonally state constant systems. These findings verify in particular that the
fundamental methodology introduced in Equation 14 can be utilized as explicit formula when
considering a diagonally state at least neutral, diagonal state extreme and coherent structure
function. Further, the results show that the computation time is independent of the sample
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size when deploying the concept of DAS. For the DAS, the computation time in the online
phase purely depends on the total number of components n and the number of considered
components. Thereby, the DAS exhibits a linear relation between computation time and number
of considered states, depending on the factor that is determined by n and correspondingly the
binomial coefficient

(
n
ls

)
. The observations coincide with the theory established in section 3.

The formula Equation 14 is independent of the sample size NDAS and clearly depending on
the number of states that are considered and inserted as s. It can be observed that this
basic approach becomes impractical for systems with n >> 10 combined with a number of
considered states that is >> 10. For the first two case studies, the DAS still outperforms the
MCS, although the evaluation of the corresponding structure function imposes minimal costs
in the case of the MCS. This difference in computational effort becomes even more evident for
more complex structure function.

The DASC was introduced and investigated as a naive solution to achieve increased com-
putational efficiency also for larger systems that are characterized by an at least diagonally
state constant and at least diagonally state neutral coherent structure function. The perfor-
mance enhancement is achieved by condensing the DAS in terms of all possible permutations
depending on ls. In order to compute a DASC entry Ψ(ls, j) = (|Cj|, vj), the number of oc-
currences of a value Φ(ls, p) is determined and stored together with the value itself as a tuple.
Thereby, the computational effort is reduced from a sum over p = 1, 2, . . . ,

(
n
ls

)
to a sum over

j = 1, 2, . . . , J , where J is the maximum number of different values for the DAS. The DASC
shares the same convergence characteristics for diagonally state constant and extreme systems.
Simultaneously, this approach exhibits significantly reduced numerical effort compared to its
predecessor. The achieved reduction to J evaluations by means of information condensation is
optimal with J = 2 for diagonally state extreme structure functions as the number of tuples
Ψ(ls, j) for a given number of components working in state s or above ls. This can be explicitly
expressed as vj ∈ {0, s} and their corresponding occurences |Cj(vj)|.

The application of the DASCR is not required for diagonally state extreme structure func-
tions. In contrast, it is particularly useful when this criterion is not fulfilled. In the case of a
diagonally state constant or higher order structure function, an iteration has to be performed in
order to approximate the DAS for each combination of s, ls and p. Values in the along the p-sum
that are in the direct neighborhood in [0, 1] are matched by means of a rounding procedure ap-
plied to Φ(ls, p) and and Ψ(ls, j) is further condensed to Ψr(ls, j). Thereby, for a naive approach
a trade-off has to be made in terms of computational cost and surrogate performance. Typi-
cally, it can be expected that Jr−1 ≪ Jr but also that |er−1(R(s, t))|F ≥ |er(R(s, t))|F , where
|er(R(s, t))|F is the Frobenius norm of the error between the DASCR approximation and the
theoretically available true solution. However, a sophisticated rounding procedure should check
the lower and upper digits and determine the more favorable choice. Consequently, applying a
sophisticated rounding procedure can improve the results obtained by DASC and DASCR with
high r.

In the test of applicability for an arbitrary infrastructure system, the first-order DASC and
DASCR5,3,2 perform well and underestimate the true solution of the continuous-state survival
function as expected. Depending on the parameter r ∈ {5, 3, 2} significant efficiency improve-
ments can be achieved. The largest errors occur in the central region. The concepts of DAS
become particularly useful for demanding structure functions. The evaluation of the weighted
network efficiency is computationally more demanding than a composition of min- and max-
operators. At the same time, highly demanding structure functions are neither diagonally state
neutral or positive nor diagonally extreme or constant. Consequently, the proposed approaches
can be applied in these cases when higher-order schemes are integrated or schemes for the es-
timation of the error are established. In contrast, conventional approaches could not address
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such structure functions at all.
In its basic form, the DAS requires

∑
s

∑
ls(n)

∑
p(ls)

entries to be stored. The DASC already
condenses the last sum that is the most critical for systems with a larger number of components
up to a minimum of J = 2. Considering the storage requirement, the property of a structure
function to be diagonally state invariant becomes important. However, note that for at least
partly diagonally state invariant structure functions the entries of the Φ(ls, p) and Ψ(ls, j) can
be expressed in a linear relation for the range of s that is diagonally state invariant. The
representation of the DAS and DASC by means of any type of function can enable to reduce
the storage required among the first sum

∑
s, tremendously.

5.2 Comparison with Related Research

Subsequently, the developed concept of DAS is compared to approaches based on the concept
of survival signature with regard to the properties of diagonal state sign, order, and variance
and also based on the findings of the case studies. In [31], Eryilmaz & Tuncel introduced an
explicit formula from a combinatorial perspective to compute a multi-state survival signature
based on multiple path-wise binary-state structure functions to model the discrete multi-state
perspective. The fundamental decomposition is based on the number of components in ls.
Thereby, the term path-wise corresponds to the terminology of a diagonally state extreme
structure function. A classification in terms of the diagonal state sign is not reasonable in
this case. The approach might consider diagonal state variance, as the structure functions can
vary for each level. Theoretically, it is possible to define as many structure functions as states
considered. In practice, however, this may prove infeasible when approaching a continuous view.
However, these systems would still need to have some sort of path-wise measurability. The
approach proposed in [34] by Qin & Coolen exhibits similar properties to those of the concept
developed by Eryilmaz & Tuncel. The authors investigate discrete multi-state systems with
multi-state components based on rule-based structure functions. In comparison with [31], Qin
& Coolen developed a refined notation. The researchers based the combinatorial decomposition
on the number of components working in state s. The computation of the multi-state survival
function describing the probability of a system to be in state s or above is then performed in a
post-processing step. In [33], Yi et al. proposed a fundamentally different approach on how to
establish the discrete multi-state survival signature values. The authors adopt an probabilistic
and conditional interpretation of the survival signature and further establish transformation
relations [54].

Recent developments show that the survival signature finds increased attention in the field
of stress-strength reliability. The works [55, 56] investigate approaches for statistical inference
based on the concept of survival signature for multi-state system with multi-state components
in this context. In [32], Liu et al. proposed an approach to compute R(s) for discrete and multi-
state systems with discrete and continuous multi-state stress-strength components. The authors
applied their approach to diagonally state neutral, state invariant and state extreme systems.
Thereby, a single vector is sufficient to represent the continuous-state survival signature of the
diagonally state invariant systems with a single component type.

In contrast to the approaches presented above, the DAS was developed to evaluate the
continuous-state survival function R(s, t), introduced in subsection 3.1. Analogously, the con-
cept of DAS and its variants can be utilized to compute R(t) as well as R(s). Recent literature
in the context of survival signature addresses the computation of diagonally state extreme sys-
tems, i.e., path-wise measurable structure functions. In contrast, the methodology proposed
in the current work enables surrogate modeling potentially for any kind of coherent structure
function. Consequently, such structure functions might be diagonally state constant or of higher
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order. In the case of structure functions that are of higher order, the current concept of DAS
yields an approximation error. It appears practical to reduce this error by developing higher
order schemes and more sophisticated rounding procedures for the concept of DAS. Some of
the reviewed approaches take into account diagonally state variance by establishing one corre-
sponding survival signature for each considered state or level. For diagonally state invariant
structure functions the DASC(R) comprises

∑n
ls

∑J
p(ls)

elements. The conventional concepts of
survival signature are only applicable to diagonally state extreme structure functions. Consid-
ering systems with a single component type and let them be diagonally state invariant for the
ease of notation, conventional approaches require the storage of n values for the representation
and the computation of the sum

∑n
ls
to evaluate R(t) or R(s) for a single t or s. In the same

case, the DASC includes
∑n

ls

∑2
p(ls)

elements to be stored and evaluated. In summary, the DAS
concept enables a broader range of application than similar and recently developed approaches,
despite a slightly higher computational cost. The extent to which the range of applications can
be broadened needs to be investigated in future work but the current findings appear promising.

5.3 Contextualization in Terms of Resilience

Three different approaches to determine R(s, t) were outlined in section 3. Regardless of the
approach utilized to establish R(s, t), the continuous-state survival function inherently captures
the probability of occurrence of disruptive events and their effect on the performance of the
considered entity. Thus, R(s, t) strongly relates to two properties of a system, reliability and
robustness, shown in Figure 1, that govern its resilience when interpreted as in [17]. To show
this theoretically, suppose that the performance deterioration over time being investigated
empirically by exposing the entity to a certain environment in which potentially damaging
effects or events occur in some frequency. Suppose the measurement only observes the state
us at time t, where ∆t between two time steps might be infinitesimal small. The occurrence
of an event at t counts to the probability measure of the random variable to be less than s
only if a deterioration in performance occurs as a consequence at the next time step under
consideration. Thereby, the probability of the magnitude of the performance degradation of
such a deteriorating event is intrinsically quantified as well. When established properly, both
parts of information should also be captured when the continuous-state survival function is
generated via stochastic processes modeling disruptive events either explicitly or implicitly.
And similarly for the approach including a structure function, the disruptive events acting on
components propagate their effects through the structure function ϕ(x) to the system state us

and are captured by the continuous-state survival function. Eventually, despite not directly
sampling a disruptive event from R(s, t) but rather component performances, the occurrence
of certain state sample is governed by the fundamental, measured or modeled disruptive events
and the according response of the considered entity. Thereby, the structure function is critical
for mitigating the effect of disruptive events acting on components. To conclude with regard
to Figure 1, the continuous-state survival function quantifies not only if and when a performance
deterioration occurs (reliability) but also its magnitude (robustness). The continuous-state
survival function incorporates both notions simultaneously simply by representing the time-
dependent probability distribution of each state of functionality.

In the context of the multidimensional and sub-structured resilience framework established
in [25], the fact that R(s, t) models both reliability and robustness can be exploited to enhance
the stochastic simulation of subsystems as well as components during the evaluation of the
resilience metric. For basic components, R(s, t) can be established empirically or based on
a stochastic process. Then, the generated R(s, t) characterizing the stochastic degradation
behavior are propagated from bottom level to top level of the sub-structured system. The
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utilization of R(s, t) allows for reduced computational effort in repeated evaluations of structure
functions in subordinate levels during resilience optimization at L ≥ 1 levels of subsystems.
The concept of DAS enables a direct propagation of the R(s, t) through each level by means
of the explicit formulas provided in subsection 3.2. On the top-level, the overall structure
function is evaluated by means of performance samples in order to quantify the resilience
metric. The corresponding performances can be retrieved by sampling the state from the
individual Ri(s, tc), where tc denotes the currently considered time step. The DASC approach
developed in the current work is immediately applicable to the case studies investigated in [25]
after establishing a monotone sampling procedure based on R(s, t). Future work addresses
the detailed investigation concerning the integration of the continuous-state survival function
as reliability and robustness representation into the resilience framework for sub-structured
systems.

6 Conclusions & Outlook

In this work, the notion of the continuous-state survival function was presented and the con-
cept of DAS was introduced as a corresponding surrogate modeling procedure. Thereby, the
continuous-state survival function is defined as a time-dependent probability measure that
characterizes the distribution of performance states of the considered system over time. This
consideration gives engineers a new perspective when faced with the challenge of maintaining
system performance in the face of disruptive events in a hostile environment. In light of the
theoretical proof and the results in the case studies, the concept of DAS appears to be a solid
foundation for more sophisticated surrogate modeling techniques. The relations to the phases
characterized by reliability and robustness when quantifying system resilience were identified
and discussed. The proposed methodology appears as an adequate approach to integrate a
continuous-state consideration into a sub-structured resilience framework, as presented in [25].

In the course of this work, three different variants of the concept of DAS were established:
At first, the fundamental statement Equation 14 was introduced to provide a comprehensive
proof that DAS yields exact results for diagonal extremal and constant structure functions.
For systems with a small number of components the DAS outperforms the MCS in terms of
both computational time and accuracy. Secondly, the DASC Equation 20 was developed to
overcome the limitations for larger systems. Moreover, DASCR was defined in Equation 21
to consider structure functions with a diagonal state order higher than constant. Thus, the
current methodology extends the range of application of the separation property inherited by
the concept of survival signature. It should be noted that the code can be further optimized,
e.g., by integrating parallel computing. This leads to an additional increase in computational
efficiency. In summary, the concepts of DAS developed in the current work show good results
and open a rich and promising research topic.

The following items can be listed as critical developments concerning the concept of DAS
as an autonomous surrogate modeling procedure but also in particular its integration into the
resilience framework for complex and sub-structured systems [25].

• Integration into the resilience framework: The behavior of the DAS when integrated
to the multidimensional and sub-structured resilience decision-making framework should
be investigated in detail. The relationship between the endowment properties and the
continuous-state survival function should also be explored.

• Broadening the range of application: Higher-order schemes should be addressed to reduce
the approximation error for structure functions that are not diagonally state constant.
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Further, the DAS formulas should be extended for diagonally state negative structure
functions and multiple component types.

• Consideration of uncertainties: Extension of the DAS towards a consideration of uncer-
tainties based on the proposed approach in [28] and integration into the multidimensional
resilience decision-making framework for complex and sub-structured systems [25]. Ap-
proaches to reduce the storage requirements and to further condensate the developed
formulas for enhanced efficiency during the online phase are of great interest.
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