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Abstract. Crystal Structure Prediction (csp) is one of the central and
most challenging problems in materials science and computational chem-
istry. In csp, the goal is to find a configuration of ions in 3D space that
yields the lowest potential energy. Finding an efficient procedure to solve
this complex optimisation question is a well known open problem in com-
putational chemistry. Due to the exponentially large search space, the
problem has been referred in several materials-science papers as “NP-
Hard” without any formal proof. This paper fills a gap in the literature
providing the first set of formally proven NP-Hardness results for a vari-
ant of csp with various realistic constraints. In particular, this work
focuses on the problem of removal : the goal is to find a substructure
with minimal energy, by removing a subset of the ions from a given ini-
tial structure. The main contributions are NP-Hardness results for the
csp removal problem, new embeddings of combinatorial graph problems
into geometrical settings, and a more systematic exploration of the en-
ergy function to reveal the complexity of csp. These results contribute to
the wider context of the analysis of computational problems for weighted
graphs embedded into the 3-dimensional Euclidean space, where our NP-
Hardness results holds for complete graphs with edges which are weighted
proportional to the distance between the vertices.

1 Introduction

One of the central and most challenging problems in materials science and com-
putational chemistry is the problem of predicting the structure of a crystal given
the set of ions composing it [14]. The goal is to find a structure of ions that
achieves the lowest energy. This problem, Crystal Structure Prediction (csp),
has remained open due to the complexity of solving it optimally [14] and the
combinatorial explosion following a brute-force approach. Current approaches
to this problem are based on heuristic techniques [9, 12], however they cannot
guarantee optimality while remaining computationally demanding.

In generic formulations of csp there are many degrees of freedom due to
the numerous parameters: the number of ions, their positions, and the unique
interactions between each type of ion. The search space remains exponential in
size even for greatly simplified versions of csp. Due to this, csp has, incorrectly,
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been referred to in several computational-chemistry papers as “NP-Hard and
very challenging” [11]. However the argument that the search must be done in
a set of exponential size implies NP-Hardness does not hold.

The two results which are often mentioned in context of the NP-Hardness of
csp are [3] and [13]. In [3], within the context of the Ising model, the authors
show NP-Hardness in the model of placing ±1 charges on a graph with degree
at most 6 taking into account only the local interactions between connected
vertices. In [13], provides a reduction to TSP, showing the problem belongs to
NP however not Hardness.

In this work, several variants of csp are considered, providing alternative
reasons for the hardness of closely related problems, focusing on the problem of
removal. Inspiration comes from hard combinatorial problems in graph theory
and proposes several new embeddings of NP-Hard graph problems into numeri-
cal versions of csp which can be seen as an optimisation problem for weighted
geometric graphs with a non-linear objective function. The input is a configu-
ration of the ions, with the goal to remove a subset of the ions such that the
interaction energy among the remaining atoms is minimised.The problem of re-
moving vertices of a graph whose deletion results in a subgraph satisfying some
specific property have been intensively studied in the combinatorial graph the-
ory. [8] shows that for a large class of properties this problem is NP-Complete,
extended in [16] and [15] to further properties showing NP-Completeness for
bipartite graphs and for non-trivial hereditary properties.

The removal problem can be seen as a variant of combinatorial csp problem,
where the positions of the ions correspond to points in a discrete grid. The
idea is to find an optimal structure by placing many copies of the ions used to
build a new structure in unrealistic positions in the discrete space. Due to the
nature of the energy function, when the goal is to minimise the potential energy,
the excess ions must be removed. In this variant of the removal problem for
which NP-Hardness is shown, the initial configuration (from where the ions are
removed) is part of the input and has only vacant positions or positions with a
single ions in the discrete three-dimensional-Euclidean space.

Our contributions. This work provides the first NP-Hardness results for csp
[7] with realistic constraints, providing new embeddings of combinatorial graph
problems in geometrical settings, as well as exploring the energy function in a
more systematic way that could reveal the computational complexity of csp.
Moreover, these results can be seen as part of a more general problem of remov-
ing vertices from a weighted graph embedded into 3D Euclidean space. Three
versions of this problem are considered:

– k-Charge Removal: Remove exactly k charges minimising the total energy;
– Minimal At-Least-k-Charge Removal: A generalisation of k-charge re-

moval where the removed set is a minimal set of at least k charges minimising
the total energy;

– At-Least-k-Charge Removal: A generalisation of min-at-least-k-charge
removal where the removed set is of least charges but not necessarily minimal,
minimising the total energy.
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One challenge of the Euclidean graphs considered here is that these graphs are
complete, with edges weighted proportional to the distance between the vertices.
Many classical NP-Hard problems are much harder to embed into this setting.
Even for some existing hardness results, in both the geometric and more re-
stricted Euclidean setting, to bring these problems into a bounded number of
dimensions often requires non-trivial technical proofs as dimension often is part
of the input [2, 10]. Often these constructions utilise the results on geometric
graphs embedded into the plane [5, 6], with many problems in this field open.

This work will be organised as follows: Section 2 provides relevant notation
and definitions, Section 3 presents NP-Hardness for the general case of the prob-
lems under both energy function in F and the Coulomb (electrostatic) potential.
Section 4 restricts the problem to only 2 species under the Buckingham-Coulomb
(interatomic) potential, and is shown the remain NP-Hard in Theorem 5. The
full version of this paper, containing the omitted proofs is available at arXiv [1].

Theorem Summary Setting

Theorem 1 NP-Completeness by re-
duction from the clique
problem.

All problems, under any energy function in F ,
charges of ±c for a given c and an unbounded
number of ion species.

Theorem 2 NP-Completeness by ex-
tension of Theorem 1.

All problems, under any energy function in F ,
any bounded set of charges and an unbounded
number of ion species.

Theorem 3 Reduction to max-weight-
k-clique.

k-charge removal or minimal-at-least-k-charge
removal under any computable energy function,
charges of ±c for a given c, and a unbounded
number of ion species.

Theorem 4 NP-Completeness by re-
duction from the knapsack
problem.

Minimal-at-least-k-charge removal and at-least-
k-charge removal, under the Coulomb potential
energy function, unbounded number of charges
and unbounded number of ion species.

Theorem 5 NP-Completeness by re-
duction from independent
set on penny graphs.

All problems, under the Buckingham-Coulomb
potential energy function, charges of ±1, and
two species of ion.

2 Notation and Definitions

Unit Cell. A crystal is a solid material whose ions, are arranged in a highly
ordered arrangement, forming a crystal structure that extends in all directions.
A crystal structure is described by its unit cell; a region of R3 bounded by a
parallelepiped representing a period containing ions in a specific arrangement.
The unit cells are stacked in R3 tiling the whole space forming a crystal. The
unit cell is a parallelepiped alongside the arrangement of ions with their specie.
Each unit cell contains a set of n ions within the parallelepiped. Each ion, i,
has a specie, e.g. Ti or Sr, and a non-zero charge qi. The specie for an ion i
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will be denoted S(i). All unit cells are neutrally charged, i.e.,
∑

1≤i≤n
qi = 0. An

arrangement defines a position for every ion in the unit cell.
Energy. The energy of a crystal is computed by summing the pairwise inter-
actions between all pairs of ions. A positive value for the pairwise interaction
means the two ions are repelling, while a negative value means they are attract-
ing.Each pair of species has a unique set of parameters (called force fields) which
are applied to the common energy function U alongside the Euclidean distance
between the ions. In general, energy is defined via series as a crystal is infinite.

In this paper interaction will be restricted to a single unit cell. The primary
reason is that the energy between ions in different unit cells quickly converges,
making the energy within a single unit cell a good approximation of the total.

Each arrangement has n ions and a corresponding potential energy PE, cal-
culated with respect to the given energy function U . The goal is to minimise
the potential energy. Pairwise interaction between two ions i and j with respect
to the energy function U is U(i, j), denoted Uij when it is clear from the con-
text. The value of Uij is defined by the force field of the ions and the Euclidean
distance between them, which is included as one of the parameters. The total
potential energy for an arrangement of n ions is given by PE =

∑
1≤i,j≤n,i 6=j

Uij .

This paper will consider a general class of energy functions, called the con-
trollable potential functions, denoted F . All functions in F are computable in
polynomial time for any input. Intuitively, for every f ∈ F there exists a set
of force field parameters that counteract the distance parameter r. Formally, a
function f : Rn 7→ R belongs to F if and only if for any given a ∈ R and any fixed
r ∈ R+ there exists a set {x1 . . . xn−1} ∈ Rn−1 such that f(x1, . . . , xn−1, r} = a.

The most popular function for csp, which will be focused on in this paper, is
the Buckingham-Coulomb potential [4], which is the sum of the Buckingham and
Coulomb potentials. The Coulomb potential for a pair of ions i, j is UC

ij =
qiqj
rij

,

where rij is the Euclidean distance between the ions. The Buckingham potential
for a pair of ions i, j, UB

ij , is defined by four parameters. These are the distance
and the three force field parameters, AS(i),S(j), BS(i),S(j), CS(i),S(j), which are
dependent on the specie of the ions. It should be noted that all three parameters

are positive values. The energy is calculated as UB
ij =

AS(i),S(j)

e
BS(i),S(j)rij

− CS(i),S(j)

r6ij
.

Therefore the Buckingham-Coulomb potential is given by:

UBC
ij = UB

ij + UC
ij =

AS(i),S(j)

eBS(i),S(j)rij
−

CS(i),S(j)

r6ij
+

qiqj
rij

.

Proposition 1. There exists a set of parameters for the Buckingham-Coulomb
function such that it is in F .

Crystals as geometric graphs. Using the above definitions, it can be shown
how crystals may be viewed as geometric graphs. Recall that each ion corre-
sponds to a charged point in R3. Each ion is represented with a weighted vertex,
also placed into R3 at the same position as the ion, giving a total of n vertices.
The vertex corresponding to the ion i, denoted vi, is assigned a weight of qi.
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Restriction Summary

k-Charges A neutral set of charges R where

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ = k

At-Least-k-charges A neutral set of charges R where R ⊆ V and
∑

vi∈R+

wt(vi) ≥ k.

Minimal-At-Least-k-
charges

A minimal set of at-least-k-charges R - where minimal means
that there does not exist any neutral subset R′ ⊂ R where R′ is
also a set of at least k-charges

Table 1. Summary of restrictions for the charge removal problem.

wt(vi) will denote the weight of a given vertex vi, i.e. wt(vi) = qi. For notation,
V + will denote the set of vertices with a positive weight in V , and V − for the set
of vertices with a negative weight in V . Between each pair of vertices there is an
edge, weighted by the pairwise interaction of the corresponding ions Uij . Note
that Uij will be determined by the length of the edge, which will be a straight
line in the space. The energy of a crystal graph G = {V,E} can be computed as
PE =

∑
{vi,vj}∈E

Uij . Geometric graphs created from a unit cell will be referred

to as crystal graphs.

The Charge removal Problem. The Charge removal problem takes as input
a crystal graph G corresponding to a “dense” initial arrangement of ions, with
the goal of removing some subset of vertices X. In the most general case this
may be any subset, provided the final graph is charge neutral, meaning it satisfies∑
vi∈R

wt(vi) = 0. It will be assumed that the initial graph is charge neutral, and

therefore that X is also neutral. This work will consider three variants of this
problem where there are further conditions on the set, summarised in Table 1.
Note that the second of these, At-Least-k-Charges, becomes the general case
when k = 0. This work considers three restrictions on the removed set, which
are defined in Table 1. The base version of the problem is stated as:

Instance: A crystal graph G, with edges weighted by a given common energy
function U .

Goal: The set of charges R satisfying P from G such that G′ = G \ R
created by the removal of R from G which minimises

∑
{vi,vj}∈E′

Uij .

From this problem, a decision version may be obtained by asking if there ex-
ists a removal that leaves G′ with no-more total energy than some goal g, i.e.∑
vi,vj∈V ′,i6=j

Uij ≤ g. In the case there is some restriction on the output, there

may also be additional input - in all the cases considered here this will be a
natural k. In the remainder of this work, the problems under the restrictions in
Table 1 and will be denoted as follows:

– The k-Charge-Removal Problem (k-charge removal).
– The At-Least-k-Charge-Removal Problem (at-least-k-charge removal).
– The Minimal At-Least-k-Charge Removal Problem (minimal-at-least-k-

charge removal).
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Proposition 2. A solution to k-charge removal or at-least-k-charge
removal can be verified in polynomial time.

Proposition 3. A set of k-charges may be verified as minimal in polynomial
time if and only if the set of allowed values for charges is polynomially bounded.

Proposition 2 follows from noting that for a given graph with precomputed
weights for the edges, the requisite edges and vertices may be summed to verify
that it is either a set of k or of at-least-k charges, and that the energy is bellow
the required bound in the decision case. Proposition 3 is shown by reduction
from the subset sum problem to the problem of verifying if the set is minimal,
as defined in Table 1.

3 NP-Hardness for an unbounded number of ion species

This section will focus on results for an unbounded number of ion species. The-
orems 1, 2 and 4 will show NP-Hardness for various settings via a series of
reductions under the general class of potential function in the case of Theorems
2 and 2, and under the Coulomb energy in Theorem 4. Theorem 3 will show a
novel way of encoding the problem into the well studied max-weight clique prob-
lem. While these results will apply to all restrictions, it should be noted that in
the case the charges are not bounded, although minimal-at-least-k-charge
removal will remain NP-Hard it will not be in NP.

Theorem 1. k-charge removal, minimal-at-least-k-charge removal
and at-least-k-charge removal are NP-Complete for energy functions in
F for charges of ±c, for any natural number c.

Theorem 2. k-charge removal remains NP-Hard for set of allowed charges
with unique magnitude and an energy function within F .

Theorem 3. k-charge removal can be reduced to max-weight k-clique
in polynomial time, under the restriction that charges are limited ±c and the
energy function is computable within polynomial time.

Theorems 1 and 2 come by a reduction from the Max-Clique problem. Theorem
1 provides a construction for the decision version of the charge removal problem
from an instance of Max-Clique using constant charges such that under any of the
restrictions on the removed vertices a solution the the charge removal instance
will imply a solution to the Max-Clique problem. This is extended in Theorem 2,
where it is shown that this construction may be extended with a set of dummy
vertices, the removal of which may be done at no cost while maintaining the
total set a charge neutral. Theorem 3 provides a novel encoding of the charge
removal problem into the well known maximum weight clique problem.

Theorem 4. at-least-k-charge removal remains NP-Hard when the en-
ergy function is limited to the Coulomb potential.
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Theorem 4 compliments Proposition 3 by showing that, even in the case the
removal does not have to be verified as minimal, the complexity of finding a
solution may still be NP-Hard for the Coulomb potential function.

4 NP-Hardness for a bounded number of species

In Section 3 NP-Hardness was shown for the case that there was an unbounded
number of species, and NP-completeness in the case that there is a bounded
number of charges. This will now be strengthened by considering instances with
only two unique species. Only the Buckingham-Coulomb potential function with
charges of ±1 will be considered in this section. All three problems will again
be considered, noting that for charges of ±1 k-charge removal is equivalent
to minimal-at-least-k-charge removal. NP-Hardness will be shown by a
reduction from independent-set on penny graphs adapting it to the Euclidean
settings of crystal graph of ions within a unit cell. The Independent Set problem,
denoted independent-set, takes as input a graph, G, and a natural number
k. The goal is to find an independent set, i.e. a set of vertices such that no two
are adjacent, of size k in G, or report that one does not exist. Penny graphs
are the class of graphs where each vertex may be drawn as a unit circle such
that no two circles overlap, and an edge between two vertices exist if and only if
the corresponding circles are tangent, i.e. they intersect at only a single point.
Finding an independent set on this class of graphs is known to be NP-Hard [5].

Sketch of the construction of the k-charge removal instance: Starting
with an instance of independent-set on a maximum degree 3 planar graph,
containing the graph and a natural number k a penny graph, G, is created using
Theorem 1.2 from Cerioli et al, using a radius of n

2 for the pennies. Graphs
created in this manner will be denoted long orthogonal penny graphs. The k-
charge removal instance is created by placing a positive ion above the centre
of each penny, and a negative ion bellow.

Ion species: The positive and negative species are assigned charges of magni-
tude 1. From these species there are parameters for the interaction between two
ions of the positive specie, two ions of the negative specie, and between one ion
of the positive specie and one of the negative specie. For brevity, 1 and 2 will
denote the positive and negative specie respectively. Under this construction, the
interaction between the two ions of the positive specie is the same as between
two ions of the negative specie. Therefore the parameters that may be set are
A11, B11, C11, A12, B12, and C12.

Notation: Let k′ = n − k, being the number of charges that are required to
be removed to be left with an independent set of size k.charge Note that as
the charge of each ion has a magnitude of one, a removal of k′ can only be
achieved by removing k′ positive and k′ negative ions. The goal energy for the
construction is set as g = (k − 1)( A12

eB12
− C12 − 1). To simplify the equations

regarding the interaction between planes, let r̂ denote
√
r2 + 1. An independent

set is left if the ions left after a removal of k′ charges have labels corresponding
to an independent set in G. To ensure that an independent set is left of size k if
and only if one exists, the following three inequalities must be satisfied:
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A11

eB11n
− C11

n6
+

1

n
+

A12

eB12n̂
− C12

n̂6
− 1

n̂
≥
∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ (1)

n2

∣∣∣∣ A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂

∣∣∣∣ ≤ ∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ , r ≥
√

2n (2)

A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂
> 0, r ≥

√
2n (3)

Theorem 5 formally states the correctness of this reduction, via Lemmas 1 - 4.

Lemma 1. Inequalities (1) and (2) are sufficient to ensure that an independent
set is left if one exists.

Lemma 2. There exists, for any structure created from a long orthogonal penny
graph, some parameters such that Inequalities (1, 2) and (3) are satisfied.

Lemma 3. Given k pairs, the energy will be less than (k−1)( A12

eB12
−C12−1) only

if the pairs correspond to an independent set of size k, for A12

eB12
− C12 − 1 < 0.

Lemma 4. It is always preferable to remove pairs from the construction from a
long orthogonal penny graph under Inequalities (1- 3).

Lemmas 1 and 2 show that the inequalities ensure that leaving an independent set
is preferable, and are satisfiable for the Buckingham-Coulomb potential. Lemma
3 provides bounds, which may be calculated exactly using the construction pro-
vided by Lemma 2. Lemma 4 proves that when removing either member of a
pair vertices, it is always preferable to select the the other member for removal.

Theorem 5. k-charge removal, minimal-at-least-k-charge removal
and at-least-k-charge removal are NP-Complete when limited to only two
species of ion and restricted to the Buckingham-Coulomb potential function.

Proof. Lemma 1 shows that, under Inequalities (1) and (2), the optimal solution
will be to leave an independent set. Lemma 2 provides a construction such that
the inequalities are satisfiable. Lemma 3 shows the upper bound is reachable if
and only if an independent set has been left. It follows from Lemma 4 that it
is preferable to remove a set of pairs over any other set of charges. Therefore
there will be a satisfiable instance of k-charge removal or any generalisation
if and only if the instance of independent set on a max degree 3 planar
graph is satisfiable. Conversely if the independent set instance is satisfiable,
the corresponding k-charge removal instance can be satisfied by leaving the
vertices corresponding to the independent set in the penny graph construction.
Hence under these restriction all three problems will be NP-Complete.

Conclusions and future work: Motivated by analyses of computational com-
plexity for CSP Problem we defined a class of functions for which the k-charge
removal problem is NP-Complete in general. We have also shown that the prob-
lem remains NP-Complete under both the restriction that we have only two
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species of ions and the Buckingham-Coulomb energy function and the restric-
tion we only use the Coulomb potential on an unbounded number of ion species.
One obvious question would be if approximation results can be gained for this
problem. From a chemistry stand point, while we have made progress towards
physical constructions there is still a lot that could be done. As such investi-
gation into the restrictions of having more realistic physical values remains an
important unexplored direction. Another question would be if we can investigate
the convergence of these interactions, particularly the Coulomb potential, over
a periodic structure to more fully understand the energy function.
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