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Abstract

Accurate online state and parameter estimation of uncertain non-linear dynamical systems is a de-
manding task that has been traditionally handled by adopting non-linear Kalman Filters or particle filters.
However, in case of Kalman filters the system needs to be linearised and for particle filters the computa-
tional demand can be high. Recent advances in optimal transport theory and the application to Bayesian
model updating pave the way for other approaches to system and parameter identification. They also pro-
vide a way of formulating the problem in such a way that efficient online estimation for complex systems
is possible. In this work, we investigate the properties of the transport map approach when compared
to standard Markov Chain Monte Carlo in an off-line setting as a first step towards on-line parameter
estimation. We apply both approaches to an analytical exponential model and a dynamical system with
seven unknown parameters subjected to ground displacement. Details on the theory of transport maps
and on the used MCMC algorithm are also given.

1 Introduction
System identification and/or model parameters estimation is a daily task in any engineering discipline. In
dynamical system applications, Kalman or particle filters proved to give great results and are therefore
widely used. In certain situations however, these methods fail to accurately estimate the unknown parame-
ters because of missing data, the system’s complexity or unknown model properties. In the case of particle
filters, the computational demand can sometimes be too high to apply them in an on-line fashion. For off-
line estimation, there also exist a multitude of approaches, we focus here on the Bayesian formulation for
which a recent interest has been ignited due to the development of very efficient sampling algorithms and
the availability of higher computational resources. For the exploration of the posterior distribution usually
algorithms based on Markov Chain Monte Carlo (MCMC) are used, since these approaches do not require
knowledge about the posterior’s topology. However, a downside of MCMC is that the convergence can not
easily be assessed and sometimes many samples are needed in order to fully reach an adequate result. Some
MCMC algorithms also suffer from burn-in.

Recently there have been advances in optimal transport theory [1] which were applied in the Bayesian
updating context [2, 3]. This opens up the possibility of circumventing some of the issues of MCMC meth-
ods, since transport maps provide a means of formulating an analytical relationship between some chosen,
easy to evaluate reference distribution and the posterior distribution. Integrals can thus be evaluated on the
reference distribution and then be transported to the posterior. In addition, sampling from the posterior be-
comes a simple evaluation of the map. The problem of finding this map is solved by optimization. Previous
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works have implemented transport map (TM) approximation in various use-cases, using synergies of this
approach with model order reduction techniques to speed up the process [4, 5].

2 Parameter Estimation

2.1 Bayesian Model Updating
Let θ ∈ Rd be a d-dimensional random variable with probability p(θ) describing uncertain parameters of a
model M(θ). Given measured data D the probability of observing θ in M(θ) under the condition of D can
be calculated using Bayes’ theorem [7]

p(θ|D) =
p(D|θ) p(θ)

p(D)
(1)

where the likelihood p(D|θ) describes the probability of observing the data under the assumption of θ and
is usually modeled as a stochastic distance between M(θ) and D. One key difficulty in Bayesian model
updating (BMU) is the evaluation of p(D|θ) since its shape is generally irregular and unknown and it can
only be evaluated point-wise. Therefore, MCMC methods are employed to explore the probability space [8].
The obtained posterior distribution p(θ|D) is an expression for the updated probability for θ constrained by
the observation of D. p(D) is constant for any given set of model and data so Eq. (1) is also used in the
non-normalized form

p(θ|D) ∝ p(D|θ) p(θ). (2)

This poses no issue for MCMC methods since the posterior’s shape is not affected.
The MCMC algorithm used in this paper is the Transitional MCMC (TMCMC) method [6]. The main

idea is to introduce an exponent αj ∈ [0, 1] to the likelihood

p(θ|D) ∝ p(D|θ)αj p(θ) (3)

and increasing αj with each level j starting from α1 = 0, which is equal to sampling from the prior density.
For αj = 1 Eq. (3) becomes Eq. (2). Values for αj for the intermediate levels are chosen such that the
COV of p(D|θj)αj+1−αj , where θj are the samples in the j-th level, equals a user-chosen threshold. This
ensures that the intermediate levels converge towards the posterior with some chosen rate. In this paper, the
COV was chosen to be equal to 1. After drawing samples from the prior density, the Adaptive Metropolis-
Hastings algorithm is used to draw samples for the next level until αj = 1 is reached. The main motivation
behind TMCMC is to avoid the problem of sampling from difficult target PDFs but sampling from a series
of PDFs that converge to the target PDF and that are easier to sample [6].

2.2 Transport Maps
A transport map M is a deterministic coupling between a reference density ρ and the target density π∫

f(y)π(y)dy =

∫
f(M(x))ρ(x)dx with Y = M(X) (4)

where the target density in the case of BMU is the posterior distribution. The reference density can be
chosen freely by the analyst. Common choices are standard normal or standard uniform distributions [3].
Any integrals on the target density can thus be calculated on the reference density by use of the map M .
Moreover, samples from the target density Y can be drawn by drawing samples X from the reference
density and then evaluating the map M . This makes it possible to find an analytical formulation for the
posterior density in BMU, which is usually difficult or impossible. The task now becomes to find the map
M . A map can be any invertible function M : Rd → Rd, e.g. polynomials or even neural networks [2].
Using the notation M# for the push-forward operation the mismatch of the approximation π ≈ M#ρ can
be expressed with the Kullback-Leibler (KL) divergence

DKL(M#ρ ||π) = DKL(ρ ||M−1
# π) (5)

= Eρ

[
log

ρ

M−1
# π

]
(6)
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where the invertibility of the map is used in Eq. (5). With a as map parameters Eq. (6) becomes

DKL(M#ρ||π) =
∫
X

[
log ρ(x)− log π(M(a, x))− log[|det∇M(a, x)|]

]
ρ(x)dx. (7)

Due to optimality and uniqueness properties, Maps M were proposed to be monotonic, lower-triangular
and constructed from components

Mk(akc ,a
k
e , θ) = Φc(θ)a

k
c +

∫ θk

0

(
Φe(θ1, ..., θk−1, θ̄)a

k
e

)2

dθ̄ (8)

so that the resulting map has the structure

M(θ) =

 M1(θ1)
...

Md(θ1, ..., θd)

 . (9)

A good approximation of the posterior density results in a small KL divergence, so that Eq. (7) can
be transformed into a minimization problem. Note that ρ(x) does not depend on the map parameters and
instead of the full posterior π = p(θ|D) the non-normalized form

π̃ = p(D|θ) p(θ) (10)

can be used. Furthermore, since M consists of analytical functions, the involved integrals can be computed
by Gauss quadrature. The final minimization problem to obtain the needed map parameters a is then

min
a

∑
i

ωi

[
− log

(
π̃(M(a, θi))− log(|det∇M(a, θi)|)

)]
(11)

where ωi and θi are weights and integration points for the quadrature.
For computations, a transport map framework (https://transportmaps.mit.edu) developed in Python was

used. There is also a newer version available 1, however the calculations are based on the firstly mentioned
framework. In early trials it was found that for optimal results a second-order optimization was needed,
therefore all optimization was done using the Newton-CG algorithm and thus gradient and Hessian infor-
mation of the likelihood are needed. Since in general the likelihood function is dependent on the model,
the issue arises that also the derivative of the model with respect to θ is needed. In [4, 5] this was solved by
using the TM approach in conjunction with model order reduction methods based on polynomial functions,
which naturally allow for the calculation of gradient and Hessian.

3 Examples

3.1 Analytical Exponential Model
As a simple example we show the application of transport maps to an analytical problem of the form

c = A(1− eBt) + C + ζ (12)

with A ∼ U(0.4, 1.2), B ∼ U(0.01, 0.31), C ∼ U(−5, 5), ζ ∼ N (0, σ), where ζ is a zero-mean
Gaussian noise with standard deviation σ. The model was taken from [2]. The parameters to estimate are
thus A, B and C. The data is taken from evaluating Eq. (12) at times t = {1, 2, 3, 4, 5} with parameters
A = 1, B = 0.21 and C = 3. A result plot with indicated measurements and results taken from samples
from transport maps and TMCMC can be seen in Figure 1.

To assess the differences in efficiency between the TMCMC and TM approaches in different scenarios
we ran the TM estimation once with high and once with low optimization tolerances. Setting a higher toler-
ance decreases the accuracy but also reduces the amount of calculations needed. The resulting difference in
samples is shown in Figures 2 and 3. The number of evaluations needed are summed up in Table 1. Clearly
the selected optimization parameters play a role in the efficiency and the accuracy of the transport map
method, since both TMCMC and TM give overlapping results for the low tolerance TM approximation, but
for a higher tolerance the TM approach has some deficiencies in the covariance structure. However, the

1https://measuretransport.github.io/MParT/
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Figure 1: Plot of c over t for the analytical exponential model. The red curve marks the original solution,
black dots are noisy measurements, black and blue lines are outputs of samples taken from TM and TMCMC
approaches respectively.

Figure 2: Samples from transport map and TM-
CMC estimated posterior with high optimization
tolerance.

Figure 3: Samples from transport map and TM-
CMC estimated posterior with low optimization
tolerance.

mean values of the parameters are captured very well, even with high tolerance. With regard to the number
of model evaluations the high tolerance TM approach has less overall calculations than TMCMC, how-
ever if the tolerance is decreased the computational effort increases. Overall the accuracy of the obtained
approximation from using transport maps is equal to using TMCMC. Note however that after calculation
of the map coefficients, a fully analytical expression is obtained which allows for cheap drawing of new
samples if needed. Doing the same with MCMC methods would require further model evaluations.

3.2 Non-linear Dynamical System
Following example shows how to identify a half-car model parameters for a suspension system of 8-th order
using Bayesian updating and TM. Conventional passive suspensions use a spring and damper between the
car body and wheel assembly. A schematic representation of the system is provided in Figure 4. The mass

Evaluations Model Gradient Hessian
TMCMC 11000 0 0

TM high TOL 2160 4104 1944
TM low TOL 4104 7128 3024

Table 1: Number of model, gradient and hessian evaluations for TMCMC and both cases of TM approxi-
mations.
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Figure 4: Schematic of the half-car suspension system.

mb (in kilograms) represents the car chassis (body) and the masses mtl and mtr (in kilograms) represents
the left and right wheel assembly, respectively. Spring-damper configurations kbl , cbl and kbr , cbl represent
the left and right passive springs and shock absorbers placed between the car body and the wheel assembly.
Springs ktl and ktr model the compressibility of the pneumatic tire. The variables xb, xtl , xtr , rl and rr
(all in meters) are the body travel, wheel left and right travel, and road disturbance, respectively. θc refers
to the pitch (rotational) angle of the chassis. Notice that the non-linear system response comes from the
coupling between the vehicle legs through the car body and becomes evident when the equations of motion
are written explicitly down for the masses representing the left and right wheel assembly.

Parameters to update were chosen to be all masses and stiffnesses, so θ = [ktr , ktl , kbr , kbl , mtr ,
mtl , mb]

T , adding up to a total of seven parameters. Measurements were taken by simulation of the eight
degrees of freedom (displacement and velocity of the three masses as well rotation of the top mass) as over
a period of 30 s at a sampling rate of 4 Hz, afterwards Gaussian noise was added to all measurements.
To help with regularizing the posterior the parameters were transformed to standard normal space. The
measurements were then taken from a simulation with all model parameters set to 1. Priors were assumed
to be uniformly distributed in the interval [0.5µi, 1.5µi] where µi indicates the mean value of θi in physical
space. For TMCMC 1000 samples were taken per level, for the TM approach a low tolerance (step size
smaller than 10−6) was chosen in the optimization to give an adequate approximation. Figure 5 shows the
samples from the TM and TMCMC estimated posterior. Figure 6 shows the model response for xtl for the
obtained samples as an example for the approximation.

Both estimation methods show similar results, with some deviation in θ3 and θ7, however the model
response for samples obtained from TM and TMCMC are very similar. Moreover, the model response shows
that both methods are able to capture the dynamics well. The close-up in figure 6 shows that both methods
have a slight bias in different directions since samples from either method accumulate either above or below
the true solution (dashed line). Evaluating the log-posterior at the sample mean of both approaches gives
a value of −13.3 for TMCMC and −18.6 for TM, indicating that the TMCMC results are more probable.
The differences between both methods possibly result from the more difficult optimization problem in the
TM approach. Since transport maps approximate the target density by integration, the resulting posterior
density captures as much probability mass as possible with the given map layout. A higher map order or
different map structures would lead to different results in this example. Finding a suitable expression for
the likelihood, e.g. one based on frequency-domain approaches, could also help mitigate some issues since
it could overcome the inherent non-uniqueness, however due to the limited scope of this work there was
no effort taken in finding an optimal formulation of the likelihood function. Moreover, the KL divergence
which is used as minimization target can directly be used to assess the approximation quality without any
further calculations. This also can help to analyze if the posterior was approximated sufficiently or if further
steps need to be taken. Again, due to the limited scope the approximation was not analyzed quantitatively.

4 Conclusion and Outlook
In this contribution the transport map approach for estimation of the posterior in Bayesian parameter es-
timation was compared to standard MCMC. Both methods were used on noisy data from an analytical
exponential model and a model of a non-linear dynamical system. The TM estimation shows great promise
in circumventing some of the problems arising in MCMC sampling, however further research needs to be
done for the application to dynamical systems. Special care needs to be taken in the problem setup. In
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Figure 5: Samples from transport map and TMCMC estimated posterior.

Figure 6: Left: Model output and data for xtl from obtained samples with TM and TMCMC for the first
15 s. Right: Close-up of model results and data from 4 to 5 s. The dashed line in this plot is the true model
output without noise.
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order to fully use the capabilities of the TM framework, first and second order derivatives of the posterior
are needed, which in turn requires the model to be differentiable with respect to its parameters. It was
found that the TM approach generally requires more care in the setup, since the optimization method and
its parameters need to be chosen adequately. Further parameters that have an influence on the TM approxi-
mation quality but were not analyzed here are the used integration scheme for the maps themselves and the
KL-divergence, as well as the order of the maps. It is also possible to use entirely different map layouts
such as neural networks, which can have a large effect on the map accuracy and efficiency. The result of
the transport map approximation is a fully analytic expression of the posterior distribution, allowing for
integration and resampling in an efficient way, which is one of the main advantages over MCMC-based
methods. Moreover, sequential updating, which was not covered here, is naturally possible by combining
multiple maps. Issues with optimization convergence that arise due to the complicated shape of the pos-
terior distribution could be reduced this way, since the change in the approximated posteriors is smaller
in the sequential setting when compared to using all data points at once. The usage of transport maps for
sequential updating is also interesting for on-line parameter estimation when combined with model-order
reduction methods.
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