
1

The No-U-Turn Sampler as a Proposal Distribution
in a Sequential Monte Carlo Sampler without

Accept/Reject
Lee Devlin, Matthew Carter, Paul Horridge, Peter L. Green, and Simon Maskell

Abstract—Markov Chain Monte Carlo (MCMC) is a method
for drawing samples from non-standard probability distribu-
tions. Hamiltonian Monte Carlo (HMC) is a popular variant
of MCMC that uses gradient information to explore the target
distribution. The Sequential Monte Carlo (SMC) sampler is an
alternative sampling method which, unlike MCMC, can readily
utilise parallel computing architectures. It is typical within SMC
literature to target a tempered distribution using a proposal with
an accept/reject mechanism. In this letter, we show how the
proposal used in the No-U-Turn Sampler (NUTS), an advanced
variant of HMC, can be incorporated into an SMC sampler
without an accept/reject mechanism. Empirical results show that
this can remove the need for tempering and gives rise to accurate
estimates being generated in fewer iterations which motivates this
technique being deployed on parallel hardware.

Index Terms—Bayesian inference, Sequential Monte Carlo

I. INTRODUCTION

Markov Chain Monte Carlo (MCMC) is a tool, often used
in Bayesian inference to draw samples x ∈ RD from a D-
dimensional probability distribution π(x). In MCMC, samples
are drawn by moving from a state xk−1 at iteration k−1 to a
state xk at iteration k, with some acceptance probability such
that the Markov chain is ergodic (i.e., converges to a stationary
distribution), and detailed balance is maintained. This is such
that the stationary distribution of the Markov chain is equal
to the target distribution. Gradient based methods such as
Metropolis-Adjusted Langevin (MALA) [1] and Hamiltonian
Monte Carlo (HMC) [2] are variants of MCMC which have
grown in popularity due to their ability to efficiently explore
continuous state spaces. HMC introduces a momentum vector
p ∈ RD to facilitate the exploration of states via the numerical
integration of Hamiltonian dynamics. The No-U-Turn Sampler
(NUTS), first proposed in [3], auto-calibrates parameters of the
HMC process by stopping a trajectory once the path begins to
turn back on itself. As a result of its applicability and efficient
operation across a range of specific distributions, NUTS is
used by probabilistic programming languages such as Stan
[4], PyMC3 [5], and NumPyro [6].

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no
longer be accessible. Work funded by the Engineering and Physical Sciences
Research Council, as part of the grant ‘Big Hypotheses: a Fully Parallelised
Bayesian Inference Solution’ (EP/R018537/1)

Lee Devlin, Matthew Carter, Paul Horridge and Simon Maskell are with
the Department of Electrical Engineering and Electronics, and Peter Green is
with the Department of Mechanical Engineering, University of Liverpool, Liv-
erpool L69 3GJ, U.K. (e-mail: Lee.Devlin@liv.ac.uk; M.J.Carter2@liv.ac.uk;
Paul.Horridge@liv.ac.uk; PLGreen@liv.ac.uk; S.Maskell@liv.ac.uk).

Sequential Monte Carlo (SMC) samplers, first introduced in
[7], provide a way of realising estimates with respect to π(x)
based on a population of N weighted hypotheses (often re-
ferred to as samples or particles) which evolve over k iterations
and are moved by means of a forward proposal distribution. In
the SMC sampler literature, a Gaussian random-walk kernel
is typically used, but this is not a requirement. In this letter
we show how the proposal in NUTS can be used instead.
This approach differs from other methods which incorporate
Hamiltonian proposals in SMC samplers, e.g. [8], by not using
accept/reject within the SMC sampler’s proposal, therefore
allowing more freedom regarding the choice on the L-kernel,
a key parameter in the context of SMC samplers. A similar
approach is presented in [9] using Langevin dynamics, but
our focus is different as we are interested in obtaining good
estimates in fewer iterations. We also note that HMC has been
incorporated into an importance sampling scheme [10] which
is also different to what we present here.

The rest of this letter is structured as follows. In Section
II we present how SMC samplers operate and in Section III
we show how the proposal for NUTS can be used as the
proposal distribution in an SMC sampler without the use of
accept/reject. Section IV presents results in the context of two
examples. Section V concludes the paper.

II. SEQUENTIAL MONTE CARLO SAMPLERS

In this letter we consider an SMC sampler that at the kth

iteration does not target π (x) directly, but rather does so over
k iterations such that the joint distribution π1...k(x1...k) of all
previous states is the target:

π1...k(x1...k) = πk(xk)

k∏
k′=2

L (xk′−1|xk′) , (1)

where L (xk′−1|xk′) is the L-kernel, sometimes called the
‘backwards’ kernel. We define the forwards proposal as:

q(x1...k) = q(x1)

k∏
k′=2

q (xk′ |xk′−1) . (2)

Using importance sampling, where we take the ratio of (1) and
(2), we attribute an incremental weight to the ith hypothesis at
iteration k, wik, which is updated from the previous iteration’s
weight wik−1 via:

wik = wik−1

πk(xik)

πk−1(xik−1)

L(xik−1|xik)

q(xik|xik−1)
, (3)

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386494

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on April 10,2024 at 12:53:51 UTC from IEEE Xplore. Restrictions apply.

2

where πk(xik) and πk−1(xik−1) are instances of the kth target
distributions at the ith sample’s new and previous state,
respectively. Initial weights are evaluated as the ratio of the
target of the samples at iteration 1, i.e. πk=1(xik=1) divided
by the proposal of the initial samples q(xik=1).

When degeneracy occurs, where a small subset of samples
have relatively high importance weights, a new set of samples
are selected from the current set with probability proportional
to the normalised weight, w̃, which are calculated by dividing
each weight by the sum of all weights such they sum to 1.
This process of generating a new set of samples is called
resampling. This involves selecting elements, with replace-
ment, from [x1

k . . .x
N
k] with probability [w̃1

k . . . w̃
N
k] into a

new vector xnew
k which then overwrites the old samples, i.e.

xk ← xnew
k , before the weights of the new samples are all set

to 1/N . Resampling is typically set to occur when the effective
number of samples falls below some threshold value. Values of
interest, e.g. expectation with respect to the target distribution,
can be realised using the normalised sample weights.

A. Tempering

It is typical in SMC to employ tempering [11] such that a
monotonically increasing scalar value φk ∈ [0, 1] at iteration k
is introduced where notationally we write the tempered target
at iteration k as πφk

k (x). In Bayesian inference problems where
we wish to evaluate a set of parameters for a model given a
set of data y, the target is a posterior distribution and, when
using tempering, we sample from a sequence of distributions:
πφk

k (x) ∝ p(x)p(y|x)φk , where φk is in the sequence (0 =
φ0 < φ1 < . . . < φk ≤ 1).

B. Choices of L-kernel

The L-kernel can take the form of any valid probability
distribution. However, the optimal L-kernel, which minimises
the variance of the sample estimates [7] is:

LOPT(xk−1|xk) =
q(xk|xk−1)ηk−1(xk−1)∫

q(xk|x)ηk−1(x)dx
(4)

where ηk is the distribution of samples at iteration k and the
denominator will be

∫
q(xk|x)ηk−1(x)dx = ηk(xk). Equation

(4) is often intractable.
One approach to using the optimal L-kernel is to carefully

select the proposal distribution such that the optimal L-kernel
is analytically tractable [12]. However, this is problem specific.
Our motivation in this paper is to define a general-purpose
proposal distribution and L-kernel within an SMC sampler that
is agnostic to the target distribution of interest.

C. Accept/Reject in Sequential Monte Carlo Samplers

Within the SMC literature, it is a common to use a
Metropolis-Hastings (MH) proposal qMH(xk|xk−1), which
includes accept/reject and has a stationary distribution:

πφk

k (xk) =

∫
qMH(xk|xk−1)πφk

k (xk−1)dxk−1. (5)

If the acceptance rate is A(xk|xk−1), then:

qMH(xk|xk−1) =

{
qMH=(xk|xk−1) xk = xk−1

qMH 6=(xk|xk−1) xk 6= xk−1
(6)

where

qMH=(xk|xk−1) =

∫
(1−A(xk|xk−1))q(xk|xk−1)dxk

+ q(xk = xk−1|xk−1) (7)

which we note includes an intractable integral and where

qMH 6=(xk|xk−1) = A(xk|xk−1)q(xk|xk−1). (8)

We can capitalise on (5) to choose the L-kernel:

L(xk−1|xk) =
qMH(xk|xk−1)πφk

k (xk−1)∫
qMH(xk|x)πφk

k (x)dx
(9)

=
qMH(xk|xk−1)πφk

k (xk−1)

πφk

k (xk)
. (10)

Given the similarity between (4) and (10) and that as k →∞,
ηk(x) → πk(x), this L-kernel is considered to be ‘asymp-
totically optimal’. The weight update for this combination of
proposal and asymptotically optimal L-kernel is:

wik = wik−1

πφk

k (xik)

π
φk−1

k−1 (xik−1)

L(xik−1|xik)

qMH(xik|xik−1)
(11)

= wik−1

πφk

k (xik−1)

π
φk−1

k−1 (xik−1)
(12)

which, thanks to the choice of L-kernel, involves no intractable
integrals.

III. SEQUENTIAL MONTE CARLO SAMPLERS WITHOUT
ACCEPT/REJECT

In this section we consider a novel formulation of
HMC/NUTS within an SMC sampler without accept/reject.
When used in MCMC, NUTS generates a sequence of samples
from the target-space in both position x and momentum p
from a proposal of the form q(xk,pk|xk−1,pk−1). In an SMC
sampler, to calculate (3), we wish to consider a proposal of the
form q(xik|xik−1). We can address this disparity by considering
the numerical integration of the Hamiltonian dynamics to be a
non-linear function which deterministically transforms the old
position using a randomly sampled momentum.

HMC and NUTS use a numerical method, Leapfrog, to
simulate Hamiltonian dynamics and explore the target space.
Leapfrog has several useful qualities. Firstly it is symplectic,
i.e. it preserves the geometric structure of the phase space
{x,p}, and therefore generates states with high acceptance
probability for sufficiently small step-sizes. Secondly, it is both
reversible and time symmetric such that the resulting proposal
satisfies the detailed balance condition. The Leapfrog method
over one step of step-size h is as follows:

pk− 1
2

= pk−1 −
h

2

∂U

∂x

∣∣∣∣
xk−1

(13)

xk = xk−1 + hM−1pk− 1
2

(14)

pk = pk− 1
2
− h

2

∂U

∂x

∣∣∣∣
xk

(15)

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386494

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on April 10,2024 at 12:53:51 UTC from IEEE Xplore. Restrictions apply.

3

where U is a potential energy function and equal to U(x) =
− log(π(x)), and M ∈ RD×D is a diagonal mass matrix that
can be tuned.

A. Non-linear Transform of the Proposal Distribution

We wish to evaluate the probability that a random vari-
able Xk−1 transforms to a random variable Xk using a
Hamiltonian based proposal, and vice-versa. We write this
as q(Xk = xk|Xk−1 = xk−1) for the forwards kernel and
L(Xk−1 = xk−1|Xk = xk) for the L-kernel. First we derive
an expression for the forwards kernel. We consider Leapfrog
to be a single function fLF(.) which transforms a state xk−1

(and momentum pk−1) to xk, i.e. xk = fLF(xk−1,pk−1). We
can rewrite the forward kernel as:

q(Xk = xk|Xk−1 = xk−1) =

q(Xk = fLF(xk−1,pk−1)|Xk−1 = xk−1). (16)

We use a transform of variables to write (16) as:

q(Xk = xk|Xk−1 = xk−1) =

q(Pk−1 = pk−1|Xk−1 = xk−1)

∣∣∣∣∂fLF(xk−1,pk−1)

∂pk−1

∣∣∣∣−1

.

(17)

The initial momentum is typically sampled from a normal
distribution pk ∼ N (0,M). It follows that:

q(Xk = xk|Xk−1 = xk−1) =

N (pk−1; 0,M)

∣∣∣∣dfLF(xk−1,pk−1)

dpk−1

∣∣∣∣−1

. (18)

Turning our attention to the L-kernel, we utilise the fact that
Leapfrog is a reversible integration method, i.e. if we start at
a state {xk−1,pk−1} and then transform this to {xk,pk} then
by reversing the momentum xk−1 = fLF(xk,−pk). Following
the steps in (16) and (17), except this time starting at xk and
with a momentum −pk, we find that:

L(Xk−1 = fLF(xk,−pk)|Xk = xk) =

L(Pk = −pk|Xk = xk)

∣∣∣∣dfLF(xk,−pk)

dpk

∣∣∣∣−1

. (19)

For each sample in an SMC iteration we need to calculate
the ratio of (19) and (18) to assign an incremental weight
(3). Writing the updated state in terms of the initial state and
momentum we find that (for a diagonal mass matrix):∣∣∣∣∂fLF(xk−1,pk−1)

∂pk−1

∣∣∣∣ = hD
D∏
i=1

M−1
ii . (20)

As Leapfrog is a reversible method, if the momentum is
reversed and the step-size is equal to that used in the forwards
case we similarly find the reverse determinant is equal to (20)
such that the determinants will cancel when calculating (3)
regardless of the total number of Leapfrog steps taken.

B. Proposals Without the Asymptotic Approximate L-kernel
While it is common to use the asymptotically optimal L-

kernel (12), this is not a requirement. One alternative ap-
proach is to assume the reverse of the forward proposal, i.e.
L(xik−1|xik) = q(xik−1|xik). In this instance we may define:

L(Pk = −pk|Xk = xk) = N (−pk; 0,M). (21)

This is a sub-optimal strategy but can result in a high effec-
tive sample size since the underlying HMC process used to
generate the samples is able to generate samples that closely
approximate samples drawn from π(x).

From (4) it can be seen that LOPT(xk−1|xk) ∝
q(xk−1,xk). An alternative approach is to approximate the
optimal L-kernel analytically [13] where we model the joint
density by fitting a Gaussian mixture model. For the Hamil-
tonian case we use the same transformation as the previous
section and LOPT(xk−1|xk) ∝ q(−pk−1,xk), where again
the determinant term that will cancel with the numerator in
(3). The joint density is then approximated by:

q(Pk = −pk,Xk = xk) ≈

N
([
−pk
xk

]
;

[
µ−pk

µxk

]
,

[
Σ−pk,−pk

Σ−pk,xk

Σxk,−pk
Σxk,xk

])
, (22)

where µ ∈ RD are mean vectors, and Σ ∈ RD×D are block
covariance matrices. We then use the properties of Gaussians
to define:

LOPT(Pk = −pk|Xk = xk) ≈ N (−pk;µ−pk|xk
,Σ−pk|xk

),
(23)

where:

µ−pk|xk
= µ−pk

+ Σ−pk,xk
Σ−1

xk,xk
(xk − µxk

) (24)

and

Σ−pk|xk
= Σ−pk,−pk

−Σ−pk,xk
Σ−1

xk,xk
Σxk,−pk

. (25)

Algorithm 1 shows how (23) is used in an SMC sampler
using NUTS for N samples over a total of K iterations. A
slice sampler (Algorithm 3 in [3]) can be used to generate
new samples for the NUTS step. For the sub-optimal L-kernel
(21), steps 8 and 9 are replaced by (21). For the resampling
step, several parallelized methods may be employed (e.g. see
[15] and [16]) to speed-up the computation time.

IV. RESULTS

We now demonstrate our approach using both (21) and
(23) compared with using an accept/reject mechanism with
tempering and the weight update strategy given in (12). We
note that NUTS with a slice sampler (as described in [3])
does not have an explicit accept/reject step. We have therefore
added one using the accept/reject mechanism for Hamiltonian
proposals from [14]. For the temperature schedule we use
Alg. 2 of [8]. We note this utilizes a bisection method
that will effect the run-time. We therefore elect to compare
methodologies as a function of iteration. These problems were
selected to be cases where in the first instance, the joint density
is well-described by a Gaussian, and in the second instance,
it is not. In all examples the mass matrix is set equal to the
identity matrix: Adapting the hyperparameters of the HMC
process, as done in [8], is left as the subject of future work.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386494

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on April 10,2024 at 12:53:51 UTC from IEEE Xplore. Restrictions apply.

4

Algorithm 1 SMC using NUTS as a proposal distribution
with a Gaussian approximation to the optimal L-kernel for
K iterations and N samples.

1: for i=1. . . N do
2: Sample xi1 from q(xi)

3: Set initial weights to wi1 =
π(xi

1)

q(xi
1)

4: for k = 2 to K do
5: for i=1. . . N do
6: Sample an initial momentum vector pi ∼ N (0,M)
7: (xik,p

i
k) = NUTS(xik−1,p

i)
8: Calculate parameters of (22)
9: Calculate (23) using (24) and (25).

10: for i=1. . . N do
11: Update sample weights wik using (3)
12: for i=1. . . N do
13: Calculate normalised weights: w̃ik =

wi
k

Σj=N
j=1 w

j
k

14: Calculate effective number of samples:
NEff = 1

Σj=N
j=1 w̃

j2
k

15: if NEff < N/2 then
16: Resample [x1

k . . .x
N
k] with probability [w̃1

k . . . w̃
N
k]

17: Reset all weights to 1
N

Fig. 1. Averaged mean square error of expectation values on logarithmic
scale over 25 runs and 25 iterations for the ARMA model using an L-kernel
parameterised by a proposal using accept/reject with tempering, a forwards
proposal, and a Gaussian approximation to the optimal L-Kernel.

A. Auto-Regressive Moving Average Model

In this example, we compare performance in an auto-
regressive moving average (ARMA) model. For a given set
of T observations, Y ∈ RT we infer parameters of the model:

νt = µ+ βYt−1 + θεt−1 (26)

where νt is the predicted value at iteration t, β and µ are
coefficients, and ε is a zero-mean noise term ε ∼ N (0, σ2)
parameterised by the standard-deviation, σ. The aim is to
estimate µ, β, θ, and σ, which have the following prior
distributions: µ ∼ N (0, 10), β ∼ N (0, 2), θ ∼ N (0, 2),
and σ ∼ Cauchy(0, 2.5), respectively. In Fig. 1 we plot the
averaged (over 25 runs) mean-squared-error (MSE) of the
parameters for 25 iterations with 200 samples. The error is
calculated with respect to values calculated after running Stan
for 250,000 iterations on the same model and then averaged
over the runs. Using the Gaussian approximation to the optimal

TABLE I
AVERAGE MEAN-SQUARED-ERROR USING DIFFERENT CONFIGURATIONS

OF AN SMC SAMPLER WITH NUTS AS A PROPOSAL.

Iterations
N Case 10 25 50

512
Acc./Rej. + tempering (12) 0.0343 0.0070 0.0046

Forwards Prop. (21) 0.0109 0.0060 0.0043
Gauss Approx. (23) 0.0273 0.0300 0.0837

1024
Acc./Rej. + tempering (12) 0.0284 0.0011 0.0007

Forwards Prop. (21) 0.0061 0.0030 0.0016
Gauss Approx. (23) 0.0053 0.0081 0.0773

2048
Acc./Rej. + tempering (12) 0.0358 0.0007 0.0007

Forwards Prop. (21) 0.0016 0.0045 0.0022
Gauss Approx. (23) 0.0041 0.0065 0.0046

L-kernel, the sampler converges to the Stan estimates in fewer
iterations than either of the two other approaches.

B. Penalised Regression with Count Data
In this example we estimate the parameters of a penalised

regression model with count data [17]. This problem makes
use of Lasso regression [18] whereby a penalty constraint
γ
∑D
j=1

∣∣βj∣∣ is placed on the size of the regression coefficients
β ∈ RD. We follow [17] (with associated details from [19])
by using the exponential power distribution bridge framework
for our regularizing prior:

f(β; γ, z) =

D∏
j=1

z

2γΓ(1/z)
exp

(
−
∣∣∣∣βjγ

∣∣∣∣z) , (27)

where z ∈ (0, 2). Our aim is to estimate the coefficients
used to generate the count data. The likelihood is a Poisson
distribution yi ∼ p(yi|µi) for the ith observation, where:

µi = exp

β0 +

D∑
j=1

βjΦ
j
i (xi,j)

 . (28)

We generate 100 observations with a 12-Dimensional β vector
where β0 = 1, β2 = 1.5, β4 = −2, β6 = 1, β7 = −2, β9 =
1.2 and all other values set to zero. The basis function Φ is
a Gaussian kernel Φ = exp

(
− (xi−cj)2

2r2j

)
with 11 equispaced

centres cj ∈ [−1, 4], all rj values are set to 0.5, and z = 0.5.
Table I shows the MSE averaged over 5 runs for different

numbers of samples and iterations, where the ground-truth has
been found by running Stan for 250,000 iterations. For this
example both the configurations without accept/reject converge
quicker in the initial iterations, but the baseline method results
in a lower error asymptotically.

V. CONCLUSIONS

We have shown how the proposal from NUTS can be
used in an SMC sampler without accept/reject. By using this
approach accurate estimates can be found more rapidly. As
SMC samplers are parallelisable, this motivates employing this
technique on parallel architectures where samples within an
iteration are ran in parallel. We note a Gaussian approximation
to the optimal L-kernel is not always ideal. Our future work
therefore involves extending our approach to approximate the
optimal L-kernel as a Gaussian mixture. We have made an
implementation of our algorithm available, see [20].

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386494

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on April 10,2024 at 12:53:51 UTC from IEEE Xplore. Restrictions apply.

5

REFERENCES

[1] G. O. Roberts and O. Stramer, “Langevin diffusions and Metropolis-
Hastings algorithms,” Methodology and Computing in Applied Proba-
bility 4, pp. 337—357, 2002.

[2] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
Monte Carlo,” Physics Letters B, Volume 195, Issue 2, 1987.

[3] M. D. Hoffman and A. Gelman, “The No-U-Turn Sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo”, Journal of Machine
Learning Research, vol. 15, num. 47, pp. 1593–1623, 2014.

[4] Stan https://mc-stan.org/
[5] PyMC3 https://docs.pymc.io/
[6] NumPyro http://num.pyro.ai/
[7] P. Del Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo

samplers,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):411–436, 2006.

[8] A. Buchholz, N. Chopin and P. E. Jacob, “Adaptive Tuning of Hamilto-
nian Monte Carlo Within Sequential Monte Carlo”, Bayesian Analysis,
vol. 16, no. 3, 2021.

[9] J. Heng, A. Bishop, G. Deligiannidis, and A. Doucet, “Controlled
Sequential Monte Carlo”, The Annals of Statistics, VOL. 48, No.5, 2020.

[10] A. Mousavi, R. Monsefi, and V. Elvira, “Hamiltonian Adaptive Impor-
tance Sampling“, IEEE Signal Processing Letters, VOL. 28, 2021.

[11] R. M. Neal, “Annealed importance samplin” Statistics and Computing,
vol. 11, no. 2, pp. 125–139, 2001

[12] G. Peters, “Topics in Sequential Monte Carlo Samplers”, MSc. Thesis,
2005.

[13] P. L. Green, L. J. Devlin, R. E. Moore, R. J. Jackson, J. Li, and S.
Maskell “Increasing the efficiency of Sequential Monte Carlo samplers
through the use of near-optimal L-kernels”, Mechanical Systems and
Signal Processing, Vol. 162, 2022.

[14] R. M. Neal, “MCMC using Hamiltonian dynamics”, Handbook of
Markov Chain Monte Carlo, Chapman & Hall, 2011.

[15] A. Varsi, J. Taylor, L. Kekempanos, E. Pyzer Knapp and S. Maskell,“A
Fast Parallel Particle Filter for Shared Memory Systems,” in IEEE Signal
Processing Letters, vol. 27, pp. 1570-1574, 2020.

[16] A. Varsi, S. Maskell, and P. Spirakis “An O(log2 N) Fully-Balanced
Resampling Algorithm for Particle Filters on Distributed Memory Ar-
chitectures” in Algorithms, vol. 14, 2021.

[17] T. L. T. Nguyen, F. Septier, G. Peters, and Y. Delignon, ”Efficient
Sequential Monte-Carlo samplers for Bayesian inference”, IEEE Trans.
on Signal Processing, vol. 64, no. 5, pp. 1305–1319, March1, 2016.

[18] R. Tibshirani, “Regression shrinkage and selection via the Lasso”,
Journal of the Royal Statisitcal Society: Series B, Vol. 58, num. 1, 1996.

[19] T. L. T. Nguyen. ”Sequential Monte Carlo Sampler for Bayesian
Inference in Complex Systems”, Ph.D Thesis, 2014.

[20] https://github.com/UoL-SignalProcessingGroup/SMC-NUTS

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386494

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Liverpool. Downloaded on April 10,2024 at 12:53:51 UTC from IEEE Xplore. Restrictions apply.

