
Structural reliability analysis with extremely small failure probabilities: A1

quasi-Bayesian active learning method2

Chao Danga,∗, Alice Cicirellob, Marcos A. Valdebenitoc, Matthias G.R. Faesc, Pengfei Weid, Michael3

Beera,e,f4

aInstitute for Risk and Reliability, Leibniz University Hannover, Callinstr. 34, Hannover 30167, Germany
bDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
cChair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany

dSchool of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, PR China
eInstitute for Risk and Uncertainty, University of Liverpool, Peach Street, Liverpool L69 7ZF, United Kingdom

fInternational Joint Research Center for Resilient Infrastructure & International Joint Research Center for Engineering
Reliability and Stochastic Mechanics, Tongji University, Shanghai 200092, PR China

Abstract5

The concept of Bayesian active learning has recently been introduced from machine learning to structural6

reliability analysis. Although several specific methods have been successfully developed, significant efforts7

are still needed to fully exploit their potential and to address existing challenges. This work proposes a quasi-8

Bayesian active learning method, called ‘Quasi-Bayesian Active Learning Cubature’, for structural reliability9

analysis with extremely small failure probabilities. The method is established based on a cleaver use of the10

Bayesian failure probability inference framework. To reduce the computational burden associated with the11

exact posterior variance of the failure probability, we propose a quasi posterior variance instead. Then,12

two critical elements for Bayesian active learning, namely the stopping criterion and the learning function,13

are developed subsequently. The stopping criterion is defined based on the quasi posterior coefficient of14

variation of the failure probability, whose numerical solution scheme is also tailored. The learning function15

is extracted from the quasi posterior variance, with the introduction of an additional parameter that allows16

multi-point selection and hence parallel distributed processing. By testing on four numerical examples, it17

is empirically shown that the proposed method can assess extremely small failure probabilities with desired18

accuracy and efficiency.19
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1. Introduction22

Structural reliability analysis aims at quantifying the likelihood that a structure will achieve certain23

undesired performance, taking into account uncertainties in material properties, geometric dimensions and24

applied loads, etc. If these uncertainties are modeled in a purely probabilistic context, an essential task25

is to calculate the so-called failure probability Pf , which is mathematically defined as a multi-dimensional26

integral:27

Pf =

∫
X
I(g(x))fX(x)dx, (1)

where X = [X1, X2, · · · , Xd]
⊤ ∈ X ⊆ Rd is a vector of d random variables with known joint probability28

density function (PDF) fX(x); g(·) : Rd → R denotes the performance function (also known as the limit29

state function), which takes a negative value when a failure event occurs; I(·) : R → {0, 1} represents the30

failure indicator function: I = 1 if g(x) < 0 and I = 0 otherwise. In many practical applications, such a task31

has the following common characteristics: (1) it is most unlikely that the failure probability can be solved32

analytically, despite the simplicity of its definition; (2) the failure probability of interest is very small, close33

to zero; (3) each evaluation of the g-function can be quite computationally demanding. The combination34

of these characteristics makes probabilistic structural reliability analysis very challenging from a numerical35

point of view.36

To meet the computational challenge, a variety of numerical methods have been developed over the37

last few decades. They can be roughly classified into five main groups: (1) stochastic simulation methods38

(e.g., Monte Carlo simulation (MCS) and its variants [1]), (2) asymptotic approximation methods (e.g.,39

first-/second- order reliability method [2]), (3) moment based methods (e.g., fourth-order moment method40

[3] fractional moment method [4]), (4) probability conservation based methods (e.g., probability density41

evolution method [5] and globally-evolving-based generalized density evolution equation method [6]) and (5)42

surrogate-assisted methods (e.g., response surface method [7], polynomial chaos expansion method [8] and43

Kriging-based method [9]). It should be noted that these classifications are not strictly mutually exclusive44

∗Corresponding author
Email address: chao.dang@irz.uni-hannover.de (Chao Dang)

2



and may overlap and intersect. Among the existing developments, surrogate-assisted methods have received45

increasing attention in the structural reliability analysis community, especially those that are empowered46

with an active learning paradigm. The credit for introducing active learning from the field of machine47

learning to the field of structural reliability analysis is generally attributed to Bichon et al. [10] and Echard48

et al. [11], who developed the well-known efficient global reliability method and active learning Kriging49

Monte Carlo simulation (AK-MCS) method respectively. Since then, a large number of active learning50

reliability methods have been proposed by researchers and engineers from various fields. The interested51

reader is referred to [12, 13] for the recent advances of active learning methods for structural reliability52

analysis.53

Another active learning paradigm, called Bayesian active learning (as a type of active learning that54

particularly emphasizes the use of Bayesian principles), has also been recently introduced from machine55

learning to structural reliability analysis. The first work was reported in [14], where: (1) the problem of56

failure probability estimation is first interpreted as a Bayesian inference problem; (2) the posterior mean and57

an upper bound on the posterior variance of the failure probability are derived, given that a Gaussian process58

prior is placed over the performance function; (3) a numerical method, called ‘Active Learning Probabilistic59

Integration’ (ALPI), is developed for failure probability estimation, with a stopping criterion and a learning60

function being directly derived from the known posterior statistics of the failure probability. The ALPI61

method was further enhanced by the ‘Parallel Adaptive Bayesian Quadrature’ (PABQ) method [15] to62

facilitate parallel distributed processing and assessing small failure probabilities. A principled ‘Bayesian63

failure probability inference’ (BFPI) framework was then developed in [16], where the exact posterior variance64

of the failure probability is obtained. Although the BPFI provides a complete Bayesian treatment of the65

failure probability integral in terms of second-order posterior statistics, it is still challenging to perform66

Bayesian active learning of the failure probability using its known posterior statistics, largely due to the67

computational burden associated with the exact posterior variance.68

To overcome this obstacle, several efforts have been made to develop Bayesian active learning reliability69

analysis methods without using the posterior variance of the failure probability. In the work [17], the authors70
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introduced three partially Bayesian active learning methods under the name of ‘Partially Bayesian active71

learning cubature’. These methods use only the posterior mean of the failure probability to design the two72

critical components for Bayesian active learning, namely the stopping criterion and the learning function. In73

a similar spirit, a method called ‘semi-Bayesian active learning quadrature’ (SBALQ) was developed in [18],74

which allows multi-point selection and thus parallel distributed processing. In addition, another method75

called ‘Parallel Bayesian Probabilistic Integration’ (PBPI) [19] was also proposed, based on the development76

of a pseudo posterior variance for the failure probability. As a side remark, the Bayesian active learning77

idea has also been scusesfully perused in the context of line sampling for structural reliability analysis,78

see for example [20–22]. Although many efforts have been made to advance the development of Bayesian79

active learning reliability methods, there is still much room for progress to fully exploit their potential and80

effectively address existing challenges.81

The objective of this work is to present another Bayesian active learning method, called ‘Quasi-Bayesian82

Active Learning Cubature’ (QBALC), for structural reliability analysis based on the BFPI framework. This83

method is expected to be capable of evaluating extremely small failure probabilities, which is one of the84

main challenges in the realm of structural reliability analysis. The main contributions can be summarized as85

follows. First, we develop a quasi posterior variance for the failure probability by simplifying the exact one.86

It may therefore be more conservative than the upper bound given in [14, 15], less computationally expensive87

than the exact posterior variance given in [16], and less empirical than the pseudo posterior variance [19].88

Second, a stopping criterion is proposed, which is based on the quasi posterior coefficient of variation (COV)89

of the failure probability, in contrast to existing stopping criteria [14, 15, 17, 19]. Third, a numerical90

integration technique is introduced to approximate the two analytical intractable integrals involved in the91

stopping criterion, similar to [17, 19]. Fourth, a learning function derived from the quasi posterior variance92

is proposed, which itself allows for multi-point selection, and hence parallel computing. The multi-point93

section strategy is significantly different our previous studies [15, 18, 19].94

The rest of this paper is structured as follows. Section 2 briefly reviews the BFPI framework. The95

proposed QBALC method is presented in Section 3. Four numerical examples are studied in Section 4 to96
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validate the proposed method. Section 5 concludes the present study.97

2. Bayesian failure probability inference98

In this section, we give a general overview of the BFPI framework originally developed in [16]. It should99

be noted that the framework in [16] is set up in the physical space (i.e., X ). Here it is presented in standard100

normal space (i.e., U) instead. To do so, we first introduce a transformation T that can transform the101

physical random variables into standard normal variables, i.e., U = T (X), where U = [U1, U2, · · · , Ud]
⊤ ∈102

U ⊆ Rd represents a vector of d standard normal variables. This can be achieved by using some widely-used103

transformations, such as Rosenblatt transformation and Nataf transformation. A transformed performance104

function can be defined such that G(U) = g(T−1(U)), where T−1 denotes the inverse transformation. The105

failure indicator function corresponding to the transformed performance function G is denoted as I, which is106

equal to 1 if G(u) < 0 and 0 otherwise. The failure probability can be rewritten as Pf =
∫
U I(G(u))ϕU (u)du,107

where ϕU (u) denotes the joint PDF of U . For a schematic diagram of the BFPI framework in standard108

normal space, see Fig. 1.109

 

Figure 1: Schematic diagram of the BFPI framework in standard normal space.
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2.1. Prior distribution110

The BFPI framework begins by placing a Gaussian process prior over the transformed performance111

function G(u) such that:112

G0(u) ∼ GP(mG0
(u), kG0

(u,u′)), (2)

where G0 denotes the prior distribution of G; mG0
(u) and kG0

(u,u′) are the prior mean and covariance113

functions of the GP respectively. It is further assumed that the prior mean function takes a constant value114

and the prior covariance function takes a squared exponential kernel respectively:115

mG0
(u) = β, (3)

116

kG0
(u,u′) = σ2

0 exp

(
−1

2
(u− u′)⊤Σ−1(u − u′)

)
, (4)

where β ∈ R; σ0 > 0 denotes the process standard deviation; Σ = diag
(
l21, l

2
2, · · · , l2d

)
with li > 0 being the117

length scale in the i-th dimension. The prior mean and covariance functions are parameterized by d + 2118

hyperparameters, denoted by ϑ = [β, σ0, l1, l2, · · · , ld]⊤. Note that in most cases these hyperparameters119

cannot be known a priori.120

2.2. Tuning hyperparameters121

Suppose that we have a dataset D = {U ,Y}, where U =
[
u(1),u(2), · · · ,u(n)

]⊤
is an n × d matrix122

comprising n observation locations and Y =
[
y(1), y(2), · · · , y(n)

]⊤
is an n × 1 vector with y(j) = G(u(j)).123

Then, the hyperparameters ϑ can be learned from the dataset D by maximizing the log-marginal likelihood:124

log p(Y |U ,ϑ) = −1

2

[
(Y − β)⊤K−1

G0
(Y − β) + log |KG0

|+ n log 2π
]
, (5)

where KG0
denotes an n× n covariance matrix with its (i, j)-th entry being kG0

(u(i),u(j)).125

2.3. Posterior statistics126

The posterior distribution of G conditional on the data D also proves to be a GP:127

Gn(u) ∼ GP(mGn(u), kGn(u,u
′)), (6)
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where Gn stands for the posterior distribution of G; mGn(u) and kGn(u,u
′) are the posterior mean and128

covariance functions of G respectively, which have the following analytical expressions:129

mGn
(u) = mG0

(u) + kG0
(u,U)⊤K−1

G0
(Y −mG0

(U)) , (7)
130

kGn(u,u
′) = kG0(u,u

′)− kG0(u,U)⊤K−1
G0

kG0(U ,u′), (8)

where mG0(U) is an n × 1 mean vector whose j-th element is mG0(u
(j)); kG0(u,U) is an n × 1 covariance131

vector whose j-th element is kG0
(u,u(j)); kG0

(U ,u′) is an n × 1 covariance vector whose j-th element is132

kG0
(u(j),u′).133

The posterior distribution of the indicator function I conditional on the data D follows a generalized134

Bernoulli process (GBP):135

In(u) ∼ GBP(mIn
(u), kIn

(u,u′)), (9)

where In denotes the posterior distribution of I; mIn
(u) and kIn

(u,u′) are the posterior mean and covari-136

ance functions of I receptively, which can be expressed as:137

mIn(u) = Φ

(
−mGn(u)

σGn
(u)

)
, (10)

138

kIn(u,u
′) = Φ2

(
[0, 0]⊤;mGn(u,u

′),KGn(u,u
′)
)
− Φ

(
−mGn

(u)

σGn(u)

)
Φ

(
−mGn

(u′)

σGn(u
′)

)
, (11)

where Φ denotes the cumulative distribution function (CDF) of the standard normal variable; σGn(u) is139

the posterior standard deviation function of G, i.e., σGn
(u) =

√
kGn

(u,u); Φ2 stands for the bi-variate140

normal CDF, which has no closed form; mGn
(u,u′) is the posterior mean vector of G, i.e., mGn

(u,u′) =141

[mGn(u),mGn(u
′)]

⊤
; KGn(u,u

′) is the posterior covariance matrix of G:142

KGn
(u,u′) =

 σ2
Gn

(u) kGn(u
′,u)

kGn
(u,u′) σ2

Gn
(u′)

 . (12)

The posterior mean and variance of the failure probability Pf read:143

mPf,n
=

∫
U
Φ

(
−mGn

(u)

σGn
(u)

)
ϕU (u)du, (13)

144

σ2
Pf,n

=

∫
U

∫
U

[
Φ2

(
[0, 0]⊤;mGn

(u,u′),KGn
(u,u′)

)
− Φ

(
−mGn

(u)

σGn(u)

)
Φ

(
−mGn

(u′)

σGn(u
′)

)]
ϕU (u)ϕU (u′)dudu′,

(14)
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where Pf,n denotes the posterior distribution of Pf conditional on D.145

The above BFPI framework treats the problem of failure probability estimation as a Bayesian inference146

problem, and provides a principled Bayesian approach to inferring the failure probability. As such, it belongs147

to a class of probabilistic numerics, i.e., probabilistic integration [23, 24]. Two salient features of the BFPI148

framework are: (1) it allows the numerical uncertainty (i.e., discretization error) to be quantified through149

a computational pipeline; (2) it permits the incorporation of our prior knowledge about the performance150

function. Nevertheless, one main drawback is that the posterior mean and variance of the failure probability151

are not analytically tractable. In particular, it should be noted that the posterior variance involves the152

evaluating the posterior covariance of G and integrating with respect to the bivariate normal CDF (which153

itself usually requires numerical integration). This, of course, poses a significant computational challenge to154

the development of Bayesian active learning reliability methods.155

3. Quasi-Bayesian active learning cubature156

This section is devoted to the development of a Bayesian active learning method, QBALC, for structural157

reliability analysis with extremely small failure probabilities using the BFPI framework. First, a stopping158

criterion is proposed as one of the main components for Bayesian active learning based on the simplification159

of the posterior variance of the failure probability. Second, the analytically intractable integrals involved160

in the stopping criterion are solved with an effective numerical integration technique. Third, a learning161

function is derived from the simplified posterior variance as another ingredient for Bayesian active learning.162

Fourth, the step-by-step procedure for implementing the proposed method is summarized.163

3.1. Stopping criterion164

A well-defined stopping criterion is crucial for a Bayesian active learning method, as it determines when165

the active learning phase should be stopped. The choice of stopping criterion depends on several factors,166

such as the specific goals and available computational resources. In this study, we are particularly interested167

in developing a stopping criterion that can reflect whether the posterior mean of the failure probability (i.e.168

mPf,n
) as a predictor of the failure probability reaches a satisfactory level of accuracy. A natural choice would169
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be to use the posterior coefficient of variation of the failure probability. However, such a stopping criterion170

can be computationally prohibitive, mainly due to the numerical complexity of the posterior variance of the171

failure probability. With this in mind, our basic idea is to find a simplified version of the posterior variance172

defined in Eq. (14) that is computationally tractable without losing too much precision.173

Note that the posterior variance of the failure probability is actually an expectation integral with respect174

to the posterior covariance function of I such that:175

σ2
Pf,n

=

∫
U

∫
U
kIn

(u,u′)ϕU (u)ϕU (u′)dudu′. (15)

The above equation can be further written as:176

σ2
Pf,n

=

∫
U

∫
U
ρIn(u,u

′)σIn(u)σIn(u
′)ϕU (u)ϕU (u′)dudu′, (16)

where ρIn ∈ [−1, 1] is the posterior correlation coefficient of I; σIn(u) is the posterior standard deviation177

function of I, which has the following expression:178

σIn
(u) =

√
Φ

(
−mGn

(u)

σGn
(u)

)
Φ

(
mGn

(u)

σGn
(u)

)
. (17)

To avoid solving the correlation coefficient ρIn
(u,u′) and also the double integral in Eq. (16), let us replace179

ρIn(u,u
′) by an equivalent constant ρ̃ such that:180

σ̃2
Pf,n

=

∫
U

∫
U
ρ̃σIn

(u)σIn
(u′)ϕU (u)ϕU (u′)dudu′

=ρ̃

[∫
U
σIn(u)ϕU (u)du

]2
=ρ̃

[∫
U

√
Φ

(
−mGn

(u)

σGn(u)

)
Φ

(
mGn

(u)

σGn(u)

)
ϕU (u)du

]2
,

(18)

where σ̃2
Pf,n

is referred to as the quasi posterior variance of the failure probability; the equivalent correlation181

coefficient ρ̃ should take a value between 0 and 1, which is defined by:182

ρ̃ =
σ2
Pf,n[∫

U

√
Φ
(
−mGn (u)

σGn (u)

)
Φ
(

mGn (u)
σGn (u)

)
ϕU (u)du

]2 . (19)

It is worth pointing out that once ρ̃ is given, the quasi posterior variance σ̃2
Pf,n

can be much cheaper to183

compute than the exact one σ2
Pf,n

. When ρ̃ = 1, the quasi posterior variance σ̃2
Pf,n

reduces to the upper184

bound of the posterior variance σ2
Pf,n

given in [14, 15].185
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In this study, it is suggested that the stopping criterion could be set as follows:186

δ̃Pf,n
=

σ̃Pf,n

mPf,n

< ϵ, (20)

where δ̃Pf,n
is referred to as the quasi posterior COV of the failure probability; ϵ is a user-specified threshold.187

To use this stopping criterion in practice, two problems need to be considered and addressed properly. The188

first one is related to the choice of ρ̃. An ideal choice is according to Eq. (19). However, this is clearly189

not feasible as it requires evaluating the original posterior variance σ2
Pf,n

that we want to avoid. A more190

pragmatic strategy for choosing ρ̃ might be to use our computational experience. This is most likely feasible191

because the value of ρ̃ is only in a small interval between 0 and 1. The second problem concerns the192

evaluation of mPf,n
and σ̃Pf,n

, due to their analytical intractability. To ensure the computational accuracy193

and efficiency, a suitable numerical integrator is of vital importance. In this paper, the variance-amplified194

importance sampling (VAIS) method originally developed in [16] is applied in a sequential manner.195

The VAIS estimators of mPf,n
and σ̃Pf,n

can be given by:196

m̂Pf,n
=

1

N

N∑
i=1

Φ

(
−mGn(u

(i))

σGn
(u(i))

)
ϕU (u(i))

h(u(i))
, (21)

197

ˆ̃σPf,n
=

√
ρ̃

N

N∑
i=1

√
Φ

(
−mGn

(u(i))

σGn(u
(i))

)
Φ

(
mGn

(u(i))

σGn(u
(i))

)
ϕU (u(i))

h(u(i))
, (22)

where h(u) is the sampling density, which equals to the joint PDF of d independent normal variables with a198

mean of zero and a standard deviation of λ > 1;
{
u(i)

}N
i=1

is a set of N random samples drawn from h(u).199

The variances of the two estimators can be formulated as:200

V
[
m̂Pf,n

]
=

1

N − 1

{
1

N

N∑
i=1

[
Φ

(
−mGn

(u(i))

σGn
(u(i))

)
ϕU (u(i))

h(u(i))

]2
− m̂2

Pf,n

}
, (23)

201

V
[
ˆ̃σPf,n

]
=

1

N − 1

 ρ̃

N

N∑
i=1

[√
Φ

(
−mGn

(u(i))

σGn
(u(i))

)
Φ

(
mGn(u

(i))

σGn
(u(i))

)
ϕU (u(i))

h(u(i))

]2
− ˆ̃σ2

Pf,n

 , (24)

where V is the variance operator. Given a sample set
{
u(i)

}N
i=1

, we can obtain the estimates of mPf,n
and202

σ̃Pf,n
using Eqs. (21) and (22) and their associated variances using Eqs. (23) and (24). However, it is most203

likely that the appropriate sample size to ensure that the two estimates reach a desirable level of accuracy204

is not known a priori. Furthermore, if one tends to choose a sample size that is too large, it may not be205
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feasible for the GP posterior predictions due to numerical issues. For these reasons, the sample size should206

be enlarged gradually, as described below.207

For convenience, assume that the sample size is the same for each enrichment, denoted as N0. At the208

j-th step, a set of N0 random samples
{
u(i)

}N0

i=1
are first generated from h(u). Then, the following two209

quantities are evaluated for each sample u(i):210

η(i) = Φ

(
−mGn

(u(i))

σGn
(u(i))

)
, (25)

211

γ(i) =
ϕU (u(i))

h(u(i))
. (26)

Next, we evaluate the following four quantities:212

m(j) =
1

N0

N0∑
i=1

η(i)γ(i), (27)

213

σ̃(j) =
ρ̃

N0

N0∑
i=1

√
η(i)(1− η(i))γ(i), (28)

214

r(j) =
1

N0

N0∑
i=1

[
η(i)γ(i)

]2
, (29)

215

s(j) =
ρ̃

N0

N0∑
i=1

[√
η(i)(1− η(i))γ(i)

]2
. (30)

After that, the estimates and their associated variances of mPf,n
and σ̃Pf,n

can be computed as follows:216

m̂Pf,n
=

1

j

j∑
t=1

m(t), (31)

217

ˆ̃σPf,n
=

1

j

j∑
t=1

σ̃(t) (32)

218

V
[
m̂Pf,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

r(t) − m̂2
Pf,n

]
, (33)

219

V
[
ˆ̃σPf,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

s(t) − ˆ̃σ2
Pf,n

]
. (34)

Repeat the above procedure until a stopping criterion is reached, e.g.,
√

V
[
m̂Pf,n

]
/m̂Pf,n

< τ1 and220 √
V
[
ˆ̃σPf,n

]
/ˆ̃σPf,n

< τ2, where τ1 and τ2 are two user-specified tolerances. An important advantage of221

11



the above process is that the most time-consuming term η(i) is reused in several places, hence reducing the222

overall computation time.223

The terms mPf,n
and σ̃Pf,n

in Eq. (20) should thus be replaced by their respective estimates m̂Pf,n
and224

ˆ̃σPf,n
. Since both m̂Pf,n

and ˆ̃σPf,n
may process a certain amount of error depending on the values of τ1225

and τ2, the stopping criterion in Eq. (20) may need to be satisfied several times in a row to avoid fake226

convergence.227

3.2. Learning function228

Another essential component of a Bayesian active learning method is the learning function, which comes229

into play when the stopping criterion is not satisfied. Specifically, a learning function can guide the learning230

process by suggesting one or multiple informative points at which to observe the G-function next. In general,231

there are many ways to construct a capable learning function. In our context, we are especially interested232

in making fullest possible use of the available posterior statistics of the failure probability. In addition,233

the resulting learning function should facilitate the selection of multiple points at each iteration, and thus234

enabling parallel distributed processing and reducing the overall computational burden.235

The proposed learning function, called ‘penalized quasi posterior variance contribution’ (PQPVC), has236

the following form:237

PQPVC(u|p) =

√
Φ

(
−mGn

(u)

pσGn
(u)

)
Φ

(
mGn

(u)

pσGn
(u)

)
ϕU (u), (35)

where p ∈ (0, 1] is the penalty factor that penalizes the current posterior standard deviation function of G.238

Obviously
√
ρ̃
∫
U PQPVC(u|p = 1)du = σ̃Pf,n

holds. Therefore, the PQPVC function given p = 1 can be239

interpreted as a scaled measure of the contribution at point u to the quasi posterior standard deviation (hence240

also the quasi posterior variance) of the failure probability. Moreover, the learning function called ‘upper241

bound posterior variance contribution’ developed in [14, 15] turns out to be a special case of the PQPVC242

function when p = 1. It must be stressed that the introduction of the penalty factor p is quite crucial, as it243

facilitates the selection of a set of points by simply optimizing the PQPVC function given different p. The244

reason why we penalize the current posterior standard deviation function σGn
(u) but leave the posterior245
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mean function mGn(u) unchanged is because the posterior standard deviation at any unobserved point,246

which is important for an accurate failure probability estimation, is most likely to decrease in the future,247

while it is difficult to prejudge whether its posterior mean will increase or decrease.248

Suppose that we wish to select nadd points, which are denoted as
{
u+,(i)

}na

i=1
. The i-th point u+,(i) can249

be identified by maximizing the proposed PQPVC function such that:250

u+,(i) = argmax
u∈[−R,R]d

PQPVC(u|p =
i

na
), (36)

where [−R,R]d is a hyperrectangle defining a reduced region of in the d-dimensional standard normal space;251

R is the side length, which can be specified according to R =
√

χ−2
d (1− υ), where χ2

d is the CDF of a252

chi-squared distribution of degree d and the parameter υ is set to be 10−10. In Eq. (36), the penalty factor253

p is given as i
na

so that its values are equally spaced within (0, 1]. In order to produce nadd points, the254

PQPVC function must be optimized nadd times. Fortunately, the time required for optimization is negligible255

compared to the time required for evaluating the G function, which is often computationally expensive in256

practice. Thus, the optimization problem can be solved by any suitable global optimization algorithm.257

Usually, if na is not too large, a set of diverse points can be identified by our multi-point selection strategy.258

3.3. Numerical implementation procedure of the proposed method259

The step-by-step procedure for implementing the proposed QBALC method is summarized below and260

accompanied by the flowchart shown in Fig. 2.261

Step 1: Generate an initial observation dateset262

The proposed method needs to be initialized with an initial dateset from observing the G-function. This263

can be achieved by first generating a small number (say n0) of samples U =
[
u(1),u(2), · · · ,u(n0)

]⊤
that are264

uniformly distributed within a d-ball of radius R0 using the Hammersley sequence. The radius R0 can be265

specified by R0 =
√
χ−2
d (1− υ0) with υ0 = 10−8. Next, evaluating the G-function at these points U gives266

the output values Y =
[
y(1), y(2), · · · , y(n0)

]⊤
with y(i) = G(u(i)). Finally, the initial observation dateset is267

constructed as D = {U ,Y}. Let n = n0.268

Step 2: Obtain the GP posterior of the G-function269
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This step involves obtaining the posterior distribution of the G-function GP(mGn(u), kGn(u,u
′)) con-270

ditional on the observation dataset D. In this study, the fitrgp function available in the Statistics and271

Machine Learning Toolbox of Matlab is used, where the prior mean and covariance functions are specified272

as a constant and an anisotropic squared exponential kernel, respectively.273

Step 3: Compute the posterior statistics of the failure probability274

At this stage, one needs to compute the posterior mean estimate m̂Pf,n
and the quasi posterior stan-275

dard deviation estimate ˆ̃σPf,n
of the failure probability using the sequential VIAS method, as described in276

subsection 3.1.277

Step 4: Check the stopping criterion278

If
ˆ̃σPf,n

m̂Pf,n
< ϵ is satisfied twice in a row, go to Step 6; Otherwise, go to Step 5.279

Step 5: Enrich the observation dataset280

In this step, we need to enrich the currently available observation dataset with some newly identified data.281

First, the next best points U+ =
{
u+,(i)

}na

i=1
where to evaluate the G-function can be selected by optimizing282

the PQPVC function, where the genetic algorithm is used in this study. After that, the corresponding283

output values Y+ =
{
y+,(i)

}na

i=1
of the G-function at U+ are obtained using parallel computing, where284

y+,(i) = G(u+,(i)). At last, the current observation dataset is enriched with D+ =
{
U+,Y+

}
such that285

D = D ∪D+. Let n = n+ na and go to Step 2.286

Step 6: Stop the method287

Return m̂Pf,n
as the failure probability estimate and stop the algorithm.288

4. Numerical examples289

To illustrate the performance of the proposed QBALC method, four numerical examples are studied in290

this section. In all the examples, some of the parameters of the proposed method are set to n0 = 10, λ = 2.0,291

τ1 = τ2 = 2%, ϵ = 5%. Multiple cases of the remaining parameters ρ̃ and nadd are considered in order to see292

their effects. If applicable, the crude MCS with a considerably large sample size is carried out to provide a293

reference solution for the failure probability. For comparison purposes, several exiting competing methods in294
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Start

Generate an initial dataset D = {U ,Y} of size n0 and let n = n0

Obtain the GP posterior of the G-function conditional on D,
i.e., GP(mGn(u), kGn(u,u

′))

Compute the two estimates m̂Pf,n and ˆ̃σPf,n using the sequential VAIS method

Stopping criterion?

Identify U+ using the PQPVC(u) function,
observe the corresponding G-fucntion values Y+,
enrich the current dataset D with

{
U+,Y+

}
.

Let n = n+ na

Return m̂Pf,n as the failure probability estimate

Stop

No

Yes

Figure 2: Flowchart of the proposed QBALC method.

the literature, i.e., Active learning Kriging Markov Chain Monte Carlo (AK-MCMC) [25], Bayesian subset295

simulation (BSS) [26] and extreme AK-MCS (eAK-MCS) [27], are also implemented in each example. The296

initial sample size is set to 10 for all (Bayesian) active learning methods to make the comparison as fair as297

possible. To evaluate the robustness of all methods except MCS, 20 independent runs are performed and298

the corresponding statistical results are reported.299
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4.1. Example 1: A series system with four branches300

The first example considers a series system with two linear branches and two nonlinear branches, which301

has been used extensively in many studies (e.g., [11, 15, 16]). The performance function is given by:302

g (X) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

a+ (X1−X2)
2

10 + (X+X2)√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2

, (37)

where X1 and X2 are two standard normal variables that are independently and identically distributed; a303

and b are two constant parameters, which are specified as a = 6 and b = 12 in this study.304

Table 1 summarizes the results obtained using several structural reliability analysis methods. The refer-305

ence value of the failure probability is 3.01×10−9 with a COV of 1.82%, provided by MCS with 1012 samples.306

AK-MCMC requires an average of 171.10 iterations (equivalent to an average of 180.10 performance function307

calls), but it gives a slightly smaller failure probability mean with a very large COV, say 29.22%. BSS can308

significantly reduce the average number of iterations and G function calls, and also produce a more unbiased309

failure probability mean compared to AK-MCMC. Nevertheless, its robustness is not good, as evidenced by310

the large value of the COV, which is up to 28.58%. Like the proposed QBALC method, eAK-MCS allows311

us to select multiple points at each iteration. Unfortunately, it encounters non-convergence problem in this312

example, so its results are missing. Considering different parameter combinations (na and
√
ρ̃), a total of313

18 cases of the proposed QBALC method are investigated. Overall, the proposed method performs very314

well in almost all the studied cases. Besides, it is also found that: (1) For a fixed
√
ρ̃, the average number315

of iterations can be reduced by increasing na from 1 to 6, though the average number of G-function calls316

also increases; (2) For a fixed na, the average number of iterations and G-function calls can be increased by317

increasing
√
ρ̃ from 0.25 to 0.75, while the COV of the failure probability estimates decreases.318

To further illustrate how the proposed method works, Fig. 3 shows the points selected at each iteration319

with an arbitrary run of the proposed method (na = 2 and
√
ρ̃ = 0.50), together with the true limit state320
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curve. It can be observed that: (1) the initial 10 points are evenly distributed as we expected; (2) the two321

points identified by the proposed learning function are far apart in some iterations, and are close but not322

identical in others; (3) most of the identified points from iterations 2-18 are distributed around the four323

regions of the true limit state curve that are important for accurate failure probability estimation.324

4.2. Example 2: A nonlinear oscillator325

As a second example, we consider a nonlinear single-degree-of-freedom oscillator driven by a rectangular326

pulse load [7], as shown in Fig. 4. The performance function is given as follows:327

g (m, c1, c2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

c1 + c2
sin

(
t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (38)

where m, c1, c2, r, F1 and t1 are six random variables, as described in Table 2.328

The results of several methods, i.e., MCS, AK-MCMC, BSS, eAK-MCS and QBALC, are reported in329

Table 3. We take the reference failure probability to be 1.52 × 10−8 (with a COV of 2.56%), which is330

produced by MCS with 1011 samples. AK-MCMC gives a fairly good failure probability mean with a very331

small COV (i.e., 0.88%). However, it requires an average of 176.25 iterations (corresponding to an average of332

185.25 G-function evaluations), which is the most of the four competing methods and far more than others.333

The number of iterations on average can be significantly reduced to 25.10 by BSS, but the variability of its334

failure probability estimates is quite large, as indicated by the COV. By selecting na = 4 points at each335

iteration of the active learning phase, eAK-MCS only needs 7.95 iterations on average (34.10 G-function336

calls) and gives a failure probability mean of 1.55 × 10−8 with a COV of 6.61%. Under the same setting337

(i.e. na = 4), the proposed QBALC method can perform better than eAK-MCS (na = 4) overall, except338

for
√
ρ̃ = 0.25. Furthermore, for the proposed method it can be seen that the average number of iterations339

can be reduced by increasing na, but increased by enlarging
√
ρ̃. It should also be noted that in some cases,340

when
√
ρ̃ = 0.25, the proposed method can produce a COV significantly greater than 5%.341
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4.3. Example 3: A reinforced concrete section342

The third example involves the bending limit state a reinforced concrete section [28], as shown in Fig.343

5. The performance function is formulated as:344

Z = g(X) = X1X2X3 −
X2

1X
2
2X4

X5X6
−X7, (39)

where X1 to X7 are seven random variables, as listed in Table 4.345

In Table 5, we summarize the results obtained from several structural reliability analysis methods. The346

failure probability estimate by MCS with 5 × 1011 samples is 1.57 × 10−8 with a COV of 1.13%, which is347

adopted as the reference solution. At cost of an average of 143.65 iterations (152.65 G-function calls), AK-348

MCMC gives a failure probability mean close to the reference one, with a small COV. BSS requires much349

less iterations on average, but its COV is quite large, say 34.88%. Note that eAK-MCS (na = 4) requires350

a slightly smaller average Niter (or Ncall) than the proposed QBALC method (na = 4), while producing351

a larger variability in the failure probability results (say δP̂f
= 5.02%). On the contrary, in all 18 cases352

studied, the proposed method is able to give an almost unbiased failure probability mean with a COV less353

than 5%.354

4.4. Example 4: A 56-bar space truss structure355

The fourth and last example consists of a 56-bar space truss structure that was studied early in [29], as356

shown in Fig. 6. The structure is modeled as a three-dimensional finite element model using OpenSees with357

56 truss elements and 25 nodes. Nine external loads, denoted P1, P2, · · · , P9, are applied to nodes 1, 2, · · · , 9358

along the negative z-axis. It is assumed that the modulus of elasticity and the cross-sectional area of each359

member are the same and are denoted as E and A respectively. The structure is considered to failure when360

the vertical displacement of the top node exceeds a certain threshold, resulting in the following performance361

function:362

g(P1, P2, · · · , P9, E,A) = ∆− V1(P1, P2, · · · , P9, E,A), (40)

where V1 is the vertical displacement of node 1; ∆ is the tolerance, which is specified as 50 mm; P1, P2, · · · , P9,363

E and A are 11 random variables, as listed in Table 6.364
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We implement the importance sampling (IS) method available in UQLab [30] as an alternative to pro-365

viding a reference solution, as MCS is computationally prohibitive in this example. The results of IS and366

several other methods are listed in Table 7. The failure probability estimate given by IS is 4.94× 10−8 with367

a COV of 1.00%, at the cost of 66,107 G-function evaluations. The two non-parallel active learning methods,368

namely AK-MCMC and BSS, are either too computationally intensive or lack robustness. eAK-MCS as a369

parallel active learning method fails to converge in some trials, so its results are missing. In contrast, the370

proposed QBALC method (na = 4) can produce fairly good results in all three cases
√
ρ̃ = 0.25, 0.50, 0.75371

with less than 10 iterations. Note also that as
√
ρ̃ increases, δP̂f

decreases.372

4.5. Final remarks373

Through the four numerical examples, we have studied the effects of the parameters na and
√
ρ̃ on the374

performance of the proposed QBALC method. In general, it can be observed that the proposed method:375

(1) can produce a failure probability mean with a COV less than 5% in all the studied cases, except for376

√
ρ̃ = 0.25; (2) does not lead to a significant reduction in the number of iterations on average when na is377

larger than 4. Therefore,
√
ρ̃ = 0.50 and na = 4 could be a good choice in practice.378
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Table 1: Reliability analysis results of Example 1 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - - - 1012 3.01× 10−9 1.82%

AK-MCMC na = 1 - 171.10 180.10 2.38× 10−9 29.22%

BSS na = 1 - 57.20 66.20 2.97× 10−9 28.58%

eAK-MCS na = 4 - - - - -

Proposed QBALC

na = 1

√
ρ̃ = 0.25 31.15 40.15 2.94× 10−9 4.87%

√
ρ̃ = 0.50 35.75 44.75 3.03× 10−9 2.57%

√
ρ̃ = 0.75 38.35 47.35 3.03× 10−9 1.58%

na = 2

√
ρ̃ = 0.25 17.95 43.90 2.93× 10−9 5.35%

√
ρ̃ = 0.50 20.10 48.20 3.03× 10−9 1.70%

√
ρ̃ = 0.75 20.70 49.40 3.04× 10−9 1.06%

na = 3

√
ρ̃ = 0.25 13.65 47.95 3.00× 10−9 4.52%

√
ρ̃ = 0.50 15.30 52.90 3.02× 10−9 1.51%

√
ρ̃ = 0.75 15.85 54.55 3.03× 0−9 1.15%

na = 4

√
ρ̃ = 0.25 12.05 54.20 2.99× 10−9 3.30%

√
ρ̃ = 0.50 13.10 58.40 3.03× 10−9 1.50%

√
ρ̃ = 0.75 13.45 59.80 3.01× 10−9 0.97%

na = 5

√
ρ̃ = 0.25 11.10 60.50 2.96× 10−9 4.11%

√
ρ̃ = 0.50 12.45 67.25 3.02× 10−9 1.12%

√
ρ̃ = 0.75 12.25 66.25 3.03× 10−9 1.03%

na = 6

√
ρ̃ = 0.25 10.04 66.40 3.02× 10−9 1.51%

√
ρ̃ = 0.50 11.40 72.40 3.02× 10−9 0.80%

√
ρ̃ = 0.75 11.70 74.20 3.02× 10−9 0.73%
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Figure 3: Illustration of the proposed QBALC method (na = 2 and
√
ρ̃ = 0.50) for Example 1.
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Figure 4: A nonlinear single-degree-of-freedom oscillator under a rectangular pulse load.

Table 2: Random variables for Example 2.

Variable Description Distribution Mean Standard deviation

m Mass Normal 1.0 0.05

k1 Stiffness Normal 1.0 0.10

k2 Stiffness Normal 0.2 0.01

r Yield displacement Normal 0.5 0.05

F1 Load amplitude Normal 0.45 0.075

t1 Load duration Normal 1.0 0.20

 

Figure 5: Ultimate stress state of the reinforced concrete section.
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Table 3: Reliability analysis results of Example 2 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - - - 1011 1.52× 10−8 2.56%

AK-MCMC na = 1 - 176.25 185.25 1.51× 10−8 0.88%

BSS na = 1 - 25.10 34.10 1.72× 10−8 45.63%

eAK-MCS na = 4 - 7.95 37.80 1.55× 10−8 6.61%

Proposed QBALC

na = 1

√
ρ̃ = 0.25 10.00 19.00 1.50× 10−8 12.63%

√
ρ̃ = 0.50 15.70 24.70 1.51× 10−8 4.13%

√
ρ̃ = 0.75 18.45 27.45 1.49× 10−8 2.57%

na = 2

√
ρ̃ = 0.25 6.65 21.30 1.46× 10−8 7.87%

√
ρ̃ = 0.50 9.35 26.70 1.47× 10−8 3.15%

√
ρ̃ = 0.75 11.10 30.20 1.49× 10−8 2.90%

na = 3

√
ρ̃ = 0.25 5.10 22.30 1.46× 10−8 8.08%

√
ρ̃ = 0.50 7.30 28.90 1.48× 10−8 3.21%

√
ρ̃ = 0.75 8.20 31.60 1.50× 10−8 1.78%

na = 4

√
ρ̃ = 0.25 4.45 23.80 1.51× 10−8 10.42%

√
ρ̃ = 0.50 6.30 31.20 1.50× 10−8 1.75%

√
ρ̃ = 0.75 6.95 33.80 1.50× 10−8 2.48%

na = 5

√
ρ̃ = 0.25 4.10 25.50 1.49× 10−8 5.07%

√
ρ̃ = 0.50 5.50 32.50 1.49× 10−8 2.15%

√
ρ̃ = 0.75 6.15 35.75 1.51× 10−8 1.59%

na = 6

√
ρ̃ = 0.25 4.10 28.60 1.48× 10−8 3.78%

√
ρ̃ = 0.50 4.90 33.40 1.50× 10−8 1.99%

√
ρ̃ = 0.75 5.70 38.20 1.51× 10−8 1.63%
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Table 4: Basic random variables for Example 3.

Variable Description Distribution Mean COV

X1 Area of reinforcement Normal 1260 mm2 0.05

X2 Yield stress of reinforcement Lognormal 300 N/mm2 0.10

X3 Effective depth of reinforcement Normal 770 mm 0.05

X4 Stress–strain factor of concrete Lognormal 0.35 0.10

X5 Compressive strength of concrete Lognormal 30 N/mm2 0.15

X6 Width of section Normal 400 mm 0.05

X7 Applied bending moment Lognormal 80 kN·m 0.20
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Table 5: Reliability analysis results of Example 3 by several methods.

Method Niter Ncall P̂f δP̂f

MCS - - - 5× 1011 1.57× 10−8 1.13%

AK-MCMC na = 1 - 143.65 152.65 1.58× 10−8 0.98%

BSS na = 1 - 25.85 34.85 1.46× 10−8 34.88%

eAK-MCS na = 4 - 5.60 28.40 1.56× 10−8 5.02%

Proposed QBALC

na = 1

√
ρ̃ = 0.25 11.30 20.30 1.58× 10−8 3.86%

√
ρ̃ = 0.50 14.55 23.55 1.59× 10−8 2.79%

√
ρ̃ = 0.75 16.25 25.25 1.59× 10−8 3.30%

na = 2

√
ρ̃ = 0.25 7.65 23.30 1.59× 10−8 4.26%

√
ρ̃ = 0.50 8.35 24.70 1.61× 10−8 2.71%

√
ρ̃ = 0.75 9.95 27.90 1.59× 10−8 2.10%

na = 3

√
ρ̃ = 0.25 7.05 28.15 1.61× 10−8 2.30%

√
ρ̃ = 0.50 7.85 30.55 1.57× 10−8 2.33%

√
ρ̃ = 0.75 8.50 32.50 1.58× 10−8 1.79%

na = 4

√
ρ̃ = 0.25 6.15 30.60 1.58× 10−8 2.13%

√
ρ̃ = 0.50 6.55 32.20 1.57× 10−8 2.65%

√
ρ̃ = 0.75 7.25 35.00 1.55× 10−8 1.98%

na = 5

√
ρ̃ = 0.25 5.65 33.25 1.57× 10−8 3.18%

√
ρ̃ = 0.50 6.20 36.00 1.57× 10−8 1.77%

√
ρ̃ = 0.75 6.75 38.75 1.57× 10−8 1.88%

na = 6

√
ρ̃ = 0.25 5.45 36.70 1.57× 10−8 2.84%

√
ρ̃ = 0.50 5.80 38.80 1.56× 10−8 2.58%

√
ρ̃ = 0.75 6.70 44.20 1.56× 10−8 1.90%
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Figure 6: Schematic of a 56-bar space truss structure.

26



Table 6: Random variables for Example 4.

Variable Distribution Mean COV

P1 Lognormal 150 kN 0.20

P2, P3, · · · , P9 Lognormal 100 kN 0.20

E Normal 2.06 GPa 0.10

A Normal 2,000 mm2 0.05

Table 7: Reliability analysis results of Example 4 by several methods.

Method Niter Ncall P̂f δP̂f

IS - - - 66,107 4.94× 10−8 1.00%

AK-MCMC na = 1 - 456.00 465.00 4.97× 10−8 2.92%

BSS na = 1 - 27.60 36.60 5.06× 10−8 33.49%

eAK-MCS na = 4 - - - - -

na = 4

√
ρ̃ = 0.25 7.15 34.60 4.86× 10−8 5.37%

√
ρ̃ = 0.50 8.40 39.60 4.92× 10−8 4.77%

√
ρ̃ = 0.75 9.75 45.00 4.98× 10−8 3.21%
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5. Concluding remarks379

This article presents a new Bayesian active learning method, called ‘Quasi-Bayesian Active Learning Cu-380

bature’ (QBALC), for structural reliability analysis with extremely small failure probabilities. The method381

leverages the previously developed Bayesian failure probability inference framework. To avoid solving the382

costly exact posterior variance of the failure probability, we propose a quasi posterior variance which is383

cheaper to evaluate. Two critical ingredients for a Bayesian active learning method, i.e. the stopping crite-384

rion and the learning function, are then derived based on the use of the posterior mean and quasi posterior385

variance of the failure probability. Specifically, a stopping criterion based on the quasi posterior coefficient386

of variation of the failure probability is proposed and its numerical solution is developed. Furthermore,387

a learning function motivated by the quasi posterior variance is proposed, which itself allows multi-point388

selection and thus parallel distributed processing. By means of studying four numerical examples, it is389

empirically shown that: (1) the proposed method is able to estimate extremely small failure probabilities (in390

the order of 10−8-10−9) with a satisfactory degree of accuracy; (2) selecting multiple points at each iteration391

can reduce the number of iterations, and may improve the computational efficiency for expensive structural392

reliability analysis if parallel computing is available; (3)
√
ρ̃ = 0.50 and na = 4 may be a good choice in393

practice.394

The authors believe that the proposed QBALC method can be extended in many ways. First, one395

possible way is to incorporate some dimension techniques, making the proposed method applicable to higher396

dimensions. Second, the proposed method can be extended to system reliability analysis by assigning397

a Gaussian process prior to each component performance function instead of the composite performance398

function. Other directions include time-variant reliability analysis and reliability analysis under mixed399

uncertainties, etc.400
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