
Enhancing ISAC Network Throughput Using
Beyond Diagonal RIS

Zengrui Liu, Yang Liu, Shanpu Shen, Qingqing Wu, and Qingjiang Shi

Abstract—Emerging literature has shown that deploying re-
configurable intelligent surface (RIS) can remarkably pro-
mote integrated sensing and communication (ISAC) system’s
performance. Meanwhile, the emerging novel beyond-diagonal
(BD)-RIS architecture has manifested its superior beamform-
ing capability over the conventional diagonal RIS. This pa-
per investigates utilizing fully-connected BD-RIS to improve
ISAC system’s throughput while ensuring sensing quality, By
utilizing majorization-minimization (MM) and penalty-dual-
decomposition (PDD) method, we develop an efficient algorithm
to tackle the orthogonality condition and non-convex quartic
inequality involving BD-RIS. Numerical results demonstrate
the effectiveness of our solution and the benefit of BD-RIS
deployment in ISAC network.

Index Terms—Integrated sensing and communication (ISAC),
reconfigurable intelligent surface (RIS), beyond diagonal RIS

I. INTRODUCTION

Integrated sensing and communication (ISAC) is a key
technology for the next-generation wireless communication
system [1]-[2]. Inspired by the recent success of reconfigurable
intelligent surface (RIS) in various applications, e.g., [3], a
multitude of works investigate deploying RIS to improve ISAC
system performance. As analyzed in [4], the deployment of
RIS in radar systems can benefit target detection performance.
Especially, when the line-of-sight (LoS) propagation path
between the base station (BS) and the target is blocked,
the sensing signal-to-noise-ratio (SNR) can be significantly
elevated. It has been shown in [5] that leveraging RIS in a dual-
functional radar-communication (DFRC) system can remark-
ably improve detection probability. The authors of [6] devel-
oped efficient algorithm to jointly optimize RIS configuration
and power allocation in uplink ISAC system and manifested
the benefit of deploying RIS. The latest work [7] has shown
that appropriate configuration of RIS can significantly improve
the performance of target’s angle-of-arrival (AoA) estimation.

RIS consists of multiple reflecting elements that can reflect
and adjust the incident electromagnetic waves [3]. RIS tech-
nology is experiencing rapid development. Recently, a rising
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beyond-diagonal (BD)-RIS architecture, which is also known
as “RIS 2.0”, has been proposed [8]-[9]. The BD-RIS extends
the conventional RIS architecture by connecting different RIS
elements with tunable impedance components and elevates
the configuration flexibility. Specifically, from a viewpoint
of scattering parameter network theory [3], the conventional
diagonal RIS is indeed an impedance network with each of
its port (i.e., RIS element) grounded through a reconfigurable
impedance component. It is indeed an extremely simplified
special case of BD-RIS architecture. The more generalized
BD-RIS architecture possesses more powerful beamsteering
capability. One typical BD-RIS implementation scheme is
the fully-connected (FC) architecture [8]-[9], which connects
each pair of RIS elements to achieve utmost beamforming
gain. As demonstrated in [10], FC BD-RIS can boost the
receiving signal power by 62% compared to the conventional
diagonal RIS. The authors of [11], via utilizing manifold
optimization techniques, investigate employing BD-RIS in
wireless network to improve system’s spectral efficiency and
manifest the advantageous beamforming gain of BD-RIS over
its diagonal counterpart.

Enlightened by the exciting advancement of BD-RIS tech-
nique, we are motivated to exploit BD-RIS to further enhance
ISAC system performance. The contributions of this paper are
specified as follows:

• This paper investigates leveraging BD-RIS technology to
enhance the throughput performance in ISAC networks.
One predominant challenge of this study lies in the
coexistence of the orthogonality condition due to BD-RIS
architecture and the nonconvex quartic sensing constraint,
which makes our problem much more challenging than
any existing relevant literature, e.g., [4]-[11]).

• To resolve the challenge, by appropriately introduc-
ing splitting variables and employing penalty-dual-
decomposition (PDD) technique, we successfully decou-
ple the orthogonality condition from others and degrade
the quartic constraint into quadratic ones, which yields
an algorithm updating each variable efficiently.

• Numerical results are provided to demonstrate the effec-
tiveness of our proposed algorithm and the benefit of BD-
RIS over the conventional diagonal RIS.

II. PROBLEM FORMULATION
In this paper, we consider a multi-user MISO ISAC system

aided by FC BD-RIS as shown in Fig. 1. The dual-functional
BS is equipped with uniform linear array (ULA) with M
antennas for transmitting and receiving and serves K single-
antenna mobile users. Besides communication, the BS also
intends to simultaneously sense a potential target located in a
specific direction. The transmit signal at the BS can be given
as:

x =Wcsc +Wrsr, (1)
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Fig. 1. A FC BD-RIS aided ISAC system.

whereWc ∈ CM×K is the communication precoder with its k-
th column wk being the beamformer for the k-th user, Wr ∈
CM×M denotes the sensing precoder and sc ∈ CK×1 and
sr ∈ CM×1 represent the information and probing symbols,
respectively. It is assumed that that information and probing
symbols have zero mean, unit covariance and are mutually
uncorrelated, i.e., E

{
scs

H
c

}
= IK , E

{
srs

H
r

}
= IM and

E
{
scs

H
r

}
= OK×M where E{·} denotes expectation. For

simplicity, we define W ≜ [Wc,Wr] and s ≜ [sTc , s
T
r ]

T .
The channel coefficients between the BS and the RIS, the BS
to the k-th user, and the RIS to the k-th user are represented
respectively by G ∈ CN×M , hd,k ∈ CM×1 and hr,k ∈ CN×1.
To enhance performance, an N-element fully-connected BD-
RIS (Φ ∈ CN×N ) is deployed in the network. Due to its
fully-connected impedance networking architecture [11], the
BD-RIS configuration matrix Φ should satisfy ΦT = Φ and
ΦΦH = IN . The received signal at the k-th user is :

yk = (hH
d,k + hH

r,kΦG)x+ nk, ∀k, (2)

where nk is the receiving noise and nk ∼ CN (0, σ2
k). We

denote the effective channel hH
k ∈ C1×M between the BS and

user k as hH
k =hH

d,k+h
H
r,kΦG. Based on the above discussion,

the k-th user’s receiving SINR is

SINRk(W ,Φ) =
|hH

k wk|2∑K+M
i=1,i ̸=k |hH

k wi|2 + σ2
k

. (3)

At the same time, taking into account the reciprocity of the
channel, the echo signal yr ∈ CM×1 reflected back from the
sensing target is given by

yr = αt(h
∗
d,t +G

TΦTh∗
r,t)(h

H
d,t + h

H
r,tΦG)x+ nr, (4)

where hd,t ∈ CM×1 and hr,t ∈ CN×1 denote the BS-
target and RIS-target channel, respectively, αt represents the
reflection cross section (RCS) coefficient with mean power
E
{
|αt|2

}
= σ2

t , and the receiving noise nr ∼ CN (0, σ2
rIM ).

After receiving the echo, the BS removes the communication
signal and utilizes a linear filter u ∈ CM×1 to perform post-
processing. Assuming perfectly cancelling out the communi-
cation signals from the echo, the signal-to-noise ration (SNR)
of the filtered sensing signal is given by

SNRt(u,W ,Φ) =
σ2
tu

HHt(Φ)WrW
H
r H

H
t (Φ)u

σ2
ruHu

, (5)

where Ht(Φ) ≜ (h∗
d,t+G

TΦTh∗
r,t)(h

H
d,t+h

H
r,tΦG) denotes

the equivalent channel for sensing.
In the above context, we intend to jointly design the linear

filter u, the beamforming W and the BD-RIS configuration
Φ to accomplish both communication and sensing functions.
Specifically, our goal is to maximize the networks’ throughput

while guaranteeing a satisfactory radar sensing quality, which
yields the following optimization problem:

(P0) : max
u,W ,Φ

∑K

k=1
log(1 + SINRk)

s.t. SNRt(u,W ,Φ) ≥ γ, (6a)

ΦHΦ = IN ,Φ = ΦT , (6b)

||W ||2F ≤ P, (6c)

where γ is a predefined sensing SNR level, P is the BS
transmit power budget and (6b) is due to the architecture of
FC BD-RIS. Note constraint (6a) is quartic in Φ and (6b)
involves orthogonality condition, which makes our problem
highly difficult.

III. PROPOSED ALGORITHM

In this section, we will tackle the problem (P0). Firstly, we
leverage Lagrangian dual transform [13, Thm. 3] and quadratic
transform [12, Cor. 1] to make the objective function more
tractable, which yields the equivalent form in (7), shown at
the bottom of this page, with rk and ck being the introduced
intermediate variables. Next, we adopt block coordinate ascent
(BCA) method to alternatively update different variables.

A. Update of {rk} and {ck}
When other variables are fixed, the updates of the introduced

intermediate variables {rk} and {ck} are indeed unconstrained
concave maximization problems, whose closed-form solution
can be readily obtained via taking derivative to zero, which
yields:

r⋆k =
|hH

k wk|
2∑K+M

i̸=k |hH
k wi|2 + σ2

k

, c⋆k =

√
1 + rkh

H
k wk∑K+M

i=1 |hH
k wi|2 + σ2

k

. (8)

B. Update of u
For the update of u, since it only appears in the constraint

(6a), the problem reduces to maximizing the sensing SNR with
respect to (w.r.t.) u. Therefore, the update of u reduces to
solving the following problem:

(P1) : max
u

σ2
tu

HHt(Φ)WrW
H
r H

H
t (Φ)u

σ2
ruHu

.

The above problem is Rayleigh quotient maximization and
by Rayleigh-Rits theorem, the optimal u should be aligned
with the eigenvector associated with the largest eigenvalue of
Ht(Φ)WrW

H
r H

H
t (Φ).

Note that although u does not directly impact on the
objective value, its update promotes the sensing SNR and
makes the problem more “feasible”. This indeed provides
larger margin for the update of other variables and in turn
objective value improvement.

C. Update of W
When other variables are given, we proceed to consider the

optimization of W . To simplify the subsequent discussions,
according to the properties of the block-diagonal matrix, we
introduce the following notations:

cw1 ≜
∑K

k=1

(
log(1 + rk)− rk − |ck|2σ2

k

)
, (9a)

∑K

k=1
log(1 + rk)− rk − |ck|2σ2

k + 2
√
1 + rkRe

{
c∗kh

H
k wk

}
− |ck|2

∑K+M

i=1
|hH

k wi|
2

(7)



cw2 ≜
γrσ

2
ru

Hu

σ2
t

, Ak ≜ blkdiag(hkh
H
k , . . . ,hkh

H
k )︸ ︷︷ ︸

K+M blocks

, (9b)

aH ≜
(
2
√
1 + r1c

∗
1h

H
1 , . . . , 2

√
1 + rkc

∗
kh

H
k ,0T

M

)
, (9c)

w ≜ vec(W ), B ≜
∑K

k=1
|ck|2Ak. (9d)

where vec{·} denotes the vectorization operation.
Based on the above notations, the subproblem to optimize

W can be rewritten as follows:
(P2) : min

w
wHBw − Re(aHw)

s.t. − ∥uHHt(Φ)Wr∥22 ≤ −cw2, (10a)

∥w∥22 ≤ P. (10b)
The problem (P2) is nonconvex due to the constraint (10a).

To overcome this difficulty, we leverage the majorization-
minimization (MM) method [14]. Since the negative norm
square term is concave, we can obtain its tight convex upper-
bound via linearizing it at the point of W =W

(t)
r with W (t)

r

being the value of Wr in the last iteration:

− ∥uHHt(Φ)Wr∥22 ≤ −∥uHHt(Φ)W (t)
r ∥22

− 2Re
{
Tr[(W (t)

r )HHH
t (Φ)uuHHt(Φ)(Wr −W (t)

r ]
}
. (11)

By replacing the negative squared norm term in (10a) by the
above upperbound, (P2) becomes convex and solvable.

D. Update of Φ
In this subsection, we investigate the update of Φ, which

aims at solving the following problem:
(P3) : min

Φ
g(Φ)

s.t. SNRt(Φ) ≥ γ,Φ = ΦT (12a)

ΦHΦ = IN , (12b)
where the explicit expression of g(Φ) is detailed (13) which
utilizes Tr(AB) = Tr(BA) and SNRt(Φ) is given in (5),
where W and u are regarded as constants. To attack (P3), two
prominent difficulties arise: i) SNRt(Φ) is a quartic function in
Φ; ii) the orthogonality condition (12b) is highly nonconvex.
To deal with the first challenge, we rewrite the round-trip
effective channel Ht(Φ) as follows:

Ht(Φ,Φ2) = (h∗
d,t +G

TΦTh∗
r,t)(h

H
d,t + h

H
r,tΦ2G), (14)

where Φ = Φ2. By introducing the copy Φ2 of Φ, we
decompose the original quartic terms in (12a) into quadratic
terms of Φ and Φ2, respectively, whose updates are more
tractable. Besides, to make the orthogonality condition (12b)
tractable, we introduce another copy Φ1 of Φ to decouple
(12b) from other constraints. In the following, we adopt PDD
methodology [15] to tackle the above problem. Firstly, to
decouple the update of Φ, Φ1 and Φ2, we turn to consider the
augmented Lagrangian (AL) problem of (P3). The AL problem
omits the equality constraints Φ = Φ1 and Φ = Φ2 and
punishes them in the objective function, which is given as:

(P4) : min
Φ,Φ1,Φ2

g(Φ) +
1

2ρ

∑2

i=1
∥Φ−Φi∥2F

+
∑2

i=1
Re

{
Tr[ΛH

i (Φ−Φi)]
}

s.t. ΦH
1 Φ1 = IN , (15a)

SNRt(Φ,Φ2) ≥ γ, (15b)

Φ = ΦT ,Φ2 = ΦT
2 , (15c)

where {Λi} is the Lagrangian dual variable associated with
the equation Φ = Φi, i ∈ {1, 2}, ρ is penalty parameter [15],
and SNRt(Φ,Φ2) is obtained via substituting the Ht(Φ) in
SNRt(Φ) with Ht(Φ,Φ2).

The PDD method is a two layer iterative procedure, with
its inner alternatively updating Φ, Φ1 and Φ2 and its outer
layer selectively adjusting ρ or {Λi}. In the following, we will
elaborate each block’s update in full details.

1) Update of Φ: When Φ1 and Φ2 are fixed, we update Φ
by solving the following problem:

(P5) : min
Φ

g(Φ) +
1

2ρ

∑2

i=1
∥Φ−Φi∥2F

+
∑2

i=1
Re

{
Tr[ΛH

i (Φ−Φi)]
}

s.t. SNRt(Φ|Φ2) ≥ γ, Φ = ΦT . (16)
Since Φ is symmetric, the independent variables are indeed its
upper-triangular entries, which have dimension of 0.5N(N +
1) and are denoted by a vector ψ ∈ C0.5N(N+1). Defining
ϕ ≜ vec(Φ), ϕ and ψ are connected via the identity

ϕ =K2ψ, ψ =K1ϕ, (17)

where K1 and K2 are reshaping matrices with their entries
being 0 or 1 and can be easily determined.

Utilizing (17), ∥A∥2F = Tr
{
AAH

}
and Tr {ABCD} =

vecT (B)(C⊗AT )vec(D) , we rewrite (P5) w.r.t. ψ explicitly
as follows:

(P6) : min
ψ

ψHQψ − 2Re(qHψ)

s.t. −ψHQ2ψ − 2Re(qH2 ψ) ≤ −cϕ, (18)
where the newly introduced coefficients are detailed in (19) at
the topmost section of next page.

The problem (P6) is nonconvex due to (18). To make it
tractable, we adopt MM method to linearize the nonconvex
quadratic term as follows:
−ψHQ2ψ ≤ −2Re[(ψ(t))

H
Q2(ψ −ψ(t))]− (ψ(t))HQ2ψ

(t)

(20)
where ψ(t) is the value of ψ in the last iteration. By convexi-
fying (20) using the above upper bound, (P6) becomes convex
and hence ϕ (namely Φ) can be updated.

2) Update of Φ1: When Φ and Φ2 are fixed, Φ1 should be
updated by solving the following problem:

(P7) : min
Φ1

∥Φ1 − (Φ+ ρΛ1)∥2F

s.t. ΦH
1 Φ1 = IN . (21)

Fortunately, (P7) has a closed form solution. Specifically,
suppose that Φ+ρΛ1 has singular value decomposition (SVD)
Φ + ρΛ1 = UΣV H with U and V being the left and right
singular vectors. Then, according to Prop.7 [16], the optimal
solution to (P7) is given as

Φ⋆
1 = UINV

H . (22)

3) Update of Φ2: The update of Φ2 aims to solve the

g(Φ) ≜ Tr(EΦHFΦ)− Re [Tr(DΦ)] , E ≜
∑K+M

i=1
Gwiw

H
i G

H , F ≜
∑K

i=1
|ck|2hr,kh

H
r,k, (13a)

D ≜
∑K

k=1
2
√
1 + rkc

∗
kGwkh

H
r,k −

∑K

k=1
|ck|2

∑K+M

i=1
2Gwiw

H
i hd,kh

H
r,k. (13b)



Q =KH
2 (F ⊗ET )K2 + ρ−1KH

2 K2, qH = 0.5ρ−1ϕH
1 K2 + 0.5ρ−1ϕH

2 K2 − 0.5vecT (ΛH
1 +ΛH

2 −D)K2, (19a)

Q2 =KH
2

{
G∗uuHGT ⊗ [hr,t(h

T
d,t + h

T
r,tΦ

∗
2G

∗)W ∗
rW

T
r (h∗

d,t +G
TΦT

2 h
∗
r,t)h

H
r,t]

}
K2, (19b)

qH2 = vecT [h∗
r,t(h

H
d,t + h

H
r,tΦ2G)WrW

H
r (hd,t +G

HΦH
2 hr,t)h

T
d,tuu

HGT ]K2, (19c)

cϕ = σ−2
t γrσ

2
ru

Hu− uHh∗
d,t(h

H
d,t + h

H
r,tΦ2G)WrW

H
r (GHΦH

2 hr,t + hd,t)h
T
d,tu. (19d)

Q3 = 0.5ρ−1KH
2 K2, qH3 = vecT (0.5ρ−1ΦH + 0.5ΛH

2 )K2, (25a)

Q4 =KH
2

{
[hr,t(h

T
d,t + h

T
r,tΦ

∗G∗)uuH(h∗
d,t +G

TΦTh∗
r,t)h

H
r,t]⊗G∗W ∗

rW
T
r G

T
}
K2, (25b)

qH4 = vecT [GWrW
H
r hd,t(h

T
d,t + h

T
r,tΦ

∗G∗)uuH(h∗
d,t +G

TΦTh∗
r,t)h

H
r,t]K2, (25c)

cϕ2 = σ−2
t γrσ

2
ru

Hu− uH(h∗
d,t +G

TΦTh∗
r,t)h

H
d,tWrW

H
r hd,t(h

T
d,t + h

T
r,tΦ

∗G∗)u. (25d)
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Fig. 2. Convergence of PDD method to update Φ.

following problem:

(P8) : min
Φ2

1

2ρ
∥Φ−Φ2∥2F + Re

{
Tr

[
ΛH

2 (Φ−Φ2)
]}

s.t. SNRt(Φ2|Φ) ≥ γ, Φ2 = ΦT
2 (23)

Note Φ2 is symmetric. Following similar lines to update
Φ, we denote the upper-triangular elements of Φ2 as ψ2 and
ϕ2 ≜ vec(Φ2). Utilizing the relation ϕ2 =K2ψ2, we rewrite
(P8) into an explicit form w.r.t. ψ2 as follows:

(P9) : min
ψ2

ψH
2 Q3ψ2 − 2Re(qH3 ψ2)

s.t. −ψH
2 Q4ψ2 − 2Re(qH4 ψ2) ≤ −cϕ2, (24)

where the newly introduced coefficients are detailed in (25) at
the topmost section of this page. Similar to (P6), (P9) can be
effectively solved by first convexifying (24) via linearization.
Details are omitted to avoid repitition. The inner layer of the
PDD procedure alternatively updates Φ, Φ1 , and Φ2 until
converge is achieved. The outer layer will selectively update
the Lagrangian multipliers {Λi} or the penalty parameter
ρ. Specifically, if the equalities Φ = Φi, i ∈ {1, 2}, are
approximately satisfied within a satisfactory precision, we
update the Lagrangian multipliers {Λi} as follows [15]:

Λi = Λi + ρ−1(Φ−Φi), i ∈ {1, 2} . (26)
Otherwise, we inflate the penalty coefficient ρ−1. The overall

Algorithm 1 PDD-Based Method to solve (P4)

Input: {hk}Kk=1, γ, σ2
t , σ2

r , {σk}Kk=1, W , u, {ck}Kk=1, {rk}Kk=1

and P .
Output: Φ.

1: initialize Φ(0), Φ(0)
1 , Φ(0)

2 ,Λ(0)
1 ,Λ(0)

2 ,ρ(0) and k = 1 ;
2: vectorize Φ(0), Φ

(0)
1 and Φ

(0)
2 to get ϕ(0), ϕ(0)

1 and ϕ
(0)
2

respectively;
3: extract ψ(0) and ψ(0)

2 from ϕ(0) and ϕ(0)
2 respectively;

4: repeat
5: set ψ(k−1,0) := ψ(k−1), Φ

(k−1,0)
1 := Φ

(k−1)
1 , ψ(k−1,0)

2 :=
ψ

(k−1)
2 , t = 0;

6: repeat
7: update ψ(k−1,t+1) by solving (P6);
8: update Φ

(k−1,t+1)
1 by (22);

9: update ψ(k−1,t+1)
2 by solving (P10); t++;

10: until convergence
11: set ψ(k) := ψ(k−1,∞), Φ(k)

1 := Φ
(k−1,∞)
1 , ψ(k)

2 := ψ(k−1,∞)
2

12: recover ϕ(k) and ϕ(k)
2 from ψ(k) and ψ(k)

2 respectively and
vectorize Φ

(k)
1 to get ϕ(k)

1 ;
13: if ∥ϕ(k) − ϕ(k)

i ∥2 ≤ ηk, i = 1, 2 then
14: Λ

(k+1)
i = Λ

(k)
i + 1

ρ(k) (Φ
(k) −Φ

(k)
i ), ρ(k+1) = ρ(k);

15: else
16: Λ

(k+1)
i = Λ

(k)
i , ρ(k+1) = c · ρ(k);

17: end if
18: k ++
19: until ∥ϕ(k) − ϕ(k)

i ∥2 is sufficiently small
20: recover the optimal Φ⋆ from the optimal ϕ⋆

Algorithm 2 Solving the problem (P0)

Input: {hk}Kk=1, γ, σ2
t , σ2

r , {σk}Kk=1, {ck}Kk=1, {rk}Kk=1 and P .
Output:

∑K
k=1 log(1 + SINRk).

1: initialize u(0), W (0), Φ(0), and t = 0;
2: repeat
3: update r

(t+1)
k and c

(t+1)
k by function (8);

4: update u(t+1) by solving (P1);
5: update W (t+1) by solving (P2);
6: update Φ(t+1) by Alg.1;
7: t := t+ 1;
8: until convergence

PDD procedure is summarized in Algorithm 1 and the whole
procedure to solve (P0) is summarized in Algorithm 2.

IV. SIMULATION RESULTS

In this section, we present numerical results validating our
proposed solution. The experiment configures the BS with
M = 8 antennas serving K = 4 mobile users. Heights
are set at 2m for the BS, 4m for the fully-connected RIS,
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and 1.5m for users. The RIS is positioned right above the
BS and around 50m away from the users. The BS-IRS link
follows Rician fading (Rician factor: 5 dB, fading exponent:
2.5), while BS-user and RIS-user links follow Rayleigh fading
(fading exponents: 3.5 and 2.8, respectively). Line-of-sight
paths exist for BS-target and RIS-target links. The target is
at θ = 30◦, 25m away, with a pathloss fading exponent of
2.2. RCS is set at σ2

t = 1, and the sensing threshold is 10dB.
Noise levels are σ2

r = σ2
k = −80dBm.

Firstly, Fig. 2 illustrates the convergence behavior of the
PDD procedure to update Φ. Specifically, Fig. 2 illustrates the
variation of the difference ∥ϕ−ϕ1∥2 and ∥ϕ−ϕ2∥2 (in log
domain), respectively, along with the PDD iteration progress
under different settings of the number of RIS elements (i.e.,
N ). As shown in Fig. 2, the PDD algorithm generally con-
verges very well within 20 interations with the thresholds
being 10−6. The convergence is insensible to N .

Fig. 3 depicts the convergence of Alg. 2 with different
Ns. Algorithm 2 generally converges within 10 iterations and
achieves over 90% of the optimization gain upon the very
first three iterations. Besides, the beamforming gain increment
exhibits marginal effect when N grows.

In Fig. 4, we illustrate the impact of transmit power budget
of the BS. As shown in Fig. 4, the FC BD-RIS significantly
outperforms the no-RIS scenario and yields approximately
15% sum-rate gain over the diagonal counterpart. This ad-
vantage is due to the non-diagonal structure of the BD-
RIS reconfiguration matrix, which subsumes that of diagonal
RIS as special case and hence yields much more powerful
beamsteering capability.

Fig. 5 demonstrates fundamental trade-off between sens-
ing and communication in spatial multiplexing. As shown
in Fig. 5, when the sensing SNR threshold γr increases,
communication rate drops. In fact, to fulfill higher sensing
quality, beam vector should be more aligned with the target
direction, which results in decreasing the receiving power of
communication users. Thanks to the superior beamforming
capability of BD-RIS, it exhibits advantageous sensing and
communication trade-off over the conventional diagonal RIS.

V. CONCLUSIONS

This paper considers joint beamforming design in a fully-
connected RIS assisted ISAC system. To tackle the opti-
mization, which is highly difficult due to the quartic and

orthogonality constraints, we introduce splitting variables and
utilize PDD method to develop an effective solution. Extensive
simulations verify the effectiveness of our proposed algorithm
and the benefit of fully-connected RIS. For future work, other
meaningful performance metrics, e.g., power consumption,
energy efficiency and sensing SNR, could be considered in
BD-RIS aided network.
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