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Abstract
Purpose–Bayesian cubature (BC) has emerged to be one of most competitive approach

for estimating the multi-dimensional integral especially when the integrand is expen-

sive to evaluate, and alternative acquisition functions, such as the Posterior Variance
Contribution (PVC) function, have been developed for adaptive experiment design of

the integration points. However, those sequential design strategies also prevent BC from

being implemented in a parallel scheme. Therefore, this paper aims at developing a
parallelized adaptive BC method to further improve the computational efficiency.

Design/methodology/approach–By theoretically examining the multimodal behav-

ior of the PVC function, it is concluded that the multiple local maxima all have important
contribution to the integration accuracy as can be selected as design points, providing

a practical way for parallelization of the adaptive BC. Inspired by the above finding,
four multimodal optimization algorithms, including one newly developed in this work,

are then introduced for finding multiple local maxima of the PVC function in one run,

and further for parallel implementation of the adaptive BC.
Findings–The superiority of the parallel schemes and the performance of the four mul-

timodal optimization algorithms are then demonstrated and compared with the k-means

clustering method by using two numerical benchmarks and two engineering examples.
Originality–Multimodal behavior of acquisition function for BC is comprehensively

investigated. All the local maxima of the acquisition function contribute to adaptive BC

accuracy. Parallelization of adaptive BC is realized with four multimodal optimization
methods.

Keywords Bayesian Cubature, Adaptive Experiment Design, Acquisition Function,
Parallel Computation, Multimodal Optimization

Paper type Research paper

1. Introduction

Scientific computing plays a more and more important role in almost all aspects

of science, technology, engineering, and mathematics, and the development of ac-
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curate, robust, and efficient algorithms for solving different types of problems, e.g.,

multi-dimensional integrals, nonlinear equations, and partial differential equations

(PDEs), is far from being sufficient due to the high demands for large-scale sim-

ulation. Unquestionably, the deterministic numerical methods, such as Gaussian-

Hermite quadrature and finite element PDE solver, dominated scientific research

for a long history and will continue to play a leading role in years or even decades

to come (Trangenstein (2018)). However, the emergence of probabilistic methods

(e.g., Bayesian cubature (BC) (Briol (2018)), Bayesian optimization (Huang et al.,

(2006); Snoek et al., (2012)), Bayesian ODE/PDE solver (Tronarp et al., (2019)),

and Bayesian reliability analysis (Song et al., (2021))), which treat the numerical

analysis tasks as statistical inference problems and then solve them with a Bayesian

inference scheme, seems to begin to challenge the above mainstream (Hennig et al.,

(2015); Ghosh et al., (2020)). Their most appealing feature against the deterministic

methods is that the numerical errors are regarded as a kind of epistemic uncertainty

and then quantified by subjective probability distribution (Hennig et al., (2015);

Cockayne et al., (2019)). A historic investigation of these developments was given

by Oates and Sullivan (2019). Despite the appealing academic idea, the development

of probabilistic numerical methods is still at the early stage, and many challenges

need to be fixed. The concern of this work is on the computational efficiency of

Bayesian cubature (BC), which aims at computing multi-dimensional integrals.

Although being new to the engineering computation community, BC can be

dated back to 1988 when Diaconis first developed the connection between a Gaus-

sian Process regression (GPR) approximation of the integrand and a classical de-

terministic cubature rule (Diaconis (1988)). This was later generalized by, e.g.,

O’Hagan (O’Hagan (1991)), who has shown that a Bayes-Hermite cubature rule

can be derived following a similar scheme and performs better than the classical

Gauss-Hermite rules in low dimension. A more recent important development is re-

ferred to Ghahramani and Rasmussen (2002), who have developed the closed-form

formulas for the posterior mean and variance of the integrals under a Gaussian

Process prior for the integrand, and named the method as Bayesian Monte Carlo.

It is until recently that the rate of posterior contraction is theoretically and system-

atically studied by Briol et al. (Briol et al., (2019)). Besides the above milestone

developments, some other specific problems concerning BC have also been studies.

For example, the approximate BC scheme is investigated in Ref. Osborne et al.,

(2012) for problems with non-negative integrands. Besides, BC has also attracted

more and more attention in the engineering communities, for example, for struc-

tural reliability analysis (Zhou and Peng (2020)), and for quantification of complex

uncertainties (Wei et al., (2021)). Overall, BC has shown to be competitive over

the deterministic cubature rules for computing multi-dimensional integrals, and

achieved great advancements around the past years.

The experiment design of integration points is another important task for BC.

In real-world applications, the integrand is often computationally expensive, thus
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an optimal BC rule should be able to achieve the required accuracy with a minimal

number of integrand calls. The traditional strategy for experiment design is based

on Monte Carlo or quasi-Monte Carlo (Ghahramani and Rasmussen (2002)), which

is definitely not optimal as the functional behavior of the integrand is not taken

into consideration. A more practical strategy is to design the points sequentially

to minimize the posterior variance of the integration as it measures the numeri-

cal error, and the core is the acquisition function. Following this scheme, Osborne

et al. has proposed an active learning procedure for sequential experiment design

by minimizing the expected posterior variance of the integration (Osborne et al.,

(2012)); A closed-form acquisition function, called Posterior Variance Contribution

(PVC), has been developed by some of the authors, and shown to be effective as

it incorporates the information of both posterior variance and covariance of the

GPR model (Wei et al., (2020)); Another acquisition function, which combines the

information of the current approximation of the posterior and the position infor-

mation of the nodes, has been devised by Llorente et al. in Ref. Santiago et al.,

(2020); The development of an acquisition function for adaptive BC from integrand

information generated from multi-source models was conducted by Gessner et al.

in Ref. Gessner et al., (2020); An adaptive experiment design strategy is also de-

veloped by Sinsbeck et al. for Bayesian model selection (Sinsbeck et al., (2021)).

Besides the above development of acquisition functions, the convergence rate of the

adaptive BC with alternatives acquisition functions has been studied by Kanagawa

and Henning (Kanagawa and Hennig (2019)), which provides rigorous convergence

guarantees for this class of methods. For the GPR model, a comprehensive review

and comparison of the adaptive experiment design strategies can be found in Ref.

Fuhg et al., (2021); while for BC, although there is no study for comparing the

performance of these adaptive design strategies, they are all proved to be more effi-

cient than the random sampling scheme in terms of the number of integrand calls.

Among the above acquisition functions, the PVC function is of special concern in

this work, as it is in closed form, and computationally cheap.

Nowadays, parallel computation has been widely recognized as an effective way

for improving the efficiency of scientific computation, and the equipment of numer-

ical algorithms with parallel computation is then of vital importance. However, for

adaptive BC, parallel computation is not straightforward as the design points are

generated sequentially, and for each iteration, only one design point can be achieved

by computing the global optima of an acquisition function. This work aims to fill

this gap. The functional behavior of the PVC function is first investigated from

both theoretical and practical aspects, and it is concluded that the PVC function is

multi-modal when multiple training points are used, and all the local maxima are

shown to have great contributions for improving the cubature accuracy. Motivated

by this, four multi-modal optimization algorithms, with one developed in this work

are introduced for devising parallel computation schemes for the adaptive BC al-

gorithm. The performance of the four algorithms as well as their superiority over



4

the algorithm without parallel computation and the clustering algorithm based

parallel method are demonstrated by both numerical and real-world engineering

benchmarks.

The rest of this work is organized as follows. Section 2 briefly reviews the adap-

tive BC, and presents the motivation and basic rationale of this work, followed by

the introduction of four multi-modal algorithms, together with the k-means cluster-

ing method for comparison for parallel implementation of adaptive BC in section 3.

With the above theoretical results and material ready, the parallelized adaptive BC

algorithm is then presented in section 4. The benchmark studies are then carried

out in section 5. Section 6 concludes this article.

2. Problem statement with insightful interpretation

2.1. Brief review of Bayesian cubature

The numerical analysis task of concern in this work is to estimate the n-dimensional

integral:

d =

∫
Rn

g (x)π (x) dx, (1)

where g (x) indicates the integrand with n-dimensional arguments x, and π (x)

refers to the weight density. The BPI procedure for numerically estimating the above

integral is based on assuming a stochastic process model ĝ (x) for the deterministic

integrand g (x), and this way to impose a probability distribution on the unknown

deterministic value d. In this work, the stochastic process model ĝ (x) is assumed

to be Gaussian, and then the induced probability distribution of

d̂ =

∫
Rn

ĝ (x)π (x) dx (2)

is also Gaussian, resulting from the fact that the integral expressed by equation (2)

is a linear projection of the GPR model ĝ (x) (Rasmussen and Ghahramani (2003)).

Let denoted by GP (m (x) , κ (x,x′)) the prior GP model for g (x), where m (x)

is the prior mean which can be assumed to be zero, constant, linear or higher or-

der polynomials, and κ (x,x′) indicates the prior covariance function between any

two sites x and x′ which can be assumed to be any kernels such as the squared

exponential kernel and Matérn kernel (Rasmussen and Williams (2006)). Suppose

now there is a set of training data D = (X ,Y), where X is a sample matrix of

dimension (N,n), with each row indicating a realization of x, and Y refers to a N -

dimensional column vector of integrand values, i.e., Y = g (X ). The values of all the

hyperparameters involved in m (x) and κ (x,x′) can be easily computed by maxi-

mizing the likelihood function derived from D (see chapter 5 of Ref. Rasmussen and

Williams (2006)). The posterior GP model for approximating g (x) can be obtained

as ĝ (x) ∼ GP (µg (x) , covg (x,x
′)), where µg (x) and covg (x,x

′) respectively indi-

cate the posterior mean and posterior covariance, which are formulated as:

µg (x) = m (x) + κ (x,X )K−1 (Y −m (X )) , (3)
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and

covg (x,x
′) = κ (x,x′)− κ (x,X )K−1κ (X ,x′) , (4)

where κ (x,X ) indicates the row vector with the i-th component being the prior

covariance between x and the i-th row of X , and K is the prior covariance of X .

The posterior variance σ2
g (x) is computed by σ2

g (x) = covg(x,x). The posterior

mean µd and posterior variance σ2
d of d̂ are then formulated as:

µd = Π [m (x)] + Π [κ (x,X )]K−1 (Y −m (X )) , (5)

and

σ2
d = ΠΠ′ [κ (x,x′)]−Π [κ (x,X )]K−1Π [κ (X ,x′)] , (6)

where Π [·] indicates the integral operator over π (x), and ΠΠ′ [·] refers to the integral
operator over π (x′) and π (x). For specific pairs of kernel κ and weight π, the

integrals Π [m (x)], Π [κ (x,X )] and ΠΠ′ [κ (x,x′)] can be analytically derived in

closed form. One can refer to Ref. Briol et al., (2019) for a summary of such pairs.

For the squared exponential kernel used in this work, the closed-form expressions

can be found in our previous work (Wei et al., (2020)).

Equation (5) reveals that the posterior mean equals the integral of the prior mean

plus the term Π [κ (x,X )]K−1 (Y −m (X )) determined by the training data set D.

The posterior variance of the integration shown in equation (6) equals the integral of

the prior variance minus a positive term Π [κ (x,X )]K−1Π [κ (X ,x′)] measuring the

reduction of the posterior variance depended on the training data set D. It is then

clear that the performance of BC highly depends on the training data set D. This

training data set can be generated by simple random sampling, Latin-hypercube

sampling, Sobol’ low-discrepancy sequence, which allow to implement the BC in a

parallel scheme as all the training points are designed at once. However, as has been

shown by our previous work (Wei et al., (2020)), with a sequential design strategy

driven by suitable acquisition function, a great reduction of required integrand calls

can be achieved. This will be introduced in the next subsection.

By the way, the variance of the n-dimensional integral in equation (1) can also

be estimated by the trained GPR model as a by-product, and its posterior mean

µVd
and variance σ2

Vd
are formulated as (Song et al., (2022)):

µVd
= Π

[
(µg (x)− µd)

2
]
+Π

[
σ2
g (x)

]
, (7)

and

σ2
Vd

= 2ΠΠ′[cov2g (x,x′)
]
+ 4ΠΠ′[µg (x)µg (x

′) covg (x,x
′)], (8)

As can be seen from the above equations, it is difficult to deduce their analytical

expressions, therefore, the numerical algorithms are recommended to be applied

here. In this work, the MCS method is used. Let X = {x1, · · · ,xNx} be the sample



6

set of size Nx randomly generating from the density π (x), the MCS estimators of

equation (7) and equation (8) can be formulated as:

µ∗
Vd

=
1

Nx

Nx∑
i=1

[
µg (xi)

2
]
−

[
1

Nx

Nx∑
i=1

µg (xi)

]2

+
1

Nx

Nx∑
i=1

[
σ2
g (xi)

]
, (9)

and

σ2∗
Vd

=
2

Nx

Nx∑
i=1

[
cov2g (xi,xi)

]
+

4

Nx

Nx∑
i=1

[µg (xi)µg (xi) covg (xi,xi)] , (10)

respectively.

2.2. Adaptive experiment design and rationale for parallelization

The core of an adaptive design strategy for BC is the acquisition function. In our

previous work, an acquisition function, called PVC function, has been developed,

and shown to be much more effective than the random sampling design. The defi-

nition of the PVC function is formulated as (Wei et al., (2020)):

LPVC = π (x)Π′ [covg (x,x
′)]

=
(
Π′ [k (x,x′)]− k (x,X )K−1Π′ [k (X ,x′)]

)
π (x) .

(11)

It was further shown that (Wei et al., (2020)):

σ2
d =

∫
LPVC (x) dx. (12)

Equation (12) reveals that the integration of the PVC function equals the pos-

terior variance of the integration, indicating that the value of the PVC function

at the point x measures the contribution of the GPR prediction error at x to the

posterior variance of d̂. It is also noted from equation (11) that the value of the PVC

function at any non-training point x integrates the spatial correlation information

of x with all the other sites. Thus, as a summary, the PVC function measures the

contribution of the GPR prediction error at x to the posterior variance of the in-

tegral estimate, with the consideration of its correlation information with all the

spatial sites in the integral support, and this is also why the acquisition function

is named as PVC function. As stated in Refs. Rasmussen and Ghahramani (2003)

and Wei et al., (2020), the integration of the spatial correlation information into the

cubature rule makes the Bayesian cubature superior to the traditional deterministic

cubature rule in terms of accuracy. Indeed, the integration of the spatial correlation

into the acquisition function also makes the adaptive experiment design more infor-

mative. The point with the largest GPR prediction error is not necessarily the one

making the most contribution to the posterior variance of the integral estimate, but

the one with the highest PVC value is. Inspired by this, an adaptive experiment

design strategy is developed in Wei et al., (2020).
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The key of the adaptive experiment design is then to estimate the global max-

imum of the PVC function by using an optimization algorithms such as parti-

cle swarm optimization (PSO), genetic algorithm (GA) and Bayesian Interactive

Search Algorithm (BISA) (Mortazavi (2021)). However, this design strategy will

only produce one design point for each iteration, making it impossible to imple-

ment a parallel computation scheme. In practical applications, the computation

of the integrand usually involve the call of one or more physic models, which are

usually computationally expensive, and a parallel implementation of the adaptive

design is anticipated. Fortunately, it is found that the PVC function is usually mul-

timodal, which means there are more than one local maximum points, all of which

makes important contributions to the posterior variance of the integral estimate.

Inspired by this finding, it is then nature to implement the adaptive experiment

design procedure in a parallel scheme by estimating the model response values of

multiple local maximum points at once using multiple workers.

Before the development of the parallel computation, it is necessary to investigate

the multimnodal property of the PVC function from both theoretical and bench-

mark studies. Let’s first take a theoretical investigation for one-dimensional case.

Substituting the training points into the PVC function yields:

LPVC (X ) =
[
Π′ [k (X ,x′)]− k (X ,X )K−1Π′ [k (X ,x′)]

]
π (X )

= [Π′ [k (X ,x′)]−Π′ [k (X ,x′)]]π (X )

= 0,

(13)

indicating that, at each training point, the PVC function equals zero. As the PVC

function is continuous, based on the Rolle’s theorem in calculus, there must exist

a point where the first derivative is zero, i.e., a extreme point. Thus, with more

training points being added, more local extreme points may appear. The above

fact demonstrates the multimodal property of the PVC function. Two examples of

PVC functions for one- and two-dimensional integrals are schematically shown in

Figure 1 for illustrating the multi-modal behaviors. For a one-dimensional integral,

by constraining the variable x within adjacent training points, the estimation of all

the extreme points can be transformed into a set of unimodal optimization problems.

However, for multi-dimensional integral, the computation of all the local extreme

points is a general multi-modal optimization problems.

One may think that, in terms of PVC values, the points near to the global

maximum may contribute more to the posterior variance of the integral estimate

than the other local maximum points, and it is more valuable to use these adjacent

points. However, those points share also much similarity with the global maximum,

and once the global maxima being added to the training data set, those adjacent

points will then have little or even negative contribution to the integration accuracy.

Thus, the key issue left for parallel implementation of the adaptive design scheme

is to compute all the local maximal points, or at least several local extreme points

with the largest PVC values. It should be noted that, the target function, e.g., the

PVC function, has closed-form expression, and is computationally much cheaper
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Figure 1. Examples of one-dimensional (left) and two-dimensional PVC functions.

than the integrand. In the next section, the multimodal optimization algorithms

will be investigated.

3. Multimodal optimization algorithms for parallel computation

The multimodal optimization is a common problem in many research and engi-

neering areas, and many approaches, especially those driven by metaheuristic al-

gorithms such as GA and PSO, have been established (see e.g., Refs. Das et al.,

(2011) and Ser et al., (2019) for literature reviews). These methods aim at search-

ing multiple global and local optima of a target function, and thus can served as

engine for parallel implementation of the adaptive BC. Niching methods, such as

speciation and crowding, provides flexibility to the metaheuristic algorithms for

maintening population diversity. In this section, three multimodal optimization al-

gorithms established based on the metaheuristic algorithms and niching methods,

i.e., the Species Conserving Genetic Algorithm (SCGA) (Li et al., (2002)), the

MultiGrouped Particle Swarm Optimization (MPSO) (Seo et al., (2006)), and the

Whale Swarm Algorithm with Iterative Counter (WSA-IC) (Zeng et al., (2017)),

will first be examined for assisting the parallel implementation of adaptive BC, and,

considering that the closed-form expression of the gradients of the PVC function are

available, a gradient-based method, called Swarm Quasi-Newton Method (SQNM)

will then be developed. The target is to find multiple maxima of the PVC func-

tion, but for ease of illustration, it is transformed to find the multiple local minima

of f (x) = −LPVC (x). The four algorithms, together with the k-means clustering

method for comparison, are described as follows.
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3.1. Species Conserving Genetic Algorithm

The classical GA algorithms was originally developed for finding the global opti-

mum of a multimodal function, and it usually fails to identify multiple local optima.

Alternative niching methods, such as preselection (Beasley et al., (1993)), crowding

(Mengshoel and Goldberg (2008)) and species conserving (Li et al., (2002)), have

been successfully injected into the GA with the aim of evolving parallel subpop-

ulation, and this way to find multiple local optima. Here, the Species Conserving

equipped GA will be utilized and key steps are briefly reviewed below.

Step 1.1: Initialization.

Let k = 0. Specify the maximum number of iteration. Initialize the k-th gen-

eration G (k) by, e.g., simple random sampling, and evaluate the f -function values

for all points in G (k). Set species distance σs = d/2, where d = 5%L, and L is the

maximum distance of the search area.

Step 1.2: Judgment of stopping criteria.

Check whether the iteration is larger than the maximum iteration, if holds, go

to Step 1.6; otherwise, go to Step 1.3.

Step 1.3: Determining the species seeds.

Let Xs = ⊘. Sort G (k) in ascending order of the f -function value and consider

each individual in turn. For an individual x∗, one need to check whether there is

one seed x in Xs satisfying d (x∗, x) ⩽ σ/2, if not, add x∗ to Xs. Then go to next

individual until all individuals are considered. One can refer to Ref. Li et al., (2002)

for details.

Step 1.4: Implementation of Standard GA.

Implement the main procedures of the classical GA, i.e., selection G (k + 1),

crossover G (k + 1) and mutate G (k + 1) (see Ref. Li et al., (2002) for more details).

Step 1.5: Conserving species.

Set all individuals in G (k + 1) as unmarked. Consider each species seed x in Xs,

find the worst unmarked individual y in G (k + 1) belonging to the species S′ (x, σs)

determined by x. If x is better than y, replace y with x. If y does not exist, replace

the worst unmarked individual in G (k + 1) with x. Mark the replaced y. Repeat

the above procedure until all species seeds in Xs are considered. Let k = k+1, and

go to Step 1.3.

Step 1.6: Identifying the global optima.

Determine the species seeds Xs of the final population G (k), the seed x in Xs

satisfying the following inequality will be identified as a global optima,

abs (f (x)− fmin) ⩽ abs (fmin)× 99%, (14)

where fmin is the minimum value of the f function.

■

The above procedures provide a rough description of the SCGA method, and

one can refer to Ref. Li et al., (2002) for more details, especially on the algorithm
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parameters. With this algorithm, multiple local peaks of the PVC function can be

identified, but the number of peaks cannot be pre-specified. In the next subsection,

the MPSO algorithm, which allows pre-specifying the number of local maxima to

be identified, will be introduced.

3.2. Multigrouped Particle Swarm Optimization

Particle Swarm Optimization (PSO), originally developed by Kennedy and Eber-

hart in 1995 (Kennedy and Eberhart (1995)), is also a gradient-free and heuristic

algorithm for searching the global optimum of a continuous function. The original

version is not applicable for solving multiple peaks of the PVC function if it is mul-

timodal. The MPSO algorithm, developed by Seo et al. in 2006 (Seo et al., (2006)),

overcomes this limitation, and it even allows to pre-specify the number of peaks to

be found. With the assumption that the readers are familiar with the classical PSO

algorithm, the main procedures of the MPSO algorithm are briefly summarized as

follows.

Step 2.1: Initialization of algorithm parameters

Initialize the algorithm parameters including the number of groups (number of

nadirs to be specified), size of population for each group, and the radius of each

gbest, where gbest refers to the best position of a group.

Step 2.1: Initialization of swarm location and velocities

Initialize the locations and velocities of all particles by using, e.g., simple random

sampling. The initial pbest of a particle is set to be its current location, and the

gbest of a group is selected from the pbests with in the corresponding group (see

Step 6 in Ref. Seo et al., (2006) for details).

Step 2.3: Update particle velocity

Update the velocities of all particles by:

vk+1
ij = wvk

ij+C1φ1

(
pbestkij − xk

ij

)
+C2φ2

(
gbestki − xk

ij

)
+C3φ3

(
xk
ij − gbestkm

)
,

(15)

where vk
ij , x

k
ij and pbestkij refer to the velocity, the position and the pbest of the jth

particle in the ith group at the k-th iteration respectively; gbestki indicates the gbest

of the i-th group; w is the inertia weight for balancing the global exploration and

local exploitation; C1 and C2 are the acceleration parameters used for defining the

relative pull of each particle toward pbest and gbest respectively; C3 refers to the

repulsive coefficient that determines the pull of a particle for pushing it out from

territory of the group intruded by this particle; gbestkm implies the gbest of the m-th

group intruded by the jth particle. For the setting details of the parameters in this

step, one refers to Ref. Seo et al., (2006).

Step 2.4: Update particle position

Update the position of each particle following:

xk+1
ij = xk

ij + vk
ij (16)

Step 2.5: Update pbests
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Compute the f -function value for each particle if its current position does not

intrude the territory of the other gbests, and update the pbest of this particle as

xk+1
ij if f

(
xk+1
ij

)
< f

(
pbestkij

)
; otherwise, keep its pbest unchanged.

Step 2.6: Update gbests

A complex updating strategy was developed in Ref. Seo et al., (2006) for avoiding

overlap of some gbests, and one can refer to it for details.

Step 2.7: Judgment of convergence

If all particles are gathered around the the gbest of each group, or a maximum

iteration is reached, finish the algorithm; otherwise repeat Steps 2.3-2.6.

■

In the above procedure, the initial radius of territory of a gbest is set to be 5%

of the search space range. One can refer to Ref. Seo et al., (2006) for details.

3.3. Whale Swarm Algorithm with Iterative Counter

The Whale Swarm Algorithm (WSA), inspired by the whale’s communication mech-

anism, is also a gradient-free method for searching the global optima of a target

function, and one can refer to Ref. Zeng et al., (2017) for details. This algorithm

was later equipped with iterative counter by the same authors in Ref. Zeng et al.,

(2020) for searching multiple local optima. The main procedures of this algorithm

are briefly summarized as follows.

Step 3.1: Initialization

Initialize the whale swarm S (by e.g., simple random sampling) and the max-

imum iteration N . Evaluate the f -function values for all whales. Let k = 0, and

creat a null global optima set Sopt.

Step 3.2: Judgment of termination criterion

Check if k > N holds, if no, turn to Step 3.3, and let i = 1; otherwise turn to

Step 3.7.

Step 3.3: Find the “better and nearest” whale Y for Si

Let XS = ⊘. Check each whale Su in S if it satisfies f (Su) < f (Si), if yes, add

it to XS . Find the whale in XS that is nearest to the i-th whale Si. If Y exists, go

to Step 3.4; otherwise, go to Step 3.5.

Step 3.4: Movement of Si

Compute the candidate position Si of the i -th whale for the (t+ 1)-th iteration

by:

xk+1
j = xk

j + rand (0, ρ0)×
(
ykj − xk

j

)
, (17)

where ρ0 is the intensity of ultrasound and usually set to be 2; ykj refers to the j-th

component of Y . Compute the f -function value at the candidate position, and if it

is better than the f -function value of Si, update the position of the i-th whale with

this candidate position and set Si,c = 0; otherwise, keep Si unchanged.

Step 3.5: Check the iterative counter of Si
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Denote Ts as the stability threshold which can be reasonably set as 100n. Check

if Si,c = Ts holds or not, if yes, further judge whether Si is a current global optimum

by the methods in Step 3.6, then reinitialize Si and evaluate Si. If not, Si,c = Si,c+1

. If i = |S|, let t = t+ 1, go to Step 3.2; otherwise, repeat Steps 3.3-3.5.

Step 3.6: Judge whether each individual in S is a current global opti-

mum.

Let fgbest be the function value of the best whale among Sopt, and denote Tf

as the function threshold having a value between 0 and f (Sbest). The way to judge

whether a whale Si is a current global optimum is described as follows.

If f (Si) < fgbest and f (Si)−fgbest > Tf , Clear Sopt, let fgbest = f (Si) and add

Si to Sopt.

If f (Si) < fgbest and f (Si)− fgbest ⩽ Tf , let fgbest = f (Si) and add Si to Sopt.

If f (Si) ⩾ fgbest and f (Si)− fgbest ⩽ Tf , add Si to Sopt.

Repeat the above process until all whales in S are considered, then output Sopt.

■

One need to note that the f -function value of some individuals in Sopt maybe

are too small to apply, therefore, the final solution set will be consisited of the

individuals in Sopt whose f -function values are better than the given threshold e.g.,

1%fmin. Please refer to (Zeng et al., (2020)) for details.

3.4. Swarm Quasi-Newton Method

All the three above-reviewed multimodal optimization algorithms are gradient-free,

and thus are applicable to non-smooth target functions. However, the gradient of the

PVC function expressed by equation (11) is available and can be formulated in closed

form. This provides possibility of using more efficient gradient-based methods, such

as the Quasi-Newton method for solving the optimization problem. However, the

classical Quasi-Newton can only find the global minimum of the f -function, but not

multiple local minima. Here, we improve it for searching multiple nadirs, and the

detailed procedures are given below.

Step 4.1: Initialization

Let k = 0. Generate a sample set S =
{
xk
1 ,x

k
2 , · · · ,xk

N

}
of size N by e.g.,

simple random sampling. Evaluate the values of the gradient vector ∇f
(
xk
i

)
for

each sample. One can refer to the Appendix of our previous work (Wei et al.,

(2020)) for the closed-form expression of the gradients of the PVC function. Create

an identity matrix Hk
i of order n for each sample point xk

i . Create a null solution

set Sopt.

Step 4.2: Iteration



13

Update the location of each individual sample xk
i by:

xk+1
i = xk

i − λk
iHk

i ∇f
(
xk
i

)
Hk+1

i = Hk
i +

(∆xk
i −Hk

i ∆fk
i )(∆xk

i −Hk
i ∆fk

i )
T

(∆xk
i −Hk

i ∆fk
i )

T
∆fk

i

,

(18)

where ∆xk
i = xk+1

i − xk
i , ∆fk

i = ∇f
(
xk+1
i

)
−∇f

(
xk
i

)
, and λk

i is the step param-

eter with its values computed by solving df
(
xk
i − λk

iHk
i ∇f

(
xk
i

))
/dλk

i = 0. One

notes that,for f function, the values of the gradient ∇f
(
xk
i

)
may sometimes be too

small, causing large numerical bias for iteration. Thus, it is suggested to replace the

gradient with its normalized version ∇f
(
xk

)
/
∣∣∇f

(
xk

)∣∣.
Step 4.3: Judgment of stopping criteria for individuals

For each individual, judge if
∣∣∆xk

i

∣∣ < ϵ hold. If it holds, set xk+1
i as a candidate

solution, and remove it from S. Compute the posterior correlation coefficient of this

candidate individual with all the points in Sopt (see equation (4)). If this value is

smaller than, e.g., 0.9, add this point to Sopt.

Step 4.4: Judgment of stopping criteria for swarm

Check if S is empty. If yes, stop the implementation and produce the solution

set Sopt; otherwise, go to step Step 4.2.

■

Similar with the first three algorithms, the final solutions for SQNM method are

set to be the same as equation (14).

3.5. K-means clustering

The existing parallel computing methods are mostly based on the the clustering al-

gorithms, including k-means clustering (Dang et al., (2022)), k-medoids clustering

(Chen et al., (2022)), spectral clustering (Li et al., (2021)) and density cluster-

ing (Teixeira et al., (2020)), etc. For demonstrating the efficiency of the proposed

parallel strategies motivating by multimodal optimization method, the clustering

algorithm is used to compare. Considering that k-means clustering is easy to be un-

derstood and implemented, therefore, k-means clustering is applied for comparing

in this paper. The main steps of it are given as follows.

Step 5.1: Initialization

Initialize the number of clusters p, and the sample set S = {x1,x2, · · · ,xN} of

size N by random sampling. Randomly choose p points {c1, · · · , cp} from S as the

initial centroids.

Step 5.2: Clustering

For each sample of S, find a centroid minimizing the square of the Euclidean

distance between the sample and the centroid. Denote the i-th cluster as Z(i) ={
z
(i)
1 , · · · , z(i)

Ni

}
, where Ni represents the size of Z(i).

Step 5.3: Update
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Update the centroids by the PVC-weighted mean of a cluster, i.e.,

ci =

∑Ni

j=1

[
PVC

(
z
(i)
j

)
× z

(i)
j

]
∑Ni

j=1

[
PVC

(
z
(i)
j

)] (19)

Step 5.4: Iteration

Repeat Step 5.2 and Step 5.3 until the relative differences of the current

centroids and previous centroids are accepTable

■

Output the final centroids, and the available solutions for k-means clustering

are also set to be the same as equation (14).

4. Parallelized adaptive Bayesian cubature

With any one of the above four multimodal optimization algorithms or the k-means

clustering method, a solution set Sopt with multiple design points for parallel calls of

the integrand can be achieved based on the posterior features of the integrand and

the integral. These algorithms can be then integarated for parallel implementation

of the adaptive BC, and the flowchart of the algorithm is schematically shown in

Figure 2, and procedures are described in details as follows.

Figure 2. Flowchart of the parallelized adaptive experiment design algorithm.

Step 6.1: Initialization
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Initialize the initial training sample size N0 (depends on the dimension of x), the

stopping threshold ϵ. Generate N0 samples of x by, e.g. simple random sampling or

Latin hypercube sampling (LHS) following uniform probability distribution within

the support of x. Evaluate the integrand values for these N0 design points, and

initialize the design point set D with these N0 points. One notes that the integrand

values can be computed by parallel computation, which means to compute the inte-

grand value for each design point by one worker. Initialize the number of integrand

calls as N = N0, and the number of steps as Ns = 1.

Step 6.2: Bayesian inference of the integrand

Train or update the GPR model ĝ (x) for the integrand based on D, and record

the values of the hyper-parameters. In this work, the squared exponential kernel is

used for training.

Step 6.3: Bayesian inference of the integral

Evaluate the posterior mean µd and the posterior variance σ2
d for the integral d

by Eqs. (5) and (6).

Step 6.4: Judgment of stopping criteria

The posterior Coefficient of Variation (COV) of integral is set to be the stopping

criteria, and is defined as COV = σd/µd. Check whether COV is less than the

specifed threshold ϵ, i.e., COV < ϵ is satisfied or not. If yes, finish the algorithm

and produce the posterior features µd and σ2
d; otherwise go to Step 5.5. One notes

it is usually suggested to use a delay judgment strategy, which means to finish the

algorithm if the stopping criteria is satisfied in succession for, e.g., twice.

Step 6.5: Parallel experiment design

Implement one of the four multimodal optimization algorithms or the k-means

clustering method for achieve a design point set Sopt, and evaluate the integrand

values for each design point contained in Sopt. Add these training points to D. Let

N = N + |Sopt|, and Ns = Ns + 1, go to Step 6.2.

■

Based on the above description, the algorithm parameters of the proposed par-

allelized adaptive BC need to be pre-specified include the number N0 of the initial

training sample set and the stopping criterion ϵ. Generally, N0 can be set to be a

small value, e.g., 3, 5 or n+1, if the prior mean is set to be zero or constant, for the

highly non-linear g-function, N0 is recommended to be a big value. The stopping

threshold ϵ measures the normalized variation of posterior mean of expectation, and

it is reasonable to choose it in the interval [0.01, 0.05], and for the highly non-linear

g-function, based on our experience, it is advised to choose a small value.

One notes that, in Step 6.5, as the evaluation of the PVC function does not

require calling the integrand, the implementation of any multimodal optimization

algorithms does not involve calling of the expensive integrand. It is also noted that,

among the five parallelized algorithms, only the MPSO and k-means clustering al-

gorithm allow pre-specifying the number of points to be designed. Once the above
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procedures stop, not only the posterior feature µd and σ2
d of the integral in equa-

tion (1) can be output, but also the variance of integral given in equation (7) and

equation (8).

5. Benchmark study

In this section, we introduce several examples for demonstrating the effectiveness of

the proposed parallel design schemes driven by multimodal optimization algorithms

for adaptive BC, compared with the parallel strategy with k-means clustering al-

gorithms. For ease of illustration, we add the two and three training points with

the maximum PVC values to the training data set at each iteration for the MPSO

and k-means clustering algorithms, indicating that two and three workers are re-

quired for the parallel computation respectively; for the other three multi-modal

algorithms, all the produced design points with PVC values higher than one per-

cent of the maximum values of the PVC function. The estimators of integral and

variance, as well as the posterior COVs are used to measure the computational ac-

curacy of parallel and non-parallel algorithms, and the number of iteration is used

to measure their the computational efficiency.

5.1. A one-dimensional numerical example

Considering a one-dimensional integral with the integrand formulated as:

g (x) = x cos (4x) + x2 sin (4x) + 1, (20)

where x follows standard normal distribution. Our target is to estimate and variance

the expectation of the integrand, and the analytical results are 1 and 2 respectively.

We use this one-dimensional example to illustrate and compare the different

methods for design. The adaptive BC is implemented in both parallel and non-

parallel schemes, and for parallel implementation, all the five algorithms are applied.

For all the implementation, we set N0 = 3 and ϵ = 2%. Besides, the sparse grid

cubature rule (for this one-dimensional problem, it degrades into the Gauss-Hermite

rule) is also implemented for comparison.

For illustration of each design strategies, the design details of the first step of

each implementation are schematically compared in Figure 3. It is shown that the

PVC function inferred from the three initial design points has three peaks. It is also

shown that the MPSO algorithm successfully finds the two most important peaks

as the number of design points to be found for this implementation is set to be

two. The other three multimodal optimization algorithms, i.e., SCGA , WSA-IC

and SQNM, have all successfully found all the three peaks. It is also noted by the

first panel that the classical PSO algorithm only finds the most important peak.

This above facts demonstrate that all the four multimodal algorithms are effective

for identifying multiple maxima, and thus are effective for parallel design of the

integration points. While for the k-means clustering algorithm, though the PVC
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value of identified design point are large, these points are irregular. For illustrating

the computational cost, the computer time for performing each parallel algorithm

is also marked in the corresponding panel of Figure 3. It can be seen from that,

although each of the five parallelized algorithms takes more time than the PSO for

searching the global maximum, their costs are all less than 2.5 seconds, and thus are

negligible compared to the cost for evaluating the expensive integrand in real-world

application.

Figure 3. Comparison of the experiment design results for the one-dimensional example by different

parallel approaches (PSO, SCGA, MPSO, WSA-IC, SQNM and k-means clustering).

Then we implement the parallelized adaptive BC to solve this one dimensional

integral. The results of all the five parallel implementations are reported in Ta-

ble I and Figure 4, where the results of non-parallelized adaptive BC with PVC

function and sparse grid cubature are also listed for comparison. The evolution of

the posterior COVs against the iteration step is compared in Figure 5. As can be

seen, the convergence rates of SCGA, WSA-IC and SQNM are higher than MPSO

and k-means clustering, meaning that the parallel algorithms with the prespeci-

fied number of design point are less inefficient compared with the adaptive scheme.

Among the five parallel methods, the number of iterations required by k-means

clustering is the largest, it is probably because the contribution of the identified

design points to the posterior variance of integral is less than the points generated

by the multimodal optimization algorithms. It is also shown that, for this example,

all the parallel computation methods for adaptive BC are more efficient than the

non-parallel one demonstrating the efficiency of parallel scheme. One can see from

Table I, all methods produce accurate estimator for the integral, but the accuracy

of variance for PVC is low than other methods. Based on the above results, it can
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be indicated that the developed parallel strategies for adaptive BC is effective for

this example. It is also seen, for this one-dimensional problem, the adaptive BC

procedures show no superiority to the sparse grid in terms of efficiency, but they

provide estimations of numerical errors.

Table I. Probabilistic integration results for one-dimensional model by adding all generated points.

Methods Means Variance COVs (%) iterations Number of samples

SCGA 0.9912 2.0521 0.60 5 17

MPSO 0.9930 2.0909 0.59 7 17

WSA-IC 0.9961 2.0372 0.34 5 21

SQNM 0.9975 2.0902 0.76 4 18

k-means clustering 1.0069 2.0060 0.51 9 18

PVC 1.0060 1.9662 0.79 12 15

Sparse grid 1.0000 – – 5

True value 1 2

Figure 4. Comparison of the integration results for one-dimensional model by parallelized algorithm

and non-parallel algorithm with all the identified PVC maxima being added to the training data

set in each iteration.

5.2. A ten-dimensional numerical example

Considering a ten-dimensional integral with the integrand formulated as:

g (x) = sin (x1) + 7 sin (2x2) + x4
3 sin (x3) + sin (x4) + 6 sin (2x5) + x4

6 sin (x6)

+ sin (x7) + 5 sin (2x8) + x4
9 sin (x9) + sin (x10) + 10,

(21)
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Figure 5. Evolution of posterior COVs of the probabilistic integration result for one-dimensional
model by adding all generated points.

where xi, i = 1 · · · , 10 are independent standard normal random variables. The

analytical result of the integral is 10, the reference value of variance is 143.8333

evaluated by MCS with 10000 samples, and we use this example to illustrate the

effectiveness of parallel experiment design for multi-dimensional cases.

For this example, N0 is set to be 70 for all the implementation, and we also set

the total steps of iteration for each implementation as 70. For MPSO and k-means

clustering, the numbers of design points to be added for training for each iteration

are set to be 2 and 3, while for the other three multimodal optimization algorithms,

all the identified PVC maxima are added to the training data set. The integra-

tion results generated by both parallelized and non-parallelized adaptive BC are

then summarized in Table II, together with the results of sparse grid for compari-

son. From these results, we can come to the conclusion that, in terms of iteration

steps and posterior COVs, the parallel implementation with any of the four multi-

modal optimization algorithms outperforms the one without parallelization, while

the parallel design scheme with k-means clustering show lower efficiency than the

original adaptive BC, it is probably because the identified design point of k-means

clustering contribute less to the posterior variance of integral than the maximum

point of PVC. The evolution of the posterior COVs of SCGA, MPSO, WSA-IC and

SQNM is then reported in Figure 6. It is also clear that after certain steps of itera-

tions, all the parallel strategies, except the k-means clustering, consistently produce

smaller posterior COVs than the one without using parallelization, demonstrating

the effectiveness of the proposed parallel algorithms equipped with multimodal op-

timization algorithms for this ten-dimensional problems. One can also seen that,

using the sparse grid method with 221 integrand calls, the estimation is accurate
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enough. By the way, from the view of variance of integral, all method produce un-

acceptable results, it is probably because the linearity of integrand is too strong,

or the uncertainties of inputs are to big, and one can add more training points to

reduce the estimation error and improve the accuracy.

Table II. Integration results of the ten-dimensional numerical model.

Methods Means Variances COVs (%) Iterations Samples

SCGA 10.2007 122.4331 1.79 70 278

MPSO 10.0079 115.1602 1.90 70 212

WSA-IC 9.9271 118.2989 1.29 70 298

SQNM 10.0558 104.0873 1.17 70 254

k-means clustering 9.8386 118.1808 2.72 70 220

PVC 9.8291 104.2588 2.41 70 141

Sparse Grid 10.0000 — — — 221

Reference value 10 143.8333 — — 10000

Figure 6. Evolution of the posterior COVs against the iteration step for ten-dimensional numerical

model.

5.3. Application to a wide flange steel column

Considering a wide flange steel column depicted in Figure 7 selected from Ref.

Papaioannou et al., (2019), a compression force P , consisting of the permanent

load Pp and the environmental load Pe, i.e., P = Pp+Pe , is applied to the column.

Due to the construction imperfections, the column is assumed to have an initial
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deformation. The deformation has a parabolic shape with maximum amplitude δ0
at the center of the column.

Figure 7. Wide flange steel column with initial deflection.

The column has a length of L = 7.5m. The critical limit state that governs the

performance of the column is formulated as:

g (x) = 1−
(

P

fyAs
+

Pδ0
fyWs

· Pb

Pb − P

)
, (22)

where x denotes possible outcomes of the uncertain parameters x =

[Pp, Pe, δ0, fy, E]. Pb is the Euler buckling load and is given by

Pb =
π2EIs
L2

, (23)

As, Ws, and Is denote the area, section modulus, and moment of inertia of the cross

section around its weak axis, respectively, and are given by
As = 2btb + hth

Ws =
ht3h
6b + tbb

2

3

Is =
ht3h
12 + tbb

3

6

(24)

with fy indicating the yield strength and E the Youngs modulus of the steel ma-

terial. The target is to estimate the expectation of g (x), which can be formulated

as:

d = E [g (Pp, Pe, δ0, fy, E)] . (25)

The related parameters are shown in Table III, five of which do not follow Gaussian

distribution, thus the Rosenblatt transformation is first applied to transform the

integration space into standard normal space.

This problem is solved by the five parallel and the one non-parallelized adaptive

BC algorithms by setting N0 = 5 and ϵ = 1%. The results are reported in Table IV.
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The evolution of the posterior COVs against the iteration steps is shown in Figure

8. The reference solution is generated by MC simulation with 50000 samples. It is

shown that all the adaptive BC algorithms produce robust estimations of integral

and its variance with high accuracy, but obviously, the four multimodal optimization

based parallel algorithms need much less steps of iteration than k-means clustering

and the original adaptive BC, demonstrating the efficiency of the parallel schemes

driven by multimodal optimization algorithms.

Table III. Information of the related parameters of the wide flange steel column.

Input variables Distribution type Mean STD Supports Values

Permanent load Pp (kN) Uniform — — [0.1 1000] —

Environmental load Pe (kN) Uniform — — [0.1 1000] —

Maximum amplitude δ0 (mm) Uniform — — [0 0.3] —

Yield strength fy (MPa) lognormal 400 32 — —

Youngs modulus E (MPa) lognormal 210000 84000 — —

Flange width b (mm) — — — — 300

Flange thickness tb (mm) — — — — 15

Web height h (mm) — — — — 300

Web thickness th (mm) — — — — 15

Table IV. Integration results for the wide flange steel column, and the reference values are estimated

by MCS with 105 samples

Algorithms Means Variances COVs (%) Iterations Samples

SCGA 0.6329 0.0555 0.55 8 46

MPSO 0.6308 0.0570 0.64 8 21

WSA-IC 0.6302 0.0575 0.51 9 27

SQNM 0.6331 0.0547 0.84 8 20

k-means clustering 0.6212 0.0533 0.72 11 38

PVC 0.6239 0.0738 0.87 15 20

Sparse Grid 0.6322 — — — 781

Ref.value 0.6326 0.0543 0.16 – 50000
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Figure 8. Evolution of the posterior COVs against the iteration step for the wide flange steel
column.

5.4. An elastoplastic analysis problem

For further illustrating the effectiveness of the proposed parallel algorithms for real

engineering problems, we then apply them to a nonlinear analysis of a one quarter

annular plate in elastoplastic subjected to small strains, which is adapted from Ref.

Du et al., (2020). The Geometry of the structure is shown in the left panel of Figure

9, with the left end clamped and the right end being subjected to a uniform load

P . Two dimension parameters, including the inner radius r and the outer radius

R, three material parameters, i.e., the Young’s modulus E, the Poission ratio v

and the Yield stress Y0, and the load parameter P are all random variables with

distribution settings shown in Table V. The target is to estimate the expectation

of the absolute displacement in the vertical direction the at node C.

Instead of using finite element analysis, a more advanced approach, called Non-

linear Isogeometric Analysis (NLIGA) is utilized for establishing the deterministic

simulation model, and one can refer to Ref. Du et al., (2020) for detailed description

of this method. A deterministic simulation with all the six random parameters fixed

at their mean values is implemented and the displacement nephogram in the vertical

direction is shown by the left panel of Figure 9.

For non-parallel implementation of the adaptive BC, the PVC is utilized, and

for parallel implementation, each of the four multimodal optimization algorithms

and the k-means clustering are used. The initial size of training set is set to 6, and

the stopping criterion is set to be 0.01. The results are listed in Table VI, together

with the results of sparse grid integration, and the reference solutions generated by

MCS, for comparison. We first compare the results of sparse grid with the reference

solutions. It is seen that the COV of the MCS estimate is around 0.23%, indicating
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Figure 9. The structure of the quarter annular plate.

that its result is sufficiently accurate since the MCS estimator is unbiased. For the

sparse grid, the six-dimensional integration points are specified using Gaussian-

Hermite rule with the one-dimensional point size set to be 5, resulting in 1433

model calls respectively, as shown in VI. As can be seen, with 1433 model calls

being consumed, the sparse grid method even provide poor estimation, indicating

the inaccuracy of sparse grid for this example.

We then compare the results generated by adaptive BC with and without par-

allelization. It is seen that all the proposed multimodal optimization based par-

allel implementations, the k-means clustering based parallel implementation and

the non-parallel implementation produce accurate and robust estimation to the

expected vertical displacement its variance of point C. Specifically, the four mul-

timodal optimization based parallel implementations are much more efficient than

the k-means clustering based parallel implementation and the non-parallel imple-

mentations in terms of iteration steps. It is also shown that among the five parallel

implementations, the one driven by SCGA are the most efficient one in terms of

both iteration steps.

With the above analysis, it can be concluded that, for this example, the adaptive

BC schemes are all more efficient than robust than the sparse grid cubature, the

parallel implementations are all more efficient than the non-parallel implementation

of the adaptive BC and the parallel implementations driven by multimodal opti-

mization algorithms are all more efficient than the parallel implementation equipped

with the k-means clustering.

5.5. Final remarks

The high efficiency of the proposed parallelized adaptive BC implemented with

four multimodal optimization algorithms, together with its superiority to k-means

clustering, is demonstrated by the above four benchmarks. The reason behind this

results is that the added training points identified by multimodal optimization algo-

rithms make a greater contribution to the posterior variance, than these produced

by k-means clustering. Besides, with the well trained GPR model for estimating

the integral, the corresponding variance of integral can also be deduced, and the
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Table V. Setting of parameters for the elastoplastic analysis example.

Input variables Distribution type Mean STD Supports Values

Inner radius r (m) Uniform — — [0.9 1.1] —

Outer radius R (m) Uniform — — [1.9 2.1] —

Load P (kN) lognormal 45000 9000 — —

Young’s modulus E (GPa) lognormal 200 40 — —

Poission ratio v Uniform — — [0.15,0.35] —

Yield stress Y0 (kN) lognormal 200000 40000 — —

Table VI. Adaptive BC results for the elastoplastic analysis problem.

Methods Means (×10−3) Variance (×10−5) COVs (%) Iterations Samples

SCGA 4.3082 1.1287 0.79 9 46

MPSO 4.3066 1.0757 0.65 15 36

WSA-IC 4.2668 1.0192 0.95 12 39

SQNM 4.2149 1.0139 0.53 14 35

k-means cluster 4.2361 0.8468 0.86 16 45

PVC 4.3505 1.1449 0.79 19 25

Sparse Grid 3.5946 – — — 1433

Ref.value 4.2547 0.9303 0.23 100000

Figure 10. Comparison of C.O.V.s of the probabilistic integration result for the elastoplastic anal-

ysis problem.

proposed method still show superiority to the k-means clustering and the non-

parallelized one.
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The posterior COVs measure the normalized error of estimators, the smaller the

COVs, the more precise the estimators. Therefore, we believe that the results with

small COVs are more accurate than the one with big COVs. As can be seen from the

above four benchmarks, the value of the posterior COVs for different parallelized

adaptive BC are different, it is because, the four multimodal optimization algorithms

and k-means clustering are developed by different mechanisms, their computational

performance will show divergence. It also can be seen that, the COVs of the five

parallel algorithms are different from the reference solution, where the COVs of the

reference solutions are computed by MCS. According to our experiments, although

the evaluated COVs of parallel algorithms are different from the reference solution,

their accuracies are all acceptable if the value of their COVs are less than the

termination thresholds.

In this paper, the relative low-dimensional problems are settled, and for high-

dimensional problems, it is a pain spot of GPR model to perform statistical infer-

ence, as the kernel function used by GPR model is based on the Euclid distance,

and it carries less information with the dimension increasing. Therefore, it is rec-

ommended to use the built-in dimension reduction techniques or replace the GPR

model with a Bayesian neural network, and this will be investigated in future work.

The proposed parallelized adaptive BC iteratively produces the design points based

on a relative tiny initial training set, and it basically does not suffer from the big

data problems. For the special cases with big data, the main difficulty of GPR model

is the estimation of the inverse of covariance matrix, and, there are indeed some

strategies to alleviate this limitation, for examples, the sparse covariance approxi-

mation method and the grid-based covariance approximation method (Rasmussen

and Nickisch (2016)).

6. Conclusions

With the PVC function as acquisition function, this paper has promoted the adap-

tive BC to be implemented in a parallel computation scheme by using multiple mul-

timodal optimization algorithms. The improvement is initialized by the multimodal

behavior of the PVC acquisition function, which is first systematically investigated.

Based on the multimodal behavior and the mathematical interpretation of the PVC

function, it is then concluded that the multiple local maxima all have important

contributions to the integration accuracy, and thus four multimodal optimization al-

gorithms, including the newly developed SQNM in this work, have been introduced

for searching the multiple local maxima. These algorithms are then embedded into

the adaptive BC method for parallel implementation.

The performance of the four multimodal optimization methods for parallel im-

plementation is then compared with the one equipped with k-means clustering

algorithm, the one without parallel computation and also the sparse grid cubature

by two numerical examples and two engineering examples. It is shown that the

parallelized adaptive BC procedures with multimodal optimization algorithms out-
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perform the original adaptive BC and the one with k-means clustering algorithm in

terms of both accuracy and efficiency for most multi-dimensional examples, result-

ing from the fact that the contribution of the local maxima of PVC function to the

posterior variance of integral is bigger than other points. It is also seen that, with

any one of the four multimodal optimization equipped, the parallel implementation

of adaptive BC requires much less iteration steps for the same level of estimation

accuracy, indicating that much less computer time is consumed if multiple works

can be assigned for estimation.

In this work, the PVC acquisition function is used for all the developments.

However, there are also other acquisition functions being developed (see e.g., Refs.

Osborne et al., (2012); Santiago et al., (2020); Gessner et al., (2020)), and their

performance for parallel computation may differ a lot. This will be investigated in

the future work.
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