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Abstract: Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syn-
drome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothe-
sis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology.
We review evidence linking herpesviruses to persistent EC infection and the implications for en-
dothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment—
symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current
research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent sys-
temic complications, including latent modulation and long-term maladaptation. We suggest that
the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly
attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the ne-
cessity for further investigation into the prevalence and load of herpesvirus infection within the ECs
of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection
model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially
unexplored avenues in understanding and treating this complex syndrome.

Keywords: myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS); endothelial cells; herpesvirus

1. Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic condition
characterized by unresolved fatigue, cognitive dysfunction, malaise, orthostatic issues, and
post-exertional symptom exacerbation (PESE), among other symptoms [1]. The etiological
cause is officially unknown, but viral infection is believed to be a precipitating factor, and
its pathology is very much associated with viral activity [2–5].

Herpesviruses are the most implicated in ME/CFS research [2,4–10], and as such, the
relationship between herpesviruses and ME/CFS has been reviewed extensively [2,4,10–12].
However, because the majority of the global population is infected with herpesviruses,
elucidating a mechanistic role for these viruses in ME/CFS is a difficult undertaking.
Herpesviruses have the ability to infect a number of different cell types within the body, but
they exhibit a preference for a particular population. For instance, the primary target cells
of EBV are B-cells [13], whereas human cytomegalovirus (HCMV) attacks non-lymphoid
cells, of which endothelial cells are a favoured cell type for infection [14,15]. That is not
to say, however, that EBV, for example, is unable to infect cell types other than B-cells and
cause significant pathological consequences.

Endothelial dysfunction is another prominent characteristic of ME/CFS pathology
and has been repeatedly demonstrated in both older and more recent studies [16–24]. Blood
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flow, especially cerebral blood flow, is perturbed and reduced in ME/CFS patients [25–31],
as well as the perfusion of various brain regions [32–35]. ME/CFS is not typically viewed
as a vascular disease, but the aforementioned findings as well as evidence of endothelial
and vascular dysfunction in Long COVID [19,36–38], a disease that shares many symptoms
with ME/CFS [39–42], begs the question as to whether or not endothelial and vascular
pathology are important factors for ME/CFS pathology and symptom manifestation.

We have recently demonstrated haematological pathology in ME/CFS platelet-poor
plasma (PPP) samples, specifically pertaining to platelet and clotting processes [43]. We
found significant levels of amyloid fibrin(ogen)/microclots—the clotting material that
is implicated in Long COVID [38,44,45]—in ME/CFS PPP samples. These microclots
have been therapeutically targeted with considerable success in Long COVID patients [46].
Other research groups have also demonstrated platelet abnormalities in ME/CFS
cohorts [47–49], as well as abnormalities in clot formation and kinetics [50]. It is well
known that the integrity of endothelial cells and their normal signalling are paramount
factors for the regulation of coagulation [51,52], and this leads to the recognition that
endothelial dysfunction might be, at least in part, responsible for the abnormalities in
coagulation and platelet function observed in certain ME/CFS patients.

The ideas of impaired circulatory function, reduced tissue oxygen supply, and unmet
metabolic demands revolving around endothelial dysfunction and its inability to correctly
regulate vascular tone have been discussed in the context of ME/CFS pathology and
symptom manifestation before, and have even been tied to symptoms such as fatigue and
cognitive dysfunction [53–56].

Circling back to viruses, very few or no studies have focussed on herpesvirus infection
of the endothelium in ME/CFS or the consequences that this might have for pathology
and symptom manifestation. It is acknowledged that herpesviruses can induce pathology
independent of the endothelium, which is a phenomenon that certainly has relevance to
ME/CFS and other diseases. However, here, we aim to focus on herpesviruses and the
endothelium or associated tissues. There are a number of different herpesviruses, but the
focus here is on the ones significantly implicated in ME/CFS, namely HHV-4 (EBV) and
HHV-6 [2–5,57,58]. For an overview of the ideas presented in this paper, as well as a mind
map for clarification, see Figure 1.
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2. Infection of Endothelial Cells by Herpesviruses, Latent Modulation, Systemic
Complications, and the Potential for Long-Term Maladaptation

With relevance to the present idea, endothelial cells (ECs) are able to be infected by
EBV [59–66] and HHV-6 [67–72]. Other herpesviruses, including HHV-8 and HCMV, also
infect ECs [73–78]. Since herpesviruses are intimately associated with ME/CFS, this already
provides reason to hypothesize that the endothelium in ME/CFS patient is, to some extent,
infected by herpesviruses.

Next, it is important to discuss evidence that suggests or indicates that herpesvirus
latency, specifically, can occur in ECs. Herpesviruses establish lifelong infection/latency
by either integrating their genome into the host genome or, more commonly, having
the genetic material exist in the nucleus as an episome [79]. Differences in latency be-
tween herpesviruses can be found elsewhere [80]. With regard to HHV-6, where some
studies have inferred that ECs act as reservoirs for HHV-6, where low-level replication
ensues [70,71], there are studies that have specifically demonstrated that HHV-6 establishes
latency in ECs [81,82]. Moving onto EBV, there is a lack of studies that demonstrate that this
herpesvirus can establish latent infection in ECs. The latent infection of brain microvascular
ECs and the reactivation thereof have been suggested to play important roles in multiple
sclerosis [65], but the exact mechanisms around EBV latency in these cell types seem to
remain unestablished. Certainly, further research is required in the context of these her-
pesviruses and EC latency, but the evidence at hand supports the writing of this paper’s
hypothesis in the meantime.

Active viral infection has been shown in ME/CFS [3,57,83,84], but has not been specif-
ically studied in an endothelial context. Active infection might not necessarily coincide
with all symptoms, as active infection is not necessarily a continuous process; hence, active
infection might fall short in providing a unitary explanation for daily symptoms. While ac-
tive infection will certainly involve the endothelium, it may be true that latency is sufficient
enough to induce endothelial dysfunction that brings about ME/CFS symptoms—that is, if
herpesvirus latency occurs within ECs, it is possible that latency in non-ECs can indirectly
cause endothelial dysfunction too, as discussed later.

As with the development of bacterial dormancy [85,86], herpesvirus latency is not a
passive process [79,87,88], especially from the perspective of the host cell. There are viral
proteins and nucleic material that regulate latency and reactivation, modulate host cell
functions and proliferation, and ensure viral subversion of the immune system [79,89].
The activity of herpesvirus latency and all the specific molecular processes that occur
within the host nucleus (as well as those that occur in the cytosol and extracellularly) might

https://app.ayoa.com/mindmaps
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bring about specific defects at the endothelial layer. Immune and neurological systems are
certainly involved, but so might the endothelium.

ME/CFS is a chronic condition, and the chronicity of symptoms bears an explanation.
A herpesvirus infection of ECs might be able to explain the persisting nature of ME/CFS
symptoms. Firstly, the endothelium has a low turnover, with the entire population being
replaced every 6 years in adults [90]. Other studies estimate that this occurs anywhere from
months to decades [91], but note that tissue-specific ECs vary in their rates of turnover.
Regardless, the idea is that the endothelium is a normally long-lasting tissue, and viral-
induced dysfunction caused by persisting viruses that can establish latency, may continue
for the rest of an EC’s life. Relevantly, EBV inhibits apoptosis in ECs [92] and can increase
the persistence of dysfunctional ECs. HHV-6 also inhibits apoptosis of host cells [93].

This ability of herpesviruses to establish latency in (endothelial) host cells, along with
the long life span of ECs, means that a herpesvirus-infected endothelium and the resulting
complications may persist for months to years. This is a timeline that is in accord with the
chronicity of ME/CFS symptoms. Hence, it is plausible that ME/CFS ECs undergo chronic
maladaptation as a result of (latent) herpesvirus infection, which might be important for
the maintenance of pathology and symptom manifestation. Furthermore, this may be an
ongoing phenomenon in other diseases too, such as Long COVID.

A particular significance of this reasoning is its focus on the cell type that we are pos-
tulating to be involved and infected. ECs are the interface between blood and tissue. They
enable gas exchange, nourishment, and waste clearance, regulate inflammatory processes,
secrete bioactive amines that contribute to haematological and vascular homeostasis, and
perform many other essential physiological functions. Any dysfunction in these cells and
their functional processes are likely to contribute to or induce pathology. Furthermore,
the vasculature extends into every organ system, and hence, such endothelial dysfunction
might account for the multi-organ and systemic nature of ME/CFS pathology.

3. Latent Infection by Herpesviruses Is Sufficient to Bring about Cellular Dysfunction
and Might Hold Relevance for Endothelial Dysfunction and Symptom Manifestation in
ME/CFS

Herpesviruses are persistent viruses that affect host cells for a lifetime, supporting the
notion that latency might be able to cause chronic pathologies like ME/CFS in susceptible
individuals. It is emphasized that persistent, latent infection is not a passive process and in
fact exerts pathological effects on the host [87,88,94,95]. Hence, herpesvirus reactivation
and active infection may not be necessary for the manifestation of ME/CFS symptoms,
although they are expected to exacerbate any issues. Here, we aim to show that latent
proteins from herpesviruses are sufficient to induce cellular dysfunction and hint at the
idea that they and latency-related processes contribute to the endothelial and vascular
dysfunction—as well as other pathophysiological characteristics—observed in ME/CFS.

Herpesviruses use a number of proteins and microRNAs to drive latency, evade
immune surveillance, regulate host processes, and coordinate the transition to active
infection [79,96]. EBV is a heavily studied herpesvirus, most notably due to its ability to
transform lymphocytes and epithelial cells into malignant phenotypes [97,98], and for its
role in causing infectious mononucleosis. In fact, it is well known that EBV latent genes
and their products specifically interrupt cell cycles and promote oncogenesis [96], and
both latent and lytic gene products illicit notable immune responses [99]. Epstein–Barr
Nuclear Antigens (EBNAs) are a group of proteins encoded by EBV that are essential for
viral genome replication and transcription, the establishment and regulation of latency
(even though some function in lytic processes), and immune evasion [100–102]. Other
latency-associated molecules encoded by EBV include latent membrane proteins (LMPs)
and EBV-encoded small RNAs (EBERs) [103,104].

EBNA-1 significantly increases ROS production in the host cells that they infect, and,
through this mechanism, contributes to DNA damage and the inhibition of the repair
thereof [105–107]. It inhibits apoptosis and enhances cell survival, contributing to its recog-
nition as an oncoprotein [108]. The expression of this latent protein in ECs is associated with
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higher IL-6 production [64] and hints at the potential of an EBV-infected endothelium to
adopt a proinflammatory phenotype with a range of downstream consequences, including
immune activation, increased clotting propensity, and vascular dysregulation. Immune
responses against EBNA-1 also lead to the production of autoantibodies [109,110], which
might have relevance to autoimmunity in ME/CFS [53,111,112]. EBNA-1 is also associated
with upregulations of IL-8, hypoxia-inducible factor-1 alpha, and vascular endothelial
growth factor (VEGF) [113], of which the latter two promote angiogenesis and influence
vascular integrity and dynamics.

EBV’s LMP-1, through NF-κB, increases the expressions of cyclooxygenase (COX) 2,
prostaglandin E2, and VEGF [114]. In fact, LMP-1 is capable of activating several forms of
NF-κB, involving a number of different signalling mechanisms [115], and it also activates
JAK3, p38, mitogen-activated protein kinases, and several STAT-related proteins [116,117].
Importantly, in ECs, LMP-1 leads to NF-κB activation and increased expressions of IL-1β,
IL-6, IL-8, monocyte chemotactic protein-1, RANTES, ICAM-1, VCAM-1, and E-selectin,
as well as the inhibition of caspase-3 and hence a reduction in apoptotic tendencies [92].
This study emphasizes the potential cellular dysregulation that occurs in ECs as a result of
herpesvirus latency, as well as localized and potentially systemic physiological disturbances,
including the activation and binding of immune cells and platelets to the endothelium.

Endocan is upregulated by LMP-1, again through NF-κB, and levels of endocan and
LMP-1 have been positively correlated in patient tissue samples [118]. Endocan can promote
endothelial dysfunction and cardiovascular disease by increasing inflammation, oxidative
stress, and the expression of adhesion molecules [119]. LMP-1 increases the sumoylation
of proteins related to cellular migration and transcriptional activity [120] and also in-
creases glycolytic processes and interferes with the host metabolism [121–123]. LMP-1 also
modulates host epigenetic processes [124–126] and hinders DNA repair mechanisms [127].

Host protein synthesis is inhibited, and autophagy and the regulation thereof are
interrupted by LMP-1 [128], and this latency protein also activates the unfolded pro-
tein response [129]. Lastly, LMP-1 also interferes with mitochondrial regulation and cell
metabolism by altering the phosphorylation of the mitochondrial dynamin-related pro-
tein 1 [130]. LMP-2A exerts potent anti-apoptotic effects and aids in immune evasion by
reducing the reactivity of CD8+ T cells to cells infected by EBV [131,132]. RNAs from EBV,
EBERs, are also associated with cellular dysfunction and proinflammatory processes [133]
and represent other mechanisms through which EBV latency can bring about cellular
dysfunction. Figure 2 represents the mechanisms discussed through which EBV latency
proteins EBNA-1 and LMP-1 can induce cellular dysfunction in endothelial cells.

In ECs, U94, a latency-associated protein from HHV-6 [134], reduces cell migration and
angiogenic potential (by desensitizing the response to VEGF) and thus leads to prolonged
wound healing [81,135]. U94 increases the expression of human leukocyte antigen G, which
is believed to underlie its effects on angiogenesis [68]. This latent protein from HHV-6 also
shows anticancer potential as it inhibits DNA repair genes and aspects of the cell cycle
and leads to apoptosis through the intrinsic pathway [136]. While U94 shows potential in
cancer therapy, its effects on DNA repair and cell function might not be so favourable in
non-malignant, healthy cells.

Ultimately, latency-related molecules and processes are sufficient to induce (endothe-
lial) cellular dysfunction. The latency of herpesviruses, especially when carried out in a
particular cell type (such as ECs), might have consequences for systemic physiology. The
extent to which this is an ongoing process in ME/CFS warrants further investigation.
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Figure 2. Some mechanisms through which EBV latent proteins EBNA-1 and LMP-1 can induce
cellular dysfunction in endothelial cells.

4. Evidence for Herpesvirus-Induced Endothelial Dysfunction

We next present the links between herpesvirus infection and endothelial pathology
specifically (Table 1). This section focuses on direct and indirect mechanisms but is not
exclusive to latency-related molecules and processes.

Table 1. Links between herpesvirus infection and cellular dysfunction in ECs.

Links between Herpesvirus Infection and Endothelial Dysfunction References

EBV

ECs infected with EBV exhibit a proinflammatory phenotype, along with NF-κB and TLR9 activation,
increased interferon, cytokine, and adhesion molecule expressions, and increased clotting propensity [66,92,137]

ECs increase the expressions of markers associated with vascular injury, such as endothelin-1,
thrombospondin 1, and heparan sulphate proteoglycan 2 [66]

Monocytes have the ability to transfer EBV infection to ECs [138]
Microvascular brain ECs infected by EBV exhibit a proinflammatory phenotype and lead to

leukocyte recruitment [65,139]

The upregulation of endothelial adhesion marker VCAM-1 upon infection [140]
EBV-infected macrophages induce proinflammatory sequelae in ECs and increase adhesion

molecule expression [141]

EBV dUTPase compromises the blood–brain barrier integrity [9]
EBV alters cholesterol, polysaccharide, nucleotides, nucleic acid, and proline moieties in infected brain

microvascular ECs [137]

EBV-infected ECs of genital origin express LMP-1 on their membranes [142]
The endothelial microenvironment is influenced by EBV infection [143]
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Table 1. Cont.

Links between Herpesvirus Infection and Endothelial Dysfunction References

Extracellular vesicles from EBV-infected cells damage endothelial gap junctions and prompt
endothelial-to-mesenchymal transitions [144]

The modulation of host autophagy in endothelial cells [145]
Exosomes containing EBV-proteins can cross brain ECs and enter the central nervous system [146]

EBV protein-containing exosomes can lead to long-term endothelial dysfunction [147]

HHV-6

HHV-6 infection is associated with endothelial dysfunction and a greater extent of endothelial damage
than HCMV [81,148,149]

HHV-6 infects ECs but does not induce cytolytic effects, which led to the conclusion that ECs act as a
reservoir for HHV-6 in vivo [67]

HVV-6 is able to maintain a low level of replication within ECs [70,150]
An association between HHV-6 and endothelial dysfunction coupled to microcirculatory defects

was demonstrated [151]

The induction of endothelial dysfunction by HHV-6 and subsequent influence on perfusion were alluded to [152]
HHV-6 antigens, DNA, and virus particles were found in ECs and associated vascular tissue from patients

suffering from various cardiovascular diseases [72,153–157]

Cardiac dysfunction, specifically reduced LVEF, is associated with HHV-6 DNA persistence in
endomyocardial biopsies and is ameliorated when HHV-6 latency is resolved [158]

Considered to be a major cause of viral myocarditis [159]
HHV-6 also infects the CNS and ECs lining its vasculature [160–162]

HVV-6 is implicated in neurological disease [163–168]
Much like EBV, HHV-6 uses TLR9 to upregulate inflammation and promote lymphocyte filtration, as was

revealed in a study where mice infected with HHV-6 subtypes resulted in CNS infection and viral
persistence in brain tissue for up to 9 months

[169]

HHV-6 induces cellular inflammation and upregulates the expressions of IL-8, RANTES, and monocyte
chemoattractant protein-1 in ECs, even in a latent state, without viral DNA replication [67,69,170]

It can also promote the reactivation of EBV [171]
Lymphatic ECs also succumb to latent infection by HHV-6, where EC angiogenic and migratory properties

are modulated [81]

5. Herpesvirus-Induced Endothelial Dysfunction and Its Relevance to ME/CFS

We have discussed the potential of herpesviruses to infect and establish latency in
ECs, how their latent proteins and processes are sufficient to induce (endothelial) cell
dysfunction, and some of the evidence of herpesvirus-induced endothelial dysfunction.
Now, we want to touch on some of the pathophysiological characteristics of ME/CFS and
how they might relate to the present discussion thus far.

6. Endothelial Cells, Vascular Dysregulation, and Perfusion: Do Herpesviruses Have a
Role to Play in the Dysregulation of Blood Flow Observed in ME/CFS?

One of the most important findings in ME/CFS research is that of reduced cerebral
blood flow in patients, even in those without tachycardia and hypotension [25,26,28,29].
The orthostatic symptoms associated with ME/CFS are not due to deconditioning [172,173],
suggesting an underlying defect in blood flow regulation, perhaps related to autonomic
dysfunction [174]. viral infection of vascular cells, such as ECs and smooth muscle cells,
and neurons might contribute to the blood flow and perfusion abnormalities of ME/CFS.

As we have seen, herpesviruses can significantly affect ECs and result in structural and
functional changes, which have consequences for the physiological roles of ECs. Endothelial
dysfunction is associated with and contributes to impaired tissue perfusion [175–179],
and there is even evidence demonstrating an association between herpesviruses and the
impaired perfusion of tissues [66,138,180].

EBV and HHV-6 are associated with reduced cerebral blood flow and the perfusion
of particular regions [180–182]. Furthermore, Farina et al., (2021) demonstrated that skin
perfusion is significantly reduced in patients with higher EBV loads in the blood compared
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to patients with low or undetectable viral loads (hence, the EBV load is inversely associated
with blood perfusion; refer to the adopted Figure 3).
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HHV-6 encephalopathy is associated with reductions in cerebral blood flow and
the perfusion of the frontal lobe [181], as well as perturbations in coronary microcircu-
lation [151]. Similarly, EBV encephalitis is also associated with reduced cerebral blood
flow [180]. Caruso et al. (2002) showed that large-vessel ECs, specifically aortic ECs are
more susceptible to infection by HHV-6 than are ECs of the microvasculature [67], and
might have relevance to the reduced cerebral blood flow in ME/CFS.

Viruses (and bacterial LPSs) can damage the glycocalyx of the endothelial layer [37,183–186].
A damaged glycocalyx impairs perfusion and also increases the risk of mortality in hospitalised
patients [179,187–191]. As mentioned earlier, EBV can also damage endothelial cellular
junctions and hence endothelial barriers [144]. HHV-6 can cause fibrosis in ECs [192] and
may have implications for perfusion and the ability to exchange substances across vessel
walls. These are possible mechanisms through which herpesviruses might bring about
impairments in vessel regulation, blood flow, and perfusion.

Long COVID, a disease extremely similar to ME/CFS, is initiated by SARS-CoV-2
in a minority of patients (which ranges from 10–30%) who are acutely infected. In a
histopathological examination of penile tissue from two males with and two males without
a history of COVID-19 infection, viral RNA was detected, and the virus particles were
found in the proximity of ECs in the COVID-positive patients [193]. Furthermore, the eNOS
expression was also decreased in the COVID-positive samples. The researchers inferred
that systemic (and of course localized) COVID-19-induced endothelial dysfunction can
result in erectile dysfunction. If this is the case, then it emphasizes the extent to which
virus-infected/affected ECs can impair tissue perfusion.

Hence, the infection of ECs and associated cells through herpesviruses might play
contributory roles in the blood flow deficits and vascular dysregulation observed in
ME/CFS [25–29]. An investigation of vascular tissue from patients can further inform
our understanding of vascular dysfunction and impaired tissue perfusion in ME/CFS.
Furthermore, herpesviruses might also contribute to this issue by infecting neurons and
causing the dysregulation of autonomic control [53,54,174].

7. Herpesviruses, Endothelial Cells, Platelets, and Coagulation

Related to the platelet abnormalities of a procoagulant phenotype found in ME/CFS
patients [43,47–50], there have been cases where EBV infection caused/was associated
with severe cardiac and vascular issues, including myocarditis, vasculitis, disseminated in-
travascular coagulation, venous thromboembolism, thrombotic thrombocytopenic purpura,
deep vein thrombosis, and stroke [194–202], emphasizing EBV’s role in haematological
and vascular pathologies. An EBV infection of ECs causes a significant increase in the
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von-Willebrand factor (VWF), VEGF, and platelet endothelial cell adhesion molecule-1
(PECAM) levels [143], which contribute to procoagulant processes. ECs participate in
coagulation and the regulation thereof, and hence minor cellular disturbances, such as
an increase in the endothelial vWF expression caused by EBV [143], will have significant
effects on clotting processes.

It has also been shown that EBV can affect the function of platelets by modulating their
mRNA and non-coding RNA profiles [203]. Whether or not this leads to platelet hyperacti-
vation and subsequent coagulant processes was not assessed in the previous study. There
is also evidence that suggests an association between autoantibodies developed against
platelet antigens and active EBV infection [204,205]. However, the previous mechanism
is believed to contribute to thrombocytopenia, and hence a reduced prothrombotic state
from the platelet perspective. To add, an infection of lymphocytes by EBV can also induce
a procoagulant state. It has been shown that the supernatant from EBV-infected NK cells
lead to increased procoagulant when exposed to monocytes, particularly by upregulating
the expression of the tissue factor [206].

HHV-6 infection is associated with prothrombotic states [83,149]. Specifically, it is
associated with thrombotic microangiopathy [207]—whether this is related to fibrinaloid
microclots, which are found in both Long COVID and ME/CFS cohorts, requires further
investigation [43,44]. To note, a prothrombotic state associated with active HHV-6 in an
ME/CFS cohort has been reported [83], albeit in an old study. HHV-6 reactivation is also
accompanied by an increase in plasminogen-activator 1 [148], which leads to reduced clot
lysis and clearance.

Hence, there is reason to suspect that the clotting and platelet abnormalities noted
in ME/CFS [43,47,48] arise from the consequences of herpesvirus-infected ECs, as well as
other procoagulant effects of herpesviruses independent of endothelial cells.

8. Herpesviruses and Neurological Issues in ME/CFS: Implications at the
Cerebro-Endothelium?

Endothelial dysfunction has been associated with cognitive dysfunction in vascular
dementia [208] coronary artery disease [209], obesity [210], postoperative cognitive dys-
function [211], type II diabetes [212], sleep apnoea [213], and the elderly [214]. Endothelial
markers, such as endothelial lipase, positively correlate with cognitive impairment [215]. A
systematic review inferred an ‘intrinsic’ relationship between endothelial dysfunction and
vascular cognitive impairments [216]. These studies suggest that endothelial dysfunction
might have a significant role to play in the neurological issues suffered by ME/CFS patients.

As we have discussed in this paper, many of the herpesviruses are capable of infecting
brain microvascular ECs, which might act as viral reservoirs from which CNS infection
can ensue. Furthermore, a compromised BBB is an expected consequence. Importantly,
EBV and HHV-6 have been detected in CNS tissue from deceased ME/CFS patients [5]—
cerebrovascular ECs might be the reservoir/latent site for these viruses in patients. EBV
infection is associated with cognitive impairments [217,218], and EBV proteins, including
EBV dUTPase, are posited to contribute neuroinflammation and subsequent neurological
issues in ME/CFS [9]. HHV-6 is also associated with cognitive impairments [219–222].
HHV-6 antigens have been found within ECs from the frontal lobe of a fatal case of
herpesvirus infection [161], and in a mice study, HHV-6 infection of the CNS persisted and
induced proinflammatory cytokine production through TLR-9 [169].

The infection of brain ECs and other vascular cells (as well as neurons and glial cells)
by herpesviruses and subsequent vasculitis in brain blood vessels might lead to inflam-
mation, CNS infection, oxidative and NS damage, and symptom expression including
cognitive dysfunction and even fatigue and PESE. Neurological pathology might also en-
sue as a result of autoimmune processes in the central nervous system, whereby molecular
mimicry involving EBV and other herpesvirus antigens result in autoantibodies directed
against brain antigens, for example, the glial cell adhesion molecule [110]. This may have
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relevance to ME/CFS and tie together working hypotheses on endothelial dysfunction and
neurological symptoms in ME/CFS [55] with herpesvirus activity.

9. Ways Forward

It is of interest to determine whether ECs from patients suffering from ME/CFS (and
controls) are infected with herpesviruses. This would be the first step in confirming the idea
presented in this paper. ECs, and brain microvascular ECs specifically, can be extracted and
isolated using a number of techniques [223–226]. Other vascular tissue cells, such as smooth
muscle cells, should also be isolated and tested for herpesvirus infection. Whilst there have
been studies that have demonstrated a reduced permeability of endothelial linings as a
result of herpesvirus infection and studies associating herpesvirus infection with perfusion
deficits, further experiments focussing on these phenomena and the molecular processes
involved, from a post-viral perspective, are necessary.

10. Conclusions

We presented the idea that a herpesvirus infection of ECs might be an important, over-
looked phenomenon that can, in part, account for the pathophysiology and symptoms of
ME/CFS and, potentially, Long COVID. We do acknowledge that ME/CFS is an extremely
heterogeneous disease with numerous proposed etiological factors, with various subpop-
ulations experiencing specific symptoms and presenting a clinically distinct phenotype.
Hence, this idea may not explain the symptoms of all ME/CFS subpopulations—further
work is required in this context. Additionally, there exist pathogens other than herpesviruses
that can influence endothelial function and lead to downstream effects, and hence, this idea
is not entirely exclusive to herpesviruses.

This idea is somewhat novel but is not unprecedented [84,227–230]. Endothelial
dysfunction and herpesvirus activity are two characteristics of ME/CFS pathology that
have yet to be officially linked. Perhaps the latent infection of ECs alone (that is, without
active infection) is sufficient to bring about pathology and subsequent symptoms and
may provide an explanation for daily symptoms, the chronicity of symptoms, and the
multi-organ, systemic nature of ME/CFS.

Importantly, the load of EC infection, i.e., how widespread the systemic vasculature
herpesvirus infection is, and perhaps the tissue- and organ-specific site of infection are likely
vital factors that determine the manifestation of symptoms as a result of this hypothesized
pathophysiological process. It is acknowledged that herpesviruses infect many cell types,
so the infection of ECs by herpesviruses is likely not responsible for all ME/CFS pathologies
and symptoms. For example, the infection of immune cells and manipulation of immune
processes by herpesviruses contribute to ME/CFS pathology, and likely account for much
of the immune disturbances seen in this population; similarly, infection of cells of the
nervous system might account for neurological deficits and even vascular dysregulation.
However, we want to bring attention to the possibility of endothelial infection, as this is
somewhat of an understudied topic, especially in the context of ME/CFS.

Further studies are required to determine the extent of a herpesvirus infection of the
endothelium in ME/CFS patients, and these need to take into account the possibility of
tissue- or organ-specific sites of infection. This is a difficult phenomenon to prove, especially
when considering the ability of herpesviruses to cause pathology in certain individuals
and in certain physiological states, hence requiring diligent and elaborative study and
experimentation. It is possible that this idea of herpesvirus latency-induced endothelial
maladaptation might turn out to be irrelevant, but herpesvirus-induced endothelial dys-
function, with and without a direct infection of ECs, will still be relevant for ME/CFS
pathology and symptom manifestation. Hence, a more refined focus on herpesviruses and
endothelial function and health in ME/CFS (and Long COVID) is warranted.
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