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Abstract

A novel method termed rLSTM-AE is developed for the low-dimensional latent space identification of the stochastic
dynamic systems with more than 1000 input random variables and the active learning-based dynamic reliability analysis.
First, the long short-term memory network considers both the time-variant stochastic excitation and the time-invariant
random variables is developed (rLSTM), which adopts the time-series excitation as the pertinent input feature and makes
it available for the metamodeling of the high-dimensional stochastic dynamic systems. To circumvent the insufficient
accuracy of deep neural networks for reliability analysis results from the limited observations, autoencoder (AE) is
incorporated with the rLSTM (rLSTM-AE) and utilized to decompose the approximate extreme value space found by
rLSTM onto a low-dimensional latent space. The dimension of the latent space is adaptively determined by a Gaussian
process regression reconstruction error, which enables the Gaussian process regression with the similar accuracy as
rLSTM regarding the extreme responses prediction. The proposed rLSTM-AE conducts the low-dimensional features
extraction from the perspective of the output space decomposition and considers the time-dependent property of the
dynamic systems. Finally, the detected latent variables can be combined with the active learning-based Gaussian
process regression for the high-dimensional dynamic reliability analysis. One single-degree-of-freedom system and a
reinforced concrete frame structure subjected to the stochastic excitation are investigated to validate the performance of
the proposed method.
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1. Introduction1

Uncertainties are inevitable and widely exist in initial conditions, boundary conditions, constitutive laws and etc.,2

which significantly affect the performance of engineering systems. Therefore, it is of paramount importance to quantify3

the effect of these uncertainties on the response of interest. However, uncertainty propagation remains a challenging4

task sine the computer codes for simulating the practical engineering systems require significant computational power,5

which makes the direct approaches such as Monte Carlo simulation unavailable. Recently, metamodel or surrogate6

model techniques have gained increasing popularity for uncertainty propagation [1–3]. Metamodels are constructed by7

consuming limited simulation-based data and the trained surrogate model can be subsequently utilized to replace the8

original computationally expensive real model for uncertainty propagation tasks.9

Commonly used metamodels include the polynomial chaos expansion (PCE) [4–7], Gaussian process regression10

(GPR) (or Kriging model) [8–10], and support vector regression [11–13]. However, these surrogate models usually11

suffer from the so called “curse of dimensionality”. For instance, the number of unknown coefficients of PCE12

terms increases dramatically with the dimension of inputs when the regression method is employed, which means13
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that a substantial number of training samples are required to accurately determine the coefficients. To mitigate14

this issue, an adaptive algorithm that can identify the important terms was developed to build the sparse PCE [1].15

Dimension-reduction model based on sensitivity analysis was combined with PCE to reduce the number of training16

samples [14]. Researchers also explored the PCE with the partial least square for high-dimensional uncertainty17

propagation problems [15, 16]. However, these works seldom place emphases on the high-dimensional stochastic18

dynamic systems. GPR has been widely employed for the active learning-based reliability analysis in recent years due19

to the elegant stochastic property of Gaussian process, that is, apart from providing a mean prediction, the uncertainty20

of the prediction can be quantified by the GPR model. Echard et al. developed an active learning-based Kriging model21

with MCS, which can adaptively enrich the training set with samples that can significantly improve the accuracy of22

Kriging model [2]. Then, this active learning-based approach has been further developed in terms of the sampling23

methods [17–20], learning functions [21–23] and stopping criteria [24–26]. Nevertheless, these active learning-based24

approaches are not applicable to high-dimensional problems due to the curse of dimensioality, let alone the stochastic25

dynamic systems with more then 1000 input features investigated in this paper.26

Stochastic dynamic systems consider uncertainties both from structural parameters and the external excitation,27

which are common in engineering problems. For instance, structures subjected to the fully non-stationary seismic28

ground motions. Non-stationary stochastic processes are utilized to reflect the natural randomness and simulate the29

excitation. Various approaches can be employed such as the spectral representation [27–30], Karhunen-Loeve (K-L)30

expansion [5, 31] and etc.. Generally, a considerable number of random variables (usually 500∼1000) is required to31

sufficiently describe the features of the stochastic process, which leads to a high-dimensional uncertainty propagation32

problem. In this paper, stochastic dynamic systems with more than 1000 input random variables are investigated.33

Metamodel is not suitable for dealing with this problem since it significantly suffers from the curse of dimensionality34

and the time-dependent complex dynamics involved. To tackle this issue, Chen and Li focused on the extreme responses35

and the probability density evolution method was employed to yield the extreme value distribution [32]. Then the36

first-passage failure probability can be readily obtained from the extreme value distribution. The high-dimensional37

problem can be also circumvented from the perspective of moment-based methods, which can cover an unknown38

extreme value distribution by fitting a series of statistical moments estimated by sampling techniques [33–35]. However,39

it is hard to select a suitable distribution model to fit the extreme value distribution and ensure the accuracy of the40

statistical moments estimation.41

To build metamodel for the high-dimensional systems, a fundamental idea is to find a low-dimensional representation42

of the original high-dimensional space. Dimension-reduction techniques such as the sliced inverse regression and43

active subspace have been utilized for building surrogate models and reliability analysis [36–38]. However, these linear44

methods may have limitations in representing complex data [39]. The kernel principle component analysis [40] and the45

deep neural networks-based feature extraction method termed autoencoder [41] were also explored for high-dimensional46

reliability analysis [42, 43]. Regarding the metamodeling for the dynamical systems, Spiridonakos and Chatzi [44]47

developed a metamodeling strategy for nonlinear dynamical systems by using the PCE and the nonlinear autoregressive48

with exogenous input model (NARX). Then, a similar Kriging-NARX model was proposed [45]. Recently, a mNARX49

surrogate model has been proposed for approximating the response of complex dynamical systems [46]. Inspired50

by the reduced order technique, the proper orthogonal decomposition was combined with the Kriging model for the51

uncertainty propagation of dynamical systems [47]. Yang and Perdikaris developed a conditional deep surrogate52

model for stochastic, high-dimensional dynamic systems [48]. A feature mapping strategy was proposed to build the53

surrogate model of nonlinear stochastic dynamic systems and a 100-dimensional system was studied [49]. Soize and54

Ghanem [50] recently developed a probabilistic-learning-based stochastic surrogate model for nonlinear dynamical55

systems. However, the approach to dealing with the high-dimensional random phases in simulating the stochastic56

excitation should be further investigated. Simultaneously, it is essential to consider both the time-variant stochastic57

excitation and time-invariant random structural parameters. Although Zhou and Peng investigated the reliability analysis58

of a 110-dimensional stochastic dynamic system by combining the autoencoder and GPR [39], a simplified method59

for simulating the stochastic ground motions termed the stochastic harmonic function representation method [51] was60

employed. Moreover, only the extreme responses were considered in Ref. [39] when constructing the surrogate model61

and the time history responses were ignored.62

Therefore, the high-dimensional stochastic dynamic systems with more than 1000 input features have not been63

studied in terms of the metamodel construction for the time history responses prediction and the high-dimensional64

reliability analysis. Note that the high-dimensional problem is primarily caused by the thousands of random phases for65
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simulating the stochastic process. In fact, these random variables are not pertinent input features but the generated66

time-variant stochastic excitations are. A powerful deep learning tool called the long short-term memory (LSTM)67

can be employed to deal with the sequence-to-sequence data so that the high-dimensional random phases can be68

circumvented. The LSTM has been investigated for metamodeling of nonlinear structures [52, 53] and only the69

time-variant excitation serves as the input feature. However, the uncertainties of structural parameters and seismic70

ground motions are not considered for the metamodel construction. In this paper, a LSTM network termed rLSTM71

considering both the time-invariant random structural parameters and the time-variant stochastic excitation is developed72

for high-dimensional metamodel construction by data concatenation and normalization. The high-dimensional reliability73

analysis of the stochastic dynamic systems is of concern. It is always hard to build a metamodel across the whole74

domain of the stochastic dynamic systems with limited observations. Therefore, the accuracy of the rLSTM may be75

not sufficient for reliability analysis problems due to the limited observations. To address this issue, a novel latent76

space detection method termed the rLSTM-AE is developed with the aid of the constructed rLSTM, where “AE”77

denotes the autoencoder. Autoencoder here is utilized to decompose the one-dimensional approximate extreme value78

space predicted by rLSTM onto a low-dimensional latent space and the best dimension is adaptively determined79

by minimizing the GPR reconstruction error. rLSTM-AE brings insights of the latent variables extraction for high-80

dimensional stochastic dynamic systems from the perspective of the output space. Moreover, the time-dependent81

property of the dynamic systems is considered during the dimension-reduction process. Finally, the detected latent82

variables can be combined with the active learning-based GPR model for the high-dimensional dynamic reliability83

analysis. This paper is organized as the follows. Section 2 presents the proposed rLSTM network for metamodeling84

of the high-dimensional stochastic dynamic systems. The paradigm of the novel latent space detection method and85

its application to the active learning-based reliability analysis are introduced in Section 3. Two high-dimensional86

stochastic dynamic systems with more than 1000 input random variables are investigated in Section 4 to validate the87

accuracy and efficiency of the proposed method.88

2. The proposed rLSTM for metamodeling of the high-dimensional stochastic dynamic systems89

2.1. A typical stochastic dynamic system: structures subjected to the stochastic seismic excitation90

The governing equation for a multi-degree-of-freedom system subjected to the stochastic seismic excitation can be91

given by:92

M (XS) ü + Cu̇ + K (XS)u + F = −M (XS) Ia (XE , t) (1)

where M, C and K are the mass, damping and stiffness matrix, respectively; ü, u̇ and u are acceleration, velocity and93

displacement vector, respectively; F denotes the restoring force vector and I is the force distribution vector; a (XE , t)94

represents the non-stationary stochastic seismic ground motions. XE = (XE1, XE2, ..., XEd1
) includes d1 random95

variables accounting for uncertainties in seismic ground motions. XS = (XS1, XS2, ..., XSd2
) is a random vector96

containing d2 random variables related to the structural parameters.97

Various approaches have been developed for generating the stochastic seismic excitation [30, 31, 54]. Herein, the98

spectral representation method is adopted [54]:99

a (t) =
√

2

d1−1∑
k=0

√
2Sa (wk, t) ∆w [wkt+ φk] (2)

where Sa (w, t) is the double-sided evolutionary power spectral density function of the frequency w and time t:100

Sa (w, t) = |f (w, t)|2S (w) (3)

in which f (w, t) is the amplitude envelope function defined by:101

f (w, t) =

[
t

5
exp

(
1− t

5

)]2

(4)
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and S (w) is the one-sided power spectral density function defined by Clough-Penzien spectrum [33]:102

S (w) =
w4

g + 4ζ2
gw

2
gw

2(
w2 − w2

g

)2
+ 4ζ2

gw
2
gw

2
· w4(
w2 − w2

f

)2

+ 4ζ2
fw

2
fw

2

S0 (5)

in which S0 is the spectral intensity of seismic acceleration processes; wg and ζg are the dominant frequency and103

damping ratio of the site soil, respectively; wf and ζf are the parameters of the second filter mainly hindering the104

low-frequency component of seismic acceleration [54]. The discrete frequency wi gives:105

wk = k∆w, k = 0, 1, ..., d1 − 1 (6)

where ∆w is the frequency interval. In this paper, these parameters are specified as: wg = 5π rad/s, wf = 0.1wg106

rad/s, ζg = ζf = 0.60, S0 = 48.9332 cm2/s3, ∆ = 0.1rad/s, d1 = 1001 and t is a time sequence ranging from107

0 to 20s with a interval of 0.02s. Hence, the phase angles φks are 1001 independent uniformly distributed random108

variables over [0, 2π], which leads to a high-dimensional stochastic dynamic system. Constructing metamodel and109

conducting reliability analysis for the high-dimensional stochastic dynamic system are challenging due to the curse of110

dimensionality and complex dynamics.111

2.2. Long short-term memory considering both time-variant and time-invariant features: rLSTM112

The primary reason for the high-dimensional problem in stochastic dynamic systems is the inclusion of a large113

number of random variables for generating the stochastic excitation. Hence, if these random variables are treated114

as input features for a stochastic dynamic system, conducting metamodeling or reliability analysis would be tricky.115

However, these random variables have little effect on the response of interest since the dominant feature is the excitation116

generated by them. Therefore, if the time-series excitation is employed as the input feature directly when building117

metamodel, the high-dimensional problem can be circumvented. Long short-term memory network is a powerful deep

(a) LSTM cell (b) rLSTM cell

Figure 1: LSTM and rLSTM cells

118

learning tool to deal with the sequence-to-sequence data and has shown its advantages on capturing the time-series119

input-output relationship [52, 53]. A common LSTM unit is composed of a cell c, a forget gate f , an input gate i and120

an output gate o, which are shown in Fig. 1 (a). The cell memorizes the state at the previous time step to capture the121

long-term dependency and three gates control the information into and out of the cell. The forget gate decides what122

information can be thrown away, the input gate determines the new information that can be stored in the current state123

and the output gate decides what information to output according to the previous and current states. At time step t, the124
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equations for the forward process of a LSTM cell can be given by:125

it = σ (Waiat + Whiht−1 + bi)
c̃t = tanh (Wacat + Whcht−1 + bc)
ot = σ (Waoat + Whoht−1 + bo)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh (ct)

(7)

where W and b are the weight matrices and bias vectors, respectively, h represents the hidden state and at denotes126

the input feature (seismic ground motions in this paper) at time step t. The notation � represents Hadamard product127

(element-wise product). σ and “tanh” represent the sigmoid and hyperbolic tangent activation function, respectively.128

It is known that the LSTM is employed to deal with the sequence-to-sequence data. However, apart from the129

time-series ground motions at, the input features also include the time-invariant random structural parameters. Herein,130

we first expand the time-invariant random structural parameters into a time-series sequence. At each time step t, the131

random structural parameters are the same:132

xS (t) = (xS,0, ...,xS,t, ...,xS,T ) (8)

where xS,0 = xS,t = xS,T . Then, the sequence of the random structural parameters can be concatenated with the133

time-series input feature, i.e., (at,xS,t). To distinguish, we denote the LSTM considering both the time-variant134

excitation and time-invariant random parameters as rLSTM, where the letter “r” represents the time-invariant random135

variables. The diagram is shown in Fig. 1 (b).136

The concatenation of the random structural parameters sequence and the time-series ground motions leads to totally137

different scales in input features. Therefore, dataset normalization is required to ensure a stable and efficient training138

process. Consider a dataset D = {a (t) ,xS (t) , y (t)}, where y (t) is the output time history responses of interest. The139

following normalization process is employed to scale input features and output responses:140

ã (t) = a (t) /aD,max

ỹ (t) = y (t) /yD,max

x̃S (t) = (xS (t)− µS) /σS

(9)

where aD,max and yD,max are the maximum absolute ground motion and response in Dataset D, respectively. µS and141

σS are mean and standard deviation vector of random structural parameters XS, respectively. Then, the dataset after142

preprocessing can be employed for training rLSTM. The rLSTM network is depicted in Fig. 2, where the notation

Figure 2: rLSTM network

143

“FC” refers to the fully connected neural network layers. It can be seen that the input feature is a concatenation144

of time-variant and time-invariant features and the network contains l rLSTM layers and the fully connected layer.145

The rLSTM network can circumvent the high-dimensional random variables for generating the seismic excitation146
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(phase angles φks) and employ the excitation as the pertinent input feature. Therefore, the rLSTM network can147

build metamodel for high-dimensional stochastic dynamic systems. Moreover, no matter which kind of approach148

is adopted for simulating the stochastic excitation (e.g., spectral representation method and random function-based149

spectral representation [54]), the proposed rLSTM can always be capable of constructing the metamodel since the150

ground motions serve as the pertinent input features.151

3. Low-dimensional latent space identification for stochastic dynamic systems by rLSTM-AE152

Different from the conventional surrogate models, e.g., Kriging model (Gaussian process regression), polynomial153

chaos expansion and etc., the proposed rLSTM network makes it available to build surrogates for high-dimensional154

stochastic dynamic systems. However, reliability analysis for the stochastic dynamic system by the metamodel is still155

a challenging issue. To conduct reliability analysis, a high-accuracy metamodel across the whole space is required156

to assess the failure probability. However, deep learning tools may require a substantial number of observations to157

achieve such a high accuracy across the whole domain. This challenge is also encountered by GPR model or PCE158

for low-dimensional reliability analysis especially when complex engineering problems are of concern. To tackle this159

issue, the active learning technique is widely used to convert the regression problem across the whole space into a160

classification problem focusing on the limit state surface. Unfortunately, this active learning-based reliability analysis is161

not available for high-dimensional reliability analysis due to the dimension limitation of the GPR model. Therefore, it is162

of importance to extract low-dimensional features for the high-dimensional stochastic dynamic systems. In this section,163

a low-dimensional latent space detection paradigm (rLSTM with autoencoder termed rLSTM-AE) and its application164

to the active leaning-based reliability analysis for high-dimensional stochastic dynamic systems is developed.165

3.1. Active learning strategy for reliability analysis166

Denote a performance function as:167

W = G (X) (10)

where X is a vector of d number of random variables with a joint PDF fX (x). The failure probability can be calculated168

by:169

Pf =

∫
ΩF

fX (x) dx =

∫
Ω

I (x) fX (x) dx (11)

where Ω ⊆ Rd and ΩF is the failure domain defined by {x|G (x) < 0}. I (x) is an indicator function and I (x) = 1 if170

x ∈ ΩF , otherwise I (x) = 0. MCS is a benchmark method for estimating Eq. (11):171

Pf ≈ P̂f =

NMC∑
i=1

I
(
xi
)

NMC
(12)

where
{
xi, i = 1, 2, ..., NMC

}
are NMC samples drawn from the joint PDF fX (x). The coefficient of variation (CoV)172

can be given as:173

CoV
(
P̂f

)
=

√
1− P̂f

NMC × P̂f

(13)

However, numerous samples are required to achieve an accurate estimation and it is impossible for complex systems. To174

address this issue, surrogate models are widely adopted to replace the time-consuming performance function. However,175

it is still hard to build an accurate surrogate model across the entire space. Fortunately, the development of the active176

learning strategy enables the meatamodel to focus on the accuracy of the limit state surface.177

An active learning reliability method combining Kriging model and Monte Carlo simulation termed AK-MCS178

has gained increasing popularity in recent years [2]. AK-MCS aims to accurately construct the limit state surface179

by Kriging model. The training dataset is adaptively enriched through a learning function by adding samples in the180

vicinity of the limit state surface. Hence, AK-MCS places emphases on the accuracy of the metamodel for the limit181

state surface but not the whole space. Regarding points far away from the limit state surface, the exact values of them182

are not required to be accurately predicted by metamodel as long as their signs are correctly identified. The active183
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learning strategy leverages the elegant stochastic property of Gaussian process, that is, GPR not only provides the mean184

prediction at x but also quantifies the uncertainty associated with this prediction. The posterior distribution of the185

prediction at point x, i.e., Ĝ (x), follows a normal distribution:186

Ĝ (x) ∼ N
(
µg (x) , σ2

g (x)
)

(14)

where µg (x) and σ2
g (x) are mean prediction and variance by GPR, respectively. The notation N denotes the normal187

distribution. This property has promoted the proposal of various learning functions. The learning function aims to188

select a best next point that can significantly improve the accuracy of the current metamodel. U learning function is189

widely used due to its simplicity:190

U (x) =
|µg (x)|
σg (x)

(15)

The value of U function reflects the probability of wrong classification in predicting the sign of x, i.e., Φ (−U (x)).191

The notation Φ is the cumulative distribution function of the standard normal distribution. Therefore, a minimum value192

of U refers to the maximum risk of misclassification in predicting the sign of x so that the corresponding x should be193

selected and evaluated on the real performance function. Then, the training dataset for GPR can be enriched by adding194

this point with its true value. The procedure of the active learning-based MCS can be summarized as the follows:195

Step 1: Genreate a MC candidate pool Ω with NMC samples.196

Step 2: Randomly selectN0 samples and evaluate them on the real performance functionG(X) as an initial training197

dataset {xtrain, wtrain}, wtrain = G (xtrain).198

Step 3: Train the GPR with the current training dataset.199

Step 4: Identify the best next point via the learning function and enrich the training dataset with {x∗, w∗}:200

x∗ = arg min
x∈Ω

U (x) , w∗ = G (x∗) (16)

Step 5: Stop the active learning process when the following condition is met, else go back to step 3:201

min (U (x)) ≥ 2, ∀x ∈ Ω (17)

This convergence condition represents that the maximum probability of misclassification on signs of all candidate202

samples is smaller than Φ (−2) = 2.3%, which can ensure the accuracy of the surrogate for the limit state surface.203

Step 6: The updated GPR is utilized to predict values of samples in Ω and then the failure probability can be204

estimated by Eq. (12).205

This active learning strategy significantly improves the accuracy and efficiency of GPR for reliability analysis.206

Commonly, GPR is not available for mapping sequence-to-sequence data. In this paper, the extreme value of time207

history responses of a stochastic dynamic system is of concern:208

Y (t) = H (a (t) ,XS) , Yev = max (abs (Y (t))) (18)

where Y (t) represents the time history responses of interest, H denotes a high-dimensional stochastic system and Yev209

is the extreme response. Given a threshold b, the performance function gives:210

W = b− Yev = G (X) (19)

However, GPR is still not capable of constructing metamodel for high-dimensional systems even if the extreme211

responses are of interest, let alone the stochastic dynamic system investigated in this paper with more than 1000 random212

variables. Therefore, the active learning-based GPR is also not accessible to the reliability analysis of high-dimensional213

stochastic dynamic systems.214

3.2. rLSTM with autoencoder for the low-dimensional latent space detection215

To enable active learning-based GPR for high-dimensional problems, a fundamental idea is to use the dimension-216

reduction techniques. Moreover, the number of latent variables resulting from the dimension-reduction should be within217

several to dozens to ensure the availability and efficiency of GPR. Nevertheless, it is extremely hard for the stochastic218
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Figure 3: The diagram of autoencoder

dynamic system with more than 1000 features. To deal with thousands of input features, the neural networks-based219

features extraction technique can be a potential way. Autoencoder is a type of neural network for features extraction of220

unlabeled data and it is an unsupervised learning tool [41]. It includes an encoding function and a decoding function.221

The diagram of the autoencoder is depicted in Fig. 3, The encoding function aims to find efficient code or latent222

variables of unlabeled data, i.e., Eϕ : X→ Z characterized by ϕ . The decoding function is to recreate the input data223

via the latent variables, i.e., Dθ : Z→ X characterized by θ. In theory, this kind of unsupervised learning-based neural224

network is available for low-dimensional latent variables detection of high-dimensional inputs. However, regarding the225

stochastic dynamic systems, we cannot use the input feature X = (XE ,XS) directly for dimension-reduction due to226

the following three reasons:227

Reason 1: random phases in vector XE for generating the stochastic excitation are not pertinent features for a228

stochastic system and they have little effect on the response of interest.229

Reason 2: random phases in vector XE have equal contribution to the system since they all follow the same uniform230

distribution. Therefore, it is hard to detect several to dozens of latent variables to represent such a high-dimensional231

space with more than 1000 similar features.232

Reason 3: even though the input features X = (XE ,XS) could be represented by the low-dimensional latent233

variables Z directly, the time dependent property of the sequence-to-sequence data (time-dependent complex dynamics)234

is ignored when the detected latent variables is employed to construct a metamodel.235

To tackle these issues, we propose a two-step low-dimensional latent variables detection strategy termed rLSTM-AE236

for the features extraction of a high-dimensional stochastic dynamic system. Commonly, the extreme value of the237

time-series response, i.e., Yev= max {abs (Y (t))}, is of concern. The diagram of the proposed rLSTM-AE approach238

is depicted in Fig. 4.239

As aforementioned, the proposed rLSTM network can deal with the stochastic excitation and random structural240

parameters simultaneously and well avoid the high-dimensional issue induced by the random phases XE . Therefore,241

the first step of the proposed rLSTM-AE is to find an approximate extreme value space by rLSTM, the dimension flow242

of this step is given by:243

X ∈ Rd1+d2
rLSTM−−−−→Y rLSTM

ev ∈ R1 (20)

where Y rLSTM
ev = max

{
abs

(
Ŷ (t)

)}
and Ŷ (t) is the time-series responses predicted by rLSTM. This step actually244

employs rLSTM to build a metamodel for the stochastic system and construct an approximate extreme value space, i.e.,245

Y rLSTM
ev . Note that the accuracy of this approximate extreme value space cannot be used for reliability analysis due to246

the limited observations for training rLSTM. We do not need a high-accuracy rLSTM here for reliability analysis since247

we just use this approximate one-dimensional space to find a low-dimensional latent space by autoencoder. Finally,248

active learning-based GPR will refine the estimated failure probability with the detected latent variables Z. The loss249

function for training rLSTM can be defined by:250

L (λ) =
1

N

N∑
i=1

∥∥yi (t)− ŷi (λ, t)
∥∥2

2
(21)

where λ denotes trainable weights and biases of the rLSTM, which can be determined by λ̂ = arg min
λ

L (λ). N is the251
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Figure 4: rLSTM-AE network

size of data and ŷ (λ, t) is the estimated response. Note that the normalized data by Eq. (9) is utilized when training252

deep neural networks.253

The second step for the proposed rLSTM-AE is to detect a low-dimensional latent space Z for decomposing the254

1-dimensional extreme value space via autoencoder . Autoencoder in the rLSTM-AE network is different form its255

common use, the conventional autoencoder is an unsupervised learning method and the loss function can be defined as:256

L (ϕ,θ) =
1

N

N∑
i=1

∥∥xi −Dθ
(
Eϕ
(
xi
))∥∥2

2
(22)

where {ϕ,θ} denotes the trainable weights and biases of the autoencoder, which can be determined by {ϕ,θ} =257

arg min
ϕ,θ

L (ϕ,θ). While for the autoencoder in the rLSTM-AE network, the loss function gives:258

L (ϕ,θ) =
1

N

N∑
i=1

∥∥yiev −Dθ
(
Eϕ
(
yiev

))∥∥2

2
(23)

The encoding and decoding functions can be defined by Eϕ : Yev → Z and Dθ : Z→ Yev, respectively. Obviously,259

autoencoder here is adopted as a supervised learning tool. Note that when training autoencoder, real extreme responses260

is used since they can be provided by the training dataset. However, regarding the unobserved data, the real extreme261

responses are not available. Hence, the approximate extreme responses by rLSTM, i.e., Y rLSTM
ev , are employed to262

detect the latent space Z for unobserved data. The dimension flow in this step can be expressed by:263

Y rLSTM
ev ∈ R1 Autoencoder−−−−−−−−→Z ∈ Rdz (24)

where dz is the dimension of the latent variable Z and dz ≥ 2. The autoencoder here is to represent a 1-dimensional264

space by a dz-dimensional latent space, which is a dimension-expansion step.265

An important step is to determine an appropriate dimension of the potential latent space. Note that in this paper,266

the latent variable is employed to construct a GPR model so the dimension of Z is within the interval [2, 20] to ensure267

the availability and efficiency of the active learning-based GPR. The basic idea of determining the dimension dz is to268

ensure the accuracy of the reconstructed GPR model. Hence, in the proposed paradigm, the dimension of the latent269

variables dz is adaptively determined by minimizing the following GPR reconstruction error:270

LGPR (dz) =
1

N

N∑
i=1

∥∥yiev −GPR
(
zi
)∥∥2

2
, z ∈ RN×dz (25)
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where zi is the latent space corresponding to the observed data yiev, i.e., zi = Eϕ
(
yiev

)
. Then, the optimal dimension271

can be selected as:272

dz = arg min
2≤dz≤20

LGPR (dz) (26)

Therefore, Eq. (25) can help select a best latent space so that the GPR can reconstruct the extreme value space with the273

aid of the latent variable Z.274

There are three main steps for the proposed rLSTM-AE approach:275

Step 1: The trained rLSTM can provide an approximate one-dimensional extreme value space for unobserved data:276

277

Y rLSTM
ev = max

(
abs

(
Ŷ (t)

))
, Ŷ (t) = rLSTM ((a (t) ,XS (t))) (27)

Step 2: The one-dimensional approximate extreme value space can be decomposed by a trained autoencoder with278

the low-dimensional latent variables Z:279

Z = Eϕ
(
Y rLSTM

ev

)
(28)

Step 3: The detected latent variables can be employed to construct a GPR metamodel, which can be used for the280

active learning-based reliability analysis.281

Y GPR
ev = GPR (Z) (29)

Actually, rLSTM-AE enables GPR to have the ability to predict extreme response as rLSTM and they have almost282

the same accuracy for predicting the extreme responses of a stochastic system, which will be validated in the following283

illustrative examples. Although this accuracy cannot satisfy the requirement of reliability analysis, GPR can be284

incorporated with the active learning strategy to improve the accuracy of failure probability estimation while rLSTM285

cannot. The proposed rLSTM-AE has the following three advantages corresponding to the aforementioned reasons286

1∼3 about why the autoenocder cannot be used directly:287

Advantage 1: instead of the original high-dimensional input space X, the pertinent feature, i.e., stochastic excitation288

a (t), is concatenated with the sequential random structural parameters XS (t) for the latent variables detection with289

the aid of the rLSTM.290

Advantage 2: it is easy for the autoencoder to represent a one-dimensional space by several to dozens of latent291

variables.292

Advantage 3: the time-dependent property in the sequence-to-sequence data (time-dependent complex dynamics)293

is taken into account by the rLSTM network during the dimension-reduction process.294

Moreover, the proposed rLSTM-AE is not restricted by the way of generating stochastic excitation since the295

excitation is employed as the input feature directly. The observed dataset D generated by the Latin hypercube sampling296

is divided into two parts to obtain a best rLSTM-AE model. Training set with Ntrain samples aims to fit the parameters297

of the network and validation set with Nvalid samples here is to select a best model during the learning process. Test set298

with Ntest unobserved data generated by MCS is to assess the performance of the rLSTM-AE. Denote the dimension299

of input features as Idim, the dimension of the output feature as Odim and the size of hidden state as hs. The detailed300

pseudo code for rLSTM-AE is indicated in Appendix A.301

3.3. rLSTM-AE for the active learning-based reliability analysis: rLSTM-AE-ALGPR302

Once the latent variables are identified by the proposed rLSTM-AE, they can be employed to construct a GPR303

metamodel and the active learning strategy is available for reliability analysis of high-dimensional stochastic dynamic304

systems. The core steps for the active learning approach expressed by Eq. (16) and (17) can be reformulated as:305

z∗ = min
z∈ΩZ

U (z) (30)

and306

min (U (z)) ≥ 2, ∀z ∈ ΩZ (31)

where ΩZ ⊆ Rdz is the latent candidate pool detected by rLSTM-AE from the original candidate pool Ω ⊆ Rd1+d2 .307

Denote the GPR that combined with the rLSTM-AE and the active learning strategy as rLSTM-AE-ALGPR. The308

pesudo of rLSTM-AE-ALGPR is indicated in algorithm 1.309
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Algorithm 1 rLSTM-AE with the active learning-based GPR: rLSTM-AE-ALGPR
Input: Information of random variables, the response function H and performance function G.
Output: Failure probability P̂f .

1: Initiate a candidate pool Ω : xCP with the sample size ∆N and the target CoV of P̂f , e.g., CoVtol = 5%.
2: Draw Ntrain +Nvalid samples from fX (x) by Latin hypercube sampling, denoted as x = (xE ,xS).
3: Generate the stochastic excitation a(t) by xE and Eq. (2).
4: Calculate the corresponding responses y (t) = H (a (t) ,xS) and yev = max (abs (y (t))).
5: Generate the observed dataset {a (t) ,xS , y (t)} and train rLSTM-AE via the algorithm 2.
6: Randomly select NGPR samples form the observed dataset as the initial training set of GPR, i.e.,{

x1:NGPR , G
(
x1:NGPR

)}
.

7: Transform the initial training set into latent space by the trained rLSTM-AE: {Z,W} ←{
z1:NGPR , G

(
x1:NGPR

)}
←
{
x1:NGPR , G

(
x1:NGPR

)}
.

8: while CoV
(
P̂f

)
> CoVtol do

9: Transform the candidate pool into the latent space:ΩZ : zCP ← Ω : xCP.
10: while min (U (zCP)) < 2 do
11: Build GPR via training set {Z,W} and evaluate zCP on GPR.
12: Calculate U (zCP) = µG (zCP) /σG (zCP).
13: Enrich {Z,W} by U learning function with the point corresponding to z∗ = min (U (zCP)), where the

corresponding output is calculated in the original space, i.e., G (x∗).
14: end while
15: Calculate P̂f and CoV

(
P̂f

)
by Eqs. (12) and (13), respectively.

16: Enrich the candidate pool Ω by adding ∆N samples.
17: end while
18: Output the failure probability P̂f .

The contribution of the proposed paradigm are listed as the follows:310

1: The proposed rLSTM network utilizes the stochastic excitation as the pertinent input feature, which can311

circumvent the high-dimensional random phases for generating the excitation. Therefore, no matter which approach is312

employed for generating stochastic process, the rLSTM can be always available.313

2: The rLSTM considers both the time-variant stochastic excitation and the time-invariant random structural314

parameters simultaneously, which makes it available to construct metamodel for the high-dimensional stochastic315

dynamic systems directly.316

3: To address the insufficient accuracy of the rLSTM network (due to limited observations) for dynamic reliability317

analysis, the autoencoder is utilized to decompose the approximate one-dimensional extreme response with the aid of318

rLSTM, which brings insights for latent variables extraction from the perspective of output space decomposition.319

4: The rLSTM-AE network for low-dimensional latent space detection considers the complex time-dependent320

dynamics of stochastic systems by the rLSTM while conventional dimension-reduction techniques ignore this issue.321

5: The proposed method makes the active learning-based reliability analysis method available for the high-322

dimensional dynamic reliability analysis.323

4. Illustrative Examples324

A single-degree-of-freedom system (SDOF) and a 3D reinforced concrete frame structure subjected to the stochastic325

excitation are investigated in this section. The structures of the rLSTM and autoencoder are constructed by PyTorch.326

The structure of rLSTM-AE network is specified as follows. The number of LSTM layers for rLSTM network is327

specified as l = 2, one fully connected neural network layer is used and the size of hidden state is set as hs = 50.328

The encoding function Eϕ is a fully connected neural network that consists of three layers. Each layer contains 4dz ,329

2dz and dz nodes, respectively. The corresponding decoding function Dθ is also a three-layer fully connected neural330

network and each layer contains 2dz , 4dz and 1 nodes, respectively. The activation function is adopted as ReLU. In331
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this paper, 1000 observed data generated by Latin hypercube sampling are employed, among which Ntrain = 800332

for training and Nvalid = 200 for validation. 10000 unobserved data generated by MCS is employed for testing the333

rLSTM-AE model. The ”fitrgp” function in MATLAB is used for constructing a GPR model, where the linear basis is334

adopted, the kernel function is set as “ardsquaredexponential” and the constant sigma is adopted as 0.001.335

Regarding the reliability analysis problem of the high-dimensional stochastic systems investigated in this paper,336

MCS is adopted as the reference method. To the best of the authors’ knowledge, there is no existing surrogate337

model that can be employed for this high-dimensional stochastic system directly due to the curse of dimensionality.338

The conventional metamodels such as polynomial chaos expansion, support vector regression and Gaussian process339

regression are all unavailable. The moment-based methods can be employed for comparisons since the extreme340

responses are of interest. Herein, the popular maximum entropy method (MEM) and a mixture distribution approach by341

combining inverse Gaussian and lognormal distribution termed MIGLD [33] are employed for the failure probability342

estimation of the stochastic dynamic system. The failure probabilities by the proposed metamodel (rLSTM) for the high-343

dimensional stochastic system, the Gaussian process regression with the detected latent variables by rLSTM-AE termed344

rLSTM-AE-GPR and the active learning-based GPR with the identified latent variables called rLSTM-AE-ALGPR are345

provided.346

4.1. Example 1347

A single-degree-of-freedom system modeled by the Bouc-Wen hypothesis shown in Fig. 5 is investigated [35]. The348

restoring force F of this system can be expressed by:349

F (u, r) = k [qu+ (1− q)r] (32)

where k is the stiffness and r is the hysteretic displacement following the Bouc-Wen hypothesis:350

ṙ = Au̇−B |u̇| |r|e−1
r − Cu̇|r|e (33)

where the parameters are set to: q = 0.2, A = 1, B = C = 5 × 105 and e = 3. Three random variables of the351

SDOF, i.e., the lumped mass m, the stiffness k and the viscous damping c are of concern. The mass m follows a352

normal distribution with mean 41000 kg and a CoV of 0.1. The stiffness k follows a lognormal distribution with mean353

1.5 × 106 N/m and a CoV of 0.2. The damping c is a lognormal distribution with mean 4.35 × 104 N · s/m and a354

CoV of 0.2. The detail of spectrum representation method for generating the stochastic ground motions is provided in

Figure 5: A single-degree-of-freedom system modeled by Bouc-Wen hypothesis

355

section 2.1. Therefore, this system has three random structural parameters and 1001 random phases for generating the356

stochastic excitation so it is a high-dimensional problem with 1004 input random variables. The mean and standard357

deviation of the fully non-stationary stochastic excitation simulated by 1000 Latin hypercube samples are shown in358

Fig. 6 (a) and (b), respectively. The simulated ones are in good accordance with the target ones, which indicates that359

the 1000 samples generated by Latin hypercube sampling can well simulate the stochastic excitation. The time history360

displacement of the SDOF is of interest.361

These 1000 observations are used to train the rLSTM-AE network. The training loss and validation loss by362

LSTM-GM and rLSTM are shown in Fig. 7, where the notation “LSTM-GM” represents that only the stochastic ground363

motions serve as the input features for training. It can be observed that there is an obvious gap between the loss by364

12



0 2 4 6 8 10 12 14 16 18 20

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Target

Latin hypercube sampling

(a) Mean

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Target

Latin hypercube sampling

(b) Standard deviation

Figure 6: Mean and standard deviation of the fully non-stationary stochastic ground motions
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Figure 7: Training and validation loss in example 1

LSTM-GM and loss by rLSTM since LSTM-GM ignores the time-invariant random structural parameters, which365

indicates that the uncertainties of structural parameters also play an important role in the stochastic system. Hence, the366

proposed rLSTM provides a direct way for metamodeling of the high-dimensional stochastic systems considering both367

time-variant and time-invariant random variables. Four representative time history responses predicted by the rLSTM368

and LSTM-GM are depicted in Fig. 8. The red dashed line by rLSTM accords well with the ground truth, i.e., the black369

line. The blue line by LSTM-GM shows quite different time history responses compared with the true ones, which370

manifests that the importance of the time-invariant random structural parameters again.371

The extreme responses are of interest, Fig. 9 (a) depicts predictions of training and validation datasets and (b) shows372

predictions of 10000 test samples. The green and black dashed lines show the relative errors of 10% and 20% compared373

with the ground truth, respectively. The determination coefficient R2 by the rLSTM network is also provided in the374

figure. It can be seen that the trained rLSTM network can fit the 1000 observed data and 10000 unobserved test data375

well. The relative errors of predictions on the test set are mainly within the 10% bound and the R2 is close to 1, i.e.,376

0.9745. The results indicate that the proposed rLSTM network can construct a fairly good metamodel for the stochastic377
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(a) Training sample
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(b) Validation sample
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(c) Test sample 1
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(d) Test sample 2

Figure 8: Representative samples predicted by rLSTM in example 1
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(a) Training and validation (1000 samples)

���� ���� ���� ���� ���� ���� ���� ���� ���� ����
����

����

����

����

����

����

����

����

����

����

����

�
��
��
���
�

R2=0.9745

�	�
�����
�
�����
���
���

(b) Test (10000 samples)

Figure 9: Predictions on extreme responses in example 1

system with 1004 input random variables. Herein, the K-fold cross validation method is also employed to validate the378

generalization ability of the proposed rLSTM, where 5 folds are adopted. The determination coefficients are 0.9710,379

0.9753, 0.9769, 0.9410 and 0.9687, respectively, which are all close to 1. The average determination coefficient is380

0.9666, which indicates the generalization ability of the proposed rLSTM. Furthermore, the probability density function381

(PDF) of the extreme responses and the curve of the probability of exceedance (POE) in logarithmic scale by the382

proposed rLSTM (obtained from predictions on 105 unobserved samples) are shown in Fig. 10 (a) and (b), respectively,383

14



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Displacement (m)

0

5

10

15

20

25

30

35

P
D

F

MCS

rLSTM

(a) PDF

0 0.02 0.04 0.06 0.08 0.1 0.12

Displacement (m)

10
-3

10
-2

10
-1

10
0

P
O

E

MCS

rLSTM

(b) POE

Figure 10: PDF and POE of the extreme responses predicted by rLSTM in example 1
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(c) Compared with the ground truth

Figure 11: Performance of rLSTM-AE and rLSTM-AE-GPR
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(b) Case 2

Figure 12: Failure probability estimation in example 1
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Table 1: Results obtained by different methods in example 1

Method Ncall Pf CoV(Pf ) R.E.

Case 1 MCS 1× 105 2.38× 10−2 2.03% −
MEM 1000 2.94× 10−2 − 23.53%
MIGLD 1000 2.70× 10−2 − 13.58%
rLSTM 1000 2.58× 10−2 4.35% 8.40%
rLSTM-AE-GPR 1000 2.58× 10−2 4.35% 8.40%
rLSTM-AE-ALGPR 1258 2.49× 10−2 4.42% 4.62%

Case 2 MCS 1× 105 6.41× 10−3 3.94% −
MEM 1000 9.23× 10−3 − 43.96%
MIGLD 1000 7.13× 10−3 − 11.25%
rLSTM 1000 2.88× 10−3 5.88% 55.07%
rLSTM-AE-GPR 1000 2.88× 10−3 5.88% 55.07%
rLSTM-AE-ALGPR 1487 6.72× 10−3 4.96% 4.78%

where the reference results are by 105 MCS. It can be seen that the rLSTM can capture the main body of the distribution384

while the accuracy of the tail is insufficient since the accuracy of the metamodeling for the high-dimensional stochastic385

dynamic system across the whole domain is hard to be achieved with the limited observations. Therefore, we need to386

detect a low-dimensional latent space to construct an active learning-based GPR for failure probabilities estimation387

with the aid of the rLSTM.388

The extreme responses of the 1000 observed data are also employed to train the autoencoder, where Ntrain = 800,389

Nvalid = 200 and the size of the training set for GPR is NGPR = 100 as indicted in algorithm 2. To determine the390

best dimension of the latent space, as indicated in algorithm 2, we first specify the dimension from 2 to 20 and then391

the structure of the autoencoder can be determined accordingly.The autoencoder is trained based on the observed392

data. Then, the best autoencoder model and the so-called GPR reconstruction error corresponding to the dz are saved.393

Finally, after training the autoencoder with dz from 2 to 20, the minimum GPR reconstruction error can be found394

and the best dimension of the latent space is determined accordingly. The error of the GPR construction with respect395

to the dimension dz is plotted in Fig. 11 (a). The red point denotes the minimum error so the best dimension of the396

latent space is dz = 11 in this example. Fig. 11 reflects the accuracy of the autoencoder or GPR for the approximate397

extreme value space (extreme responses obtained by rLSTM) reconstruction. The accuracy is validated on 10000398

test samples. The horizontal axis represents the extreme responses estimated by rLSTM and the vertical axis denotes399

predictions by the trained autoencoder or GPR with the low-dimensional latent variables obtained from the trained400

autoencoder. It can be found the trained autoencoder (rLSTM-AE) can accurately reconstruct the extreme space401

approximated by rLSTM, which means that the detected latent variables well capture the features of the extreme space402

by rLSTM. It is mainly because the autoencoder can easily detect dz features for a one-dimensional space. Therefore,403

the GPR with the detected latent variables by rLSTM-AE termed rLSTM-AE-GPR can also accurately reconstruct404

the approximate extreme space. This step enables the GPR to predict the extreme responses and achieve the same405

accuracy as the rLSTM network. This conclusion can also be seen from Fig. 11 (c). The extreme responses predicted406

by rLSTM and rLSTM-AE-GPR are compared with the ground truth. The accuracy of the GPR is almost the same as407

the rLSTM regarding the extreme responses estimation. Although the accuracy is insufficient for reliability analysis,408

rLSTM-AE-GPR can leverage the active learning strategy to improve the failure probability estimation while the409

rLSTM cannot.410

Two cases corresponding to the thresholds of 80 mm and 95 mm are of concern. The size of the initial training set411

for GPR is set to NGPR = 100. The active learning processes are shown in Fig. 12 (a) and (b), respectively. It can412

be found that the estimated failure probability converges to the reference along with the enrichment of the training413

set. The results by different methods are listed in Table 1, where Ncall represents the number of calls to the stochastic414

system and the notation “R.E.” denotes the relative error of the estimated failure probability. Regarding the case 1, the415

failure probabilities by MEM and MIGLD are not as accurate as the proposed rLSTM-based methods. rLSTM and the416

rLSTM-AE-GPR achieve the same accuracy since the GPR constructed by the detected latent variables has the same417
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ability to predict the extreme response as rLSTM, which is consistent with the results shown in Fig. 11 (c). However, as418

stated before, the accuracy of the rLSTM network is insufficient for reliability analysis due to the limited observations419

for constructing a metamodel across the whole domain. The relative errors by rLSTM and rLSTM-AE-GPR are both420

8.40% in case 1. By leveraging the active learning strategy, rLSTM-AE-ALGPR produces a more accurate failure421

probability, i.e., the relative error is 4.62%. Note that 1000 observed samples are employed for training rLSTM-AE422

network and 258 training samples are identified by the U learning function so the total number of calls is 1258 for423

rLSTM-AE-ALGPR. When considering a small failure probability in case 2, i.e., 6.41 × 10−3 by 105 MCS, the424

MEM, MIGLD, rLSTM, rLSTM-AE-GPR cannot produce satisfactory results. The relative errors by rLSTM and425

rLSTM-AE-GPR are both as large as 55.07%. With the aid of the active learning approach, rLSTM-AE-ALGPR can426

obtain a fairly good accuracy, the relative error of the failure probability is reduced to 4.78% from 55.07% by adaptively427

adding 487 samples. Furthermore, a small failure probability corresponding to a threshold of 125 mm is of concern in428

this example. To obtain a reliable estimation, 106 MCS is employed and the reference failure probability is 3.77×10−4.429

Actually, it is known that MCS is not a good way for the active learning-based small failure probability estimation since430

a substantial number of samples are required to ensure a reliable estimation [17, 55]. Active learning training with a431

large candidate pool is computationally expensive. This issue becomes more serious in the context of the stochastic432

dynamics since generating the stochastic excitation is also time-consuming. Some advanced sampling techniques433

such as the importance sampling and subset sampling are combined with the active learning for reliability analysis434

of low-dimensional static systems [17, 55]. However, the combination of the more advanced sampling approaches435

with the proposed high-dimensional active learning strategy should be further investigated for small failure probability436

estimation. In this example, 106 MCS is adopted as the candidate pool and combined with the proposed active learning437

strategy. The whole candidate pool is divided into 5 groups based on the peak ground motions and 1000 samples are438

randomly selected from the 5 groups as the training set. The failure probability by rLSTM and rLSTM-AL-GPR are439

9.01× 10−5 and 8.93× 10−4, respectively, which significantly deviate from the reference result. With the aid of the440

proposed high-dimensional active learning strategy, the accuracy of the failure probability estimation is remarkably441

improved by the proposed method, the failure probability by rLSTM-AE-ALGPR is 2.96× 10−4. In this paper, the442

proposed active learning strategy with the crude MCS is studied so it is suggested to employ the proposed method for a443

relatively large failure probability estimation.444

4.2. Example 2445

To validate the proposed method for the practical engineering problems, a 3D reinforced concrete frame structure446

subjected to the fully non-stationary stochastic seismic excitation is investigated [56]. The structural configuration447

and reinforcement information are shown in Fig. 13. The finite element model is constructed by OpenSees and the448

constitutive laws Concrete01 and Steel01 are adopted. 7 random structural variables are involved and listed in Table 2.449

Therefore, the total number of the input random variables is 1008 in this example. The time history displacement at450

point A in the Fig. 13 is of interest.

Table 2: Random variables in example 2

Variable Description Distribution Mean CoV

fc Concrete compressive strength Lognormal 26.8 MPa 0.20
εc Concrete strain at maximum strength Lognormal 0.0015 0.05
fu Concrete crushing strength Lognormal 10 MPa 0.20
εu Concrete strain at crushing strength Lognormal 0.0033 0.05
fy Yield strength of rebar Lognormal 400 MPa 0.20
E0 Initial elastic modulus of rebar Lognormal 206 GPa 0.20
b Strain-hardening ratio of rebar Lognormal 0.01 0.05

451

Similarly, 1000 observed data are employed to train rLSTM-AE network. The training and validation losses by452

rLSTM and LSTM-GM are shown in Fig. 14. There is always a gap between LSTM-GM and rLSTM throughout the453

training process, which states that the uncertainties of structural parameters are critical to the response of interest. Hence,454

rLSTM considers both time-variant and time-invariant input features is necessary for the metamodel construction of455
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Figure 13: The 3D reinforced concrete frame structure
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Figure 14: Training and validation loss in example 2

stochastic dynamic systems. Four representative samples are presented in Fig. 15, which proves again that the rLSTM456

has a better performance than LSTM-GM. Fig. 16 (a) shows the accuracy of the extreme responses predicted by rLSTM457

and LSTM-GM on training and validation datasets. Fig. 16 (b) showcases the accuracy of the extreme responses458

predicted on 10000 test samples. It can be observed that the relative errors of the predicted samples by rLSTM are459

predominately below 20% while the accuracy of the blue samples predicted by LSTM-GM is unsatisfactory. The460

determination coefficient calculated by rLSTM on 10000 test samples is close to 1, which states that the rLSTM can461

achieve a pretty good accuracy. The K-fold cross validation is utilized to further validate the generalization ability of the462

proposed rLSTM and the determination coefficients are 0.9414, 0.9369, 0.9445, 0.8831 and 0.9141, respectively. The463

mean R2 is 0.9240, which is close to 1. Hence, the generalization ability of the rLSTM is validated again. Moreover,464

the PDF and POE in logarithmic scale by 105 MCS are depicted in Fig. 17, which manifests that the rLSTM can465

well capture the main body of the extreme responses distribution. The rLSTM loses some accuracy in the tail of the466
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(a) Training sample
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(b) Validation sample
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(c) Test sample 1
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(d) Test sample 2

Figure 15: Representative samples predicted by rLSTM in example 2

distribution since it is hard to build a metamodel for the stochastic dynamic system across the whole domain with the467

limited observations.
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(a) Training and validation (1000 samples)
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(b) Test (10000 samples)

Figure 16: Predictions on extreme responses in example 2

468

Regarding the reliability analysis of this 1008-dimensional stochastic dynamic system, the low-dimensional latent469

variables are required to be identified since the accuracy of the rLSTM is still insufficient for the failure probability470

estimation with the current limited observations. Then, the active learning-based GPR metamodel can be constructed to471
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Figure 17: PDF and POE of the extreme responses predicted by rLSTM in example 2
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(a) GPR reconstruction error
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(b) Compared with the rLSTM
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(c) Compared with the ground truth

Figure 18: Performance of rLSTM-AE and rLSTM-AE-GPR
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(a) Case 1
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(b) Case 2

Figure 19: Failure probability estimation in example 2
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Table 3: Results obtained by different methods in example 2

Method Ncall Pf CoV(Pf ) R.E.

Case 1 MCS 1× 105 3.83× 10−2 1.59% −
MEM 1000 3.43× 10−2 − 10.28%
MIGLD 1000 3.52× 10−2 − 8.01%
rLSTM 1000 2.56× 10−2 4.36% 33.12%
rLSTM-AE-GPR 1000 2.56× 10−2 4.36% 33.12%
rLSTM-AE-ALGPR 1295 3.80× 10−2 3.56% 0.86%

Case 2 MCS 1× 105 6.11× 10−3 4.03% −
MEM 1000 6.49× 10−3 − 6.13%
MIGLD 1000 6.35× 10−3 − 3.85%
rLSTM 1000 9.40× 10−4 10.31% 84.62%
rLSTM-AE-GPR 1000 9.30× 10−4 10.36% 84.78%
rLSTM-AE-ALGPR 1374 6.00× 10−3 4.86% 1.80%

improve the reliability analysis process. Fig. 18 (a) depicts the GPR construction error with respect to the dimension472

of the latent variables dz . It can be found that dz = 2 is the best dimension for constructing a GPR metamodel in473

this example. Fig. 18 (b) presents the performance of the trained autoenoder and rLSTM-AE-GPR on reconstructing474

the extreme responses by rLSTM. Both of them achieve high-accuracy, which manifests that the GPR with the latent475

variables detected by rLSTM-AE can perfectly reconstruct the extreme value space predicted by the rLSTM. Fig. 18 (c)476

showcases that the rLSTM-AE-GPR is equivalent to the rLSTM regarding the extreme responses estimation. Then,477

rLSTM-AE-GPR can combine the active learning strategy for the failure probability estimation. In this example, two478

cases corresponding to the thresholds of 100 mm and 119 mm are of concern. Fig. 19 shows the active learning process479

for failure probabilities estimation. With the aid of the active learning, the accuracy of the estimated failure probability480

increases with the enrichment of training set and the final failure probability converges to the benchmark by MCS.481

Moreover, the failure probabilities by different methods are listed in Table 3. For case 1, the relative errors by MEM482

and MIGLD are larger than 5%. rLSTM and rLSTM-AE-GPR do not produce satisfactory results and the relative483

errors of the failure probability are as large as 33.12%, which results from the insufficient accuracy of the rLSTM484

for reliability analysis under limited observations. rLSTM-AE-ALGPR produces an accurate failure probability by485

adaptively adding 295 samples and the relative error is as small as 0.86%. Regarding case 2, the reference failure486

probability i.e., 6.11× 10−3 is produced by 105 MCS. MIGLD obtains more accurate result than MEM by consuming487

the same number of function calls. Again, the accuracy of the rLSTM and rLSTM-AE-GPR is not sufficient for488

reliability analysis and the relative errors are both over 80%. By leveraging the active learning, the training set for GPR489

construction is enriched by 374 samples and the accuracy of the estimated failure probability is significantly improved.490

The relative error is reduced to 1.8% from 84.62% compared with the rLSTM.491

5. Concluding Remarks492

In this paper, a rLSTM network considering both time-variant and time-invariant input features for metamodeling of493

the high-dimensional stochastic dynamic systems is developed. The stochastic excitation is employed as the pertinent494

input but not the random phases for simulating the excitation. The proposed rLSTM is capable of capturing the main495

body of the extreme response distribution of a high-dimensional stochastic dynamic system by consuming the limited496

observations. Regarding the reliability analysis, it is usually hard to build a high-accuracy metamodel across the whole497

domain under the limited training samples. To surmount the insufficient accuracy of reliability analysis induced by the498

limited observations, the rLSTM is combined with the autoencoder to detect a low-dimensional latent space of the499

approximate extreme value space. The best latent space for reconstructing the approximate extreme value space is500

selected by minimizing the error between the GPR predictions and the ground truth. Finally, the active learning-based501

GPR is combined with the latent variables to improve the accuracy of failure probabilities estimation. The results502

of a 1004-dimensional SDOF system and a 1008-dimensional reinforced concrete frame structure subjected to the503
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stochastic excitation validate that the proposed method is capable of building metamodel and accurately approximating504

the failure probability for the high-dimensional stochastic dynamic systems. The proposed rLSTM provides a way of505

metamodeling for a stochastic dynamic system with more than 1000 input features. The rLSTM-AE brings insights for506

the low-dimensional features extraction from the perspective of the approximate output space, which makes the active507

learning-based reliability analysis available for the high-dimensional stochastic dynamic systems. It is recommended508

to employ the proposed rLSTM-AE-ALGPR with the crude MCS for a relatively large failure probability estimation.509

Future study will focus on combining the more advanced sampling techniques with the proposed high-dimensional510

active learning strategy for the small failure probabilities estimation.511
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Algorithm 2 rLSTM-AE for the low-dimensional latent space detection
Input: Random structural parameters xS , the stochastic excitation a(t) and observed responses y(t).
Output: rLSTM-AE model and latent variable Z.

1: Data normalization and concatenation:
2: {(ã (t) , x̃S (t)) , ỹ (t)} Eqs.(8)and(9)←−−−−−−−−−{a (t) ,xS , y (t)}.
3: {x̃train} ←

{(
ãi (t) , x̃i

S (t)
)}
, {ỹtrain} ←

{
ỹi (t)

}
, i = 1, 2, ..., Ntrain.

4: {x̃valid} ←
{(
ãi (t) , x̃i

S (t)
)}
, {ỹvalid} ←

{
ỹi (t)

}
, i = Ntrain + 1, Ntrain + 2, ..., Ntrain +Nvalid.

5: rLSTM training:
6: Specify rLSTM structure: Idim = d2 + 1,Odim = 1, l = 2, hs = 50 and dropout value 0.5.
7: for m =1:epoch (epoch=500) do
8: for n=1:batch (samples in each batch Nbatch = 100) do
9: {x̃batch}n ⊆ {x̃train} , {ỹbatch}n ⊆ {ỹtrain} ; {x̃batch}i ∩ {x̃batch}j = ∅, i 6= j.

10: {ŷbatch}n = rLSTM ({x̃batch}n).
11: Ltrain (λ) = 1

Nbatch
‖{ỹbatch}n − {ŷbatch}n‖

2
2
.

12: Backward Ltrain (λ) and optimize λ with the optimizer “Adam” with a learning rate 0.01.
13: end for
14: {ŷvalid} = rLSTM ({x̃valid}).
15: Lvalid (m) = 1

Nvalid
‖{ỹvalid} − {ŷvalid}‖22.

16: end for
17: Find the minimum validation loss Lvalid and save the best rLSTM model .
18: Autoencoder training:
19: {ỹev,train} =

{
ỹiev = max

(
abs

(
ỹi (t)

))}
, i = 1, 2, ..., Ntrain.

20: {ỹev,valid} =
{
ỹiev = max

(
abs

(
ỹi (t)

))}
, i = Ntrain + 1, Ntrain + 2, ..., Ntrain +Nvalid.

21: for dz = 2:20 do
22: Specify the autoencoder structure: Idim = 1, Odim = 1 and number of nodes in each layer, i.e., (4dz ,2dz ,dz)

for Eϕ and (2dz, 4dz, Odim) for Dθ.
23: for q=1:epoch (epoch=100) do
24: for k=1:batch (Nbatch = 100) do
25: {ỹev,batch}k ⊆ {ỹev,train} , {ỹev,batch}i ∩ {ỹev,batch}j = ∅, i 6= j.
26: {ŷev,batch}k = Dθ

(
Eϕ
(
{ỹev,batch}k

))
.

27: LAE
train (ϕ,θ) = 1

Nbatch

∥∥{ỹev,batch}k − {ŷev,batch}k
∥∥2

2
.

28: Backward LAE
train (ϕ,θ) and optimize (ϕ,θ) with the optimizer “Adam” with a learning rate 0.01.

29: end for
30: {ŷev,valid} = Dθ (Eϕ ({ỹev,valid})).
31: LAE

valid (q) = 1
Nbatch

‖{ỹev,valid} − {ŷev,valid}‖22.
32: end for
33: Find the minimum validation loss and save the best autoencoder as M(dz).
34: Obtain latent variables for training GPR: ztrain ∈ RNGPR×dz ← z0

1:NGPR , z0 = Eϕ ({ỹev}).
35: Obtain the original extreme responses for training GPR: yev,train ← y1:NGPR

ev , yev = max (abs (y (t))).

36: Train GPR and compute error: LGPR (dz) = 1
N

N∑
i=1

∥∥yiev −GPR
(
zi0
)∥∥2

2
, N = Ntrain +Nvalid.

37: end for
38: Obtain the best dz and save the best AE model among M(dz) by finding the minimum error LGPR (dz).
39: Latent variables detection by the trained rLSTM-AE given unobserved data anew (t) and xS,new:

40: {(ãnew (t) , x̃S,new (t))} Eqs.(8)and(9)←−−−−−−−−−{anew (t) ,xS,new}.
41: ŷnew (t) = rLSTM ({(ãnew (t) , x̃S,new (t))}) , yrLSTM

ev = max (abs (ŷnew (t))).
42: z = Eϕ

(
yrLSTM

ev

)
.

43: Output the rLSTM-AE model and the latent variable Z.
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