
Clausal Reasoning for Branching-Time Logics

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor of Philosophy

by

Lan Zhang

December 2010

Abstract

Computation Tree Logic (CTL) is a branching-time temporal logic whose underlying model of time

is a choice of possibilities branching into the future. It has been used in a wide variety of areas

in Computer Science and Artificial Intelligence, such as temporal databases, hardware verification,

program reasoning, multi-agent systems, and concurrent and distributed systems.

In this thesis, firstly we present a refined clausal resolution calculus R
≻,S
CTL for CTL. The calculus

requires a polynomial time computable transformation of an arbitrary CTL formula to an equi-

satisfiable clausal normal form formulated in an extension of CTL with indexed existential path

quantifiers. The calculus itself consists of eight step resolution rules, two eventuality resolution

rules and two rewrite rules, which can be used as the basis for an EXPTIME decision procedure

for the satisfiability problem of CTL. We give a formal semantics for the clausal normal form,

establish that the clausal normal form transformation preserves satisfiability, provide proofs for

the soundness and completeness of the calculus R
≻,S
CTL, and discuss the complexity of the decision

procedure based on R
≻,S
CTL. As R

≻,S
CTL is based on the ideas underlying Bolotov’s clausal resolution

calculus for CTL, we provide a comparison between our calculus R
≻,S
CTL and Bolotov’s calculus for

CTL in order to show that R
≻,S
CTL improves Bolotov’s calculus in many areas. In particular, our

calculus is designed to allow first-order resolution techniques to emulate resolution rules of R
≻,S
CTL

so that R
≻,S
CTL can be implemented by reusing any first-order resolution theorem prover.

Secondly, we introduce CTL-RP, our implementation of the calculus R
≻,S
CTL. CTL-RP is the

first implemented resolution-based theorem prover for CTL. The prover takes an arbitrary CTL

formula as input and transforms it into a set of CTL formulae in clausal normal form. Furthermore,

in order to use first-order techniques, formulae in clausal normal form are transformed into first-

order formulae, except for those formulae related to eventualities, i.e. formulae containing the

eventuality operator 3. To implement step resolution and rewrite rules of the calculus R
≻,S
CTL, we

present an approach that uses first-order ordered resolution with selection to emulate the step

resolution rules and related proofs. This approach enables us to make use of a first-order theorem

prover, which implements the first-order ordered resolution with selection, in order to realise our

calculus. Following this approach, CTL-RP utilises the first-order theorem prover SPASS to conduct

resolution inferences for CTL and is implemented as a modification of SPASS. In particular, to

implement the eventuality resolution rules, CTL-RP augments SPASS with an algorithm, called

loop search algorithm for tackling eventualities in CTL. To study the performance of CTL-RP, we

have compared CTL-RP with a tableau-based theorem prover for CTL. The experiments show good

performance of CTL-RP.

i

ii ABSTRACT

Thirdly, we apply the approach we used to develop R
≻,S
CTL to the development of a clausal reso-

lution calculus for a fragment of Alternating-time Temporal Logic (ATL). ATL is a generalisation

and extension of branching-time temporal logic, in which the temporal operators are parameterised

by sets of agents. Informally speaking, CTL formulae can be treated as ATL formulae with a single

agent. Selective quantification over paths enables ATL to explicitly express coalition abilities, which

naturally makes ATL a formalism for specification and verification of open systems and game-like

multi-agent systems. In this thesis, we focus on the Next-time fragment of ATL (XATL), which is

closely related to Coalition Logic. The satisfiability problem of XATL has lower complexity than

ATL but there are still many applications in various strategic games and multi-agent systems that

can be represented in and reasoned about in XATL.

In this thesis, we present a resolution calculus RXATL for XATL to tackle its satisfiability

problem. The calculus requires a polynomial time computable transformation of an arbitrary XATL

formula to an equi-satisfiable clausal normal form. The calculus itself consists of a set of resolution

rules and rewrite rules. We prove the soundness of the calculus and outline a completeness proof

for the calculus RXATL. Also, we intend to extend our calculus RXATL to full ATL in the future.

Acknowledgement

A huge thank to the best parents a child could hope for, Qing Jie Zhang and Wei Wei Zhang, for

their unconditional love and support, and for always being there for me whenever I need them.

There are no ways that I can thank them enough for how much both of them have helped with

my life and career, and taught and given me all the things that have gotten me here. My parents

have been my rock. I want to thank my incredible wife Sherly Novelia Nietiadi, for continuing

understanding and great sacrifice she has made for these years in the support of my studying, for

hard and tedious house work she has done so that I have more time to spend on my research, and

for tremendous love she has poured into my heart to help me to recover quickly when I was very

weak in the hospital.

I would like to thank my supervisors Dr. Ullrich Hustadt and Dr. Clare Dixon, for introducing me

to the field of temporal logic and in particular, resolution-based approaches for automated theorem

proving in temporal logic, for their expert advice and guidance that helps me find new directions

when my research approaches a dead end and makes me realise what the important issues are when

my thoughts are clouded by many trivial details, for their continued encouragement and inspiration,

and for their great patience when testing the resolution-based theorem prover for Computation Tree

Logic I have developed.

I am so grateful for the effort Dave Shield made to configure and install all software I needed

and solve all technical problems I encountered. I want to express my gratitude to my colleague

Michel Ludwig for his detailed explanation of the internal structure of the first-order resolution

theorem prover SPASS, which helped me a lot with the development of my own theorem prover

CTL-RP.

Thank everyone in LoCo Group of Computer Science Department at the University of Liverpool

for providing a friendly academic environment.

Last but not least, the financial support (EPSRC grant EP/D060451/1) by the Engineering and

Physical Sciences Research Council is gratefully acknowledged.

iii

iv ACKNOWLEDGEMENT

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Formal methods for system designs . 1

1.1.1 Formal specification . 3

1.1.2 Formal verification . 3

1.2 Novel contributions . 4

1.3 Overview of this thesis . 5

2 Preliminaries to resolution for branching-time temporal logic 7

2.1 Propositional logic . 7

2.1.1 Syntax and semantics of propositional logic 7

2.1.2 Resolution for propositional logic . 9

2.2 Propositional linear-time temporal logic (PLTL) . 12

2.2.1 Syntax and semantics of PLTL . 12

2.2.2 Resolution for PLTL . 13

3 A refined resolution calculus for CTL 17

3.1 Introduction . 17

3.2 Syntax and semantics of CTL . 19

3.3 Normal form . 20

3.3.1 Syntax and semantics of SNFg
CTL . 22

3.3.2 Transformation . 22

3.4 The clausal resolution calculus R
≻,S
CTL . 28

3.4.1 Step resolution . 28

3.4.2 Eventuality resolution . 31

3.4.3 Loop search . 35

3.4.4 A decision procedure . 40

3.5 Correctness of the calculus R
≻,S
CTL . 40

3.5.1 Correctness of the transformation to SNFg
CTL 40

3.5.2 Soundness and completeness . 54

v

vi CONTENTS

3.5.3 Termination . 72

3.6 Complexity . 72

3.7 Related work . 73

3.7.1 Comparison between R
≻,S
CTL and the previous resolution calculus 73

3.7.2 Other approaches for the satisfiability problem of CTL 78

3.8 Conclusions . 78

4 CTL-RP: A resolution theorem prover for CTL 81

4.1 Introduction . 81

4.2 Implementation of the calculus R
≻,S
CTL . 82

4.2.1 Preliminaries of first-order ordered resolution with selection 82

4.2.2 Representing determinate SNFg
CTL clauses as first-order clauses 86

4.2.3 Implementing step resolution . 87

4.2.4 Implementing eventuality resolution . 94

4.2.5 The main procedure of our implementation 100

4.2.6 CTL-RP . 102

4.3 Related theorem provers . 103

4.3.1 OTRES and TRP++ . 103

4.3.2 Tableau Workbench . 103

4.4 Performance of CTL-RP . 104

4.4.1 CTL-RP vs. TWB . 105

4.4.2 CTL-RP 00.14 vs. 00.09 . 109

4.5 Conclusions . 111

5 Resolution for the Next-time fragment of ATL 113

5.1 Introduction . 113

5.2 Syntax and semantics of XATL . 114

5.2.1 Syntax of XATL . 114

5.2.2 Semantics of XATL . 115

5.3 Normal form . 119

5.3.1 Normal form for XATL SNFXATL . 119

5.3.2 Semantics of SNFXATL . 120

5.3.3 Transformation . 121

5.4 The clausal resolution calculus RXATL . 124

5.4.1 Step resolution . 124

5.5 Correctness of the calculus RXATL . 126

5.5.1 Correctness of the transformation . 126

5.5.2 Soundness and completeness . 134

5.6 Conclusions . 138

CONTENTS vii

6 Conclusions and future work 141

6.1 Conclusions . 141

6.2 Future work . 143

6.2.1 Further research on XATL resolution . 143

6.2.2 Extension to other modal logics . 144

A The previous transformation rules 147

B Equivalences in ATL 149

Bibliography 155

List of figures 158

Index 159

viii CONTENTS

Chapter 1

Introduction

In this thesis, we investigate two formal verification methods, which can be used for many various

types of information processing systems to check whether an implementation satisfies a specification.

We first give an introduction of the background of formal methods. We briefly discuss where

and why formal methods are desirable and present two essential components of formal methods,

namely formal specification and formal verification. In addition, we also briefly introduce the

validity and the satisfiability problem, which our methods aim to solve. Secondly, we present our

main contributions in Section 1.2 and, lastly, we provide an overview of this thesis in Section 1.3.

1.1 Formal methods for system designs

The development of various computer-based systems, for example mobile phones, modern computer

operating systems, air traffic control systems, flood control systems, and missile launcher systems,

is a real challenge, especially if they are concurrent and distributed systems. Since the development

of such systems is so complicated, they are prone to have errors and, consequently, the systems

malfunction. In the following, we show several examples to illustrate some system failures and how

extensive the damage, caused by those failures, can be.

1. In 1993, a floating point division bug was discovered in Intel’s highly promoted Pentium chip.

Due to this flaw, Intel lost 475 million dollars in total for replacing many sold chips. Moreover,

this design flaw severely damaged Intel’s reputation for manufacturing high quality CPUs.

2. In 1996, the Ariane 5, an unmanned rocket, exploded along with its cargo of four scientific

research satellites, shortly after its launch. This failure was caused by an overflow error, which

was generated by a conversion from a 64-bit floating-point number into a 16-bit integer. This

loss cost nearly 500 million dollars.

3. Last but not least, in 1983, the Soviet early warning system falsely gave an alarm reporting

that the United States had launched five missiles towards the Soviet Union due to a defect

in its software system, which failed to filter out false missile detection generated by sunlight

reflections. Fortunately, the Soviet duty officer had reported it as a false alarm instead of

1

2 CHAPTER 1. INTRODUCTION

following the protocol to immediately respond to the attack with their own nuclear missiles.

This event could have caused the loss of millions of human lives or even worse than that, i.e.

the whole planet could have been consumed by nuclear war.

Therefore, it is commonly agreed in the Information Technology industry that ensuring the

correctness of hardware/software system designs is important. For example, in many software

development methodologies such as Test-driven Development and Extreme Programming, it is an

important principle that the code for testing is written first before the code of the actual software is

written. However, in reality correctness is still very hard to achieve, although people pay extensive

attention to it.

As people rely on computers to do more and more tasks, the complexity of many computer-

based systems is increasing inevitably quickly, however the measures to guarantee the correctness

of the designs for those systems can not keep up with the speed with which their complexity grows.

The current most common verification methods used in the Information Technology industry are

simulation and testing. These usually only test some of the possible behaviours of the systems and

are obviously not sufficient to be the only methods for system verification. Thus, the demands for

new verification methods, which

1. can explore all possible behaviours,

2. are able to automatically and efficiently find subtle system design flaws in rather complex

systems,

3. improve the confidence in the correctness of the design, and

4. notably reduce the effort expended on testing,

is growing fast. Formal methods have been developed for these purposes.

Formal methods have attracted more and more attention not only from academic researchers but

also from engineers and designers who work in the Information Technology industry. As a result,

many formal method tools [21, 46, 48, 14, 2, 8] have been developed and applied to industrial design

processes. We give a number of examples to demonstrate the usefulness of formal methods.

• NASA used the formal verification tool SPIN [46] to verify some crucial algorithms developed

for the NASA Cassini spacecraft.

• IBM has developed a hardware formal verification tool, called IBM RuleBase [14]. With the

help of this tool, IBM design engineers have detected 65 bugs in AS/400 processors.

• Intel has developed a new formal specification language, ForSpec Temporal Logic [9], and

utilised this language to formalise the design of some of their products.

So far, we have discussed the necessity and usefulness of formal methods in guaranteeing the

correctness of system designs in general. Next, we discuss two important aspects of formal methods,

namely Formal Specification and Formal Verification.

1.1. FORMAL METHODS FOR SYSTEM DESIGNS 3

1.1.1 Formal specification

A specification of a system is a description, which explains what the system should do but not how

functions of the system are achieved. Ensuring that a specification is correct is a prerequisite for

obtaining a correct implementation. Commonly, a specification is described in a natural language.

However, natural language is ambiguous and inaccurate compared to mathematical languages.

Therefore, using natural language for specification often causes errors or results in an inconsistent

specification, i.e. the requirements in the specification can not be satisfied together. In order to

avoid the drawbacks of natural language in specifications, some mathematical language needs to be

developed for modelling the system and describing the desired properties of the system. Usually

such a language is a formal language (logic)1 and a specification of a system obtained by using a

formal language is a formal specification.

Formal specification also provides other benefits. Firstly, since formal specifications are precise

and accurate, some formal methods can be applied to them to detect errors in the specifications.

Secondly, there are some techniques [64], which can be used to derive an implementation from

a formal specification. Lastly, using formal specification, it becomes possible to apply formal

verification (discussed in the next section) in the system development process.

1.1.2 Formal verification

By formal verification we understand the process of checking whether an implementation of a system

S satisfies a specification Φspec. Currently, many formal verification methods have been developed

and they usually can be applied in two different ways.

Model checking

In model checking, one describes the specification of the system and the model of the system using

formal specification methods. However, the specification and the model are specified by different

methods, i.e. the specification Φspec is described in a formal language (logic) whereas the model

is given as an interpretation Mimp of this logic. Model checking is the process of evaluating the

specification Φspec in the interpretation Mimp . Therefore, model checking can be used to identify

the flaws in system design which are not consistent with the specification.

Theorem proving

Alternatively, one may specify the model Φimp of the system and the specification Φspec of the

system in the same formal language (logic) and investigate Φspec and Φimp together with a suitable

calculus for such a logic. In order to guarantee that the specification holds for its implementation,

one usually wants to confirm that Φimp implies Φspec, i.e. formally prove that Φimp → Φspec is valid.

This validity problem can be solved using automated theorem proving techniques. The problem

closely related to the validity problem is the satisfiability problem, i.e. the task of determining

whether a formula Φ is satisfiable. Typically, the two problems are interreducible. A formula Φ is

1Some researchers also regard programming languages, hardware description languages and other mathematical
languages as formal languages. In this thesis, unless indicated otherwise, formal languages are formal logics.

4 CHAPTER 1. INTRODUCTION

valid iff the formula ¬Φ is unsatisfiable. In the particular case of formal verification, Φimp → Φspec

is valid iff Φimp ∧ ¬Φspec is unsatisfiable.

In this thesis, we present the following two theorem proving methods for two different formal

languages:

1. A clausal resolution calculus for solving the satisfiability problem of Computation Tree Logic

(CTL).

CTL was proposed in 1982 by Emerson and Clarke in [32]. It is a propositional branching-time

temporal logic whose underlying model of time is a choice of possibilities branching into the

future and can be used to represent and verify many systems, such as real time and concurrent

systems [53].

2. A clausal resolution calculus for solving the satisfiability problem of the Next-time fragment

of Alternating-time Temporal Logic (XATL).

Alternating-time Temporal Logic (ATL) was proposed in 1997 by Alur, Henzinger and Kupfer-

man in [5]. It is a propositional branching-time temporal logic containing temporal operators

parameterised by a set of agents to express coalition abilities of agents. XATL is a non-

trivial fragment of ATL that can be used to represent and verify many systems, in particular,

multi-agent systems [57, 76].

1.2 Novel contributions

The novel contributions that can be found in this thesis are the following.

1. We provide a new clausal resolution calculus R
≻,S
CTL for CTL. The calculus R

≻,S
CTL is based on

a previously defined calculus for CTL by Bolotov [15] but many aspects have been improved.

The calculus requires a transformation of a CTL formula to a clausal normal form, called

Separated Normal Form with Global Clauses (denoted by SNFg
CTL). SNFg

CTL is an extension

of CTL with indexed temporal operators. We provide a formal semantics for SNFg
CTL and

craft a new set of transformation rules, which is shown to be more efficient than the set of

transformation rules in [15] in terms of the number of extra propositions required and the

number of clauses in the normal form obtained by the transformation. The calculus R
≻,S
CTL

itself consists of so-called step resolution rules and eventuality resolution rules. We show that

some eventuality resolution rules in [15] are redundant. Since eventuality resolution rules are

the most costly rules in resolution calculi, we gain significant efficiency. Also, our calculus

makes use of an ordering ≻ and a selection function S to reduce applicability of the resolution

rules. Finally, a new completeness proof and a complexity and termination analysis are given.

The main content of this contribution is published in [78, 79, 77].

2. We have implemented our resolution calculus R
≻,S
CTL for CTL in the theorem prover CTL-RP

(short for Computation Tree Logic Resolution Prover). To our knowledge, CTL-RP is the

first resolution-based theorem prover for CTL. Moreover, we provide a new technique for

implementing the resolution rules in our calculus through first-order resolution. Thus, the

implementation of CTL-RP is able to reuse the first-order resolution-based theorem prover

1.3. OVERVIEW OF THIS THESIS 5

SPASS [54] to realise the calculus R
≻,S
CTL. Moreover, due to the reuse of SPASS, the effort to

produce a theorem prover for CTL is reduced. We have conducted a number of experiments

with CTL-RP which show that it is able to efficiently verify a variety of satisfiability problems

encoded in CTL. It also outperforms the only other CTL theorem prover currently available,

namely the CTL module of the Tableau Workbench on these problems. This contribution has

been published in [79].

3. Lastly but not least, we provide a clausal resolution calculus RXATL for XATL. Again, the

calculus RXATL requires a transformation of an XATL formula to a clausal normal form,

SNFXATL (short for Separated Normal Form for XATL). To this end, we introduce a new set

of transformation rules. We prove that our transformation rules for XATL preserve satisfi-

ability and the transformation procedure is terminating and, furthermore, can be computed

in polynomial time in the size of the input formula. The calculus consists of several step

resolution and rewrite rules, which are used to deal with constraints on the next moment and

formula rewriting, respectively. We prove that our resolution calculus RXATL is sound and

outline a completeness proof.

1.3 Overview of this thesis

The main content of this thesis is as follows.

• In Chapter 2, we provide the preliminaries to our research. We present the syntax and

semantics, some important properties, and resolution calculi for Propositional Logic (PL) and

Propositional Linear-time Temporal Logic (PLTL), which are the foundation of our resolution

calculi in this thesis.

• Chapter 3 presents a refined clausal resolution calculus R
≻,S
CTL for CTL. Firstly, a clausal

normal form for CTL, SNFg
CTL, and its semantics are introduced. The normal form SNFg

CTL

contains six different types of clauses: initial, global, A-step, E-step, A-sometime and E-

sometime clauses. A procedure for transformation of an arbitrary CTL formula into its equi-

satisfiable set of formula in SNFg
CTL is shown and proven to be correct. Then the calculus

R
≻,S
CTL consisting of step resolution, eventuality resolution and rewrite rules is defined. We

show soundness and completeness of the calculus R
≻,S
CTL. Furthermore, we show that given a

set T of SNFg
CTL clauses, the calculus R

≻,S
CTL will only derive a finitely bounded number of

additional clauses from T . Thus, any derivation from T by R
≻,S
CTL terminates. Finally, related

work is discussed and conclusions are drawn.

• In Chapter 4, we discuss CTL-RP, our resolution theorem prover for CTL. We first present

how we transform initial, global, A-step and E-step clauses into first-order formulae and how

first-order resolution techniques are used to implement the step resolution rules for CTL.

Then we present the algorithms of implementing the eventuality resolution rules for CTL and

give a small example to demonstrate how the algorithms work. In addition, we establish a

relationship between first-order resolution inferences and resolution inferences for CTL, which

6 CHAPTER 1. INTRODUCTION

shows that our implementation is correct. Finally, we present our empirical study of CTL-RP

and conclusions for this chapter.

• In Chapter 5, we provide the first clausal resolution calculus for XATL. Firstly, we give

syntax and semantics of XATL and define a clausal normal form for XATL, SNFXATL. We

then define a transformation procedure that transforms an arbitrary XATL formulae into a

set of XATL formulae in SNFXATL, and prove that the transformation procedure preserves

satisfiability and is terminating. Finally, we show details of our calculus, its soundness proof

and the outline of its completeness proof.

• Finally, in Chapter 6, we draw the conclusions of our work and discuss potential future

research.

Chapter 2

Preliminaries to resolution for

branching-time temporal logic

In this chapter, we consider two resolution calculi RPL and RPLTL for Propositional Logic (PL) [20]

and Propositional Linear-time Temporal Logic (PLTL) [59], respectively. The calculus RPL [20]

consists of a single inference rule that can be used to prove whether a formula of PL is satisfiable.

RPL is often regarded as the cornerstone of all other resolution-based proof methods for classical

and non-classical logics. Based on resolution techniques, in 1991, Fisher et al. developed a clausal

resolution method RPLTL [37] for temporal logic. Since then, RPLTL has become the foundation for

many resolution methods for temporal logics and their variants including our resolution calculi for

CTL and XATL.

2.1 Propositional logic

2.1.1 Syntax and semantics of propositional logic

Propositional Logic [20] is a classical logic and a foundation of many other complex logics such

as PLTL, CTL and ATL. Axiom systems and proof methods related to PL have been studied

extensively since the seminal work of Boole (1815-1864) [19]. In this section, we give the syntax

and semantics of PL and state some properties of PL.

The fundamental building blocks of the language of PL are propositions , which are declarative

statements, for example,

• today is Tuesday;

• it rains today;

• the product of multiplying 2 by 2 is 3; and

• the sun is bigger than the Earth.

In other words, propositions are statements that are either true or false. In PL, each proposition

is represented by an individual atomic proposition such as p, q and r.

7

8CHAPTER 2. PRELIMINARIES TO RESOLUTION FOR BRANCHING-TIME TEMPORAL LOGIC

The language of PL is then based on

• a set of atomic propositions PPL;

• two propositional constants , true and false, also called truth values .

• several logical connectives, also called boolean operators , ¬ (negation), ∧ (and), ∨ (or) and

⇒ (implication).

The set of well-formed formulae of PL is inductively defined as follows:

1. true and false are PL formulae;

2. all atomic propositions in PPL are PL formulae; and

3. if ϕ and ψ are PL formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), and (ϕ⇒ ψ).

It should be noted that in the remainder of this thesis, ⇔ (double-implication) is an abbreviation,

i.e. if ϕ and ψ are PL formulae, then the expression (ϕ ⇔ ψ) is a shorthand for the formula

((ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)). The abbreviation ⇔ can also be applied to formulae of PLTL, CTL and

XATL.

Formulae of PL over PPL are interpreted in interpretations . Each interpretation L is a function

L : PPL → {true, false} mapping each proposition in PPL to either true or false.

The satisfaction relation |= between an interpretation L and a formula of PL is inductively

defined as follows:

L |= true

L 6|= false

L |= p iff L(p) = true for an atomic proposition p ∈ PPL

L |= ¬ϕ iff L 6|= ϕ

L |= (ϕ ∧ ψ) iff L |= ϕ and L |= ψ

L |= (ϕ ∨ ψ) iff L |= ϕ or L |= ψ

L |= (ϕ⇒ ψ) iff L |= ¬ϕ or L |= ψ

A formula ϕ of PL is satisfiable under an interpretation L iff L |= ϕ, in which case L is called a

model of ϕ. A formula ϕ is called satisfiable iff there exists at least one interpretation L such that

ϕ is satisfied under L. A formula ϕ of PL is valid iff for every interpretation L, L |= ϕ, in which

case we also write |= ϕ.

Definition 2.1 Equivalence

Two formulae ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff, for every model of ϕ is also a model

of ψ and vice versa, i.e. |= ϕ⇔ ψ holds.

In the following, we introduce some very useful equivalences between PL formulae, which will

be used in many proofs in the remainder of this thesis. Let ϕ and ψ be arbitrary PL formulae.

Then the equivalences below hold.

2.1. PROPOSITIONAL LOGIC 9

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

ϕ⇒ ψ ≡ ¬ϕ ∨ ψ

¬(ϕ⇒ ψ) ≡ ϕ ∧ ¬ψ

ϕ⇒ ψ ≡ ¬ψ ⇒ ¬ϕ

¬¬ϕ ≡ ϕ

The proofs for these equivalences are straightforward.

2.1.2 Resolution for propositional logic

There are many proof methods for PL, such as truth tables, tableaux, natural deduction which have

been developed over many years. One of the most successful approaches is resolution [20]. The

proof procedure of resolution was first proposed in [63] for first-order logic, which is more complex

than PL. Here we focus on PL and present a propositional resolution calculus for it. To simplify

matters, we will not consider redundancy elimination in this context. We introduce some auxiliary

definitions first.

Definition 2.2 Literal

A literal is either an atomic proposition or its negation. Two literals l1 and l2 are complementary

iff l1 ≡ ¬l2.

Definition 2.3 Disjunction of literals

We inductively define a disjunction of literals in the following:

• a literal l is a disjunction of literals; and

• if ϕ and ψ are disjunctions of literals, then ϕ∨ψ and (ϕ∨ψ) are also disjunctions of literals.

Definition 2.4 PL Clause

A PL clause is a set of literals {l1, l2, . . . , ln}, written as a disjunction of literals

l1 ∨ l2 ∨ . . . ∨ ln

where for i, 1 ≤ i ≤ n, li is literal. The empty clause, denoted by ⊥, is the empty set of literals.

Definition 2.5 Conjunctive normal form (CNF)

A formula ϕ of PL is in conjunctive normal form iff it is a conjunction of clauses of PL, that is, ϕ

is of the form

C1 ∧C2 ∧ . . . ∧Cn

where for i, 1 ≤ i ≤ n,Ci is a PL clause.

Theorem 2.1 [20] For every formula ϕ of PL, there exists a formula ψ in CNF with ϕ ≡ ψ.

The resolution inference rule for PL below derives a new clause, also called a resolvent, from

two other clauses, also called premises, containing complementary literals:

10CHAPTER 2. PRELIMINARIES TO RESOLUTION FOR BRANCHING-TIME TEMPORAL LOGIC

PRES
C ∨ l D ∨ ¬l

C ∨D

where C ∨ l and D∨¬l are two clauses of PL; C and D are disjunctions of literals; l and ¬l is a pair

of complementary literals. It should be noted that PL clauses are sets, which means that a literal

l can occur at most once in a PL clause. Consequently, the resolvent of p ∨ q ∨ r and ¬r ∨ p ∨ q is

the clause p ∨ q instead of p ∨ q ∨ p ∨ q. The resolution calculus RPL for PL consists of the single

inference rule PRES.

The resolution procedure for the validity problem of PL is a proof by contradiction method.

Given a formula ϕ of PL, it proceeds as follows.

1. Negate the formula ϕ;

2. Transform ¬ϕ into a set T of PL clauses;

3. Construct a sequence T0, T1, T2, . . . of sets of PL clauses such that (i) T0 = T , (ii) Ti+1 =

Ti ∪ {Γ}, where Γ is the resolvent of two PL clauses Γ1 and Γ2 in Ti, and (iii) Γ 6∈ Ti.

4. The construction in step 3 terminates if

ex1 there exists an index i, i ≥ 0 such that Ti contains the empty clause, or

ex2 there exists an index i, i ≥ 0 such that every resolvent of clauses in Ti is already an

element of Ti.

If the algorithm above terminates by the exit condition ex1, then ¬ϕ is unsatisfiable and, therefore,

ϕ is valid. If, on the other hand, the algorithm terminates by the exit condition ex2 but for all

i ≥ 0, Ti does not contain the empty clause, then ¬ϕ is satisfiable and ϕ is not valid. As we have

mentioned earlier, resolution can also be used for satisfiability checking. In this case, the resolution

procedure skips the first step, i.e. negate the formula ϕ. If the algorithm terminates by the exit

condition ex1, then ϕ is unsatisfiable. If the algorithm terminates by the exit condition ex2 but

for all i ≥ 0, Ti does not contain the empty clause, then ϕ is satisfiable.

The resolution procedure above motivates the following definitions.

Definition 2.6 Derivation of RPL

A derivation from a set T of PL clauses by RPL is a sequence T0, T1, T2, . . . of sets of clauses

such that T0 = T and Tt+1 = Tt ∪ {Rt} where Rt is a resolvent obtained as the conclusion of an

application of the resolution rule PRES to premises in Tt.

Definition 2.7 Refutation of RPL

A refutation of a set T of PL clauses by RPL is a derivation from T such that, for some i ≥ 0, Ti

contains a contradiction, where a contradiction is an empty clause.

Definition 2.8 Termination of a derivation

A derivation terminates iff either a contradiction is derived or no new clauses can be derived by

any further application of the rule PRES.

2.1. PROPOSITIONAL LOGIC 11

Definition 2.9 Saturation with respect to RPL

A set T of PL clauses is saturated with respect to RPL iff all resolvents that can be derived by an

application of the rule PRES to premises in T are already contained in T .

With the definitions above, we are able to state the following two properties of RPL, namely

soundness and completeness .

Theorem 2.2 (Soundness and completeness of RPL [63]) Let T be a finite set of PL clauses

and let T0, T1, . . . , Tn be a derivation from T such that T0 = T and Tn is saturated with respect to

RPL. Then T is unsatisfiable iff Tn contains a contradiction.

We give a small example to show how to derive an empty clause (⊥) from a set of PL clauses

which is unsatisfiable.

It is often convenient to use a simpler notion of a derivation. Let T be a set of PL clauses. A

derivation of a clause Γ from T is a sequence Γ0,Γ1, . . . ,Γn of PL clauses of n such that (i) Γn = Γ

and (ii) every clause Γi, 0 ≤ i ≤ n, is either an element of T or there are two indices j, k, 0 ≤ j, k ≤ i,

such that Γi is the resolvent of Γj and Γk. The length of a derivation Γ0, . . . ,Γn is n+1. Therefore,

a refutation of T can be defined as a derivation of the empty clause from T .

Theorem 2.3 Let Γ0, . . . ,Γn be a derivation from a set T of PL clauses. Then a derivation in the

form of Definition 2.6 can be constructed from Γ0, . . . ,Γn.

Proof. Given a derivation Γ0, . . . ,Γn from T , it is straightforward to construct a corresponding

derivation T0, . . . , Tm such that T0 = T and {Γ0, . . . ,Γn} ⊆ Tm as follows.

The construction proceeds by induction over the length n+ 1 of the derivation. For n = 0, the

derivation consists of a single clause Γ0 which is an element of T . The corresponding derivation

consists of a single set of PL clauses T0 = T . Now we assume that for a derivation Γ0, . . . ,Γn we

have constructed a corresponding derivation T0, . . . , Tm such that {Γ0, . . . ,Γn} ⊆ Tm. Consider a

derivation Γ0, . . . ,Γn+1.

1. If Γn+1 ∈ T , then T0, . . . , Tm is also the corresponding derivation for Γ0, . . . ,Γn+1. Since

T = T0 ⊆ T1 ⊆ . . . ⊆ Tm and by induction hypothesis {Γ0, . . . ,Γn} ⊆ Tm, we have

Γ0, . . . ,Γn,Γn+1 ⊆ Tm.

2. If Γn+1 has been derived from Γi and Γj with i, j ≤ n, then by induction hypothesis,

Γi,Γj ∈ Tm. We can thus derive Γn+1 from Tm and define Tm+1 = Tm ∪ {Γn+1}. Obvi-

ously, {Γ0, . . . ,Γn,Γn+1} ⊆ Tm+1.

⊓⊔

Example 2.1

Let T be a set of PL clauses {p∨ q,¬q ∨ r,¬r,¬p}. Then the following is a derivation by RPL from

12CHAPTER 2. PRELIMINARIES TO RESOLUTION FOR BRANCHING-TIME TEMPORAL LOGIC

T .
1. p ∨ q

2. ¬q ∨ r

3. ¬r

4. ¬p

5. p ∨ r [1, 2,PRES]

6. p [3, 5,PRES]

7. ⊥ [4, 6,PRES]

where [c1, c2,PRES] indicates the application of the rule PRES to clauses c1 and c2.

2.2 Propositional linear-time temporal logic (PLTL)

Propositional Linear-time Temporal Logic [59] is a modal logic intended to represent and reason

about the changing truth values of assertions over time. The flow of time underlying the semantics

of PLTL is discrete and linear, i.e. every moment of time has exactly one successive future moment.

Applications of PLTL include reasoning about program [59], temporal databases [68], hardware

verification [53, 49]. Whether these applications can be successful often depends on how efficient

the satisfiability problem for PLTL can be addressed. Therefore, to tackle this problem, many

approaches have been developed, for example tableau-based [50, 2], automata-based [66] and non-

clausal resolution-based methods [1] for PLTL. In this section we discuss one of the resolution-based

methods, namely a clausal resolution calculus RPLTL, introduced by Fisher et al. [38] in 1991. This

resolution calculus is the first clausal resolution calculus for temporal logic. It forms the foundation

for many other resolution calculi developed later for more complex logics including two calculi we

will introduce in this thesis. Many important terminologies used by our calculi are originated from

RPLTL, for example, the special propositional constant start, Separated Normal Form (SNF), step

resolution, eventuality resolution, loops, augmentation, behaviour graphs and so on. Therefore, we

give a brief introduction of RPLTL as the preliminary to our CTL resolution calculus.

Next, we show the syntax and semantics of PLTL and then present the calculus RPLTL. Again,

to simplify matters, we will not consider redundancy elimination in this context.

2.2.1 Syntax and semantics of PLTL

Our presentation of the syntax and semantics of PLTL follows Fisher et al. [38], which is different,

but equivalent to the one [31], which is commonly used.

The language of PLTL is based on

• a set of atomic propositions PPL;

• two propositional constants, true and false;

• boolean operators, ¬ (negation), ∧ (and), ∨ (or) and ⇒ (implication); and

• temporal operators, # (at the next moment), 3 (eventually in the future), 2 (always in the

future), U (until) and W (unless).

2.2. PROPOSITIONAL LINEAR-TIME TEMPORAL LOGIC (PLTL) 13

The set of well-formed formulae of PLTL is inductively defined as follows:

1. true and false are PLTL formulae;

2. all atomic propositions in PPL are PLTL formulae; and

3. if ϕ and ψ are PLTL formulae, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), #ϕ,3ϕ,2ϕ, (ϕU ψ)

and (ϕW ψ).

Formulae of PLTL over PPL are interpreted over model structures, σ = 〈S, x, L〉, where

1. S is a set of states;

2. x : N0 → S is an infinite sequence of states s0, s1, s2, . . .; and

3. L : S → 2PPL is an interpretation function mapping each state s ∈ S to the set of atomic

propositions true at state s.

The satisfaction relation |= between a pair 〈σ, i〉, consisting of a model structure σ and a natural

number i, and a PLTL formula is inductively defined as follows:

〈σ, i〉 |= true

〈σ, i〉 6|= false

〈σ, i〉 |= p iff p ∈ PPL and p ∈ L(x(i))

〈σ, i〉 |= ¬ϕ iff 〈σ, i〉 6|= ϕ

〈σ, i〉 |= (ϕ ∧ ψ) iff 〈σ, i〉 |= ϕ and 〈σ, i〉 |= ψ

〈σ, i〉 |= (ϕ ∨ ψ) iff 〈σ, i〉 |= ϕ or 〈σ, i〉 |= ψ

〈σ, i〉 |= (ϕ⇒ ψ) iff 〈σ, i〉 |= ¬ϕ or 〈σ, i〉 |= ψ

〈σ, i〉 |= #ϕ iff 〈σ, i+ 1〉 |= ϕ

〈σ, i〉 |= 3ϕ iff there exists a k ∈ N such that k ≥ i and 〈σ, k〉 |= ϕ

〈σ, i〉 |= 2ϕ iff for all j, j ≥ i, 〈σ, j〉 |= ϕ

〈σ, i〉 |= (ϕU ψ) iff there exists a k ∈ N such that k ≥ i and 〈σ, k〉 |= ψ;

and for all j, i ≤ j < k, 〈σ, j〉 |= ϕ

〈σ, i〉 |= (ϕW ψ) iff 〈σ, i〉 |= ϕU ψ or 〈σ, i〉 |= 2ϕ

A formula ϕ of PLTL is satisfiable in a model structure σ at the state si iff 〈σ, i〉 |= ϕ. The

formula ϕ is satisfiable iff there exists at least one model structure σ such that ϕ is satisfied in σ

at s0. A formula ϕ of PLTL is valid iff, for every model structure σ, ϕ is satisfied in σ at s0, in

which case we also write |= ϕ.

2.2.2 Resolution for PLTL

RPLTL operates on PLTL formulae in a certain normal form, called Separated Normal Form (SNF).

This normal form consists of three types of clauses of the following forms:

2(start⇒
∨k

j=1mj) (initial clause)

2(
∧n

i=1 li ⇒ #
∨k

j=1mj) (step clause)

2(
∧n

i=1 li ⇒ 3l) (sometime clause)

14CHAPTER 2. PRELIMINARIES TO RESOLUTION FOR BRANCHING-TIME TEMPORAL LOGIC

where

1. start is a propositional constant that holds only at the beginning of time, i.e. 〈σ, i〉 |= start

iff i = 0;

2. k ≥ 0, n ≥ 0;

3. each li, 1 ≤ i ≤ n, is a literal and for any two literals li, lj, 1 ≤ i < j ≤ n, li 6= lj ;

4. each mj , 1 ≤ j ≤ k, is a literal and for any two literals mi,mj, 1 ≤ i < j ≤ k,mi 6= mj ; and

5. l is a literal.

We use 2(true ⇒ #
∨k

j=1mj) to denote a SNF clause 2(
∧n

i=1 li ⇒ #
∨k

j=1mj) such that n = 0.

Moreover, we use 2(
∧n

i=1 li ⇒ #false) to denote a SNF clause 2(
∧n

i=1 li ⇒ #
∨k

j=1mj) such that

k = 0. Likewise, we use 2(start⇒ false) to denote 2(start⇒
∨k

j=1mj) with k = 0. It is easy to

see that 2(start⇒ false) is not satisfiable. Thus, 2(start⇒ false) is a contradiction. For a SNF

clause Γ = 2(P ⇒ D), we call P the left-hand side of Γ and D the right-hand side of Γ. As all

clauses are of the form 2(P ⇒ D), we often simply write P ⇒ D instead. A formula 3l is called

an eventuality. Fisher et al. [38] define a procedure τ that transforms any PLTL formula ϕ into a

set of SNF clauses τ(ϕ) and prove the following result.

Theorem 2.4 [38] A formula ϕ of PLTL is satisfiable iff τ(ϕ) is satisfiable.

The calculus RPLTL consists of two step resolution rules LSRES1 and LSRES2, one eventuality

resolution rule LERES and one rewrite rule LRW. Firstly, we present the step resolution rules,

which resolve two SNF clauses containing complementary literals on their right-hand sides. In the

following, C and D are disjunctions of literals; P and Q are conjunctions of literals; and l is a literal.

LSRES1

start⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

LSRES2

P ⇒ #(C ∨ l)

Q⇒ #(D ∨ ¬l)

P ∧Q⇒ #(C ∨D)

Secondly, RPLTL contains a rewrite rule LRW, which rewrites a step clause with #false as its

right-hand side into an initial clause and a step clause.

LRW
∧n

i=1mi ⇒ #false −→

{

start⇒
∨n

i=1 ¬mi

true⇒ #(
∨n

i=1 ¬mi)

Finally, RPLTL contains a eventuality resolution rule LERES, which resolves formulae containing

the temporal operators 2 and 3, respectively.

LERES
P † ⇒ #2l

Q⇒ 3¬l

Q⇒ (¬(P †)W ¬l)

2.2. PROPOSITIONAL LINEAR-TIME TEMPORAL LOGIC (PLTL) 15

where P † ⇒ #2l represents a set of step clauses that together implies #2l. It should be noted

that the resolvent of LERES Q⇒ (¬(P †)W¬l) is not a formula in SNF and, therefore, it will be

transformed into SNF by the rules defined in the transformation procedure τ .

The most complex part of LERES is to find a suitable set of step clauses as premise of LERES

and the algorithm for finding these step clauses is called loop search algorithm. Detailed descriptions

of various loop search algorithms and their correctness proofs are given in [25, 26, 27].

Note that, for all resolvents derived by the resolution rules in RPLTL, there are no duplicate

literals on the left-hand side and the right-hand side. For instance, the resolvent of two SNF

clauses r ∧ p ⇒ #(p ∨ q ∨ r) and r ∧ q ⇒ #(p ∨ q ∨ ¬r) is r ∧ p ∧ q ⇒ #(p ∨ q). In analogy to

the notions of a derivation and a refutation we have introduced for the calculus RPL, we define the

notions of a derivation and a refutation of the calculus RPLTL as follows.

Definition 2.10 Derivation of RPLTL

A derivation from a set T of SNF clauses by RPLTL is a sequence T0, T1, T2, . . . of sets of SNF clauses

such that T = T0 and Tt+1 = Tt ∪Rt where Rt is a set of SNF clauses obtained as the conclusion

of an application of a rule of RPLTL to premises in Tt.

Definition 2.11 Refutation of RPLTL

A refutation of a set T of SNF clauses by RPLTL is a derivation from T such that, for some i ≥ 0,

Ti contains a contradiction.

Definition 2.12 Termination of a derivation

A derivation terminates iff either a contradiction is derived or no new clauses can be derived by

further applications of the resolution rules in RPLTL.

Definition 2.13 Saturation with respect to RPLTL

A set T of SNF clauses is saturated with respect to RPLTL iff all resolvents that can be derived by

an application of a rule of RPLTL to premises in T are already contained in T .

Theorem 2.5 (Soundness and completeness of RPLTL [38]) Let T be a finite set of SNF clauses

and let T0, . . . , Tn be a derivation from T such that T0 = T and Tn is saturated with respect to RPLTL.

Then T is unsatisfiable iff Tn contains a contradiction.

We provide an example to demonstrate how a refutation can be found by applying the resolution

rules in RPLTL to an unsatisfiable set of SNF clauses.

Example 2.2

Let T be a set of SNF clauses {start ⇒ p ∨ q, q ⇒ #r, true ⇒ #¬r, start ⇒ ¬p}. Then the

16CHAPTER 2. PRELIMINARIES TO RESOLUTION FOR BRANCHING-TIME TEMPORAL LOGIC

derivation by RPLTL from T is as follows.

1. start ⇒ p ∨ q

2. q ⇒ #r

3. true ⇒ #¬r

4. start ⇒ ¬p

5. q ⇒ #false [2, 3,LSRES2]

6. start ⇒ ¬q [5,LRW]

7. true ⇒ #¬q [5,LRW]

8. start ⇒ p [1, 6,LSRES1]

9. start ⇒ false [4, 8,LSRES1]

where (i) [c1, c2,LSRESi] indicates the application of the ith step resolution rule to clauses c1 and

c2; and (ii) [c,LRW] indicates the application of the rewrite rule LRW to clauses c.

Chapter 3

A refined resolution calculus for

CTL

3.1 Introduction

Computation Tree Logic (CTL) [22] is a propositional branching-time temporal logic whose under-

lying model of time is a choice of possibilities branching into the future. There are many important

applications that can be represented in and reasoned about in CTL such as the verification of

digital circuits [24], analysis of real time and concurrent systems [53], XPath query processing [4],

communication protocol verification [23], and Grid Component system verification [13].

As we can see from Section 1.1, there are many considerable advantages in being able to formally

verify the correctness of computer-based systems. Furthermore, CTL can be used to represent a

large number of systems. Therefore, it is definitely worth developing a reasoning procedure for

CTL. In the following, we discuss a concrete example of communication protocol verification to

demonstrate the use of CTL.

Alternating Bit Protocol, which is originally proposed in [12], is a network protocol and has been

applied widely in the real world. The Alternating Bit Protocol (ABP) involves two participants,

namely a Transmitter and a Receiver. The Transmitter wants to send messages in a reliable way

to the Receiver through an unreliable communication channel, which means that

1. the communication channel may lose messages; but

2. does not lose infinitely many messages, in other words, if a message is sent often enough, it

will eventually reach its destination.

To this end, the Transmitter appends to each message a control bit. We assume that for the first

message the Transmitter sends, it will use the control bit 0. The Transmitter will repeatedly send

the message including the control bit until it receives an acknowledgement from the Receiver with

the same control bit. The Transmitter will then complement the control bit and start transmitting

the next message including the new control bit.

17

18 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

The Receiver works in a complementary way. Initially the Receiver is waiting for messages.

Once it receives a message with a control bit 0, it starts to repeatedly send the acknowledgement

with the control bit 0. The Receiver will repeatedly send the acknowledgement including the control

bit until it receives a message from the Transmitter with a complement control bit. The Receiver

will then alternate the control bit and start sending the acknowledge including the new control bit.

This protocol can be represented formally in CTL and then we can reason about it using CTL

theorem proving techniques. For example, we can prove that whether ABP has the following

properties.

1. In all the possible future paths, the Receiver do not always send the acknowledgement with

the control bit 0.

2. There exists a future path such that on this path whenever the Transmitter sends the message

with the control bit 1, then eventually it receives the acknowledgement with the control bit

1.

Assume the CTL formula Φspec is the specification of ABP and ΦP1
,ΦP2

are the two properties

above described in CTL, respectively. Using CTL theorem proving, we can formally prove whether

Φspec ⇒ (ΦP1
∧ ΦP2

) is valid. If it is, we know that ABP has these two properties. Otherwise, it

does not have. (After the language CTL, our resolution calculus for CTL and its implementation

are formally explained, in Section 4.4 we will revisit this example in more details including how to

translate the specification of ABP in English to the one in CTL.)

The calculus R
≻,S
CTL for CTL introduced in this chapter is a refinement of an earlier resolution

calculus [15] for CTL. The overall approach involves transformation to a normal form, called Sep-

arated Normal Form with Global Clauses for CTL, SNFg
CTL for short, and the applications of step

and eventuality resolution rules in R
≻,S
CTL that deal with constraints on next states and on future

states, respectively. We have improved the earlier calculus [15] in the following aspects. A technique

introduced in [15] is the use of indices as part of a CTL normal form. We give a formal interpre-

tation of indices and a formal semantics for the indexed normal form, SNFg
CTL, which is missing

from [15]. An ordering and a selection function are introduced into the calculus which allow us to

reduce the number of possible applications of the inference rules during proof search. We show that

our calculus R
≻,S
CTL is sound, complete and terminating. Using our completeness proof we can show

that two eventuality resolution rules in [15] are redundant. A detailed complexity analysis of the

calculus is provided, which is absent for the earlier calculus. Finally, we have implemented R
≻,S
CTL

in our theorem prover CTL-RP whereas no implementation was provided for the earlier calculus

in [15]. We also present the details of our prover CTL-RP and some experimental results in next

chapter. It should be noted that the most of the content related to the calculus R
≻,S
CTL in this chapter

has been published in [78].

The rest of this chapter is organised as follows. We first present the syntax and semantics of

CTL in Section 3.2 and then introduce a normal form for CTL, SNFg
CTL, in Section 3.3. In Section

3.4 the calculus R
≻,S
CTL is presented. We provide proofs for soundness and completeness of R

≻,S
CTL in

Section 3.5. In Section 3.6 we discuss the complexity of our calculus R
≻,S
CTL. Finally, related work is

discussed in Section 3.7 and conclusions are drawn in Section 3.8.

3.2. SYNTAX AND SEMANTICS OF CTL 19

3.2 Syntax and semantics of CTL

The language of CTL is based on

• a set of atomic propositions PPL;

• propositional constants, true and false;

• boolean operators, ∧,∨,⇒, and ¬ (∧ and ∨ are associative and commutative); and

• temporal operators 2 (always in the future), # (at the next moment in time), 3 (eventually

in the future), U (until), and W (unless); and the universal path quantifier A (for all future

paths) and the existential path quantifier E (for some future path).

The set of (well-formed) formulae of CTL is inductively defined as follows:

1. true and false are CTL formulae;

2. all atomic propositions in PPL are CTL formulae; and

3. if ϕ and ψ are CTL formulae, then so are ¬ϕ, (ϕ ∧ψ), (ϕ ∨ψ), (ϕ⇒ ψ), A2ϕ, A3ϕ, A#ϕ,

A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), and E(ϕW ψ).

Formulae of CTL over PPL are typically interpreted in model structures, M = 〈S,R,L〉, where

S is a set of states ; R is a total binary accessibility relation over S; and L : S → 2PPL is an

interpretation function mapping each state to the set of atomic propositions true at that state.

These model structures are not required to be tree structures. However, CTL formulae can also be

interpreted in tree model structures, which will be introduced later.

An infinite path χsi
is an infinite sequence of states si, si+1, si+2, . . . such that for every j ≥

i, (sj, sj+1) ∈ R. A state s′ ∈ S is reachable from the state s ∈ S iff there exists an infinite path

χs such that s′ ∈ χs. If there exists two states s, s′ ∈ S such that (s, s′) ∈ R, we say that s is a

predecessor of s′ and s′ is a successor of s.

The satisfaction relation |= between a pair consisting of a model structure M and a state si ∈ S,

and a CTL formula is inductively defined as follows:

〈M, si〉 |= true

〈M, si〉 6|= false

〈M, si〉 |= p iff p ∈ L(si) for an atomic proposition p ∈ PPL

〈M, si〉 |= ¬ϕ iff 〈M, si〉 6|= ϕ

〈M, si〉 |= (ϕ ∧ ψ) iff 〈M, si〉 |= ϕ and 〈M, si〉 |= ψ

〈M, si〉 |= (ϕ ∨ ψ) iff 〈M, si〉 |= ϕ or 〈M, si〉 |= ψ

〈M, si〉 |= (ϕ⇒ ψ) iff 〈M, si〉 6|= ϕ or 〈M, si〉 |= ψ

〈M, si〉 |= E#ψ iff there exists a path χsi
such that 〈M, si+1〉 |= ψ

20 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

〈M, si〉 |= A(ϕU ψ) iff for every path χsi
there exists sj ∈ χsi

such that

〈M, sj〉 |= ψ and for every sk ∈ χsi
, if i ≤ k < j,

then 〈M, sk〉 |= ϕ

〈M, si〉 |= E(ϕU ψ) iff there exists a path χsi
and there exists sj ∈ χsi

such that 〈M, sj〉 |= ψ and for every sk ∈ χsi
,

if i ≤ k < j, then 〈M, sk〉 |= ϕ

In addition, we use the following equivalences to define the remaining operators of CTL.

A3ϕ ≡ A(trueU ϕ) E3ϕ ≡ E(trueU ϕ)

A2ϕ ≡ ¬E3¬ϕ E2ϕ ≡ ¬A3¬ϕ

A(ϕW ψ) ≡ ¬E(¬ψ U (¬ϕ ∧ ¬ψ)) E(ϕW ψ) ≡ ¬A(¬ψ U (¬ϕ ∧ ¬ψ))

A#ϕ ≡ ¬E#¬ϕ

A CTL formula ϕ is satisfiable, iff for some model structure M = 〈S,R,L〉 and some state

s ∈ S, M, s |= ϕ, and unsatisfiable otherwise. A model structure M such that ϕ is true at some

state s ∈ S is called a model of ϕ. A CTL formula ϕ is valid , written |= ϕ, iff for every model

structure M = 〈S,R,L〉 and for every state s ∈ S, M, s |= ϕ.

The satisfiability problem of CTL is known to be EXPTIME-complete [22, 31, 34].

Whether R is any total binary relation or a tree does not affect the set of valid CTL formulae [31,

33]. Therefore, in the following we restrict ourselves to model structures M = 〈S,R,L, s0〉 such

that

• there exists a unique state s0, called the root , such that every state s ∈ S is reachable from

state s0 and there are no predecessors of s0;

• for every state s ∈ S except the root, state s has exactly one predecessor;

• for every infinite path χs0
and for every i, j, 0 ≤ i < j, si 6= sj .

For model structures M = 〈S,R,L, s0〉, it is also convenient to use definition of satisfiability and

validity which are slightly different from Emerson’s definition that we present earlier. In particular,

we say a CTL formula ϕ is satisfiable iff for some model structure M = 〈S,R,L, s0〉, M, s0 |= ϕ and

unsatisfiable otherwise. A model structure M = 〈S,R,L, s0〉 such that ϕ is true at s0 is a model of

ϕ. A CTL formula ϕ is valid iff for every model structure M = 〈S,R,L, s0〉, M, s0 |= ϕ. Thus, our

definition requires that if M is a model of ϕ, then ϕ must be satisfied at the root of M , namely

state s0, whereas Emerson’s definition allows ϕ to be satisfied at any state of M . It is not hard to

see that there exists a model for a CTL formula ϕ according to Emerson’s definition iff there exists

a model for ϕ according to our definition. The reason we add this restriction is that it can simplify

the proof that our transformation rules preserve satisfiability.

3.3 Normal form

Our calculus R
≻,S
CTL operates on formulae in a clausal normal form, called Separated Normal Form

with Global Clauses for CTL, denoted by SNFg
CTL. The language of SNFg

CTL clauses is defined

3.3. NORMAL FORM 21

over an extension of CTL. That is the language is based on

• the language of CTL;

• a propositional constant start; and

• a countably infinite index set Ind.

To improve the readability of clauses, we introduce an operator precedence which allow us to

reduce the number of parentheses required. We associate each operator with one of the following five

precedence groups, where (i) is highest and (v) is lowest: (i) A#,E#,A3,E3,A2,E2,AU ,EU ,

AW ,EW ,E#〈ind〉,E〈ind〉3,E〈ind〉2, E〈ind〉 U , E〈ind〉W , where ind ∈ Ind; (ii) ¬; (iii) ∧; (iv)

∨; and (v) ⇒. Two operators in the same group have the same precedence. Higher precedence

operators are applied before lower precedence operators. Then the language of SNFg
CTL clauses

consists of formulae of the following forms:

A2(start⇒
∨k

j=1mj) (initial clause)

A2(true⇒
∨k

j=1mj) (global clause)

A2(
∧n

i=1 li ⇒ A#
∨k

j=1mj) (A-step clause)

A2(
∧n

i=1 li ⇒ E〈ind〉#
∨k

j=1mj) (E-step clause)

A2(
∧n

i=1 li ⇒ A3l) (A-sometime clause)

A2(
∧n

i=1 li ⇒ E〈ind〉3l) (E-sometime clause)

where k ≥ 0, n > 0, start is a propositional constant, li (1 ≤ i ≤ n), mj (1 ≤ j ≤ k) and l are

literals, that is, atomic propositions or their negation, and ind is an element of Ind. As all clauses

are of the form A2(P ⇒ D), we often simply write P ⇒ D instead. We assume that all SNFg
CTL

clauses are always kept in condensed form, i.e. there are no duplicate literals in P or D. For

example, a SNFg
CTL clause r∧q∧q ⇒ A#(q∨p∨q) is always represented as r∧q ⇒ A#(q∨p). We

call a clause which is either an initial, a global, an A-step, or an E-step clause a determinate clause.

The formula A3l is called an A-eventuality and the formula E〈ind〉3l is called an E-eventuality.

The most important elements in SNFg
CTL are indices. These indices can be used to preserve a

certain path context. For example,

• the formula E#p ∧ E#¬p is obviously satisfiable, as in general, these two existential path

quantifiers can refer to two different paths; whereas

• the formula E〈ind〉#p ∧ E〈ind〉#¬p is unsatisfiable, as two existential quantifiers having the

same index ind indicate p and ¬p are satisfied at the same successor state of the current state.

Informally speaking, in the case that an index ind is associated with a next operator (#), ind

helps identify a particular successor state. For instance, if E〈ind〉#p is satisfied at a state s, then

there exists a state s′ such that the edge from s to s′ is labelled by ind and p holds at s′. In the

other case that an index ind is associated with a long-term operator (3,2, U or W), ind helps

identify a particular path. For instance, if E〈ind〉3p is satisfied at state s, then there exists a state

s′ reachable from s such that each edge in the path from s to s′ is labelled by ind and p holds at

s′. This ability of indices is necessary for our transformation rule to preserve satisfiability.

22 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

3.3.1 Syntax and semantics of SNF
g
CTL

To provide a semantics for SNFg
CTL, we extend model structures 〈S,R,L, s0〉 to 〈S,R,L, [], s0〉

where [] : Ind → 2(S×S) maps every index ind ∈ Ind to a successor function [ind] which is a total

functional relation on S and a subset of R, that is, for every s ∈ S, there exists exactly one state

s′ ∈ S, (s, s′) ∈ [ind] and (s, s′) ∈ R. A state s′ ∈ S is an ind-successor state of state s ∈ S iff

(s, s′) ∈ [ind]. An infinite path χ
〈ind〉
si is an infinite sequence of states si, si+1, si+2, . . . such that for

every j ≥ i, (sj , sj+1) ∈ [ind]. An infinite path χ
〈ind〉
sk = s′k, s

′
k+1, . . . is a subpath of χ

〈ind〉
si iff there

exists a natural number l, l ≥ i such that for every j ≥ 0, s′k+j = sl+j . Note that since [ind] is

a function, for every state si ∈ S, there exists exactly one infinite path χ
〈ind〉
si and for every state

sj ∈ χ
〈ind〉
si , χ

〈ind〉
sj is a subpath of χ

〈ind〉
si . The semantics of SNFg

CTL is then defined as shown below

as an extension of the semantics of CTL defined in Section 3.2. Although the operators E〈ind〉2,

E〈ind〉 U and E〈ind〉W do not appear in the normal form, we state their semantics, because they

occur in the normal form transformation. (The semantics of the remaining operators is analogous

to that given previously but in the extended model structure 〈S,R,L, [], s0〉.)

〈M, si〉 |= start iff si = s0

〈M, si〉 |= E〈ind〉#ψ iff for the path χ
〈ind〉
si , 〈M, si+1〉 |= ψ

〈M, si〉 |= E〈ind〉3ψ iff 〈M, si〉 |= E〈ind〉(trueU ψ)

〈M, si〉 |= E〈ind〉2ψ iff for every sj ∈ χ
〈ind〉
si , 〈M, sj〉 |= ψ

〈M, si〉 |= E〈ind〉(ϕU ψ) iff there exists sj ∈ χ
〈ind〉
si such that 〈M, sj〉 |= ψ and

for every sk ∈ χ
〈ind〉
si , if i ≤ k < j, then 〈M, sk〉 |= ϕ

〈M, si〉 |= E〈ind〉(ϕW ψ) iff 〈M, si〉 |= E〈ind〉2ϕ or 〈M, si〉 |= E〈ind〉(ϕU ψ)

A SNFg
CTL formula ϕ is satisfiable, iff for some model structure M = 〈S,R,L, [], s0〉,M, s0 |= ϕ,

and unsatisfiable otherwise. A model structure M = 〈S,R,L, [], s0〉 such that ϕ is true at the state

s0 ∈ S is called a model of ϕ and we say that M satisfies ϕ. A SNFg
CTL formula ϕ is valid , written

|= ϕ, iff for every model structure M = 〈S,R,L, [], s0〉,M, s0 |= ϕ.

Figure 3.1 and Figure 3.2 depict example model structures satisfying the formulae E〈ind1〉#p

and E〈ind1〉3p, respectively.

p

E〈ind1〉#p

ind1 ind2

Figure 3.1: An example model structure of E〈ind1〉#p

3.3.2 Transformation

We first introduce definitions of indexed CTL formula and CTL clauses, which will be used in our

definition of the transformation from an arbitrary CTL formula into a set of formulae in normal

form.

3.3. NORMAL FORM 23

ind2

ind2

ind1 ind2

E〈ind1〉3p

p

ind1

ind1

Figure 3.2: An example model structure of E〈ind1〉3p

Definition 3.1 Indexed CTL formula

The set of indexed CTL formulae is inductively defined as follows:

1. true, false and start are indexed CTL formulae;

2. all atomic propositions in PPL are indexed CTL formulae; and

3. if ϕ and ψ are indexed CTL formulae, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ⇒ ψ), A2ϕ, A3ϕ,

A#ϕ, A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), E(ϕW ψ), E〈ind〉2ϕ, E〈ind〉3ϕ,

E〈ind〉#ϕ, E〈ind〉(ϕU ψ), and E〈ind〉(ϕW ψ), where ind is an arbitrary index in Ind.

Definition 3.2 CTL clauses

A CTL formula of the form A2(P ⇒ ϕ), where P is a conjunction of literals (possibly consisting

of a single literal) or a propositional constant and ϕ is an arbitrary indexed CTL formula, is a CTL

clause or a clause.

We now define a set of transformation rules which allows us to transform an arbitrary CTL

formula into an equi-satisfiable set of SNFg
CTL clauses.

Let nnf denote a function which transforms an arbitrary CTL formula into its negation normal

form by pushing negations ‘inwards’. Let simp be a function which simplifies an arbitrary CTL

formula by exhaustive application of the following simplification rules,

(ϕ ∧ true) −→ ϕ (ϕ ∧ false) −→ false

(ϕ ∨ true) −→ true (ϕ ∨ false) −→ ϕ

¬true −→ false ¬false −→ true

where ϕ is a CTL formula and ∨ and ∧ are commutative and associative, plus the following rules

which are based on the equivalences in [31].

24 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

P ∗ false −→ false P ∗ true −→ true

P(ϕU false) −→ false P(ϕU true) −→ true

P(falseU ϕ) −→ ϕ P(trueU ϕ) −→ P3ϕ

P(ϕW false) −→ P2ϕ P(ϕW true) −→ true

P(falseW ϕ) −→ ϕ P(trueW ϕ) −→ true

where P ∈ {A,E} and ∗ ∈ {#,2,3}.

Let init(ϕ) be the set of CTL clauses {A2(start ⇒ p),A2(p ⇒ simp(nnf (ϕ)))}, where p is a

new atomic proposition in PPL that does not occur in ϕ.

Then the transformation of an arbitrary CTL formula ϕ into SNFg
CTL consists of a sequence

T0, T1, . . . , Tn of sets of CTL clauses such that (i) T0 = init(ϕ) and (ii) for every t, 0 ≤ t < n, Tt+1 =

(Tt\{ψ})∪Rt, where ψ is a formula in Tt not in SNFg
CTL and Rt is the result of applying a matching

transformation rule to ψ. Moreover, for every t, 0 ≤ t < n, Tt contains at least one formula not in

SNFg
CTL while all formulae in Tn are in SNFg

CTL.

Note that for each rule of Trans containing a proposition p, p represents a new atomic proposition

in PPL which does not occur in Tt when we apply the rule to a clause in Tt. Furthermore, in the

presentation of the rules, let

• q be an atomic proposition,

• l be a literal,

• D be a disjunction of literals (possible consisting of a single literal), and

• ϕ,ϕ1 and ϕ2, be CTL formulae.

The definition of the rule set Trans :

• Index introduction rules:

Trans(1) q ⇒ E#ϕ −→ q ⇒ E〈ind〉#ϕ

Trans(2) q ⇒ E3ϕ −→ q ⇒ E〈ind〉3ϕ

Trans(3) q ⇒ E2ϕ −→ q ⇒ E〈ind〉2ϕ

Trans(4) q ⇒ E(ϕ1 U ϕ2) −→ q ⇒ E〈ind〉(ϕ1 U ϕ2)

Trans(5) q ⇒ E(ϕ1W ϕ2) −→ q ⇒ E〈ind〉(ϕ1W ϕ2)

where ind is a new index.

• Boolean rules:

3.3. NORMAL FORM 25

Trans(6) q ⇒ ϕ1 ∧ ϕ2 −→

{

q ⇒ ϕ1

q ⇒ ϕ2

Trans(7) q ⇒ ϕ1 ∨ ϕ2 −→

{

q ⇒ ϕ1 ∨ p

p⇒ ϕ2

if ϕ2 is not a disjunction of

literals.

Trans(8) q ⇒ D −→ true⇒ ¬q ∨D

• Temporal operator rules:

Trans(9) q ⇒ A#ϕ −→

{

q ⇒ A#p

p⇒ ϕ
if ϕ is not a disjunc-

tion of literals.

Trans(10) q ⇒ E〈ind〉#ϕ −→

{

q ⇒ E〈ind〉#p

p⇒ ϕ
if ϕ is not a disjunc-

tion of literals.

Trans(11) q ⇒ A3ϕ −→

{

q ⇒ A3p

p⇒ ϕ
if ϕ is not a literal.

Trans(12) q ⇒ E〈ind〉3ϕ −→

{

q ⇒ E〈ind〉3p

p⇒ ϕ
if ϕ is not a literal.

Trans(13) q ⇒ A(ϕ1 U ϕ2) −→

{

q ⇒ A(ϕ1 U p)

p⇒ ϕ2

if ϕ2 is not a literal.

Trans(14) q ⇒ A(ϕ1W ϕ2) −→

{

q ⇒ A(ϕ1W p)

p⇒ ϕ2

if ϕ2 is not a literal.

Trans(15) q ⇒ E〈ind〉(ϕ1 U ϕ2) −→

{

q ⇒ E〈ind〉(ϕ1 U p)

p⇒ ϕ2

if ϕ2 is not a literal.

Trans(16) q ⇒ E〈ind〉(ϕ1W ϕ2) −→

{

q ⇒ E〈ind〉(ϕ1W p)

p⇒ ϕ2

if ϕ2 is not a literal.

Trans(17) q ⇒ A2ϕ −→











q ⇒ p

p⇒ ϕ

p⇒ A#p

26 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Trans(18) q ⇒ E〈ind〉2ϕ −→











q ⇒ p

p⇒ ϕ

p⇒ E〈ind〉#p

Trans(19) q ⇒ A(ϕU l) −→























q ⇒ l ∨ p

p⇒ ϕ

p⇒ A#(l ∨ p)

q ⇒ A3l

Trans(20) q ⇒ E〈ind〉(ϕU l) −→























q ⇒ l ∨ p

p⇒ ϕ

p⇒ E〈ind〉#(l ∨ p)

q ⇒ E〈ind〉3l

Trans(21) q ⇒ A(ϕW l) −→











q ⇒ l ∨ p

p⇒ ϕ

p⇒ A#(l ∨ p)

Trans(22) q ⇒ E〈ind〉(ϕW l) −→











q ⇒ l ∨ p

p⇒ ϕ

p⇒ E〈ind〉#(l ∨ p)

Example 3.1

We demonstrate how we transform the CTL formula ϕ1 = A2(E(E#rU q)) into an equi-satisfiable

set of SNFg
CTL clauses using our transformation rules. First, we apply the function init to ϕ1:

Γ1 = init(ϕ1) = {A2(start⇒ p1),A2(p1 ⇒ A2(E(E#r U q)))}.

Then we transform the set Γ1 of clauses into a set of SNFg
CTL clauses.

1. start ⇒ p1

2. p1 ⇒ A2(E(E#r U q))

3. p1 ⇒ p2 Trans(17)→ 2

4. p2 ⇒ E(E#rU q) Trans(17)→ 2

5. p2 ⇒ A#p2 Trans(17)→ 2

6. true ⇒ ¬p1 ∨ p2 Trans(8)→ 3

7. p2 ⇒ E〈1〉(E#rU q) Trans(4)→ 4

8. p2 ⇒ q ∨ p3 Trans(20)→ 7

9. p3 ⇒ E#r Trans(20)→ 7

10. p3 ⇒ E〈1〉#(q ∨ p3) Trans(20)→ 7

11. p2 ⇒ E〈1〉3q Trans(20)→ 7

12. true ⇒ ¬p2 ∨ q ∨ p3 Trans(8)→ 8

13. p3 ⇒ E〈2〉#r Trans(1)→ 9

3.3. NORMAL FORM 27

where the notation Trans(x) → y indicates that we apply the transformation rule Trans(x) to

the clause y. We obtain the set of SNFg
CTL clauses consisting of the following clauses, which is

satisfiable iff the CTL formula A2(E(E#rU q)) is satisfiable.

1. start ⇒ p1

5. p2 ⇒ A#p2

6. true ⇒ ¬p1 ∨ p2

10. p3 ⇒ E〈1〉#(q ∨ p3)

11. p2 ⇒ E〈1〉3q

12. true ⇒ ¬p2 ∨ q ∨ p3

13. p3 ⇒ E〈2〉#r

Example 3.2

In the following, we transform the unsatisfiable CTL formula ϕ2 = E2¬l∧A3l into a satisfiability

equivalent set of SNFg
CTL clauses. We apply the function init to the CTL formula ϕ2:

Γ2 = init(ϕ2) = {A2(start⇒ p1),A2(p1 ⇒ E2¬l ∧A3l)}.

Then we transform the set Γ2 of clauses into a set of SNFg
CTL clauses.

1. start ⇒ p1

2. p1 ⇒ E2¬l ∧A3l

3. p1 ⇒ E2¬l Trans(6)→ 2

4. p1 ⇒ A3l Trans(6)→ 2

5. p1 ⇒ E〈1〉2¬l Trans(3)→ 3

6. p1 ⇒ p2 Trans(18)→ 5

7. p2 ⇒ ¬l Trans(18)→ 5

8. p2 ⇒ E〈1〉#p2 Trans(18)→ 5

9. true ⇒ ¬p1 ∨ p2 Trans(8)→ 6

10. true ⇒ ¬p2 ∨ ¬l Trans(8)→ 7

Then the set of SNFg
CTL clauses consisting of the following clauses is satisfiable iff the CTL formula

E2¬l ∧A3l is satisfiable.
1. start ⇒ p1

4. p1 ⇒ A3l

8. p2 ⇒ E〈1〉#p2

9. true ⇒ ¬p1 ∨ p2

10. true ⇒ ¬p2 ∨ ¬l

We will return to this set of SNFg
CTL later in this chapter.

In [15], Bolotov also provides a set of transformation rules and proves that their application

to a CTL formula preserves satisfiability. The transformation rules presented above improve on

Bolotov’s transformation rules by introducing fewer new propositions and generating fewer clauses

during the transformation process. For example, a clause q ⇒ A2r is transformed into the set of

28 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

SNFg
CTL clauses

true⇒ ¬q ∨ p true⇒ ¬p ∨ r p⇒ A#p

by our transformation rules, while Bolotov’s transformation rules produce the following set of SNF

clauses.

start ⇒ ¬q ∨ r

true ⇒ A#(¬q ∨ r)

p ⇒ A#r

start ⇒ ¬q ∨ p

true ⇒ A#(¬q ∨ p)

p ⇒ A#p

3.4 The clausal resolution calculus R
≻,S
CTL

Our clausal resolution calculus R
≻,S
CTL for CTL is based on, but not identical to, the resolution

calculus in [15, 18]. The calculus R
≻,S
CTL consists of

• eight step resolution rules SRES1 to SRES8,

• two eventuality resolution rules ERES1 and ERES2, and

• two rewrite rules RW1 and RW2.

Furthermore, all the rules of R
≻,S
CTL operate on SNFg

CTL clauses. The calculus can be used to

develop an EXPTIME decision procedure for the satisfiability problem of CTL, as will be shown

in Chapter 4.

3.4.1 Step resolution

It is commonly agreed that search space for resolution for classical logic and first-order logic is very

large and, consequently, in practice, the refinements for resolution are necessary. In particular,

the ordering refinements and selection function refinements are utilised by many efficient theorem

provers, for example, SPASS [54], Vampire [72] and Prover9 [55]. This principle that resolution

calculi often require refinements in order to be efficient in practice is also true for non-classical

logics, for instance CTL. Moreover, R
≻,S
CTL is designed in such a way that the step resolution can be

emulated by first-order resolution (which is discussed in Section 4.2.3). Motivated by refinements

of propositional and first-order resolution [11], we restrict the applicability of step resolution rules

by means of an atom ordering and a selection function. These refinements have two advantages: (i)

we can prove that they do not impair the completeness of R
≻,S
CTL; and (ii) the efforts of implementing

them can be dramatically reduced by reusing some existing high performance first-order resolution

prover, which contains these refinements.

To introduce the atom ordering and the selection function we use for step resolution, we give

the following definitions first.

Definition 3.3 Partial ordering

A partial ordering R on a set S is the ordering such that

• for every element s ∈ S, (s, s) 6∈ R;

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 29

• for all elements s, t, u of S, if (s, t), (t, u) ∈ R, then (s, u) ∈ R.

Definition 3.4 Total ordering

A partial ordering R on a set S is a total ordering if for every pair of distinct elements s and t of

S, (s, t) ∈ R or (t, s) ∈ R.

Definition 3.5 Well-founded ordering

A partial ordering R on a set S is a well-founded ordering if every non-empty subset of S has a

minimal element with respect to R.

Definition 3.6 Multiset

A multiset over a set S is a collection of elements from S in which each elements may occur any

number of times. For example M = {1, 2, 2, 3, 3, 3} is not a set but a multiset.

An atom ordering for R
≻,S
CTL is a well-founded and total ordering ≻ on the set PPL. The ordering

≻ is extended to literals by identifying each positive literal p with the singleton multiset {p} and

each negative literal ¬p with the multiset {p, p} and comparing such multisets of atoms by using

the multiset extension of ≻. Doing so, ¬p is greater than p, but smaller than any literal q or ¬q

with q ≻ p.

A literal l is (strictly) maximal with respect to a propositional disjunction C iff for every literal

l′ in C, l′ 6≻ l (l′ 6� l).

A selection function is a function S mapping every propositional disjunction C to a possibly

empty subset S(C) of the negative literals occurring in C. If l ∈ S(C) for a disjunction C, then we

say that l is selected in C.

In the following presentation of the rules of R
≻,S
CTL, ind is an index in Ind, P and Q are conjunc-

tions of literals, C and D are disjunctions of literals, neither of which contain duplicate literals, and

l is a literal.

SRES1

P ⇒ A#(C ∨ l)

Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ A#(C ∨D)

SRES2

P ⇒ E〈ind〉#(C ∨ l)

Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

SRES3

P ⇒ E〈ind〉#(C ∨ l)

Q⇒ E〈ind〉#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

SRES4

start⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES5

true⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES6

true⇒ C ∨ l

Q⇒ A#(D ∨ ¬l)

Q⇒ A#(C ∨D)

30 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

SRES7

true⇒ C ∨ l

Q⇒ E〈ind〉#(D ∨ ¬l)

Q⇒ E〈ind〉#(C ∨D)

SRES8

true⇒ C ∨ l

true⇒ D ∨ ¬l

true⇒ C ∨D

A step resolution rule, SRES1 to SRES8, is only applicable if one of the following two conditions

is satisfied:

(C1) if l is a positive literal, then

1. l must be strictly maximal with respect to C and no literal is selected in C ∨ l, and

2. (i) ¬l must be selected in D ∨ ¬l or (ii) no literal is selected in D ∨ ¬l and ¬l is

maximal with respect to D; or

(C2) if l is a negative literal, then

1. (i) l must be selected in C ∨ l or (ii) no literal is selected in C ∨ l and l is maximal

with respect to C, and

2. ¬l must be strictly maximal with respect to D and no literal is selected in D ∨ ¬l.

Note that these two conditions are identical modulo the polarity of l, i.e. having or not having

the negation ¬ in front of l. If l in C ∨ l and ¬l in D ∨ ¬l satisfy condition (C1) or condition (C2),

then we say that l is eligible in C ∨ l and ¬l is eligible in D ∨ ¬l.

The rewrite rules RW1 and RW2 are defined as follows:

RW1
∧n

i=1mi ⇒ A#false −→ true⇒
∨n

i=1 ¬mi

RW2
∧n

i=1mi ⇒ E〈ind〉#false −→ true⇒
∨n

i=1 ¬mi

where n ≥ 1 and each mi, 1 ≤ i ≤ n, is a literal.

An example of how to apply step resolution and rewrite rules is given below.

Example 3.3

Consider the set T3 of SNFg
CTL clauses consisting of the clauses 1 to 5 shown below.

1. start ⇒ r

2. ¬q ⇒ E〈1〉#p

3. r ⇒ E〈2〉#(¬q ∨ p)

4. u ⇒ A#¬p

5. true ⇒ u

where the underlined literals indicate that those literals are eligible in the corresponding clauses.

We use the ordering u ≻ p ≻ q ≻ r on atomic propositions and the selection function S that maps

every propositional disjunction C to the empty set. Then we are able to derive the contradiction

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 31

start⇒ false using step resolution and rewrite rules as follows.

6. ¬q ∧ u ⇒ E〈1〉#false [2, 4, SRES2]

7. true ⇒ q ∨ ¬u [6,RW2]

8. true ⇒ q [5, 7, SRES8]

9. r ∧ u ⇒ E〈2〉#¬q [3, 4, SRES2]

10. r ∧ u ⇒ E〈2〉#false [8, 9, SRES7]

11. true ⇒ ¬r ∨ ¬u [10,RW2]

12. true ⇒ ¬r [5, 11, SRES8]

13. start ⇒ false [1, 12, SRES5]

where the notations [c1, . . . , cn, SRESi] and [c1, . . . , cn,RWi] indicate that we apply the ith step

resolution rule and the ith rewrite rule to clauses c1, . . . , cn, respectively.

3.4.2 Eventuality resolution

The intuition of the eventuality resolution rule ERES1 below is to resolve an eventuality A3¬l,

which states that 3¬l is true on all paths, with a set of SNFg
CTL clauses which together, provided

that their combined left-hand sides were satisfied, imply that 2l holds on (at least) one path.

ERES1
P † ⇒ E#E2l

Q⇒ A3¬l

Q⇒ A(¬(P †)W ¬l)

where P † ⇒ E#E2l represents a set, ΛE2, of SNFg
CTL clauses

P 1
1 ⇒ ∗C

1
1 Pn

1 ⇒ ∗C
n
1...

...

P 1
m1
⇒ ∗C1

m1
· · · Pn

mn
⇒ ∗Cn

mn

with each ∗ either being empty or being an operator in {A#}∪{E〈ind〉# | ind ∈ Ind} and for every

i, 1 ≤ i ≤ n,

(
∧mi

j=1 C
i
j)⇒ l (3.1)

and

(
∧mi

j=1 C
i
j)⇒ (

∨n
i=1

∧mi

j=1 P
i
j) (3.2)

are provable. Furthermore, P † =
∨n

i=1

∧mi

j=1 P
i
j .

Conditions (3.1) and (3.2) ensure that the set ΛE2 of SNFg
CTL clauses implies P † ⇒ E#E2l.

Note that the conclusion of ERES1 is not stated in normal form. To present the conclusion

of ERES1 in normal form, we use a new atomic proposition wA

¬l uniquely associated with the

eventuality A3¬l. Then the conclusion of ERES1 can be represented by the following set of

32 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

SNFg
CTL clauses:

{wA

¬l ⇒ A#(¬l ∨
∨mi

j=1 ¬P
i
j) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P
i
j | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wA

¬l, w
A

¬l ⇒ A#(¬l ∨ wA

¬l)}.

The use of a proposition wA

¬l uniquely associated with the eventuality A3¬l is important for the

termination of our procedure. It allows us to represent all resolvents by ERES1 using a fixed set

of propositions depending only on the initial set of clauses, i.e., n different A-eventualities in the

initial set of clauses require at most n new atomic propositions to represent resolvents by ERES1.

In the following we give a concrete example to demonstrate an application of ERES1.

Example 3.4

We resolve the A-sometime clause u⇒ A3¬l with the following set ΛE2 of SNFg
CTL clauses

p⇒ E〈1〉#l q ⇒ E〈2〉#l

r ⇒ E〈1〉#q q ⇒ E〈2〉#p

q ⇒ E〈2〉#r

From ΛE2, we obtain that

• the conjunction of right-hand sides of clauses in the first column of ΛE2 excluding temporal

operators implies l, i.e. (l ∧ q)⇒ l;

• the conjunction of right-hand sides of clauses in the second column of ΛE2 excluding temporal

operators implies l, i.e. (l ∧ p ∧ r)⇒ l;

• the conjunction of right-hand sides of clauses in the first column of ΛE2 excluding temporal

operators implies the disjunction of (i) the conjunction of left-hand sides of clauses in the first

column of ΛE2 and (ii) the conjunction of the left-hand sides of clauses in the second column

of ΛE2, i.e. (l ∧ q)⇒ ((p ∧ r) ∨ q); and

• the conjunction of right-hand sides of clauses in the second column of ΛE2 excluding temporal

operators implies the disjunction of (i) the conjunction of left-hand sides of clauses in the first

column of ΛE2 and (ii) the conjunction of the left-hand sides of clauses in the second column

of ΛE2, i.e. (l ∧ p ∧ r)⇒ ((p ∧ r) ∨ q).

Therefore, P † = ((p ∧ r) ∨ q) and P † ⇒ E#E2l. We then can resolve the clause u ⇒ A3¬l with

((p ∧ r) ∨ q)⇒ E#E2l as follows.

((p ∧ r) ∨ q)⇒ E#E2l

u⇒ A3¬l

u⇒ A(¬((p ∧ r) ∨ q)W ¬l)

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 33

Then the resolvents of the application of ERES1 above in SNFg
CTL are as follows:

wA

¬l ⇒ A#(¬l ∨ ¬p ∨ ¬r)

wA

¬l ⇒ A#(¬l ∨ ¬q)

true⇒ ¬u ∨ ¬l ∨ ¬p ∨ ¬r

true⇒ ¬u ∨ ¬l ∨ ¬q

true⇒ ¬u ∨ ¬l ∨ wA

¬l

wA

¬l ⇒ A#(¬l ∨ wA

¬l).

Similar to ERES1, the intuition underlying the ERES2 rule below is to resolve an eventuality

E〈ind〉3¬l, which states that 3¬l is true on a path χ
〈ind〉
si , with a set of SNFg

CTL clauses which

together, provided that their combined left-hand sides were true, imply that 2l also holds on the

path χ
〈ind〉
si+1

.

ERES2
P † ⇒ E〈ind〉#(E〈ind〉2l)

Q⇒ E〈ind〉3¬l

Q⇒ E〈ind〉(¬(P
†)W¬l)

where P † ⇒ E〈ind〉#(E〈ind〉2l) represents a set, Λind
E2

, of SNFg
CTL clauses which is analogous to the

set ΛE2 but each ∗ is either empty or an operator in {A#,E〈ind〉#} and for every i, 1 ≤ i ≤ n,

(
∧mi

j=1 C
i
j)⇒ l (3.3)

and

(
∧mi

j=1 C
i
j)⇒ (

∨n
i=1

∧mi

j=1 P
i
j) (3.4)

are provable. Furthermore, P † =
∨n

i=1

∧mi

j=1 P
i
j .

Again, conditions (3.3) and (3.4) ensure that the set Λind
E2

of SNFg
CTL clauses implies the formula

P † ⇒ E〈ind〉#(E〈ind〉2l).

Similarly, we use an atomic proposition wind
¬l uniquely associated with E〈ind〉3¬l to represent

the resolvent of ERES2 as the following set of SNFg
CTL clauses:

{wind
¬l ⇒ E〈ind〉#(¬l ∨

∨mi

j=1 ¬P
i
j) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P
i
j | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wind
¬l , w

ind
¬l ⇒ E〈ind〉#(¬l ∨ wind

¬l)}.

As for ERES1, the use of atomic propositions uniquely associated with E-eventualities allows us to

represent all resolvents by ERES2 using a fixed set of atomic propositions depending only on the

initial set of clauses.

We show an example to demonstrate an application of ERES2.

Example 3.5

We resolve the E-sometime clause u ⇒ E〈1〉3¬l with the set Λ1
E2

of SNFg
CTL clauses in the

34 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

following.

q ⇒ E〈1〉#l

q ⇒ A#p

p⇒ A#q

From Λ1
E2

, we obtain that

• the conjunction of right-hand sides of clauses excluding temporal operators in Λ1
E2

implies l,

i.e. (l ∧ p ∧ q)⇒ l; and

• the conjunction of right-hand sides of clauses excluding temporal operators in Λ1
E2

implies

the conjunction of left-hand sides of clauses in Λ1
E2

, i.e. (l ∧ p ∧ q)⇒ (q ∧ p).

Therefore, P † = (p∧ q) and P † ⇒ E〈1〉#E〈1〉2l. We then can resolve the clause u⇒ E〈1〉3¬l with

(p ∧ q)⇒ E〈1〉#E〈1〉2l as follows.

(p ∧ q)⇒ E〈1〉#(E〈1〉2l)

u⇒ E〈1〉3¬l

u⇒ E〈1〉(¬(p ∧ q)W¬l)

Then the resolvents of the application of ERES2 above in SNFg
CTL are as follows:

w1
¬l ⇒ E〈1〉#(¬l ∨ ¬p ∨ ¬q)

true⇒ ¬u ∨ ¬l ∨ ¬p ∨ ¬q

true⇒ ¬u ∨ ¬l ∨ w1
¬l

w1
¬l ⇒ E〈1〉#(¬l ∨w1

¬l).

This completes the presentation of the resolution rules of R
≻,S
CTL. We now introduce some useful

definitions which are needed when we discuss the calculus R
≻,S
CTL further.

Definition 3.7 Saturation with respect to step resolution rules

A set T of SNFg
CTL clauses is saturated with respect to step resolution rules, if all clauses that can

be derived by an application of one of the step resolution rules SRES1 to SRES8 to premises in T

are contained in T .

Definition 3.8 Saturation with respect to R
≻,S
CTL

A set T of SNFg
CTL clauses is saturated with respect to R

≻,S
CTL if all clauses that can be derived by

an application of a rule of R
≻,S
CTL to premises in T are contained in T .

Definition 3.9 Derivation

A derivation from a set T of SNFg
CTL clauses by R

≻,S
CTL is a sequence T0, T1, T2, . . . of sets of clauses

such that T = T0 and Tt+1 = Tt∪Rt where Rt is a set of SNFg
CTL clauses obtained as the conclusion

of an application of a rule of R
≻,S
CTL to premises in Tt.

Definition 3.10 Refutation

A refutation of a set T of SNFg
CTL clauses (by R

≻,S
CTL) is a derivation from T such that for some

i ≥ 0, Ti contains a contradiction, where a contradiction is either the formula true ⇒ false or

start⇒ false.

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 35

Definition 3.11 Termination

A derivation terminates iff either a contradiction is derived or no new clauses can be derived by

any further application of resolution rules.

Next, we present an example of a refutation of a set of SNFg
CTL clauses which involves both

step resolution and eventuality resolution rules.

Example 3.6

In Example 3.2, we have seen that application of our transformation rules to the CTL formula

ϕ = E2¬l ∧A3l results in the following satisfiability equivalent set of SNFg
CTL clauses.

1. start ⇒ p1

2. p1 ⇒ A3l

3. p2 ⇒ E〈1〉#p2

4. true ⇒ ¬p1 ∨ p2

5. true ⇒ ¬p2 ∨ ¬l

Using step resolution, eventuality resolution and rewrite rules with the ordering l ≻ p1 ≻ p2 ≻ wA
l

and the selection function S mapping every propositional disjunction C to an empty set, we are

able to generate the following derivation.

6. wA

l ⇒ A#(l ∨ ¬p2) [2, 3, 5,ERES1]

7. true ⇒ ¬p1 ∨ l ∨ ¬p2 [2, 3, 5,ERES1]

8. true ⇒ ¬p1 ∨ l ∨ w
A

l [2, 3, 5,ERES1]

9. wA

l ⇒ A#(l ∨ wA

l) [2, 3, 5,ERES1]

10. true ⇒ ¬p1 ∨ ¬p2 [5, 7, SRES8]

11. start ⇒ ¬p2 [1, 10, SRES5]

12. start ⇒ p2 [1, 4, SRES5]

13. start ⇒ false [11, 12, SRES4]

where the notation [c1, . . . , cn,ERESi] indicates that we apply the eventuality resolution rule ERESi

to the clauses c1, . . . , cn. Therefore, we have proved that E2¬l ∧A3l is unsatisfiable.

3.4.3 Loop search

The expensive part of applying ERES1 and ERES2 is finding sets of step and global clauses which

can serve as premises for these rules, that is, for a given literal l stemming from some eventuality,

to find sets of SNFg
CTL clauses ΛE2, satisfying conditions (3.1) and (3.2); and Λind

E2
, satisfying

conditions (3.3) and (3.4). Such sets of SNFg
CTL clauses are also called E-loops in l and the formula

∨n
i=1

∧mi

j=1 P
i
j is called a loop formula. Algorithms to find loops were first presented by Bolotov and

Dixon in [16]. They define two loop search algorithms, called A-loop search algorithm and E-loop

search algorithm. An A-loop search algorithm is not required for our calculus as an E-loop search

algorithm is sufficient to find the premises for both ERES1 and ERES2. Therefore, we only present

an E-loop search algorithm here, which is slightly different from the E-loop search algorithm in [16]

due to the presence of global clauses, an ordering and a selection function we introduce into R
≻,S
CTL.

36 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

In Section 3.7, we will discuss in more detail why an A-loop search algorithm is not required in our

setting, while in Section 4.2.4 we present in more detail how the E-loop search algorithm can be

implemented.

The E-loop search algorithm makes use of the notion of merged clauses which is inductively

defined as follows.

• Any global clause, A-step clause, and E-step clause is a merged clause.

• If A1 ⇒ B1, A2 ⇒ B2, A3 ⇒ A#B3, A4 ⇒ A#B4, A5 ⇒ E〈ind〉#B5, and A6 ⇒ E〈ind〉#B6

are merged clauses, then so are (A1 ∧ A2) ⇒ (B1 ∧ B2), (A1 ∧ A4) ⇒ A#(B1 ∧ B4), (A1 ∧

A6) ⇒ E〈ind〉#(B1 ∧B6), (A3 ∧ A4) ⇒ A#(B3 ∧ B4), (A3 ∧ A6) ⇒ E〈ind〉#(B3 ∧B6), and

(A5 ∧A6)⇒ E〈ind〉#(B5 ∧B6).

E-loop search algorithm:

The algorithm takes as input a literal l, stemming either from an A-sometime clause Q⇒ A3¬l or

from an E-sometime clause Q⇒ E〈ind〉3¬l, and a set T of SNFg
CTL clauses among which we search

for premises for the eventuality resolution rules. We assume the set T is saturated with respect to

step resolution rules, that is, the rules SRES1 to SRES8.

The algorithm proceeds by constructing a sequence H0, H1, H2, . . . of formulae which approxi-

mate a loop formula. In more detail, the algorithm works as follows:

1. Search in T for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj , and Xj ⇒ E〈ind〉#Yj such

that Yj ⇒ l is provable (in propositional logic). Assuming there are n0 such clauses, we build

the first formula as follows:

H0 =
∨n0

j=1Xj

Simplify H0 using boolean simplification. If H0 ≡ true a loop is found, we return true and

the algorithm terminates. If H0 ≡ false (which can only be the case if n0 = 0), then no loop

formula can be found and we return false.

2. Given a formula Hi, where i ≥ 0, build the next formula Hi+1 by looking in T for merged

clauses of the form Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that

Bj ⇒ Hi is provable (in propositional logic). Assuming there are ni+1 such merged clauses,

we build the formula Hi+1 as follows:

Hi+1 =
∨ni+1

j=1 Aj

Simplify Hi+1 using boolean simplification.

3. Repeat the previous step until one of the conditions below is provable (in propositional logic).

(a) Hi+1 ≡ true. A loop formula has been found. We return true and the algorithm

terminates.

(b) Hi+1 ≡ false (that is, ni+1 = 0). No loop formula can be found. We return false and

the algorithm terminates.

(c) Hi ≡ Hi+1. A loop formula has been found. We return Hi+1 and the algorithm termi-

nates.

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 37

If we try to apply an eventuality resolution rule to an E-sometime clause Q⇒ E〈ind〉3¬l, then

the input set T to the E-loop search algorithm consists of the set of all global and A-step clauses

we currently have at our disposal plus all E-step clauses with index ind . If we try to apply an

eventuality resolution rule to an A-sometime clause Q⇒ A3¬l, then the input set T to the E-loop

search algorithm consists of the set of all global, A-step clauses, and E-step clauses.

If the algorithm returns a formula Hi+1 6≡ false, then

• Hi+1 =
∨ni+1

j=1

∧tj

k=1 q
k
j , for some literals qk

j , 1 ≤ j ≤ ni+1, 1 ≤ k ≤ tj , and

• there exists the following set of clauses in T ,

P 1
1 ⇒ ∗C

1
1 P l

1 ⇒ ∗C
l
1...

...

P 1
m1
⇒ ∗C1

m1
· · · P l

ml
⇒ ∗Cl

ml

such that these clauses satisfy conditions (3.1) and (3.2) of ERES1 and (3.3) and (3.4) of

ERES2 as well as the restrictions imposed on the form of ∗ and, moreover,

∨l
r=1

∧mr

s=1 P
r
s ≡

∨ni+1

j=1

∧tj

k=1 q
k
j .

The proof of the correctness of this algorithm can be found in [16].

An important step in the algorithm is the task of “looking for merged clauses”, which is again

non-trivial. We will discuss this task in more detail in Section 4.2.4.

We give a number of examples to show how to apply the loop search algorithm and the com-

plexity of those examples gradually increases.

Example 3.7

We apply the E-loop search algorithm to the set T of SNFg
CTL clauses given below.

1. p ⇒ A#l

2. true ⇒ p

3. u ⇒ A3¬l

• Search in T for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj , and Xj ⇒ E〈ind〉#Yj such

that Yj ⇒ l is provable (in propositional logic). We find p⇒ A#l, which results in

H0 = p

It should be noted that there are other ways of merging clauses. For example, by merging

clause 1 and 2, we obtain the clause p⇒ A#(l ∧ p), which also results in H0 = p.

• Given the formula H0, we build the next formula H1 by looking in T for merged clauses of

the form Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ H0 is

provable (in propositional logic). By merging the clauses 1 and 2, we find p ⇒ A#(p ∧ l),

which results in

H1 = p

38 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

• As H0 ≡ H1, the algorithm terminates and the loop formula P † is p.

Example 3.8

Previously, we have used the set Λ1
E2

and the E-sometime clause u⇒ E〈1〉3¬l in Example 3.5 to

demonstrate an application of ERES2. Here we apply the loop search algorithm to the set Λ1
E2

to

obtain the loop formula.

1. q ⇒ E〈1〉#l

2. q ⇒ A#p

3. p ⇒ A#q

• Search in Λ1
E2

for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj , and Xj ⇒ E〈ind〉#Yj

such that Yj ⇒ l is provable (in propositional logic). We find q ⇒ E〈1〉#l, which results in

H0 = q

• Given the formula H0, we build the next formula H1 by looking for merged clauses of the form

Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ H0 is provable

(in propositional logic). By merging the clauses 1 and 3, we find p∧ q ⇒ E〈1〉#(q ∧ l), which

results in

H1 = p ∧ q

It should be noted that there are other ways of merging the available clauses. For example,

by merging clauses 1, 2, and 3, we obtain the clause p ∧ q ⇒ E〈1〉#(q ∧ p ∧ l), which also

results in H1 = p ∧ q.

• Given the formula H1, we build the next formula H2 by looking for merged clauses of the form

Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ H1 is provable

(in propositional logic). By merging the clauses 1, 2 and 3, we find p ∧ q ⇒ E〈1〉#(p ∧ q ∧ l),

which results in

H2 = p ∧ q

• As H1 ≡ H2, the algorithm terminates and the loop formula P † is p ∧ q.

Example 3.9

Previously we use the set ΛE2 and the A-sometime clause u⇒ A3¬l in Example 3.4 to demonstrate

an application of ERES1. Here we apply the loop search algorithm to the set ΛE2 to obtain the

loop formula.

1. p ⇒ E〈1〉#l

2. r ⇒ E〈1〉#q

3. q ⇒ E〈2〉#l

4. q ⇒ E〈2〉#p

5. q ⇒ E〈2〉#r

• Search in ΛE2 for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj , and Xj ⇒ E〈ind〉#Yj

such that Yj ⇒ l is provable (in propositional logic). We find p ⇒ E〈1〉#l and q ⇒ E〈2〉#l

and define H0 as

H0 = p ∨ q

3.4. THE CLAUSAL RESOLUTION CALCULUS R
≻,S
CTL 39

1 procedure main(N)

2 // N is a set of SNFg
CTL clauses

3 begin

4 New := {C | C is a determinate clause in N};
5 ST := {C | C is a sometime clause in N};
6 Old := ∅;
7 do

8 Old := resolution sres(Old, New);

9 New := ∅;
10 if (⊥ 6∈ Old) then

11 foreach A-sometime clause and E-sometime clause C in ST

12 G := resolution eres(Old, C);

13 if (G 6= ∅) then

14 New := New ∪ G;

15 end if

16 end for

17 New := New\Old;
18 end if

19 while (⊥ 6∈ Old and New 6= ∅)
20 output();

21 end

Figure 3.3: A decision procedure

• Given the formula H0, we build the next formula H1 by looking for merged clauses of the form

Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ H0 is provable

(in propositional logic). By merging the clauses 1 and 2, we find r ∧ p⇒ E〈1〉#(q ∧ l) and by

merging the clauses 3 and 4, we find q ⇒ E〈2〉#(p ∧ l), which gives us

H1 = q ∨ (p ∧ r)

It should be noted that there are other possible ways of merging the available clauses. For

example, by merging clauses 3, 4, and 5, we obtain the clause q ⇒ E〈1〉#(p ∧ r ∧ l), which

also results in H1 = q ∨ (p ∧ r).

• Given the formula H1, we build the next formula H2 by looking for merged clauses of the

form Aj ⇒ (Bj ∧ l), Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ H1 is

provable (in propositional logic). We find r ∧ p ⇒ E〈1〉#(q ∧ l) (by merging clause 1 and 2)

and q ⇒ E〈2〉#(p ∧ r ∧ l) (by merging clause 3, 4 and 5), then

H2 = q ∨ (p ∧ r)

• As H1 ≡ H2, the algorithm terminates and the loop formula P † is q ∨ (p ∧ r).

40 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

3.4.4 A decision procedure

We present a decision procedure based on the calculus R
≻,S
CTL for determining the satisfiability of a

set of SNFg
CTL clauses in Figure 3.3.

The procedure takes a set of SNFg
CTL clauses N as input and then split N into the set New of

determinate clauses and the set ST of sometime clauses (lines 4 and 5, respectively). The set Old

is initially set to be empty (line 6). We then enter the main loop of the procedure which will be

repeated until either the contradiction ⊥ (i.e. start ⇒ false or true ⇒ false) has been derived

or we cannot derive any new clauses (line 7 to 19). We saturate the set New ∪ Old using the step

resolution rules and the resulting set of clauses becomes the set Old (line 8). If we have not derived

the contradiction yet, then we try to apply eventuality resolution rules to each of the sometime

clauses (lines 11 to 16). The union of all the resolvents generated by applications of the eventuality

resolution rules becomes the set of new clauses New. Some of these resolvents may be redundant.

Therefore, we eliminate clauses from New which are already in Old (line 17). Finally, after the main

loop terminates, we print out the satisfiability of N (line 20).

3.5 Correctness of the calculus R
≻,S
CTL

3.5.1 Correctness of the transformation to SNF
g
CTL

In [15, 38], Bolotov has developed a set of transformation rules to transform an arbitrary CTL

formula into a set of SNFCTL clauses, which preserves satisfiability. However an analysis of the

complexity of the transformation and a proof that the transformation is terminating are absent.

Our transformation rules have been developed based on those in [15, 38], but are greatly improved

for ease of implementation and efficiency.

In the following we show that our transformation

1. preserves satisfiability,

2. is terminating, and

3. allows only a polynomially bounded number of transformation rule application.

Lemma 3.1 Let T be a set of CTL formulae, and let M = 〈S,R,L, [], s0〉 be a model structure

such that T is satisfiable in M . Let p ∈ PPL be an atomic proposition not occurring in T , and let

M ′ = 〈S,R,L′, [], s0〉 be a model structure identical to M except for the truth value assigned by L′

to p in each state of M ′. Then T is also satisfiable in M ′.

Proof. By the inductive definition of the semantics of SNFg
CTL, the truth value assignments to

propositions not occurring in T do not influence whether T is satisfiable in a model. Therefore, T

is satisfiable in M ′. ⊓⊔

Lemma 3.2 A CTL formula ϕ is satisfiable iff the set of formulae {A2(start⇒ p),A2(p⇒ ϕ)},

where p ∈ PPL does not occur in ϕ, is satisfiable.

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 41

Proof. Assume {A2(start ⇒ p),A2(p ⇒ ϕ)} is satisfiable in a model M = 〈S,R,L, [], s0〉, i.e.

M, s0 |= A2(start ⇒ p) ∧ A2(p ⇒ ϕ). From the semantics of ⇒,A2,∧, M, s0 |= (start ⇒

p) ∧ (p ⇒ ϕ). From the semantics of ⇒,∧, M, s0 |= (start ⇒ ϕ). Because start holds at s0,

M, s0 |= ϕ. Thus, if {A2(start⇒ p),A2(p⇒ ϕ)} is satisfiable, so is ϕ.

Assume ϕ is satisfiable in a modelM = 〈S,R,L, [], s0〉, i.e. M, s0 |= ϕ. LetM ′ = 〈S,R,L′, [], s0〉

be identical to M except that p holds only at s0. From the semantics of start,⇒,A2, M ′, s0 |=

A2(start⇒ p). From Lemma 3.1, M ′, s0 |= ϕ. From the semantics of ⇒,A2, M ′, s0 |= A2(p⇒

ϕ). From the semantics of ∧, M ′, s0 |= A2(start ⇒ p) ∧A2(p ⇒ ϕ). Thus, if ϕ is satisfiable, so

is {A2(start⇒ p),A2(p⇒ ϕ)}. ⊓⊔

Now we show all of our transformation rules preserve satisfiability.

Lemma 3.3 Let T be a set of CTL clauses, and let M = 〈S,R,L, [], s0〉 be a model structure such

that T is satisfiable in M . Let Ind(T) be the set of indices occurring in T and ind be an index,

which is not in the set of indices Ind(T), i.e. ind does not occur in T . Let M ′ = 〈S,R,L, []′, s0〉

be a model structure identical to M except that [ind]′ is an arbitrary function on S. Then T is also

satisfiable in M ′.

Proof. By the inductive definition of the semantics of SNFg
CTL, the successor function [ind] such

that ind 6∈ Ind(T), does not influence whether T is satisfiable in a model. Therefore, T is satisfiable

in M ′. ⊓⊔

Lemma 3.4 Let Tt = ∆∪{ψ}, where ψ = A2(q ⇒ E#ϕ), be a set of CTL clauses, and let Ind(Tt)

be the set of indices occurring in Tt. Let Tt+1 be the set of CTL clauses obtained by an application

of Trans(1) to the formula ψ in Tt, that is, Tt+1 = ∆ ∪Rt, where Rt = {A2(q ⇒ E〈ind〉#ϕ)} and

ind 6∈ Ind(Tt). Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. Assume a model M = 〈S,R,L, [], s0〉 satisfies Tt+1, i.e. M, s0 |= ∆ ∧A2(q ⇒ E〈ind〉#ϕ).

From the semantics of ∧, M, s0 |= ∆ and M, s0 |= A2(q ⇒ E〈ind〉#ϕ). From the semantics of

A2, for every path χs0
and every state sj ∈ χs0

,M, sj |= (q ⇒ E〈ind〉#ϕ). From the semantics of

⇒ and E〈ind〉#, for every path χs0
and every state sj ∈ χs0

,M, sj |= q implies that there exists

a state s′ such that (sj , s
′) ∈ [ind] and M, s′ |= ϕ. From the semantics of E#, for every path χs0

and every state sj ∈ χs0
,M, sj |= q implies that M, sj |= E#ϕ. Therefore, from the semantics of

∨,⇒,∧,A2, we obtain M, s0 |= ∆ ∧A2(q ⇒ E#ϕ). Thus, if Tt+1 is satisfiable, then so is Tt.

Next we prove the ‘only if’ part. Assume a model M = 〈S,R,L, [], s0〉 satisfies Tt, i.e. M, s0 |=

∆ ∧A2(q ⇒ E#ϕ). We can obtain that M, s0 |= ∆ and by the semantics of ⇒,A2 and E#, for

every path χs0
and every state sj ∈ χs0

,M, sj |= q implies that there exists a path χsj
such that

there exists a state s′ ∈ χsj
, (sj , s

′) ∈ R and M, s′ |= ϕ. Let the model M ′ = 〈S,R,L, []′, s0〉 be

identical to M except that ind ∈ Ind(Tt+1) and for every path χs0
and for every state sj ∈ χs0

1. if M ′, sj |= q, then let s′ be an arbitrary state with (sj , s
′) ∈ R and M, s′ |= ϕ and let

(sj , s
′) ∈ [ind]; and

2. if M ′, sj 6|= q, then let s′ be an arbitrary state with (sj , s
′) ∈ R and let (sj , s

′) ∈ [ind].

42 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Since we have restricted ourselves to tree models and M ′, s0 |= A2(q ⇒ E#ϕ), [ind] is well-defined

and a total function.

From the semantics of E〈ind〉#, for every path χs0
and every state sj ∈ χs0

,M ′, sj 6|= q or

M ′, sj |= E〈ind〉#ϕ. From the semantics of ∨,⇒,A2, M ′, s0 |= A2(q ⇒ E〈ind〉#ϕ). Moreover,

Lemma 3.3 shows that M ′, s0 |= ∆. Therefore, from the semantics of ∧, M ′, s0 |= ∆ ∧A2(q ⇒

E〈ind〉#ϕ). Thus, if Tt is satisfiable, then so is Tt+1. ⊓⊔

In the following we show the transformation rule Trans(6) preserves satisfiability.

Lemma 3.5 Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ ϕ1 ∧ ϕ2), and Tt+1 = ∆ ∪ Rt, where Rt =

{A2(q ⇒ ϕ1),A2(q ⇒ ϕ2)}, be two sets of CTL clauses such that Tt+1 is obtained by an application

of Trans(6) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. Assume Tt = ∆ ∧A2(q ⇒ ϕ1 ∧ ϕ2) is satisfiable in a model structure M = 〈S,R,L, [], s0〉

at the state s0 in M . Based on the semantics of the logical connectives involved, we have that

〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1 ∧ ϕ2)

iff 〈M, s0〉 |= ∆ ∧A2((q ⇒ ϕ1) ∧ (q ⇒ ϕ2))

iff 〈M, s0〉 |= ∆ and for each future path χs0
, for each sj ∈ χs0

, 〈M, sj〉 |= (q ⇒ ϕ1) and 〈M, sj〉 |=

(q ⇒ ϕ2)

iff 〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1) ∧A2(q ⇒ ϕ2)

Therefore, Tt is satisfiable iff Tt+1 is satisfiable. ⊓⊔

Next, we show the transformation rule Trans(8) preserves satisfiability.

Lemma 3.6 Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ D), and Tt+1 = ∆ ∪ Rt, where Rt =

{A2(true⇒ ¬q ∨D)}, be two sets of CTL clauses such that Tt+1 is obtained by an application of

Trans(8) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. A2(q ⇒ D) is obviously equivalent to A2(true ⇒ ¬q ∨ D) as q ⇒ D is propositionally

equivalent to true⇒ ¬q ∨D. Therefore, Tt is actually equivalent to Tt+1. ⊓⊔

The next rule we consider is the rule Trans(9).

Lemma 3.7 Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ A#ϕ), and Tt+1 = ∆ ∪ Rt, where Rt =

{A2(q ⇒ A#p),A2(p ⇒ ϕ)} and p ∈ PPL does not occur in Tt, be two sets of CTL clauses such

that Tt+1 is obtained by an application of Trans(9) to the formula ψ in Tt. Then Tt is satisfiable

iff Tt+1 is satisfiable.

Proof. We first show the ‘if’ part. Assume Tt+1 is satisfiable in a model structureM = 〈S,R,L, [], s0〉,

i.e. M, s0 |= ∆ ∧A2(q ⇒ A#p) ∧A2(p ⇒ ϕ). From the semantics of ∧ and A2, we obtain that

(1) M, s0 |= ∆ and (2) for each path χs0
and for each sj ∈ χs0

,M, sj |= ¬q or for each path χsj
,

M, sj+1 |= p and (3) for each path χs0
and for each sk ∈ χs0

, M, sk |= p⇒ ϕ.

According to (2), if q holds at the state sj , then A#p must hold at the state sj and for each

path χsj
, p must hold at the state sj+1 with (sj , sj+1) ∈ R. Furthermore, by (3) we know ϕ must

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 43

hold at the state sj+1 and therefore A#ϕ holds at the state sj and so does q ⇒ A#ϕ. From the

semantics of A2 and (1), we obtain M, s0 |= ∆ ∧A2(q ⇒ A#ϕ). Therefore, if Tt+1 is satisfiable,

so is Tt.

Next, we prove the ‘only if’ part. Assume that Tt is satisfiable in a model structure M =

〈S,R,L, [], s0〉, i.e. M, s0 |= ∆ ∧A2(q ⇒ A#ϕ). Let M ′ to be a model structure identical to M

except that for every state si ∈ S, p is true at a state si iff ϕ is true at si. By definition of M ′, we

have that A2(p ⇔ ϕ) holds in M ′, that is, M ′, s0 |= A2(p ⇔ ϕ). Furthermore, as q ⇒ A#ϕ is

true at a state si in M ′ iff q ⇒ A#ϕ is true at si in M , A2(q ⇒ A#ϕ) is satisfiable in M ′, that

is, M ′, s0 |= A2(q ⇒ A#ϕ). From M ′, s0 |= A2(q ⇒ A#ϕ) and the semantics of ⇒, ∨ and A2,

for each path χs0
and for each state sj ∈ χs0

,M ′, sj 6|= q or M ′, sj |= A#ϕ. From the semantics of

A#, for each path χs0
and for each state sj ∈ χs0

, M ′, sj 6|= q or for each path χsj
, M ′, sj+1 |= ϕ.

From M ′, sj+1 |= ϕ and M ′, s0 |= A2(p⇔ ϕ), we obtain M ′, sj+1 |= p. So, for each path χs0
and

for each state sj ∈ χs0
,M′, sj 6|= q or M ′, sj |= A#p. Therefore, from the semantics of ⇒ and

A2, M ′, s0 |= A2(q ⇒ A#p). Also, by Lemma 3.1, M ′, s0 |= ∆. Thus, if Tt is satisfiable, so is

Tt+1. ⊓⊔

Lemma 3.8 The CTL formula A2ϕ⇒ A#A2ϕ is valid.

Proof. Let M = 〈S,R,L, [], s0〉 be an arbitrary model structure and s be an arbitrary state in S.

1. If M, s 6|= A2ϕ, then M, s |= A2ϕ⇒ A#A2ϕ.

2. If, on the other hand, M, s |= A2ϕ, then from the semantics of A2 for every path χs and

every state s′ ∈ χs,M, s′ |= ϕ. Therefore, for every successor state s′′ of s, for every path

χs′′ , and for every state s′′′ ∈ χs′′ , we obtain that M, s′′′ |= ϕ. Thus, from the semantics of

A2, we obtain that for every successor state s′′ of s, M, s′′ |= A2ϕ. From the semantics of

A#, we obtain that M, s |= A#A2ϕ. Thus, M, s |= A2ϕ⇒ A#A2ϕ.

As M is an arbitrary model structure and s is an arbitrary state in S, A2ϕ⇒ A#A2ϕ is valid. ⊓⊔

Now we prove that the transformation rule Trans(17) preserves satisfiability.

Lemma 3.9 Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ A2ϕ), and Tt+1 = ∆ ∪ Rt, where Rt =

{A2(q ⇒ p),A2(p ⇒ ϕ),A2(p ⇒ A#p)} and p ∈ PPL does not occur in Tt, be two sets of CTL

clauses such that Tt+1 is obtained by an application of Trans(17) to the formula ψ in Tt. Then Tt

is satisfiable iff Tt+1 is satisfiable.

Proof. Assume Tt is satisfiable in M = 〈S,R,L, [], s0〉, i.e. M, s0 |= ∆ ∧ A2(q ⇒ A2ϕ). Let

M ′ = 〈S,R,L′, [], s0〉 be identical to M except that M ′, s |= p iff M ′, s |= A2ϕ, for every state s in

S. Thus, we know that (1)M ′, s |= p⇔ A2ϕ. By Lemma 3.1, M ′, s0 |= ∆∧A2(q ⇒ A2ϕ). From

the semantics of ∧, we obtain that (2) M ′, s0 |= A2(q ⇒ A2ϕ). From (2), (1) and the semantics

of⇒ and A2, as s is an arbitrary state in S, we obtain that M ′, s0 |= A2(q ⇒ p). Moreover, from

(1) and the semantics of A2, we obtain that M ′, s |= (p⇒ ϕ). As s is an arbitrary state, we obtain

M ′, s0 |= A2(p⇒ ϕ). From (1) and by Lemma 3.8, we obtain that M ′, s |= (p⇒ A#A2ϕ). From

(1) and the semantics of A#, M ′, s |= (A#A2ϕ ⇒ A#p). From the semantics of ⇒, we obtain

that M ′, s |= (p ⇒ A#p). As s is an arbitrary state, we obtain that M ′, s0 |= A2(p ⇒ A#p).

44 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Therefore, M ′, s0 |= ∆ ∧ A2(q ⇒ p) ∧ A2(p ⇒ ϕ) ∧ A2(p ⇒ A#p). We prove that if Tt is

satisfiable, so is Tt+1.

Next we prove the ‘if’ part. Assume Tt+1 is satisfiable in M = 〈S,R,L, [], s0〉, i.e. (3) M, s0 |=

∆ ∧A2(q ⇒ p) ∧A2(p ⇒ ϕ) ∧A2(p ⇒ A#p). Let s be an arbitrary state in S. If M, s 6|= p,

then M, s |= (p ⇒ A2p). If, on the other hand, M, s |= p, then by an inductive augment we

can conclude from (3) and the semantics of A2 and A# that for every path χs and for every

state si ∈ χs, M, si |= p. Thus, we obtain that (4) M, s |= (p ⇒ A2p). From (3), we know

that in every state p ⇒ ϕ holds and, thus, from (4) and the semantics of ⇒ and A2, we obtain

that (5) M, s |= (p ⇒ A2ϕ). From (3), (5) and the semantics of ⇒ and A2, we obtain that

M, s |= (q ⇒ A2ϕ). As s is an arbitrary state, we obtain that M, s0 |= A2(q ⇒ A2ϕ). From (3)

and the semantics of ∧, we obtain that M, s0 |= ∆∧A2(q ⇒ A2ϕ). Thus, if Tt+1 is satisfiable, so

is Tt. ⊓⊔

The next rule we prove to preserve satisfiability is Trans(19).

Lemma 3.10 Let Tt = ∆ ∪ {ψ}, where ψ = A2(q ⇒ A(ϕU l)), and Tt+1 = ∆ ∪ Rt, where

Rt = {A2(q ⇒ l ∨ p),A2(p ⇒ ϕ),A2(p ⇒ A#(l ∨ p)),A2(q ⇒ A3l)} and p ∈ PPL does not

occur in Tt, be two sets of CTL clauses such that Tt+1 is obtained by an application of Trans(19)

to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. Assume Tt is satisfiable in the model structure M = 〈S,R,L, [], s0〉, at the state s0, i.e.

M, s0 |= ∆∧A2(q ⇒ A(ϕU l)). Let M ′ = 〈S,R,L′, [], s0〉 be identical to M except that for every

state si ∈ S, M ′, si |= p iffM ′, si |= A(ϕU l)∧¬l. Thus it holds that (1)M ′, si |= p⇔ A(ϕU l)∧¬l.

By Lemma 3.1, we have M ′, s0 |= ∆ ∧A2(q ⇒ A(ϕU l)) and consequently M ′, s0 |= A2(q ⇒

A(ϕU l)). From the semantics of A2, we have, for every state si ∈ S, (2) M ′, si |= q ⇒ A(ϕU l).

1. From (2) and propositional reasoning, we obtain that (3) M ′, si |= (q∧¬l)⇒ (A(ϕU l))∧¬l).

Together with (1), (3) give us M ′, si |= (q ∧ ¬l ⇒ p). Thus, M ′, si |= (q ⇒ l ∨ p). From the

semantics of A2, M ′, s0 |= A2(q ⇒ l ∨ p).

2. From (1), we have M ′, si |= (p ⇒ ¬l) and from the semantics of AU , (1) also implies that

M ′, si |= (p⇒ ϕ∨ l). Thus, we have M ′, si |= (p⇒ ϕ). From the semantics of A2, we obtain

that M ′, s0 |= A2(p⇒ ϕ).

3. From (1) and the semantics of AU , if M ′, si |= p, then for every path χsi
, there exists a

state sj ∈ χsi
, j > i such that M ′, sj |= l and for every state sk ∈ χsi

, i ≤ k < j,M, sk |= ϕ.

Thus, we know that for every successor state si+1 of si, M
′, si+1 |= l∨ (A(ϕU l))∧¬l). From

(1), M ′, si+1 |= l ∨ p. Thus, from the semantics of A#, M ′, si |= A#(l ∨ p). Therefore, from

the semantics of ⇒, we have M ′, si |= p ⇒ A#(l ∨ p). From the semantics of A2, we have

M ′, s0 |= A2(p⇒ A#(l ∨ p)).

4. From (2) and the semantics of AU and A2, we obtain that if M ′, si |= q, then for every

path χsi
, there exists a state sj ∈ χsi

such that M ′, sj |= l and for every state sk ∈ χsi
, i ≤

k < j,M, sk |= ϕ. Thus, M ′, si |= (q ⇒ A3l). From the semantics of A2, we have

M ′, s0 |= A2(q ⇒ A3l).

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 45

Thus, if Tt is satisfiable, then so is Tt+1.

Next, we prove ‘if’ part. Assume that Tt+1 is satisfiable in the model structureM = 〈S,R,L, [], s0〉,

i.e. M, s0 |= ∆ ∧A2(q ⇒ l ∨ p) ∧A2(p ⇒ ϕ) ∧A2(p⇒ A#(l ∨ p)) ∧A2(q ⇒ A3l), and conse-

quently (4) M, s0 |= A2(q ⇒ l ∨ p), (5) M, s0 |= A2(p ⇒ ϕ), (6) M, s0 |= A2(p ⇒ A#(l ∨ p)),

and (7) M, s0 |= A2(q ⇒ A3l). We need to show that M, s0 |= A2(q ⇒ A(ϕU l)).

Let si be an arbitrary state in S.

• If M, si 6|= q, then M, si |= q ⇒ A(ϕU l));

• if, on the other hand, M, si |= q, then

– if M, si |= l, then, from the semantics of AU and ⇒, we have M, si |= q ⇒ A(ϕU l));

– if, on the other hand, M, si 6|= l, then from (4) and propositional reasoning, M, si |= p.

By an inductive argument, we can conclude from (6) that for every path χsi
, either (8)

for every state sj ∈ χsi
,M, sj |= p∧¬l or (9) there exists a state sj such that M, sj |= l

and for every state sk, i ≤ k < j,M, sk |= p∧¬l. From (7) and the semantics of A2 and

A3, as M, si |= q, the possibility of (8) can be eliminated and this leaves (9) as the only

possibility. Therefore, we obtain that M, si |= q ⇒ A(pU l). From (5), the semantics of

A2 and propositional reasoning, we have M, si |= q ⇒ A(ϕU l).

From the semantics of A2, we have M, s0 |= A2(q ⇒ A(ϕU l))). Therefore, M, s0 |= ∆∧A2(q ⇒

A(ϕU l))). Thus, if Tt+1 is satisfiable, then so is Tt. ⊓⊔

Theorem 3.1 Let Tt = ∆ ∪ {ψ} and Tt+1 = ∆ ∪ Rt be two sets of CTL clauses such that Tt+1

is obtained by an application of a transformation rule of the form ψ → Rt in the set Trans to the

formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. To prove this theorem, we need to show that every transformation rule in the set Trans

preserves satisfiability.

Lemma 3.4, 3.5, 3.6, 3.7, 3.9 and 3.10 prove that the transformation rules Trans(1), Trans(6),

Trans(8), Trans(9), Trans(17) and Trans(19) preserve satisfiability, respectively.

The proofs that Trans(2) to Trans(5) preserve satisfiability are analogous to the proof for

Trans(1) in Lemma 3.4. The proof that Trans(7) preserves satisfiability is analogous to the proof

for Trans(6) in Lemma 3.5. The proofs that Trans(10) to Trans(16) preserve satisfiability are

analogous to the proof for Trans(9) in Lemma 3.7. The proof that Trans(18) preserves satisfiability

is analogous to the proof for Trans(17) in Lemma 3.9. The proofs that Trans(20) to Trans(22)

preserve satisfiability are analogous to the proof for Trans(19) in Lemma 3.10. ⊓⊔

Weight functions for CTL formulae

Generally speaking, the purpose of our transformation rules is to keep the operators our resolution

rules can operate, eliminate unwanted operators, move the formula to the side we favour, and rewrite

a complex formula into a few simpler formulae. To show that the transformation terminates, we

assign weights to CTL clauses and sets of CTL clauses. The intuition of how the weights are

assigned is that we assign the lower weights to the operators and formulae we favour and higher

46 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

weights to the operators and formulae we do not want in SNFg
CTL. We give a few example to

explain.

1. We prefer all the existential path quantifiers are indexed. Consequently, the weights of

E#,E3,E2,EU ,EW are higher than the weights of E〈ind〉#,E〈ind〉3,E〈ind〉2,E〈ind〉 U ,

E〈ind〉W , respectively.

2. The unwanted operators are 2, U , W . Therefore, their weights are higher than the weights

of operators # and 3.

3. We prefer the propositions to occur at the right-hand side of a clause. Thus, the propositions

at the left-hand side of a clause have higher weights compared to the propositions at the

right-hand side of a clause.

4. The formula A3ϕ, where ϕ is not a literal, is obviously more complex than the formula A3l.

Thus, A3ϕ has a higher weight.

Therefore, to show the termination, as any weight of a formula can not be a negative number, we

just need to prove that every application of a transformation rule strictly reduces the weight of a

set of CTL clauses.

We define the following three weight functions:

1. w(Γ), which assigns a weight to a CTL clause Γ;

2. w(L, ϕ), which assigns a weight to a CTL formula ϕ occurring on the left-hand side of a CTL

clause; and

3. w(R, ϕ), which assigns a weight to a CTL formula ϕ occurring on the right-hand side of a

CTL clause.

Except for the case for atomic propositions, w(L, ϕ) and w(R, ϕ) are defined analogously. Therefore,

to ease the following definition, we use w(x, ϕ) where a case of definition applies to both w(L, ϕ)

and w(R, ϕ). The inductive definition of three weight functions is as follows.

For every CTL clause Γ = A2(ϕ1 ⇒ ϕ2), the weight w(Γ) of Γ is defined as follows.

1. w(A2(ϕ1 ⇒ ϕ2)) = w(L, ϕ1) + w(R, ϕ2) + 1;

2. w(x, start) = 1;

3. w(x, true) = w(x, false) = 1;

4. w(L, p) = 5;

5. w(R, p) = 1;

6. w(x,¬ϕ) = w(x, ϕ);

7. w(x, ϕ1 ∧ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 7;

8. w(x, ϕ1 ∨ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 1, where both ϕ1 and ϕ2 are disjunctions of literals;

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 47

9. w(x, ϕ1 ∨ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 9, where only one of ϕ1 and ϕ2 is a disjunction of

literals;

10. w(x, ϕ1 ∨ ϕ2) = w(x, ϕ1) + w(x, ϕ2) + 17, where neither of ϕ1 and ϕ2 are a disjunctions of

literals;

11. w(x,A2ϕ) = w(x,E〈ind〉2ϕ) = w(x, ϕ) + 16;

12. w(x,E2ϕ) = w(x, ϕ) + 17;

13. w(x,A3ϕ) = w(x,E〈ind〉3ϕ) = w(x, ϕ) + 9, where ϕ is not a literal;

14. w(x,A3l) = w(x,E〈ind〉3l) = w(x, l) + 1;

15. w(x,E3ϕ) = w(x, ϕ) + 10;

16. w(x,A#ϕ) = w(x,E〈ind〉#ϕ) = w(x, ϕ) + 9, where ϕ is not a disjunction of literals;

17. w(x,A#ϕ) = w(x,E〈ind〉#ϕ) = w(x, ϕ) + 1, where ϕ is a disjunction of literals;

18. w(x,E#ϕ) = w(x, ϕ) + 10;

19. w(x,A(ϕ1 U ϕ2)) = w(x,E〈ind〉(ϕ1 U ϕ2)) = w(x, ϕ1)+w(x, ϕ2)+46, where ϕ2 is not a literal;

20. w(x,E(ϕ1 U ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 47;

21. w(x,A(ϕU l)) = w(x,E〈ind〉(ϕU l)) = w(x, ϕ) + w(x, l) + 38;

22. w(x,A(ϕ1W ϕ2)) = w(x,E〈ind〉(ϕ1W ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 46, where ϕ2 is not a

literal;

23. w(x,E(ϕ1W ϕ2)) = w(x, ϕ1) + w(x, ϕ2) + 47;

24. w(x,A(ϕW l)) = w(x,E〈ind〉(ϕW l)) = w(x, ϕ) + w(x, l) + 38;

Note that a disjunction of literals can consist of a single literal. For every set ∆ of CTL clauses,

w(∆) =
∑

Γ∈∆

w(Γ).

In the following, we prove that each application of a transformation rule to a clause Γ in a set

T of CTL clauses results in a set T ′ of CTL clauses that strictly weights less than T . First, we

consider the transformation rule Trans(1).

Lemma 3.11 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ E#ϕ), be a set of CTL clauses. Let

Tt+1 = ∆ ∪ {Γ′}, where Γ′ = A2(q ⇒ E〈ind〉#ϕ), be a set of CTL clauses such that Tt+1 is

obtained by an application of Trans(1) to the formula Γ in Tt. Then the weight of Tt is strictly

greater than the weight of Tt+1.

48 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ′) > 0. According

to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,E#ϕ) + 1

= 5 + w(R, ϕ) + 10 + 1

= w(R, ϕ) + 16;

if ϕ is not a disjunction of literals, then

w(Γ′) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 9 + 1

= w(R, ϕ) + 15;

or if ϕ is a disjunction of literals, then

w(Γ′) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 1 + 1

= w(R, ϕ) + 7.

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ′) is 1 or 9, which is greater than 0. ⊓⊔

Lemma 3.12 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ ϕ1 ∧ ϕ2), be a set of CTL clauses. Let

Tt+1 = ∆∪ {Γ1,Γ2}, where Γ1 = A2(q ⇒ ϕ) and Γ2 = A2(q ⇒ ϕ2), be a set of CTL clauses such

that Tt+1 is obtained by an application of Trans(6) to the formula Γ in Tt. Then the weight of Tt

is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆) +w(Γ)−w(∆)−w(Γ1)−w(Γ2) > 0.

According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R, ϕ1 ∧ ϕ2) + 1

= 5 + w(R, ϕ1) + w(R, ϕ2) + 7 + 1

= w(R, ϕ1) + w(R, ϕ2) + 13

and

w(Γ1) = w(L, q) + w(R, ϕ1) + 1

= 5 + w(R, ϕ1) + 1

= w(R, ϕ1) + 6

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 49

and

w(Γ2) = w(L, q) + w(R, ϕ2) + 1

= 5 + w(R, ϕ2) + 1

= w(R, ϕ2) + 6

Therefore, w(Tt) − w(Tt+1) = (w(∆) + w(Γ)) − (w(∆) + w(Γ1) + w(Γ2)) = (w(∆) + w(R, ϕ1) +

w(R, ϕ2) + 13)− (w(∆) + w(R, ϕ1) + 6 + w(R, ϕ2) + 6) = 1 > 0. ⊓⊔

Lemma 3.13 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ D) and D is a disjunction of literals, be a

set of CTL clauses. Let Tt+1 = ∆∪{Γ′}, where Γ′ = A2(true⇒ ¬q∨D), be a set of CTL clauses

such that Tt+1 is obtained by an application of Trans(8) to the formula Γ in Tt. Then the weight

of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ′) > 0. According

to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R, D) + 1

= 5 + w(R, D) + 1

= w(R, D) + 6

and

w(Γ′) = w(L, true) + w(R,¬q ∨D) + 1

= 1 + w(R,¬q) + w(R, D) + 1 + 1

= 1 + w(R, q) + w(R, D) + 1 + 1

= 1 + 1 + w(R, D) + 1 + 1

= w(R, D) + 4

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ′) = 2 > 0. ⊓⊔

Lemma 3.14 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ E〈ind〉#ϕ), be a set of CTL clauses. Let

Tt+1 = ∆ ∪ {Γ1,Γ2}, where Γ1 = A2(q ⇒ E〈ind〉#p) and Γ2 = A2(p ⇒ ϕ), be a set of CTL

clauses such that Tt+1 is obtained by an application of Trans(10) to the formula Γ in Tt. Then the

weight of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆) +w(Γ)−w(∆)−w(Γ1)−w(Γ2) > 0.

50 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,E〈ind〉#ϕ) + 1

= 5 + w(R, ϕ) + 9 + 1

= w(R, ϕ) + 15

and

w(Γ1) = w(L, q) + w(R,E〈ind〉#p) + 1

= 5 + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1

= 8

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ1)− w(Γ2) = 1 > 0. ⊓⊔

Lemma 3.15 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ A2ϕ), be a set of CTL clauses. Let

Tt+1 = ∆ ∪ {Γ1,Γ2,Γ3}, where Γ1 = A2(q ⇒ p), Γ2 = A2(p ⇒ ϕ) and Γ3 = A2(p ⇒ A#p), be

a set of CTL clauses such that Tt+1 is obtained by an application of Trans(17) to the formula Γ in

Tt. Then the weight of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−w(∆)−w(Γ1)−w(Γ2)−w(Γ3) >

0. According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,A2ϕ) + 1

= 5 + w(R, ϕ) + 16 + 1

= w(R, ϕ) + 22

and

w(Γ1) = w(L, q) + w(R, p) + 1

= 5 + 1 + 1

= 7

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 51

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

and

w(Γ3) = w(L, p) + w(R,A#p) + 1

= 5 + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1

= 8

Therefore, w(Tt)− w(Tt+1) = w(∆) + w(Γ) − w(∆) − w(Γ1)− w(Γ2)− w(Γ3) = 1 > 0. ⊓⊔

Lemma 3.16 Let Tt = ∆ ∪ {Γ}, where Γ = A2(q ⇒ A(ϕU l)), be a set of CTL clauses. Let

Tt+1 = ∆∪{Γ1,Γ2,Γ3,Γ4}, where Γ1 = A2(q ⇒ l∨p), Γ2 = A2(p⇒ ϕ) Γ3 = A2(p⇒ A#(l∨p))

and Γ4 = A2(q ⇒ A3l), be a set of CTL clauses such that Tt+1 is obtained by an application of

Trans(19) to the formula Γ in Tt. Then the weight of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt) − w(Tt+1) > 0, i.e. w(∆) + w(Γ) − w(∆) − w(Γ1) − w(Γ2) −

w(Γ3)− w(Γ4) > 0. According to the definition of the weight function for CTL clauses, we have

w(Γ) = w(L, q) + w(R,A(ϕU l)) + 1

= 5 + w(R, ϕ) + w(R, l) + 38 + 1

= 5 + w(R, ϕ) + 1 + 38 + 1

= w(R, ϕ) + 45

and

w(Γ1) = w(L, q) + w(R, l ∨ p) + 1

= 5 + w(R, l) + w(R, p) + 1 + 1

= 5 + 1 + 1 + 1 + 1

= 9

and

w(Γ2) = w(L, p) + w(R, ϕ) + 1

= 5 + w(R, ϕ) + 1

= w(R, ϕ) + 6

52 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

and

w(Γ3) = w(L, p) + w(R,A#(l ∨ p)) + 1

= 5 + w(R, l ∨ p) + 1 + 1

= 5 + w(R, l) + w(R, p) + 1 + 1 + 1

= 5 + 1 + 1 + 1 + 1 + 1

= 10

and

w(Γ4) = w(L, q) + w(R,A3l) + 1

= 5 + w(R, l) + 1 + 1

= 5 + 1 + 1 + 1

= 8

Therefore, w(Tt)−w(Tt+1) = w(∆)+w(Γ)−w(∆)−w(Γ1)−w(Γ2)−w(Γ3)−w(Γ4) = 12 > 0. ⊓⊔

Theorem 3.2 Let Tt+1 be the set of CTL clauses obtained by an application of a transformation

rule to a clause Γ in the set of CTL clauses Tt. Then the weight of Tt is strictly greater than the

weight of Tt+1.

Proof. To show this theorem holds, we only need to prove that w(Tt)−w(Tt+1) > 0 for each trans-

formation rule. For the transformation rules Trans(1), Trans(6), Trans(8), Trans(10), Trans(17),

and Trans(19) we have already done so in Lemma 3.11, 3.12, 3.13, 3.14, 3.15, and 3.16, respectively.

For the remaining transformation rules the result can be shown analogously. Below we only list the

result of w(Tt)− w(Tt+1) for each rule.

Rule w(Tt)− w(Tt+1) Rule w(Tt)− w(Tt+1) Rule w(Tt)− w(Tt+1)

(1) 1 or 9 (2) 1 or 9 (3) 1

(4) 1 or 9 (5) 1 or 9 (6) 1

(7) 1 (8) 2 (9) 1

(10) 1 (11) 1 (12) 1

(13) 1 (14) 1 (15) 1

(16) 1 (17) 1 (18) 1

(19) 12 (20) 12 (21) 20

(22) 20
⊓⊔

Lemma 3.17 Let T be a set of CTL clauses. If T contains a clause Γ which is not in SNFg
CTL,

then there exists a transformation rule, which can be applied to Γ in T .

Proof. According to the syntax of CTL formulae and SNFg
CTL formulae, the possible forms of for-

mulae occurring on the right-hand side of a CTL clause are the following: true, false, p, ¬ϕ,

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 53

(ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ), A2ϕ, A3ϕ, A#ϕ, A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ),

E(ϕW ψ), E〈ind〉2ϕ, E〈ind〉3ϕ, E〈ind〉#ϕ, E〈ind〉(ϕU ψ), and E〈ind〉(ϕW ψ), where ind is an ar-

bitrary index in Ind, p is a proposition and ϕ and ψ are CTL formulae. As we apply the functions

simp and nnf at the beginning of the transformation, CTL formulae of the form true, false,¬ϕ

(for a formula ϕ which is not a proposition), and ϕ⇒ ψ can not occur on the right-hand side of a

CTL clause in T . For the remaining possible forms that Γ might take, the table below shows that

if Γ is not a SNFg
CTL clause, then there exists a transformation rule which can be applied to Γ.

Form Trans Form Trans Form Trans

q ⇒ p (8) q ⇒ A2ϕ (17) q ⇒ E2ϕ (3)

q ⇒ ¬p (8) q ⇒ A3ϕ (11) q ⇒ E3ϕ (2)

q ⇒ ϕ ∧ ψ (6) q ⇒ A#ϕ (9) q ⇒ E#ϕ (1)

q ⇒ ϕ ∨ ψ (7) or (8) q ⇒ A(ϕU ψ) (13) or (19) q ⇒ E(ϕU ψ) (4)

q ⇒ A(ϕW ψ) (14) or (21) q ⇒ E(ϕW ψ) (5)

q ⇒ E〈ind〉2ϕ (18)

q ⇒ E〈ind〉3ϕ (12)

q ⇒ E〈ind〉#ϕ (10)

q ⇒ E〈ind〉(ϕU ψ) (15) or (20)

q ⇒ E〈ind〉(ϕW ψ) (16) or (22)
⊓⊔

Theorem 3.3 Let T0, T1, . . . be a sequence of sets of CTL clauses such that T0 = init(ϕ) for some

CTL formula ϕ and Tt+1 is obtained from Tt by applying a transformation rule to a clause in

Tt. Then the sequence T0, T1, . . . terminates, i.e. there exists an index n, n ≥ 0, such that no

transformation rule can be applied to any clause in Tn. Furthermore, all clauses in Tn are in

SNFg
CTL.

Proof. Follows from Lemma 3.17 and Theorem 3.2. ⊓⊔

Using the following notation of the size of a CTL formula we are able to characterise the

computational complexity of the normal form transformation.

Definition 3.12 Size of a CTL formula

Let ϕ and ψ be arbitrary CTL formulae; and p be an arbitrary atomic proposition in PPL. We

inductively define the size sz of an arbitrary CTL formula as follows:

1. sz (true) = sz (false) = sz (p) = 1;

2. sz (¬ϕ) = sz (A2ϕ) = sz (A3ϕ) = sz (A#ϕ) = sz (E2ϕ) = sz (E3ϕ) = sz (E#ϕ) = sz (ϕ) + 1;

and

3. sz (ϕ ∧ ψ) = sz (ϕ ∨ ψ) = sz (ϕ ⇒ ψ) = sz (A(ϕU ψ)) = sz (A(ϕW ψ)) = sz (E(ϕU ψ)) =

sz (E(ϕW ψ)) = sz (ϕ) + sz (ψ) + 1.

54 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Theorem 3.4 Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL clauses obtained

from T0 = init(ϕ) by n applications of our transformation rules. Then n is linearly bounded in the

size of ϕ and the set Tn can be computed in polynomial time in the size of ϕ.

Proof. Let ϕ be of size m and we assume that ϕ is already in negation normal form. By the

definition of the weight function, we know that the weight of T0 = init(ϕ) is w(A2(start ⇒

p)) + w(A2(p ⇒ ψ)), where ψ = simp(nnf (ϕ)). It is not hard to see that the function simp only

reduces the size of ϕ. Thus, the size of ψ is bounded by the size of ϕ. Furthermore,

w(A2(start⇒ p)) = w(L, start) + w(R, p) + 1

= 1 + 1 + 1

= 3

and

w(A2(p ⇒ ψ)) = w(L, p) + w(R, ψ) + 1

= 5 + w(R, ψ) + 1

= w(R, ψ) + 6.

Therefore, w(T0) = w(R, ψ) + 9. As the maximal weight for a constant, proposition, boolean

operator or temporal operator is 47, then w(R, ψ) is bounded by 47m+ 9. Since, by Theorem 3.2,

each application of a transformation rule to Tt results a Tt+1 with w(Tt+1) ≤ w(Tt)− 1, Tn can be

computed in less than 47m+ 9 applications of the transformation rules.

Regarding the complexity of each application, we assume CTL clauses are stored in a tree data

structure. For example, the tree in Figure 3.4 represents the CTL clause p ⇒ E#(q1 ∨A2q2).

Then according to our transformation rules, by reusing the subtrees representing subformulae as

appropriate, generating the results of clauses from the clause which the rule applies to can be

accomplished in constant time in the size of ϕ. The pattern matching procedure determining that

for a given CTL clause not in SNFg
CTL which rule to apply, requires linear time in the size of ϕ in

the worst case.

Therefore, the set Tn can be computed in polynomial time in the size of ϕ. ⊓⊔

Theorem 3.5 Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL clauses obtained

from T0 = init(ϕ) by a linearly bounded applications of our transformation rules in the size of ϕ.

Then ϕ is satisfiable iff Tn is satisfiable.

Proof. Follows from Theorem 3.3, Lemma 3.2, Theorem 3.1, and Theorem 3.4. ⊓⊔

3.5.2 Soundness and completeness

Theorem 3.6 (Soundness of R
≻,S
CTL) Let T be a set of SNFg

CTL clauses. If there is a refutation

of T by R
≻,S
CTL, then T is unsatisfiable.

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 55

p

q2

⇒

q1

∨

A2

E#

Figure 3.4: p⇒ E#(q1 ∨A2q2) stored in a tree structure

Proof. Let T0, T1, . . . , Tn be a derivation from a set of SNFg
CTL clause T0 = T by the calculus R

≻,S
CTL.

We will show by induction over the length of the derivation that if T0 is satisfiable, then so is Tn.

For T0 = T , the claim obviously holds. Now, consider the step of the derivation in which we

derive Tt+1 from Tt for some t ≥ 0. Assume Tt is satisfiable and M = 〈S,R,L, [], s0〉 is a model

structure satisfying Tt.

First, we show that SRES1 is sound. Assume A2(P ⇒ A#(C ∨ l)) and A2(Q ⇒ A#(D ∨

¬l)) are in Tt. Let Tt+1 be obtained by an application of SRES1 to A2(P ⇒ A#(C ∨ l)) and

A2(Q ⇒ A#(D ∨ ¬l)), that is, Tt+1 = Tt ∪ {A2(P ∧ Q ⇒ A#(C ∨ D))}. We show that M

also satisfies Tt+1. Consider an arbitrary state s ∈ S. If M, s 6|= P or M, s 6|= Q, then obviously

M, s |= P ∧Q⇒ A#(C ∨D). Assume that M, s |= P and M, s |= Q. From A2(P ⇒ A#(C ∨ l)),

A2(Q ⇒ A#(D ∨ ¬l)) and the semantics of A2, we obtain that M, s |= P ⇒ A#(C ∨ l) and

M, s |= Q⇒ A#(D∨¬l). From the semantics of⇒, we obtain that M, s |= A#(C ∨ l) and M, s |=

A#(D∨¬l). From the semantics of A#, we obtain that for all successors s′ of state s, M, s′ |= C∨ l

and M, s′ |= D ∨¬l. As l and ¬l cannot both be true at state s′, we conclude that M, s′ |= C ∨D.

From the semantics of A#, we have M, s |= A#(C ∨D). Therefore, M, s |= P ∧Q⇒ A#(C ∨D).

As s is arbitrary, from the semantics of A2, we have M, s0 |= A2(P ∧Q⇒ A#(C ∨D)).

We show that SRES2 is sound. Assume A2(P ⇒ E〈ind〉#(C ∨ l)) and A2(Q⇒ A#(D ∨ ¬l))

are in Tt. Let Tt+1 be obtained by an application of SRES2 to A2(P ⇒ E〈ind〉#(C ∨ l)) and

A2(Q ⇒ A#(D ∨ ¬l)), that is, Tt+1 = Tt ∪ {A2(P ∧ Q ⇒ E〈ind〉#(C ∨D))}. We show that

M also satisfies Tt+1. Consider an arbitrary state s ∈ S. If M, s 6|= P or M, s 6|= Q, then

obviously M, s |= P ∧ Q ⇒ E〈ind〉#(C ∨D). Assume that M, s |= P and M, s |= Q. From

A2(P ⇒ E〈ind〉#(C ∨ l)), A2(Q ⇒ A#(D ∨ ¬l)) and the semantics of A2, we obtain that

M, s |= P ⇒ E〈ind〉#(C ∨ l) andM, s |= Q⇒ A#(D∨¬l). From the semantics of⇒, we obtain that

M, s |= E〈ind〉#(C ∨ l) and M, s |= A#(D ∨¬l). From the semantics of A#, we obtain that for all

successors s′ of state s, M, s′ |= D∨¬l. From the semantics of E〈ind〉#, we have that for the successor

s′′ of s such that s′′ is on the path χ
〈ind〉
s , M, s′′ |= C ∨ l. As s′′ is a successor of s, M, s′′ |= D∨¬l.

56 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

As l and ¬l cannot both be true at state s′′, we conclude that M, s′′ |= C ∨D. From the semantics

of E〈ind〉#, we have M, s |= E〈ind〉#(C ∨D). Therefore, M, s |= P ∧Q⇒ E〈ind〉#(C ∨D). As s is

arbitrary, from the semantics of A2, we have M, s0 |= A2(P ∧Q⇒ E〈ind〉#(C ∨D)).

We show SRES5 is sound. Assume A2(true⇒ C ∨ l) and A2(start⇒ D ∨ ¬l) are in Tt. Let

Tt+1 be obtained by an application of SRES5 to A2(true⇒ C ∨ l) and A2(start⇒ D∨¬l), that

is, Tt+1 = Tt ∪ {A2(start⇒ C ∨D)}. We show that M also satisfies Tt+1. Consider an arbitrary

state s ∈ S. If s is not s0, then obviously M, s |= start⇒ C ∨D, because start is false at the state

s. Assume the state s is s0. From M, s |= A2(true ⇒ C ∨ l) and M, s |= A2(start ⇒ D ∨ ¬l)

and the semantics of A2, we obtain M, s |= true ⇒ C ∨ l and M, s |= start⇒ D ∨ ¬l. From the

semantics of true, ⇒ and start, we obtain M, s |= C ∨ l and M, s |= D ∨ ¬l. As l and ¬l can not

both be true at the state s, we conclude M, s |= C ∨D. As s is s0, then from the semantics of start

we have M, s |= start ⇒ C ∨D. Since start ⇒ C ∨ D holds in s0 and all other states, from the

semantics of A2, we conclude M, s |= A2(start⇒ C ∨D). Thus the model structure M satisfies

Tt+1, Tt+1 is satisfiable and SRES5 is sound.

Next we show SRES6 is sound. Assume A2(true ⇒ C ∨ l) and A2(Q ⇒ A#(D ∨ ¬l)) are

in Tt. Let Tt+1 be obtained by an application of SRES6 to them, that is, Tt+1 = Tt ∪ {A2(Q ⇒

A#(C ∨D))}. We show that M also satisfies Tt+1. Consider an arbitrary state s ∈ S. If M, s 6|= Q,

then M, s |= Q ⇒ A#(C ∨ D). If, on the other hand, M, s |= Q, then from M, s0 |= A2(Q ⇒

A#(D ∨ ¬l)) and the semantics of A2, we obtain M, s |= A#(D ∨ ¬l). Consider an arbitrary

successor state s′ ∈ S of s, we then have M, s′ |= D ∨ ¬l. By the assumption M, s0 |= A2(true⇒

C ∨ l) and from the semantics of A2, true,⇒, we also have M, s′ |= C ∨ l. As l and ¬l can not

both be true at the state s′, we conclude M, s′ |= C ∨D. As state s′ is an arbitrary successor state

of s, we obtain M, s |= A#(C ∨D). As M, s |= Q, we have M, s |= Q⇒ A#(C ∨D). As state s is

an arbitrary state, from the semantics of A2, we obtain M, s0 |= A2(Q⇒ A#(C ∨D)).

For the rule SRES3, the proof is analogous to that for SRES2; for the rules SRES4 and SRES8,

the proofs are analogous to that for SRES5; and for the rule SRES7, the proof is analogous to that

for SRES6.

Regarding RW1, from the semantics of A# and false we obtain that the formula A2(Q ⇒

A#false) is true iff A2(Q⇒ false) is true. This formula is propositionally equivalent to A2(¬Q)

which in turn, by the semantics of ⇒ and true, is equivalent to A2(true ⇒ ¬Q). The proof for

RW2 is analogous.

Next, we show ERES1 is sound. Assume that A2(Q ⇒ A3¬l) is in Tt and there exists a set

ΛE2 of SNFg
CTL clauses in Tt together implying A2(P † ⇒ E#E2l), where P † is a disjunction of

conjunctions of literals (defined in Section 3.4.2). Therefore, M satisfies A2(P † ⇒ E#E2l). We

show thatM also satisfies A2(Q⇒ A(¬(P †)W ¬l)). Consider an arbitrary state si ∈ S. IfM, si 6|=

Q, then obviously M, si |= Q ⇒ A(¬(P †)W¬l). Assume M, si |= Q. From A2(Q ⇒ A3¬l) and

the semantics of A2 and ⇒, we obtain that M, si |= A3¬l. If M, si |= ¬l, then by the semantics

of AW , M, si |= A(¬(P †)W ¬l). From the semantics of ⇒, M, si |= Q ⇒ A(¬(P †)W ¬l). If, on

the other hand, M, si |= l, then from the semantics of A3, we know that for every path χsi
, there

exists sj ∈ χsi
, j > i such that M, sj |= ¬l and for every k, i ≤ k < j,M, sk |= l.

For an arbitrary state s ∈ S, if M, s |= A3¬l ∧ l then by the semantics of A# and A3,

M, s |= A#A3¬l. Therefore, for all the successors s′ of s, M, s′ |= A3¬l.

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 57

Due to the property above and M, si |= A3¬l∧l and M, sk |= l, by an inductive augment we can

conclude that for every k, i ≤ k < j,M, sk |= A3¬l. As we know, M, sk |= l. Therefore, M, sk |=

A3¬l ∧ l. From the semantics of A3, for all paths χsk
, there exists sn ∈ χsk

, n > k,M, sn |= ¬l.

Next, we use a proof by contradiction to establish that for all k, i ≤ k < j,M, sk |= ¬(P †).

Assume that P † holds at sk. From the semantics of A2 and ⇒, we have M, sk |= E#E2l.

From the semantics of E# and E2, we know that there exists a path χsk
such that for all states

sm ∈ χsk
,m > k,M, sm |= l. This is a contradiction. Therefore, ¬(P †) must hold at all the states

sk. From the semantics of AU , we obtain that M, si |= A(¬(P †)U ¬l). From the semantics of

AW , we obtain that M, si |= A(¬(P †)W ¬l). Thus, M, si |= Q ⇒ A(¬(P †)W ¬l). As si is

arbitrary, from the semantics of A2, M, s0 |= A2(Q⇒ A(¬(P †)W ¬l)). The proof for ERES2 is

analogous. ⊓⊔

Our proof of the completeness of R
≻,S
CTL makes use of (reduced) labelled behaviour graphs, which

will be defined later in this section. These graphs can be seen as finite representations of the set of

all models of a set of SNFg
CTL clauses.

First, we briefly discuss how our proof proceeds. We introduce the idea of augmentation, which

was originally developed for a resolution calculus for PLTL [38]. Next, we create a finite labelled

directed graph, called a labelled behaviour graph, for an augmented set of SNFg
CTL clauses. To

create a CTL model structure for a set T of SNFg
CTL clauses from a labelled behaviour graph

for T , some nodes and some subgraphs of a labelled behaviour graph for T cannot be involved.

For instance, a node without any successor nodes in a labelled behaviour graph cannot be used

to construct a CTL model structure, as all paths in a CTL model structure are infinite. To

remove such nodes and subgraphs from a labelled behaviour graph, we define a set of deletion

rules. We call a labelled behaviour graph H a reduced labelled behaviour graph if it is obtained

by exhaustively applying deletion rules to H . We show that, if an augmented set T of SNFg
CTL

clauses is unsatisfiable, then its reduced labelled behaviour graph is empty. We also prove that

each application of a deletion rule corresponds to a derivation from T by R
≻,S
CTL. Therefore, if T is

unsatisfiable, its reduced labelled behaviour graph Hred is empty and the sequence of applications

of the deletion rules, which reduce the labelled behaviour graph for T to an empty Hred, can be

used to construct a refutation in R
≻,S
CTL. In the following, we show the detailed completeness proof.

Let T be a set of SNFg
CTL clauses obtained by applying the normal form transformation to a

given CTL formula. Recall from Section 3.4.2 an application of ERES1 or ERES2 to the set T

may introduce new propositions, for example wA

¬l and wind
¬l , into T . Our completeness proof makes

use of the labelled behaviour graph, whose construction is closely related to the set Prop(T) of

propositions occurring in T . For our completeness proof, it is very inconvenient if Prop(T) may

change during a derivation. Therefore, we introduce augmentation, which adds certain clauses

associated with these new propositions into T right from the beginning, i.e. before any resolution

rule is applied to T . In this way, we can be sure that no new propositions appear during the

application of resolution rules. That is Prop(T) stays the same, if T is augmented. Moreover, we

also show that augmentation is correct.

We adapt the augmentation procedure used in [38] for PLTL to CTL to establish a relation be-

tween the new atomic propositions introduced by applications of ERES1 or ERES2 and eventualities

58 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

associated with them.

Definition 3.13 Augmentation

Given a set of SNFg
CTL clause T , we construct an augmented set aug(T) as follows: the augmented

set aug(T) is the smallest set containing T and satisfying the following conditions:

• For every A-sometime clause in T , Q⇒ A3¬l, aug(T) contains the clauses

true ⇒ ¬Q ∨ ¬l ∨wA

¬l

wA

¬l ⇒ A#(¬l ∨ wA

¬l)

where wA

¬l is the proposition uniquely associated with A3¬l (i.e. wA

¬l is the same proposition

we used for ERES1).

• For every E-sometime clause in T , Q⇒ E〈ind〉3¬l, aug(T) contains the clauses

true ⇒ ¬Q ∨ ¬l ∨wind
¬l ,

wind
¬l ⇒ E〈ind〉#(¬l ∨ wind

¬l)

where wind
¬l is the proposition uniquely associated with E〈ind〉3l (i.e. wind

¬l is the same propo-

sition we used for ERES2).

It must be noted that there is a minor mistake regarding augmentation in [15]. In [15], the new

proposition for a sometime clause is uniquely associated with the tuple of the path quantifier A or

E, the temporal operator 3 and the literal, but not including the index if the clause has one. For

example, given two E-sometime clauses p ⇒ E〈1〉3l and q ⇒ E〈2〉3l, according to [15], the same

proposition wl is associated with both. However, this may lead to the augmentation of a satisfiable

set of SNFg
CTL clauses being unsatisfiable, as the following example shows.

Example 3.10

Let T be the following set of SNFg
CTL clauses (which can be satisfied in the CTL model structure

in Figure 3.5).

1. q ⇒ E〈1〉3¬l

2. r ⇒ E〈2〉3¬l

3. start ⇒ r

4. start ⇒ l

5. start ⇒ p

6. p ⇒ E〈1〉#p

7. p ⇒ E〈1〉#l

Following [15], its augmentation aug(T) consists of T itself and the following clauses.

8. true ⇒ ¬q ∨ ¬l ∨ w¬l [1,AUG]

9. w¬l ⇒ E〈1〉#(¬l ∨ w¬l) [1,AUG]

10. true ⇒ ¬r ∨ ¬l ∨ w¬l [2,AUG]

11. w¬l ⇒ E〈2〉#(¬l ∨ w¬l) [2,AUG]

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 59

where [c,AUG] indicates the application of augmentation to clause c. Then we are able to derive

the following clauses.

12. w¬l ⇒ E〈1〉#(¬l ∨ ¬p) [1, 6, 7,ERES2]

13. true ⇒ ¬q ∨ ¬l ∨ ¬p [1, 6, 7,ERES2]

14. p ∧ w¬l ⇒ E〈1〉#¬l [6, 12, SRES3]

15. p ∧ w¬l ⇒ E〈1〉#false [7, 14, SRES3]

16. true ⇒ ¬p ∨ ¬w¬l [15,RW2]

17. start ⇒ ¬l ∨ w¬l [3, 10, SRES5]

18. start ⇒ w¬l [4, 17, SRES5]

19. start ⇒ ¬w¬l [5, 16, SRES5]

20. start ⇒ false [18, 19, SRES4]

Thus, we are able to derive a contradiction from this augmentation of T . As the model structure

in Figure 3.5 satisfies the set T of SNFg
CTL clauses, the set T is satisfiable and aug(T) should also

be satisfiable. Therefore, the definition of augmentation in [15] is incorrect.

In contrast, according to our definition of aug(T), the augmentation of T consists of T plus the

following clauses.

8. true ⇒ ¬q ∨ ¬l ∨ w1
¬l [1,AUG]

9. w1
¬l ⇒ E〈1〉#(¬l ∨ w1

¬l) [1,AUG]

10. true ⇒ ¬r ∨ ¬l ∨ w2
¬l [2,AUG]

11. w2
¬l ⇒ E〈2〉#(¬l ∨ w2

¬l) [2,AUG]

With the ordering r ≻ p ≻ l ≻ w1
¬l ≻ w

2
¬l and the selection function S mapping every propositional

disjunction C to an empty set, we are then able to derive the clauses below.

12. w1
¬l ⇒ E〈1〉#(¬l ∨ ¬p) [1, 6, 7,ERES2]

13. true ⇒ ¬q ∨ ¬l ∨ ¬p [1, 6, 7,ERES2]

14. p ∧ w1
¬l ⇒ E〈1〉#¬l [6, 12, SRES3]

15. p ∧ w1
¬l ⇒ E〈1〉#false [7, 14, SRES3]

16. true ⇒ ¬p ∨ ¬w1
¬l [15,RW2]

17. start ⇒ ¬l ∨ w2
¬l [3, 10, SRES5]

18. start ⇒ w2
¬l [4, 17, SRES5]

19. start ⇒ ¬w1
¬l [5, 16, SRES5]

As we can see, w2
¬l in clause 18 and w1

¬l in clause 19 are different atomic propositions, so we are

not able to derive a contradiction from clauses 18 and 19.

Next, we formally prove that our augmentation preserves satisfiability.

Lemma 3.18 Let T be a set of SNFg
CTL clauses and M be a model structure satisfying T . If T ′ is

a subset of T , then M also satisfies T ′.

Proof. Straightforward. ⊓⊔

Lemma 3.19 Let T be a set of SNFg
CTL clauses. The augmented set aug(T) is satisfiable iff T is

satisfiable.

60 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

1,2
1,2

1 2

r, l, p

l, p

Figure 3.5: A model for T

Proof. As T ⊂ aug(T), by Lemma 3.18 if aug(T) is satisfiable and a model structure M satisfies

aug(T), then M also satisfies T and, thus, T is satisfiable.

Conversely, if T holds in a model structure M1 at the state s0, then M1 can be extended to

another model structure M2 by giving wA

¬l the same truth value as l ∧A3¬l and wind
¬l the same

truth value as l ∧ E〈ind〉3¬l in each state in M2 for each eventuality ¬l in T . We show that M2

satisfies aug(T) at the state s0 of M2.

Assume that Q⇒ E〈ind〉3¬l is in T . We show that M2 satisfies A2(true⇒ ¬Q∨¬l∨wind
¬l) and

A2(wind
¬l ⇒ E〈ind〉#(¬l ∨ wind

¬l)) i.e. the two clauses added by augmentation for Q ⇒ E〈ind〉3¬l.

Let s be an arbitrary state in M2.

1. We know that M1, s0 |= A2(Q ⇒ E〈ind〉3¬l). By the definition of M2 and Lemma 3.1,

we know that M2, s0 |= A2(Q ⇒ E〈ind〉3¬l). From the semantics of A2, M2, s |= Q ⇒

E〈ind〉3¬l. By propositional reasoning, M2, s |= (Q ∧ l)⇒ (l ∧E〈ind〉3¬l). By the definition

of M2, M2, s |= (l ∧ E〈ind〉3¬l) ⇒ wind
¬l . Therefore, by the semantics of ⇒, we obtain that

M2, s |= (Q∧ l)⇒ wind
¬l . Thus, M2, s |= true⇒ ¬Q∨¬l ∨wind

¬l . Since s is an arbitrary state

in M2, from the semantics of A2, we obtain that M2, s0 |= A2(true⇒ ¬Q ∨ ¬l ∨ wind
¬l).

2. From the definition of M2, we know M2, s |= wind
¬l ⇒ (l ∧E〈ind〉3¬l).

• If M2, s 6|= wind
¬l , then M2, s |= wind

¬l ⇒ E〈ind〉#(¬l ∨ wind
¬l).

• If, on the other hand, M2, s |= wind
¬l , then M2, s |= l ∧ E〈ind〉3¬l. Thus, from the

semantics of E〈ind〉3, for the state s′ with (s, s′) ∈ [ind], either M2, s
′ |= ¬l or M2, s

′ |=

l ∧ E〈ind〉3¬l. By the definition of M2, we know that M2, s
′ |= (l ∧ E〈ind〉3¬l) ⇒

wind
¬l . Thus, either M2, s

′ |= ¬l or M2, s
′ |= wind

¬l . From the semantics of E〈ind〉# and

∨, M2, s |= E〈ind〉#(¬l ∨wind
¬l). As M2, s |= wind

¬l , we obtain that M2, s |= wind
¬l ⇒

E〈ind〉#(¬l ∨ wind
¬l).

As s is arbitrary, from the semantics of A2, M2, s0 |= A2(wind
¬l ⇒ E〈ind〉#(¬l ∨wind

¬l)).

The proof for Q⇒ A3¬l in T is analogous. Therefore, aug(T) is satisfied in M2 at state s0. ⊓⊔

We now introduce the notion of a labelled behaviour graph. Given a set Ind of indices an Ind-

labelled graph H is an ordered pair H = (N,E), where N is a set of nodes and E is a set of

directed edges in H of the form (n, ind, n′), where n, n′ ∈ N and ind ∈ Ind . If there exists an edge

(n, ind, n′) ∈ E for some ind ∈ Ind , then n′ is a successor of n and n is a predecessor of n′. If the

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 61

label ind is also important for the relation of n and n′ in the context, we also say that n′ is an

ind-successor of n and n is an ind-predecessor of n′. When the label on the edge is not important,

we use (n, n′) to denote an edge, which means the label can be any index in Ind .

Definition 3.14 ind-reachable node in a graph

Given a set Ind of indices, an ind-labelled graph (N,E), and a node n ∈ N , a node n′ ∈ N is ind-

reachable from n iff there exists an edge (n, ind, n′) ∈ E or there exists an edge (n′′, ind, n′) ∈ E

and n′′ is ind-reachable from n.

Definition 3.15 reachable node in a graph

Given a graph (N,E) and a node n ∈ N , a node n′ ∈ N is reachable from n iff there exists an edge

(n, n′) ∈ E or there exists an edge (n′′, n′) ∈ E and n′′ is reachable from n.

Definition 3.16 labelled behaviour graph

Let T be an augmented set of SNFg
CTL clauses and Ind(T) be the set of indices occurring in T . If

Ind(T) is empty, then let Ind(T) = {ind}, where ind is an arbitrary index in Ind. Given T and

Ind(T), we construct a finite directed graph G = (N,E) for T as follows.

The set of nodes N of G consists of all ordered tuples n = (V,EA, EE), where

1. V is a valuation of the atomic propositions occurring in T ;

2. EA is a subset of {l | Q⇒ A3l ∈ T }; and

3. EE is a subset of {l〈ind〉 | Q⇒ E〈ind〉3l ∈ T }.

Informally EA and EE contain eventualities that need to be satisfied either in the current node or

some node reachable from the current node.

To define the set of edges E of G we use the following auxiliary definitions. Let n = (V,EA, EE)

be a node in N . Let RA(n, T) = {D | Q ⇒ A#D ∈ T, and V |= Q}. Note if V does not

satisfy the left-hand side of any A-step clause (i.e. RA(n, T) = ∅), then there are no constraints

from A-step clauses on successor node of the node n and any valuation satisfies RA(n, T). Let

Rind(n, T) = {D | Q⇒ E〈ind〉#D ∈ T and V |= Q}. Let Rg(T) = {D | true⇒ D ∈ T }.

Let functions EvA(V, T) and EvE(V, T) be defined as

EvA(V, T) = {l | Q⇒ A3l ∈ T and V |= Q}

and

EvE(V, T) = {l〈ind〉 | Q⇒ E〈ind〉3l ∈ T and V |= Q},

respectively. Let functions UnsatA(EA, V) and Unsatind(EE , V) be defined as

UnsatA(EA, V) = {l | l ∈ EA and V 6|= l}

and

Unsatind(EE , V) = {l〈ind〉 | l〈ind〉 ∈ EE and V 6|= l},

respectively. For a node n = (V,EA, EE) in G, if l ∈ EA(lind ∈ EE) and V |= l, then we say that

l (lind) is satisfied in node n.

62 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Then E contains an edge labelled by ind from a node (V,EA, EE) to a node (V ′, E′
A, E

′
E)

iff V ′ satisfies the set RA(n, T) ∪ Rind(n, T) ∪ Rg(T), E′
A = UnsatA(EA, V) ∪ EvA(V ′, T) and

E′
E = Unsatind(EE , V) ∪ EvE(V ′, T). That is, there is an edge labelled with ind from (V,EA, EE)

to (V ′, E′
A, E

′
E) iff (i) V ′ satisfies all constraints imposed by A-step clauses, E-step clauses with

the index ind, and global clauses whose left-hand sides are satisfied by V , (ii) E′
A consists of A-

eventualities not satisfied by V plus additional A-eventualities triggered by V ′, and (iii) E′
E consists

of E-eventualities with the index ind not satisfied by V plus additional E-eventualities with the

index ind triggered by V ′.

Let R0(T) = {D | start ⇒ D ∈ T }. Then the node (V,EA, EE), where V satisfies the set

R0(T) ∪ Rg(T), EA = EvA(V, T) and EE = EvE(V, T), is an initial node of G. That is, initial

nodes are those nodes such that (i) V satisfies all constraints imposed by initial clauses and global,

(ii) EA consists of A-eventualities triggered by V , and (iii) EE consists of E-eventualities with the

index ind triggered by V .

The labelled behaviour graph H = (N ′, E′) for an augmented set of SNFg
CTL clauses T is the

subgraph of G such that the set N ′ ⊆ N of nodes and the set E′ ⊆ E of edges are reachable from

the initial nodes of G.

We now provide an example of a labelled behaviour graph obtained from an augmented set of

SNFg
CTL clauses.

Example 3.11

For the augmented set of SNFg
CTL clauses below, the labelled behaviour graph is shown in Figure 3.6.

1. start ⇒ ¬q

2. start ⇒ p

3. true ⇒ p ∨ q

4. p ⇒ A#p

5. q ⇒ E〈1〉#¬p

6. p ⇒ E〈2〉3q

7. true ⇒ ¬p ∨ q ∨ w2
q (added by augmentation)

8. w2
q ⇒ E〈2〉#(q ∨w2

q) (added by augmentation)

Definition 3.17 Path from a node n to a node n′ through a graph

A path from a node n1 to a node nk in a graph is a sequence of nodes n1, n2, . . . , nk such that

(n1, n2), (n2, n3), . . . , (nk−1, nk) are edges of the graph.

Definition 3.18 Shortest path from a node n to a node n′ through a graph

A shortest path from a node n to a node n′ in a graph is a path from the node n to the node n′

with the least number of edges amongst all the paths from the node n to the node n′.

Definition 3.19 Distance

Given a graph (N,E), if a node n′ ∈ N is reachable from another node n ∈ N , the distance from

n to n′ is the number of edges in a shortest path from n to n′.

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 63

Definition 3.20 ind-distance

Given a graph (N,E), if a node n′ ∈ N is ind-reachable from a node n ∈ N , the ind-distance from

n to n′ is the number of edges in a shortest path such that every edge in it is labelled by ind.

Lemma 3.20 Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the labelled

behaviour graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N to a node

n′ = (V ′, E′
A, E

′
E) ∈ N such that l ∈ E′

A then either (i) there exists a clause Q ⇒ A3l ∈ T such

that V ′ |= Q or (ii) l ∈ EA and V 6|= l.

Proof. From the construction of the labelled behaviour graph, we know E′
A = UnsatA(EA, V) ∪

EvA(V ′, T). Therefore, if l ∈ E′
A, then l is either from UnsatA(EA, V) or from EvA(V ′, T). For the

first case, l must be in EA and V 6|= l. For the latter, there exists a clause Q⇒ A3l ∈ T such that

V ′ |= Q. ⊓⊔

Lemma 3.21 Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the labelled

behaviour graph for T . Then, for every node n = (V,EA, EE) in H, if l ∈ EA and V 6|= l then

V |= wA

l .

Proof. The proof proceeds by induction over the nodes of a path (n0, n1, . . .) from an initial node

n0 = (V 0, E0
A, E

0
E) to the node n = (V,EA, EE).

In the base case, n is an initial node. If l ∈ E0
A, by the construction of initial nodes, there must

be an A-sometime clause Q⇒ A3l ∈ T and V 0 |= Q. By augmentation, true⇒ ¬Q ∨ l ∨ wA

l . If

V 0 6|= l, we obtain that V 0 |= wA

l .

Otherwise we assume that the lemma holds from node n0 to ni = (V i, Ei
A, E

i
E), i > 0, and we

prove that it holds for node ni+1 = (V i+1, Ei+1
A , Ei+1

E). Based on the assumption of the lemma,

V i+1 6|= l and l ∈ Ei+1
A . By Lemma 3.20, since l ∈ Ei+1

A , either

(1) there exists a clause Q⇒ A3l ∈ T such that V i+1 |= Q or

(2) l ∈ Ei
A and V i 6|= l.

In case (1), by augmentation, true ⇒ ¬Q ∨ l ∨ wA

l ∈ T and since V i+1 6|= l, we obtain that

V i+1 |= wA

l . In case (2) by the induction hypothesis we have V i |= wA

l . By augmentation we have

Key

Init
2

2

2

1,2

2

2

1,2
1,2

2

EEEA

V

q〈2〉

p, q, w2
q

q〈2〉

p, q

p, w2
q

q〈2〉

Figure 3.6: A labelled behaviour graph

64 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

wA

l ⇒ A#(wA

l ∨ l) ∈ T . Thus by the construction of H , since V i+1 6|= l, we have V i+1 |= wA

l .

Thus, the lemma also holds for node ni+1. ⊓⊔

Lemma 3.22 Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the labelled

behaviour graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N to a node

n′ = (V ′, E′
A, E

′
E) ∈ N such that l〈ind〉 ∈ E

′
E then either (i) there exists a clause Q⇒ E3l〈ind〉 ∈ T

such that V ′ |= Q or (ii) l〈ind〉 ∈ EE and V 6|= l.

Proof. By the construction of the labelled behaviour graph, E′
E = Unsatind(EE , V) ∪ EvE(V ′, T).

Therefore, if l〈ind〉 ∈ E
′
E , then l〈ind〉 is either from Unsatind(EE , V) or from EvE(V ′, T). For the

first case, l〈ind〉 must be in EE and V 6|= l. For the latter, there exists a clause Q ⇒ E〈ind〉3l ∈ T

and V ′ |= Q. ⊓⊔

Lemma 3.23 Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the labelled

behaviour graph for T . Then for every node n = (V,EA, EE) in H, if l〈ind〉 ∈ EE and V 6|= l, then

V |= wind
l .

Proof. The proof proceeds analogously to the proof of Lemma 3.21 and uses the fact that T contains

the clause wind
l ⇒ E〈ind〉#(wind

l ∨ l). ⊓⊔

Lemma 3.24 Let T be an augmented set of SNFg
CTL clauses and T ′ be a set of SNFg

CTL clauses

obtained from T by adding any combination of initial, A-step, E-step or global clauses which only

involve propositions and indices occurring in T . Then the labelled behaviour graph H ′ = (N ′, E′)

for T ′ is a subgraph of the labelled behaviour graph H = (N,E) of T .

Proof. This is established by induction on the length of the shortest path from an initial node to a

node in H ′. For the base case, where the length of the path is zero, we show that any initial node

in H ′ is an initial node in H .

As T ′ has been constructed by adding a combination of initial, A-step , E-step and global clauses

to T , we have R0(T) ⊆ R0(T
′) and Rg(T) ⊆ Rg(T

′). Take any initial node n0 = (V 0, E0
A, E

0
E) in

H ′. By Definition 3.16, V 0 satisfies R0(T
′) ∪ Rg(T

′). As R0(T) ⊆ R0(T
′) and Rg(T) ⊆ Rg(T

′)

then V 0 must also satisfy R0(T) ∪Rg(T). As the set of A- and E-sometime clauses in T and T ′ is

the same, V 0 satisfies the left hand side of the same A- and E-sometime clauses and the sets E0
A

and E0
E will be the same in both graphs. Therefore, n0 is also an initial node in H .

Next we assume that every node ni = (V i, Ei
A, E

i
E), where the length of the shortest path in

H ′ from an initial node to ni is m, is in H . We show that every node ni+1 = (V i+1, Ei+1
A , Ei+1

E) in

H ′ with an incoming edge (ni, ind, ni+1) ∈ E′, ind ∈ Ind(T) is also in H .

V i+1 satisfies Rg(T
′) ∪RA(ni, T

′) ∪Rind(ni, T
′). Thus V i+1 also satisfies Rg(T) ∪RA(ni, T) ∪

Rind(ni, T), as Rg(T) ⊆ Rg(T
′), RA(ni, T) ⊆ RA(ni, T

′) and Rind(ni, T) ⊆ Rind(ni, T
′). Further-

more as T and T ′ contain the same A- or E-sometime clauses in T , Ei+1
A and Ei+1

E will be the

same in both graphs. Thus ni+1 is also present in H as is the edge (ni, ind, ni+1).

The proof that all the edges in H ′ are also in H is analogous to the proof above for nodes.

Therefore, N ′ ⊆ N,E′ ⊆ E and H ′ ⊆ H . ⊓⊔

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 65

Definition 3.21 Terminal node

A node n in a labelled behaviour graph for an augmented set T of SNFg
CTL clauses is a terminal

node iff there exists an index ind ∈ Ind(T) such that no edges labelled with ind depart from n.

Note that in the labelled behaviour graph shown in Figure 3.6, the two nodes on the right-hand

side of the graph are terminal nodes as they do not have any outgoing edges labelled with the

index 1.

Definition 3.22 ind-labelled terminal subgraph for l〈ind〉

For a labelled behaviour graph (N,E) for an augmented set T of SNFg
CTL clauses, a subgraph

(N ′, E′) is an ind-labelled terminal subgraph for l〈ind〉 of (N,E) iff

(ITS1) N ′ ⊆ N and E′ ⊆ E;

(ITS2) for all nodes n, n′ ∈ N and edges (n, ind′, n′) ∈ E, n′ ∈ N ′ and

(n, ind′, n′) ∈ E′ iff n ∈ N ′ and ind = ind′; and

(ITS3) for every node n = (V,EA, EE) ∈ N ′, l〈ind〉 ∈ EE and V |= ¬l.

Definition 3.23 Terminal subgraph for l

For a labelled behaviour graph (N,E) for an augmented set T of SNFg
CTL clauses, a subgraph

(N ′, E′) is a terminal subgraph for l of (N,E) iff

(TS1) N ′ ⊆ N and E′ ⊆ E;

(TS2) for every node n ∈ N ′ there exists some index ind ∈ Ind(T) such that for all edges

(n, ind, n′) ∈ E, n′ ∈ N ′ and (n, ind, n′) ∈ E′; and

(TS3) for every node n = (V,EA, EE) ∈ N ′, l ∈ EA and V |= ¬l.

Figure 3.7 and Figure 3.8 show examples of an ind-labelled terminal subgraph for q〈2〉 and a

terminal subgraph for q, respectively. (In both cases we assume the set of indices in the clause set

for these labelled behaviour graphs is {1, 2}.)

Lemma 3.25 Given a labelled behaviour graph H = (N,E) and a node n = (V,EA, EE) ∈ N , if,

for every eventuality l〈ind〉 ∈ EE , l〈ind〉 can be satisfied in n or in some node ind-reachable from n,

then n is not in any ind-labelled terminal subgraph H ′ = (N ′, E′) for l〈ind〉 of H.

Key

1,2

1 21

2

2
1

1
EEEA

V

q〈2〉

q〈2〉

a

b

c

q〈2〉

Figure 3.7: A 2-labelled terminal subgraph for q〈2〉

66 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Proof. Let H ′ = (N ′, E′) be an arbitrary ind-labelled terminal subgraph for some arbitrary even-

tuality l〈ind〉 of H . Proving this lemma is equivalent to proving that if n ∈ N ′, then l〈ind〉 cannot

be satisfied in n nor in any nodes ind-reachable from n in H . Assume that n ∈ N ′. According to

property (ITS2), all nodes which are ind-reachable from n are also in N ′. By property (ITS3), for

every node n′ = (V ′, E′
A, E

′
E) ∈ N ′, l〈ind〉 ∈ E

′
E and l is not satisfied in n′. Therefore, l〈ind〉 cannot

be satisfied in n nor in any node ind-reachable from n in H . ⊓⊔

Definition 3.24 Reduced labelled behaviour graph

Given a labelled behaviour graph H = (N,E) for an augmented set of SNFg
CTL clauses T , the

reduced labelled behaviour graph Hred for T is the result of exhaustively applying the following

deletion rules to H .

1. If n ∈ N is a terminal node with respect to an index in Ind(T), then delete n and every edge

into or out of n.

2. If there is an ind-labelled terminal graph (N ′, E′) of H such that ind ∈ Ind(T), then delete

every node n ∈ N ′ and every edge into or out of nodes in N ′.

3. If there is a terminal graph (N ′, E′) of H with respect to some indices in Ind(T), then delete

every node n ∈ N ′ and every edge into or out of nodes in N ′.

Lemma 3.26 If an augmented set of SNFg
CTL clauses T is unsatisfiable, then its reduced labelled

behaviour graph H is empty.

Proof. Proving this lemma is equivalent to proving that, if H is not empty, then T is satisfiable.

By the definition of the satisfiability of a CTL formula, it is also equivalent to proving that if H

is not empty, then a CTL model structure satisfying T can be constructed from H . Therefore, we

assume that the reduced labelled behaviour graph H = (N,E) of T is non-empty and we show how

to construct a CTL model structure M = 〈S,R,L, [], s0〉 satisfying T from H .

According to the definition of a CTL model structure and the semantics of SNFg
CTL clauses, the

following properties are necessary and sufficient for M to satisfy T .

(P1) L(s0) must satisfy R0(T) ∪Rg(T).

(P2) Every pair (si, si+1) ∈ R must satisfy the set of A-step, E-step and global clauses in T , that

is,

1,2

1 21

2

1

1,2

Key

a

b

c

q

q

qEEEA

V

Figure 3.8: A terminal subgraph for q

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 67

• L(si) and L(si+1) satisfy Rg(T);

• for every A-step clause P ⇒ A#Q ∈ T , if L(si) satisfies P , then L(si+1) must satisfy

Q; and

• for every E-step clause P ⇒ E#Q〈ind〉 ∈ T , if L(si) satisfies P and (si, si+1) ∈ [ind],

then L(si+1) must satisfy Q.

(P3) For every E-sometime clause P ⇒ E〈ind〉3l ∈ T and every state s ∈ S, if M, s |= P , then

the path χ
〈ind〉
s must contain a state s′ ∈ S such that l ∈ L(s′).

(P4) For every A-sometime clause P ⇒ A3l ∈ T and every state s ∈ S, if M, s |= P , then every

path χs must contain a state s′ ∈ S such that l ∈ L(s′).

Now we inductively define the construction of a CTL model structure from a reduced labelled

behaviour graph H = (N,E) and a mapping h from M to H .

Let cs be a function such that cs(n), for every node n = (V,EA, EE), is a fresh state s such

that L(s) = V . In addition, by RP(sn) we denote a reverse path consisting of a finite sequence

sn, sn−1, . . . , s0 of states such that sn, sn−1, . . . , s0 ∈ S, s0 is the root of M , and for every i, 0 ≤

i ≤ n− 1, (si, si+1) ∈ R.

The state s0 of M is given by s0 = cs(n0), where n0 is an arbitrary initial node in H , and we

define h(s0) = n0. By the construction of H , property (P1) holds for s0.

Suppose we have constructed the state si for M and RP(si) = si, si−1, . . . , s0. Then our task

is to choose for each index ind ∈ Ind(T) a pair (si, si+1) ∈ [ind] for M . Assume h(si) = n and n

has k ind-successors (n1, n2, . . . , nk) ordered in an arbitrary but fixed order (k > 0 as otherwise n

would be a terminal node in H). Let SRP be the set {sj | sj−1, sj ∈ RP(si), h(sj−1) = n, h(sj) ∈

{n1, n2, . . . , nk} and (sj−1, sj) ∈ [ind]}.

• if the set SRP is empty, then si+1 = cs(n1) and h(si+1) = n1;

• else, let s ∈ SSP be the state such that the distance between si and s is the shortest among

all the distances between si and a state in SRP and assume h(s) = nm ∈ {n1, n2, . . . , nk}, 1 ≤

m ≤ k, then

– si+1 = cs(nm+1) and h(si+1) = nm+1, if m 6= k;

– si+1 = cs(n1) and h(si+1) = n1, if m = k.

By this algorithm, for an arbitrary path χs0
, if a node n is used infinitely often to construct

states s ∈ χs0
and the index ind is used infinitely often to construct the successor states of s on

χs0
, then ind-successors of the node n are fairly chosen to construct the path χs0

. This ensures

that all eventualities are satisfied in M , as will be shown below.

Following the instructions we provided and using a breadth-first order for the construction from

the state s0, a CTL model structure M is constructed from H . By the construction of M and H ,

property (P2) holds for M .

Now we prove the model structure M we constructed satisfies property (P3). Assume the clause

P ⇒ E〈ind〉3l is in T and let s be an arbitrary state in S such that M, s |= P . We need to show

that the path χ
〈ind〉
s contains a state s′ such that l ∈ L(s′). We give a proof by contradiction.

68 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Assume l does not hold on χ
〈ind〉
s . We know the path χ

〈ind〉
s is an infinite sequence, whereas the

set of nodes in H is finite, which implies that there are nodes {nt
1, n

t
2, . . . , n

t
k} ∈ H, k ≥ 1, that are

used infinitely often to construct the path χ
〈ind〉
s . As we assume that l does not hold on χ

〈ind〉
s , we

obtain that, for every state s′′ ∈ χ
〈ind〉
s , M, s′′ 6|= l. Therefore, for every node h(s′′) = (V ′′, E′′

A, E
′′
E),

V ′′ 6|= l. Moreover, by the construction of H and M , P ⇒ E〈ind〉#l ∈ T and M, s |= P , we obtain

that l〈ind〉 ∈ E
′′
E . Therefore, for 1 ≤ i ≤ k, nt

i = (V t
i , EA

t
i, EE

t
i), V

t
i 6|= l and l〈ind〉 ∈ EE

t
i. By the

way we construct M , all the ind-successors of each node in the set ∆ = {nt
1, n

t
2, . . . , n

t
k} are also in

∆. Thus, the set of nodes {nt
1, n

t
2, . . . , n

t
k} in H and all the ind-labelled edges departing from those

nodes form an ind-labelled terminal subgraph for l〈ind〉 of H . However, H is a reduced labelled

behaviour graph, so no ind-labelled terminal subgraph exists in H . We obtain a contradiction.

Therefore, l must hold on the path χ
〈ind〉
s and property (P3) holds for M .

The proof that property (P4) holds for M is analogous to the proof that property (P3) holds

for M . ⊓⊔

Lemma 3.27 If a set of initial and global clauses is unsatisfiable then there is a refutation using

only step resolution rules.

Proof. If a set T of initial and global clauses is unsatisfiable, then the set T ′ = {D | true⇒ D ∈ T

or start⇒ D ∈ T } is unsatisfiable by the semantics of A2 and start.

The set T ′ only consists of propositional clauses. Therefore, it has a refutation by propositional

ordered resolution with selection using the same ordering and selection function as for R
≻,S
CTL. Then,

we can use step resolution rules SRES4, SRES5, and SRES8 on this set T to derive a contradiction,

namely either start⇒ false or true⇒ false. ⊓⊔

Lemma 3.28 If the unreduced labelled behaviour graph for an augmented set of SNFg
CTL clauses

T is empty then a contradiction can be obtained by applying step resolution rules to clauses in or

derived from T .

Proof. If the unreduced labelled behaviour graph is empty then by the definition of labelled be-

haviour graph, there are no initial nodes, which means there does not exist a valuation V such that

the right-hand sides of all initial and global clauses of T are true under V . Thus, the subset of

T containing all initial and global clauses in T is unsatisfiable and by Lemma 3.27 there exists a

refutation of T using step resolution rules SRES4, SRES5, and SRES8. ⊓⊔

Theorem 3.7 (Completeness of R
≻,S
CTL) If a finite augmented set T of SNFg

CTL clauses is unsat-

isfiable, then T has a refutation using the resolution rules SRES1 to SRES8, ERES1 and ERES2

and the rewrite rules RW1 and RW2.

Proof. Let T be an arbitrary augmented unsatisfiable set of SNFg
CTL clauses. The proof proceeds

by induction on the sequence of applications of the deletion rules to the labelled behaviour graph

of T . If the unreduced labelled behaviour graph is empty then by Lemma 3.28 we can obtain a

refutation by applying step resolution rules SRES4, SRES5 and SRES8.

Now suppose the labelled behaviour graph H is non-empty. The reduced labelled behaviour

graph must be empty by Lemma 3.26, so there must be a node that can be deleted from H .

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 69

Suppose there is a node n which would be subject to the first deletion rule in Definition 3.24.

So, there is an index ind ∈ Ind(T) such that n has no any ind-successors. Then n is a terminal node

n = (V,EA, EE). Consider W = {D | P ⇒ A#D ∈ T and V |= P} ∪ {D′ | P ′ ⇒ E〈ind〉#D
′ ∈ T ,

and V |= P ′}∪ {D′′ | true⇒ D′′ ∈ T }, where P, P ′′ are conjunctions of literals whereas D,D′, D′′

are disjunctions of literals. By Definition 3.16, W must be unsatisfiable, for otherwise there would

exist a node n′ that could serve as an ind-successor of n.

Given that W is a set of propositional clauses, it has a refutation by propositional ordered

resolution with selection using the same ordering and selection function as for R
≻,S
CTL. We prove

that a clause true ⇒ false, Q ⇒ A#false or Q ⇒ E〈ind〉#false with ind ∈ Ind(T), where

Q is a conjunction of literals and satisfied by V , can be derived from T by SRES1 to SRES3

and SRES6 to SRES8. The proof proceeds by induction over the length of the propositional

refutation of W . In particular, given a refutation N0, N1, . . . , Nn of W such that N0 = W and for

every i, 1 ≤ i ≤ n,Ni = Ni−1 ∪ {Ci}, where Ci is a propositional clause derived from Ni−1 and

Cn = false. We show that there exists a derivationN ′
0, N

′
1, . . . , N

′
n such thatN ′

0 = {P ⇒ A#D ∈ T

and V |= P} ∪ {P ′ ⇒ E〈ind〉#D
′ ∈ T, ind ∈ Ind(T), and V |= P ′} ∪ {true ⇒ D′′ ∈ T } and for

every i, 1 ≤ i ≤ n,N ′
i = N ′

i−1 ∪ {C
′
i}, where C′

i is either true ⇒ Ci, Pi ⇒ A#Ci with V |= Pi

or Pi ⇒ E〈ind〉#Ci, ind ∈ Ind(T) with V |= Pi. C′
n is either true ⇒ false, Pn ⇒ A#false or

Pn ⇒ E〈ind〉#false, ind ∈ Ind(T) with V |= Pn.

We prove the base case first. Let N1 = W ∪ {C1}. We show N ′
1 = N ′

0 ∪ {C
′
1}, where C′

1 is the

form of true⇒ C1, P1 ⇒ A#C1 with V |= P1 or P1 ⇒ E〈ind〉#C1, ind ∈ Ind(T) with V |= P1 and

derived by an application of one of the resolution rules SRES1 to SRES3 and SRES6 to SRES8 from

N ′
0. Suppose C1 = B1∨B2 is derived from two clauses B1∨ l and B2∨¬l, then by the construction

of W we are able to find a clause G = P0 ⇒ A#(B1 ∨ l), P0 ⇒ E〈ind〉#(B1 ∨ l) or true ⇒ B1 ∨ l

and G′ = P0 ⇒ A#(B2 ∨ ¬l), P0 ⇒ E〈ind〉#(B2 ∨ ¬l) or true ⇒ B2 ∨ ¬l in N ′
0. Note that if G

and G′ are both E-step clauses, then the indices ind in them are identical. Depending on the form

of G and G′ we can distinguish the following cases.

From G = P0 ⇒ A#(B1 ∨ l)

and G′ = P ′
0 ⇒ A#(B2 ∨ ¬l)

we can derive C′
1 = P0 ∧ P ′

0 ⇒ A#(B1 ∨B2) by SRES1

From G = P0 ⇒ E〈ind〉#(B1 ∨ l)

and G′ = P ′
0 ⇒ A#(B2 ∨ ¬l)

we can derive C′
1 = P0 ∧ P

′
0 ⇒ E〈ind〉#(B1 ∨B2) by SRES2

From G = P0 ⇒ A#(B1 ∨ l)

and G′ = P ′
0 ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C′
1 = P0 ∧ P ′

0 ⇒ E〈ind〉#(B1 ∨B2) by SRES2

70 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

From G = P0 ⇒ E〈ind〉#(B1 ∨ l)

and G′ = P ′
0 ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C′
1 = P0 ∧ P ′

0 ⇒ E〈ind〉#(B1 ∨B2) by SRES3

From G = true⇒ B1 ∨ l

and G′ = P ′
0 ⇒ A#(B2 ∨ ¬l)

we can derive C′
1 = P ′

0 ⇒ A#(B1 ∨B2) by SRES6

From G = P0 ⇒ A#(B1 ∨ l)

and G′ = true⇒ B2 ∨ ¬l

we can derive C′
1 = P0 ⇒ A#(B1 ∨B2) by SRES6

From G = true⇒ B1 ∨ l

and G′ = P ′
0 ⇒ E〈ind〉#(B2 ∨ ¬l)

we can derive C′
1 = P ′

0 ⇒ E〈ind〉#(B1 ∨B2) by SRES7

From G = P0 ⇒ E〈ind〉#(B1 ∨ l)

and G′ = true⇒ B2 ∨ ¬l

we can derive C′
1 = P0 ⇒ E〈ind〉#(B1 ∨B2) by SRES7

From G = true⇒ B1 ∨ l

and G′ = true⇒ B2 ∨ ¬l

we can derive C′
1 = true⇒ B1 ∨B2 by SRES8

where l is eligible in B1 ∨ l and ¬l is eligible in B2 ∨ ¬l for a given atom ordering ≻ and a given

selection function S of R
≻,S
CTL as otherwise we would not have been able to derive C1 = B1 ∨B2 on

the propositional level using ordered resolution with selection given the ordering≻ and the selection

function S.

Because C1 = B1 ∨ B2, C
′
1 is one of the clauses P0 ∧ P ′

0 ⇒ A#C1, P0 ∧ P ′
0 ⇒ E〈ind〉#C1,

P0 ⇒ A#C1, P
′
0 ⇒ A#C1, P0 ⇒ E〈ind〉#C1, P

′
0 ⇒ E〈ind〉#C1, or true ⇒ B1 ∨ B2. It is easy to

see that since V |= P0 and V |= P ′
0, we have V |= P1. Furthermore, the cases above (SRES1 to

SRES3 and SRES6 to SRES8) cover all the possibilities to derive C′
1. Thus, if there exists a derived

clause C1, then C′
1 can derived by R

≻,S
CTL.

Next we prove the induction step. For the refutation N0, N1, . . . , Ni, Ni+1, . . . , Nn of W , let

Ni+1 = Ni ∪ {Ci}, then we show that N ′
i+1 = N ′

i ∪ {C
′
i}, where C′

i is the form of true ⇒ Ci,

Pi ⇒ A#Ci with V |= Pi or Pi ⇒ E〈ind〉#Ci, ind ∈ Ind(T) with V |= Pi and derived by an

application of one of the resolution rules SRES1 to SRES3 and SRES6 to SRES8 from N ′
i . The

proof proceeds in analogy to the base case.

Thus, we have shown that we can derive a clause C′
n = Pn ⇒ A#false, Pn ⇒ E〈ind〉#false

or true ⇒ false from T . From Pn ⇒ A#false or Pn ⇒ E〈ind〉#false we can obtain the clause

true⇒ ¬Pn in normal form using RW1 or RW2.

By Lemma 3.24, the labelled behaviour graph H ′ for N ′
n is a subgraph of H . In particular,

3.5. CORRECTNESS OF THE CALCULUS R
≻,S
CTL 71

every node in H ′ has to satisfy ¬Pn. Obviously, the node n ∈ N does not satisfy this global clause

and is thus not a node in H ′.

Suppose the second (or third) deletion rule in Definition 3.24 is applicable to H . Then there

must exist an eventuality l〈ind〉 (or l), where l〈ind〉 (or l) is not satisfied in an ind-labelled terminal

subgraph for l〈ind〉 (or a terminal subgraph for l) of nodes ind-reachable (or reachable). We have

two cases depending on the type of terminal subgraphs:

• ind-labelled terminal subgraph for l〈ind〉. Let Q⇒ E〈ind〉3l be a clause in T and H ′ =

(N ′, E′) be an ind-labelled terminal subgraph for l〈ind〉 of the behaviour graph H . For each

n = (V,EA, EE) ∈ N ′, let loop(n) be the set consisting of all global, A-step, and E-step clauses

labelled with ind in T whose left-hand sides are satisfied by V , and let Fn ⇒ E〈ind〉#Gn be

the clause, which is the result of merging all clauses in loop(n) ∪ {true⇒ E〈ind〉#true}. To

show the set
⋃

n∈N ′ loop(n) is an E-loop in ¬l, we must check the following two conditions.

– For each n ∈ N ′, we must have |= Gn ⇒ ¬l. In the following, we use a proof by

contradiction to establish it. By the construction of H , Gn is the only constraint on the

valuations of ind-successors of n. Therefore, if the implication Gn ⇒ ¬l is not valid,

then, by the construction of H , there must be an ind-successor n′ = (V ′, E′
A, E

′
E) of n,

such that V ′ |= l. By property (ITS2), every ind-successor of n is in H ′. By property

(ITS3), for every ind-successor ni = (V i, Ei
A, E

i
E) of the node n, V i |= ¬l. Therefore,

we obtain a contradiction. So, Gn ⇒ ¬l is valid.

– For each n ∈ N ′ we must have |= Gn ⇒
∨

n′∈N ′ Fn′ . Let {n1, n2, . . . , nk}, k ≥ 1 be the

set of ind-successors of the node n. We show that the assumption that Gn ⇒
∨

n′∈N ′ Fn′

is not valid leads to a contradiction. By property (ITS2), every ind-successor of n is also

in N ′. Thus, to prove |= Gn ⇒
∨

n′∈N ′ Fn′ , it is enough to prove that |= Gn ⇒
∨k

i=1 Fni
.

By the construction of H , Gn is the only constraint on the valuations of ind-successors

of n. Therefore, if Gn ⇒
∨k

i=1 Fni
is not valid, then, by the construction of H , there

must be an ind-successor n′′ = (V
′′

, E
′′

A, E
′′

E) of n, such that V ′′ |= ¬(
∨k

i=1 Fni
), namely

V ′′ |= ¬Fn1
∧ . . . ∧ ¬Fnk

. As we know, for every ind-successor ni = (V i, Ei
A, E

i
E), 1 ≤

i ≤ k, of the node n, V ni |= Fni
. Therefore, n′′ can not be in the set {n1, . . . , nk}. This

is a contradiction. Thus, Gn ⇒
∨k

i=1 Fni
is valid.

Since we show that the set
⋃

n∈N ′ loop(n) is an E-loop in ¬l, we are able to use it in an

application of ERES2 with the eventuality l〈ind〉 occurring in Q ⇒ E〈ind〉3l ∈ T . Let L be

defined as

L =
∨

n∈N ′

Fn

Then T ′ = T ∪ {wind
l ⇒ E〈ind〉#(¬L ∨ l), true ⇒ ¬Q ∨ ¬L ∨ l} is the result of adding the

resolvents derived by ERES2 to T . Note that, for every node n = (V,EA, EE) in H ′, (i)

V |= L; and (ii) by property (ITS3), V |= ¬l and lind ∈ EE . Therefore, V |= ¬(¬L ∨ l).

Moreover, by Lemma 3.23, V |= wind
l . Recall that through augmentation the set T contains

clauses
wind

l ⇒ E〈ind〉#(l ∨ wind
l)

true ⇒ (¬Q ∨ l ∨ wind
l)

72 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

By Lemma 3.22 either (1) there is an edge (n′, ind, n) ∈ E, where n′ = (V ′, E′
A, E

′
E), l〈ind〉 ∈

E′
E , and V ′ |= ¬l; or (2) V |= Q, V |= ¬l.

1. In the case of (1), we have V ′ |= wind
l by Lemma 3.23. So, for the aforementioned

resolvent wind
l ⇒ E〈ind〉#(¬L ∨ l), V ′ satisfies wind

l but V does not satisfy (¬L ∨ l).

Thus, the labelled behaviour graph for T ′ does not contain an edge (n′, ind, n). By the

construction of the labelled behaviour graph for T ′, n is not a node in it.

2. In the case of (2), we have V |= Q, V |= L, V |= ¬l. Thus, n does not satisfy the

aforementioned resolvent true⇒ ¬Q∨¬L∨ l in T ′ and so n is not a node in the labelled

behaviour graph for T ′.

Therefore, the labelled behaviour graph for T ′ is a strict subgraph of that for T and by

induction we assume that as T ′ has a refutation so must T .

• Terminal subgraph for l. The proof is analogous to the proof for ind-labelled terminal

subgraphs for l〈ind〉.

⊓⊔

The behaviour graph construction and the use of deletion rules to remove parts of the behaviour

graph which cannot contribute to the model structure for a given clause set is commonly used in

completeness proofs for temporal and modal resolution calculi [38, 56] and resembles the tableau

construction and marking procedure for propositional dynamic logic PDL in [60].

3.5.3 Termination

In this section, we show that all the derivations obtained by applying rules of the calculus R
≻,S
CTL to

an arbitrary finite set of SNFg
CTL clauses terminate.

Theorem 3.8 Any derivation from a finite set T of SNFg
CTL clauses by the calculus R

≻,S
CTL termi-

nates.

Proof. Assume T is augmented. Let T be constructed from a set Θ of n atomic propositions and a

set Ind of m indices. Then the number of SNFg
CTL clauses constructed from Θ and Ind is finite. We

can have at most 22n initial clauses, 22n global clauses, 24n A-step clauses, m · 24n E-step clauses,

n · 22n+1 A-sometime clauses, and m · n · 22n+1 E-sometime clauses. In total, there can be at most

(m+ 1)24n + (m · n+ n+ 1)22n+1 different SNFg
CTL clauses. Any derivation from a set of SNFg

CTL

clauses by the calculus R
≻,S
CTL will terminate when either no more new clauses can be derived or

a contradiction is obtained. Since there are only a finitely bounded number of different SNFg
CTL

clauses, one of these two conditions will eventually be true. ⊓⊔

3.6 Complexity

The satisfiability problem of CTL is known to be EXPTIME-complete [22, 31, 34]. Next we consider

the complexity of the decision procedure based on R
≻,S
CTL and presented in Section 3.4.4.

Theorem 3.9 The complexity of the R
≻,S
CTL-based decision procedure is in EXPTIME.

3.7. RELATED WORK 73

Proof. Assume that the set N of SNFg
CTL clauses is augmented and is constructed from a set Θ of

n propositions and a set Ind of m indices. The cost of deciding whether a step resolution rule can

be applied to two determinate clauses is A = 4n + 1 in the worst case, provided we can compute

S(C) in linear time, compare literals in constant time and check the identity of indices in constant

time. From the proof of Theorem 3.8, we know the number of determinate clauses is at most

B = 22n + 22n + 24n +m · 24n. Therefore, to naively compute a new clause from an application of

some step resolution rule, we might need to look at C = B(B−1)
2 combinations of two clauses and

the associated cost is (C · A). Moreover, to decide whether the resolvent is a new clause or not,

we need to compare the resolvent with at most B clauses and the cost is D = B · (8n2 + 1). In

the worst case, where each pair of clauses generates a resolvent but the resolvent already exists

and only the last pair of clauses gives a new clause, to gain a new clause from an application of

some step resolution rule, the complexity is of the order (C · A ·D), that is, EXPTIME. According

to the proof of Theorem 3.8, there can be at most different B determinate clauses. Therefore, the

complexity of saturating a set of SNFg
CTL clauses by step resolution is the order of (C · A · D) · B.

That is the complexity of resolution sres (line 8) is in EXPTIME.

To compute a new clause from an application of some eventuality resolution rule, the complexity

depends on the complexity of the so-called CTL loop search algorithm which computes premises

for the eventuality resolution rules [16]. The CTL loop search algorithm is a variation of the

PLTL loop search algorithm [27] which has been shown to be in EXPTIME and we can show

that the complexity of the CTL loop search algorithm from [16] is also in EXPTIME. Generally

speaking, each iteration of the CTL loop search algorithm is a saturation of the clause set, which

is in EXPTIME, and there may be an exponential number of iterations required. Therefore, the

complexity of resolution eres (line 12) is in EXPTIME. According to the proof of Theorem 3.8,

there can be at most distinct n · 22n+1 A-sometime clauses and m · n · 22n+1 E-sometime clauses.

Thus, the number of iterations for the for-loop (line 11 to 16) is at most (n · 22n+1 +m · n · 22n+1).

As we know, the cost of deciding whether a clause is existing in the set Old is D and the number

of clauses in the set New at line 17 is at most B. Therefore, the cost of the operation New \ Old

is D · B (line 17). Analogously we can obtain that the cost of the operation New ∪ G (line 14) is

bounded by D · B.

Thus, the complexity of each iteration of the do-while-loop (line 8 to 18) is in EXPTIME. From

the proof of Theorem 3.8, there can be at most B different determinate clauses. The number of

iterations of the do-while-loop is at most B. Therefore, the complexity of the decision procedure is

in EXPTIME. ⊓⊔

3.7 Related work

3.7.1 Comparison between R
≻,S
CTL and the previous resolution calculus

R
≻,S
CTL is based on Bolotov’s resolution calculus for CTL [15]. For instance, the use of indices to

transform CTL formulae into Separated Normal Form for CTL was introduced in [15]. However,

no formal interpretation was given for indices and no formal semantics stated for SNFg
CTL. In this

thesis, we provide a formal semantics for SNFg
CTL.

74 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Compared to the definition of SNFCTL in [15], we use an additional type of clause, namely

global clauses. Our definition of SNFg
CTL provides several advantages over [15]. Global clauses

inevitably occur as a result of inferences by step resolution rules. For example, from m1 ⇒ A#l and

m2 ⇒ A#¬l we can derive m1 ∧m2 ⇒ A#false, while from m1 ⇒ E〈ind〉#l and m2 ⇒ E〈ind〉#¬l

we can derive m1 ∧m2 ⇒ E〈ind〉#false. Both m1 ∧m2 ⇒ A#false and m1 ∧m2 ⇒ E〈ind〉#false

are transformed into a global clause true⇒ ¬m1 ∨ ¬m2 by RW1 and RW2, respectively.

As the normal form in [15] does not allow for such clauses, in the approach taken in [15] such

global clauses must further be rewritten into equivalent pairs of an initial clause and an A-step

clause as follows:

true⇒
∨k

j=1mj −→

{

start⇒
∨k

j=1mj

true⇒ A#
∨k

j=1mj

where each mj , 1 ≤ j ≤ k, is a literal. For the same reason, in [15] the rewrite rules RW1 and

RW2 will each produce two clauses, whereas in R
≻,S
CTL the analogous rewrite rules produce only one.

Thus, one obvious advantage of allowing global clauses is that compared to [15] we will have fewer

clauses transformed from the original CTL formula and generated by resolution.

In [15], Bolotov provides a set of rules for the transformation of CTL formulae into a clausal

normal form. The transformation rules are shown to preserve satisfiability. However the proof for

termination of the transformation process and the proof that the result of the process is indeed

in normal form are absent and the complexity of the process is not studied. In contrast, we have

provided the corresponding proofs and an analysis of the complexity for our transformation process.

Below, we provide a concrete example to demonstrate that our transformation rules are more

efficient in terms of new atomic propositions introduced and the number of clauses generated

during the transformation by comparing two transformation processes to the same CTL formula

A2(E(E#rU q)) we have used in Example 3.1.

Example 3.12

1. We apply the function init to the CTL formula ϕ = A2(E(E#r U q)):

Γ = init(ϕ) = {A2(start⇒ p1),A2(p1 ⇒ A2(E(E#r U q)))}

2. We transform the set Γ of clauses into a set of SNFg
CTL clauses using Bolotov’s transformation

rules as given in Appendix A1. In the following table, Trans(x) → y indicates applying the

1The set of the transformation rules presented in Appendix A, which has been used by the earlier versions of our
CTL prover CTL-RP, is slightly different from Bolotov’s transformation rules. The only difference is that the rules
in Appendix A do not rewrite a global clause into an initial clause and an A-step clause. Therefore, it is slightly
better than Bolotov’s transformation rules in terms of the number of clauses generated during the transformation.

3.7. RELATED WORK 75

transformation rule Trans(x) to the yth clause in the table.

1. start ⇒ p1

2. p1 ⇒ A2(E(E#rU q))

3. p1 ⇒ A2p2 Trans(8)→ 2

4. p2 ⇒ E(E#r U q) Trans(8)→ 2

5. p1 ⇒ p2 ∧ p3 Trans(11)→ 3

6. p3 ⇒ A#(p2 ∧ p3) Trans(11)→ 3

7. p2 ⇒ E〈1〉(E#r U q) Trans(3)→ 4

8. p1 ⇒ p2 Trans(4)→ 5

9. p1 ⇒ p3 Trans(4)→ 5

10. p3 ⇒ A#p4 Trans(7)→ 6

11. p4 ⇒ p2 ∧ p3 Trans(7)→ 6

12. p2 ⇒ E〈1〉(p5 U q) Trans(9)→ 7

13. p5 ⇒ E#r Trans(9)→ 7

14. true ⇒ ¬p1 ∨ p2 Trans(6)→ 8

15. true ⇒ ¬p1 ∨ p3 Trans(6)→ 9

16. p4 ⇒ p2 Trans(4)→ 11

17. p4 ⇒ p3 Trans(4)→ 11

18. p2 ⇒ q ∨ (p5 ∧ p6) Trans(14)→ 12

19. p6 ⇒ E〈1〉#(q ∨ (p5 ∧ p6)) Trans(14)→ 12

20. p2 ⇒ E〈1〉3q Trans(14)→ 12

21. p5 ⇒ E〈2〉#r Trans(1)→ 13

22. true ⇒ ¬p4 ∨ p2 Trans(6)→ 16

23. true ⇒ ¬p4 ∨ p3 Trans(6)→ 17

24. p2 ⇒ q ∨ p7 Trans(5)→ 18

25. p7 ⇒ p5 ∧ p6 Trans(5)→ 18

26. p6 ⇒ E〈1〉#p8 Trans(7)→ 19

27. p8 ⇒ q ∨ (p5 ∧ p6) Trans(7)→ 19

28. true ⇒ ¬p2 ∨ q ∨ p7 Trans(6)→ 24

29. p7 ⇒ p5 Trans(4)→ 25

30. p7 ⇒ p6 Trans(4)→ 25

31. p8 ⇒ q ∨ p9 Trans(5)→ 27

32. p9 ⇒ p5 ∧ p6 Trans(5)→ 27

33. true ⇒ ¬p7 ∨ p5 Trans(6)→ 29

34. true ⇒ ¬p7 ∨ p6 Trans(6)→ 30

76 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

35. true ⇒ ¬p8 ∨ q ∨ p9 Trans(6)→ 31

36. p9 ⇒ p5 Trans(4)→ 32

37. p9 ⇒ p6 Trans(4)→ 32

38. true ⇒ ¬p9 ∨ p5 Trans(6)→ 36

39. true ⇒ ¬p9 ∨ p6 Trans(6)→ 37

3. We obtain the set of SNFg
CTL clauses consisting of the following clause, which is satisfiable iff

the CTL formula A2(E(E#r U q)) is satisfiable.

1. start ⇒ p1

10. p3 ⇒ A#p4

14. true ⇒ ¬p1 ∨ p2

15. true ⇒ ¬p1 ∨ p3

20. p2 ⇒ E〈1〉3q

21. p5 ⇒ E〈2〉#r

22. true ⇒ ¬p4 ∨ p2)→ 16

23. true ⇒ ¬p4 ∨ p3

26. p6 ⇒ E〈1〉#p8

28. true ⇒ ¬p2 ∨ q ∨ p7

33. true ⇒ ¬p7 ∨ p5

34. true ⇒ ¬p7 ∨ p6

35. true ⇒ ¬p8 ∨ q ∨ p9

38. true ⇒ ¬p9 ∨ p5

39. true ⇒ ¬p9 ∨ p6

In Example 3.1 we have used our own transformation rules to transform the set Γ into a set

of SNFg
CTL clauses. The table below compares the results with respect to the number of clauses

generated during the transformation process, the number of SNFg
CTL clauses obtained at the end

of the process, and the number of new propositions occurring in these clauses.

Example 3.1 Example 3.12

No. of clauses generated totally 13 39

No. of clauses in SNFg
CTL 7 15

No. of new propositions introduced 3 9

This example illustrates the improvements that our transformation rules can offer compared with

the transformation rules in [15]. In addition, as we have implemented both transformation processes

in our prover CTL-RP, which will be discussed in the next chapter, we have experimented with

them on many examples and the result of this empirical study also indicates that our transformation

is more efficient. More details can be found in Section 4.4.

3.7. RELATED WORK 77

TRES1 P † ⇒ A#A2l

q ⇒ A3¬l

q ⇒ A(¬P †W¬l)

TRES2 P † ⇒ A#A2l

q ⇒ E〈ind〉3¬l

q ⇒ E〈ind〉(¬P
† U ¬l)

where P † is a disjunction of conjunctions of literals and l and q are literals.

Figure 3.9: Redundant eventuality resolution rules

Another difference to [15] is the approach taken in our completeness proof. The proof in [15] tries

to relate the application of deletion rules on a CTL tableau to a sequence of resolution steps. Then,

completeness of the resolution calculus follows from the completeness of the tableau construction

and the deletion process. In contrast, to show completeness of our calculus R
≻,S
CTL we construct

a graph known as a labelled behaviour graph. This is an extension of the concept of a behaviour

graph used in [38] for proving completeness of a clausal resolution for PLTL and related to the

concept of a labelled behaviour graph used [29]. However, our labelled behaviour graph differs

in its construction to capture the semantics of indices in SNFg
CTL. We believe our completeness

proof demonstrates a closer relationship between the application of resolution rules and deletions

in the labelled behaviour graph. Moreover, it is relatively easy to generate a CTL model structure

from a non-empty reduced labelled behaviour graph and the labelled behaviour graph for a set

T of SNFg
CTL clauses saturated under R

≻,S
CTL that contains no contradiction, is a reduced labelled

behaviour graph. Hence, we could potentially use the labelled behaviour graph construction to

generate counter models for failed proofs. Our labelled behaviour graph can be easily extended so

that it can be used in completeness proofs of resolution calculi for the combination of CTL and

other logics, for example, the combination of CTL and modal logic KD45 [29].

Furthermore, in the resolution calculus for CTL presented in [15, 29] step resolution is not

constrained by an ordering and a selection function. Therefore, the step resolution rules in [15,

29] allow for considerably more, and superfluous, inferences. In addition, this earlier resolution

calculus contains four eventuality resolution rules, TRES1 to TRES4, where ERES1 and ERES2

correspond to TRES3 and TRES4, respectively. The other two eventuality resolution rules are

given in Figure 3.9. Using our completeness proof we can prove that the two eventuality resolution

rules TRES1 and TRES2 in [15, 29] are redundant.

We give a brief explanation why this is the case. Informally, the only difference between TRES1

and ERES1 is their first premise. For TRES1, it is P † ⇒ A#A2l and for ERES1, it is P † ⇒

E#E2l. In [15, 29], A#A2l is called an A-loop and E#E2l is called an E-loop. According to the

semantics of CTL, A#A2l⇒ E#E2l, meaning if there exists an A-loop, there must be an E-loop

as well. So, whenever we can apply TRES1 (TRES2), ERES1 (ERES2) is applicable as well. More

formally, in our completeness proof we only identify two types of subgraphs where some eventuality

can not be fulfilled, namely, ind-labelled terminal subgraphs and terminal subgraphs. Both are

E-loops according to the definition in [15] and the deletion of both types of subgraphs correlates to

applications of ERES1 or ERES2. Thus, no further inference rules are required showing that TRES1

and TRES2 are redundant. Considering that the eventuality resolution rules are computationally

very expensive, we gain a significant improvement here.

Finally, complexity of the method is not discussed in [15]. In this thesis, we prove that a decision

78 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

procedure based on R
≻,S
CTL is of the order EXPTIME.

3.7.2 Other approaches for the satisfiability problem of CTL

There are other approaches, which can also be used to solve the satisfiability problem of CTL,

namely automata techniques [71] and tableau calculi [3, 34, 31, 10]. We give a brief discussion on

these two approaches.

The automata-based decision procedure for CTL [71] consists of two separated phases. Firstly,

the decision procedure constructs an automaton A for a given CTL formula ϕ. This constructed

automaton has a very useful property that it accepts certain infinite tree models of ϕ iff the formula

ϕ is satisfiable. In the second phase, the decision procedure checks whether there exists a tree model

accepted by A, i.e. whether the language accepted by A is non-empty. If there is one tree model

accepted by A, then ϕ is satisfiable. Otherwise, ϕ is unsatisfiable. Constructing the automaton

requires exponential time in the size of ϕ while checking the emptiness of the language accepted by

the automaton requires polynomial time in the size of A.

For a tableau calculus for CTL, usually two types of rules are defined for the calculus, namely

the construction rules and the deletion rules. For the construction rules, they are used to expand

an arbitrary CTL formula ϕ into a (possibly cyclic) graph such that each node of this graph is

a set of CTL formulae. The deletion rules of a tableau calculus for CTL determine which nodes

should be removed from the constructed tableau. A node n is eliminated if any one of the following

condition is satisfied: (i) there are inconsistencies in the node, for example p and ¬p; (ii) the node

has certain requirements on its successors and those requirements are not fulfilled by its successors;

or (iii) the node contains unrealised eventualities, for example, E3p or A(pU q) in the node n and

can not be realised in any node reachable from the node n as well. Generally speaking, the deletion

rules remove all the nodes which are not able to be used to construct a CTL model satisfying the

CTL formula ϕ.

If the tableau has no nodes left after the deletion process, the tableau is a closed tableau for

CTL and the CTL formula ϕ is unsatisfiable, otherwise the tableau is an open tableau for CTL and

ϕ is satisfiable.

3.8 Conclusions

CTL [31] was introduced by Emerson et al in the 1980s and now is a well-known branching-

time temporal logic for the specification and verification of computational systems. Approaches to

the satisfiability problem in CTL include automata techniques [71], tableau calculi [3, 34] and a

resolution calculus [15], developed by Bolotov.

Bolotov’s calculus for CTL is based on the ideas underlying a resolution calculus for PLTL [38].

Here, we have provided a refined clausal resolution calculus R
≻,S
CTL for CTL. Compared with [15],

we use an ordering and a selection function to restrict the applicability of step resolution rules and

we have fewer eventuality resolution rules. We present a new completeness proof based on labelled

behaviour graphs. Our completeness proof demonstrates a closer relationship between applications

of resolution rules and deletions on labelled behaviour graphs. The proof shows that the additional

3.8. CONCLUSIONS 79

eventuality resolution rules in [15], which are the most costly rules, are redundant. In addition, we

prove that the complexity of a R
≻,S
CTL-based decision procedure for CTL is EXPTIME.

80 CHAPTER 3. A REFINED RESOLUTION CALCULUS FOR CTL

Chapter 4

CTL-RP: A resolution theorem

prover for CTL

4.1 Introduction

There are many CTL theorem proving methods, including resolution-based [15], tableau-based [3,

34, 62], and automata-based [36] methods. However, only the method in [3] has recently been

implemented in the Tableau Workbench [2]. Due to the branching structure of CTL models and

the presence of fixpoint operators in the logic, implementing an efficient theorem proving method

for CTL is conceptually complex.

Here we present the first implemented resolution theorem prover for CTL, CTL-RP, which

realises the sound and complete clausal resolution calculus R
≻,S
CTL introduced in Chapter 3. Moreover,

R
≻,S
CTL is designed such that it allows the use of classical first-order resolution techniques to implement

its rules. We take advantage of this fact in the development of our prover CTL-RP by basing

its implementation on the first-order theorem prover SPASS [54, 75]. Therefore, our approach

dramatically reduces the implementation effort. We experimentally compare the only theorem

prover for CTL that we know of, namely the Tableau Workbench, with CTL-RP and the results

obtained from this empirical study show good performance of CTL-RP.

The overall approach we take is as follows. The clausal normal form for CTL, on which the

calculus R
≻,S
CTL operates, consists of six types of clauses: initial clauses, global clauses, A-step

clauses, E-step clauses, A-sometime clauses and E-sometime clauses. The calculus itself consists

of step resolution, eventuality resolution and rewrite rules. In our implementation of the calculus,

we transform all clauses except A- and E-sometime clauses into first-order clauses. This enables

us to emulate the step resolution rules by first-order ordered resolution with selection. As to

implementation of the first-order calculus, we use the theorem prover SPASS. To fully realise R
≻,S
CTL

we have to extend SPASS with an implementation of the eventuality resolution rules. As we will

see, the rewrite rules of R
≻,S
CTL become superfluous in this approach. It should be noted that the

most of the content related to the implementation of the calculus R
≻,S
CTL in this chapter has been

published in [79].

81

82 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

The rest of the chapter is organised as follows. In Section 4.2 firstly we introduce first-order

ordered resolution with selection. Secondly, we define how to transform initial clauses, global

clauses, and step clauses into first-order clauses. Thus we are able to apply first-order resolution

rules to those clauses. Thirdly, we show our approach to the implementation of the calculus R
≻,S
CTL

using first-order resolution techniques. Furthermore, we list all the algorithms involved in the de-

cision procedure CTL-RP implements. In Section 4.3 we discuss related work, in particular, the

resolution-based prover TRP++ for Propositional Linear-time Temporal Logic (PLTL) which also

uses first-order techniques and the tableau-based prover TWB for CTL. In Section 4.4, we exper-

imentally compare CTL-RP with the tableau theorem prover TWB. Finally, we draw conclusions

in Section 4.5.

4.2 Implementation of the calculus R
≻,S
CTL

In order to realise the calculus R
≻,S
CTL and its associated decision procedure for CTL, we adopt an

approach analogous to that used in [48] for the implementation of a resolution calculus [38] for

PLTL.

First, we transform all SNFg
CTL clauses except A-sometime clauses and E-sometime clauses

into first-order clauses. Then we are able to use the first-order ordered resolution with selection

calculus [11] to emulate step resolution. A-sometime clauses and E-sometime clauses cannot be

translated to first-order logic. Therefore, we continue to use the rules ERES1 and ERES2 for

inferences with A-sometime clauses and E-sometime clauses, respectively, and use the loop search

algorithm presented in Section 3.4 to find suitable premises for these rules. We also utilise first-

order ordered resolution with selection to perform the task of “looking for merged clauses” in the

loop search algorithm and we compute the results of applications of the eventuality resolution rules

in the form of first-order clauses.

4.2.1 Preliminaries of first-order ordered resolution with selection

In order to present our approach of using first-order techniques to carry out resolution for CTL, we

first introduce several notions following their definition in [11, 47, 67, 51].

The language of first-order logic is based on

• the boolean operators ¬ (not), ∧ (and), ∨ (or), and ⇒ (implies);

• the universal quantifier ∀ (for all) and the existential quantifier ∃ (there exists);

• a countable set V of variables ;

• a countable set F of function symbols such that each function symbol in F is associated with

an arity n ∈ N0;

• a countable set P of predicate symbols such that each predicate symbol in P is associated with

an arity n ∈ N0;

We assume that the sets V,F and P are pairwise disjoint. The pair (F,P) is called a signature.

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 83

Definition 4.1 Term

A term is either a variable in V or an expression f(t1, . . . , tn) where f ∈ F is a function symbol of

arity n and t1, . . . , tn are terms. Function symbols of arity zero are also called constant symbols .

For a term t = f(t1, . . . , tn) the terms t1, . . . , tn are called the arguments of t. Let T(F,V) denote

the set of all terms built from function symbols in F and variables in V. A term is ground if it does

not contain variables, that is, it is an element of T(F, ∅).

Definition 4.2 Depth of a term

The depth dp(t) of a term is inductively defined as

1. if t is a variable or a constant then dp(t) = 1, and

2. if t = f(t1, . . . , tn), then

dp(t) = 1 + max({dp(ti) | 1 ≤ i ≤ n})

For example, dp(a) = 1; dp(f(x, y)) = 2; and dp(r(h(x, g(x)))) = 4, where a is a constant, x and y

are variables, and f, g, r and s are function symbols.

Definition 4.3 Atom

An atom is an expression p(t1, . . . , tn) where t1, . . . , tn are terms in T(F,V) and p ∈ P is a predicate

symbol of arity n. Predicate symbols of arity zero are also called propositions .

Definition 4.4 Literal

A literal is an expression A (a positive literal) or ¬A (a negative literal) where A is an atom. For

a literal L = (¬)p(t1, . . . , tn) the terms t1, . . . , tn are the arguments of L. A literal is ground if all

its arguments are ground.

Definition 4.5 Depth of a literal

The depth dp(L) of a literal L = (¬)p(t1, . . . , tn) is given by max({dp(ti) | 1 ≤ i ≤ n}) if the arity

of p is greater than zero, and dp(L) = 0 otherwise. For example, dp(p(h(x, y), r(h(x, g(x))))) = 4,

where x and y are variables; g, h, and r are function symbols; and p is a predicate.

Definition 4.6 First-order clause

A first-order clause C = L1∨L2∨ . . .∨Ln is a multiset of literals with variables implicitly assumed

to be universally quantified. A subclause D of a clause C is a sub-multiset D of C and we write

D ⊆ C if D is a subclause of C. A strict subclause D of a clause C is a subclause of C not identical

to C.

Definition 4.7 Depth of a first-order clause

The depth dp(C) of a first-order clause C is given by max({dp(L) | L ∈ C}) if C is non-empty, and

dp(C) = 0 otherwise. For example, dp(p(x) ∨ q(f(x, y))) = 2, where x and y are variables; and p

and q are predicates.

Definition 4.8 Expression

An expression is a term, an atom or a literal.

84 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

Definition 4.9 Substitution

A substitution is a mapping from variables to terms which is the identity mapping almost every-

where. A substitution σ can be represented as a finite set of pairs σ = {x1 ← t1, . . . , xn ← tn},

where xi 6= ti for all i, 1 ≤ i ≤ n, and xi 6= xj for all i, j, 1 ≤ i < j ≤ n. A substitution

σ = {x1 ← t1, . . . , xn ← tn} is said to be a ground substitution, if every ti, 1 ≤ i ≤ n, is a ground

term. The value of a substitution σ for a variable x is denoted by xσ. A substitution can be

extended to a mapping from terms to terms. Analogously, for atoms, literals, and clauses. The

result of the application of a substitution σ to an expression E is denoted by Eσ.

Definition 4.10 Composition of substitutions

The composition θσ of the substitutions σ and θ is defined as xθσ = (xθ)σ for all variables x in V.

A substitution σ is idempotent if σσ = σ.

Definition 4.11 Variable renaming

A variable renaming is an injective substitution σ such that xσ is a variable for every variable

x ∈ V. An expression E′ is a variant of an expression E if there exists a variable renaming σ such

that E′ = Eσ. We say E and E′ are identical modulo variable renaming. We usually consider

clauses C and D to be identical if they are identical modulo variable renaming.

Definition 4.12 Instance

An expressionE′ is an instance of an expressionE if there exists a substitution σ such that E′ = Eσ.

Definition 4.13 Tautology

A first-order clause is a tautology iff it contains a pair of complementary literals.

Definition 4.14 Subsumption

A first-order clause C subsumes a first-order clause D if there exists a substitution σ such that

Cσ ⊆ D.

Definition 4.15 Unifier

A substitution σ is a unifier of expressions E1, . . . , En if Eiσ = Ejσ for all i, j, 1 ≤ i, j ≤ n, and

E1, . . . , En are said to be unifiable. A unifier σ is a most general unifier of E1, . . . , En if for every

unifier θ of E1, . . . , En there exists a substitution ρ such that xθ = x(σρ) for every variable x

occurring in E1, . . . , En.

Definition 4.16 Condensation

A condensation Cond(C) of a clause C is a minimal subclause of C such that there exists a

substitution σ such that Cσ contains the same set of literals as Cond(C). A clause C is condensed

if there exists no condensation of C which is a strict subclause of C.

For example, let C1 = f(x) ∨ f(x) ∨ g(x) and C2 = h(x) ∨ h(y) ∨ g(x) be first-order clauses, then

Cond(C1) = f(x) ∨ g(x) and Cond(C2) = h(x) ∨ g(x). Note that the condensation Cond(C) of a

clause C is either identical to C or is a strict subclause of C which subsumes C according to the

definition of subsumption we give above.

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 85

Definition 4.17 Atom ordering

An atom ordering ≻FOL is a well-founded, total ordering on ground atoms. For two non-ground

atoms A and B, we define A ≻FOL B iff Aσ ≻FOL Bσ for all ground instances Aσ and Bσ.

As for the propositional case, the ordering ≻FOL is extended to literals by identifying each positive

literal p with the singleton multiset {p} and each negative literal ¬p with the multiset {p, p}

and comparing such multisets of first-order atoms by using the multiset extension of ≻FOL. Also,

the notion of a (strictly) maximal literal with respect to a clause C is again defined as in the

propositional case. Finally, the multiset extension of the literal ordering ≻FOL induces an ordering

≻FOL on ground clauses.

Definition 4.18 Selection function

A selection function SFOL assigns to each clause C a possibly empty set of occurrences of negative

literals in C. These negative literals in SFOL(C) are called selected (in the clause C).

The resolution calculus R
≻FOL,SFOL

FOL is parameterised by an atom ordering ≻FOL and a selection

function SFOL, and consists of the following two inference rules1:

• Ordered resolution with selection

I
C ∨A ¬B ∨D

(C ∨D)σ

where

1. σ is the most general unifier of A and B.

2. No literal is selected by SFOL in C and Aσ is strictly ≻FOL-maximal with respect to Cσ.

In this case, we say that A is eligible in C ∨A for the substitution σ.

3. (i) ¬B is selected by SFOL in ¬B ∨D or (ii) no literal is selected by SFOL in D and ¬Bσ

is ≻FOL-maximal with respect to Dσ. In this case, we say that ¬B is eligible in ¬B ∨D

for the substitution σ.

• Ordered positive factoring with selection

I
C ∨A ∨B

(C ∨A)σ

where

1. σ is the most general unifier of A and B.

2. No literal is selected by SFOL in C and Aσ is ≻FOL-maximal with respect to Cσ.

We now give a number of important definitions related to the calculus R
≻FOL,SFOL

FOL .

Definition 4.19 Redundancy

Given a set N of clauses, a ground clause C is redundant with respect to N if there are ground

1We use I to indicate inference rules.

86 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

instances C1σ, . . . , Cnσ of clauses in N such that C1σ, . . . , Cnσ |= C and for each i, 1 ≤ i ≤ n,

C ≻FOL Ciσ. A non-ground clause C is redundant with respect to N if every ground instance of C

is redundant with respect to N .

Definition 4.20 Saturation

A set N is saturated (up to redundancy) with respect to R
≻FOL,SFOL

FOL if all clauses that can be derived

by an application of the rules of R
≻FOL,SFOL

FOL to non-redundant premises in N are either contained

in N or else are redundant in N .

Definition 4.21 Derivation

For a set N0 of clauses, a derivation from N0 is a sequence of clause sets N0, N1, . . ., where for every

i, i ≥ 0, Ni+1 = Ni ∪ {C} and C is derived by applying a R
≻FOL,SFOL

FOL inference rule to premises

in Ni, or Ni+1 = Ni \ {C} and C is redundant in Ni. A derivation N0, N1, . . . is a refutation (of

N0) if for some i, 0 ≤ i, Ni contains the empty clause. We say a derivation N0, N1, . . . from N0

terminates if for some i, 0 ≤ i, Ni is saturated up to redundancy. A derivation N0, N1, . . . is fair if

every clause C that can be deduced from non-redundant premises in the limit N∞ =
⋃

j≥0

⋂

k≥j Nk

is contained in some set Nj.

Theorem 4.1 [11] R
≻FOL,SFOL

FOL is a sound and complete refutation calculus: for a set of clauses

N0 and a fair derivation N0, N1, . . . from N0, N0 is unsatisfiable iff the clause set
⋃

j Nj contains

the empty clause. Furthermore, if for some i ≥ 0, Ni is saturated up to redundancy, then N0 is

unsatisfiable iff Ni contains the empty clause.

During the implementation of CTL-RP, we have found that a particular redundancy elimination

rule, called matching replacement resolution, can significantly improve the efficiency of our prover.

Matching replacement resolution2

R
C ∨A ¬B ∨D

C ∨A D

where Aσ = B and Cσ ⊆ D.

For example, let the two first-order clauses Γ1 = q(x) ∨ p(x) and Γ2 = ¬p(x) ∨ q(x) ∨ r(x) be

in the set N , then N can be reduced to the set N ′ = N ∪ {q(x) ∨ r(x)} \ {Γ2}, by applying the

matching replacement resolution rule to Γ1 and Γ2.

4.2.2 Representing determinate SNF
g
CTL clauses as first-order clauses

In order to represent every determinate SNFg
CTL clause by a first-order clause we uniquely associate

every atomic proposition p with a unary predicate symbol Qp. Besides these predicate symbols we

assume that our first-order vocabulary includes a countably infinite set of variables x, y, . . . , a

constant 0, a binary function symbol app, and for every ind ∈ Ind a constant sind.

2We use R to indicate redundancy elimination rules.

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 87

The constant 0 represents the state s0 ∈ S in a model structure M = 〈S,R,L, [], s0〉, while a

constant sind represents [ind]. The variables x and y quantify over states in M , and the variable s

quantifies over the successor functions [ind] with ind ∈ Ind.

The first-order atom Qp(x), represents that p holds at a state x, while Qp(0) represents that p

holds at the state s0.

The first-order term app(s, x) represents the state resulting from the application of the successor

function s to the state x, while app(sind, x) represents the state resulting from the application of the

successor function [ind] to the state x. Then the first-order atomsQp(app(s, x)) andQp(app(sind, x))

represent that p holds at states app(s, x) and app(sind, x), respectively.

Finally, for a disjunction of propositional literals C = (¬)p0 ∨ . . .∨ (¬)pn, let ⌈C⌉(t), where t is

a term, denote the first-order clause (¬)Qp0
(t) ∨ . . . ∨ (¬)Qpn

(t).

We are then able to represent every initial, global, A-step and E- step clause Γ by a first-order

clause ⌈Γ⌉ as follows:

1. An initial clause start⇒ C is represented by ⌈C⌉(0)

2. A global clause true⇒ C is represented by ⌈C⌉(x)

3. An A-step clause P ⇒ A#C is represented by ⌈¬P ⌉(x) ∨ ⌈C⌉(app(s, x))

4. An E-step clause P ⇒ E〈ind〉#C is represented by ⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x))

Note that it is possible for C to be empty (which is equivalent to false) in an A-step clause

P ⇒ A#C or an E-step clause P ⇒ E〈ind〉#C. In our calculus, such clauses are subject to the

rewrite rules RW1 and RW2, and would both be replaced by the global clause true⇒ ¬P .

We see that in our first-order representation of determinate SNFg
CTL clauses, for an empty

disjunction C, the SNFg
CTL clauses P ⇒ A#C, P ⇒ E〈ind〉#C, and true⇒ ¬P all have the same

representation, namely, ⌈¬P ⌉(x). Thus, on the first-order level, the rewrite rules RW1 and RW2

are superfluous.

We now give a number of concrete examples:

SNFg
CTL clauses First-order representation

start⇒ p ∨ ¬r Qp(0) ∨ ¬Qr(0)

r ⇒ E〈1〉#p ¬Qr(x) ∨Qp(app(s1, x))

¬p ∧ q ⇒ A#false Qp(x) ∨ ¬Qq(x)

true⇒ p ∨ ¬q Qp(x) ∨ ¬Qq(x)

start⇒ false ⊥

4.2.3 Implementing step resolution

The representation of determinate SNFg
CTL clauses by first-order clauses allows for all our step

resolution rules to be implemented using the first-order ordered resolution with selection calculus

presented in Section 4.2.1.

To this end, we have to define the atom ordering and selection function on the first-order level

in such a way that they mirror their definition on the propositional level.

88 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

Regarding the first-order atom ordering, note that our signature only contains unary predicate

symbols. Let ≻ be a propositional atom ordering. Then we allow ≻FOL to be any ground first-order

atom ordering such that Qq(s) ≻FOL Qp(t) if

(i) dp(s) > dp(t); or

(ii) dp(s) = dp(t) and q ≻ p.

According to this definition, lifted to the non-ground level, we have

Qw(app(sind, app(sind′ , x))) ≻FOL Qp(app(sind′′ , x)) ≻FOL Qq(x),

for any predicate symbols Qp, Qq, Qw, and constants sind, sind′ , sind′′ and

Qq(app(sind, x)) ≻FOL Qp(app(sind′ , x))

Qq(x) ≻FOL Qp(x)

provided q ≻ p.

Regarding the first-order selection function SFOL, we use the close correspondence between de-

terminate SNFg
CTL clauses and their first-order representation to define SFOL as follows:

1. A literal⌈¬l⌉(0) is selected in ⌈C⌉(0) by SFOL iff ¬l is selected in C by S;

2. A literal ⌈¬l⌉(x) is selected in ⌈C⌉(x) by SFOL iff ¬l is selected in C by S;

3. A literal ⌈¬l⌉(app(s, x)) is selected in ⌈¬P ⌉(x) ∨ ⌈C⌉(app(s, x)) by SFOL, with C being non-

empty, iff ¬l is selected in C by S;

4. A literal ⌈¬l⌉(app(sind, x)) is selected in ⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) by SFOL, with C being

non-empty, iff ¬l is selected in C by S.

There is one more complication that we need to overcome. In the case of SNFg
CTL clauses, we have

made the simplifying assumption that the conjunctions and disjunctions of propositional literals

occurring in these clauses do not contain multiple occurrences of the same literal, thus avoiding

the need for factoring inference rules in our calculus. For example, resolving two global clauses

Γ1 = true ⇒ ¬p ∨ q and Γ2 = true ⇒ p ∨ q simply results in Γ3 = true ⇒ q. However, for first-

order clauses we have followed the definition of clauses as multisets of first-order literals. Thus,

resolving ⌈Γ1⌉ = ¬Qp(x)∨Qq(x) with ⌈Γ2⌉ = Qp(x)∨Qq(x) results in Qq(x)∨Qq(x), which is not

identical to ⌈Γ3⌉ = Qq(x).

To eliminate this mismatch, we require that on the first-order level all clauses are kept in

condensed form, that is, every first-order clause C is replaced by its condensation Cond(C). In our

example, we have Cond(Qq(x) ∨Qq(x)) = Qq(x) = ⌈Γ3⌉.

We are then able to establish the following correspondence between R
≻,S
CTL inferences on deter-

minate SNFg
CTL clauses and R

≻FOL,SFOL

FOL inferences on their first-order representation.

Theorem 4.2 Let ≻ and S be an atom ordering and a selection function, respectively, for R
≻,S
CTL

and let ≻FOL and SFOL be a corresponding atom ordering and a corresponding selection function,

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 89

An application of SRES1

P ⇒ A#(C ∨ l)
Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ A#(C ∨D)

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈¬P ⌉(x) ∨ ⌈C⌉(app(w, x)) ∨Ql(app(w, x))
⌈¬Q⌉(y) ∨ ⌈D⌉(app(z, y)) ∨ ¬Ql(app(z, y))
Cond(⌈¬P ⌉(x) ∨ ⌈¬Q⌉(x) ∨ ⌈C⌉(app(w, x)) ∨ ⌈D⌉(app(w, x)))

where the definition of ≻FOL and SFOL ensures that Ql(app(w, x)) and ¬Ql(app(z, y)) are both
eligible in their respective clauses for the substitution σ = {y ← x, z ← w}.

Figure 4.1: Emulating SRES1 inferences in first-order logic

An application of SRES2

P ⇒ E〈ind〉#(C ∨ l)
Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨Ql(app(sind, x))
⌈¬Q⌉(y) ∨ ⌈D⌉(app(z, y)) ∨ ¬Ql(app(z, y))
Cond(⌈¬P ⌉(x) ∨ ⌈¬Q⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨ ⌈D⌉(app(sind, x)))

where the definition of ≻FOL and SFOL ensures that Ql(app(sind, x)) and ¬Ql(app(z, y)) are both
eligible in their respective clauses for the substitution σ = {y ← x, z ← sind}.

Figure 4.2: Emulating SRES2 inferences in first-order logic

respectively, for R
≻FOL,SFOL

FOL . Let Γ1 and Γ2 be two determinate clauses. Then a determinate clause

Γ3 is derivable from Γ1 and Γ2 by SRES1 to SRES8 in R
≻,S
CTL iff there exists a clause C derivable

from ⌈Γ1⌉ and ⌈Γ2⌉ by R
≻FOL,SFOL

FOL such that ⌈Γ3⌉ is a condensation of C.

Proof. Our definition of SFOL and ≻FOL ensures that there is a one-to-one correspondence between

eligible literals in determinate SNFg
CTL clauses and eligible literals in the first-order representation

of these clauses.

Therefore, we can show that for any inference by SRES1 to SRES8 there is a corresponding

inference by R
≻FOL,SFOL

FOL . Figures 4.1 to 4.8 show this relationship for inferences by SRES1 to SRES8,

respectively.

We also show that provided we keep first-order clauses in condensed form, R
≻,S
CTL does not allow

additional inferences which do not have a correspondence by SRES1 to SRES8.

As we know, a determinate clause is either an initial clause Ci, a global clause Cg, an A-step

clause CA or an E-step clause CE . We can distinguish ten different types of inference, CiCg, CiCA,

CiCE , CgCA, CgCE , CACE , CiCi, CgCg, CACA and CECE , where CiCg indicates an inference

90 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

An application of SRES3

P ⇒ E〈ind〉#(C ∨ l)
Q⇒ E〈ind〉#(D ∨ ¬l)

P ∧Q⇒ E〈ind〉#(C ∨D)

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨Ql(app(sind, x))
⌈¬Q⌉(y) ∨ ⌈D⌉(app(sind, y)) ∨ ¬Ql(app(sind, y))
Cond(⌈¬P ⌉(x) ∨ ⌈¬Q⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨ ⌈D⌉(app(sind, x)))

where the definition of ≻FOL and SFOL ensures that Ql(app(sind, x)) and ¬Ql(app(sind, y)) are
both eligible in their respective clauses for the substitution σ = {y ← x}. Note that for any two
literals Ql(app(sind, x)) and Ql(app(sind′ , y)), they are only unifiable if ind = ind′.

Figure 4.3: Emulating SRES3 inferences in first-order logic

An application of SRES4

start⇒ C ∨ l
start⇒ D ∨ ¬l
start⇒ C ∨D

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(0) ∨Ql(0)
⌈D⌉(0) ∨ ¬Ql(0)
Cond(⌈C⌉(0) ∨ ⌈D⌉(0))

where the definition of ≻FOL and SFOL ensures that Ql(0) and ¬Ql(0) are both eligible in their
respective clauses.

Figure 4.4: Emulating SRES4 inferences in first-order logic

involving an initial clause and a global clause, CiCA indicates an inference involving an initial

clause and an A-step clause, etc. SRES1 to SRES8 map to eight of these types of inference. The

two not covered by SRES1 to SRES8 are CiCA and CiCE , that is, R
≻,S
CTL does not allow inferences

between an initial clause and an A-step clause or between an initial clause and an E-step clause.

We show that R
≻FOL,SFOL

FOL also does not allow the corresponding first-order inferences of CiCA and

CiCE .

For an inference of type CiCA, consider the following four cases:

1. Let Qq(0)∨C represent an initial clause and let ¬Qq(app(s, x))∨D represent an A-step clause.

Here, Qq(0) and ¬Qq(app(s, x)) are not unifiable.

2. Let ⌈Γ1⌉ = Qq(0)∨C represent an initial clause Γ1 and let ⌈Γ2⌉ = ¬Qq(x)∨(¬)Qp(app(s, x))∨D

represent an A-step clause Γ2. ¬Qq(x) is not eligible in ⌈Γ2⌉: Condition (i) in the definition

of ≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL Qq(x)σ for any substitution σ and SFOL is defined

in such a way that ¬Qq(x) is not selected.

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 91

An application of SRES5

true⇒ C ∨ l
start⇒ D ∨ ¬l
start⇒ C ∨D

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(x) ∨Ql(x)
⌈D⌉(0) ∨ ¬Ql(0)
Cond(⌈C⌉(0) ∨ ⌈D⌉(0))

where the definition of ≻FOL and SFOL ensures that Ql(x) and ¬Ql(0) are both eligible in their
respective clauses for the substitution σ = {x← 0}.

Figure 4.5: Emulating SRES5 inferences in first-order logic

An application of SRES6

true⇒ C ∨ l
Q⇒ A#(D ∨ ¬l)
Q⇒ A#(C ∨D)

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(x) ∨Ql(x)
⌈¬Q⌉(y) ∨ ⌈D⌉(app(z, y)) ∨ ¬Ql(app(z, y))
Cond(⌈¬Q⌉(y) ∨ ⌈C⌉(app(z, y)) ∨ ⌈D⌉(app(z, y)))

where the definition of ≻FOL and SFOL ensures that Ql(x) and ¬Ql(app(z, y)) are both eligible in
their respective clauses for the substitution σ = {x← app(z, y)}.

Figure 4.6: Emulating SRES6 inferences in first-order logic

3. Let ¬Qq(0)∨C represent an initial clause and let Qq(app(s, x))∨D represent an A-step clause.

Again ¬Qq(0) and Qq(app(s, x)) are not unifiable.

4. Let ⌈Γ1⌉ = ¬Qq(0)∨C represent an initial clause Γ1 and let ⌈Γ2⌉ = Qq(x)∨(¬)Qp(app(s, x))∨D

represent an A-step clause Γ2. Qq(x) is not eligible in ⌈Γ2⌉: Condition (i) in the definition of

≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL Qq(x)σ for any substitution σ and SFOL only selects

negative literals.

For an inference of type CiCE , the proof is analogous. Therefore, inferences of type CiCA and

CiCE are not possible in R
≻FOL,SFOL

FOL , just as they are not possible in R
≻,S
CTL.

Furthermore, all inferences by SRES1 to SRES8 involve only literals on the right-hand sides of

determinate clauses. We prove that inferences in R
≻FOL,SFOL

FOL are subject to an analogous restriction.

This is again due to the ordering ≻FOL and the selection function SFOL.

We show it holds for inferences of type CACA.

• Let ⌈Γ1⌉ = ¬Qq(x) ∨ (¬)Qq1
(app(s, x)) ∨ C represent an A-step clause Γ1 and let ⌈Γ2⌉ =

Qq(x) ∨ (¬)Qq2
(app(s, x)) ∨ D represent another A-step clause Γ2. Qq(x) is not eligible in

92 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

An application of SRES7

true⇒ C ∨ l
Q⇒ E〈ind〉#(D ∨ ¬l)
Q⇒ E〈ind〉#(C ∨D)

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(x) ∨Ql(x)
⌈¬Q⌉(y) ∨ ⌈D⌉(app(sind, y)) ∨ ¬Ql(app(sind, y))
Cond(⌈¬Q⌉(y) ∨ ⌈C⌉(app(sind, y)) ∨ ⌈D⌉(app(sind, y)))

where the definition of ≻FOL and SFOL ensures that Ql(x) and ¬Ql(app(sind, y)) are both eligible
in their respective clauses for the substitution σ = {x← app(sind, y)}.

Figure 4.7: Emulating SRES7 inferences in first-order logic

An application of SRES8

true⇒ C ∨ l
true⇒ D ∨ ¬l
true⇒ C ∨D

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(x) ∨Ql(x)
⌈D⌉(y) ∨ ¬Ql(y)
Cond(⌈C⌉(x) ∨ ⌈D⌉(x))

where the definition of ≻FOL and SFOL ensures that Ql(x) and ¬Ql(y) are both eligible in their
respective clauses for the substitution σ = {y ← x}.

Figure 4.8: Emulating SRES8 inferences in first-order logic

⌈Γ2⌉: Condition (i) in the definition of ≻FOL ensures that (¬)Qq2
(app(s, x))σ ≻FOL Qq(x)σ for

any substitution σ and SFOL only selects negative literals.

• Let ⌈Γ1⌉ = ¬Qq(app(s, x)) ∨ C represent an A-step clause Γ1 and let ⌈Γ2⌉ = Qq(x) ∨

(¬)Qp(app(s, x)) ∨ D represent another A-step clause Γ2. Qq(x) is not eligible in ⌈Γ2⌉:

Condition (i) in the definition of ≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL Qq(x)σ for any

substitution σ and SFOL only selects negative literals.

• Let ⌈Γ1⌉ = Qq(app(s, x)) ∨ C represent an A-step clause Γ1 and let ⌈Γ2⌉ = ¬Qq(x) ∨

(¬)Qp(app(s, x)) ∨ D represent another A-step clause Γ2. ¬Qq(x) is not eligible in ⌈Γ2⌉:

Condition (i) in the definition of ≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL ¬Qq(x)σ for any

substitution σ and SFOL is defined in such a way that ¬Qq(x) is not selected.

It also holds for inferences of type CECE .

• Let ⌈Γ1⌉ = ¬Qq(x) ∨ (¬)Qq1
(app(sind, x)) ∨ C represent an E-step clause Γ1 and let ⌈Γ2⌉ =

Qq(x) ∨ (¬)Qq2
(app(sind, x)) ∨D represent another E-step clause Γ2. Qq(x) is not eligible in

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 93

1 procedure eres(T, C)

2 // T is a saturated set of determinate clauses

3 // C is a sometime clause Q⇒ A3¬l or Q⇒ E〈ind〉3¬l
4 begin

5 if C is an A-sometime clause then

6 SOS := {D | D is a global or step clause in T};
7 else if C is an E-sometime clause then

8 SOS := {D | D is a global, A-step, or E-step clause with

the index ind in T};
9 end if

10 i := 0;

11 H−1(x) := true;
12 do

13 Goals := {ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Hi−1(x)σ}, where σ = {x← app(s, x)};
14 T1 := resolution sos(SOS, Goals);

15 T2 := {G(x) | G(x) ∨ ls(x) ∈ T1 and depth(G(x)) ≤ 1};
16 Hi(x) := ¬(

∧

T2);
17 if Hi(x) is equivalent to true then

18 return eresolvent(C, true);
19 else if Hi(x) is equivalent to false then

20 return ∅
21 else if Hi(x) is equivalent to Hi−1(x) then

22 return eresolvent(C, Hi(x));
23 end if

24 i := i+1;

25 while (T2 6= ∅)
26 end

Figure 4.9: eres : A loop search implementation using first-order resolution

⌈Γ2⌉: Condition (i) in the definition of ≻FOL ensures that (¬)Qq2
(app(s, x))σ ≻FOL Qq(x)σ for

any substitution σ and SFOL only selects negative literals.

• Let ⌈Γ1⌉ = ¬Qq(app(sind, x)) ∨ C represent an E-step clause Γ1 and let ⌈Γ2⌉ = Qq(x) ∨

(¬)Qp(app(sind, x)) ∨ D represent another E-step clause Γ2. Qq(x) is not eligible in ⌈Γ2⌉:

Condition (i) in the definition of ≻FOL ensures that (¬)Qp(app(sind, x))σ ≻FOL Qq(x)σ for any

substitution σ and SFOL only selects negative literals.

• Let ⌈Γ1⌉ = Qq(app(sind, x)) ∨ C represent an E-step clause Γ1 and let ⌈Γ2⌉ = ¬Qq(x) ∨

(¬)Qp(app(sind, x)) ∨ D represent another E-step clause Γ2. ¬Qq(x) is not eligible in ⌈Γ2⌉:

Condition (i) in the definition of ≻FOL ensures that (¬)Qp(app(sind, x))σ ≻FOL ¬Qq(x)σ for

any substitution σ and SFOL is defined in such a way that ¬Qq(x) is not selected.

Proofs for inferences of type CgCA, CgCE , and CACE are analogous. Therefore, R
≻FOL,SFOL

FOL

does not allow an inference resolving literals from left-hand sides of determinate clauses. Finally,

condensation ensures that the ordered factoring with selection rule of R
≻FOL,SFOL

FOL is not applicable.

This establishes the desired one-to-one correspondence between inferences by SRES1 to SRES8

and inferences by R
≻FOL,SFOL

FOL . ⊓⊔

94 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

We now provide an example to show how to use first-order order resolution to implement step

resolution rules.

Example 4.1

Previously, in Example 3.3 we considered the set T3 of SNFg
CTL and derived an empty clause

start ⇒ false from it by step resolution. The first-order representation T of the determinate

clause set T3 is as follows.

(1) Qr(0) ←− start⇒ r

(2) Qq(x) ∨Qp(app(s1, x))) ←− ¬q ⇒ E〈1〉#p

(3) ¬Qr(x) ∨ ¬Qq(app(s2, x)) ∨Qp(app(s2, x)) ←− r⇒ E〈2〉#(¬q ∨ p)

(4) ¬Qu(x) ∨ ¬Qp(app(s, x))) ←− u⇒ A#¬p

(5) Qu(x) ←− true⇒ u

We use the ordering based on the precedence u ≻ p ≻ q ≻ r and a selection function which

always returns the empty set of negative literals for every clause. Then we can obtain the following

derivation from the set T .

[2, R, 4] (6) Qq(x) ∨ ¬Qu(x)

[5, R, 6] (7) Qq(x)

[3, R, 4] (8) ¬Qr(x) ∨ ¬Qu(x) ∨ ¬Qq(app(s2, x))

[7, R, 8] (9) ¬Qr(x) ∨ ¬Qu(x)

[5, R, 9] (10) ¬Qr(x)

[1, R, 10] (11) ⊥

where [n, R, m] indicates that we resolve the clauses labelled (n) and (m).

The inferences deriving the determinate clauses 6, 8, 9, 10, 12, 13 in Example 3.3 corresponds to

the inferences in this example deriving the first-order clauses 6, 7, 8, 9, 10, 11, respectively. On the

other hand, the rewrite steps deriving clauses 7 and 11 in Example 3.3 have no correspondence on

the first-order level as the rewrite rules of R
≻,S
CTL are not required on the first-order level.

4.2.4 Implementing eventuality resolution

To implement the eventuality resolution rules ERES1 and ERES2, we will need to augment a first-

order theorem prover with an implementation of the E-loop search algorithm defined in Section 3.4.

Figure 4.9 shows the pseudocode for the implementation of this algorithm in our prover CTL-RP.

The procedure eres takes as input

1. a set T of determinate clauses, which we assume to be saturated under the step resolution

rules SRES1 to SRES8 and the rewrite rules RW1 and RW2, and

2. an A-sometime clause or E-sometime clause C.

As stated in Section 3.4, if C is an A-sometime clause Q⇒ A3¬l, then the loop search algorithm

considers all global clauses, A-step clauses, and E-step clauses in T , while if C is an E-sometime

clause Q⇒ E〈ind〉3¬l, then the loop search algorithm considers all global clauses, A-step clauses,

and all E-step clauses with index ind in T. Lines 5 to 9 of our algorithm implement this case

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 95

distinction and store the set of clauses that needs to be considered in the set SOS. The main part

of the algorithm, lines 12 to 25, consists of a loop in which we construct a sequence of formulae

H−1(x), H0(x), H1(x), . . . until one of the following three termination conditions is satisfied:

(a) if Hi(x) is equivalent to true, then we use the procedure eresolvent to return the resolvents

for C and the loop formula true (lines 17 and 18);

(b) if Hi(x) is equivalent to false, then no loop can be found and we return the empty set of

resolvents (lines 19 and 20);

(c) if Hi(x) is equivalent to Hi−1(x), then we again use the procedure eresolvent to return the

resolvents for C and the loop formula Hi(x) (line 21 and 22).

Lines 13 to 16 deal with the construction of the formula Hi(x) for the current index i. Recall from

Section 3.4 that to construct Hi, we need to look for merged clauses Aj ⇒ (Bj∧l), Aj ⇒ A#(Bj∧l)

or Aj ⇒ E〈ind〉#(Bj ∧ l) such that Bj ⇒ Hi−1 (or, equivalently, A#Bj ⇒ A#Hi−1). To do so, we

construct a set of goal clauses Goals with each clause containing the literal ¬Ql(app(s, x)), the first-

order representation of A#¬l, and a disjunct from ¬Hi−1(app(s, x)), the first-order representation

of A#¬Hi−1. When trying to prove these goal clauses using the clauses in SOS, all newly derived

clauses of depth one or less would be the first-order representations of the Aj ’s that we look for.

To make it easier to identify newly derived clauses, we add a literal ls(x), where ls is a new unary

predicate symbol and ls ≻ p, for all propositions p occurring in the augmented set aug(T) of T,

to each of the goal clauses. As there are no negative occurrences of ls(x) in SOS, ls(x) occurs in

all clauses derived from our goal clauses. In Figure 4.9, line 13 constructs the goal clauses, line 14

calls the resolution sos procedure to saturate SOS ∪ Goals using a set of support strategy which

described in Figure 4.13, line 15 collects all newly derived clauses of depth one or less from the

saturated set using the literal ls(x) to identify newly derived clauses, and, finally, line 16 computes

Hi(x).

The following example illustrates how our implementation of the loop search algorithm works.

Example 4.2

Let the set T consist of the three SNFg
CTL clauses a⇒ A#l, b⇒ A#l, and a⇒ E〈ind〉#a and we

are looking for a loop in ¬l. The first-order representation of these clauses is given by

(1) ¬Qa(x) ∨Ql(app(s, x))

(2) ¬Qb(x) ∨Ql(app(s, x))

(3) ¬Qa(x) ∨Qa(app(sind, x))

The atom ordering we use is based on the precedence ls ≻ l ≻ a ≻ b and a selection function which

returns the empty set of negative literals for every clause, that is, no literals are selected in any

clause.

In the following description of resolution derivations, [G] indicates a goal clause that has been

added to T , [n,R,m] indicates a resolution inference involving the clauses labelled (n) and (m),

and [n,C] indicates the condensation of the clause labelled (n).

During the first iteration of the main loop of eres, the set of goal clauses consists of the single

clause ls(x) ∨ ¬Ql(app(s, x)) and resolution sos conducts the following inferences:

96 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

1 procedure eresolvent(C, Hi(x))

2 // C is a sometime clause Q⇒ A3¬l or Q⇒ E〈ind〉3¬l
3 // Hi(x) = ¬

∧n
i=1Gi(x) is a loop formula

4 begin

5 if Hi(x) = true then

6 Gi(x) := false;
7 end if

8 if C is an A-sometime clause then

9 resolvents := {⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Gi(x) | 1 ≤ i ≤ n} ∪
{¬QwA

¬l
(x) ∨ ¬Ql(app(s, x)) ∨Gi(x)σ | 1 ≤ i ≤ n,

σ = {x← app(s, x)}} ∪
{⌈¬Q⌉(x) ∨ ¬Ql(x) ∨QwA

¬l
(x),

¬QwA

¬l
(x) ∨ ¬Ql(app(s, x)) ∨QwA

¬l
(app(s, x))};

10 else if C is an E-sometime clause then

11 resolvents := {⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Gi(x) | 1 ≤ i ≤ n} ∪
{¬Qwind

¬l
(x) ∨ ¬Ql(app(sind, x)) ∨Gi(x)σ | 1 ≤ i ≤ n,

σ = {x← app(sind, x)}} ∪
{⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Qwind

¬l
(x),

¬Qwind
¬l

(x) ∨ ¬Ql(app(sind, x)) ∨Qwind
¬l

(app(sind, x))};
12 end if

13 return resolvents;

14 end

Figure 4.10: The eresolvent procedure

[G] (4) ls(x) ∨ ¬Ql(app(s, x))

[1, R, 4] (5) ls(x) ∨ ¬Qa(x)

[2, R, 4] (6) ls(x) ∨ ¬Qb(x)

Clauses (5) and (6) contribute to the construction of H0(x) (see lines 15 and 16 of the eres) and we

obtain H0(x) = Qa(x) ∨Qb(x). As H0(x) does not satisfy any of the three termination conditions,

the main loop of eres will be executed a second time. This time, we have two goal clauses, clauses

(7) and (8) below:

[G] (7) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qa(app(s, x))

[G] (8) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qb(app(s, x))

[1, R, 7] (9) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(app(s, x))

[1, R, 8] (10) ls(x) ∨ ¬Qa(x) ∨ ¬Qb(app(s, x))

[2, R, 7] (11) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(app(s, x))

[2, R, 8] (12) ls(x) ∨ ¬Qb(x) ∨ ¬Qb(app(s, x))

[3, R, 9] (13) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(x)

[13, C] (14) ls(x) ∨ ¬Qa(x)

[3, R, 11] (15) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(x)

As the condensed clause (14) makes clause (13) redundant and clause (14) also subsumes clause

(15), of all the clauses in the saturated set, only clause (14) contributes to the construction of

H1(x) and we obtain H1(x) = Qa(x). Again, H1(x) does not satisfy any of the three termination

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 97

1 procedure resolution prover(N)
2 begin

3 Wo := ∅; Us := taut(sub(N));
4 while (Us 6= ∅ and ⊥ 6∈ Us)

5 Given := choose(Us);
6 Us := Us \ {Given};
7 Wo := Wo ∪ {Given};
8 New := res(Given,Wo)∪ fac(Given);
9 New := taut(sub(New));

10 New := sub(sub(New,Wo),Us);
11 Wo := sub(Wo,New);
12 Us := sub(Us,New)∪ New;
13 end

14 output();

15 end

Figure 4.11: A simple resolution prover [74]

conditions, and a third iteration of the main loop of eres is required. There is only one goal clause,

clause (16).

[G] (16) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qa(app(s, x))

[1, R, 16] (17) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(app(s, x))

[2, R, 16] (18) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(app(s, x))

[3, R, 17] (19) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(x)

[19, C] (20) ls(x) ∨ ¬Qa(x)

[3, R, 18] (21) ls(x) ∨ ¬Qa(x) ∨ ¬Qb(x)

Again, the condensed clause (20) makes clause (19) redundant and clause (20) also subsumes clause

(21). Only clause (20) remains to contribute to the construction of H2(x). We obtain H2(x) = Qa(x)

which is equivalent to H1(x). Thus, the third termination condition of eres is satisfied (line 21) and

the eresolvent procedure, shown in Figure 4.10, will return the appropriate resolvents.

We are now in the position to formulate the correspondence between derivations by R
≻,S
CTL and

derivations by R
≻FOL,SFOL

FOL supplemented by the eresolvent procedure and to state the correctness of

this approach to implementing R
≻,S
CTL.

Let T be a set of SNFg
CTL clauses such that T det is the set of all determinate clauses in T

and T ev is the set of all eventuality clauses in T . Let ⌈T det⌉ denote the set {⌈Γ⌉ | Γ ∈ T det} of

first-order clauses representing the determinate clauses in T det .

Then a R
≻,S
CTL-emulating derivation from T by R

≻FOL,SFOL

FOL is a sequence N0, N1, N2, . . . of sets of

first-order clauses such that N0 = ⌈T det⌉ and for every i, i ≥ 0,

1. Ni+1 = Ni ∪ {C} where C is the condensation of a clause derived by applying the ordered

resolution with selection rule of R
≻FOL,SFOL

FOL with an atom ordering≻FOL and a selection function

SFOL corresponding to ≻ and S, respectively, to premises in Ni; or

2. Ni+1 = Ni ∪R where R is eres(Ni,Γ) for some eventuality clauses Γ in T ev .

98 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

A R
≻,S
CTL-emulating refutation of T by R

≻FOL,SFOL

FOL is a R
≻,S
CTL-emulating derivation N0, N1, . . . from T

by R
≻FOL,SFOL

FOL such that for some i ≥ 0, Ni contains the empty clause.

Theorem 4.3 Let T be a set of SNFg
CTL clauses. Then T has a refutation by R

≻,S
CTL iff there is a

R
≻,S
CTL-emulating refutation of T by R

≻FOL,SFOL

FOL .

Proof. Let T0, T1, . . . be a refutation of T = T0 by R
≻,S
CTL where we restrict applications of ERES1

and ERES2 to loop formulae that can be found by a CTL equivalent of our loop search algorithm.

First, we establish that this restriction is still complete. Basically our loop search algorithm eres

in Figure 4.9 is almost the same as the loop search algorithm in Section 3.4.3. The only difference

is that we provide implementations for the following two tasks in the loop search algorithm in

Section 3.4.3.

(1) Search in T for merged clauses of the form Xj ⇒ A#Yj , Xj ⇒ E〈ind〉#Yj , and Xj ⇒ Yj such

that Yj ⇒ l is provable in propositional logic.

(2) Search in T for merged clauses of the form Xj ⇒ Yj , Xj ⇒ A#Yj or Xj ⇒ E〈ind〉#Yj such

that Yj ⇒ l and Yj ⇒ Hi are provable in propositional logic.

Thus, we only need to prove the correctness of our implementation for those two tasks. We now

give a number of useful definitions.

Using the algorithm eres , we essentially search for clauses in SOS to form such merged clauses.

Let Tl be the set such that a clause Γ is in Tl iff ⌈Γ⌉ is in SOS.

If there exists a set ∆ of SNFg
CTL clauses such that all clauses in ∆ can be merged into one

merged clause, then we use m(∆) to denote this merged clause.

Let Q be a conjunction of literals. Then we use cond(Q) to denote a conjunction of literals
∧n

i=1 pi such that (i) for every i, pi is in cond(Q) iff pi occurs in Q and (ii) for every i, j, 1 ≤ i <

j ≤ n, pi 6= pj . For example, if Q = a ∧ b ∧ a, then cond(Q) = a ∧ b.

We consider the case for ERES2, i.e. all E-step clauses in T have the same index ind. Therefore,

any subset ∆ of Tl has a merged clause m(∆). As to the proof for ERES1, it can be achieved in

an analogous way.

For task (1), we need to prove that

(3) for every clause G(x) in T2, there exists a set ∆ ⊆ Tl such that, for its merged clause

m(∆) = X ⇒ ∗Y , Y ⇒ l is provable and cond(X) = P , where ⌈¬P ⌉(x) = G(x) and ∗ is

either empty or a temporal operator in the set {A#,E〈ind〉#}; and

(4) if there exists a set ∆ ⊆ Tl such that, for its merged clause m(∆) = X ⇒ ∗Y , Y ⇒ l is

provable, then there exists a clause G(x) = ⌈¬P ⌉(x) in T2 such that X ⇒ P , i.e. ⌈¬X⌉(x) is

equivalent to G(x) or ⌈¬X⌉(x) can be subsumed by G(x).

Firstly, we consider case (3). We know that, if a clause G(x) is in T2, then from the algorithm

eres , ⌈Γ1⌉ is in T1, where Γ1 = P ∧ ¬ls ⇒ ∗ false and ⌈¬P ⌉(x) = G(x). We also know that ls does

not occur in SOS, ⌈Γ2⌉ (where Γ2 = ¬ls ⇒ A#¬l) is in Goals and SOS is saturated. Therefore, ⌈Γ1⌉

must be derived using ⌈Γ2⌉ and clauses in SOS in resolution sos . By Theorem 4.2, Γ1 also can be

derived using Γ2 and Tl. We know according to our step resolution rules, (5) the left-hand side of

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 99

the resolvent of an application of step resolution rules to two premises P1 ⇒ ∗D1 and P2 ⇒ ∗D2 is

cond(P1 ∧ P2). Let ∆ ⊆ T be the set consisting of the clauses involved in the derivation to derive

Γ1 = P ∧ ¬ls ⇒ ∗ false and let m(∆) = X ⇒ ∗ Y . Then cond(X) = P . Since we know that false

is derived, then by the soundness of our step resolution rule the set {Y } ∪ {¬l} is inconsistent, i.e.

Y ∧ ¬l⇒ false. Consequently Y ⇒ l.

Secondly, we prove case (4). Assume m(∆) is X ⇒ ∗Y .

• Assume Y is consistent. As Y ⇒ l, the set Wr of propositional clauses is unsatisfiable, where

Wr = {B | A⇒ A#B ∈ ∆}∪{B | A⇒ E〈ind〉#B ∈ ∆}∪{B | true⇒ B ∈ ∆}∪{¬l | ¬ls ⇒

A#¬l}. In Theorem 3.7, we have established that for an unsatisfiable set of propositional

clauses like Wr, it has a refutation by propositional ordered resolution with selection using

the same ordering and selection function as for R
≻,S
CTL. Furthermore, there is a derivation by

the step resolution rules SRES1 to SRES3 and SRES6 to SRES8 such that Γ3 = Q⇒ ∗ false

can be derived and Q is the conjunction of literals. As Y is not unsatisfiable and Y ⇒ l, to

derive Γ3, ¬ls ⇒ A#¬l must be involved. Since ls does not occur in Tl, ¬ls is in Q. Let

Q = ¬ls ∧ P . Then Γ3 = P ∧ ¬ls ⇒ ∗ false. By Theorem 4.2 and the algorithm eres , ⌈Γ3⌉

is in T1. Therefore, there exists a clause G(x) in T2 such that G(x) = ⌈¬P ⌉(x). Let ∆′ be

the set consisting of the clauses involved in the derivation to derive Γ3 = P ∧ ¬ls ⇒ ∗ false

and let m(∆′) = X ′ ⇒ ∗ Y ′. As it is not necessary that all the clauses in ∆ occurring in

that derivation, we obtain that ∆′ ⊆ ∆ and, consequently, X ⇒ X ′. From (5), we know that

P = cond(X ′), so X ′ ⇒ P . Thus, X ⇒ P .

• Assume Y is inconsistent. In this case, even if the clause G(x) can not be found in T2,

the algorithm eres is still correct, as the possible resolvents generated for ∆ can always be

subsumed by some clauses in SOS. Assume ∆ = {A1 ⇒ ∗C1, . . . , An ⇒ ∗Cn} and
∧n

i=1 Ci

is inconsistent. We also assume that (i) loop search is applied for the E-sometime clause

Q⇒ E〈ind〉3¬l; (ii) a loop can be found; and (iii) the formula Hi built in the last iteration of

the loop search is Hi = D ∨ (
∧n

i=1Ai). Then the resolvents generated for ∆ are the following

clauses:

Γ4 = true⇒ ¬Q ∨ ¬l ∨
∨n

i=1 ¬Ai Γ5 = wind
¬l ⇒ E〈ind〉#(¬l ∨

∨n
i=1 ¬Ai)

As
∧n

i=1 Ci is inconsistent and SOS is saturated, there exists a clause ⌈Γ6⌉, where

Γ6 = true⇒
∨m

j=1 ¬A
′
j ,

in SOS such that ∆′ = {A′
1 ⇒ ∗C

′
1, . . . , A

′
m ⇒ ∗C

′
m} ⊆ ∆. Therefore, ⌈Γ6⌉ =

∨m
j=1⌈¬A

′
j⌉(x)

subsumes ⌈Γ4⌉ = ⌈¬Q⌉(x)∨¬Ql(x)∨
∨n

i=1⌈¬Ai⌉(x) and ⌈Γ5⌉ = ¬Qwind
¬l

(x)∨¬Ql(app(sind, x))∨
∨n

i=1⌈¬Ai⌉(app(sind, x)).

For task (ii), the proof is analogous. By the completeness of the loop search algorithm for CTL

[15], our version of the loop search algorithm is complete as well.

Finally, we show by induction over the R
≻,S
CTL refutation that we can construct a R

≻,S
CTL-emulating

derivation N0, N1, . . . from T such that for every i, i ≥ 0, Ni = ⌈T det
i ⌉. The base case, where

100 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

1 procedure main(ϕ)

2 // ϕ is a CTL formula

3 begin

4 N := transform to fol(transform to snf (simp(nnf (ϕ))));
5 New := {C | C is a determinate clause in N};
6 ST := {C | C is a sometime clause in N};
7 SOS := ∅;
8 do

9 New := reduction mrr(New);

10 SOS := resolution sos(SOS, New);

11 New := ∅;
12 if (⊥ 6∈ SOS) then

13 foreach A-sometime clause and E-sometime clause C in ST

14 G := eres(SOS, C);

15 if (G 6= ∅) then

16 New := New ∪ G;

17 end if

18 end for

19 New := sub(New, SOS);

20 end if

21 while (⊥ 6∈ SOS and New 6= ∅)
22 output();

23 end

Figure 4.12: The main procedure of CTL-RP

we consider T = T0 is trivial, as by definition N0 = ⌈T det
0 ⌉. For the induction step, we have to

consider whether Ti+1 is derived from Ti by adding the resolvent of a step resolution inference

or the results of an application of an eventuality resolution rule. In the first case, Theorem 4.2

establishes the required correspondence. In the second case, since we use essentially the same loop

search algorithm, the eresolvent procedure in Figure 4.10 will find a first-order representation of

the same loop formula and return the first-order representation of the same result.

Therefore, if Ti contains a contradiction for some i ≥ 0, then Ni contains the empty clause as

Ni = ⌈T det
i ⌉. The R

≻,S
CTL-emulating derivation N0, N1, . . . from T that we have just constructed is a

refutation.

The proof for the reverse direction of the theorem is analogous. ⊓⊔

4.2.5 The main procedure of our implementation

The architecture of our resolution theorem prover for CTL is dictated by the differentiation that

we have to make between sometime clauses, which are subject to the eventuality resolution rules,

implemented by the procedure eres, and determinate clauses, which are subject to the step resolution

rules, implemented by ordered resolution with selection. There are two possibilities how these two

can be integrated.

The first possibility is to treat eres as just another inference rule besides the resolution (and

factoring) rule of first-order resolution. To illustrate this approach, consider the main procedure of

4.2. IMPLEMENTATION OF THE CALCULUS R
≻,S
CTL 101

a simple first-order resolution prover [74] as shown in Figure 4.11. In this procedure, choose(N)

selects and removes a clause from a clause set N , fac(C) is the set of all factors derivable from a

clause C, res(C,N) is the set of all resolvents derivable between a clause C and a set of clauses

N , taut(N) is the result of exhaustive tautology elimination to N , sub(N) returns the set N

after exhaustive application of subsumption deletion, and sub(N,M) returns all clauses in N not

subsumed by clauses in M . To integrate eres we could simply replace line 8 with a case distinction:

if Given is the first-order representation of a determinate clause, then let New be the set of all

condensed resolvents between Given and Wo under ordered resolution with selection; else if Given is

a sometime clause, then let New be the result of applying eres to the set of first-order representations

of determinate clauses in Us ∪ Wo, that is, all currently available determinate clauses, and Given.

However, eres assumes that the set of clauses it is given is already saturated and that only inferences

between this set and the goal clauses constructed in eres are required, otherwise not all loop formulae

might be found. But Us ∪ Wo is not saturated as inferences between clauses in Us have not been

computed yet. So, we would need to saturate Us ∪ Wo within eres itself, which obviously leads to

repeated inferences as resolution prover will continue to saturate Us ∪ Wo independently of eres.

Thus, this would not be an efficient approach.

The second possibility is to perform the saturation of determinate clauses first before we try

to apply eres. This obviously ensures that eres receives a saturated set of determinate clauses

as input. But since each application of eres to a sometime clause may derive new determinate

clauses, we will have to re-iterate the overall saturation process with these new clauses. This gives

rise to the algorithm for the main procedure of CTL-RP shown in Figure 4.12. The procedure

takes a CTL formula ϕ as input and transforms ϕ into a set N of SNFg
CTL clauses in first-order

representation by computing the negation normal form of ϕ using nnf and performing boolean and

CTL simplifications, including tautology removal, using simp, then transforming the resulting CTL

formula into an equi-satisfiable set of SNFg
CTL clauses using transform to snf , and finally giving

these clauses a first-order representation using transform to fol (line 4). We split N into the set New

of first-order representations of determinate clauses and the set ST of sometime clauses (lines 5 and

6, respectively). As we will repeatedly saturate a set of clauses, a set of support strategy described

in Figure 4.13 is used, with the initial set of support SOS being empty (line 7).

We then enter the main loop of the procedure which will be repeated until either the empty

clause has been derived or we cannot derive any new clauses. Within the main loop we first simplify

New using matching replacement resolution [52] (line 9) which we found to be an effective reduction

in early experiments with CTL-RP. We then saturate the set New with respect to the current set of

support SOS using the procedure resolution sos and the resulting set of clauses becomes the new set

of support (line 10). If we have not derived the empty clause yet, then we try to apply eres to each

of the sometime clauses (lines 13 to 18). The union of all the resolvents generated by applications of

eres becomes the set of new clauses New. Some of these resolvents may be redundant, in particular,

if applications of eres in a previous iteration of the loop have already been successful, that is,

have produced a non-empty set of resolvents. Therefore, we eliminate clauses from New which are

subsumed by clauses in SOS (line 19).

The procedure resolution sos is shown in Figure 4.13. The procedure takes as input a set of

clauses SOS which is assumed to be saturated and not to contain a contradiction, and a set of

102 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

1 procedure resolution sos(SOS, N)

2 // SOS is a saturated set of first-order clauses

3 // N is a non-saturated set of first-order clauses

4 begin

5 while (N 6= ∅ and ⊥ 6∈ N)

6 Given := choose(N);
7 N := N \ {Given};
8 SOS := SOS ∪ {Given};
9 New := cond(ores(Given, SOS));

10 New := sub(sub(New, SOS), N);

11 SOS := sub(SOS, New);

12 N := sub(N, New) ∪ New;

13 end

14 if ⊥ ∈ N then

15 SOS := SOS ∪ {⊥};
16 end if

17 return SOS;

18 end

Figure 4.13: The resolution sos procedure

clauses N. It returns the saturation of SOS ∪ N. The procedure is a minor variation of the simple

resolution prover resolution prover in Figure 4.11, with the set SOS taking the place of the set Wo of

worked-off clauses. Thus, while resolution prover starts with an empty set of worked-off clauses to

which we add clauses chosen from N, and from derived clauses, one by one, here we start with the

potentially non-empty set SOS to which we add clauses chosen from N, and from derived clauses. In

addition, we use ordered resolution with selection: ores(C,N) is the set of all resolvents derivable

between a clause C and a set of clauses N by the ordered resolution with selection rule, cond(N)

is the set of clauses {Cond(C) | C ∈ N}, where N is a set of determinate clauses.

4.2.6 CTL-RP

Currently, there are many high performance first-order theorem provers, which have been developed

for years, for example, SPASS [54], Vampire [72], E [65] and Prover9 [55]. Among all of them, SPASS

satisfies all our requirements, as it

• provides the implementation of resolution sos and all the inference and redundancy elimina-

tion rules for first-order ordered resolution with selection;

• is well-documented and well-supported;

• is mature software, having been developed for more than a decade and over several versions;

and

• can be modified for our purposes, since the source code is publicly available under the GNU

General Public License.

Therefore, our resolution theorem prover for CTL, CTL-RP, is based on the first-order resolution

prover SPASS 3.0 [54, 75]. To realise the calculus R
≻,S
CTL we have added our own implementations of

4.3. RELATED THEOREM PROVERS 103

1. the procedures nnf , simp, transform to snf , and transform to fol that are required to trans-

form a given CTL formula into a set of first-order representations of determinate clauses and

a set of sometime clauses;

2. the procedures eres and eresolvent that implement the eventuality resolution rules; and

3. the procedure main that integrates resolution sos with the implementation of eventuality

resolution to finally form our prover CTL-RP.

Our prover CTL-RP is not only able to tell us whether a given CTL formula is satisfiable or

not but also able to provide the corresponding proof if the given formula is unsatisfiable. For

step resolution, the proof can be extracted straightforwardly, while for eventuality resolution, the

premises can be traced from the formula returned by the loop search algorithm.

4.3 Related theorem provers

4.3.1 OTRES and TRP++

In 1991, a clausal resolution calculus RPLTL for PLTL was proposed by Fisher [37] (see also [26, 38]).

The calculus requires PLTL formulae to be transformed into a clausal normal form, called Separated

Normal Form (SNF). Just as our resolution calculus for CTL, Fisher’s resolution calculus for PLTL

consists of several step resolution rules and a single eventuality resolution rule.

In [28], Dixon proposed an approach of implementing RPLTL using a propositional/first-order

resolution prover to perform both step and eventuality resolution rules. Moreover, Dixon has

constructed a prototype prover OTRES based on this approach. A few years later, Hustadt and

Konev have developed an efficient temporal resolution theorem prover TRP++ [48], again based

on the calculus RPLTL.

In [48], they also proposed an interesting idea that SNF clauses can be represented by first-order

clauses and then the step resolution for PLTL can be performed by first-order resolution. However,

in the implementation, TRP++ does not adopt first-order techniques, but instead opts for a “near

propositional” approach. Generally speaking, they represent SNF clauses as propositional clauses

and supply each literal with an attribute, which indicates whether the literal is originally from an

initial clause, the left-hand side of a step clause or the right-hand side of a step clause. In this

thesis, we successfully extend their ideas about using first-order techniques for PLTL resolution to

CTL resolution and, consequently, we are able to reuse some existing high performance first-order

prover for our CTL prover CTL-RP.

4.3.2 Tableau Workbench

Besides CTL-RP, there appears to exist only one other CTL theorem prover, namely a CTL module

for the Tableau Workbench (TWB) [2]3.

3During the final stage of writing this thesis, we become aware of MLSolver
(http://www2.tcs.ifi.lmu.de/mlsolver/), which can be used to check CTL satisfiability. However, there was
insufficient time to include it in our empirical study.

104 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

CTL equivalences CTL-RP 00.14 TWB
1. A2p ≡ ¬E3¬p 0.007s 0.005s
2. E2p ≡ ¬A3¬p 0.007s 0.004s
3. E#(p ∨ q) ≡ E#p ∨E#q 0.005s 0.005s
4. A#p ≡ ¬E#¬p 0.003s 0.006s
5. E(pU q) ≡ q ∨ (p ∧E#E(pU q)) 0.019s 0.005s
6. A(pU q) ≡ q ∨ (p ∧A#A(pU q)) 0.028s 0.005s
7. E3p ≡ E(true U p) 0.007s 0.008s
8. A3p ≡ A(true U p) 0.007s 0.008s

Figure 4.14: Performance of CTL-RP 00.14 and TWB 3.4 on eight ‘textbook’ CTL formulae (CTL-
BF1)

The Tableau Workbench is a generic framework for building automated theorem provers for

arbitrary propositional logics which provides a general architecture and a high-level language which

allows users to specify tableau rules and provers based on these rules. It provides a number of pre-

defined provers for a wide range of logics, for example, propositional logic, linear-time temporal logic

and CTL. Regarding CTL, it implements a so-called one-pass tableau calculus for this logic which

results in a double-EXPTIME decision procedure [3]. Therefore the complexity of this CTL decision

procedure is higher than the complexity of CTL-RP, which is EXPTIME. Generally speaking, the

one-pass tableau searches for a satisfying CTL model structure by exploring alternative structures

and different branches in each structure using depth-first search, instead of constructing a behaviour

graph like structure and reducing it using elimination rules. It should be noted that the prime aim

of TWB is not efficiency.

4.4 Performance of CTL-RP

There is no established way to evaluate the performance of CTL decision procedures nor is there

a repository or random generator of CTL formulae that one might use for such an evaluation. We

4.4. PERFORMANCE OF CTL-RP 105

a, b ¬a, b

¬a,¬ba,¬b

Representation of this state transition
system in CTL

(a ∧ b)
A2(a ∧ b ⇒ A#((¬a ∧ b) ∨ (¬a ∧ ¬b)))
A2(a ∧ b ⇒ E#(¬a ∧ b))
A2(a ∧ b ⇒ E#(¬a ∧ ¬b))

A2(¬a ∧ b ⇒ A#((¬a ∧ b) ∨ (¬a ∧ ¬b)))
A2(¬a ∧ b ⇒ E#(¬a ∧ b))
A2(¬a ∧ b ⇒ E#(¬a ∧ ¬b))

A2(¬a ∧ ¬b ⇒ A#(¬a ∧ b))

Figure 4.15: A state transition system

have therefore created four sets of benchmark formulae ourselves that we have used to compare

CTL-RP version 00.14 with TWB version 3.4 and CTL-RP version 00.14 with version 00.09. The

difference between versions 00.14 and 00.09 is that version 00.09 implements the transformation

procedure used in [15] (see also Appendix A) while version 00.14 implements our new transformation

procedure introduced in Section 3.3.2. The comparison was performed on a Linux PC with an Intel

Core 2 Duo E6400 CPU@2.13 GHz and 3GB main memory, using the Fedora 9 operating system.

4.4.1 CTL-RP vs. TWB

The first set of benchmark formulae, CTL-BF1, consists of eight well-known equivalences between

temporal formulae taken from [31]. The CTL equivalences themselves and the CPU time required

by TWB and CTL-RP to prove each of them is shown in Figure 4.14. Both systems easily prove

each of the equivalences in less then 0.03 seconds, however, with TWB being significantly faster on

two of the formulae.

For the second set of benchmark formulae, CTL-BF2, we have created a small finite state

transition system and formalised it in CTL as shown in Figure 4.15. We have then defined five

properties, each given by a CTL formula, that one might try to establish for this state transition

system, and each benchmark formula in the second set is an implication stating that the CTL

specification of the finite state system implies one of these properties. Figure 4.16 shows the five

properties, their validity status with respect to the finite state transition system, and the CPU time

in seconds required by TWB and CTL-RP to establish that status. CTL-RP outperforms TWB by

a factor of about 1000 on two of the benchmark formulae and by a factor of 100 for the remaining

three benchmark formulae in CTL-BF2.

The third set of benchmarks, CTL-BF3, generalises the idea underlying CTL-BF2. Instead of

using a specification of a finite state system and properties that we have ‘crafted’ ourselves, we

use randomly generated ones. In particular, let a state specification be a conjunction of literals

li, 1 ≤ i ≤ 4, with each li being an element of {ai,¬ai}. Let a transition specification be a CTL

formula in the form

A2(s⇒ A#(
∨n

i=1 si)) or A2(s⇒ E#(
∨n

i=1 si)),

106 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

Property Status CTL-RP 00.14 TWB
1. A#(¬E3(a ∧ b)) Valid 0.04s 23.79s
2. A2(A(aU ¬a)) Valid 0.02s 25.84s
3. A2(a ∨ b) Not Valid 0.01s 0.85s
4. A2(E#¬b) Valid 0.03s 46.95s
5. E(bU ¬b) Valid 0.01s 2.95s

Figure 4.16: Performance of CTL-RP 00.14 and TWB 3.4 on finite state transition system (CTL-
BF2)

where n is a randomly generated number between 1 and 3, and s and each si, 1 ≤ i ≤ n is a

randomly generated state specification. Furthermore, let a property specification be a CTL formula

of the form

• ∗(
∨n

i=1 si), where ∗ is a randomly chosen element of {A#,E#,A2,E2,A3,E3}; or

• (
∨n

i=1 si) ∗ (
∨m

j=1 sj), where ∗ is a randomly chosen element of {AU ,EU }, n and m are two

randomly generated numbers between 1 and 2, and each si, 1 ≤ i ≤ n, and sj , 1 ≤ j ≤ m, is

a randomly generated state specification.

CTL-BF3 consists of one hundred formulae with each formula being a conjunction (set) of 30

transition specifications and 5 property specifications. All one hundred formulae are unsatisfiable.

Figure 4.17 shows a graph indicating the CPU in seconds required by TWB and CTL-RP to

establish the satisfiability or unsatisfiability of each benchmark formula in CTL-BF3. For CTL-RP,

each of the 100 benchmark formulae was solved in less than one CPU second. TWB, on the other

hand, required more time for most of the benchmark formulae and was not able to solve 21 of the

benchmark formulae in less than 200 CPU seconds each, which was the time limit we have given

to both provers. The results on the CTL-BF3 show that CTL-RP can provide a proof for each

benchmark formula in a reasonable time with the vast majority of formulae being solved in less than

0.25 seconds. In contrast, the performance of TWB is much more variable, with a high percentage

of formulae not being solved.

4.4. PERFORMANCE OF CTL-RP 107

Figure 4.17: Performance of CTL-RP 00.14 and TWB 3.4 on the third set of benchmark formulae
(CTL-BF3)

Transmitter

Receiver

¬tr0

s0 tr1

tr0
¬tr1

s1

¬rr1 ¬rr0

i
rr0

¬rr0

a0 a1

rr0

rr1

Figure 4.18: Transmitter and Receiver in the Alternating Bit Protocol

The last set of benchmarks, CTL-BF4, is based on a real world problem. We have specified a

network protocol, the Alternating Bit Protocol (ABP) [49] in CTL and specified and verified three

of its properties by CTL-RP and TWB. The Alternating Bit Protocol involves two participants,

namely a Transmitter and a Receiver. The Transmitter wants to send messages in a reliable

way to the Receiver through an unreliable communication channel, i.e. the channel may lose

messages but not infinitely many messages. To this end, the Transmitter appends to each message

a control bit. We assume that for the first message the Transmitter sends, it will use the control

bit 0. The Transmitter will repeatedly send the message including the control bit until it receives

an acknowledgement from the Receiver with the same control bit. The Transmitter will then

complement the control bit and start transmitting the next message including the new control bit.

This behaviour of Transmitter and Receiver can be described by finite state transition systems

as the ones shown in Figure 4.18. If the Transmitter is in its initial state s0, then it attaches the

108 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

control bit 0 to the current message and sends it to the Receiver. It will stay in state s0, that is,

follow the transition labelled ¬tr0 , until it receives an acknowledgement with control bit 0, in which

case it follows the transition labelled tr0 to state s1. The behaviour of the Transmitter in state s1

is identical to its behaviour in state s0, but with the control bit 1 taking the place of control bit 0.

If the Receiver is in its initial state i, then it will stay in state i, that is, follow the transition

labelled ¬rr0 , until it receives a message with control bit 0. It will then follow the transition

labelled rr0 to state a0. In state a0, the Receiver will send an acknowledgement with control bit 0

to the Transmitter. It will then stay in state a0, that is, follow the transition labelled ¬rr1 until it

receives a message with control bit 1. It then follows the transition labelled rr1 to state a1. The

behaviour of the Receiver in state a1 is identical to its behaviour in state a0, but with the control

bit 1 taking the place of control bit 0.

To represent the behaviour of Transmitter and Receiver in CTL, we associate a propositional

variable with every state and every positive transition label in the two finite state transition systems.

Then the initial condition of the Transmitter can be described by the CTL formula

s0 ∧ ¬tr0 ∧ ¬tr1

and the transitions of the Transmitter are represented by the following CTL formulae.

A2(s0 ∧ ¬tr0⇒ A#s0)

A2(s0 ∧ tr0⇒ A#s1)

A2(s1 ∧ ¬tr1⇒ A#s1)

A2(s1 ∧ tr1⇒ A#s0)

Moreover, the following formulae ensure that at any moment, the Transmitter can only be in one

state.
A2(s0 ∨ s1)

A2(s0⇒ ¬s1)

A2(s1⇒ ¬s0)

In analogy, the initial condition of the Receiver is described by

i ∧ ¬rr0 ∧ ¬rr1

and the transitions of the Receiver are represented by the following CTL formulae.

A2(i ∧ ¬rr0 ⇒ A#i)

A2(i ∧ rr0⇒ A#a0)

A2(a0 ∧ ¬rr1 ⇒ A#a0)

A2(a0 ∧ rr1⇒ A#a1)

A2(a1 ∧ ¬rr0 ⇒ A#a1)

A2(a1 ∧ rr0⇒ A#a0)

Again, we impose additional constraints to ensure that at any moment, the Receiver can only be

4.4. PERFORMANCE OF CTL-RP 109

in one state.
A2(i ∨ a0 ∨ a1)

A2(i⇒ ¬a0 ∧ ¬a1)

A2(a0⇒ ¬i ∧ ¬a1)

A2(a1⇒ ¬i ∧ ¬a0)

In addition, we specify that the Transmitter and the Receiver will always eventually be successful

in transmitting their messages, as the channel does not lose infinitely many messages.

A2(s0⇒ A3rr0)

A2(s1⇒ A3rr1)

A2(a0⇒ A3tr0)

A2(a1⇒ A3tr1)

Finally, we have to specify the properties that we want to establish. We want to prove that the

Receiver is initially in state i and remains in that state until it transits to state a0. Once in state

a0 it will remain there until it transits to state a1. In analogy, once in state a1 the receiver remains

in that state until it transits to state a0. These three properties are given by the following CTL

formulae:
1. A(iU a0)

2. A2(a0⇒ A(a0U a1))

3. A2(a1⇒ A(a1U a0))

The set CTL-BF4 consists of three formulae with each formula being an implication stating that

the conjunction (set) of CTL formulae specifying Transmitter and Receiver implies one of the three

properties above.

While CTL-RP was able to establish the validity of each of the three benchmark formulae as

indicated in the table below, TWB did not terminate within 20 hours of the CPU time.

Property CTL-RP 00.14 TWB

1 0.78s -

2 53.00s -

3 94.88s -

4.4.2 CTL-RP 00.14 vs. 00.09

The CPU time required by CTL-RP versions 00.14 and 00.09 to prove each formula in benchmarks

CTL-BF1 and CTL-BF2 are shown in Figure 4.19 and 4.20, respectively. Although version 00.14

outperformed 00.09 for every formula, the CPU time they consumed is very close. However for the

formulae in the set CTL-BF3 and CTL-BF4, from Figure 4.21 and the table shown below, we can

see that the performance of version 00.14 is noticeably better than the performance of version 00.09.

More precisely, version 00.14 on average only required one third of the CPU time that version 00.09

needed.

110 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

CTL equivalences CTL-RP 00.14 CTL-RP 00.09
1. A2p ≡ ¬E3¬p 0.007s 0.008s
2. E2p ≡ ¬A3¬p 0.007s 0.008s
3. E#(p ∨ q) ≡ E#p ∨E#q 0.005s 0.005s
4. A#p ≡ ¬E#¬p 0.003s 0.004s
5. E(pU q) ≡ q ∨ (p ∧E#E(pU q)) 0.019s 0.049s
6. A(pU q) ≡ q ∨ (p ∧A#A(pU q)) 0.028s 0.068s
7. E3p ≡ E(true U p) 0.007s 0.010s
8. A3p ≡ A(true U p) 0.007s 0.010s

Figure 4.19: Performance of CTL-RP 00.09 and 00.14 on eight ‘textbook’ CTL formulae (CTL-BF1)

Property CTL-RP 00.14 CTL-RP 00.09

1 0.78s 1.39s

2 53.00s 192.86s

3 94.88s 326.02s

Our experiments show that for the formulae we designed or generated randomly in our bench-

marks, in general version 00.14 is better than version 00.09 and as the formulae become more

complex, the difference in the performance between these two versions becomes bigger. This indi-

cates

1. the way that the transformation to SNFg
CTL is performed has a significant impact on the

performance of our CTL prover, and

2. our transformation procedure is strictly more efficient than the one used in [15] for benchmark

formulae in CTL-BF1 to CTL-BF4.

4.5. CONCLUSIONS 111

Property Status CTL-RP 00.14 CTL-RP 00.09
1. A#(¬E3(a ∧ b)) Valid 0.04s 0.06s
2. A2(A(aU ¬a)) Valid 0.02s 0.02s
3. A2(a ∨ b) Not Valid 0.01s 0.01s
4. A2(E#¬b) Valid 0.03s 0.03s
5. E(bU ¬b) Valid 0.01s 0.01s

Figure 4.20: Performance of CTL-RP 00.09 and 00.14 on finite state transition system properties
(CTL-BF2)

4.5 Conclusions

Currently, there are many non-classical logics for which sound and complete calculi are known,

however, implementations of these calculi are lacking. This applies even to such a well-known and

well-established logic as Computation Tree Logic. One explanation is the considerable effort that

is required to implement a reasonably efficient theorem prover for these logics. The TWB tries to

tackle this problem by providing a generic framework for building tableau-based theorem provers.

We are taking a different approach by first developing a resolution calculus for the non-classical logic

we are interested in and then building a bridge to first-order resolution which allows us to re-use

existing first-order theorem provers. In this thesis, we construct a bridge from CTL to first-order

logic, i.e. use a first-order prover to conduct some CTL resolution inferences.

In Chapter 3 we have defined a new normal form SNFg
CTL for CTL and provided an improved

clausal resolution calculus R
≻,S
CTL for CTL. Moreover, we have presented our refined resolution cal-

culus R
≻,S
CTL, which consists of eight step resolution rules and two eventuality resolution rules. Some

of the choices we made when designing our calculus R
≻,S
CTL were already motivated by our intention

to use this particular approach, namely bridging first-order resolution to CTL resolution, to realise

R
≻,S
CTL. Therefore, in this chapter, we have provided a new technique to implement step resolution

rules via first-order ordered resolution with selection and have described an algorithm for the even-

tuality resolution rules of our calculus. In addition, we employ an efficient automated resolution

112 CHAPTER 4. CTL-RP: A RESOLUTION THEOREM PROVER FOR CTL

Figure 4.21: Performance of CTL-RP 00.09 and 00.14 on the third set of benchmark formulae
(CTL-BF3)

theorem prover for first-order logic, SPASS, to implement our CTL theorem prover CTL-RP. In

our comparison between CTL-RP and TWB, we observe that CTL-RP is able to efficiently verify

a wide range of problems formalisable in CTL. From the comparison between CTL-RP versions

00.14 and 00.09, we observe that the transformation procedure plays an important role for clausal

resolution for CTL and our new transformation procedure is more efficient on the formulae we used

in our experiments.

Chapter 5

Resolution for the Next-time

fragment of ATL

5.1 Introduction

Alternating-time Temporal Logic (ATL) was first introduced in [5] in 1997 by Alur, Henzinger and

Kupferman and then further developed in [6] and [7]. ATL can be thought of as a generalisation

and extension of CTL, in which the temporal operators are parameterised by sets of agents. The

selective quantification over paths in ATL enables ATL to explicitly express coalition abilities. In

this chapter, we focus on the Next-time fragment of ATL (XATL) [41], which excludes the temporal

operators 2,3 and U from ATL. Generally speaking, the major difference of the expressive power

between XATL and ATL is the following. XATL can only express coalition abilities in the short

run, for example, the agent 1 and the agent 2 can cooperate to ensure that p holds at the next

moment of time. On the other hand, ATL can express everything XATL is able to express and,

furthermore, it also can deal with coalition abilities in the long run, for example, the group of agents

{1, 2, 3} can cooperate to force that p will eventually hold at sometime in the future. In addition,

XATL is closely related to another useful modal logic, namely Coalition Logic1 (CL) [57, 44].

A multi-agent systems [76] is a system consisting of multiple interacting agents, which are able

to control their own behaviour and usually have their own goals and motivations. Therefore, multi-

agent systems are often utilised to represent many important systems, for example, (i) concurrent

and distributed systems by using agents to represent different autonomous components in the

systems, (ii) social processes (e.g. auction, election and shopping) by letting agents to represent

participants in the processes and so on. XATL is a logic that is able to formally specify the

specification or properties of multi-agent systems. Moreover, reasoning of multi-agent systems can

also be achieved by theorem proving techniques for XATL.

Consider the following example. A teacher of five students wants that the majority opinion

among the students will determine the place where they go for a trip. Assume there are only two

options, namely the museum and the zoo. We use 1 to 5 to represent the five students, respectively.

1In [39] Goranko shows that Coalition Logic can be embedded into ATL by translating formula [C]ϕ of Coalition
Logic into an ATL formula 〈〈C〉〉#ϕ and the resulting fragment of ATL is XATL.

113

114 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

The proposition m denotes that they go to the museum whereas the proposition z denotes that

they go to the zoo. Then XATL can express the collective decision making abilities. For instance,

1. 〈〈1, 2, 3〉〉#m states that the students {1, 2, 3} can cooperate together to ensure that they will

go to the museum;

2. ¬〈〈1, 2〉〉#m ∧ ¬〈〈1, 2〉〉#z states that the students {1, 2} have no ability to decide where they

will go; and

3. 〈〈∅〉〉#(¬(m ∧ z)) states that in any situation they will not go to both the museum and the

zoo.

(The formal syntax and semantics of XATL will be defined in the next section.) From the example

above, we can see that XATL is able to describe the problem precisely. Furthermore, there are many

applications of multi-agent systems, for example verifying properties of voting procedures [57],

reasoning about various strategic games [58], and designing social procedures [73], that can be

achieved by using XATL or ATL. With the increasing significance of multi-agent systems, the

significance of ATL and XATL will also increase.

In this chapter, we introduce the first resolution-based calculus RXATL for tackling the XATL

satisfiability problem. In Section 5.2 we provide the syntax and semantics of XATL. Since the

calculus RXATL is clausal, in Section 5.3 we define a clausal normal form for XATL, called Separated

Normal Form for XATL (denoted by SNFXATL), and then provide a transformation procedure which

applies to any XATL formula and returns a satisfiability equivalent set of XATL formulae in normal

form. In Section 5.4 we present our calculus RXATL, which contains seven step resolution rules to

deal with constraints on the next moment, according to coalition abilities of agents. Section 5.5 gives

(i) a proof that our transformation rules preserve satisfiability, (ii) a proof that our transformation

procedure terminates and can computed in polynomial time in the size of the input formula, (iii) a

proof of the soundness of RXATL, and (iv) an outline of the completeness proof for RXATL. Finally,

we draw our conclusions in Section 5.6.

5.2 Syntax and semantics of XATL

XATL is a multimodal logic with CTL-style modalities indexed by subsets, commonly called coali-

tions, of a finite, non-empty set of names of agents, or players, belonging to the language. The

syntax and semantics of XATL presented in this chapter is a fragment of that introduced by Goranko

et al in [41] and Alur et al in [7].

5.2.1 Syntax of XATL

The formulae of XATL are defined with respect to a finite, non-empty set Σ of names of agents.

The elements of Σ are commonly denoted by the natural numbers from 1 to |Σ| (the cardinality of

Σ). Subsets of Σ are called coalitions .

The language of XATL is based on

• a set of atomic propositions PPL;

5.2. SYNTAX AND SEMANTICS OF XATL 115

• propositional constants true and false;

• boolean operators ∧,∨,⇒, and ¬ (∧ and ∨ are associative and commutative);

• a temporal operator # (at the next moment in time); and

• a coalition quantifier 〈〈A〉〉 with A ⊆ Σ and a coalition quantifier JAK with A ⊆ Σ.

The set of (well-formed) formulae of XATL is inductively defined as follows:

1. true and false are XATL formulae;

2. all atomic propositions in PPL are XATL formulae; and

3. if ϕ and ψ are XATL formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ⇒ ψ), 〈〈A〉〉#ϕ, JAK#ϕ.

5.2.2 Semantics of XATL

Formulae of XATL over PPL are interpreted in concurrent game models (CGM).

Definition 5.1 Concurrent game model [41]

A concurrent game model is a tuple (Σ, S, d, δ,PPL, L), where

• Σ is a finite, non-empty set of agents;

• S is a finite, non-empty set of states;

• d is a function assigning to every agent a ∈ Σ and every state s ∈ S a natural number da(s) ≥ 1

of moves available to agent a at state s; these moves are identified with the numbers from

1 to da(s). For every state s ∈ S, a move vector is a k-tuple 〈σ1, σ2, . . . , σk〉, where k = |Σ|

and 1 ≤ σa ≤ da(s) for every agent a, 1 ≤ a ≤ k. Therefore, σa denotes an arbitrary move of

agent a ∈ Σ. Given a state s ∈ S, Da(s) denotes the set {1, . . . , da(s)} of all moves available

to agent a at state s; D(s) denotes the set Πa∈ΣDa(s) of all move vectors at state s; and σ

denotes an arbitrary member of D(s).

• δ is a transition function assigning to every state s ∈ S and move vector σ ∈ D(s) a state

δ(s, σ) ∈ S that results from the state s if every agent a ∈ Σ plays move σa.

• PPL is a set of atomic propositions;

• L : S → 2PPL is an interpretation function mapping each state s ∈ S to the set of atomic

propositions which are true at state s.

Next, we give a number of auxiliary definitions which are used in either semantics of XATL or

many proofs in the remainder of this chapter.

Definition 5.2 Successor and predecessor

For two states s, s′ ∈ S, the state s′ is a successor of the state s and the state s is a predecessor of

the state s′ iff for some σ ∈ D(s), s′ = δ(s, σ).

116 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Definition 5.3 Reachable

For two states s, s′ ∈ S, the state s′ is reachable from the state s iff

1. s and s′ are the same state;

2. s′ is a successor of s; or

3. s′ is a successor of a state which is reachable from s.

The reachable relation is, in short, the reflexive and transitive closure of the successor relation.

Definition 5.4 Edge in a CGM

Let M = (Σ, S, d, δ,PPL, L) be a CGM, s and s′ be states in S, and σ be a move vector in D(s).

Then the tuple (s, σ, s′) is an edge in M iff δ(s, σ) = s′.

Definition 5.5 Run

A run in a CGM is an infinite sequence λ = s0, s1, s2, . . . of elements of S such that, for all i ≥ 0,

the state si+1 is a successor of the state si. Elements of the domain of λ are called positions . For a

run λ and positions 0 ≤ i and 0 ≤ j ≤ i, we use λ[i] and λ[j, i] to denote the ith state of λ and the

finite subsequence sj , sj+1, . . . , si of λ, respectively. We use λ[i,∞] to denote the infinite sequence

si, si+1, si+2, A run with λ[0] = s is referred to as an s-run.

Given a tuple τ , we interchangeably use τi and τ(i) to refer to the ith element of τ . We use the

symbol ∗ as a placeholder for an arbitrary move of a given agent and the symbol −n, where n ∈ N,

as a placeholder for some move of a given agent. Intuitively, ∗ acts like an universally quantified

variable while −n acts like an existentially quantified variable.

We now define the notions of A-moves and negative-A-moves as well as an operator ⊕ on A-

moves and negative-A-moves.

Definition 5.6 A-move [41]

Let s be a state in S and let A,A ⊆ Σ, be a coalition of agents, where |Σ| = k. An A-move σA

(or for brevity, a move) at state s is a k-tuple σA such that σA(a) ∈ Da(s) for every a ∈ A and

σA(a′) = ∗ for every a′ 6∈ A. DA(s) denotes the set of all A-moves at state s.

Note that by Definition 5.6, for a state s ∈ S, D∅(s) = {σ∅}, where σ∅ is the unique k-tuple

〈∗, ∗, . . . , ∗〉. Every Σ-move σΣ is also a move vector. For brevity, we usually write σ instead of σΣ.

Example 5.1

Let M = (Σ, S, d, δ,PPL, L) be a CGM. Assume that Σ = {1, 2, 3}, s is a state in S and for every

agent a ∈ Σ, Da(s) = 3. Then

• 〈1, ∗, ∗〉, 〈2, ∗, ∗〉 and 〈3, ∗, ∗〉 are valid {1}-moves at state s; and

• 〈1, ∗, 2〉 and 〈2, ∗, 3〉 are valid {1, 3}-moves at state s.

Note that if a k-tuple τ with k = |Σ| and τ(i) ∈ {∗} ∪ N for every i, 1 ≤ i ≤ k, is an A-move

for some coalition of agents A ⊆ Σ, then there is no coalition of agents A′ ⊆ Σ with A′ 6= A such

that τ is also an A′-move. That is, τ uniquely determines the coalition A of which τ is an A-move.

Consequently, we will often not explicitly state the coalition A for a given k-tuple τ .

5.2. SYNTAX AND SEMANTICS OF XATL 117

Definition 5.7 Negative-A-move

Let i be a natural number, s be a state in S, and A,A ⊂ Σ, be a coalition of agents, where |Σ| = k.

Then a negative-A-move σN
A (or for brevity, a negative-move) at state s is a k-tuple such that

• for every a ∈ A, σN
A (a) = ∗,

• for every a′ 6∈ A, σN
A (a′) ∈ Da′(s) or σN

A (a′) = −i, and

• there exists at least one agent a′′ 6∈ A such that σN
A (a′′) = −i.

Example 5.2

Let M = (Σ, S, d, δ,PPL, L) be a CGM. Assume that Σ = {1, 2, 3}, s is a state in S and for every

agent a ∈ Σ, Da(s) = 3. Then

• 〈∗, 1,−10〉 and 〈∗,−5,−5〉 are valid negative-{1}-moves at state s; and

• 〈∗,−1, ∗〉 and 〈∗,−5, ∗〉 are valid negative-{1, 3}-moves at state s.

As for A-moves, if a k-tuple τ with k = |Σ| and τ(i) ∈ {∗} ∪ Z for every i, 1 ≤ i ≤ k, is a

negative-A-move for some coalition of agents A ⊂ Σ, then there is no coalition of agents A′ ⊂ Σ

with A′ 6= A such that τ is also a negative-A-move. There is also no coalition of agents A′ ⊆ Σ

such that τ is an A-move. Finally, no A-move σA is a negative-A′-move for some A′ ⊂ Σ.

Definition 5.8 The operation ⊕

The operation⊕ on A-moves and negative-A-moves is defined as follows. Let A,A′ ⊆ Σ be coalitions

of agents.

1. If σA is an A-move and σA′ is an A′-move such that A ∩ A′ = ∅, then σA ⊕ σA′ is an A′′-

move σA′′ such that A′′ = A ∪ A′; for every a ∈ A, σA′′(a) = σA(a); for every a′ ∈ A′,

σA′′ (a′) = σA′(a′); and for every a′′ 6∈ A′′, σA′′(a′′) = ∗.

2. If σA is an A-move and σN
A′ is a negative-A′-move such that A ⊆ A′, then σA ⊕ σN

A′ is a

negative-A′′-move σN
A′′ such that A′′ = A′ \A and σN

A′′ is identical to σN
A′ except that for every

a ∈ A, σN
A′′(a) = σA(a). In addition, we define σN

A′ ⊕ σA as σA ⊕ σN
A′ .

Note that the operation ⊕ is associative, commutative and has σ∅ as the identity element, i.e.

σA ⊕ σ∅ = σA and σN
A′ ⊕ σ∅ = σN

A′ for any A-move σA and any negative A′-move σN
A′ .

Before we proceed, we give some examples demonstrating how the operation ⊕ works on moves

and negative-moves.

Example 5.3

Let M = (Σ, S, d, δ,PPL, L) be a CGM and assume Σ = {1, 2, 3}. Then

〈1, ∗, ∗〉 ⊕ 〈∗, 1, ∗〉 = 〈1, 1, ∗〉

〈1, ∗, ∗〉 ⊕ 〈∗, 2, ∗〉 ⊕ 〈∗, ∗, 3〉 = 〈1, 2, ∗〉 ⊕ 〈∗, ∗, 3〉 = 〈1, 2, 3〉

〈1, ∗, ∗〉 ⊕ 〈∗, ∗,−3〉 = 〈1, ∗,−3〉

〈−5,−5, ∗〉 ⊕ 〈∗, ∗, 2〉 = 〈−5,−5, 2〉 and

〈∗, ∗, ∗〉 ⊕ 〈∗, ∗,−1〉 ⊕ 〈1, 2, ∗〉 = 〈∗, ∗,−1〉 ⊕ 〈1, 2, ∗〉 = 〈1, 2,−1〉.

118 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Definition 5.9 Submove

Let A ⊆ Σ be coalitions of agents. Let σA be an A-move, σN
A be a negative-A-move, and σN

A′ be

a negative-A′-move. Then (i) σA is a submove of σA′ (σA ⊑ σA′) iff A ⊆ A′ and for every a ∈ A,

σA(a) = σA′(a), (ii) σN
A is a submove of σN

A′(σN
A ⊑ σN

A′) iff A ⊇ A′, for every a ∈ Σ \ A, σN
A (a) =

σN
A′(a) and for every a′ ∈ A \ A′, σN

A′(a) ∈ Da(s); and (iii) σA is a submove of σN
A′(σA ⊑ σN

A′) iff

A ∩A′ = ∅ and for every a ∈ A, σA(a) = σN
A′(a).

We give a few examples illustrating the notion of a submove.

Example 5.4

Let M = (Σ, S, d, δ,PPL, L) be a CGM. Assume that Σ = {1, 2, 3}, s is a state in S and for every

agent a ∈ Σ, Da(s) = 3. Then

• σA = 〈∗, ∗, 1〉 is a submove of σA′ = 〈∗, 2, 1〉;

• σN
A = 〈∗, ∗,−5〉 is a submove of σN

A′ = 〈∗, 1,−5〉; and

• σA = 〈1, ∗, ∗〉 is a submove of σN
A′ = 〈1, ∗,−5〉.

Moreover, the following relations are also true: 〈∗, ∗, ∗〉 ⊑ 〈1, ∗, ∗〉 ⊑ 〈1, 1, ∗〉 ⊑ 〈1, 1, 1〉.

Note that by Definition 5.9, σ∅ is a submove of any A-move σA or negative-A-move σN
A ; any

A-move is a submove of itself, σA ⊑ σA; and any negative-A-move is also a submove of itself,

σN
A ⊑ σ

N
A .

Definition 5.10 Outcome of an A-Move [41]

Let σA ∈ DA(s). The outcome of σA at state s, denoted by out(s, σA), is the set of all states s′ for

which there exists a move vector σ ∈ D(s) such that σA ⊑ σ and δ(s, σ) = s′.

Note that σ∅ ⊑ σ for every move vector σ ∈ D(s) and out(s, σ∅) is the set consisting of all successors

of s, i.e. out(s, σ∅) = {s′ | s′ = δ(s, σ∅), σ ∈ D(s)}.

The satisfaction relation |= between a pair consisting of a CGM M and a state s ∈ S, and an

XATL formula is inductively defined as follows.

〈M, s〉 |= true

〈M, s〉 6|= false

〈M, s〉 |= p iff p ∈ L(s) for an atomic proposition p ∈ PPL

〈M, s〉 |= ¬ϕ iff 〈M, si〉 6|= ϕ

〈M, s〉 |= (ϕ ∨ ψ) iff 〈M, si〉 |= ϕ or 〈M, si〉 |= ψ

〈M, s〉 |= (ϕ⇒ ψ) iff 〈M, si〉 |= ¬ϕ or 〈M, si〉 |= ψ

〈M, s〉 |= 〈〈A〉〉#ψ iff there exists an A-move σA ∈ DA(s) such that 〈M, s′〉 |= ψ

for all s′ ∈ out(s, σA)

Instead of 〈M, s〉 |= ϕ, we also write M, s |= ϕ and if M, s |= ϕ, we say that ϕ holds at state s in

M .

5.3. NORMAL FORM 119

We use the following equivalence to define the dual operator JAK of 〈〈A〉〉.

JAK#ϕ≡ ¬〈〈A〉〉#¬ϕ

In [73], various types of satisfiability for full ATL have been defined. Here we adopt them

to XATL. Based on the satisfaction relation |=, we can define the notion of tight satisfiability as

follows.

Definition 5.11 Tight satisfiability

An XATL formula ϕ is tightly satisfiable iff for some CGM M = (Σϕ, S, d, δ,PPL, L) and some state

s ∈ S, 〈M, s〉 |= ϕ, and tightly unsatisfiable otherwise. ϕ is valid , written |= ϕ, iff for every CGM

M = (Σϕ, S, d, δ,PPL, L) and every state s ∈ S, 〈M, s〉 |= ϕ. A CGM M = (Σϕ, S, d, δ,PPL, L) such

that ϕ is true at some state s ∈ S is called a model for ϕ.

Besides tight satisfiability, two further variants of satisfiability can be defined for XATL.

Definition 5.12 Σ-satisfiability

Given an XATL formula ϕ and a set Σ ⊇ Σϕ, ϕ is Σ-satisfiable if ϕ is satisfiable in a CGM

M = (Σ, S, d, δ,PPL, L); ϕ is Σ-valid if ϕ is true in every such CGM.

Definition 5.13 General satisfiability

Given an XATL formula ϕ, ϕ is generally satisfiable, if there exists a set Σ′ ⊇ Σϕ such that ϕ is

satisfiable in a CGM M = (Σ′, S, d, δ,PPL, L); ϕ is generally valid if ϕ is true in every such CGM.

In this thesis, we focus on the tight satisfiability problem. An XATL formula ϕ is Σ-satisfiable or

generally satisfiable iff there exists a CGMM = (Σ′, S, d, δ,PPL, L), where Σ′ = Σϕ∪{a} and a 6∈ Σϕ,

and a state s ∈ S such that M, s |= ϕ [73]. Therefore, ϕ is Σ-satisfiable or generally satisfiable

iff ϕ ∧ 〈〈{a}〉〉#true, where a 6∈ Σϕ, is tightly satisfiable. Thus, a decision procedure for tight

satisfiability also provides us with a decision procedure for the other two variants of satisfiability

in XATL. The (tight) satisfiability problem of XATL is known to be PSPACE-complete [57, 58].

In the remainder of the chapter, we usually use the term “satisfiability” instead of “tight sat-

isfiability” if it is clear in its context and, further, use Σ to denote the set of agents mentioned in

the input formulae ϕ, instead of Σϕ, unless otherwise specified. For every XATL-formula ϕ, we

denote the set of agents mentioned in ϕ by Σϕ. Finally, when we say a set of XATL formulae T is

satisfiable in a CGM M = (Σϕ, S, d, δ,PPL, L), we mean that there exists a state s ∈ S such that

every formula in T holds at s.

5.3 Normal form

5.3.1 Normal form for XATL SNFXATL

Our calculus RXATL operates on formulae in a clausal normal form called Separated Normal Form

for XATL, denoted by SNFXATL. SNFXATL clauses are formulae of the following forms:

120 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

〈〈∅〉〉2(start⇒
∨k

j=1mj) (initial clause)

〈〈∅〉〉2(true ⇒
∨k

j=1mj) (global clause)

〈〈∅〉〉2(
∧n

i=1 li ⇒ 〈〈A〉〉#
∨k

j=1mj) (step clause)

〈〈∅〉〉2(
∧n

i=1 li ⇒ JAK#
∨k

j=1mj) (negative step clause)

where

1. k ≥ 0, n > 0;

2. start is a propositional constant and only holds at exactly one state in a CGM;

3. li (1 ≤ i ≤ n) and mj (1 ≤ j ≤ k) are literals, that is atomic propositions or their negation;

4. A in a step clause is a (possible empty) set of agents, and A in a negative step clause is a

(possible empty) set of agents but not Σ; and

5. 〈〈∅〉〉2 is a temporal operator in ATL, which is defined in the next section.

As all clauses are of the form 〈〈∅〉〉2(P ⇒ D) we often simply write P ⇒ D instead. In the remainder

of this chapter, the two terms, a set of SNFXATL clauses and a conjunction of SNFXATL clauses,

are used interchangeably like we did for SNFg
CTL clauses.

Note that our intention of developing the calculus RXATL is to utilise RXATL as a stepping

stone to eventually develop a resolution calculus for the full ATL. Therefore, we design our normal

form for XATL in SNF-style, i.e. each clause in normal form is an implication with the operator

2 outside. Thus, we introduce the operator 2 into our normal form although the language XATL

only contains the next step operator #. Some simpler normal form (e.g. without the operator

2) for XATL might exist and possibly can be operated by some resolution-style inference rules.

However they are usually very hard to be reused once the operator 3,2, U , W are included in the

language.

5.3.2 Semantics of SNFXATL

Before we define the semantics of SNFXATL, we need to introduce the notion of agents’ strategies

and the outcomes of such strategies.

Given a natural number n ∈ N, we denote the set of finite sequences of elements of S of the length

n by Sn. The length of a sequence χ is denoted by |χ|, for every i, 0 ≤ i < |χ|, the ith element of χ

is denoted by χ[i] and for all i, j, 0 ≤ i ≤ j < |χ|, χ[i, j] denotes the sequence χ[i], χ[i+ 1], . . . , χ[j].

The last element of a non-empty sequence χ, i.e. χ[|χ| − 1], is also denoted by last(χ). Given two

sequences χ1 and χ2, the concatenation χ of χ1 and χ2 is denoted by χ1 ◦ χ2.

Definition 5.14 A-strategy

Let A ⊆ Σ be a coalition. A strategy for the coalition A (or for brevity, an A-strategy) is a map

FA :
⋃

1<n S
n →

⋃

{DA(s) | s ∈ S} such that for every χ ∈
⋃

1<n S
n, FA(χ) ∈ DA(last(χ)).

5.3. NORMAL FORM 121

Definition 5.15 Outcome of an A-strategy

Let FA be an A-strategy. The outcome of FA at state s, denoted by out(s, FA), is a set of all s-runs

λ such that λ[i+ 1] ∈ out(λ[i], FA(λ[0, i])), for all i ≥ 0.

Note that according to Definition 5.15, the outcome of F∅ at state s is the set of all s-runs λ such

that λ[i+ 1] ∈ out(λ[i], σ∅), for all i ≥ 0. Thus, the outcome of F∅ is the set of all s-runs.

The semantics of SNFXATL is defined as shown below as an extension of the semantics of XATL

defined in 5.2.2.

〈M, s〉 |= 〈〈A〉〉2ψ iff there exists an A-strategy FA such that, for all λ ∈ out(s, FA)

and all positions i ≥ 0, 〈M,λ[i]〉 |= ψ

A SNFXATL formula ϕ is tight satisfiable iff for some CGM M = (Σϕ, S, d, δ,PPL, L) and some

state s ∈ S, 〈M, s〉 |= ϕ, and tight unsatisfiable otherwise. ϕ is valid , written |= ϕ, iff for every

CGM M = (Σϕ, S, d, δ,PPL, L) and some state s ∈ S, 〈M, s〉 |= ϕ. A CGM M = (Σϕ, S, d, δ,PPL, L)

such that ϕ is true at some state s ∈ S is called a model for ϕ.

5.3.3 Transformation

Before going into the details of the transformation of an arbitrary XATL formula into its normal

form, we first define the notion of an XATL clause as an intermediate form between XATL formulae

and SNFXATL clauses.

Definition 5.16 XATL clauses

An XATL formula in the form of 〈〈∅〉〉2(P ⇒ ϕ), where P is a conjunction of literals (possibly

consisting of a single literal) or a propositional constant and ϕ is an arbitrary XATL formula, is an

XATL clause or a clause.

It should be noted that a formula of XATL in SNFXATL must be an XATL clause, but the converse

is not necessarily true.

In the following we define a set of transformation rules which allows us to transform an arbitrary

XATL formula into an equi-satisfiable set of SNFXATL clauses.

Let nnf denote a function which transforms an arbitrary XATL formula into its negation normal

form by pushing negations “inwards”. Let simp be a function which simplifies an arbitrary XATL

formula by exhaustive application of the following simplification rules:

(ϕ ∧ true) −→ ϕ (ϕ ∧ false) −→ false

(ϕ ∨ true) −→ true (ϕ ∨ false) −→ ϕ

¬true −→ false ¬false −→ true

where ϕ is an XATL formula and ∨ and ∧ are commutative and associative, plus the following

rules.

122 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

〈〈A〉〉#false −→ false 〈〈A〉〉#true −→ true

JAK#false −→ false JAK#true −→ true

The correctness proof for the simplification rules above straightforwardly follows from the semantics

of XATL.

Let init(ϕ) be the set of XATL formulae {〈〈∅〉〉2(start⇒ p), 〈〈∅〉〉2(p⇒ simp(nnf (ϕ)))}, where

p is a new proposition that does not occur in ϕ. Then the transformation of an arbitrary XATL

formula ϕ into SNFXATL consists of a sequence T0, T1, . . . , Tn of sets of XATL clauses such that (i)

T0 = init(ϕ) and (ii) for every t, 0 ≤ t < n, Tt+1 = (Tt \ {ψ}) ∪ Rt, where ψ is a clause in Tt not

in SNFXATL and Rt is the result of applying a matching transformation rule to ψ. Moreover, for

every i, 0 ≤ t < n, Tt contains at least one formula not in SNFXATL while all formulae in Tn are in

SNFXATL.

Note that for each rule of Trans below containing a proposition p, p represents a new atomic

proposition which does not occur in Tt, when we apply the rule to a clause in Tt. Furthermore, in

the presentation of the rules let

• q be an atomic proposition,

• l be a literal,

• D be a disjunction of literals (possibly consisting of a single literal),

• ϕ,ϕ1 and ϕ2, be XATL formulae,

• Σ be the set containing all the agents occurring in T0 and A ⊆ Σ be a coalition.

The rule set Trans consists of the following rules:

Trans(1) q ⇒ ϕ1 ∧ ϕ2 −→

{

q ⇒ ϕ1

q ⇒ ϕ2

Trans(2) q ⇒ ϕ1 ∨ ϕ2 −→

{

q ⇒ ϕ1 ∨ p

p⇒ ϕ2

if ϕ2 is not a disjunction of

literals.

Trans(3) q ⇒ D −→ true⇒ ¬q ∨D

Trans(4) q ⇒ 〈〈A〉〉#ϕ −→

{

q ⇒ 〈〈A〉〉#p

p⇒ ϕ
if ϕ is not a disjunction of

literals.

5.3. NORMAL FORM 123

Trans(5) q ⇒ JAK#ϕ −→

{

q ⇒ JAK#p

p⇒ ϕ
if ϕ is not a disjunction of literals

and A 6= Σ.

Trans(6) q ⇒ JΣK#ϕ −→ q ⇒ 〈〈∅〉〉#ϕ

We now give an example illustrating the transformation of an XATL formula into a satisfiability

equivalent set of SNFXATL clauses using our transformation rules.

Example 5.5

Let ϕ = (J1K#J1K#q ∨ 〈〈1, 2〉〉#r) ∧ J2K#¬q. First, we apply the function init to ϕ.

T0 = init(ϕ) = {〈〈∅〉〉2(start⇒ p0), 〈〈∅〉〉2(p0 ⇒ (J1K#J1K#q ∨ 〈〈1, 2〉〉#r) ∧ J2K#¬q)}.

Then we transform the set T0 of XATL clauses into a set of SNFXATL clauses.

1. start ⇒ p0

2. p0 ⇒ (J1K#J1K#q ∨ 〈〈1, 2〉〉#r) ∧ J2K#¬q

3. p0 ⇒ J1K#J1K#q ∨ 〈〈1, 2〉〉#r Trans(1)→ 2

4. p0 ⇒ J2K#¬q Trans(1)→ 2

5. p0 ⇒ p1 ∨ 〈〈1, 2〉〉#r Trans(2)→ 3

6. p1 ⇒ J1K#J1K#q Trans(2)→ 3

7. p0 ⇒ p1 ∨ p2 Trans(2)→ 5

8. p2 ⇒ 〈〈1, 2〉〉#r Trans(2)→ 5

9. p1 ⇒ J1K#p3 Trans(4)→ 6

10. p3 ⇒ J1K#q Trans(4)→ 6

11. true ⇒ ¬p0 ∨ p1 ∨ p2 Trans(3)→ 7

where Trans(x)→ y indicates that we apply the transformation rule Trans(x) to the clause labelled

by y. In total, the transformation requires five applications of one of our transformation rules.

The set T5 of SNFXATL clauses we obtain as the final result is

1. start ⇒ p0

4. p0 ⇒ J2K#¬q

8. p2 ⇒ 〈〈1, 2〉〉#r

9. p1 ⇒ J1K#p3

10. p3 ⇒ J1K#q

11. true ⇒ ¬p0 ∨ p1 ∨ p2

and ϕ = (J1K#J1K#q ∨ 〈〈1, 2〉〉#r) ∧ J2K#¬q is satisfiable iff T5 is satisfiable (as will be shown in

Section 5.5.1).

124 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

5.4 The clausal resolution calculus RXATL

The clausal resolution calculus RXATL is based on the calculus R
≻,S
CTL we presented in Section 3, but

it is not a trivial extension of this calculus. The calculus RXATL consists of (i) seven step resolution

rules, SRES1 to SRES7, and (ii) two rewrite rules, RW1 and RW2. All the rules of RXATL operate

on formulae in SNFXATL. Below we present the definition of the step resolution rules of RXATL and

present some examples illustrating the application of those rules to SNFXATL clauses.

5.4.1 Step resolution

In the following, let P,Q be conjunctions of literals; C,D be disjunctions of literals; l be a literal;

∅ be an empty set of agents; A,A′ ⊆ Σ be a set of agents.

SRES1

start⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES2

true⇒ C ∨ l

true⇒ D ∨ ¬l

true⇒ C ∨D

SRES3

true⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES4

P ⇒ 〈〈A〉〉#(C ∨ l)

Q⇒ 〈〈A′〉〉#(D ∨ ¬l)

P ∧Q⇒ 〈〈A ∪A′〉〉#(C ∨D)

where A ∩A′ = ∅

SRES5

P ⇒ 〈〈A〉〉#(C ∨ l)

Q⇒ JA′K#(D ∨ ¬l)

P ∧Q⇒ JA′ \AK#(C ∨D)

where A ⊆ A′

SRES6

true⇒ C ∨ l

Q⇒ 〈〈A〉〉#(D ∨ ¬l)

Q⇒ 〈〈A〉〉#(C ∨D)

SRES7

true⇒ C ∨ l

Q⇒ JAK#(D ∨ ¬l)

Q⇒ JAK#(C ∨D)

RW1
∧n

i=1mi ⇒ 〈〈A〉〉#false −→ true⇒
∨n

i=1 ¬mi

RW2
∧n

i=1mi ⇒ JAK#false −→ true⇒
∨n

i=1 ¬mi

where n ≥ 1 and each mi, 1 ≤ i ≤ n, is a literal.

5.4. THE CLAUSAL RESOLUTION CALCULUS RXATL 125

It should be noted that we assume SNFXATL clauses are always in their condensed forms, i.e.

there are no duplicate literals in the left-hand side or right-hand side of clauses. For example, for

SNFXATL clauses p ∧ p ∧ q ⇒ 〈〈A〉〉#(r ∨ q) and p⇒ JAK#(q ∨ ¬l ∨ ¬l), their condensed forms are

p ∧ q ⇒ 〈〈A〉〉#(r ∨ q) and p⇒ JAK(q ∨ ¬l), respectively.

We now introduce some useful definitions which allows us to discuss the calculus RXATL precisely.

Definition 5.17 Derivation

A derivation from a set T of SNFXATL clauses by RXATL is a sequence T0, T1, T2, . . . of sets of

clauses such that T = T0 and Tt+1 = Tt ∪Rt where Rt is a set of SNFXATL clauses obtained as the

conclusion of an application of a rule of RXATL to premises in Tt.

Definition 5.18 Refutation

A refutation of a set T of SNFXATL clauses (by RXATL) is a derivation from T such that for some

t ≥ 0, Tt contains a contradiction, where a contradiction is either the formula true ⇒ false or

start⇒ false.

Definition 5.19 Termination

A derivation terminates iff either a contradiction is derived or if no new clauses can be derived by

further applications of resolution rules of RXATL.

Definition 5.20 Saturation with respect to RXATL

A set T of SNFXATL clause is saturated with respect to RXATL if all clauses that can be derived by

an application of a rule of RXATL to premises in T are contained in T .

In the following, we give two examples of refutations of unsatisfiable sets of SNFXATL by RXATL.

Example 5.6

Consider the set T of SNFXATL clauses consisting of the clauses 1 to 4 shown below.

1. start ⇒ p0

2. p0 ⇒ 〈〈1〉〉#(p1 ∨ p2)

3. p0 ⇒ 〈〈2〉〉#¬p1

4. p0 ⇒ 〈〈3〉〉#¬p2

We are able to derive a contradiction start ⇒ false using step resolution and rewrite rules as

follows:
5. p0 ⇒ 〈〈1, 2〉〉#p2 [2, 3, SRES4]

6. p0 ⇒ 〈〈1, 2, 3〉〉#false [4, 5, SRES4]

7. true ⇒ ¬p0 [6,RW1]

8. start ⇒ false [1, 7, SRES1]

Example 5.7

126 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Consider the set T of SNFXATL clauses consisting of the clauses 1 to 6 shown below.

1. start ⇒ p0

2. p0 ⇒ 〈〈1〉〉#p1

3. p0 ⇒ 〈〈2〉〉#p3

4. p0 ⇒ 〈〈1, 2, 3〉〉#p4

5. p0 ⇒ J1, 2K#(¬p1 ∨ ¬p2 ∨ ¬p3)

6. true ⇒ ¬p1 ∨ p2

We are able to derive a contradiction start ⇒ false using step resolution and rewrite rules as

follows:
7. p0 ⇒ J1, 2K#(¬p1 ∨ ¬p3) [5, 6, SRES7]

8. p0 ⇒ J2K#¬p3 [2, 7, SRES5]

9. p0 ⇒ J∅K#false [3, 8, SRES5]

10. true ⇒ ¬p0 [9,RW2]

11. start ⇒ false [1, 10, SRES1]

5.5 Correctness of the calculus RXATL

5.5.1 Correctness of the transformation

In Section 5.3.3 we have presented rules for the transformation of an arbitrary formula of XATL

into a set of SNFXATL clauses. In the following, we show that our transformation (i) preserves

satisfiability, (ii) is terminating, and (iii) allows only a polynomial bounded number of applications

of transformation rules.

Lemma 5.1 Let T be a set of XATL formulae, and let M = (Σ, S, d, δ,PPL, L) be a CGM such

that T is satisfiable in M . Let p ∈ PPL be an atomic proposition not occurring in T , and let

M ′ = (Σ, S, d, δ,PPL, L
′) be a CGM identical to M except for the truth value assigned by L′ to p in

each state. Then T is also satisfiable in M ′.

Proof. By the inductive definition of the semantics of XATL, the truth value assignments to propo-

sitions not occurring in T do not influence whether T is satisfiable in a model. Therefore, T is

satisfiable in M ′. ⊓⊔

Lemma 5.2 An XATL formula ϕ is satisfiable iff the set of formulae T0 = {〈〈∅〉〉2(start ⇒ p),

〈〈∅〉〉2(p⇒ ϕ)}, where p is a new atomic proposition that does not occur in ϕ, is satisfiable.

Proof. Assume {〈〈∅〉〉2(start⇒ p), 〈〈∅〉〉2(p⇒ ϕ)} is satisfiable in a CGM M = (Σ, S, d, δ,PPL, L),

i.e. M, s0 |= 〈〈∅〉〉2(start⇒ p) ∧ 〈〈∅〉〉2(p⇒ ϕ), for some state s0 ∈ S which also satisfies start.

From the semantics of ⇒, 〈〈∅〉〉2,∧, M, s0 |= (start ⇒ p) ∧ (p ⇒ ϕ). From the semantics of ⇒,∧,

M, s0 |= start⇒ ϕ. Because start holds at s0,M, s0 |= ϕ. Thus, if {〈〈∅〉〉2(start⇒ p), 〈〈∅〉〉2(p⇒ ϕ)}

is satisfiable, so is ϕ.

Assume ϕ is satisfiable in a CGM M = (Σ, S, d, δ,PPL, L), i.e. M, s0 |= ϕ for some state s0 ∈ S.

Let M ′ = (Σ, S, d, δ,PPL, L
′) be identical to M except that start and a new proposition p not

5.5. CORRECTNESS OF THE CALCULUS RXATL 127

occurring in ϕ hold only at s0. From the semantics of ⇒, 〈〈∅〉〉2, M ′, s0 |= 〈〈∅〉〉2(start ⇒ p).

From Lemma 5.1, M ′, s0 |= ϕ. From the semantics of ⇒, 〈〈∅〉〉2, M ′, s0 |= 〈〈∅〉〉2(p⇒ ϕ). From

the semantics of ∧, M ′, s0 |= 〈〈∅〉〉2(start⇒ p) ∧ 〈〈∅〉〉2(p⇒ ϕ). Thus, if ϕ is satisfiable, so is

{〈〈∅〉〉2(start⇒ p), 〈〈∅〉〉2(p⇒ ϕ)}. ⊓⊔

Now we show every transformation rule preserves satisfiability, starting with rule Trans(1).

Lemma 5.3 Let Tt = ∆ ∪ {ψ}, where ψ = 〈〈∅〉〉2(q ⇒ ϕ1 ∧ ϕ2), and Tt+1 = ∆ ∪ Rt, where

Rt = {〈〈∅〉〉2(q ⇒ ϕ1), 〈〈∅〉〉2(q ⇒ ϕ2)}, be two sets of XATL clauses such that Tt+1 is obtained by

an application of Trans(1) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. Assume Tt = ∆ ∧ 〈〈∅〉〉2(q ⇒ ϕ1 ∧ ϕ2) holds in a CGM M = (Σ, S, d, δ,PPL, L) at a state s0

in S. Based on the semantics of the logical connectives involved, we have that

〈M, s0〉 |= ∆ ∧ 〈〈∅〉〉2(q ⇒ ϕ1 ∧ ϕ2)

iff 〈M, s0〉 |= ∆ ∧ 〈〈∅〉〉2((q ⇒ ϕ1) ∧ (q ⇒ ϕ2))

iff 〈M, s0〉 |= ∆ and there is a ∅-strategy F∅ such that for all λ ∈ out(s, F∅) and all positions

i ≥ 0,M, λ[i] |= q ⇒ ϕ1 and M,λ[i] |= q ⇒ ϕ2

iff (i) 〈M, s0〉 |= ∆, (ii) there is a ∅-strategy F∅ such that for all λ ∈ out(s, F∅) and all positions

i ≥ 0,M, λ[i] |= q ⇒ ϕ1, and (iii) there is a ∅-strategy F∅ such that for all λ ∈ out(s, F∅) and

all positions i ≥ 0, M,λ[i] |= q ⇒ ϕ2

iff 〈M, s0〉 |= ∆ ∧ 〈〈∅〉〉2(q ⇒ ϕ1) ∧ 〈〈∅〉〉2(q ⇒ ϕ2)

Therefore, Tt is satisfiable iff Tt+1 is satisfiable. ⊓⊔

Next, we show that the transformation rule Trans(3) preserves satisfiability.

Lemma 5.4 Let Tt = ∆ ∪ {ψ}, where ψ = 〈〈∅〉〉2(q ⇒ D), and Tt+1 = ∆ ∪ Rt, where Rt =

{〈〈∅〉〉2(true⇒ ¬q ∨D)}, be two sets of XATL clauses such that Tt+1 is obtained by an application

of Trans(3) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. 〈〈∅〉〉2(q ⇒ D) is obviously equivalent to 〈〈∅〉〉2(true⇒ ¬q ∨D) as q ⇒ D is propositionally

equivalent to true⇒ ¬q ∨D. Therefore, Tt is actually equivalent to Tt+1. ⊓⊔

Next, we consider the transformation rule Trans(4).

Lemma 5.5 Let Tt = ∆ ∪ {ψ}, where ψ = 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ), and Tt+1 = ∆ ∪ Rt, where

Rt = {〈〈∅〉〉2(q ⇒ 〈〈A〉〉#p), 〈〈∅〉〉2(p⇒ ϕ)}, be two sets of XATL clauses such that Tt+1 is obtained

by an application of Trans(4) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. We first show the ‘if’ part. Assume Tt+1 holds in a CGM M = (Σ, S, d, δ,PPL, L) at a state

s0, i.e. M, s0 |= ∆∧ 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#p)∧ 〈〈∅〉〉2(p⇒ ϕ). From the semantics of ∧, (1) M, s0 |= ∆;

from the semantics of 〈〈∅〉〉2, for all states si ∈ S reachable from s0, (2) M, si |= q ⇒ 〈〈A〉〉#p and

(3) M, si |= p⇒ ϕ.

128 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

• If q does not hold at the state si, then M, si |= q ⇒ 〈〈A〉〉#ϕ.

• If, on the other hand, q holds at the state si, it follows from (2) and the semantics of 〈〈A〉〉# that

there exists an A-move σA ∈ DA(si) such that M, si+1 |= p for each state si+1 ∈ out(si, σA).

From (3) and the semantics of⇒, we obtain thatM, si+1 |= ϕ for each state si+1 ∈ out(si, σA).

Therefore, from the semantics of 〈〈A〉〉#, M, si |= 〈〈A〉〉#ϕ. From the semantics of⇒, we obtain

that M, si |= q ⇒ 〈〈A〉〉#ϕ.

From the semantics of 〈〈∅〉〉2, we obtain that M, s0 |= 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ). From (1) and semantics

of ∧, M, s0 |= ∆ ∧ 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ). Thus, if Tt+1 is satisfiable, so is Tt.

Next, we prove the ‘only if’ part. Assume Tt is satisfiable in a CGM M = (Σ, S, d, δ,PPL, L) at

a state s0, i.e. M, s0 |= ∆ ∧ 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ). Let M ′ = (Σ, S, d, δ,PPL, L
′) be a CGM identical

to M except that p is true at a state si ∈ S iff ϕ is true at the state si. By the definition of M ′

and the semantics of 〈〈∅〉〉2 and ⇒, we obtain that (4) M ′, s0 |= 〈〈∅〉〉2(p ⇔ ϕ). By Lemma 5.1,

as M, s0 |= 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ), M ′, s0 |= 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#ϕ). From the semantics of 〈〈∅〉〉2, for

every state s ∈ S reachable from s0, M
′, s |= q ⇒ 〈〈A〉〉#ϕ.

• If M ′, s 6|= q, then M ′, s |= q ⇒ 〈〈A〉〉#p.

• If, on the other hand, M ′, s |= q, then M ′, s |= 〈〈A〉〉#ϕ. From the semantics of 〈〈A〉〉#, there

exists an A-move σA ∈ DA(s) such that M ′, s′ |= ϕ for all states s′ ∈ out(s, σA). From (4),

M ′, s′ |= p. Therefore, from the semantics of 〈〈A〉〉#, we obtain M ′, s |= 〈〈A〉〉#p. From the

semantics of ⇒, M ′, s |= q ⇒ 〈〈A〉〉#p.

As s is an arbitrary state, from the semantics of 〈〈∅〉〉2, M ′, s0 |= 〈〈∅〉〉2(q ⇒ 〈〈A〉〉#p). From (4),

M ′, s0 |= 〈〈∅〉〉2(p ⇒ ϕ). By Lemma 5.1, as p does not occur in ∆, M ′, s0 |= ∆. Thus, if Tt is

satisfiable, so is Tt+1. ⊓⊔

Finally, we show that Trans(6) preserves satisfiability.

Lemma 5.6 Let Tt = ∆ ∪ {ψ}, where ψ = 〈〈∅〉〉2(q ⇒ JΣK#ϕ), and Tt+1 = ∆ ∪ Rt, where Rt =

{〈〈∅〉〉2(q ⇒ 〈〈∅〉〉#ϕ)}, be two sets of XATL clauses such that Tt+1 is obtained by an application of

Trans(6) to the formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. In [7] (see also Appendix B), the equivalence JΣK#ϕ ≡ 〈〈∅〉〉#ϕ is shown. By propositional

reasoning, the formula q ⇒ JΣK#ϕ is equivalent to the formula q ⇒ 〈〈∅〉〉#ϕ. ⊓⊔

Theorem 5.1 Let Tt = ∆ ∪ {ψ} and Tt+1 = ∆ ∪ Rt be two sets of XATL clauses such that Tt+1

is obtained by an application of a transformation rule of the form ψ → Rt in the set Trans to the

formula ψ in Tt. Then Tt is satisfiable iff Tt+1 is satisfiable.

Proof. To prove this theorem, we need to show that every transformation rule in the set Trans

preserves satisfiability.

Lemmas 5.3, 5.4, 5.5, and 5.6 show that the transformation rules Trans(1), Trans(3), Trans(4),

and Trans(6) preserve satisfiability, respectively.

The proof that Trans(2) preserves satisfiability is analogous to the proof for Trans(1) in Lemma 5.3.

The proof that Trans(5) preserves satisfiability is analogous to the proof for Trans(4) in Lemma 5.5.

⊓⊔

5.5. CORRECTNESS OF THE CALCULUS RXATL 129

Weight functions for XATL formulae

To show that the transformation terminates, we assign weights to XATL clauses and sets of XATL

clauses and prove that every application of a transformation rule strictly reduces the weight of a

set of XATL clauses.

In particular, we define the following three weight functions

1. w(Γ), which assigns a weight to an XATL clause Γ;

2. w(L, ϕ), which assigns a weight to an XATL formula ϕ occurring on the left-hand side of an

XATL clause; and

3. w(R, ϕ), which assigns a weight to an XATL formula ϕ occurring on the right-hand side of

an XATL clause.

Except for the case of atomic propositions, w(L, ϕ) and w(R, ϕ) have identical definitions. There-

fore, to ease the following definition, we use w(x, ϕ) where a case of the definition applies to both

w(L, ϕ) and w(R, ϕ). Then the inductive definition of the three weight functions is as follows.

For every XATL clause Γ = 〈〈∅〉〉2(ϕ1 ⇒ ϕ2), the weight w(Γ) of Γ is defined as follows.

1. w(〈〈∅〉〉2(ϕ ⇒ ψ)) = w(L, ϕ) + w(R, ψ) + 1;

2. w(x, start) = 1;

3. w(x, true) = w(x, false) = 1;

4. w(L, p) = 5;

5. w(R, p) = 1;

6. w(x,¬ϕ) = w(x, ϕ);

7. w(x, ϕ ∧ ψ) = w(x, ϕ) + w(x, ψ)+7;

8. w(x, ϕ ∨ ψ) = w(x, ϕ) + w(x, ψ)+1, where both ϕ and ψ are disjunctions of literals;

9. w(x, ϕ ∨ ψ) = w(x, ϕ) + w(x, ψ) + 9, where only one of ϕ and ψ is a disjunction of literals;

10. w(x, ϕ ∨ ψ) = w(x, ϕ) + w(x, ψ) + 17, where neither of ϕ and ψ is a disjunctions of literals;

11. w(x, 〈〈A〉〉#ϕ) = w(x, ϕ) + 9, where ϕ is not a disjunction of literals;

12. w(x, 〈〈A〉〉#ϕ) = w(x, ϕ) + 1, where ϕ is a disjunction of literals;

13. w(x, JAK#ϕ) = w(x, ϕ) + 10, where ϕ is not a disjunction of literals;

14. w(x, JAK#ϕ) = w(x, ϕ) + 2, where ϕ is a disjunction of literals;

130 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

It should be noted that a disjunction of literals can consist of a single literal.

For every set ∆ of XATL clauses, the weight of ∆ is

w(∆) =
∑

Γ∈∆

w(Γ).

In the following, we prove that each application of a transformation rule to a clause Γ in a set

T of XATL clauses results in a set T ′ of XATL clauses that weights strictly less than T .

Lemma 5.7 Let Tt = ∆ ∪ {Γ}, where Γ = 〈〈∅〉〉2(q ⇒ ϕ1 ∧ ϕ2), be a set of XATL clauses. Let

Tt+1 = ∆ ∪ {Γ1,Γ2}, where Γ1 = 〈〈∅〉〉2(q ⇒ ϕ1) and Γ2 = 〈〈∅〉〉2(q ⇒ ϕ2), be a set of XATL

clauses such that Tt+1 is obtained by an application of Trans(1) to the formula Γ in Tt. Then the

weight of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)− (w(∆)+w(Γ1)+w(Γ2)) > 0.

According to the definition of the weight function for XATL clauses, we have

w(Γ) = w(L, q) + w(R, ϕ1 ∧ ϕ2) + 1

= 5 + w(R, ϕ1) + w(R, ϕ2) + 7 + 1

= w(R, ϕ1) + w(R, ϕ2) + 13

w(Γ1) = w(L, q) + w(R, ϕ1) + 1

= 5 + w(R, ϕ1) + 1

= w(R, ϕ1) + 6

w(Γ2) = w(L, q) + w(R, ϕ2) + 1

= 5 + w(R, ϕ2) + 1

= w(R, ϕ2) + 6

Therefore, w(∆) + w(Γ) − (w(∆) + w(Γ1) + w(Γ2)) = 1 > 0. ⊓⊔

Next, we consider the transformation rule Trans(3).

Lemma 5.8 Let Tt = ∆ ∪ {Γ}, where Γ = 〈〈∅〉〉2(q ⇒ D) and D is a disjunction of literals, be a

set of XATL clauses. Let Tt+1 = ∆ ∪ {Γ′}, where Γ′ = 〈〈∅〉〉2(true ⇒ ¬q ∨D), be a set of XATL

clauses such that Tt+1 is obtained by an application of Trans(3) to the formula Γ in Tt. Then the

weight of Tt is strictly greater than the weight of Tt+1.

Proof. We need to show that w(Tt)−w(Tt+1) > 0, i.e. w(∆)+w(Γ)−(w(∆)+w(Γ′)) > 0. According

5.5. CORRECTNESS OF THE CALCULUS RXATL 131

to the definition of the weight function for XATL clauses, we have

w(Γ) = w(L, q) + w(R, D) + 1

= 5 + w(R, D) + 1

= w(R, D) + 6

w(Γ′) = w(L, true) + w(R,¬q ∨D) + 1

= 1 + w(R,¬q) + w(R, D) + 1 + 1

= w(R, q) + w(R, D) + 3

= w(R, D) + 4

Therefore, w(∆) + w(Γ) − (w(∆) + w(Γ′)) = 2 > 0. ⊓⊔

Lemma 5.9 Let Tt = ∆ ∪ {Γ}, where Γ = 〈〈∅〉〉2(q ⇒ JΣK#ϕ), be a set of XATL clauses. Let

Tt+1 = ∆ ∪ {Γ′}, where Γ′ = 〈〈∅〉〉2(q ⇒ 〈〈∅〉〉#ϕ), be a set of XATL clauses such that Tt+1 is

obtained by an application of Trans(6) to the formula Γ in Tt. Then the weight of Tt is strictly

greater than the weight of Tt+1.

Proof. We need to show that w(Tt)− w(Tt+1) > 0, i.e. w(∆) + w(Γ)− (w(∆) + w(Γ′)) > 0.

If ϕ is a disjunction of literals, then we have

w(Γ) = w(L, q) + w(R, JΣK#ϕ) + 1

= 5 + w(R, ϕ) + 2 + 1

= w(R, ϕ) + 8

w(Γ′) = w(L, q) + w(R, 〈〈∅〉〉#ϕ) + 1

= 5 + w(R, ϕ) + 1 + 1

= w(R, ϕ) + 7

Otherwise, we have

w(Γ) = w(L, q) + w(R, JΣK#ϕ) + 1

= 5 + w(R, ϕ) + 10 + 1

= w(R, ϕ) + 16

w(Γ′) = w(L, q) + w(R, 〈〈∅〉〉#ϕ) + 1

= 5 + w(R, ϕ) + 9 + 1

= w(R, ϕ) + 15

Therefore, for both cases, w(∆) + w(Γ)− (w(∆) + w(Γ′)) = 1 > 0. ⊓⊔

132 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Theorem 5.2 Let the set of XATL formulae Tt+1 be obtained by an application of a transformation

rule in Trans to a formula Γ in the set of XATL formulae Tt. Then the weight w(Tt) of Tt is strictly

greater than the weight w(Tt+1) of Tt+1.

Proof. To show this theorem holds, we need to prove that w(Tt) − w(Tt+1) > 0 for each transfor-

mation rule. For the transformation rules Trans(1), Trans(3) and Trans(6) we have already done

so in Lemma 5.7, 5.8 and 5.9, respectively. For the remaining transformation rules the result can

be computed analogously. Below we only list the result of w(Tt)− w(Tt+1) for each rule.

Rule w(Tt)− w(Tt+1) Rule w(Tt)− w(Tt+1) Rule w(Tt)− w(Tt+1)

(1) 1 (2) 1 (3) 2

(4) 1 (5) 1 (6) 1
⊓⊔

Lemma 5.10 Let T be a set of XATL clauses. If T contains a clause Γ which is not in SNFXATL,

then there exists a transformation rule, which can be applied to Γ in T .

Proof. According to the definition of the syntax of XATL formulae and SNFXATL formulae, the

possible forms of formulae occurring on the right-hand side of an XATL clause are the following:

true, false, p, ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), 〈〈A〉〉#ϕ, and JAK#ϕ, where p is a proposition

and ϕ and ψ are XATL formulae. As we apply the functions simp and nnf at the beginning of

the transformation, XATL formulae of the form true, false,¬ϕ (for a formula ϕ which is not a

proposition), and ϕ ⇒ ψ can not occur on the right-hand side of XATL clauses in T . For the

remaining possible forms that Γ might take, the table below shows that if Γ is not a SNFXATL

clause, then there exists a transformation rule which can be applied to Γ.

Form Trans

q ⇒ p (3)

q ⇒ ¬p (3)

q ⇒ ϕ ∧ ψ (1)

q ⇒ ϕ ∨ ψ (2) or (3)

q ⇒ 〈〈A〉〉#ϕ (4)

q ⇒ JAK#ϕ (5) or (6)
⊓⊔

Theorem 5.3 Let T0, T1, . . . be a sequence of sets of XATL clauses such that T0 = init(ϕ) for

some XATL formula ϕ and Tt+1 is obtained from Tt by applying a transformation rule to a clause

in Tt. Then the sequence T0, T1, . . . terminates, i.e. there exists an index n, n ≥ 0, such that no

transformation rule can be applied to any clause in Tn. Furthermore, all clauses in Tn are in

SNFXATL.

Proof. Follows from Lemma 5.10 and Theorem 5.2. ⊓⊔

Using the notion of the size of an XATL formula we are able to characterise the computational

complexity of the normal form transformation for XATL.

5.5. CORRECTNESS OF THE CALCULUS RXATL 133

Definition 5.21 Size of an XATL formula

Let ϕ be an arbitrary XATL formula. The size of ϕ is the number of occurrences of constants,

propositions, boolean operators and temporal operators in ϕ.

For examples, the size of 〈〈A〉〉#p is 2, the size of start ⇒ p ∨ q is 5, and the size of q ⇒

JAK#(〈〈A〉〉#p ∨ (p ∧ q)) is 9.

Theorem 5.4 Let ϕ be an arbitrary XATL formula and Tn be a set of SNFXATL clauses obtained

from T0 = init(ϕ) by n applications of our transformation rules. Then n is linearly bounded in the

size of ϕ and the set Tn can be computed in polynomial time in the size of ϕ.

Proof. Let ϕ be of size m and we assume ϕ is already in negation normal form. By the definition of

the weight function, we know that the weight of T0 = init(ϕ) is w(〈〈∅〉〉2(start ⇒ p))+w(〈〈∅〉〉2(p ⇒

ψ)), where ψ = simp(nnf (ϕ)). Furthermore,

w(〈〈∅〉〉2(start ⇒ p)) = w(L, start) + w(R, p) + 1

= 1 + 1 + 1

= 3

and

w(〈〈∅〉〉2(p ⇒ ψ)) = w(L, p) + w(R, ψ) + 1

= 5 + w(R, ψ) + 1

= w(R, ψ) + 6

Therefore, w(T0) = w(R, ψ) + 9. It is not hard to see that the function simp only reduces the size

and weight of ϕ. Thus, the size and weight of ψ is bounded by the size and weight of ϕ, respectively.

As the maximal weight of a constant, proposition, boolean operator, or temporal operator is 17, the

weight w(R, ψ) is bounded by 17m+9. Since, by Theorem 5.2, each application of a transformation

rule to a set of XATL clauses Tt results a set of XATL clauses Tt+1 with w(Tt+1) ≤ w(Tt)− 1, Tn

can be computed in less than 17m+ 9 applications of the transformation rules.

Regarding the complexity of each application, we assume XATL clauses are stored in a tree data

structure. For example, the tree in Figure 5.1 represents the XATL clause p⇒ 〈〈A〉〉#(q1∨JAK#q2).

Then according to our transformation rules, by reusing the subtrees representing subformulae as

appropriate, generating the XATL clauses resulting from an application of a transformation rule

can be accomplished in constant time in the size of ϕ. The pattern matching procedure determining

which rule to apply to an XATL clause, which is not in SNFXATL, requires linear time in the size

of ϕ in the worst case.

Therefore, the set Tn can be computed in polynomial time in the size of ϕ. ⊓⊔

134 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

p

q2

⇒

〈〈A〉〉#

q1 JAK#

∨

Figure 5.1: p⇒ 〈〈A〉〉#(q1 ∨ JAK#q2) stored in a tree structure

Theorem 5.5 Let ϕ be an arbitrary XATL formula and Tn be a set of SNFXATL clauses obtained

from T0 = init(ϕ) by a linearly bounded applications of our transformation rules in the size of ϕ.

Then ϕ is satisfiable iff Tn is satisfiable.

Proof. Follows from Theorem 5.3, Lemma 5.2, Theorem 5.1 and Theorem 5.4. ⊓⊔

5.5.2 Soundness and completeness

We now establish the soundness of RXATL via the semantics of XATL. Before we state and prove

the soundness theorem for RXATL, we first establish a number of properties of the ordering ⊑ on

A-moves that will be used in the proof of that theorem.

Lemma 5.11 Let M = (Σ, S, d, δ,PPL, L) be a CGM, s be a state in S and A,A′ be coalitions.

If the operation ⊕ is applicable to an A-move σA ∈ DA(s) and an A′-move σA′ ∈ DA′(s), then

σA ⊑ σA ⊕ σA′ and σA′ ⊑ σA ⊕ σA′ .

Proof. Let σA′′ be σA ⊕ σA′ . By the definition of the operation ⊕, A′′ ⊇ A and for every agent

a ∈ A, σA(a) = σA′′(a). Therefore, σA ⊑ σA′′ . Analogously for σA′ and σA′′ . ⊓⊔

Lemma 5.12 Let M = (Σ, S, d, δ,PPL, L) be a CGM, s be a state in S and A,A′ be coalitions. If

there exist an A-move σA ∈ DA(s), an A′-move σA′ ∈ DA′(s), and a move vector σ ∈ D(s) such

that σA ⊑ σA′ and σA′ ⊑ σ, then σA ⊑ σ.

Proof. From σA ⊑ σA′ and σA′ ⊑ σ, we obtain that (i) for every agent a ∈ A, σA(a) = σA′(a);

(ii) for every agent a′ ∈ A′, σA′(a′) = σ(a′) and (iii) A ⊆ A′. Therefore, for every agent a ∈

A, σA(a) = σ(a). Thus σA ⊑ σ. ⊓⊔

Lemma 5.13 Let M = (Σ, S, d, δ,PPL, L) be a CGM, s be a state in S and A,A′ be coalitions.

If there exist an A-move σA ∈ DA(s) and an A′-move σA′ ∈ DA′(s) such that σA ⊑ σA′ , then

out(s, σA′) ⊆ out(s, σA).

5.5. CORRECTNESS OF THE CALCULUS RXATL 135

Proof. Let ∆ and ∆′ be the set of move vectors {σ | σA ⊑ σ} and the set of move vectors

{σ′ | σA′ ⊑ σ′}, respectively. As σA ⊑ σA′ , by Lemma 5.12 every σ′ ∈ ∆′ must also be an

element of ∆. Therefore, ∆′ ⊆ ∆. By the definition of the transition function δ, we obtain

{δ(s, σ′) | σ′ ∈ ∆′} ⊆ {δ(s, σ) | σ ∈ ∆}. By the definition of the outcome of σA and σA′ at state s,

we obtain out(s, σA′) ⊆ out(s, σA). ⊓⊔

Theorem 5.6 (Soundness of RXATL). Let T be a set of SNFXATL clauses. If there is a refutation

of T by RXATL, then T is unsatisfiable.

Proof. Let T0, T1, . . . , Tn be a derivation from a set of SNFXATL clauses T = T0 by the calculus

RXATL. We will show by induction over the length of the derivation that if T0 is satisfiable, then

so is Tn.

For T0, the claim obviously holds. Now, consider the step of the derivation in which we derive

Tt+1 from Tt for some t ≥ 0. Assume Tt holds in M = (Σ, S, d, δ,PPL, L) at a state s0 ∈ S.

Assume 〈〈∅〉〉2(P ⇒ 〈〈A〉〉#(C ∨ l)) and 〈〈∅〉〉2(Q ⇒ 〈〈A′〉〉#(D ∨ ¬l)) are in Tt and that the

coalitions A and A′ are disjoint. Let Tt+1 be obtained by an application of SRES4 to 〈〈∅〉〉2(P ⇒

〈〈A〉〉#(C∨l)) and 〈〈∅〉〉2(Q⇒ 〈〈A′〉〉#(D∨¬l)), that is, Tt+1 = Tt∪{〈〈∅〉〉2(P ∧Q⇒ 〈〈A ∪A′〉〉#(C∨

D))}. We show that M also satisfies Tt+1.

Consider an arbitrary state s reachable from s0 ∈ S. If either M, s 6|= P or M, s 6|= Q, then

M, s |= P ∧ Q ⇒ 〈〈A ∪A′〉〉#(C ∨ D). If, on the other hand, M, s |= P and M, s |= Q, then

from M, s0 |= 〈〈∅〉〉2(P ⇒ 〈〈A〉〉#(C ∨ l)), M, s0 |= 〈〈∅〉〉2(Q ⇒ 〈〈A′〉〉#(D ∨ ¬l)), and the semantics

of 〈〈∅〉〉2, we obtain M, s |= 〈〈A〉〉#(C ∨ l) and M, s |= 〈〈A′〉〉#(D ∨ ¬l). From the semantics of

M, s |= 〈〈A〉〉#(C ∨ l), we know there exists an A-move σA ∈ DA(s) such that for every state

si ∈ out(s, σA),M, si |= C ∨ l. For an analogous reason, we know there exists an A′-move σA′ ∈

DA′(s) such that for every state sj ∈ out(s, σA′),M, sj |= D ∨ ¬l. As A and A′ are disjoint,

for A′′ = A ∪ A′, there exists an A′′-move σA′′ = σA ⊕ σA′ . By Lemma 5.11, σA ⊑ σA′′ and

σA′ ⊑ σA′′ . By Lemma 5.13, out(s, σA′′) ⊆ out(s, σA) and out(s, σA′′) ⊆ out(s, σA′). We know for

every si ∈ out(s, σA),M, si |= C ∨ l and for every sj ∈ out(s, σA′),M, sj |= D ∨ ¬l. Therefore,

for every sk ∈ out(s, σA′′),M, sk |= (C ∨ l) and M, sk |= (D ∨ ¬l). By propositional reasoning,

M, sk |= C ∨D. Therefore, M, s |= 〈〈A ∪A′〉〉#(C ∨D).

As s is an arbitrary state reachable from s0, we obtain M, s0 |= 〈〈∅〉〉2(P ∧Q⇒ 〈〈A ∪A′〉〉#(C ∨

D)) from the semantics of 〈〈∅〉〉2. Thus, Tt+1 is satisfiable and SRES4 is sound.

Next we show SRES5 is sound. Assume 〈〈∅〉〉2(P ⇒ 〈〈A〉〉#(C ∨ l)) and 〈〈∅〉〉2(Q ⇒ JA′K#(D ∨

¬l)) are in Tt and the coalition A is a subset of the coalition A′. Let Tt+1 be obtained by an

application of SRES5 to 〈〈∅〉〉2(P ⇒ 〈〈A〉〉#(C ∨ l)) and 〈〈∅〉〉2(Q ⇒ JA′K#(D ∨ ¬l)), that is,

Tt+1 = Tt ∪ {〈〈∅〉〉2(P ∧Q⇒ JA′ \AK#(C ∨D))}. We show that the CGM M also satisfies Tt+1.

Consider an arbitrary state s reachable from s0 ∈ S. If either M, s 6|= P or M, s 6|= Q, then

M, s |= P ∧ Q ⇒ JA′ \AK#(C ∨ D). If, on the other hand, M, s |= P and M, s |= Q, then from

〈〈∅〉〉2(P ⇒ 〈〈A〉〉#(C ∨ l)), 〈〈∅〉〉2(Q⇒ JA′K#(D ∨¬l)), and the semantics of 〈〈∅〉〉2, we obtain that

M, s |= 〈〈A〉〉#(C ∨ l) and M, s |= JA′K#(D ∨ ¬l). By the semantics of 〈〈A〉〉#, (1) there exists an

A-move σA ∈ DA(s) such that M, s′ |= C ∨ l for all states s′ ∈ out(s, σA). By the definition of

JA′K# and the semantics of 〈〈A′〉〉#, we have, (2) for every A′-move σA′ ∈ DA′(s), there exists a

move vector σ such that σA′ ⊑ σ, s′′ = δ(s, σ) and M, s′′ |= D ∨ ¬l. Let ∆ be the set of A′-moves

136 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

{σi
A′ | σi

A′ ∈ DA′(s) and σA ⊑ σi
A′}. As A ⊆ A′, ∆ ⊆ DA′(s), i.e. every A′-move in ∆ is also in

DA′(s). Therefore, for everyA′-move σi
A′ ∈ ∆, there exists a move vector σi such that σi

A′ ⊑ σi, si =

δ(s, σi),M, si |= D∨¬l. By Lemma 5.12, σA ⊑ σi. By Lemma 5.13, out(s, σi) = {si} ⊆ out(s, σA).

From (1), M, si |= C ∨ l. Thus M, si |= C ∨D by propositional reasoning. Therefore, (3) for every

A′-move σi
A′ ∈ ∆, there exists a move vector σi such that σi

A′ ⊑ σi, si = δ(s, σi),M, si |= C ∨ D.

(3) is equivalent to that for every (A′ \ A)-move σ(A′\A) ∈ D(A′\A)(s), there exists a move vector

σi such that (i) σA ⊑ σi, σ(A′\A) ⊑ σi and (ii) si = δ(s, σi),M, si |= C ∨ D. From the definition

of JA′ \AK#, we obtain M, s |= JA′ \AK#(C ∨ D). As s is an arbitrary state reachable from s0,

from the semantics of 〈〈∅〉〉2, we obtain M, s0 |= 〈〈∅〉〉2(P ∧Q⇒ JA′ \AK#(C ∨D)). Thus, Tt+1 is

satisfiable and SRES5 is sound.

The soundness proofs for SRES1 to SRES3, SRES6 and SRES7 are analogous to those for

SRES4 and SRES5.

Regarding RW1, by the semantics of 〈〈A〉〉# and false the formula 〈〈∅〉〉2(∧n
i=1mi ⇒ 〈〈A〉〉#false)

is true iff 〈〈∅〉〉2(∧n
i=1mi ⇒ false) is true. This formula is equivalent to 〈〈∅〉〉2(∨n

i=1¬mi) which in

turn, by the semantics of ⇒ and true, is equivalent to 〈〈∅〉〉2(true ⇒ ∨n
i=1¬mi). The proof for

RW2 is similar.

So, we have shown that for any derivation T0, T1, . . . , Tn, if T0 is satisfiable, then Tn is satisfiable.

Thus, if Tn contains a contradiction, then T0 is unsatisfiable. ⊓⊔

Recall from Section 3.5.2 that in the completeness proof for the calculus R
≻,S
CTL for CTL, we

make use of labelled behaviour graphs, terminal nodes, and reduced labelled behaviour graphs. In

the following, we adapt these notions to XATL.

Definition 5.22 Agent behaviour graph

Let σA be an A-move, σN
A be a negative-A-move, and C‡ be a conjunction of disjunctions of literals

(possibly consisting of only one disjunction of literals or one literal). Then an expression of the

form σA#C‡ or σN
A #C‡ is called a next formula or negative next formula, respectively.

Let T be a set of SNFXATL clauses. We construct a finite labelled directed graph H = (N,E),

called an agent behaviour graph for T as follows. The set of nodes N of H consists of all valuations

of propositions occurring in T .

To define the set of edges E of H , we need the following auxiliary definitions. Let n = V be

a node in N . Let R∅(n, T) = {σ∅#D | true ⇒ D ∈ T } ∪ {σ∅#C | P ⇒ 〈〈∅〉〉#C ∈ T, V |= P} ∪

{σ∅#true}. Assume R∅(n, T) = {σ∅#C1, σ∅#C2, . . . , σ∅#Ck}, then letX(n, T) = C1∧C2∧. . .∧Ck.

Let Rm(n, T) = {〈〈A〉〉#C | P ⇒ 〈〈A〉〉#C ∈ T,A 6= ∅, V |= P} ∪ {JBK#D | Q ⇒ JBK#D ∈

T,B 6= Σ, V |= Q}. Then let seq(Rm(n, T)) be a sequence consisting of all formulae in Rm(n, T)

such that all the formulae of the form 〈〈A〉〉#C precede all the formulae of the form JBK#D. We

use seq(Rm(n, T))[i] to denote the ith element of seq(Rm(n, T)).

Let next(n, T) be the smallest set of next formulae and negative next formulae such that for

every element seq(Rm(n, T))[i] in seq(Rm(n, T)),

• if seq(Rm(n, T))[i] is of the form 〈〈A〉〉#C, then the next formula σA#(C ∧X(n, T)) is in the

set next(n, T), where σA is an A-move such that for every agent a ∈ A, σA(a) = i and for

every agent a′ 6∈ A, σA(a′) = ∗; and

5.5. CORRECTNESS OF THE CALCULUS RXATL 137

• if seq(Rm(n, T))[i] is of the form JBK#D, then the negative next formula σN
B #(D∧X(n, T)) is

in the set next(n, T), where σN
B is a negative-B-move such that for every agent a ∈ B, σN

B (a) =

∗ and for every agent a′ 6∈ B, σN
B (a′) = −i.

In the following, D‡
1 and D

‡
2 represent a conjunction of disjunctions of literals and we assume

that ∧ is idempotent. We inductively define the closure cls(n, T) of the set next(n, T) to be the set

such that

• every element of next(n, T) is in cls(n, T);

• if σA#D
‡
1, σA′#D

‡
2 ∈ cls(n, T), A ∩ A′ = ∅ and neither A nor A′ is an empty set, then

σA ⊕ σA′#(D‡
1 ∧D

‡
2) ∈ cls(n, T); and

• if σA#D
‡
1, σ

N
A′#D

‡
2 ∈ cls(n, T), A ⊆ A′, A is not an empty set and A′ 6= Σ, then σA ⊕

σN
A′#(D‡

1 ∧D
‡
2) ∈ cls(n, T).

Given a node n = V , for every next formula σA#C‡ or negative next formula σN
A #C‡ in the set

cls(n, T), if there exists a node n′ = V ′ such that V ′ |= C‡, then there exists an edge in E from n

to n′ labelled by σA or σN
A , respectively.

Let R0(T) = {D | start⇒ D ∈ T } and Rg(T) = {C | true⇒ C ∈ T }. Then any node n0 = V ,

where V satisfies the set R0(T)∪Rg(T), is an initial node of H . The agent behaviour graph for an

set of SNFXATL clauses T is the set of nodes and edges reachable from the initial nodes.

Definition 5.23 Terminal node

A node n = V in the agent behaviour graph for a set T of SNFXATL clauses is a terminal node

iff there exists a next formula σA#C‡ or a negative next formula σN
A #C‡ in the set cls(n, T) such

that no edge labelled by σA or σN
A departs from the node n.

Definition 5.24 Reduced agent behaviour graph

Given an agent behaviour graph H = (N,E) for a set of SNFXATL clauses T , the reduced labelled

behaviour graph red(H) for T is the result of exhaustively applying the following deletion rule DEL

to H .

DEL If n ∈ N is a terminal node, then delete n and every edge into or out of n.

Outline of the completeness proof

In the following, we present an outline of the completeness proof of the calculus RXATL.

Lemma 5.14 Let T be a set of SNFXATL clauses and let red(H) be its reduced agent behaviour

graph. If the graph red(H) is not empty, then T is satisfiable.

Proof (Outline). This lemma can be proved by showing that if red(H) is not empty, then (1) a

CGM M can be constructed from red(H) and (2) M satisfies T .

We know that all edges in red(H) are labelled with an A-move or a negative-A-move. According

to these edges and their labels, we are able to generate corresponding new edges labelled with move

vectors. We use vec(H) to denote the new graph formed by the nodes from red(H) and those edges

labelled move vectors.

138 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Let n be a node in vec(H). If there exists an edge from n to n′ labelled with the move vector σ

in vec(H), then we say n′ is a σ-successor of n. We use δ(n, σ) to denote the set of all σ-successors

of the node n. Then, by eliminating unnecessary edges in vec(H), i.e. ensure that for every node n

in vec(H) and for every move vector σ available at n, |δ(n, σ)| = 1, we obtain M . Thus, we have

(1).

Regarding (2), it can be shown that, by the way we construct M from T , M satisfies T . ⊓⊔

Lemma 5.15 Let T be a set of SNFXATL clauses. If T is unsatisfiable, then its reduced agent

behaviour graph red(H) is empty.

Proof. Follows from Lemma 5.14. ⊓⊔

Now we are able to show that if a finite set T of SNFXATL clauses is unsatisfiable, then T has

a refutation using the step resolution rules SRES1 to SRES7 and the rewrite rules RW1 and RW2.

Let T be an unsatisfiable set of SNFXATL clauses. The proof proceeds by induction on the se-

quence of applications of the deletion rule DEL to the agent behaviour graph of T . If the unreduced

agent behaviour graph is empty then we can obtain a refutation by applying step resolution rules

SRES1 to SRES3. Now suppose the agent behaviour graph H is non-empty. The reduced agent

behaviour graph must be empty by Lemma 5.15, so there must be a node that can be deleted from

H .

We show that for every application of the deletion rule DEL to a behaviour graph H of T

resulting in a smaller graph H ′′, there is a derivation from T by RXATL resulting in a set T ′ such

that the behaviour graph H ′ for T ′ is a strict subgraph of H ′′. In particular, we can prove that the

deletion rule DEL corresponds to a series of step resolution inferences by SRES1 to SRES7 deriving

a clause of the form true ⇒ false, P ⇒ 〈〈A〉〉#false or P ⇒ JA′K#false. The rewrite rules RW1

and RW2 will replace P ⇒ 〈〈A〉〉#false and P ⇒ JA′K#false by the simpler clauses true⇒ ¬P .

Therefore, if T is unsatisfiable, then the reduced agent behaviour graph red(H) for T is empty

and the sequence of applications of the deletion rule DEL which reduces the agent behaviour graph

H for T to an empty red(H) can be used to construct a refutation of T by RXATL.

5.6 Conclusions

ATL [7] is a well-known and successful formalism for specification and verification of multi-agent

systems. As the significance of multi-agent systems grows, the research on ATL is increasingly

important and active. Our research focuses on a fragment of ATL, namely XATL, which is also

useful for many applications, for example, specification and verification of a variety of strategic

games [57, 58]. Currently there are a number of methods that have been established for tackling

the satisfiability problem for ATL and XATL, for instance, two tableau-based methods by Walther

et al. [73] and by Goranko et al. [41] for ATL, two automata-based methods by van Drimmelen [70]

and by Goranko et al. [42] for ATL, and one tableau-based method2 by Hansen [44] for XATL. No

resolution-based method has been developed for ATL or any fragment of ATL so far.

2This tableau method is originally developed for CL. Since the equivalence of the semantics for XATL and CL has
been shown in [39], it is easy to show that this tableau method for CL translates into a tableau method for XATL.

5.6. CONCLUSIONS 139

In this chapter, we have developed the first clausal resolution calculus RXATL for XATL. We

define a normal form SNFXATL and a transformation procedure, which can be used to transform

an XATL formula into a satisfiability equivalent set of SNFXATL clauses. We have shown that

the transformation procedure preserves satisfiability and terminates, and that the computational

complexity of this procedure is polynomially bounded with respect to the size of the input formula.

The calculus RXATL consists of seven step resolution rules and two rewrite rules and we provide

a number of examples illustrating deriving a contradiction from an unsatisfiable set of SNFXATL

clauses by those rules. Moreover, we have shown that RXATL is sound and outlined a completeness

proof for RXATL using agent behaviour graphs, terminal nodes and reduced agent behaviour graphs.

This approach has been successfully applied to PLTL and CTL to prove the completeness of the

resolution calculus for PLTL in [38] and the resolution calculus for CTL in Section 3, respectively.

Here we have extended this approach to XATL. In future work, it is our intention to reuse the

techniques we developed for RXATL in order to develop a calculus for full ATL.

140 CHAPTER 5. RESOLUTION FOR THE NEXT-TIME FRAGMENT OF ATL

Chapter 6

Conclusions and future work

In this chapter, we summarise our work on tackling the satisfiability problems for CTL and XATL

by using resolution-based approaches and draw conclusions. We also outline the directions of future

work including more refinements on the calculi we have developed in this thesis, the possibilities

of applying resolution-based methods to other forms of modal logics, and the potential of using

first-order resolution to emulate those methods.

6.1 Conclusions

In this thesis, we have considered the propositional branching-time temporal logic CTL and the

agent logic XATL and have developed corresponding resolution-based calculi, which can be used as

bases of decision procedures for the satisfiability problems for both CTL and XATL.

In the case of CTL, we have provided a refined resolution calculus R
≻,S
CTL and a new approach to

automating the inferences of CTL resolution of R
≻,S
CTL using first-order techniques, and, consequently,

have obtained a theorem prover for CTL, namely CTL-RP, which can be used to efficiently verify

various problems encoded into CTL formulae.

The work we have done on the calculus R
≻,S
CTL is motivated by Fisher’s calculus [37] for PLTL

and Bolotov’s calculus [15] for CTL. In 1991, Fisher first proposed a clausal resolution calculus for

PLTL, which provides many important ideas and techniques such as the Separated Normal Form

transformation, step resolution, eventuality resolution, etc. Later, these ideas and techniques were

adapted to a number of other non-classical logics for their corresponding resolution methods. One of

them is Bolotov’s calculus [15], where he extended Fisher’s calculus from PLTL to CTL. He proposed

the Separated Normal Form for CTL incorporating indices to denote existentially quantified paths.

He also identified different types of eventualities, A3 and E3, and developed the corresponding

eventuality resolution rules for them. Based on Bolotov’s work [15], we have developed a new clausal

resolution calculus R
≻,S
CTL for CTL. The calculus R

≻,S
CTL contains step resolution rules, eventuality

resolution rules, and rewrite rules. We have shown that R
≻,S
CTL is sound and complete, i.e. for a

given CTL formula ϕ, ϕ is unsatisfiable iff by applying step resolution rules, eventuality resolution

rules and rewrite rules of R
≻,S
CTL to the set of SNFg

CTL clauses representing ϕ, a contradiction can

be derived. Compared with [15], we have the following advantages.

141

142 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

1. We introduce a new type of clause, global clauses, into the normal form. By doing so, we can

often reduce the number of clauses generated from the transformation as well as those derived

from resolution inferences. We also provide a formal semantics for normal form formulae.

2. We develop a new and improved transformation procedure. In experiments, we observe that

for checking the satisfiability of a CTL formula, the CPU time consumed by our prover CTL-

RP using the improved transformation procedure is usually less than half of the CPU time

used by CTL-RP using our implementation of Bolotov’s transformation procedure for the

same CTL formula.

3. We show the termination of the transformation procedure and determine its computational

complexity, whereas in [15] the corresponding proofs are absent.

4. The applications of the step resolution rules of R
≻,S
CTL are subject to an ordering and a selection

function. Therefore, the applicability of the resolution rules is reduced compared to Bolotov’s

resolution rules. Thus, the search space is pruned noticeably.

5. We present a new completeness proof for R
≻,S
CTL, which also shows that two out of the four

eventuality resolution rules in [15] are redundant. Consequently, R
≻,S
CTL has fewer eventuality

rules than Bolotov’s calculus for CTL.

6. A complexity analysis for R
≻,S
CTL is given, which is absent from [15].

Inspired by Dixon’s work on using a propositional/first-order resolution prover to implement

step resolution rules [28] for the calculus RPLTL and Hustadt and Konev’s work on the efficient

PLTL theorem prover TRP++ [48], we have developed an approach for using first-order clauses to

represent determinate clauses and then, establish a mapping, which maps resolution rules SRES1 to

SRES8 to a first-order resolution rule. Therefore, all inferences of step resolution can be done by a

first-order resolution theorem prover. Finally, we extend the high performance first-order theorem

prover SPASS with an implementation of the eventuality resolution rules to realise the calculus

R
≻,S
CTL in the theorem prover CTL-RP and according to our empirical study of CTL-RP, it shows

good performance.

In the case of XATL, we have developed a resolution calculus RXATL. A number of tableau-

based [44, 73, 41] and automata-based methods [70, 42] have been developed for the satisfiabil-

ity problem for ATL or XATL in recent years, however no attempts have been made to develop

resolution-based methods. Thus, RXATL is the first resolution-based method for XATL satisfiability

checking.

We define a normal form SNFXATL and a transformation procedure to transform an arbitrary

XATL formula into this normal form. We prove the correctness of the procedure and analyse its

complexity. RXATL consists of seven step resolution rules and two rewrite rules. We show RXATL is

sound, i.e. if there is a refutation by RXATL from a set of SNFXATL clauses representing an XATL

formula ϕ, then ϕ is unsatisfiable. We also provide an outline of the completeness proof of RXATL.

6.2. FUTURE WORK 143

6.2 Future work

6.2.1 Further research on XATL resolution

In this thesis, we have presented the resolution calculus RXATL for XATL and outlined its complete-

ness proof, but there still are a number of objectives regarding RXATL that we have not achieved

yet. We discuss them individually in the following.

Firstly, since the completeness issues are important for a calculus, we should consider the work

on those issues further and also provide a formal completeness proof for RXATL.

Secondly, we are interested in realising the calculus RXATL in a theorem prover for XATL. We

may be able to apply our implementation approach for the calculus R
≻,S
CTL to RXATL. To do so,

several issues need to be investigated.

1. We have to find an approach for representing SNFXATL clauses using first-order clauses. For

this issue, we have already developed some ideas. For example, for a given set of agents

Σ = {1, 2, 3}, the XATL formula ϕ = r ⇒ 〈〈1, 2〉〉#(p ∨ q) may be represented by the first-

order clause

ϕf = ¬Qr(x) ∨Qp(app(m(1, 1, y), x)) ∨Qq((app(m(1, 1, y), x)))

and the XATL formula ψ = q ⇒ 〈〈3〉〉#¬p may be represented by

ψf = ¬Qq(w) ∨ ¬Qp(app(m(u, v, 1), w)).

Here m is a |Σ|-ary function symbol, m(1, 1, y) represents the {1, 2}-move 〈1, 1, ∗〉 indicating

that agents 1 and 2 each play move 1 while agent 3 can play any move available to it and

m(u, v, 1) represents the {3}-move 〈∗, ∗, 1〉 indicating that agent 3 plays move 1 while agents

1 and 2 can play any move available to them. The rest of the notation in ϕf and ψf is

analogous to the notation we define in Section 4.2.2.

2. We need to utilise first-order resolution techniques to emulate the step resolution rules in

RXATL to conduct inferences for XATL. For this issue, it seems that it can be naturally solved

due to the transformation we proposed above. For example, take the following application

of the step resolution rule SRES4 to the SNFXATL clauses ϕ = r ⇒ 〈〈1, 2〉〉#(p ∨ q) and

ψ = q ⇒ 〈〈3〉〉#¬p, where {1, 2} ∩ {3} = ∅:

r ⇒ 〈〈1, 2〉〉#(p ∨ q)

q ⇒ 〈〈3〉〉#¬p

r ∧ q ⇒ 〈〈1, 2, 3〉〉#q

The first-order clauses ϕf and ψf representing the SNFXATL clauses ϕ and ψ, respectively,

are
ϕf = ¬Qr(x) ∨Qp(app(m(1, 1, y), x)) ∨Qq(app(m(1, 1, y), x)) and

ψf = ¬Qq(w) ∨ ¬Qp(app(m(u, v, 1), w))

144 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

which can be resolved using first-order resolution:

¬Qr(x) ∨Qp(app(m(1, 1, y), x)) ∨Qq(app(m(1, 1, y), x))

¬Qq(w) ∨ ¬Qp(app(m(u, v, 1), w))

¬Qr(x) ∨ ¬Qq(x) ∨Qq(app(m(1, 1, 1), x))

As we can see, the resolvent ¬Qr(x)∨¬Qq(x)∨Qq(app(m(1, 1, 1), x)) represents the SNFXATL

clause r ∧ q ⇒ 〈〈1, 2, 3〉〉#q that we obtain as the result of the application of SRES4. Thus, it

may be possible to emulate all step resolution rules in RXATL by using first-order resolution.

3. Last but not least, we need to find an appropriate efficient first-order theorem prover, for

example SPASS [54] or E [65], and extend the prover with an implementation of the trans-

formation procedure for XATL to realise the calculus RXATL.

Thirdly, we intend to extend our calculus RXATL to ATL. We believe that all techniques we have

developed for RXATL can be adapted to ATL. It would remain to develop rules and procedure for

handling eventualities in ATL to achieve a clausal resolution calculus for ATL.

6.2.2 Extension to other modal logics

We believe that it is possible to utilise the calculi R
≻,S
CTL and RXATL as bases for developing resolu-

tion calculi for other modal logics, in particular Alternating-time Temporal Epistemic Logic [69],

Propositional Dynamic Logic [45], and CTL* [35].

Extension to ATEL

ATL can be augmented with knowledge modalities to deal with agents’ cooperation, knowledge and

time and the resulting language is Alternating-time Temporal Epistemic Logic (ATEL) [69]. ATEL

has been useful for the specification and verification of many game-like multi-agent systems. As the

significance of multi-agent systems has grown rapidly in recent years, proof methods for ATEL are

desirable. Fisher’s resolution method RPLTL [37] has been extended to deal with linear-time and

knowledge in [30] and Bolotov’s resolution method [15] has been adapted to handle branching-time

and knowledge in [29]. We believe that if we can successfully extend our calculus RXATL to ATL,

then it is feasible to further develop the calculus to ATEL with some reasonable effort.

It should be noted that in [40] Goranko shows that ATEL can be reduced to ATL. That is, there

exists a translation of models and formulae of ATEL into ATL that preserves satisfiability. While

the translation preserves satisfiability, it may not preserve other properties of ATEL formulae.

Therefore, a genuine ATEL calculus may still be of use. For example, for the model checking

problem of ATL and ATEL, there are systems for both, namely MCMAS [61] for ATEL and

MOCHA [8] for ATL. A comparison between the performance of MCMAS on ATEL problems and

the performance of MOCHA [8] on the translation of these problems shows some encouraging results

for MCMAS. Therefore, we believe that it is also worth developing a resolution theorem prover to

address the satisfiability problem for ATEL directly.

6.2. FUTURE WORK 145

Extension to PDL

Propositional Dynamic Logic (PDL) [45] is a of modal logic, where the modal operators 2 and 3

are indexed with expressions over a regular language of actions. For instance, the PDL formula

[shoot]empty expresses that shooting necessarily results that the chamber of a shotgun is empty,

on the other hand, the formula 〈shoot〉dead specifies that shooting possibly results that the prey is

dead. Its underlying models involve (i) a set of states, which are labelled with atomic propositions

indicating that such propositions hold on such states, (ii) a set of transitions between states, which

are labelled with atomic actions.

The model structures for PDL are similar to the model structures for CTL. In addition, the

satisfiability problem of PDL, which is known to be EXPTIME [43], has the same complexity

as the satisfiability problem of CTL. Due to the similarities between PDL and CTL, we would

like to investigate the possibility of developing a clausal resolution calculus for PDL, which we

expect to be similar to the calculus R
≻,S
CTL presented in Chapter 3, i.e. a suitable normal form

for PDL, a transformation procedure for transforming a PDL formula into its normal form, and a

series of resolution style rules for conducting inferences. Then an arbitrary PDL formula ϕ can be

transformed into a satisfiability equivalent set T of formulae in normal form and a refutation can

be derived by applying those resolution-like rules to T iff the original formula ϕ is unsatisfiable.

Extension to CTL*

CTL* was first proposed by Emerson et al. in 1986 and is often referred to as full branching-time

temporal logic, as it is the most expressive language in that category. CTL* extends CTL by

removing the syntactic constraint that path quantifiers must always be paired with a temporal

operator and vice versa, i.e. CTL* allows the path quantifiers followed by an arbitrary linear-time

formula, which can be boolean combination and nesting over temporal operators 3, 2, #, U and

W ; and some subformulae without path quantifiers. For example, A32p and E(#pU 3q) are

well-formed formulae of CTL* but not formulae of CTL.

Since CTL* is an extension of CTL, it may be possible to extend our calculus R
≻,S
CTL in Chapter 3

to CTL*. However the stronger expressive power of CTL* comes at a cost, as the complexity of the

satisfiability problem for CTL* is 2EXPTIME [31] instead of EXPTIME for CTL [22]. Due to the

high complexity of CTL* formulae, extending our calculus from CTL to CTL*, we can anticipate

that finding a suitable normal form for CTL* and developing a transformation procedure preserving

satisfiability are very challenging. For example, if the complexity of the transformation procedure

reaches EXPTIME or 2EXPTIME, we have to make sure that it is not the case that for every CTL*

formula the size of the formula grows exponentially after the transformation procedure is applied to

it, in particular, for CTL formulae, the transformation should still be polynomial. Otherwise, even

if we obtain a decision procedure for the satisfiability problem of CTL*, this decision procedure

would not be very practical.

In [17], Bolotov et al. made the first attempt to develop a clausal resolution calculus for CTL*,

however they also pointed out in [15] that this calculus for CTL* is incorrect. Consequently, a

sound and complete resolution system for CTL* is still an open area of research.

146 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Appendix A

The previous transformation rules

In [15], Bolotov provides a set of transformation rules to transform an arbitrary CTL formula into

an equi-satisfiable set of SNFCTL clauses. The transformation rules defined below are identical to

those in [15] but modified to allow for global clauses. Moreover the transformation here is imple-

mented in the CTL resolution theorem prover CTL-RP version 00.09. In addition, we also provide

a set of more efficient transform rules for an arbitrary CTL formula in this thesis and compare

these two set of transformation rules in Section 3.7 and 4.4.

The definition of the rule set Trans :

• Index introduction rules:

Trans(1) q ⇒ E#ϕ −→ q ⇒ E〈ind〉#ϕ

Trans(2) q ⇒ E ∗ ϕ −→ q ⇒ E〈ind〉 ∗ ϕ where ∗ ∈ {3,2}.

Trans(3) q ⇒ E(ϕ1 ∗ ϕ2) −→ q ⇒ E〈ind〉(ϕ1 ∗ ϕ2) where ∗ ∈ {U , W }.

ind is a new index.

• Boolean rules:

Trans(4) q ⇒ ϕ1 ∧ ϕ2 −→

{

q ⇒ ϕ1

q ⇒ ϕ2

Trans(5) q ⇒ ϕ1 ∨ ϕ2 −→

{

q ⇒ ϕ1 ∨ p

p⇒ ϕ2

if ϕ2 is not a disjunction of

literals.

Trans(6) q ⇒ D −→ true⇒ ¬q ∨D

147

148 APPENDIX A. THE PREVIOUS TRANSFORMATION RULES

• Temporal operator rules:

Trans(7) q ⇒ X ∗ ϕ −→

{

q ⇒ X ∗ p

p⇒ ϕ
if ϕ is not a disjunction

of literals.

X∗ ∈ {A#,E〈ind〉#}

Trans(8) q ⇒ X ∗ ϕ −→

{

q ⇒ X ∗ p

p⇒ ϕ
if ϕ is not a literal.

X∗ ∈ {A2,A3,E〈ind〉2,E〈ind〉3}

Trans(9) q ⇒ X(ϕ1 ∗ ϕ2) −→

{

q ⇒ X(p ∗ ϕ2)

p⇒ ϕ1

if ϕ1 is not a literal.

X∗ ∈ {AU ,AW ,E〈ind〉 U ,E〈ind〉W }

Trans(10) q ⇒ X(ϕ1 ∗ ϕ2) −→

{

q ⇒ X(ϕ1 ∗ p)

p⇒ ϕ2

if ϕ2 is not a literal.

X∗ ∈ {AU ,AW ,E〈ind〉 U ,E〈ind〉W }

Trans(11) q1 ⇒ A2q2 −→

{

q1 ⇒ q2 ∧ p

p⇒ A#(q2 ∧ p)

Trans(12) q1 ⇒ E〈ind〉2q2 −→

{

q1 ⇒ q2 ∧ p

p⇒ E〈ind〉#(q2 ∧ p)

Trans(13) q1 ⇒ A(q2 U q3) −→











q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ A#(q3 ∨ (q2 ∧ p))

q1 ⇒ A3q3

Trans(14) q1 ⇒ E〈ind〉(q2 U q3) −→











q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ E〈ind〉#(q3 ∨ (q2 ∧ p))

q1 ⇒ E〈ind〉3q3

Trans(15) q1 ⇒ A(q2W q3) −→

{

q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ A#(q3 ∨ (q2 ∧ p))

Trans(16) q1 ⇒ E〈ind〉(q2W q3) −→

{

q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ E〈ind〉#(q3 ∨ (q2 ∧ p))

Appendix B

Equivalences in ATL

The following equivalences between ATL formulae are shown either in [7] or in [42].

• JAK#ϕ ≡ ¬〈〈A〉〉#¬ϕ

• JAK2ϕ ≡ ¬〈〈A〉〉3¬ϕ

• JAK3ϕ ≡ ¬〈〈A〉〉2¬ϕ

• 〈〈A〉〉#ϕ⇒ JΣ \AK#ϕ is true, however JAK#ϕ⇒ 〈〈Σ \A〉〉#ϕ is not necessarily true.

• 〈〈A〉〉2ϕ ≡ ϕ ∧ 〈〈A〉〉#〈〈A〉〉2ϕ

• ¬〈〈A〉〉2ϕ ≡ ¬ϕ ∨ ¬〈〈A〉〉#〈〈A〉〉2ϕ

• 〈〈A〉〉ϕ1 U ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉#〈〈A〉〉ϕ1 U ϕ2)

• ¬〈〈A〉〉ϕ1 U ϕ2 ≡ ¬ϕ2 ∧ (¬ϕ1 ∨ ¬〈〈A〉〉#〈〈A〉〉ϕ1 U ϕ2)

• 〈〈A〉〉#ϕ1 ∧ 〈〈A
′〉〉#ϕ2 ≡ 〈〈A ∪A

′〉〉#(ϕ1 ∧ ϕ2) for disjoint A and A′.

• 〈〈∅〉〉2(θ ⇒ (ϕ ∧ 〈〈A〉〉#θ))⇒ 〈〈∅〉〉2(θ ⇒ 〈〈A〉〉2ϕ)

• 〈〈∅〉〉2((ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉#θ))⇒ θ)⇒ 〈〈∅〉〉2(〈〈A〉〉ϕ1 U ϕ2 ⇒ θ)

149

150 APPENDIX B. EQUIVALENCES IN ATL

Bibliography

[1] M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic. J. ACM,

37(2):279–317, 1990.

[2] P. Abate and R. Goré. The Tableaux Workbench. In Proc. TABLEAUX’03, volume 2796 of

LNCS, pages 230–236. Springer, 2003.

[3] P. Abate, R. Goré, and F. Widmann. One-Pass Tableaux for Computation Tree Logic. In

Proc. LPAR’07, volume 4790 of LNCS, pages 32–46. Springer, 2007.

[4] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke. CTL Model Checking for Processing

Simple XPath Queries. In Proc. TIME’04, pages 117–124. IEEE Comp. Soc. Press, 2004.

[5] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In

Proc. FOCS’97, page 100. IEEE Computer Society, 1997.

[6] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. COM-

POS’97, pages 23–60. Springer, 1998.

[7] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.

[8] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. Mocha:

Modularity in model checking. In Proc. CAV’98, pages 521–525. Springer, 1998.

[9] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,

E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new

temporal property-specification language. In Proc. TACAS’02, pages 296–211. Springer, 2002.

[10] P. C. Attie. On the implementation complexity of specifications of concurrent programs. In

Proc. DISC’03, volume 2848, pages 151–165. Springer, 2003.

[11] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated

Reasoning, volume 1, chapter 2, pages 19–99. Elsevier, 2001.

[12] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex trans-

mission over half-duplex links. Commun. ACM, 12(5):260–261, 1969.

[13] A. Basso and A. Bolotov. Towards GCM Re-configuration Extending Specification by Norms.

In CoreGRID Workshop 2007. CoreGrid Technical Report TR-0080, 2007.

151

152 BIBLIOGRAPHY

[14] I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver, P. Paanah,

Y. Rodeh, G. Ronin, and Y. Wolfsthal. RuleBase: Model Checking at IBM. In Proc. CAV’97,

pages 480–483. Springer, 1997.

[15] A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD thesis, Manchester

Metropolitan University, 2000.

[16] A. Bolotov and C. Dixon. Resolution for Branching Time Temporal Logics: Applying the

Temporal Resolution Rule. In Proc. TIME’00, pages 163–172. IEEE Comp. Soc. Press, 2000.

[17] A. Bolotov, C. Dixon, and M. Fisher. Clausal resolution for CTL*. In Proc. MFCS’99, pages

137–148. Springer, 1999.

[18] A. Bolotov and M. Fisher. A Clausal Resolution Method for CTL Branching-Time Temporal

Logic. JETAI, 11(1):77–93, 1999.

[19] G. Boole. An Investigation of The Law of Thought. Macmillan, 1854.

[20] H. K. Buning and T. Letterman. Propositional Logic: Deduction and Algorithms. Cambridge

University Press, 1999.

[21] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Proc.

CAV’02, pages 359–364. Springer, 2002.

[22] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons Using

Branching-Time Temporal Logic. In Logic of Programs, Workshop, volume 131 of LNCS, pages

52–71. Springer, 1982.

[23] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,

1986.

[24] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[25] C. Dixon. Strategies for Temporal Resolution. PhD thesis, University of Manchester, 1995.

[26] C. Dixon. Search strategies for resolution in temporal logics. In Proc. CADE-13, pages 673–687.

Springer, 1996.

[27] C. Dixon. Temporal Resolution Using a Breadth-First Search Algorithm. Annals of Mathe-

matics and Artificial Intelligence, 22(1-2):87–115, 1998.

[28] C. Dixon. Using Otter for Temporal Resolution. In In Advances in Temporal Logic, pages

149–166. Kluwer, 2000.

[29] C. Dixon, M. Fisher, and A. Bolotov. Clausal Resolution in a Logic of Rational Agency.

Artifical Intelligence, 139(1):47–89, 2002.

BIBLIOGRAPHY 153

[30] C. Dixon, M. Fisher, and M. Wooldridge. Resolution for temporal logics of knowledge. Journal

of Logic and Computation, 8:345–372, 1998.

[31] E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science,

chapter 16, pages 996–1072. Elsevier, 1990.

[32] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchro-

nization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[33] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal

logic of branching time. In Proc. STOC ’82, pages 169–180. ACM Press, 1982.

[34] E. A. Emerson and J. Y. Halpern. Decision Procedures and Expressiveness in the Temporal

Logic of Branching Time. J. Comput. Syst. Sci., 30(1):1–24, 1985.

[35] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on branching versus

linear time temporal logic. J. ACM, 33(1):151–178, 1986.

[36] E. A. Emerson, T. Sadler, and J. Srinivasan. Efficient Temporal Satisfiability. J. Log. Comput.,

2(2):173–210, 1992.

[37] M. Fisher. A resolution method for temporal logic. In Proc. IJCAI’91, pages 99–104. Morgan

Kaufmann, 1991.

[38] M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transactions on

Computational Logic, 2(1):12–56, 2001.

[39] V. Goranko. Coalition games and alternating temporal logics. In Proc. TARK ’01, pages

259–272. Morgan Kaufmann, 2001.

[40] V. Goranko and W. Jamroga. Comparing semantics of logics for multi-agent systems. Synthese,

139:241–280, 2004.

[41] V. Goranko and D. Shkatov. Tableau-based decision procedures for logics of strategic ability

in multiagent systems. ACM Trans. Comput. Logic, 11(1):1–51, 2009.

[42] V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of alternating-

time temporal logic. Theor. Comput. Sci., 353(1):93–117, 2006.

[43] R. Goré and F. Widmann. An optimal on-the-fly tableau-based decision procedure for PDL-

satisfiability. In Proc. CADE-22, pages 437–452. Springer, 2009.

[44] H. H. Hansen. Tableau game for Coalition Logic and Alternating-time Temporal Logic. Mas-

ter’s thesis, University of Amsterdam, The Netherlands, 2004.

[45] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[46] G. Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley, 2003.

[47] U. Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD

thesis, Universität des Saarlandes, 1999.

154 BIBLIOGRAPHY

[48] U. Hustadt and B. Konev. TRP++: A Temporal Resolution Prover. In Collegium Logicum,

pages 65–79. Kurt Gödel Society, 2004.

[49] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.

Cambridge University Press, 2004.

[50] G. Jaeger, P. Balsiger, A. Heuerding, S. Schwendimann, M. Bianchi, K. Guggisberg, G. Janssen,

W. Heinle, F. Achermann, A. D. Boroumand, P. Brambilla, I. Bucher, and H. Zimmermann.

LWB–The Logics Workbench 1.1. http://www.lwb.unibe.ch/.

[51] A. Leitsch. The Resolution Calculus. Springer, 1997.

[52] T. Lev-Ami, C. Weidenbach, T. W. Reps, and M. Sagiv. Labelled clauses. In Proc. CADE-21,

volume 4603 of LNCS, pages 311–327. Springer, 2007.

[53] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer,

1992.

[54] Max-Planck-Institut Informatik. Automation of logic: Spass.

http://www.spass-prover.org/download/.

[55] W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/.

[56] C. Nalon and C. Dixon. Clausal resolution for normal modal logics. Journal of Algorithms,

62(3-4):117–134, 2007.

[57] M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, The Netherlands,

2001.

[58] M. Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation,

12(1):149–166, 2002.

[59] A. Pnueli. The temporal logic of programs. In Proc. SFCS ’77, pages 46–57. IEEE Computer

Society, 1977.

[60] V. R. Pratt. A near-optimal method for reasoning about action. Journal of Computer and

System Sciences, 20(2):231–254, 1980.

[61] F. Raimondi and A. Lomuscio. Model Checking ATL and its epistemic extensions. Technical

Report RN/05/01, University College London, 2005.

[62] M. Reynolds. Towards a CTL* Tableau. In Proc. FSTTCS’05, volume 3821 of LNCS, pages

384–395. Springer, 2005.

[63] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,

12(1):23–41, 1965.

[64] K. Schneider. Verification of Reactive Systems: Formal Methods and Algorithms. Springer,

2004.

http://www.lwb.unibe.ch/
http://www.spass-prover.org/download/
http://www.cs.unm.edu/~mccune/prover9/

BIBLIOGRAPHY 155

[65] S. Schulz. Theorem prover E. http://www4.informatik.tu-muenchen.de/~schulz/.

[66] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata

with applications to temporal logic. Theor. Comput. Sci., 49(2-3):217–237, 1987.

[67] R. Socher-Ambrosius and P. Johann. Deduction Systems. Springer, 1999.

[68] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal databases:

theory, design, and implementation. Benjamin-Cummings, 1993.

[69] W. van der Hoek and M. J. W. Wooldridge. Cooperation, knowledge, and time: Alternating-

time temporal epistemic logic and its applications. Studia Logica, 75(1):125–157, 2003.

[70] G. van Drimmelen. Satisfiability in alternating-time temporal logic. In Proc. LICS ’03, pages

208–217. IEEE Computer Society, 2003.

[71] M. Y. Vardi and P. Wolper. Automata-Theoretic Techniques for Modal Logics of Programs.

J. Comput. Syst. Sci., 32(2):183–221, 1986.

[72] A. Voronkov. Vampire. http://www.vprover.org/index.cgi.

[73] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed exptime-

complete. J. Log. Comput., 16(6):765–787, 2006.

[74] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning, chapter 27, pages 1967–2015. Elsevier, 2001.

[75] C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System description:

Spass version 3.0. In Proc. CADE-21, volume 4603 of LNCS, pages 514–520. Springer, 2007.

[76] M. J. Wooldridge. Introduction to Multiagent Systems. John Wiley, 2001.

[77] L. Zhang, U. Hustadt, and C. Dixon. First-order Resolution for CTL. Technical Report

ULCS-08-010, Department of Computer Science, University of Liverpool, 2008.

[78] L. Zhang, U. Hustadt, and C. Dixon. A Refined Resolution Calculus for CTL. In Proc. CADE-

22, pages 245–260. Springer, 2009.

[79] L. Zhang, U. Hustadt, and C. Dixon. CTL-RP: A computation tree logic resolution prover.

AI Commun., 23(2-3):111–136, 2010.

http://www4.informatik.tu-muenchen.de/~schulz/
http://www.vprover.org/index.cgi

156 BIBLIOGRAPHY

List of Figures

3.1 An example model structure of E〈ind1〉#p . 22

3.2 An example model structure of E〈ind1〉3p . 23

3.3 A decision procedure . 39

3.4 p⇒ E#(q1 ∨A2q2) stored in a tree structure . 55

3.5 A model for T . 60

3.6 A labelled behaviour graph . 63

3.7 A 2-labelled terminal subgraph for q〈2〉 . 65

3.8 A terminal subgraph for q . 66

3.9 Redundant eventuality resolution rules . 77

4.1 Emulating SRES1 inferences in first-order logic . 89

4.2 Emulating SRES2 inferences in first-order logic . 89

4.3 Emulating SRES3 inferences in first-order logic . 90

4.4 Emulating SRES4 inferences in first-order logic . 90

4.5 Emulating SRES5 inferences in first-order logic . 91

4.6 Emulating SRES6 inferences in first-order logic . 91

4.7 Emulating SRES7 inferences in first-order logic . 92

4.8 Emulating SRES8 inferences in first-order logic . 92

4.9 eres : A loop search implementation using first-order resolution 93

4.10 The eresolvent procedure . 96

4.11 A simple resolution prover [74] . 97

4.12 The main procedure of CTL-RP . 100

4.13 The resolution sos procedure . 102

4.14 Performance of CTL-RP 00.14 and TWB 3.4 on CTL-BF1 104

4.15 A state transition system . 105

4.16 Performance of CTL-RP 00.14 and TWB 3.4 on CTL-BF2 106

4.17 Performance of CTL-RP 00.14 and TWB 3.4 on CTL-BF3 107

4.18 Transmitter and Receiver in the Alternating Bit Protocol 107

4.19 Performance of CTL-RP 00.09 and 00.14 on CTL-BF1 110

4.20 Performance of CTL-RP 00.09 and 00.14 on CTL-BF2 111

4.21 Performance of CTL-RP 00.09 and 00.14 on CTL-BF3 112

157

158 LIST OF FIGURES

5.1 p⇒ 〈〈A〉〉#(q1 ∨ JAK#q2) stored in a tree structure 134

Index

A-move, 116

A-sometime clause, 21

A-step clause, 21

A-strategy, 120

agent behaviour graph, 136

alternating bit protocol, 107

Alternating-time Temporal Logic, 4, 113

atom, 83

atom ordering, 29, 85

atomic proposition, 7

augmentation, 58

boolean operator, 8

clauses

of CTL, 23

of first-order logic, 83

of PL, 9

of XATL, 121

close tableau, 78

coalition, 114

Coalition Logic, 113

completeness, 11

Computation Tree Logic, 4, 17

concurrent game model, 115

condensation, 84

condensed form, 21

conjunctive normal form, 9

constant symbol, 83

contradiction, 14, 34, 125

deletion rule, 66, 137

depth

of a first-order clause, 83

of a literal, 83

of a term, 83

derivation, 10, 15, 34, 86, 125

determinate clause, 21

disjunction of literals, 9

distance, 62

double-implication, 8

E-loop search algorithm, 36

E-loops in l, 35

E-sometime clause, 21

E-step clause, 21

eligible, 30

equivalence, 8

eventuality, 14, 21

eventuality resolution rules

for CTL, 31

for PLTL, 14

expression, 83

first-order representation of

a global clause, 87

an A-step clause, 87

an E-step clause, 87

an initial clause, 87

formal language, 3

formal specification, 3

global clause, 21, 120

ground substitution, 84

ground term, 83

indexed CTL formula, 23

infinite path, 19, 22

initial clause, 13, 21, 120

instance, 84

interpretation, 8

interpretation function, 19, 115

159

160 INDEX

labelled behaviour graph, 61

literal, 9, 21, 83, 120

loop formula, 35

loop search algorithm, 15

matching replacement resolution, 86

merged clause, 36

model checking, 3

model structure, 13, 19, 22

most general unifier, 84

move vector, 115

multiset, 29

negation normal form, 23

negative literal, 83

negative step clause, 120

negative-A-move, 117

open tableau, 78

ordered positive factoring with selection, 85

ordered resolution with selection, 85

outcome

of an A-move, 118

of an A-strategy, 121

partial ordering, 28

position, 116

positive literal, 83

predecessor, 19, 115

proof by contradiction, 10

proposition, 7, 83

proposition constant, 8

Propositional Linear-time Temporal Logic, 12

Propositional Logic, 7

reachability, 19, 61, 116

reduce agent behaviour graph, 137

reduced labelled behaviour graph, 66

redundancy, 85

refutation, 10, 15, 34, 125

resolution procedure, 10

rewrite rules

for CTL, 30

for PLTL, 14

for XATL, 124

root, 20

run, 116

s-run, 116

satisfiability, 8, 10, 13, 20, 119, 121

satisfiability problem, 3

saturation, 11, 15, 34, 86, 125

selection function, 29, 85

semantics

of SNFg
CTL, 22

of CTL, 19

of PL, 8

of PLTL, 13

of XATL, 118

Separated Normal Form

for PLTL, 13

for XATL, 119

with Global Clauses for CTL, 20

size

of a CTL formula, 53

of an XATL formula, 133

sometime clause, 13

soundness, 11

start, 14, 21, 120

step clause, 13, 120

step resolution rules

for CTL, 29

for PLTL, 14

for XATL, 124

submove, 118

substitution, 84

subsumption, 84

successor, 19, 115

tautology, 84

term, 83

terminal node, 65, 137

terminal subgraph, 65

termination, 10, 15, 35, 125

theorem proving, 3

total ordering, 29

transformation rules

INDEX 161

for CTL, 24, 147

for XATL, 122

transition function, 115

truth value, 8

unification, 84

unsatisfiability, 10

validity, 8, 13, 20, 22, 119, 121

validity problem, 3

weight functions

for CTL formulae, 46

for XATL formulae, 129

well-formed formulae

of CTL, 19

of PL, 8

of PLTL, 13

of XATL, 115

well-founded ordering, 29

XATL, 4

	Abstract
	Acknowledgement
	Introduction
	Formal methods for system designs
	Formal specification
	Formal verification

	Novel contributions
	Overview of this thesis

	Preliminaries to resolution for branching-time temporal logic
	Propositional logic
	Syntax and semantics of propositional logic
	Resolution for propositional logic

	Propositional linear-time temporal logic (PLTL)
	Syntax and semantics of PLTL
	Resolution for PLTL

	A refined resolution calculus for CTL
	Introduction
	Syntax and semantics of CTL
	Normal form
	Syntax and semantics of SNFCTLg
	Transformation

	The clausal resolution calculus RCTL,S
	Step resolution
	Eventuality resolution
	Loop search
	A decision procedure

	Correctness of the calculus RCTL,S
	Correctness of the transformation to SNFCTLg
	Soundness and completeness
	Termination

	Complexity
	Related work
	Comparison between RCTL,S and the previous resolution calculus
	Other approaches for the satisfiability problem of CTL

	Conclusions

	CTL-RP: A resolution theorem prover for CTL
	Introduction
	Implementation of the calculus RCTL,S
	Preliminaries of first-order ordered resolution with selection
	Representing determinate SNFCTLg clauses as first-order clauses
	Implementing step resolution
	Implementing eventuality resolution
	The main procedure of our implementation
	CTL-RP

	Related theorem provers
	OTRES and TRP++
	Tableau Workbench

	Performance of CTL-RP
	CTL-RP vs. TWB
	CTL-RP 00.14 vs. 00.09

	Conclusions

	Resolution for the Next-time fragment of ATL
	Introduction
	Syntax and semantics of XATL
	Syntax of XATL
	Semantics of XATL

	Normal form
	Normal form for XATL SNFXATL
	Semantics of SNFXATL
	Transformation

	The clausal resolution calculus RXATL
	Step resolution

	Correctness of the calculus RXATL
	Correctness of the transformation
	Soundness and completeness

	Conclusions

	Conclusions and future work
	Conclusions
	Future work
	Further research on XATL resolution
	Extension to other modal logics

	The previous transformation rules
	Equivalences in ATL
	Bibliography
	List of figures
	Index

