DESY 04-167
Edinburgh 2004/17
LTH 631
LU-ITP 2004/030
September 2004

Determination of Lambda in quenched and full QCD - an update*

M. Göckeler ${ }^{\text {a,b }}$, R. Horsley ${ }^{\text {c }}$, A. C. Irving ${ }^{\text {d }}$, D. Pleiter ${ }^{\text {e }}$, P. E. L. Rakow ${ }^{\text {d }}$, G. Schierholz ${ }^{\mathrm{e}, \mathrm{f}}$ and H. Stüben ${ }^{\text {g }}$ - QCDSF-UKQCD Collaboration

${ }^{\text {a }}$ Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
${ }^{\text {b }}$ Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
${ }^{\text {c }}$ School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
${ }^{\mathrm{d}}$ Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
${ }^{\mathrm{e}}$ John von Neumann Institute NIC / DESY Zeuthen, D-15738 Zeuthen, Germany
${ }^{\mathrm{f}}$ Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
Konrad-Zuse-Zentrum für Informationstechnik Berlin, D-14195 Berlin, Germany

Abstract

We present an update on our previous determination of the Lambda parameter in QCD. The main emphasis is on results for two flavours of light dynamical quarks, where we can now almost double the amount of data used, including values at smaller lattice spacings. The calculations are performed using $O(a)$ improved Wilson fermions. Little change is found to previous numerical values.

The Λ parameter is one of the fundamantal parameters of QCD, setting the scale for the running coupling constant α_{s}. In this contribution we shall update our previous work, [1], both for quenched $\left(n_{f}=0\right)$ and unquenched $\left(n_{f}=2\right)$ $O(a)$ improved Wilson ('clover') fermions. Specifically we are now able to use for

- quenched fermions, the force scale r_{0} / a up to $\beta=6.92$, [2] (previously $\beta \leq 6.4$),
- unquenched fermions, improved statistics and additional quark masses at the previous β values of $5.20,5.25,5.29$ for r_{0} / a together with new results at $\beta=5.40$ (at three quark masses).
The 'running' of the QCD coupling constant as the scale changes is controlled by the β-function
$\frac{\partial g_{\mathcal{S}}(M)}{\partial \log M}=\beta^{\mathcal{S}}\left(g_{\mathcal{S}}(M)\right)$,
where, perturbatively
$\beta^{\mathcal{S}}\left(g_{\mathcal{S}}\right)=-b_{0} g_{\mathcal{S}}^{3}-b_{1} g_{\mathcal{S}}^{5}-b_{2}^{\mathcal{S}} g_{\mathcal{S}}^{7}-b_{3}^{\mathcal{S}} g_{\mathcal{S}}^{9}-\ldots$,

[^0]renormalisation having introduced a scale M together with a scheme \mathcal{S}. Integrating this equation gives
\[

$$
\begin{aligned}
& \frac{\Lambda^{\mathcal{S}}}{M}=\exp \left[-\frac{1}{2 b_{0} g_{\mathcal{S}}(M)^{2}}\right]\left[b_{0} g_{\mathcal{S}}(M)^{2}\right]^{-\frac{b_{1}}{2 b_{0}^{2}}} \times \\
& \quad \exp \left\{-\int_{0}^{g_{\mathcal{S}}(M)} d \xi\left[\frac{1}{\beta^{\mathcal{S}}(\xi)}+\frac{1}{b_{0} \xi^{3}}-\frac{b_{1}}{b_{0}^{2} \xi}\right]\right\} \\
& \equiv F^{\mathcal{S}}\left(g_{\mathcal{S}}(M)\right)
\end{aligned}
$$
\]

where $\Lambda^{\mathcal{S}}$, the integration constant, is the fundamental scheme dependent QCD parameter. Results are usually given in the $\overline{M S}$ scheme, with the scale M being denoted by μ. In this scheme the first four β-function coefficients are known, $b_{3}^{\overline{M S}}$ being found in 3. The running coupling $\alpha_{s}^{\overline{M S}}(\mu) \equiv g_{\overline{M S}}(\mu)^{2} / 4 \pi$ is plotted in Fig. 1 for $n_{f}=2$, by solving the previous equation (numerically) using successively more and more coefficients of the β-function. The figure shows an apparently fast convergent series (cf 3- to 4loop), certainly in the range we are interested in, $\mu / \Lambda^{\overline{M S}} \sim 8$. A very similar result holds for $n_{f}=0$ but with slightly lower curves.

Figure 1. $\alpha_{s}^{\overline{M S}}(\mu)$ versus $\mu / \Lambda^{\overline{M S}}$ for $n_{f}=2$.

On the lattice we also have a Λ parameter,
$a \Lambda^{\square}=F^{\square}\left(g_{\square}(a)\right)$,
where to help convergence of lattice perturbative expansions we use $g_{\square}^{2} \equiv g^{2}(a) / u_{0}^{4}$ with u_{0}^{4} the average plaquette value. To calculate $\Lambda^{\overline{M S}}$, we shall compute $g_{\overline{M S}}$ at some appropriate scale μ^{*} from $g_{\square}(a)$ and then using the r_{0} scale, extrapolate
$r_{0} \Lambda^{\overline{M S}} \equiv\left(\frac{r_{0}}{a}\right) F^{\overline{M S}}\left(g_{\overline{M S}}\left(\mu^{*}\right)\right) a \mu^{*}$,
to the continuum limit.
Equating lattice and continuum expressions
$\left[F^{\overline{M S}}\left(g_{\overline{M S}}(\mu)\right)\right]^{-1}=a \mu \frac{\Lambda^{\square}}{\Lambda^{\overline{M S}}}\left[F^{\square}\left(g_{\square}(a)\right)\right]^{-1}$,
and expanding as

$$
\begin{aligned}
& \frac{1}{g_{\overline{M S}}^{2}(\mu)}=\frac{1}{g_{\square}^{2}(a)}+ \\
& \quad\left[2 b_{0} \ln a \mu-t_{1}^{\square}\right]+\left[2 b_{1} \ln a \mu-t_{2}^{\square}\right] g_{\square}^{2}(a) \ldots,
\end{aligned}
$$

gives $t_{1}^{\square}=2 b_{0} \ln \Lambda^{\overline{M S}} / \Lambda^{\square}$ and $b_{2}^{\square}=b_{2}^{\overline{M S}}+b_{1} t_{1}^{\square}-$ $b_{0} t_{2}^{\square}$. For (hopefully) good convergence of this series we choose the scale so that the $O(1)$ term vanishes, $a \mu^{*}=\exp \left(t_{1}^{\square} / 2 b_{0}\right)$.

For t_{1}^{\square} the general expression is known for n_{f}, $c_{s w}$ and linear terms in $n_{f} a m_{q}$, while for t_{2}^{\square} the $n_{f} a m_{q}$ dependence is not known, [1] and references therein. We can estimate the scales as $\mu^{*}=2.63 / a, n_{f}=0$ and $\mu^{*} \sim 1.4 / a$ for $n_{f}=2$. t_{3}^{\square} (the $g_{\overline{M S}}(\mu)^{4}, \ln a \mu$ independent term) is not
known. So equivalently b_{3}^{\square} is not known. However a Padé estimate gives $b_{3}^{\mathcal{S}} \approx\left(b_{2}^{\mathcal{S}}\right)^{2} / b_{1}$, and is small and in reasonable agreement with the known coefficient in the $\overline{M S}$ scheme, [1]. Assuming this also holds for b_{3}^{\square} gives little change to the results presented here. For complete $O(a)$ cancellation, [4], we need $\tilde{g}^{2}=g^{2}\left(1+b_{g} a m_{q}\right)$ where perturbatively $b_{g}=0.01200 n_{f} g^{2}+O\left(g^{4}\right)$, which with $c_{s w}=1+O\left(g^{2}\right)$ then gives no mass dependence in t_{1}^{\square}. This indicates little quark mass dependence in the fit formulae (indeed there is more in the numerical data). Finally to further improve the convergence of the series, we tadpole improve the t_{i}^{\square} coefficients $c_{s w}^{T I}=c_{s w} u_{0}^{3}$ (for $t_{1}^{\square}+t_{2}^{\square} g_{\square}^{2}$) further reducing the size of the n_{f} term in t_{2}^{\square}.

In Fig. 2 we show the quenched $\left(n_{f}=0\right)$ results. The data lies on a straight line (as a func-

Figure 2. $r_{0} \Lambda^{\overline{M S}}$ versus $\left(a / r_{0}\right)^{2}$ for $n_{f}=0$, together with a linear extrapolation to $a=0$. The last point has not been included in the fit.
tion of $\left.\left(a / r_{0}\right)^{2}\right)$ at least over $a^{-1} \sim 2-6.5 \mathrm{GeV}$ or $\mu \sim 5-17 \mathrm{GeV}$, using the value for r_{0} of $r_{0}=0.5 \mathrm{fm}$. This gives a result of $r_{0} \Lambda^{\overline{M S}}=$ $0.613(2)(25)$ or $\Lambda^{\overline{M S}}(0)=242(1)(10) \mathrm{MeV}$ where the first error is statistical and to estimate the systematic uncertainty, the second error takes a g^{4} coeff. $=25 \% \times g^{2}$ coeff. (which is very much greater than when using the Padé b_{3}^{\square} estimate).

For unquenched $\left(n_{f}=2\right)$ fermions, due to the sea quark, the fit ansatz is not so simple as we must consider both chiral and continuum extrapolations. We take for finite a, $\left.a \Lambda^{\overline{M S}}\right|_{m_{q} \neq 0, a \neq 0}=\left.a \Lambda^{\overline{M S}}\right|_{m_{q}=0, a \neq 0}+$ Dam $_{q}+\ldots$ or
$\left.r_{0} \Lambda^{\overline{M S}}\right|_{m_{q} \neq 0, a \neq 0}=\left.r_{0} \Lambda^{\overline{M S}}\right|_{m_{q}=0, a \neq 0}+D r_{0} m_{q}+\ldots$. After chiral extrapolation we would thus expect $\left.r_{0} \Lambda^{\overline{M S}}\right|_{m_{q}=0, a \neq 0}=\left.r_{0} \Lambda^{\overline{M S}}\right|_{m_{q}=0, a=0}+B(a / \rho)^{2}+$ \ldots with $\left.\rho \equiv r_{0}\right|_{m_{q}=0}$. Together with $\left(a / r_{0}\right)^{2}=$ $(a / \rho)^{2}+E a m_{q}+\ldots$ this gives our fit ansatz as
$r_{0} \Lambda^{\overline{M S}}=A+B\left(a / r_{0}\right)^{2}+C a m_{q}+D r_{0} m_{q}$.
So by subtracting out the B and C terms from $r_{0} \Lambda^{\overline{M S}}$ we can consider the chiral extrapolation and similarly by subtracting out the C and D terms we may consider the continuum extrapolation ${ }^{1}$. In Fig. 3 we show the results. a^{-1} ranges

Figure 3. $r_{0} \Lambda^{\overline{M S}}$ versus $r_{0} m_{q}$ (upper picture) and versus $\left(a / r_{0}\right)^{2}$ (lower picture) for $n_{f}=2$, together with appropriate extrapolations (a_{q} from (5).
at least over $a^{-1} \sim 2-3 \mathrm{GeV}$ or $\mu \sim 3-4 \mathrm{GeV}$ This gives a result of $r_{0} \Lambda^{\overline{M S}}=0.563(10)(70)$ or $\Lambda^{\overline{M S}}(2)=222(4)(28) \mathrm{MeV}$ where again the first error is statistical and the second error is obtained by taking a g^{4} coeff. $=25 \% \times g^{2}$ coeff. which again is much larger than the error found when using a Padé b_{3}^{\square} estimate, setting $c_{s w}=1+O\left(g^{2}\right)$ or including an additional $\left(a m_{q}\right)^{2}$ fit term. Note that this result is consistent with that obtained in [6].

Finally in Fig. 4 we present results for different n_{f}. Our result lies somewhat low in comparison with phenomenological results. Alternatively using the matching procedure as in [1] we find for $n_{f}=5, \alpha_{s}^{\overline{M S}}\left(m_{Z}\right)=0.1084(6)(38)$.

[^1]

Figure 4. $\Lambda^{\overline{M S}}\left(n_{f}\right)$ versus n_{f} The open diamonds are from [7], using $\alpha_{s}^{\overline{M S}}\left(M_{Z}\right)=0.1183(27)\left(n_{f}=5\right)$ to match to $n_{f}=4$ and $n_{f}=3$, while the open square is from 8 . The filled circles are the results reported here.

ACKNOWLEDGEMENTS

The numerical calculations have been performed on the Hitachi SR8000 at LRZ (Munich), on the Cray T3E at EPCC (Edinburgh) under PPARC grant PPA/G/S/1998/00777, [9, on the Cray T3E at NIC (Jülich) and ZIB (Berlin), as well as on the APE1000 and Quadrics at DESY (Zeuthen). This work is supported in part by the EU Integrated Infrastructure Initiative Hadron Physics (I3HP) and by the DFG (Forschergruppe Gitter-Hadronen-Phänomenologie).

REFERENCES

1. S. Booth et al., Phys. Lett. B519 (2001) 229, hep-lat/0103023 Nucl. Phys. Proc. Suppl. 106 (2002) 308, hep-lat/0111006
2. S. Necco et al., Nucl. Phys. B622 (2002) 328, hep-lat/0108008
3. T. van Ritbergen et al., Phys. Lett. B400 (1997) 379, hep-ph/9701390
4. M. Lüscher et al., Nucl. Phys. B478 (1996) 365, hep-lat/9605038
5. M. Göckeler et al., in preparation.
6. G. Bali et al., hep-lat/0210033
7. S. Bethke, hep-ex/0211012
8. J. Blümlein et al., hep-ph/0407089
9. C. R. Allton et al., Phys. Rev. D65 (2002) 054502, hep-lat/0107021.

[^0]: *Talk given by R. Horsley at Lat04, Fermilab, USA.

[^1]: ${ }^{1}$ An alternative procedure is first to extrapolate both r_{0} / a and u_{0}^{4} to the chiral limit, evalute $r_{0} \Lambda^{\overline{M S}}$ and then extrapolate to the continuum limit; this gives similar results, [5].

