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Abstract

In this thesis, we present our updated determinations for the leading order and higher

order hadronic vacuum polarisation contributions to the anomalous magnetic moment

of the muon (ahad, LOVP
µ , ahad, HOVP

µ ), and for the hadronic contributions to the running

of the QED coupling at the Z-boson mass (∆α(5)
had(M2

Z)).

At present the Standard Model (SM) predictions of the anomalous magnetic mo-

ment of the muon aSM
µ is lower than the experimental measurement aexp

µ by about

3 standard deviations. The precision of aSM
µ is limited by hadronic contributions, of

which ahad, LOVP
µ has the largest uncertainty. Therefore improving the accuracy and

precision of ahad, LOVP
µ will help to clarify the origin of the discrepancy between theory

and experiment. The running of the QED coupling at the Z-boson mass α(M2
Z) is the

least precise of the three parameters that is usually taken to define the electroweak

sector of the SM. Its precision is limited by ∆α(5)
had(M2

Z), and is a significant limiting

factor for precision electroweak physics, e.g. the indirect determination of Higgs boson

mass.

We describe in detail our refined data-driven approach, which processes and com-

bines a large number of e+e− hadronic annihilation data for use in our determinations.

Error treatment is of course, also discussed in depth. We present a detailed breakdown

of all the contributions to ahad, LOVP
µ , including the many new, more precise data used

along with discussions on their impacts. We also perform an improved sum rule analy-

sis for a specific energy region, which assists us in discriminating between two different

choices of using data. Comparisons with previous analyses as well as with another

group’s recent determination are also made.

For ∆α(5)
had(M2

Z), we summarise the main results, discussing their effects as well as

the comparison with other groups. More focus is given to a separate procedure used

for preparing a set of new data that will improve the description of α(q2).

We conclude the thesis by summing our ahad, LOVP
µ , ahad, HOVP

µ results with the

latest predictions of contributions from the other sectors of the SM, leading to our own

value for aSM
µ . This is then discussed and compared to other recent determinations.

Results for ∆α(5)
had(M2

Z) and α(M2
Z) are also briefly reviewed. Finally, a summary of

the whole thesis and future prospects in this area of study are given.
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Chapter 1

Introduction

1.1 Background

The anomalous magnetic moment and its measurement, especially that of the electron

and muon, has played an important role in constructing a relativistic quantum field

theory (RQFT), which is the theoretical framework for modern particle physics. In

particular, for quantum electrodynamics (QED), the famous 1-loop contribution to the

anomalous magnetic moment computed by Schwinger in 1948 [1]

aQED, 1l
l =

1
2
α

π
, (l = e, µ, τ), (1.1)

was one of the first QED predictions at higher order; and the precise determination of

the magnetic moment of the electron from Kusch and Foley [2], was one of the very

first tests of quantum corrections predicted by a RQFT. QED eventually developed into

the Standard Model (SM) of particle physics, incorporating electromagnetic, weak and

strong interactions. Since its inception in the 1970s, the SM has withstood the rigours

of nearly all the experimental tests and remains as the best theory for the description

of nature at the microscopic scale.

In quantum mechanics, a charged elementary particle has an intrinsic magnetic

moment ~µ due to its spin ~s. The relation is given by1

~µ = g
e

2m
~s, (1.2)

where g is the gyromagnetic factor, e is the electric charge and m is the mass of the

particle. The first observation for the magnetic moment of the electron came from the

Stern-Gerlach experiment [3] in 1922, which led to the postulate that an electron has

spin 1/2 from Goudsmit and Uhlenbeck [4]. Then in 1928, Dirac’s relativistic theory of

the electron [5] predicted that g = 2 for spin-1/2 particles. This can be seen by taking

the non-relativistic limit of the Dirac equation with an electromagnetic field Aµ, which

results in the Hamiltonian [6],

H =
[

1
2m

(
~p− e ~A

)2 − e

2m
~σ · ~B + eA0

]
, (1.3)

1Unless stated otherwise, we adopt natural units where c = ~ = 1.
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where ~B = ~∇× ~A and |eA0| � m. Now the potential energy of a magnetic moment in

an external magnetic field is U = −~µ · ~B and for a spin-1/2 particle ~s = ~σ/2. Hence,

comparing U with the interaction term in the Hamiltonian

− e

2m
~σ · ~B, (1.4)

and recalling ~µ is given by (1.2), finally gives g = 2. However, with the development of

QED and then later the SM, it is understood that effects such as radiative corrections

(see e.g. Fig. 1.1) make g differ slightly from 2. This difference is quantified by a

Fig. 1.1: Some higher order Feynman diagrams that contribute to the deviation of
g = 2.

dimensionless number,

al =
gl − 2

2
, (l = e, µ, τ) (1.5)

which is known as the anomalous magnetic moment.

Berestetskii et al. [7] in 1956 made the observation that contribution to al from new

physics at high energy scales or heavy particles is proportional to

δal ∼
(ml

M

)2
, (M � ml) (1.6)

Since the muon is about 200 times more massive than the electron, aµ is then more

sensitive to such effects than ae by a factor of (mµ/me)2 ∼ 40 000. Thus the anomalous

magnetic moment of the muon became a quantity of great interest for testing, at first

QED, and then later on the SM. For both ae and aµ, the continued searches for their

deviations from theory and speculations about their contributions due to new physics,

has been and still is a motivation for better and more precise experiments. Indeed,

with a precision of 0.24 parts per billion [8], ae is one of the most precisely measured

quantities in physics. This is also one of the biggest triumphs of QED and the SM, since

the theoretical prediction [9] is still in good agreement with this measurement. For aµ,

experiments have achieved a combined precision of 0.54 parts per million [10], which is

still very formidable and only matched by theory recently. At this level of precision, the

theoretical prediction need to account for contributions from all the sectors of the SM

(i.e. QED, electroweak, and hadronic) in order to be meaningful. These contributions

are reviewed in Sections 1.3 to 1.5 but first, a brief discussion on the experimental

measurement of aµ is given.
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1.2 Experimental measurements of aµ

We give a brief overview on the experimental measurement of aµ. The basic principle

behind the measurement exploits the fact that aµ is responsible for the spin precession

of polarised muons travelling in a circular orbit with a constant magnetic field, as shown

in Fig. 1.2. Specifically, the angle between the muon’s spin and momentum oscillates

⇒
⇒

⇒
⇒

⇒
⇒

⇒
⇒

⇒µ

⇒
spin

momentum

Storage
Ring

ωa = aµ
eB
mµ

actual precession × 2

Fig. 1.2: Spin precession of the muon in a magnetic storage ring. The graphics is
taken from [11].

with the angular frequency

~ωa = aµ
e

mµ

~B, (1.7)

which allows a direct measurement of aµ. To realise this however, one must: 1) have

knowledge of the initial direction of the muon spin; 2) allow sufficiently many precession

cycles to occur before the muon decays; 3) have knowledge of the final direction of the

muon spin; 4) have a precise determination of the magnetic field. The past experiments

at the European Organisation for Nuclear Research (CERN) from around 1960 to

1980 [12–15] and more recently at Brookhaven National Laboratory (BNL) around

2000 [16–20], are all based on this idea. For example at BNL, a proton beam is fired

towards a target creating pions, which then decays to muons and then injected into a

magnetic storage ring. Due to parity violation of the weak interaction, these muons are

polarised, meaning the direction of their spin and momentum are identical. In order

to keep the muons focused in the plane transverse to the magnetic field, a quadrupole

electric field ~E must be applied. However, this means the precession frequency is

now [21,22]

~ω =
e

mµ

[
aµ ~B −

(
aµ − 1

γ2 − 1

)
~v × ~E

]
, (1.8)

where γ = 1/
√

1− v2 is the Lorentz factor and ~v is the muon velocity. This dependence

on ~E is undesirable as precise knowledge of the electric field is then also required in order

to extract aµ. Fortunately, one can choose γ such that aµ − 1/(γ2 − 1) = 0, by tuning
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the energy of the muon. This corresponds to γ =
√

1 + 1/aµ ' 29.3 giving Emagic =

γmµ ' 3.1 GeV, which is known as the ‘magic’ energy. The added benefit of having

such a high γ value is the large time dilation effect on the muon. At rest, muon has a

lifetime of around 2µs, but in this case, the lifetime is extended to around 60µs, allowing

the muon spin to oscillate many times before decaying into an electron/positron plus

two neutrinos (e.g. µ− → W−νµ → e−ν̄eνµ). Again owing to parity violation of the

weak interaction, these electrons prefer to be emitted in the direction of the muon

spin. Thus measuring the direction of the electron momentum would give the final

spin direction for the muon. Finally, the precise determination of the magnetic field

is achieved by measuring the proton spin precession frequency in water with nuclear

magnetic resonance, and then using the ratio of the muon-to-proton magnetic moments

measured by experiments involving muonium.

Of course the above description is only meant to provide the very basic ideas behind

the experimental measurements of aµ. For a more detailed discussion and further

references see the review by Jegerlehner and Nyffeler [11].

Experiment Year Type aµ [10−10] Precision [ppm] References
CERN I 1961 µ+ 11 450 000(220000) 4300 [12]
CERN II 1962-68 µ+ 11 661 600(3100) 270 [13]
CERN III 1974-76 µ+ 11 659 100(110) 10 [14]
CERN III 1975-76 µ− 11 659 360(120) 10 [15]
BNL 1997 µ+ 11 659 251(150) 13 [16]
BNL 1998 µ+ 11 659 191(59) 5 [17]
BNL 1999 µ+ 11 659 202(15) 1.3 [18]
BNL 2000 µ+ 11 659 204(9) 0.7 [19]
BNL 2001 µ− 11 659 214(9) 0.7 [20]
Average 11 659 208(6.3) 0.54 [10]

Table 1.1: Summary of the experimental measurements of aµ from CERN and BNL.
Reproduced from [11].

Table 1.1 summarises the results of the experimental measurements of aµ conducted

by CERN and BNL. It is clear that the most recent experiments at BNL dominates the

precision of the all the measurements. They were able to achieve a 14-fold improvement

in precision over the experiments at CERN. Therefore the latest world average of the

experimental measurement of aµ is [10]

aexp
µ = 1169208.0(6.3)× 10−10, (1.9)

corresponding to a precision of 0.54 parts per million (ppm).

1.3 The QED contribution to aµ

For the Quantum Electrodynamics (QED) sector, the theoretical prediction is charac-

terised by its fundamental constants. These are the fine structure constant (α) and
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the ratios of the lepton masses (me, mµ, mτ ). Thus the precision of this sector is es-

sentially limited by the knowledge of these constants and the order of the perturbative

expansion. For α, its most precise determination uses the electron anomalous magnetic

moment measured by the Havard group [8]

aexp
e = 11 596 521.8073(28)× 10−10. (1.10)

This leads to a value for the inverse of α [8]

α−1 = 137.035999084(51). (1.11)

For the lepton masses, they are [23]

me = 5.109989918(44)× 10−4 GeV, (1.12)

mµ = 0.1056583692(94) GeV, (1.13)

mτ = 1.77699(29) GeV. (1.14)

The leading order contribution is universal, i.e. independent of any masses and thus

applies to the electron and tau as well as the muon. It comes from the 1-loop diagram

as shown in Fig. 1.1, and was first computed by Schwinger in 1948 [1] with the result

shown in Eq. (1.1). The lepton mass ratios appear as a result of the closed lepton loops

in the higher order contributions like the second diagram in Fig. 1.1. These extra loops

can introduce additional mass scales. A more systematic classification [24] results in

aQED
µ = A1 +A2(mµ/me) +A2(mµ/mτ ) +A3(mµ/me,mµ/mτ ). (1.15)

NowA1 is the universal contribution common for all leptons. This includes the Schwinger

result, diagrams with additional photon loops and also when the closed lepton loops

involve the muon (i.e. same as the external particle). A2 starts at the 2-loop level

and contains lepton loops of the same type except the muon. A3 begins at 3-loops and

involves lepton loops of all types. Each of the terms can be written as a perturbative

expansion in α,

Ai =
∞∑
j=i

A
(2j)
i

(α
π

)j
, (1.16)

where i = 1, 2, 3 and j counts the number of loops. Therefore in general, to order N ,

aQED
µ =

N∑
n=1

Cn

(α
π

)n
, (1.17)

where the complete 4-loop (N = 4) results are known and calculation of N = 5 terms

are ongoing.
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1) 2) 3)

4) 5) 6)

7) 8) 9)

γ γµ e τ
µ

γ

Fig. 1.3: The 2-loop diagrams of the QED contribution to aµ. Graphics taken from
[11].

1.3.1 Universal contributions

The 1-loop contribution is the aforementioned Schwinger result in Eq. 1.1. For the

2-loop level, there are 7 diagrams labelled 1)− 7) in Fig. 1.3. These make up the A(4)
1

coefficient and was first computed by Petermann [25] and Sommerfield [26] in 1957.

The result reads

A
(4)
1 =

197
144

+
π2

12
− π2

2
ln 2 +

3
4
ζ3 = −0.32847 . . . (1.18)

where ζ3 ≈ 1.20205 is a Riemann Zeta function. The final two diagrams in Fig. 1.3

contribute to the mass dependent term A
(4)
2 .

Going up to 3-loops, the mass independent contribution come from the 72 diagrams

in Fig. 1.4, where only the closed muon loops contribute. The result was computed

numerically by Kinoshita [27] in 1995 and was confirmed analytically by Laporta and

Remiddi [28] in 1996, which was based on prior work by Remiddi and collaborators

stretching back to 1969. The final result is given by

A
(6)
1 =

83
72
π2ζ3 − 215

24
ζ5 +

100
3

[(
a4 +

1
24

ln4 2
)
− 1

24
π2 ln2 2

]
−

239
2160

π4 +
139
18

ζ3 − 298
9
π2 ln 2 +

17101
810

π2 +
28259
5184

= 1.18123 . . . , (1.19)

where ζ5 ≈ 1.03692 and a4 = Li4(1/2) =
∑∞

n=1 1/(2nn4) ≈ 0.51747 is a polylogarithm.

With 4-loops, the number of diagrams jumps to 891 and their complexity is much

greater also. Thus, analytical results have been obtained for only a limited number of

diagrams by various groups [29, 30]. However, a numerical approach was established
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9) 10) 11) 12) 13) 14) 15) 16)

17) 18) 19)             20) 21) 22) 23) 24)

25) 26) 27) 28) 29) 30) 31) 32)
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65) 66) 67) 68) 69) 70) 71) 72)

Fig. 1.4: The 3-loop diagrams of the QED contribution to aµ. Graphics taken from
[11].

and matured by Kinoshita and collaborators since 1981 [31, 32]. The mammoth effort

undertaken by them over the years culminated in a refined result for the complete

4-loop universal QED contribution in 2008 from Aoyama, Hayakawa, Kinoshita and

Nio [9, 33], giving

A
(8)
1

(α
π

)4
= −1.9144(35)

(α
π

)4
, (1.20)

where the uncertainty is due to numerical integration. Now its size is ∼ 0.55× 10−10,

which is small compared to the experimental precision of the muon g−2, where δaexp
µ =

6.3× 10−10. However, it is much larger than δaexp
e = 0.0028× 10−10, so although it is

not immediately relevant for aµ, it is crucial for the electron g − 2.

The calculation for the contribution at 5-loops is still ongoing (see e.g. [34–36]). The

number of diagrams for A(10)
1 is 12672, an enormous number, and none are dominant

so they all have to be evaluated [34] (see also talk given by Thomas Teubner on behalf
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of Masashi Hayakawa at the PhiPsi11 conference [37]). An upper bound used by [11] is

A
(10)
1 = 0.0(4.6), (1.21)

which was calculated from the method suggested in Appendix B of [38]. Due to the

suppression by (α/π)5, the 5-loop contribution is even less relevant for aµ. However,

the size of its uncertainty is similar to δaexp
e and thus still important for ae.

1.3.2 Mass dependent contributions

Mass dependent contributions first appear at the 2-loop level through lepton loop in-

sertions as a result of photon VP effects and the fact that e, µ, τ have different masses.

At 3-loops, they appear, for example, from light-by-light scattering diagrams.

For 2-loops the exact mass dependent expression was first found in 1966 [39] and

then later compactified in [40]. The numerical results are

A
(4)
2 (mµ/me) = 1.0942583111(84), (1.22)

A
(4)
2 (mµ/mτ ) = 0.000078064(25), (1.23)

where the uncertainties come from the mass ratios (mµ/me) and (mµ/mτ ). Hence the

total 2-loop QED contribution from the diagrams in Fig. 1.3 is given by the coefficient,

C2 = A
(4)
1 +A

(4)
2 (mµ/me) +A

(4)
2 (mµ/mτ ) = 0.765857410(27), (1.24)

which results in

aQED, 2l
µ = C2

(α
π

)2
= (41321.7620± 0.0014)× 10−10, (1.25)

where the total uncertainty is negligible.

At 3-loops, there are contributions from light-by-light (LbL) diagrams in addition to

the VP insertions, and the two mass ratios (mµ/me), (mµ/mτ ) can now appear simul-

taneously in a diagram. The numerical results for these contributions are summarised

below (for more details and further references, see the review by [11]),

A
(6)
2,LbL+VP(mµ/me) = 22.86838002(20), (1.26)

A
(6)
2,LbL+VP(mµ/mτ ) = 0.00036051(21), (1.27)

A
(6)
3,VP(mµ/me,mµ/mτ ) = 0.00052766(17). (1.28)

Note that the majority of the contribution in A
(6)
2,LbL+VP(mµ/me) come from the elec-

tron light-by-light scattering. This is due to large logarithms of the form ln (mµ/me).

Together with the universal contribution, the total 3-loop QED contribution is given

by,

C3 = 24.05050964(46), (1.29)
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leading to,

aQED, 3l
µ = C3

(α
π

)3
= (3014.1902± 0.0001)× 10−10. (1.30)

The 4-loop mass dependent contributions were calculated by Kinoshita et al. [41].

The total is given by,

C4 = 130.8105(85), (1.31)

which means

aQED, 4l
µ = C4

(α
π

)4
= (38.0807± 0.0025)× 10−10. (1.32)

However, recently Kinoshita et al. revised their calculations but only published results

for the electron g − 2 case [9], thus the latest results will be different from above.

Finally, an estimate for the mass dependent 5-loop contribution is given in [34]. So

the total 5-loop estimate is

aQED, 5l
µ ∼ (663± 20± 4.6)

(α
π

)5 ' (0.4483± 0.0135± 0.0031)× 10−10, (1.33)

where the second uncertainty is from the universal contribution estimate in Eq. (1.21).

Summing all the universal and mass dependent contributions together, the final

result given by [9, 34] is,

aQED
µ = (11 658 471.808± 0.015)× 10−10. (1.34)

This accounts for over 99.99% of the total contribution to aµ and it is clear that the

uncertainty is very well under control and much less than that from the experimental

measurements of aµ.

1.4 The electroweak contribution to aµ

The theoretical calculation of the electroweak (EW) contribution to the muon g − 2

(aEW
µ ) gained traction after the renormalisation of the Yang-Mills fields was solved in

the early 1970s [42–44] and the SM started to take shape. However, aµ experiments

at CERN during that time [12–15] did not have the precision necessary to verify the

theoretical predictions, which became a driving force behind a new g-2 experiment.

This finally came to fruition with E821 experiment at BNL, and one of its major goals

was to test aEW
µ .

The 1-loop contribution involves exchanges of the Z, W± and H bosons given by

Fig. 1.5. The Higgs contribution, however, is negligible. It is suppressed by the Higgs-

muon coupling, which is tiny due to the mass of the muon. Thus the contribution at

1-loop is given by [45–49]

aEW, 1l
µ =

√
2GFm2

µ

16π2

[
10
3

+
(1− 4 sin2 θW )2 − 5

3

]
+O

(
m2
µ

m2
W,Z,H

)
, (1.35)
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W W

νµ Z H
µ

γ
a) b) c)

Fig. 1.5: The leading order contributions to aEW
µ . Graphics taken from [11].

where the first and second terms in the square bracket come from the Z and W bosons

respectively. Here, GF = 1.16637(1) × 10−5 GeV−2 is the Fermi constant, sin2 θW =

1−m2
W /m

2
Z = 0.22276(56) is the weak mixing parameter, so

aEW, 1l
µ = (19.482± 0.002)× 10−10. (1.36)

The 2-loop contributions involve bosonic corrections (part of which is the EM correc-

tions to the 1-loop diagrams in Fig. 1.5) and fermion loop insertions shown in Fig. 1.6.

Note that the total amplitude of fermion loops with three photon legs vanishes due to

Furry’s theorem for QED, thus they do not appear in Fig. 1.6. However, since weak

interactions violate parity, the amplitudes of the different orientations of the fermion

triangles with γγZ, γZZ legs do not cancel. As for the γWW case, there is only

one possible orientation due to charge conservation thus its amplitude cannot vanish

either. A first calculation with quarks omitted was computed in 1992 by KuKhto, Ku-

raev, Schiller and Silagadze [50]. They found the 2-loop corrections are enhanced by

large logarithms of the form ln(MZ/mf ). However, since individual fermion triangle

diagrams contain the Adler-Bell-Jackiw (ABJ) or VVA anomaly [51–53], quarks (of

the same generation) must also be included to ensure anomaly cancellation. Now the

quark triangle loops in reality contain non-perturbative hadronic effects, thus properly

accounting for these effects is non-trivial.

γ Z

f

µ µ

γ

µ
f

γ

γ Z µ
f

γ

Z Z

W
Wf

f ′

µ νµ

γ

W Wf ′
f

µ νµ

γ

H γ
t

µ µ

γ

a) b) c)

d) e) f)

Fig. 1.6: The fermion loop insertion diagrams of the 2-loop contribution to aEW
µ .

Graphics taken from [11].

Nevertheless, the entire contribution at 2-loop level including a full treatment of the

hadronic effects of the quark triangles summed together with the lepton loops was done

by Czarnecki, Krause and Marciano [54] and then later refined by Czarnecki, Marciano
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and Vainshtein [55]. Their result, when added to the 1-loop calculation gives [55],

aEW
µ = (15.4± 0.1had ± 0.2mH ,mt, 3−loop)× 10−10. (1.37)

The first error comes from the hadronic effects in the 2-loop quark triangle diagrams.

The second error includes an estimated mass range for the Higgs boson 114 . mH . 250

GeV, uncertainty on the top quark mass and an estimation for the leading 3-loop effect.

This is consistent with a very similar estimation by [11],

aEW
µ = (15.32± 0.10had ± 0.15mH ,mt, 3−loop)× 10−10, (1.38)

and another computation by [56] with the result

aEW
µ = (15.2± 0.1)× 10−10. (1.39)

Thus the uncertainties in the electroweak contribution to aµ are clearly under control.

For this analysis we use Eq. (1.37) with the errors added in quadrature,

aEW
µ = (15.4± 0.2)× 10−10. (1.40)

1.5 The hadronic contribution to aµ

1.5.1 Introduction

The hadronic contributions have the largest uncertainty in the SM prediction of aµ.

They are normally broken into three separate pieces, the leading order (LO), higher

order (HO) vacuum polarisation (VP) contributions, and the light-by-light (LbL) scat-

tering contribution,

ahad
µ = ahad, LOVP

µ + ahad, HOVP
µ + ahad, LbL

µ . (1.41)

Note that in terms of counting powers of the coupling α, the light-by-light contribu-

tions are also sub-leading. Unfortunately none of these three contributions can be

computed to the desired precision using perturbative QCD (pQCD). This is because

Fig. 1.7: The Feynman diagrams for the LO VP, and one of the HO VP and the LbL
hadronic contributions to aµ.

virtual photons with low q2 dominate the loop integrals and the running of the strong

coupling ‘constant’ αs(q2). At low energies, αs(q2) becomes large and pQCD is no
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longer reliable. Therefore, a semi-phenomenological method involving hadronic e+e−

annihilation experimental data is used in the most precise determination of LO and

HO VP contributions. However for light-by-light, the mainstream calculations are

still model dependent, although there are some promising developments on the lattice

front [57,58] and a calculation using an alternative approach based on Dyson-Schwinger

equations [59].

1.5.2 The leading order vacuum polarisation contribution

The leading order hadronic vacuum polarisation (LOVP) contribution can be visualised

by replacing the internal lepton loop in the QED case with a ‘blob’ containing all

possible hadronic states. This ‘blob’ thus represents the hadronic contribution to the

Fig. 1.8: The leading hadronic contribution to aµ.

photon VP Π′had(q2) and it is this quantity that can be equated to σ(e+e− → hadrons).

We take this opportunity to define our conventions on the vacuum polarisation (VP)

tensor Πµν(q2). Using the time-ordered product of two electromagnetic (EM) currents

jµ(x) it is,

Πµν(q2) ≡ i
∫

d4xeiqx〈0|Tjµ(x)jν(0)|0〉
∣∣∣
1PI
. (1.42)

The subscript ‘1PI’ stands for 1-particle irreducible, so we only include these type of

diagrams. The normalisation for the EM current is

jµ(x) =
∑
f,α

Qf ψ̄
α
f (x)γµψαf (x), (1.43)

where the sum over fermion f should be taken over all the quarks and leptons, and α is

the SU(3)C colour index and thus does not apply for leptons. Qf is the electric charge

of fermion f so for example, Qu = 2/3. Due to current conservation, the VP tensor is

purely transverse,

Πµν(q) = (qµqν − q2gµν)Π′(q2) (1.44)

where Π′(q2) = Π(q2)/q2 is known as the VP function. Π′(q2) (or its real part) can be

related to its imaginary part via an once subtracted dispersion relation. By virtue of

analyticity,

Π′(q2)−Π′(0) =
q2

π

∫ ∞
sth

ds
Im Π′(s)

s(s− q2 − iε) . (1.45)
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Thus, taking the real part gives

Re [Π′(q2)−Π′(0)] =
q2

π
P
∫ ∞
sth

ds
Im Π′(s)
s(s− q2)

, (1.46)

where P denotes taking the principal value prescription. We also work in the on-shell

scheme where the renormalisation condition Π′(q2 = 0) = 0 is imposed. Thus Π′(0)

can be safely omitted.

In case of the hadronic contribution to the VP function, we can then write

Π′had(q2) =
q2

π

∫ ∞
sth

ds
Im Π′had(s)
s(s− q2 − iε) , (1.47)

where we have dropped the Π′had(0) notation. Then, with the use of the optical theorem

(Fig. 1.9), the imaginary part of the photon VP can be written as

Fig. 1.9: Optical theorem for the hadronic contribution to the photon propagator.

Im Π′had(s) =
( s

4πα

)
σhad(s), (1.48)

where σhad(s) is the total e+e− → hadrons cross section. This deals with the photon

VP, but we also need to account for the one-loop contribution from the coupling of the

virtual photon to the muon. This is given by a well known function [7, 60],(α
π

)
K(s > 4m2

µ) =
α

π

{
x2

2
(2− x2) +

(1 + x2)(1 + x)2

x2

[
ln (1 + x)− x+

x2

2

]
+

1 + x

1− xx
2ln x

}
(1.49)

where x = (1 − β)/(1 + β) and β =
√

1− 4m2
µ/s. Note that the expression here

is written with a different normalisation compared to the previous analysis HMNT

(03) [61]. Namely, it differs by a factor of m2
µ/(3s) compared to Eq.(45) of [61]. This

K(s), which is also known as the kernel function, has a relatively simple behaviour,

K(s) =
m2
µ

3s
(0.4..1) (1.50)

where (0.4..1) ≡ K̃(s) is a function that monotonically increases from 0.4 to 1 as s

increases from sth to ∞. Finally, convoluting this with the imaginary part of the

photon VP function gives,

ahad, LOVP
µ =

1
4π3

∫ ∞
sth

ds σ0
had(s)K(s). (1.51)

The quantity σ0
had(s) is the undressed or ‘bare’ e+e− hadronic annihilation cross section

and sth = m2
π is the invariant mass squared threshold for the hadronic system, which
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Fig. 1.10: Undressing the photon propagator of all VP effects, otherwise double count-
ing occurs with higher order VP diagrams.

Fig. 1.11: Example of an FSR event and its corresponding diagram in terms of photon
VP. These type of diagrams contribute to aµ and they are not counted in the HOVP
contributions. Hence FSR in the cross section data needs to be included.

is defined by the process e+e− → π0γ. ‘Bare’ means the photon propagator must be

‘undressed’ of all (leptonic and hadronic) VP effects (see Fig. 1.10), however final state

radiation (FSR) corrections need to be included (see Fig. 1.11). This is required in order

to avoid double counting with contributions to ahad, HOVP
µ , specifically in Fig. 1.13 the

first diagram in class (a) along with diagrams from classes (b) and (c). Eq. (1.51) can

also be written in terms of Rhad(s), the hadronic R-ratio,

ahad, LOVP
µ =

1
4π3

∫ ∞
sth

ds
σ0

had(s)
σpt(s)

4πα2

3s
K(s)

=
α2

3π2

∫ ∞
sth

ds
s
Rhad(s)K(s), (1.52)

where

Rhad(s) =
σ0

had(s)
σpt(s)

=
σ0

had(s)
4πα2/(3s)

(1.53)

and σpt(s) is the e+e− → µ+µ− cross section. For s� m2
µ, K(s) ∼ m2

µ/s and Rhad(s)

is independent of s. Hence the integral is dominated by contributions coming from low

energies. There are numerous low energy e+e− hadronic annihilation data available

from experiments as far back as the 1970s. However, this also introduces the difficulty

of systematically combining data of different final states, quality and normalisation to

give the most accurate result with the correct error estimate. The exact procedures on

how we achieved this are detailed in the next chapter. Previous analyses from HMNT

(03) [61] and (06) [62] give

ahad, LOVP
µ (HMNT (03)) = (692.4± 6.4)× 10−10, (1.54)

ahad, LOVP
µ (HMNT (06)) = (689.4± 4.5)× 10−10. (1.55)

There is an alternative method in using data to calculate the hadronic VP con-

tributions through the use of hadronic τ -decays. Specifically, the I = 1 part of the

14



e+e− → hadrons data can be obtained by using the spectral function data avail-

able for the τ → ντ + hadrons processes. This idea was instigated by Alemany,

Davier and Höcker [63] when precise τ−spectral data became available after 1997 from

ALEPH [64–66], OPAL [67], CLEO [68] and then much later, Belle [69]. In principle,

this technique can be used for any hadronic τ decay below the τ mass. However, it is

the e+e− → γ∗ → π+π− data have that been given the most attention since it alone

accounts for over 70% of the contribution to ahad, LOVP
µ . Although other final states

such as the 4π channel, have also been calculated. The corresponding τ -decay to the

e+e− → γ∗ → π+π− is τ → ντW → ντππ
0, which involves a charged current rather

than a neutral one as well as a different final state (see Fig. 1.12). These differences

Fig. 1.12: τ -decay vs e+e− annihilation.

mean an isospin rotation along with isospin breaking corrections are required to relate

the τ -decay process to the e+e− data. Comparing the diagrams in Fig. 1.12 we have

σ(e+e− → π+π−) =
4πα2

s
v0(s), (1.56)

and

1
Γ

dΓ
ds

(τ− → π−π0ντ ) =
6|Vud|2SEW

m2
τ

B(τ− → ντe
−ν̄e)

B(τ− → ντπ−π0)

(
1− s

m2
τ

)(
1 +

2s
m2
τ

)
v−(s).

(1.57)

Here, |Vud| is the CKM weak mixing matrix element (its value can be found in e.g.

PDG2010 [23]), SEW is the electroweak radiative corrections [70–76], and the B’s are

branching ratios. The spectral functions vi(s) are defined by

vi(s) =
β3
i (s)
12
|F iπ(s)|2, (1.58)

where F iπ(s) are the pion form factors, βi(s) are phase space factors and i = 0,−.

The SU(2) isospin symmetry implies v−(s) = v0(s), which allows the isospin rotation.

However, mass differences between mu and md along with electromagnetic and weak

effects break the isospin symmetry. These effects for example, include: ρ − ω mixing;

the phase space factor β3
π−π+/β

3
π−π0 due to mπ±−mπ0 6= 0; form-factor differences due

to charged vs neutral current; and QED effects (real and virtual photon emissions) on

the τ− → ντπ
−π0 decay. However, even after all known isospin breaking effects are

accounted for, differences are still reported between the τ and e+e− data. This is seen
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in the recent analyses by Davier et al. [77,78], which give a discrepancy of around 1.8σ

between the prediction for ahad
µ based on isospin corrected τ data, and the one based

on e+e− data. This difference has decreased compared to their earlier studies, but it

is still sizeable and is at odds with results from two other groups. The analysis from

Benayoun et al. [79–81] based on hidden local symmetry (HLS) and dynamical (ρ, ω, φ)

mixing, found agreement between the τ and e+e− data. Jegerlehner and Szafron’s

recent study [82] examines the effect of ρ − γ mixing, which is not present in the

τ spectral function, but can be calculated from the e+e− data. They show that by

accounting for the ρ − γ mixing, the τ and e+e− data agree but improvement in the

precision of ahad
µ is only minor. Very recently, Benayoun et al. in collaboration with

Jegerlehner, released an updated analysis based on the HLS model [83]. They report

an ahad, LOVP
µ result that is slightly lower than, but still consistent and has comparable

precision with recent determinations based on the e+e− data. Using this result, they

arrive at a SM prediction of aµ that is 4.1σ away from the experimental measurement.

A full exploration of these issues goes beyond the scope of this project, but the recent

results appear quite encouraging for the τ versus e+e− puzzle.

1.5.3 The higher order vacuum polarisation contribution

The HO (O(α3)) hadronic vacuum polarisation contribution (ahad, HOVP
µ ) involves var-

ious types of diagrams. One categorisation appears in [84], which split the diagrams

into three classes, denoted by (a), (b) and (c) here. Fig. 1.13, which is taken from [61],

displays all three classes of diagrams:

(a) diagrams with a single hadronic ‘blob’ along with the muon as the only leptons

present;

(b) diagrams containing one hadronic ‘blob’ with either an electron or a tau loop;

(c) diagrams with two hadronic ‘blobs’.

Their contribution to aµ then involves the appropriate modifications to the dispersion

relation and the kernel K(s) giving,

ahad, HOVP(a)
µ =

α

4π4

∫ ∞
sth

ds σ0
had(s)K(a)(s), (1.59)

ahad, HOVP(b)
µ =

α

4π4

∫ ∞
sth

ds σ0
had(s)K(b)(s), (1.60)

ahad, HOVP(c)
µ =

1
16π2α

∫ ∞
sth

ds
∫ ∞
sth

ds′ σ0
had(s)σ0

had(s′)K(c)(s, s′). (1.61)
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The expressions for the different kernel functions can be found in [84]. The analysis

from HMNT (03) [61] gives

ahad, HOVP(a)
µ = (−20.73± 0.18exp ± 0.07rad)× 10−10, (1.62)

ahad, HOVP(b)
µ = (10.60± 0.09exp ± 0.04rad)× 10−10, (1.63)

ahad, HOVP(c)
µ = (0.34± 0.01exp ± 0.00rad)× 10−10. (1.64)

Hence, as is done in the LO determination, we also assign an error due to the radiative

corrections. Now the errors of (a) and (b) are almost completely anti-correlated, so

their combined uncertainty is the difference between the two errors. The uncertainties

of (c) are very small compared to those from (a) and (b), thus they are ignored. With

these in mind, the sum of these contributions gives2,

ahad, HOVP
µ = (−9.79± 0.09exp ± 0.03rad)× 10−10, (1.65)

which is consistent with the original calculation from Krause [84],

ahad, HOVP
µ = (−10.1± 0.6)× 10−10. (1.66)

Fig. 1.13: Feynman diagrams that contribute to ahad, HOVP
µ . For the class (b) diagram,

f = e, τ only. Note that mirror counterparts and diagrams where the massless and
‘massive’ photon propagator are swapped are implied.

2The HMNT (06) [62] result is identical apart from a slightly lower experimental error of 0.08×10−10.
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1.5.4 The light-by-light contributions

The hadronic light-by-light (LbL) scattering is conceptually the hardest contribution

to deal with. This section serves to give a brief overview of the history, difficulties and

results of the calculation of ahad, LbL
µ . A detailed discussion of these issues goes beyond

the scope of this project, see [11] for a detailed review.

Fig. 1.14: Hadronic light-by-light diagram, note the 3 virtual photons (q1,2,3).

The hadronic LbL contribution enters atO(α3
s) from the diagrams shown in Fig. 1.14.

This process cannot be related to experimental data easily due to three of the photons

being virtual. Furthermore, even for LbL scattering involving real photons, pQCD

gives a smooth continuum rather than the π0, η and η′ resonances seen by the Crystal

Ball detector [85] shown in Fig. 1.15. Therefore, non-perturbative QCD effects must

play an important role in this process. The QED counterpart of Fig. 1.14 can receive

significant enhancement, therefore we cannot simply neglect this contribution. We can,

however, turn to low energy effective representations of the strong interaction, such as

chiral perturbation theory (ChPT) [86–88]. Nevertheless, a main difficulty in calculat-

Fig. 1.15: Plot of the γγ mass spectrum measured at the Crystal Ball detector.

ing ahad, LbL
µ is the multi-scale problem due to the 3 virtual photons shown Fig. 1.14.

Suppose the low energy effective approach we wish to use, only applies below some scale

Λ2 and above which, pQCD is valid. Then these theories can only reasonably control
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the fully soft (q2
1, q

2
2, q

2
3 < Λ2) or the fully hard (q2

1, q
2
2, q

2
3 > Λ2) regions. However,

in domains where high and low virtualities are mixed, one has to rely on experimen-

tal constraints or operator product expansions (OPE) and/or factorisation schemes to

separate the short and long distance physics. Thus in general, there is no single all en-

compassing model to deal with this problem. A further complication is that behaviours

of the low energy effective models (e.g. form factors) have to match QCD at high en-

ergy. However, no single model in general satisfies all the constraints or symmetries

imposed by QCD. This introduces cut-off dependent results that give relatively large

uncertainties (see below), which can be interpreted as a dependence on the model used.

Therefore, reducing the effect of or features subject to model dependence, is another

obstacle that the computation of ahad, LbL
µ faces.

Various models have been proposed and utilised throughout the complicated history

in calculating ahad, LbL
µ . Early works using constituent quark approximations (quark

loops, summed over all flavour) [89,90] for the hadronic blob were received with caution

due to not-understood low energy hadronic effects. A more realistic model was also

presented by KNO [90] as an alternative to the constituent quark approximation. It

assumed a pion or light hadron loop along with low energy resonances (e.g. π0 exchange)

for the hadronic blob. In addition, the vector meson dominance (VMD) model was also

incorporated, where the photon has a hadronic structure and can effectively couple to

hadrons via ρ− γ mixing. Although this model seemed to confirm their approximation

using quark loops [90]3

ahad, LbL
µ (KNO; π loop+resonance) = (4.9± 0.5)× 10−10, (1.67)

ahad, LbL
µ (KNO; quark loop) = (6.0± 0.4)× 10−10, (1.68)

it was pointed out later that quark and pion loop approximations should not be equiv-

alent, but are two separate contributions [91,92]. Furthermore, the application of these

types of effective descriptions of QCD modified with VMD, which is only valid at low

energies, reinforced the belief that the main contributions came from momentum re-

gions close to the mass of the muon. However, as was considered in [93] and observed

in [92,94–96], momentum regions around mρ are also important. Therefore, resonances

of hadronic states in higher energy domains have to be considered too.

A more systematic method based on the extended Nambu-Jona-Lasinio (ENJL)

model [97, 98] was proposed by [91]. It used chiral expansion and the large-Nc QCD

picture [99, 100] (see also [101, 102]) to do Nc counting of the different contributions.

This is followed by two comprehensive evaluations by BPP [94, 95] using the ENJL

effective model of QCD, and HKS/HK [92,103] using the slightly different hidden local

symmetry (HLS) model [104]. Their results suggested that the pseudoscalar-exchanges

(see Fig. 1.16) is the dominant contribution. Both evaluations however, had the now
3The constituent quark approximation from [89] differed not only in size but also in the sign.
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‘famous’ sign error in the dominating π0-exchange, which was identified by KN [105,106]

and then confirmed by [107,108]. Nonetheless, these approaches became recognised as

the framework for computing ahad, LbL
µ . The corrected results from BPP and HKS/HK

are

ahad, LbL
µ (BPP; π0) = (5.9± 0.9)× 10−10, (1.69)

ahad, LbL
µ (BPP; tot) = (8.3± 3.2)× 10−10, (1.70)

ahad, LbL
µ (HKS/HK; π0) = (5.7± 0.4)× 10−10, (1.71)

ahad, LbL
µ (HKS/HK; tot) = (8.96± 1.54)× 10−10. (1.72)

Some recent developments were focused on the dominant neutral pion exchange contri-

π0, η, η′

µ

γ

q1 q3 q2

a) b) c)

Fig. 1.16: Leading contribution: neutral pseudoscalar-exchange diagrams. Graphics
taken from [11].

bution, specifically the pion-photon-photon transition form factors Fπ0(∗)γ(∗)γ(∗)(q2
3, q

2
1, q

2
2)

with q3 = −(q1 + q2) in accordance with 4-momentum conservation. The ∗ symbol en-

closed in the bracket signifies that if a ∗ is present then the particle is off-shell and if

there is no ∗, then the particle is on-shell. In general, at the internal photon vertex

the form factor is fully off-shell Fπ0∗γ∗γ∗(q2
3, q

2
1, q

2
2) and at the external photon vertex

one has Fπ0∗γ∗γ (q2
3, q

2
3, 0), since the external photon is real and soft, corresponding to

the external magnetic field. MV [96, 109] discovered that some short distance QCD

constraints were overlooked in [92,94,95,103,105,106], this meant that the form factor

used at the external vertex should not depend on momentum and thus proposed the

use of a constant, completely on-shell form factor Fπ0γγ (m2
π,m

2
π, 0). This had the effect

of enhancing the pion exchange and the total contribution4

ahad, LbL
µ (MV; π0) = (7.7± 0.7)× 10−10, (1.73)

ahad, LbL
µ (MV; tot) = (13.6± 2.5)× 10−10. (1.74)

However, N/NJ [11, 111] argued that in doing this, MV have only computed the so

called pion-pole contribution and not the complete pion exchange contribution, which

requires the use of fully off-shell form factors. Thus in their latest evaluation [11, 111]

they used fully off-shell form factors that also satisfies the constraints derived by MV.
4However, BP [110] noted that the increase in the total was not due to the enhanced π0 contribution

alone. There was a different treatment of the pseudovector contribution and negative contributions from
the scalars and π± loop were missed and taken as zero respectively.
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The results are,

ahad, LbL
µ (N/JN; π0) = (7.2± 1.2)× 10−10, (1.75)

ahad, LbL
µ (N/JN; tot) = (11.6± 4.0)× 10−10. (1.76)

This can be compared with another recent compilation by PdRV [112]5

ahad, LbL
µ (PdRV; tot) = (10.5± 2.6)× 10−10, (1.77)

where they altered the values or/and enlarged the errors for some of the individual

contributions computed by different groups. Note that the total error above came from

individual uncertainties added in quadrature whereas in Eq. (1.76), the errors are added

linearly.

Contribution BPP HKS/HK KN MV BP PdRV N/JN
π0, η, η′ 8.5± 1.3 8.27± 0.64 8.3± 1.2 11.4± 1.0 - 11.4± 1.3 9.9± 1.6
π, K loops −1.9± 1.3 −0.45± 0.81 - 0± 1.0 - −1.9± 1.9 −1.9± 1.3

Pseudovectors 0.25± 0.10 0.17± 0.17 - 2.2± 0.5 - 1.5± 1.0 2.2± 1.5
Scalars −0.68± 0.20 - - - - −0.7± 0.7 −0.7± 0.2

Quark loops 2.1± 0.3 0.97± 1.11 - - - 0.23 2.1± 0.3
Total 8.3± 3.2 8.96± 1.54 8.0± 4.0 13.6± 2.5 11.0± 4.0 10.5± 2.6 11.6± 4.0

Reference [94,95] [92,103] [105,106] [96,109] [110] [112] [11,111]

Table 1.2: Summary of the most recent results for the various contributions to
ahad, LbL
µ , all numbers are in units of 10−10. This is reproduced from Table 13 in [11].

Note that the MV result for the π, K loops also includes other contributions that are
subleading in terms of the Nc counting.

In summary, despite the difficulties in calculating ahad, LbL
µ , there is actually quite

a good agreement between the various results from different groups, especially in the

dominant pseudoscalar exchange contributions. However, other results from subleading

contributions show more disparity (see Table 1.2). Thus pinning down their values

and reducing their uncertainties would improve the overall prediction for ahad, LbL
µ .

As mentioned in the introduction, an alternate method for calculating ahad, LbL
µ using

Dyson-Schwinger equations appeared [59], where Goecke et al. reported a very large

contribution from quark loops (13.6± 5.9)× 10−10, making their estimate for the total

contribution to LbL larger than the other groups by a factor of two. Soon after, a

counter-argument was presented in [113] by studying the quark loop contribution using

the constituent quark model including QCD radiative effects. Very recently however,

Goecke et al. released a cross check of their method by computing ahad, LOVP
µ and the

Adler function [114]. They reported a value for ahad, LOVP
µ that is around 2% less than

results based on the e+e− data, and found good agreement with the Adler function.

Therefore, this issue remains unresolved at present. With the new g−2 experiment from
5They do not provide a separate value for the π0 exchange contribution, but instead, quote (11.4±

1.3) × 10−10 for the whole pseudoscalar exchange (including π0, η and η′), using the mean from
MV [96,109] and the largest error from BPP [94,95].
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Fermilab and J-PARC striving for a precision of 1.4×10−10, independent determination

of the hadronic light-by-light contribution from Lattice QCD [57, 58] will prove to be

very useful and important in the near future.

1.6 Summary

Table 1.3 summaries the typical results of the different theoretical contributions to aµ.

It is clear that ahad, LOVP
µ and ahad, LbL

µ have the largest uncertainties. In particular,

due to the difficulties mentioned above, the error from the hadronic light-by-light con-

tribution is not very well under control. Fig. 1.17 compares the total SM predictions of

aµ as computed by various groups (shown by the markers) with the then world average

of the experimental measurement of aµ (shown by the (green) band). This deviation

between theory and experiment was first observed at around 2000. Although its size

was only around 2 standard deviations (σ), a far cry from claiming discovery, it has

not disappeared and recent analyses showed that it is now around 3σ. Therefore, it

became important to reduce the uncertainties of these two hadronic contributions in

order to clarify the source of this deviation. Furthermore, if new physics beyond the

SM (BSM) is indeed responsible for this deviation

aBSM?
µ = a exp

µ − aSM
µ ∼ (29± 9)× 10−10, (1.78)

then this difference can be used to constrain the parameters of the various models that

describe BSM physics. For a discussion on how aµ (and the latest electroweak data)

has affected the minimal supersymmetric extension of the SM, see [115].

Contribution Value (10−10) Error References
aQED
µ 11 658 471.81 0.02 [9, 34]

ahad, LOVP
µ 690.30 5.26 [116]

ahad, HOVP
µ -10.03 0.11 [117]

ahad, LbL
µ 10.5 2.6 [112]

aEW
µ 15.4 0.2 [55]

Table 1.3: Summarises typical results for the various SM contributions to aµ.

This thesis therefore will focus on improving the calculation and precision of the

leading order vacuum polarisation contribution to the anomalous magnetic moment of

the muon, based on the well established data-driven approach used in HMNT (03) and

(06) [61, 62]. This also allows the determination of the running of the QED coupling

as an added benefit. The organisation of the rest of the thesis will be as follows.

Chapter 2 is the main focus of the thesis, discussing the computation and results of

ahad, LOVP
µ . The exact procedures used in the calculation is presented first, followed by a

detailed breakdown of the results obtained, along with their discussion and comparison
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Fig. 1.17: Comparison of aexp
µ and SM predictions of aµ from various collaborations.

Graphics taken from [118].

with other works. Chapter 3 is the secondary focus, introducing the QED coupling

and summarising the results of its running, in particular, its value at the Z-boson

mass. In addition, the procedure on the inclusion of an important data set and its

preliminary impacts is also discussed. Finally Chapter 4 summarises the final results

on the anomalous magnetic moment of the muon and the running of the QED coupling

at the Z-boson mass, along with a discussion on their implications and the future

prospects in this field.
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Chapter 2

Computing the LO Hadronic
Vacuum Polarisation
Contributions

2.1 Method

The procedures used to calculate ahad
µ will be presented in this section. Since there

are numerous e+e− hadronic annihilation data available with different final states and

covering different energy ranges, we have decided to group them according to their final

state or ‘channel’ and compute their contributions to ahad
µ separately before summing

them together. Corrections to the data due to radiative and VP effects will be explained

in Section 2.1.1. The details on how data are combined and then fitted for a particular

final state will be described in Sections 2.1.2 and 2.1.3 respectively. The integration

procedure for the dispersion integral and final remarks can be found in Sections 2.1.4

and 2.1.5. See Section 2.3 for details of the actual data used and their contributions to

ahad, LOVP
µ .

2.1.1 Data processing

Vacuum polarisation corrections

As mentioned earlier, the σ0
had that enters the dispersion relation have the photon VP

effects subtracted. However, the observed cross sections σhad for the e+e− annihilation

process have these effects included. Since VP effects screen the electric charge, this

amounts to having a running effective coupling α(q2) rather than the constant α. Now

the running coupling can be expressed using the real part of the photon VP [119],

α(q2) =
α

1−∆α(q2)
=

α

1− Re Π̃(q2)
, (2.1)

where we define Π̃(q2) = −e2Π′(s). This is possible since the full photon propagator

is proportional to the sum of the 1-particle irreducible (1PI) blobs therefore one can
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Fig. 2.1: The full photon propagator expressed as a sum of 1-particle irreducible (1PI)
blobs.

write

1 + Π̃ + Π̃ · Π̃ + · · · ' 1
1− Π̃

, (2.2)

if Π̃ is small. We note that there are both leptonic and hadronic contributions to

∆α(q2), thus we can define

∆α(q2) = ∆αlep(q2) + ∆α(5)
had(q2) + ∆αtop(q2). (2.3)

The first and third term correspond to the leptonic and top contributions respectively,

and they are calculable perturbatively. The middle term is the five flavour hadronic

contribution that contains non-perturbative effects, hence ∆α(5)
had(q2) can be computed

by a dispersion integral similar to Eq. (1.52). This will be covered in more detail in

Chapter 3. Now the observable cross sections σhad contain the absolute square of the

full photon propagator, i.e. |1 + Π̃ + Π̃ · Π̃ + · · · |2, so formally the photon VP includes

the imaginary part, i.e. Π̃ = e2(P + iA), although A is suppressed by e2,

|1 + e2(P + iA) + e4(P + iA)2 + · · · |2 = 1 + 2e2P 2 + e4(3P 2 −A2) + · · · (2.4)

In the previous analyses [61, 62], Im Π′ is not included on the grounds that the effect

would be small. However, in this analysis we have a new routine that can calculate the

full photon VP, hence we now include its imaginary part.

Now the exact details of how the VP is included in each measurement depend on the

normalisation the experiment uses along with other factors and there are six different

cases to consider, which remain unchanged from the previous analyses [61, 62]. Case

(1), for experiments that do not subtract the photon VP effects and the (normalisation)

luminosity measurement have already taken these effects into account, then a correction

factor

C
(1)
VP =

(
α

α(s)

)2

(2.5)

need to be applied. For example,

Rhad(s) =
σ0

had(s)
4πα2/(3s)

' C(1)
VP

σhad(s)
4πα2/(3s)

. (2.6)

Case (2), for experiments that use the e+e− → µ+µ− process as the normalisation cross

section, the photon VP effects will cancel out exactly. Thus the correction factor is

simply unity,

C
(2)
VP = 1. (2.7)
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Case (3), many experiments use the Bhabha scattering as the normalisation process.

If VP effects were not removed in the normalisation cross section, then the correction

that need to be applied will mostly come from t channel photon exchange amplitudes

at tmin. This is because the Bahbah differential cross section is ∼ α2/t2. Thus the

correction for the Bhabha process can be estimated by taking α2 → (α(tmin))2 where

tmin = −s
2

(1− cos θcut). (2.8)

Thus the correction factor for the cross section should be

C
(3)
VP =

(
α

α(s)

)2(α(tmin)
α

)2

=
(
α(tmin)
α(s)

)2

, (2.9)

where for example: if | cos θcut| . 1, then α(tmin) ' α and the correction factor is closer

to Eq. (2.5); if | cos θcut| . 0.5 however, then α(tmin) ∼ α(s) and the factor is close to

Eq. (2.7). Case (4), sometimes the leptonic (electron and muon) part of the photon VP

effects have been subtracted. So for those experiments that uses the Bhabha scattering

process for normalisation (the ones using the muon pair production process are not

affected since the VP effects cancel exactly), the correction factor should be

C
(4)
VP =

(
αe,µ(s)
α(s)

)2( α(tmin)
αe,µ(tmin)

)2

. (2.10)

Here, αe,µ(s) is the running effective coupling that only contains the electron and muon

parts in the photon VP function. Case (5) is a variation of Case (4) where only the

electron part of the VP effect was subtracted in some of the older e+e− → all hadrons

data. Thus we have,

C
(5)
VP =

(
αe(s)
α(s)

)2( α(tmin)
αe(tmin)

)2

. (2.11)

Case (6) applies once again to certain data sets for the e+e− → all hadrons process.

The assumption is similar to Case (5) in that these data sets have only the electron

part of the VP effect subtracted, however, they do not use the Bhabha process for

normalisation. Thus the correction factor is a variation of Eq. (2.5),

C
(6)
VP =

(
α

α(s)

)2(αe(s)
α

)2

=
(
αe(s)
α(s)

)2

. (2.12)

Since applying these correction factors can lead to shifts in the contribution to aµ that

are on the level of the experimental uncertainties and documentation on the exact

VP correction used are not available for some older experiments, we thus take a sepa-

rate error estimate δaVP
µ based on our treatment of the VP corrections. This remains

unchanged from [61,62]

δaVP, data
µ =

1
2

[
all channels∑

i

(δaVP,i
µ )2

] 1
2

, (2.13)

where the difference between applying VP or not in each channel δaVP,i
µ is summed in

quadrature and the resulting total halved.
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Final state radiative corrections

Final state radiation (FSR) effect corrections are needed for most of the data sets in

the e+e− → π+π− final state (see Section 2.3.2 for the list) and all the data sets in

e+e− → K+K− channels. This is done by applying the formula for the total inclusive

1-photon correction

CFSR = 1 + η(s)
α

π
, (2.14)

where the factor η(s) is given by [120,121],

η(s) =
1 + β2

β

[
4Li2

(
1− β
1 + β

)
+ 2Li2

(
−1− β

1 + β

)
− 3 ln

(
2

1 + β

)
ln
(

1 + β

1− β
)
−

2 ln (β) ln
(

1 + β

1− β
)]
− 3 ln

(
4

1− β2

)
− 4 ln (β) +

1
β2

[
5
4

(1 + β2)2 − 2
]

ln
(

1 + β

1− β
)

+
3
2

1 + β2

β2
(2.15)

with β =
√

1− 4m2/s. Therefore for the π+π− and K+K− channels m = mπ and

mK respectively. The above equation assumes the particles are charged scalar bosons,

which is a reasonable approximation. This is because the cross section is significant

close to threshold, where the photon propagator is also less energetic and thus less

able to resolve the structures of the π and K, minimising their effects. This correction

factor includes both real photon emissions and virtual photon effects. However, there

is insufficient information available on how each data set corrected for FSR effects, thus

we take 50% of η(s) into account along with a 50% error. Therefore,

CFSR =
(

1 +
1
2
η(s)

α

π

)
and ∆CFSR =

1
2
η(s)

α

π
, (2.16)

covering the entire spectrum of the degree of correction. Although other final states do

not receive such a correction, we do apply an additional 1% (of their aµ values) error as

an estimate of the uncertainty due to FSR corrections. The numerical values for these

corrections are,

δaFSR, π+π−
µ = 0.32× 10−10, (2.17)

δaFSR,K+K−
µ = 0.40× 10−10, (2.18)

δaFSR, others
µ = 1.15× 10−10. (2.19)

These are added linearly to give a total of,

δaFSR, tot
µ = 1.86× 10−10. (2.20)

Radiative corrections for narrow resonances

The narrow resonance contributions to aµ include J/ψ, ψ′ and Υ(1S−6S) states. They

are added separately since they are not resolved by data (see Fig. 2.32). Radiative
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corrections to these contributions come from the physical electronic widths Γ(V →
e+e−) where V represent the different resonances. Their values can be found from the

PDG [23] or Table 2.1, and they contain vacuum polarisation effects as well as FSR

corrections. These must be removed to obtain the bare electronic width

Γ0
ee = CresΓ(V → e+e−) (2.21)

before the contribution can be added. The correction factor Cres is given by

Cres =
(

α

αnoV (M2
V )

)2(
1 +

3
4
α

π

)−1

, (2.22)

where αnoV (M2
V ) is the running of the QED coupling at the mass of the resonance

MV but with the resonance contribution subtracted. In previous analyses [61, 62], the

space-like α(−M2
V ) was used instead because there are no reliable determinations for

α(M2
V ). However, this is not fully correct due to the differences between space-like

and time-like runnings (see Section 3.3). The differences in this case can be seen in

Table 2.1, where bare electronic width when using both the time-like αnoV (M2
V ) and

space-like α(−M2
V ) couplings are listed along with the physical width.

Resonance Γee Γ0
ee Γ0, space−like

ee

J/ψ 5.55 5.31 5.27
ψ′ 2.33 2.22 2.20

Υ(1S) 1.34 1.25 1.24
Υ(2S) 0.612 0.569 0.568
Υ(3S) 0.443 0.412 0.411
Υ(4S) 0.272 0.253 0.252
Υ(5S) 0.310 0.288 0.287
Υ(6S) 0.130 0.121 0.120

Table 2.1: Values of the physical and bare electronic width for the narrow resonance
states in units of KeV. The last column lists the value of the bare width calculated
using α(−M2

V ) instead of αnoV (M2
V ).

The total uncertainty from these VP corrections to the narrow resonances is similar

to Eq. (2.13) earlier, except the differences between applying these corrections or not

for each resonance δaVP, V
µ are added linearly, giving

δaVP, res
µ =

1
2

∑
V=J/ψ, ψ′,Υ

δaVP, V
µ . (2.23)

Therefore the total uncertainty for all the VP corrections including the narrow reso-

nances is,

δaVP, tot
µ = δaVP, data

µ + δaVP, res
µ = 0.96× 10−10. (2.24)
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2.1.2 Data combination

The combination procedure have been improved since [61], but the main principles

remain the same. When computing Rhad(s) for a particular channel, we aim to minimise

the amount of theoretical assumption on its shape and normalisation. To this end, we

do not fit the data with the use of parametrisations such as Breit-Wigner functions in

general1. Furthermore, the usage of pQCD is only limited to energies from 2.6 to 3.73

GeV, where it agrees with the data (see Fig. 2.34), and above 11.09 GeV. Therefore the

issue now lies with in how to use all the data from different experiments in a particular

channel to compute its contribution to ahad
µ . One way is to calculate the integral

(1.52) for each experiment separately and then do a weighted average of the results.

However, there are a few problems with this setup such as incorrect error evaluation

(see footnote 4 in [63]), what to do with data sets with only a single point or sparsely

populated and the fact that ahad
µ as it is computed here, is not an observable. Going

to the other extreme, we can integrate over all data point-by-point within a channel.

Again there are issues with this approach. For example, the weighting of precise data

may be suppressed by points with large uncertainties in its proximity, which leads to an

overestimation of the total error. Therefore for each channel, a combination procedure

should be applied to the data before integration.

First of all, data points from different experiments have different energy bins, so a

re-binning of the points into energy ‘clusters’ is applied and our model assumes that

the cross section is constant within the energy binning or size of the cluster. Thus we

have

R(
√
s = E

(k,m)
i ) = R

(k,m)
i ±

[(
dR (k,m)

i

)2
+
(

dfkR
(k,m)
i

)2
] 1

2

, (2.25)

where R
(k,m)
i is the R value for the ith data point from experiment k in cluster m

and E
(k,m)
i is its corresponding energy; dfk is the common systematic error (as a

percentage) of the data points from experiment k, any additional systematic error are

added in quadrature to the statistical error and their total is given by
(

dR (k,m)
i

)2
. This

setup of the errors allows for the non-linear χ2 fitting function that will be explained

in the next section. Then a weighted average for cluster m is given by

Rm =

∑
k

N(k,m)∑
i=1

R
(k,m)
i(

dR̃ (k,m)
i

)2


∑

k

N(k,m)∑
i=1

1(
dR̃ (k,m)

i

)2


−1

, (2.26)

where

dR̃ (k,m)
i =

√(
dR (k,m)

i

)2
+
(

dfkR
(k,m)
i

)2
(2.27)

1The ηω channel is an exception since we do not have access to the actual data, see Section 2.3.8
for details.
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and N (k,m) is the total number of data points within cluster m. Similarly, the energy

for each cluster center is

Em =

∑
k

N(k,m)∑
i=1

E
(k,m)
i(

dR̃ (k,m)
i

)2


∑

k

N(k,m)∑
i=1

1(
dR̃ (k,m)

i

)2


−1

. (2.28)

The Rm computed here are not the final values, instead they are used as initial values

of the fit parameters in our χ2 fitting function, which is explained in the next section.

In [61], for each channel, there is always a cluster size defined for the continuum region

but other cluster sizes may also be defined for the known resonance regions. However,

note that if two data points are separated by an energy binning larger than the defined

cluster size, then no clustering between the two data points occur, so the cluster size

is effectively the larger energy binning between the two data points. In this work, the

process has been improved to include the option of using a more adaptive clustering

algorithm. The new algorithm turns the defined cluster sizes to target cluster sizes that

can be reduced or enlarged based on the energies of the data points. The resulting effect

prevents a cluster from getting too large and also tries to group more points together

in the continuum regions.

2.1.3 Minimisation

After the data is combined into clusters, the weighted average for cluster m, Rm and the

normalisation factor fk for the kth experiment are fitted using a non-linear χ2 function,

χ2(Rm, fk) =
Nexp∑
k=1

(
1− fk

dfk

)2

+
Nclu∑
m=1

N(k,m)∑
i=1

(
R

(k,m)
i − fkRm

dR̃ (k,m)
i

)2


w/o cov. mat.

+


Nclu∑
m=1

N(k,m)∑
i=1

N(k,n)∑
j=1

(
R

(k,m)
i − fkRm

)
C−1(mi, nj)

(
R

(k,n)
j − fkRn

) .

(2.29)

The input for this are R (k,m)
i , dR (k,m)

i and dfk defined earlier and by equation (2.25).

The common systematic error of dfk may be given in many forms. If the systematic

error is given as an overall percentage for all energy regions, then this is simply taken

as dfk. If each data point is assigned an absolute systematic error, the minimum (in

percentage) of which is taken as dfk and the remaining error (as an absolute number)

are included in dR (k,m)
i . If the systematic errors are given as different percentages

in different energy regions, they will be converted to an absolute systematic error for

each point and the treatment above will be used. Finally, Nclu and Nexp denote the
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total number of clusters and the total number of experiments respectively. Some recent

data sets give a covariance matrix for each of their statistical and systematic errors.

Their contributions are added separately in the χ2 function, appearing as the last line

in (2.29). Instead of (1/dR̃ (k,m)
i )2 that appears in the second line, the inverse of the

covariance matrix C−1(mi, nj) for each experiment is used. This ‘C’ is the sum of

the statistical and systematic covariance matrices with the common systematic error

subtracted from each element. Thus the subscript ‘w/o cov. mat.’ in the second line

of equation (2.29) is used to indicate they are contribution to χ2 from experiments

that do not give covariance matrices for their errors. This function is then minimised

with respect to the fit parameters Rm and fk via a numeric iteration procedure. So

as mentioned earlier, the weighted average Rm computed in equation (2.26) serves as

the starting values in this fitting procedure. For the normalisation factors, their initial

values are taken as fk ≡ 1. The output from this fitting procedure include the fitted

values, Rm = R̄m, fk = f̄k, a minimised global χ2 given by χ2
min, local χ2

m value for

each cluster m and a covariance matrix V (m,n) that defines the correlation of errors

dRm and dRn between clusters m and n. For this matrix, the diagonal elements are

simply V (m,m) = (dRm)2 while in general, V (m,n) satisfies

V (m,n) = (dRm)(dRn)ρcorr(m,n) (2.30)

so the correlation factors ρcorr(m,m) ≡ 1. The goodness of the overall fit can be

estimated from
χ2

min

d.o.f.
=

χ2
min

Ntot −Nclu −Nexp
(2.31)

The degree of freedom (d.o.f.) is the total number of data points minus the number of

fitted parameters, Nclu for Rm and Nexp for fk.

In [61, 62], if χ2
min/d.o.f. is greater than unity then the final error after integration

would be inflated by
√
χ2

min/d.o.f.. However, this prescription may be improved by

using the local χ2 and inflate the error of each cluster. More precisely, the covariance

matrix V (m,n) should be inflated given the following:

• if χ2
m/d.o.f. > 1 and χ2

n/d.o.f. > 1,

Ṽ (m,n) = V (m,n) ·
√
χ2
m/d.o.f. ·

√
χ2
n/d.o.f.; (2.32)

• if χ2
m/d.o.f. > 1 only, then

Ṽ (m,n) = V (m,n) · (χ2
m/d.o.f.

)
. (2.33)

The d.o.f. for a local χ2 is simply the total number of data points in the cluster minus

one. The effect of the local χ2 on the fit can be seen from Figs. 2.2 and 2.3. Points

from mock data 1 and 2 have the same statistical and percentage systematic error but
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disagrees at two places. Mock data 5 are identical to mock data 2 except for the larger

statistical and much larger systematic errors. Therefore we see that in places where

the two data sets disagree, there is an inflation of the error band due to the usage of

local χ2. In Fig. 2.2, the inflation is much greater because both data sets are equally

precise leading to small re-normalisations, therefore the size of the error band is a

reflection of the disparity between the two data at those points. For Fig. 2.3, points

from mock data 5 are less precise and the larger systematic errors mean they get a

larger re-normalisation downwards. Therefore the smaller error inflation reflects the

fact that mock data 5 are less precise. As for how much the local χ2 impacts the error

after integration i.e. the error on aµ, Table 2.2 shows that the effect for actual data

is not huge but nevertheless noticeable. Thus in this work, we have chosen to use the

local χ2 prescription.
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Fig. 2.2: Plot to demonstrate the effect of the local χ2 fit. The light (yellow) band
represents the original fit as was used in [61,62], where only the final error is inflated by√
χ2

min/d.o.f. after integration. The dark (green) band is the new fit, where the error
is inflated locally i.e. on the level of the cluster.

2.1.4 Integration

Once the fitting procedure is complete, then aµ and its error can be found by integration

using the trapezoid rule. Ignoring the constants in equation (1.52), the integral between

two arbitrary energies Ea and Eb is then,

I =
∫ E2

b

E2
a

ds
s
Rhad(s)K(s) = 2

∫ Eb

Ea

dE
E2

ERhad(E2)K(E2) = Ī with error ∆Ī . (2.34)
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Fig. 2.3: Same as Fig. 2.2 except that Mock data 5 have larger statistical and system-
atic errors than Test data 2.

Channel global χ2
min/d.o.f. globally infl. err. locally infl. err. ‘global – local’

π+π− 1.4 3.06 3.09 −0.03
π+π−π0 3.0 1.08 0.99 +0.10
4π(2π0) 1.3 1.19 1.26 −0.07
4π(noπ0) 1.7 0.49 0.47 +0.02
K+K− 1.9 0.57 0.46 +0.11
K0
SK

0
L 0.8 0.16 0.16 −0.003

5π(1π0) 1.2 0.09 0.09 0
6π(2π0) 4.0 0.39 0.24 +0.16

Table 2.2: Global χ2
min/d.o.f., globally and locally inflated error (in units of 10−10)

of aµ and their differences for several channels. The range of integration is 0.305 to 2
GeV.

Since Rhad(E2) is parametrised by Rhad(E2
m) = R̄m with cluster center Em, so lets

suppose Em < Ea < Em+1 which is less than En−1 < Eb < En. The integral can then

be estimated with trapezoid rule

Ī = 2
(
Em+1 − Ea

2Ea
R̄aKa +

Em+2 − Ea
2Em+1

R̄m+1Km+1

)
+

2

(
n−2∑

l=m+2

El+1 − El−1

2El
R̄lKl

)
+

2
(
Eb − En−2

2En−1
R̄n−1Kn−1 +

Eb − En−1

2Eb
R̄bKb

)
, (2.35)
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where Kl = K(E2
l ) and R̄a, R̄b are found using linear interpolation. The error of the

integral is estimated via the inflated covariance matrix Ṽ

(∆Ī)2 =
n∑

p=m

n∑
q=m

∂Ī

∂R̄p
Ṽ (p, q)

∂Ī

∂R̄q
(2.36)

=
n∑

p,q=m

(
Ep+1 − Ep−1

Ep
Kp

)
Ṽ (p, q)

(
Eq+1 − Eq−1

Eq
Kq

)
. (2.37)

Note that in order to match equation (2.35),

p = m→ Ep−1 = Ea and Ep = Ea

p = m+ 1→ Ep−1 = Ea

p = n− 1→ Ep+1 = Eb

p = n→ Ep+1 = Eb and Ep = Eb

and similarly for the index q. In addition, since R̄a and R̄b are interpolated, their

correlations and errors are not defined in Ṽ (p, q). Although one may find interpolated

values for Ṽ (a, a) or Ṽ (b, b), the meaning of interpolating Ṽ (a, q) or Ṽ (p, b) is less clear.

Therefore the following method is used so that the border terms in equation (2.37) are

no longer ill-defined. Let Xa = R̄aKa, then demand Xa = R̄mK̃m and solve for K̃m,

which is some modified value of Km. Similarly, this is done for Xb = R̄bKb. Therefore,

if R̄mK̃m and R̄nK̃n is used instead of R̄aKa and R̄bKb in equation (2.35), the value

of Ī remains the same and more importantly, all terms in equation (2.37) are now well

defined.

2.1.5 Remarks

Choosing the size or energy binning of the clusters is an important issue. If it is

too small, then the problem of the precise data being overwhelmed mentioned in Sec-

tion 2.1.2 applies and if it is too large, some structures such as resonance peaks might

become too smeared or missed entirely. So the cluster size is effectively a parametrisa-

tion on the shape and normalisation of Rhad.

This may be demonstrated with the help of a toy model using two data sets shown in

Fig. 2.4.The first data set have 16 points with large statistical (∼ 17%) and systematic

(25%) errors, while the second data set only have 3 points but they are very precise

(∼ 3% statistical error and 2.5% systematic error). From Fig. 2.4 we can see what

happens to the fit with two different choices of clustering. The plot on top shows the

fit using a cluster size of 5 MeV. Only one point from the precise data set is combined

with the imprecise data, so the fit still follows the imprecise points with an unphysical

looking dip near the peak. The combination with the single more precise point leads to

a re-normalisation of both data sets, with a factor of 1/1.1528 for the imprecise data

and 1/0.9982 for the precise one. The difference between the two factors reflect the
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Fig. 2.4: Plots of two mock data and their fits to demonstrate the importance of
choosing the appropriate cluster size. The top graph shows how numerous imprecise
data can dominate the fit if the cluster size is too small. The graph on the bottom
shows the fit with a larger cluster size, allowing the fewer but more precise data to
contribute their weights. The error bars on the data represent the sum in quadrature
of statistical and systematic errors.

difference between systematic errors of the two data sets. The plot on the bottom gives

the fit when a cluster size of 55 MeV is used. Now all three points of the precise data are

combined with the imprecise data points, and their weighting is illustrated by way the

fit follows the precise data. The normalisation factors are now 1/1.3563 and 1/0.9951

for the imprecise and precise data sets respectively. Finally, the resulting aµ and errors

from integrating over the two fits using trapezoid rule shows that with a larger cluster
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size, the mean was reduce by about 15% and the decrease in error was more than 50%.

This of course, comes with the assumption that the cross section is constant within

the larger 55 MeV interval. Now to assist us in choosing a better cluster size, we have

the ability to produce a scan through a range of cluster or target cluster sizes in the

continuum. The output of this scan include values for global χ2
min/d.o.f., aµ and its

error. An actual example of this is shown by Fig. 2.11.

2.2 Results overview

In this work, we use measurements for 26 different hadronic final states or ‘exclusive’

channels and data for the e+e− → all hadrons process or ‘inclusive’ channel. These

form the contributions to ahad, LOVP
µ that are purely based on data and are described

in Section 2.3. In addition to those exclusive channels, there are some final states that

are not measured by experiments. However, the contribution from these channels can

be determined by approximate relations to the appropriate cross section data, based

on isospin symmetries of the final state particles. They are known as the ‘isospin’

channels and in this work, we follow the isospin relations derived in [78], which gives

11 different isospin channels using contributions from 15 exclusive channels as input,

see Section 2.4 for details. This setup or isospin analysis is different to the one used in

HMNT (03) [61] and (06) [62], where there were 4 isospin channels based on different

isospin relations to the ones used in this work. Other non-data based contributions

to ahad, LOVP
µ including predictions using chiral perturbation theory (ChPT), J/ψ, ψ′

and Υ resonances and perturbative QCD (pQCD) are detailed in Section 2.5. Now we

can calculate ahad, LOVP
µ (or Rhad) up to

√
s = 2 GeV by summing the aµ results (or

cross section data) from all the exclusive and isospin channels. This is usually called

’the sum of exclusive’. The calculation can also be done for 1.43 .
√
s ≤ 11.09 GeV

by using the cross section data for the inclusive channel. Hence in the energy region

1.43 .
√
s ≤ 2 GeV, there is an overlap between inclusive and sum of exclusive, where

the two methods can be compared, see Section 2.6. It should be noted that the total

number of distinct final states that contribute in the sum of all exclusive (and isospin)

channels is 27. This is due to the way the isospin relations uses the exclusive channels

as input: some need to be counted as separate channels and summed accordingly, while

others do not and some appear in more than one isospin relation (see Section 2.4, and

Table 2.6 for details.) Finally, the total contribution to ahad, LOVP
µ will be summarised

in Section 2.8.
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2.3 Data based channels

2.3.1 The π0γ channel

Although the e+e− → π0γ channel defines the lower limit of the dispersion relation

(1.52) with
√
sth = mπ, the data sets available [122–124] only encompass the energy

region 0.60 ≤ √s ≤ 1.31 GeV. Their contribution to ahad
µ after combination and inte-

gration is,

aπ
0γ
µ (0.60 ≤ √s ≤ 1.31 GeV) = (4.54± 0.14)× 10−10 (2.38)

See Fig. 2.5 for the result of the combination and fitting procedure. For energies below

0.60 GeV, chiral perturbation theory (ChPT) is used, see Section 2.5.1 for details.

2.3.2 The π+π− channel

The e+e− → π+π− channel accounts for over 70% of ahad, LOVP
µ , making it the largest

and the most important contribution. This dominance comes from the ρ(→ π+π−)

intermediate state due to the weighting of the kernel function (1.50) and the cross

section of the data. This channel has been measured from experiments using the direct

scan method (by adjusting the e+e− beam energy), such as the recent, very precise

results from CMD-2 and SND in Novosibirsk (see [125] for a brief review). Since

2005 however, analyses using the radiative return method2 have also become available.

KLOE (05) [127] was the first published results for the π+π− channel based on this

method and it was in fair agreement with other analyses from Novosibirsk apart from

slight shape differences. However, it was these differences that prevented the KLOE

(05) data from being combined on the bin-to-bin level in [62]. Thus they were only

combined with the other data sets after integration. This is not preferred since not all

data sets were treated equally and the error estimate may not have been completely

realistic. Therefore as reported in [128], this analysis treats all the data sets in the

same way, i.e. following the combination and fitting procedure as outlined in sections

2.1.2 and 2.1.3.

We now use 23 data sets [129–150] in total, and we apply FSR corrections, as

discussed in Section 2.1.1, to [135–149]. There are three new results based on radiative

return methods from KLOE [129,130]3 and BaBar [131]. These experiments provide full

covariance matrices for statistical and systematic errors, which prompted the change

to our non-linear χ2 function (2.29). The energy range covered by the data sets is

0.305 ≤ √s ≤ 3.0 GeV.

The effect of new radiative return data in the new fit can be seen in Fig. 2.6

showing the ρ-dominant region from about 0.6 to 0.95 GeV. The light (yellow) band
2See [126] for a review of this approach along with further references and results.
3The KLOE (08) data [130] supersede their 2005 results [127] but the KLOE (10) analysis is inde-

pendent from the one in 2008.
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Fig. 2.5: The e+e− → π0γ cross section, the (green) band shows the behaviour of the
cross section after clustering and fitting with local χ2 error inflation. The lower plot is
an enlargement of the ω resonance region.

represents the result of our fit of all data. The dark (green) band is the new radiative

return data from BaBar [131] and the data from KLOE [129, 130] are shown by the

markers in the graph. Fig. 2.7 displays an enlargement of the ρ−ω interference region

along with data from CMD-2 [133, 150] and SND [134]. Fig. 2.8 shows the low energy

region close to threshold where the BaBar data have become a very valuable addition

amongst the other less precise results. The prediction from ChPT is also shown, which

is in agreement with the new fit and used in the energy region below 0.305 GeV,

see Section 2.5.1 for details. From these figures, it should be apparent that the two
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analyses from KLOE, which agree amongst themselves, are lower than the BaBar data.

Furthermore, this tension causes the fit to interpolate between BaBar and KLOE.

Nonetheless, the global χ2
min/d.o.f. for the fit is ∼ 1.4, which suggests the actual fit

quality is still quite good. The differences between the three radiative return data

sets and the fit can be demonstrated more clearly by their normalised differences as

shown in Fig. 2.9. The differences of KLOE (08,10) and BaBar (09) compared to the

fit without their presence can be seen from a similar plot in Fig. 2.10.
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Fig. 2.6: Cross section plot of the e+e− → π+π− channel in the ρ-dominant region.
Light (yellow) band: fit of all the data. Dark (green) band: radiative return data from
BaBar [131]. Data from KLOE [129, 130] are shown with the markers as noted in the
legend.

There are now a very large number of data points (879 in total) in this channel, of

which more than half (337 data points from BaBar along with 75 and 60 points from

the two KLOE analyses) comes from the new radiative return data sets. Therefore it is

important to discuss the issue of fit stability with respect to different energy clustering.

The increase in the number of data points means it is possible to adopt a very fine

clustering that drastically reduces any biases from assumptions about the cross section.

Nevertheless, there is still a dependence on the way data is combined, specifically the

way data points are clustered together varies depends on the target energy cluster size

δ, which may change the shape of the resulting fit. Fig. 2.11 shows this dependence

on this δ from 1 to 5 MeV: the solid (red) line is the global χ2
min/d.o.f.; the dashed

(red) line displays the inflated error of the π+π− contribution to ahad, LOVP
µ (in units of

10−10); finally the dotted (blue) line represents the corresponding mean value of aπ
+π−
µ

(again in units of 10−10). From the graph, it can be seen that:
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√
sth up to the first

BaBar point at 0.305 GeV.

• it is preferable to take the target cluster size δ up to about 2 MeV due to the fit

quality and the size of the error;
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radiative return data. Note the larger y-scale compared to Fig. 2.9.

• larger cluster sizes are disadvantageous because of the increase in χ2
min/d.o.f.

overshadows any reduction in the error before error inflation;

• the mean for aπ
+π−
µ fluctuates by about 1σ within the range of the target δ.
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Therefore, a target cluster size of δ = 1.5 MeV was chosen since it gives the best fit

quality, the smallest inflated error and a mean value for aπ
+π−
µ that is neither too high

nor too low in the possible choice of results. Using this choice we obtain by integrating
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Fig. 2.11: Influence of the target cluster size δ on the global χ2
min/d.o.f. (solid red line,

left scale), the globally inflated error ∆aπ
+π−
µ (dashed red line, left scale) and the mean

aπ
+π−
µ (dotted blue, right scale). The dash-dotted (green) line represents the values of

∆aπ
+π−
µ with local error inflation. The aπ

+π−
µ displayed here is calculated in the energy

range 0.305 ≤ √s ≤ 2.0 GeV.

up to 2 GeV, the upper limit for exclusive channels,

aπ
+π−
µ (0.305 ≤ √s ≤ 2 GeV) = (505.77± 3.09)× 10−10. (2.39)

However, in order to compare the effect of including these new radiative return data,

a low energy limit of 0.32 GeV has to be used since only the BaBar data goes down to

0.305 GeV. Using the new limit

aπ
+π−
µ (0.32 ≤ √s ≤ 2 GeV) = (504.23± 2.97)× 10−10, (2.40)

and if the new radiative return sets are excluded but δ is still kept at 1.5 MeV,

aπ
+π−, w/o Rad. Ret.
µ (0.32 ≤ √s ≤ 2 GeV) = (501.26± 4.48)× 10−10. (2.41)

Hence the radiative return data causes a considerable increase to the result without

their presence. Furthermore, without the data from KLOE and BaBar the fit actually

favours a larger target cluster size of 4.2 MeV (which was used in [62]) giving,

aπ
+π−, w/o Rad. Ret.
µ (0.32 ≤ √s ≤ 2 GeV) = (498.65± 3.28)× 10−10. (2.42)
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This rather significant increase is not unexpected given the plot in Fig. 2.10. The

BaBar data is consistently larger compared to the fit apart from a few places, while

the two KLOE data sets are on average, level with the fit. Furthermore, although the

small increase in precision from adding these new radiative return data may seem odd

given these data have relatively small errors, this is merely a reflection of the tension

between the data sets discussed earlier.

Finally to complete the comparison, it is necessary to look at a restricted energy

range, 0.5958 ≤ √s ≤ 0.9192 GeV, where KLOE and BaBar data sets completely

overlap with the other data. In this range, the KLOE data sets give

aπ
+π−
µ (KLOE (08)) = (376.3± 3.4)× 10−10 (2.43)

aπ
+π−
µ (KLOE (10)) = (373.4± 3.3)× 10−10, (2.44)

which is in fair agreement. BaBar on the other hand is much higher

aπ
+π−
µ (BaBar (09)) = (384.4± 2.8)× 10−10, (2.45)

which is expected given what is shown in Figs. 2.6 and 2.9. For the combination of the

data sets without the radiative return data,

aπ
+π−
µ (w/o Rad.Ret.) = (376.0± 2.6)× 10−10, (2.46)

using the same energy range with the larger, favoured choice of δ = 4.2 MeV. Taking

the weighted average of these numbers would give a value of (377.9± 1.5)× 10−10. In

comparison, combining all data before integration in this energy range along with the

preferred δ = 1.5 MeV gives,

aπ
+π−
µ (All data) = (380.0± 2.2)× 10−10. (2.47)

These two results are superb examples in showing some of the problems of combining

data after integration as stated in Section 2.1.2. The smaller error in the weighted

average is not representative of the tensions between the data sets discussed before.

Furthermore, the lower mean does not reflect the true weighting of the more precise

BaBar data. Therefore in this analysis, all the π+π− data will be combined before

integration when calculating their contribution to the SM prediction of aµ.

2.3.3 The π+π−π0 channel

The e+e− → π+π−π0 channel is the second largest contribution to ahad, LOVP
µ , but it is

an order of magnitude smaller than the largest. For this channel, we now use a total of

13 data sets, [146,150–158] including three scans from the recent CMD-2 analysis [151]

not present in [62]. Fig. 2.12 is a log plot showing the new fit using local χ2 and nearly

all the data up to 2.4 GeV. The two large peaks are the ω and φ resonances, which

43



can be seen more clearly in Fig. 2.13. Although the energy range covered by all data is

0.48 ≤ √s ≤ 2.99 GeV, all data points below 0.66 GeV are discarded and ChPT is used

instead, see Section 2.5.1. This is done due to the lack of quality experimental data,

which is illustrated by Fig. 2.14. Thus the contribution to ahad, LOVP
µ up to 2 GeV for

this channel is

aπ
+π−π0

µ (0.66 ≤ √s ≤ 2 GeV; Data) = (47.51± 0.99)× 10−10. (2.48)
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Fig. 2.12: Plot of the π+π−π0 channel from 0.66 to 2.4 GeV clearly showing the ω
and φ resonances. The new fit with local χ2 inflation is shown by the (yellow) band
and the most important data are indicated by the markers.

2.3.4 The 4π channels

The 4π channels only involve the π+π−π+π− and π+π−π0π0 final states since e+e− →
γ∗ → 4π0 is forbidden due to charge conjugation symmetry.

For the 2π+2π− channel, there have been no new data sets since [62]. However, due

to the slight change in clustering size, the use of local χ2 error inflation and our updated

VP correction routines, there are small changes in the numerics. There is a total of 14

data sets [146, 159–171] and the result of their combination and fitting can be seen in

Fig. 2.15. The presence of the more precise BaBar data [159] has not changed the fit

very much. However, as noted in Table 1 of [62], the total error after integration has

been improved significantly. Their contribution to aµ, up to 2 GeV is,

a2π+2π−
µ (

√
s ≤ 2 GeV) = (14.65± 0.47)× 10−10. (2.49)
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Fig. 2.13: Enlargement of the ω and φ resonance region in the π+π−π0 channel.

Compared to the result from [62], which was integrated up to 1.43 GeV, the error has

marginally increased by 0.02× 10−10 while the mean has stayed the same.

For the π+π−2π0 channel, there are 8 data sets [160,164,168,171–175] covering the

energy region from 0.915 to 2.4 GeV. All of these data are present since [61] but due

to the same type of changes mentioned in the 2π+2π− channel, there are again small

differences in the numerics. The cluster size have been increased from 10 to 16 MeV

and the contribution is

aπ
+π−2π0

µ (
√
s ≤ 2 GeV; This work) = (20.37± 1.26)× 10−10 (2.50)

aπ
+π−2π0

µ (
√
s ≤ 2 GeV; HMNT (03)) = (20.55± 1.22)× 10−10. (2.51)
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Fig. 2.14: The low energy region of the π+π−π0 channel, showing the poor quality of
data below 0.66 GeV.
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Fig. 2.15: Cross section plot of the π+π−π+π− channel.

Fig. 2.16 illustrates the fit and most of the data sets for this channel. It is clear the

data in this channel do not agree very well and preliminary data from BaBar shown

in [78] can improve the fit significantly. However at this time, we do not have access to

this data.
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Fig. 2.16: Cross section plot of the π+π−2π0 channel.

2.3.5 The 5π, 6π channels

The following 5π and 6π final states are directly measured by data: π+π−π+π−π0,

π+π−π0π0π0, π+π−π+π−π+π−, and π+π−π+π−π0π0. The π+π−π0π0π0π0 final state

is derived from isospin relations and the e+e− → 6π0 final state is forbidden due to

charge conjugation symmetry. For all the data based channels, their contributions are

part of the input for the new set of isospin channels and not summed separately.

For the 2π+2π−π0 final state we now use 6 data sets [146, 161, 174–177], including

new data from BaBar [176]. The old M3N data set [160] was removed because it is

incompatible with the new BaBar data and is only available from a thesis. In addition,

the data from DM1 [177] have been revised to include the non-resonant background.

The cluster size have also been decreased from 30 MeV to 24 MeV. Fig. 2.17 shows the

new fit including the BaBar data as well as the fit from HMNT (03) [61]. Here we see

that the new very precise BaBar data completely dominates the fit. The M3N data

that was excluded in the new fit is shown on the graph for reference. Integrating up to

2 GeV, the new fit gives

a2π+2π−π0

µ (This work) = (1.42± 0.09)× 10−10, (2.52)

which is much lower and more precise than the value from [61] due to the new data

from BaBar,

a2π+2π−π0

µ (HMNT (03)) = (2.85± 0.25)× 10−10. (2.53)

Note again that in this work, this channel will not contribute directly, instead the

results will be used as input for the (2π+2π−π0)no η isospin relation. The subscript
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‘no η’ means contributions from η(→ π+π−π0)π+π− is excluded, see Section 2.4 for

details.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1.4  1.5  1.6  1.7  1.8  1.9  2

σ0 (e
+
e-  →

 π
+
π- π+

π- π0 ) 
[n

b]

√s [GeV]

2003 fit
New fit (w BaBar)

BaBar (08)
MEA (81)
M3N (79)
gg2 (81)

DM1 (81)

Fig. 2.17: Cross section plot of the e+e− → 2π+2π−π0 final state. Note that the M3N
data set in the plot is not used in the new fit.

The π+π−3π0 final state will no longer use the single set of data from M3N [160].

Instead, it will be estimated in the form of (π+π−3π0)no η using an isospin relation.

For the 2π+2π−2π0 channel, we use 4 data sets [161,174,175,178] including again,

new data from BaBar [178]. Like before, the data from M3N is no longer used in

the new fit. Furthermore, a set of data from DM2 [179] is now also excluded. It is

incompatible with the new data from BaBar, causing the entire fit to be artificially

shifted too much upwards and completely missing the BaBar data from about 1.6 to 2

GeV as shown in Fig. 2.19. Fig. 2.18 shows the new fit including the BaBar data and

excluding the M3N and DM2 data, which are still plotted for reference. Note also the

cluster size has been increased from 10 to 26 MeV. Now the contribution to aµ up to 2

GeV from this channel is

a2π+2π−2π0

µ (This work) = (1.89± 0.24)× 10−10, (2.54)

a2π+2π−2π0

µ (HMNT (03)) = (3.32± 0.29)× 10−10. (2.55)

Again the results are much lower than before as the fit now prefers to follow the new,

lower BaBar data. The minor reduction in error is a reflection of the inconsistency

between the new and older data sets. Note that contribution from this channel will be

used as input for the (2π+2π−2π0)no η isospin relation and not summed separately.

In the 3π+3π− channel, we use 5 data sets [160,161,178–180], of which BaBar again

has provided a new measurement [178]. Fig. 2.20 shows the fit for this final state. Note
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Fig. 2.18: Plot of the 2π+2π−2π0 channel showing the new fit including BaBar and
the old fit from HMNT (03). The data from M3N [160] and DM2 [179] are excluded in
the new fit but are plotted for reference.
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Fig. 2.19: Plot of the 2π+2π−2π0 channel if the new fit includes the M3N and DM2
data sets. It shows how these data artificially pulls the fit upwards, and no longer
encompasses the more precise data from BaBar.

that the M3N and DM2 data are included in the new fit in this case, however the first

point in the M3N data was not used since it was anomalously large with an equally

large error (1.56 ± 1.11 nb). Once again the cluster size have changed, from 40 MeV

to 18 MeV since the new BaBar data have a much finer binning. Up to 2 GeV, the
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contribution from this channel compared to 2003 give,

a3π+3π−
µ (

√
s ≤ 2 GeV; This work) = (0.28± 0.02)× 10−10 (2.56)

a3π+3π−
µ (

√
s ≤ 2 GeV; HMNT (03)) = (0.22± 0.02)× 10−10. (2.57)

The increase in mean is expected due to the slightly higher BaBar data, which causes

more tension in the fit so the error is only reduced by 0.006× 10−10.
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Fig. 2.20: Plot of the 3π+3π− channel. The new fit is higher than the fit from HMNT
(03) due to the inclusion of the new BaBar data.

2.3.6 The KK channels

The KK channels include the K+K− and K0
SK

0
L final states. The K+K− channel now

uses 13 sets of data [143, 145, 146, 155, 181–187] including two new scans from CMD-

2 [181] and a new measurement from SND [182]. Fig. 2.21 shows the fit including all

the new data sets, the most important data in this channel are also displayed. Fig. 2.22

zooms into the φ resonance region, which gives the greatest contribution in this channel.

Integrating up to 2 GeV,

aK
+K−

µ (
√
s ≤ 2 GeV; This work) = (22.15± 0.46)× 10−10 (2.58)

aK
+K−

µ (
√
s ≤ 2 GeV; HMNT (03)) = (22.35± 0.77)× 10−10. (2.59)

So the mean in this new analysis has remained roughly the same while the uncertainty

has decreased significantly compared to 2003.

For the K0
SK

0
L channel, there is 1 new set of data from SND [188] since HMNT (03)

taking the total up to 11 data sets [173, 187–190]. Fig. 2.23 displays the new fit along
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Fig. 2.21: Plot of the entire energy range for the K+K− channel including the φ
resonance. The most relevant data sets are shown by the points in the graph.
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Fig. 2.22: Enlargement of the φ resonance region in the K+K− channel.

with all the data in this channel, while Fig. 2.24 zooms in on the φ resonance region

with the data sets in that region listed. Comparing with HMNT (03)

a
K0
SK

0
L

µ (
√
s ≤ 2 GeV; This work) = (13.33± 0.16)× 10−10 (2.60)

a
K0
SK

0
L

µ (
√
s ≤ 2 GeV; HMNT (03)) = (13.30± 0.32)× 10−10, (2.61)

the mean value has only changed marginally while the error has decreased by half.
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Fig. 2.23: Plot of the K0
SK

0
L channel up to 2 GeV including the φ resonance region.

All data sets are shown by the points in the graph.
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Fig. 2.24: Enlargement of the φ resonance region in the K0
SK

0
L channel.

2.3.7 KK + nπ channels

The final states here include K0
SK
±π∓, K∗Kπ, K+K−π+π−, K+K−π0π0 and finally

K+K−π+π−π0. Their contributions are all used as input in the new isospin analysis to

compute the KK̄π, KK̄2π and KK̄3π isospin channels. Data for the K0
SK
±π∓ final

state are no longer used since it will be estimated as part of the KK̄π isospin channel.

Similarly, the old and imprecise data for the K0
SX channel (X denotes any hadronic
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state), which were used for the KK̄2π iso-spsin channel, are no longer needed due to a

new isospin relation for KK̄2π.

For the K0
SK
±π∓ channel, we use 4 data sets in total, 1 from DM1 [191], 2 from

DM2 [192, 193] and a new measurement from BaBar [194]. The cluster size in the

continuum have been decreased from 40 to 18 MeV and the new fit can be seen along

with all the data can be seen in Fig. 2.25. Once again, the more precise BaBar data

have the most influence on the fit. Integrating up to 2 GeV we have,

a
K0
SK
±π∓

µ (
√
s ≤ 2 GeV; This work) = (0.91± 0.05)× 10−10 (2.62)

a
K0
SK
±π∓

µ (
√
s ≤ 2 GeV; HMNT (03)) = (1.00± 1.11)× 10−10. (2.63)

The more precise BaBar data have helped to reduce the error in this channel by more

than 50%. This result will be part of the input for the KK̄π isospin relation, so it will

not be summed separately.
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Fig. 2.25: Plot of the K0
SK
±π∓ channel. The darker (green) band shows the new

fit including BaBar and using local χ2. The lighter (yellow) band replicates fit using
HMNT (03) data and settings.

The K∗Kπ and K+K−π0π0 channels have 2 data sets each, and they all come from

the same two new measurements by BaBar [195,196]. Their contributions up to 2 GeV

are

aK
∗Kπ

µ (
√
s ≤ 2 GeV) = (0.78± 0.03)× 10−10 (2.64)

aK
+K−π0π0

µ (
√
s ≤ 2 GeV) = (0.16± 0.01)× 10−10. (2.65)

These results form part of the input for the KK̄2π isospin relation and not summed

separately. So there is no actual double counting between K∗Kπ and K0
SK
±π∓ chan-

nels.
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For the K+K−π+π− final state, we use a total of 5 data sets where one comes from

DM1 [197], another is from DM2 [192] and the last three are from BaBar [159,195,196],

of which [195,196] are new measurements since HMNT (06). Fig. 2.26 shows the result

of the fit and all the data sets. Once again, the new more precise data from BaBar

dictates the shape and normalisation of the fit. The contribution up to 2 GeV is

aK
+K−π+π−

µ (
√
s ≤ 2 GeV) = (0.99± 0.04)× 10−10. (2.66)

In HMNT (03) and (06), contribution from this channel was not used in any way at all

because it was already included in the old KK̄2π isospin relation. However in this work,

the K+K−π+π− contribution is used as one of the inputs for the new KK̄2π isospin

relation. Hence, this channel is used, but its contribution is not summed separately.
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Fig. 2.26: Plot of the K+K−π+π− channel showing the new fit as well as all the data
sets.

Finally, the K+K−π+π−π0 channel is measured recently by BaBar [176], giving a

single data set. It has a small contribution up to 2 GeV

aK
+K−π+π−π0

µ (
√
s ≤ 2 GeV) = (0.09± 0.01)× 10−10, (2.67)

which is used as part of the input for the KK̄3π isospin relation and not added sepa-

rately.

2.3.8 The η, ω, φ channels

The channels represented here are ηγ, ηπ+π−, η2π+2π−, ηω, ω(→ π0γ)π0, ωπ+π−, ηφ,

φπ0, φπ+π−, and φ(→ unaccounted).
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We use 8 data sets [122, 124, 155, 198–201] for the ηγ final state, where the two

scans from SND [198] are re-analyses of [202]. These re-analyses replaces the earlier

SND scans [202] added in HMNT (06). Figs. 2.27 and 2.28 shows the new fit and most

of the data. The cluster size in the continuum is now 2.5 MeV compared to 10 MeV in

2006 and the contribution from this channel is,

aηγµ (0.66 ≤ √s ≤ 1.36 GeV) = (0.69± 0.02)× 10−10. (2.68)

Compared to HMNT (06), the mean value has gone down by 0.02×10−10 and the error

has decreased by 0.01× 10−10.
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Fig. 2.27: Plot of the ηγ channel up to 1.1 GeV including the φ resonance region, the
most relevant data points are displayed.

There are no new data for the ηπ+π− channel since HMNT (03). The two existing

sets of data are from DM2 [203] and CMD-2 [204]. The cluster size have been increased

from 30 MeV to 55 MeV, and integrating up to 2 GeV,

aηπ
+π−

µ (1.29 ≤ √s ≤ 2 GeV) = (0.98± 0.24)× 10−10. (2.69)

Note we no longer multiply this result by a factor of 1−B(η → π+π−π0)−B(η → 3π0)

due to the new isospin analysis, see Section 2.4 for details.

The η2π+2π− final state was only recently measured by BaBar [176]. The total

contribution up to 2 GeV is

aη2π+2π−
µ (1.3375 ≤ √s ≤ 2 GeV) = (0.11± 0.02)× 10−10. (2.70)

The ηω channel comes from the BaBar measurement [178] of the 2π+2π−2π0 final

state. First, the 2π+2π−2π0 events are filtered, so only those that come from ηω decays

55



 0

 10

 20

 30

 40

 50

 60

 1.01  1.015  1.02  1.025  1.03

σ0 (e
+
e-  →

 η
γ)

 [n
b]

√s [GeV]

Fit (local chiSq)
SND (07, 3π±,0)

SND (07, 3π0)
CMD-2 (05)

SND (00)
CMD-2 (95)
CMD-2 (99)
CMD-2 (01)

Fig. 2.28: Enlargement of the φ resonance region in the ηγ channel.

are kept. Then the background is subtracted and corrections to the cross section from

the relevant η, ω decays are applied. Finally the resulting data, which are shown in

Fig. 19 of [178], are fitted with a resonance type parametrisation using equations (6)

and (7) of [178],

σe+e−→ηω(s) =
F (s)
s3/2

m5Γ2
0σ0

F (m2)((s−m2)2 + sΓ2
0)
. (2.71)

where the fitted parameters are mass m, width Γ0 and resonance peak σ0. Now

F (s) =

√(s+m2
η −m2

ω)2

4s
−m2

η

3

, (2.72)

is a phase space function of the η (or ω) momentum in the rest frame of the ηω system.

Since the data from Fig. 19 of the BaBar paper is not available to us, we have decided

to use the result of their parametrisation for this channel i.e. equation (2.71) with

m = 1.645± 0.008 GeV, Γ0 = 0.114± 0.014 GeV and σ0 = 3.08± 0.33 nb. Specifically,

we have created a pseudo data set using equation (2.71) based on the energy binning

of the 2π+2π−2π0 data. The first pseudo-data point is 1.3325 GeV, since there is no

phase space for the energy bin below. The absolute errors for the fit parameters as well

as the masses of η and ω were converted to percentage errors and added in quadrature

for use as the common systematic error fk. The resulting contribution up to 2 GeV is,

aηωµ (1.3325 ≤ √s ≤ 2 GeV) = (0.43± 0.07)× 10−10. (2.73)

For the ω(→ π0γ)π0 final state, we use 9 data sets [146,164,173,205–209] with a new

measurement from KLOE [205]. The ω(→ π+π−)π0 and ω(→ π+π−π0)π0 final states
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are not considered because they are already accounted for in the corresponding 3π and

4π channels. Therefore after applying the branching ratio B(ω → π0γ) = 0.0828 [23],

the contribution from this channel and those from HMNT (03) are

aω(→π0γ)π0

µ (
√
s ≤ 2 GeV; This work) = (0.77± 0.03)× 10−10 (2.74)

aω(→π0γ)π0

µ (
√
s ≤ 2 GeV; HMNT (03)) = (0.83± 0.03)× 10−10. (2.75)

Note that the lower mean in this work is due to a combination of the change in cluster

size from 20 to 11 MeV and update in branching ratio from 0.087 to 0.0828. The new

KLOE data had a minimal effect.
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Fig. 2.29: Plot of the ωπ0 channel up to 2 GeV. The most relevant data are displayed.

We use 3 data sets [154,177,204] for the ωπ+π− channel giving

aωπ
+π−

µ (1.29 ≤ √s ≤ 2 GeV) = (0.79± 0.10)× 10−10. (2.76)

We do not multiply this result by any branching ratio since it will used as input in the

new ωππ isospin relation and not summed directly. See Fig. 2.30

Data for the ηφ [176,194], φπ0 [194] and φπ+π− [195,196] final states all come from

new or recent measurements by BaBar. Their contributions up to 2 GeV are,

aηφµ (1.57 ≤ √s ≤ 2 GeV) = (0.46± 0.03)× 10−10 (2.77)

aφπ
0

µ (1.25 ≤ √s ≤ 2 GeV) = (0.04± 0.01)× 10−10 (2.78)

aφπ
+π−

µ (1.4875 ≤ √s ≤ 2 GeV) = (0.14± 0.01)× 10−10. (2.79)

These contributions above are used as input in the KK̄3π, KK̄π and KK̄2π isospin

relations respectively. However, the contributions for the φπ0 and φπ+π− final states

are not added separately in the sum due to the way they are used in the isospin relation.
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Fig. 2.30: Plot of the ωπ+π− channel up to 2 GeV. All data are displayed.

Finally, the φ(→ unaccounted) channel represents the final states not included

in the φ → K+K−, K0
SK

0
L, 3π, ηγ, π0γ, π+π−, ωπ0, π+π−γ and 2π+2π− decay

processes, which make up (100− 99.873)% [23] of the φ decay branching ratio. Hence

the unaccounted modes can be calculated by first computing aφµ and then multiply the

result by 1.27 × 10−3. In the φ region defined by 2mK± ≤
√
s ≤ 1.03 GeV,4 where

mK± = 493.677 MeV [23],

aφ→K
+K−

µ = 15.96× 10−10. (2.80)

Since B(φ→ K+K−) = 0.489,

aφµ =
aφ→K

+K−
µ

B(φ→ K+K−)
= 32.64× 10−10 (2.81)

therefore

aφ(→unaccounted)
µ = aφµ · 1.27× 10−3 = (0.04± 0.04)× 10−10, (2.82)

where the error is assigned to be 100% of the result.

2.3.9 The pp̄, nn̄ channels

The proton and neutron have just low enough mass so their baryon pair final states can

contribute below 2 GeV. For the pp̄ channel, we use 6 data sets, from FENICE [210,211],

DM1 [212], DM2 [213, 214] and BaBar [215]. In the nn̄ channel, we use 2 data sets
4The actual lower limit is 1.008624 GeV because there is no data below this energy where any

contribution would be negligible anyway due to the smallness of the cross section.
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from FENICE [210,216]. The contributions from these channels are,

app̄µ (
√
s ≤ 2 GeV) = (0.06± 0.00)× 10−10 (2.83)

ann̄µ (
√
s ≤ 2 GeV) = (0.07± 0.02)× 10−10. (2.84)

2.3.10 The e+e− → all hadrons channel

In the region 1.43 .
√
s < 2 GeV, we use 4 sets of data [217–220], all of which were used

in HMNT (03) [61]. Fig. 2.31 shows the fit of these sets along with all but the M3N

data [219], which consists of a single point. Note that the γγ2 [217], MEA [218] and

ADONE [220] data have been corrected for missing two-body final states, specifically,

π+π−, K+K− and K0
SK

0
L. The data from M3N [219] has already taken these missing

contributions as part of the error. In addition, we must add contributions from purely

neutral final states that are unaccounted, namely ω(→ π0γ)π0 and K0
S(→ 2π0)K0

Lπ
0.

Therefore, the contribution to ahad, LOVP
µ in this region from this work and [61] are

aincl
µ (1.43 .

√
s ≤ 2 GeV; This work) = (31.99± 2.43)× 10−10 (2.85)

aincl
µ (1.43 .

√
s ≤ 2 GeV; HMNT (03)) = (31.91± 2.42)× 10−10. (2.86)

The slight change in the mean is due to adding the missing contributions since they

are estimated from data in the exclusive channels.
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Fig. 2.31: R value plot of the e+e− → all hadrons channel between 1.43 and 2 GeV
showing the fit along with the most relevant sets of data.

Between 2 and 11.09 GeV, we use 16 data sets [221–235], of which 2 sets from

BES [221, 222] and 1 set from CLEO [223] are new compared to [62]. There is an

additional data set, a Rb (i.e. normalised e+e− → bb̄) measurement from BaBar [236]
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in the energy region 10.54−11.20 GeV that has not been included yet. This data needs

to be stripped of initial state radiation (ISR) and have Rudsc added before it can be

used. This process and the results are described in Section 3.4 later on. Note that this

data will have minimal impact on aµ due to the weighting of the kernel function, thus

not including it in the main g−2 analysis is not a major issue. Fig. 2.32 shows the new

fit in the whole region along with the most important data sets. Although the data

in this region is suppressed by the kernel (1.50), their contribution to aµ is the third

largest, after the π+π−π0 and π+π− channels. Comparing the direct integration of the

new fit in this region to that of [62], we have

aincl
µ (2 ≤ √s ≤ 11.09 GeV; This work) = (41.40± 0.87)× 10−10 (2.87)

aincl
µ (2 ≤ √s ≤ 11.09 GeV; HMNT (06)) = (42.75± 1.08)× 10−10. (2.88)

This difference is partly due to the new data sets and partly due to the finer cluster

size implemented for the peak structures from 3.73 to 4.6 GeV in the new fit. This can

be seen from Fig. 2.33, where the new fit, shown by the light (yellow) band, is clearly

a better fit than the dark (green) band representing the fit used in [62]. The bottom

graph is quite reflective of the smaller aµ value in this work, since the fit from [62] is

consistently higher in this whole region. Fig. 2.34 magnifies the energy region close to

2 GeV, where the new fit, shown again as the light (yellow) band and some of the data

are compared to pQCD, represented by the thin dark (red) band. Of particular interest

is how the three points from the new BES II [221] data closely match the prediction

from pQCD. Thus between 2.6 and 3.73 GeV, we have decided to use pQCD with an

inflated error band based on the percentage uncertainties from the three BES II data

points. With this setup, the contribution to aµ is then

aincl+pQCD
µ (2 ≤ √s ≤ 11.09 GeV) = (41.19± 0.82)× 10−10. (2.89)

If we trust pQCD rather than data down to 2 GeV then aµ in the region 2 ≤ √s ≤ 2.6

GeV would give (14.49 ± 0.13) × 10−10 rather than (15.69 ± 0.63) × 10−10. However,

since this work is data-driven, we have decided not to use pQCD in this region.

2.4 The isospin channels

2.4.1 Introduction

Some subleading final states such as KK̄ + nπ, still lack experimental measurement

but in principle can contribute to aµ. Thus, we are led to use approximate relations to

known cross sections based on isospin symmetries to estimate their contribution. These

relations are based on Pais isospin classes, which was first introduced in [237]. In this

work, we no longer use the 4 isospin relations from [61]. Instead, we follow new isospin

relations derived in [78]. There are now 11 separate isospin channels (see Sections 2.4.2
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Fig. 2.32: R value plot of the e+e− → all hadrons channel between 2 and 11.09 GeV
illustrating the new fit shown in the light (yellow) band along with the most relevant
data sets.

to 2.4.7 for a detailed breakdown), we sometimes use our internal numbering schemes

to label them as shortcuts in the following sections. Table 2.3 summarises their con-

tributions up to 2 GeV along with a comparison with the old results from [61]. As

noted in earlier sections, the 5π and 6π channels estimated in this work do not contain

contributions from η decays. They are added in separately from the ηπ+π− final state

and new channels ηω, ηφ, η2π+2π− and ηπ+π−2π0. The resulting downward shift of

the total contribution in Table 2.3 is due to the new BaBar data in the 2π+2π−π0 and

2π+2π−2π0 channels as shown in Figs. 2.17 and 2.18. The use of new isospin rela-

tions had a minimal impact there. Furthermore, the error of the new KK̄2π isospin

relation is significantly lower compared to that of the old relation, which was by far

the most dominant source of error in the region just below 2 GeV. In the future, data

from VEPP-2000 in will provide further information in this energy region, including

the KK̄π and KK̄3π channels.

2.4.2 The 5π related channels

The (2π+2π−π0)no η final state (iso11)

This final state is given by,

aµ((2π+2π−π0)no η) = aµ(2π+2π−π0)− aµ(ηπ+π−)B(η → π+π−π0) (2.90)
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Fig. 2.33: The top graph shows the enlargement of the ψ(3770) peak while the bottom
graph shows the other peak structures between 3.8 and 4.6 GeV. The new fit is now
shown by the dark (green) band while the fit used in [62] is the light (yellow) band.
The most important data sets in those regions are displayed. Note the suppressed zero
and the slight difference in the y-scales of both graphs.

where data for the 2π+2π−π0 (ch14) and ηπ+π− (ch1) states need to be used. The ‘no

η’ means the contribution from ηπ+π− with η → π+π−π0 is excluded. The error for

this contribution involves a linear correlation with the ηπ+π− state (ch1) only since

ch14, as stated in Section 2.3.5, is not added in the sum separately. Therefore the total

error for these two final states is given by

δaµ(ch1 + iso11) =
{

[δaµ(ch14)]2 + [(1−B11)δaµ(ch1)]2 + aµ(ch1)δB11]2
} 1

2 , (2.91)
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Fig. 2.34: R value plot of the e+e− → all hadrons channel between 2 and 4 GeV
displaying the fit in the light (yellow) band compared to prediction of pQCD in the
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Z)
and variation of the renormalisation scale µ between s/2 ≤ µ2 ≤ 2s. The peak in the
graph is the ψ(3770), but J/ψ and ψ′ are not resolved by data so they are added in as
narrow resonances separately.

where B11 = B(η → π+π−π0) = 0.2274 and δB11 = 0.0028 [23]. Hence the contribution

to ahad, LOVP
µ from this channel up to 2 GeV is

a
(2π+2π−π0)no η
µ (

√
s ≤ 2 GeV) = (1.20± 0.20)× 10−10, (2.92)

where the error includes linear correlation with the ηπ+π− state, but is not added

separately in the sum due to further correlation with next final state.

The (π+π−3π0)no η final state (iso12)

This is the π+π−3π0 state where the contribution from η(→ π+π−π0)2π0 is excluded.

Since the η2π0 state is forbidden by charge conjugation symmetry, the following relation

is used to determine this (π+π−3π0)no η channel,

aµ((π+π−3π0)no η) =
1
2
aµ((2π+2π−π0)no η). (2.93)

Therefore iso12 is linearly correlated with iso11 and ch1, and the total error for all

three channels is given by,

δaµ(ch1 + iso11 + iso12) =
{

[1.5δaµ(ch14)]2 + [(1− 1.5B11)δaµ(ch1)]2+

[1.5aµ(ch1)δB11]2
} 1

2 . (2.94)
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Channel This work HMNT (03) [61] approach used in [61]

KK̄π 2.77± 0.15 2.58± 0.26 sum of K+K−π0, K0
S,LKπ,

K0
SK

0
Lπ

0

KK̄2π 3.31± 0.58 3.63± 1.34 different relation based on
K0
SX final state

KK̄3π 0.08± 0.02∗ - not accounted for
ω(→ npp)KK̄ 0.01± 0.04† - not accounted for

(2π+2π−π0)no η 1.20± 0.10∗ 2.85± 0.25 purely data-based, incl. η
(π+π−3π0)no η 0.60± 0.05† 1.19± 0.33 based only on M3N data, incl.

η
ω(→ npp)2π 0.11± 0.02 0.07± 0.01 only ω(→ π0γ)π+π− based on

data
3π+3π− (data) 0.28± 0.02 0.22± 0.02 same as this work

(2π+2π−2π0)no η 1.80± 0.24∗ 3.32± 0.29 purely data based, incl. η
(π+π−4π0)no η 0.28± 0.28 0.12± 0.12 different relation, incl. η
ω(→ npp)3π 0.22± 0.04† - not estimated

ηπ+π− (data) 0.98± 0.24∗ 0.49± 0.07 η → 3π excluded
ηω (data) 0.42± 0.07∗ n/a no data, not estimated sepa-

rately
ηφ (data) 0.46± 0.03∗ n/a no data, not estimated sepa-

rately
η2π+2π− (data) 0.11± 0.02 n/a no data, not estimated sepa-

rately
ηπ+π−2π0 0.11± 0.06 n/a not estimated separately

Total 12.73± 0.75 14.47± 1.54

Table 2.3: Contributions to aµ from exclusive channels for energies up 2 GeV, es-
timated using isospin relations following [78] and as discussed in the text. For com-
parison, the results of the original analysis are also given. Note: ∗ indicates the error
is not summed separately due to linear correlation with another channel; † means the
error includes contributions from other linearly correlated channels, see the individual
channel breakdown for details.

Therefore, the contribution from this channel is

a
(π+π−3π0)no η
µ (

√
s ≤ 2 GeV) = (0.60± 0.21)× 10−10, (2.95)

where the error includes correlations with ηπ+π− and (2π+2π−π0)no η states, and con-

tributes to the sum.

The ω(→ non-pure pionic states)2π final state (iso13)

This is the contribution from the ωππ final state (where ππ can be π+π− and π0π0),

followed by ω decaying into non-purely pionic (npp) states. This means the decay

products are not π+π−π0 or π+π−, and thus are dominated by π0γ. The following

64



relation is used to compute this final state,

aµ(ω(→ npp)2π) =
3
2
aµ(ωπ+π−)B(ω → npp) (2.96)

where [23]

B(ω → npp) = (1− B(ω → π+π−π0)− B(ω → π+π−)) (2.97)

= (1− 0.892− 0.0153)

= 0.0927 (2.98)

and we use data to determine the ωπ+π− final state (ch7) as discussed in Section 2.3.8.

The error for this channel is then

δaµ(iso13) =
{

[1.5δaµ(ch7)]2 + [1.5aµ(ch7)δB13]2
} 1

2 , (2.99)

with B13 = B(ω → npp) and

δB13 =
{

[δB(ω → π+π−π0)]2 + [δB(ω → π+π−)]2
} 1

2 , (2.100)

where δB(ω → π+π−π0) = 0.007 and5 δB(ω → π+π−) = 0.0012 [23]. There is no

linear correlation with ch7 since it is not added separately in the sum. Therefore the

contribution from this channel is

aω(→npp)2π
µ (

√
s ≤ 2 GeV) = (0.11± 0.02)× 10−10. (2.101)

The ηπ+π− final state (iso14)

This is simply the ηπ+π− (ch1) channel discussed in Section 2.3.8.

2.4.3 The 6π related channels

The (2π+2π−2π0)no η final state (iso21)

For this final state the contribution from η(→ π+π−π0)ω(→ π+π−π0) is excluded,

aµ((2π+2π−2π0)no η) = aµ(2π+2π−2π0)− aµ(ηω)B(η → π+π−π0)B(ω → π+π−π0)

(2.102)

where data for the 2π+2π−2π0 (ch15) and ηω (ch26) are used. There is linear correlation

with ch26 (but not ch15) thus the error for these two channels is given by

δaµ(ch26+iso21) =
{

[δaµ(ch15)]2+[(1−B21)δaµ(ch26)]2+[aµ(ch26)δB21]2
} 1

2 , (2.103)

where B21 = B(η → π+π−π0)B(ω → π+π−π0) and

δB21 =
{

[B(η → π+π−π0)δB(ω → π+π−π0)]2+

[B(ω → π+π−π0)δB(η → π+π−π0)]2
} 1

2 . (2.104)

5The δB(ω → π+π−) value used here is symmetrised from the original asymmetrical errors in
PDG2010 [23].
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Up to 2 GeV, this channel gives

a
(2π+2π−2π0)no η
µ (

√
s ≤ 2 GeV) = (1.80± 0.24)× 10−10, (2.105)

where the error includes linear correlation with the ηω state, but is not added separately

due to further correlation with the ω(→ npp)3π final state.

The (π+π−4π0)no η final state (iso22)

This final state is given by,

aµ((π+π−4π0)no η) = 0.0625aµ(3π+3π−) + 0.145aµ((2π+2π−2π0)no η), (2.106)

where we use data for the 3π+3π− final state as stated in Section 2.3.5. Due to the

uncertainty of this relation, the error is taken as 100% of the contribution itself. Thus

we have,

a
(π+π−4π0)no η
µ (

√
s ≤ 2 GeV) = (0.28± 0.28)× 10−10. (2.107)

The old isospin relation in [61] was given by

aµ(π+π−4π0) = 0.031aµ(2π+2π−2π0) + 0.0931aµ(3π+3π−), (2.108)

where the contribution from η decays are included. However, the old relation actually

gave a smaller contribution to ahad, LOVP
µ ,

aπ
+π−4π0

µ (
√
s ≤ 2 GeV) = (0.12± 0.12)× 10−10. (2.109)

The 3π+3π− final state (iso23)

This is simply the 3π+3π− channel as discussed in Section 2.3.5.

The ω(→ non-pure pionic state)3π final state (iso24)

This is the contribution from the ω3π final state where the ω decays to non-purely

pionic (npp) states. It can be calculated using following relation,

aµ(ω(→ npp)3π) = 1.145aµ(2π+2π−2π0)
B(ω → npp)
B(ω → π+π−π0)

, (2.110)

where there is an error of ±0.145 on the factor of 1.145. Since this uses data from the

2π+2π−2π0 (ch15) final state (see Section 2.3.5 for details), there is linear correlation

with iso21. Hence the total error of ch26, iso21, iso22 is given by,

δaµ(ch26 + iso21 + iso24) =
{

[(1 +B24)δaµ(ch15)]2 + [(1−B21)δaµ(ch26)]2+

[aµ(ch15)δB24]2 + [aµ(ch26)δB21]2
} 1

2 . (2.111)
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Now

B24 = 1.145
B(ω → npp)
B(ω → π+π−π0)

= 1.145B′24 (2.112)

with

δB24 =
{

(1.145B′24)2 + (0.145δB′24)2
} 1

2 , (2.113)

and

δB′24 =

{[ B(ω → π+π−)− 1
(B(ω → π+π−π0))2

· δB(ω → π+π−π0)
]2

+
[
− δB(ω → π+π−)
B(ω → π+π−π0)

]} 1
2

.

(2.114)

Therefore we have the following contribution for this channel,

aω(→npp)3π
µ (

√
s ≤ 2 GeV) = (0.23± 0.04)× 10−10, (2.115)

where the uncertainty consists the combined errors from ηω and (2π+2π−2π0)no η final

states with linear correlation.

The ηω final state (iso25)

This is simply the ηω (ch26) channel detailed in Section 2.3.8, which was found using

a Breit-Wigner type parametrisation from [178].

2.4.4 The KK̄π channel

This channel (iso31) includes all possible combinations of the following final states:

K+K−π0, K0
SK

0
Lπ

0, K0
SK
±π∓, K0

LK
±π∓ along with a small contribution from φπ0.

This is given by the following relation,

aµ(KK̄π) = 3aµ(K0
SK
±π∓) + aµ(φπ0)B(φ→ KK̄). (2.116)

with B(φ → KK̄) = B(φ → K+K−) + B(φ → K0K0). We use data for the K0
SK
±π∓

(ch5) and φπ0 (ch28) final states as discussed in Sections 2.3.7 and 2.3.8 respectively.

Therefore the error for this channel is given by

δaµ(KK̄π) =
{

[3aµ(ch5)]2 + [B31δaµ(ch28)]2 + [aµ(ch28)δB31]2
} 1

2 , (2.117)

where

B31 = B(φ→ K+K−) + B(φ→ K0K0) (2.118)

= 0.489 + 0.342 (2.119)

and

δB31 =
{

[δB(φ→ K+K−)]2 + [δB(φ→ K0K0)]2
} 1

2 (2.120)

=
√

0.0052 + 0.0042. (2.121)
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Thus contribution is then

aKK̄πµ (
√
s ≤ 2 GeV) = (2.77± 0.15)× 10−10. (2.122)

In [61], the closest analogue to this isospin channel was the sum of the four final

states mentioned at the beginning of the previous paragraph. Two of these are isospin

relations based on the other two measured final states,

aK
+K−π0

µ (
√
s ≤ 2 GeV) = (0.29± 0.07)× 10−10, (2.123)

a
K0
SK
±π∓

µ (
√
s ≤ 2 GeV) = (1.00± 0.11)× 10−10, (2.124)

a
K0
SK

0
Lπ

0

µ (
√
s ≤ 2 GeV) = aK

+K−π0

µ (
√
s ≤ 2 GeV), (2.125)

a
K0
LK
±π∓

µ (
√
s ≤ 2 GeV) = a

K0
SK
±π∓

µ (
√
s ≤ 2 GeV). (2.126)

The sum of these gives (2.58± 0.26)× 10−10, and simply adding the φπ0 contribution

to this will not make up the difference with the new isospin relation. This is probably

due to the fact that K0
SK

0
Lπ

0 in general does not equal to K+K−π0 stated in [78].

2.4.5 The KK̄2π channel

This channel (iso41) includes all possible combinations of the following final states:

K+K−π0π0, K+K−π+π−, K0K0π+π−, K+π−K0π0 etc. and their charge conjugates.

This is given by the following relation,

aµ(KK̄2π) = 9[aµ(K+K−π0π0)− aµ(φπ0π0)] +
9
4
aµ(K∗K±π∓) +

3
2
aµ(φπ+π−)+

aµ(KK̄ρ), (2.127)

where

aµ(φπ0π0) =
1
2
aµ(φπ+π−). (2.128)

In addition, it is also assumed that

aµ(KK̄ρ) = 4aµ(K+K−ρ), (2.129)

with 100% error. Furthermore, K+K−ρ is calculated from

aµ(K+K−ρ) = aµ(K+K−π+π−)− aµ(K∗K±π∓)− aµ(φπ+π−)B(φ→ K+K−).

(2.130)

Therefore (2.127) can be re-written as,

aµ(KK̄2π) = 9aµ(K+K−π0π0) +
9
4
aµ(K∗K±π∓)− 3aµ(φπ+π−) +

4[aµ(K+K−π+π−)− aµ(K∗K±π∓)− aµ(φπ+π−)B(φ→ K+K−)].
(2.131)
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We use data for the following final states: K+K−π0π0 (ch23), K∗K±π∓ (ch30),

K+K−π+π− (ch11) and φπ+π− (ch29), which were detailed in Sections 2.3.7 and 2.3.8.

Therefore the error for this channel is given by

δaµ(KK̄2π) =

{
[3δaµ(ch23)]2 + [3δaµ(ch29)]2 +

[
9
4
δaµ(ch30)

]2

+ [δaµ(KK̄ρ)]2
} 1

2

,

(2.132)

with δaµ(KK̄ρ) = 4aµ(K+K−ρ). Now the total contribution to this final state is

aKK̄2π
µ (

√
s ≤ 2 GeV) = (3.31± 0.58)× 10−10. (2.133)

In [61] the KK̄2π isospin channel was based on a different relation to different

known measured final states. By definition

KK̄2π = (K0
SK

0
L+K0

SK
0
S +K0

LK
0
L)(ππ) + (K0

S +K0
L)(Kππ) + (K+K−)(ππ), (2.134)

where ππ stands for π+π− or π0π0 and Kππ is K+π−π0 or K−π+π0. Noting that

2K0
SX = K0

SX +K0
LX

= 2K0
SK

0
L + 2(K0

SK
0
L +K0

SK
0
S +K0

LK
0
L)(π + ππ) + (K0

S +K0
L)(Kπ +Kππ),

(2.135)

where Kπ is K+π− or K−π+ and X denotes any hadronic state. The KK̄2π isospin

relation can then be expressed as,

KK̄2π = 2K0
SX − 2K0

SK
0
L − (K0

SK
0
L +K0

SK
0
S +K0

LK
0
L)(2π + ππ)−

2KS(Kπ) + (K+K−)(ππ)

= 2[K0
SX −K0

SK
0
L −K+K−π −K0

S(Kπ)]. (2.136)

However for the K0
SX final state, there is only one set of data from an old DM1

measurement that appeared in a thesis [238], which gives a contribution of

a
K0
SX

µ (
√
s ≤ 2 GeV) = (3.20± 0.66)× 10−10. (2.137)

This error is around an order of magnitude larger compared those from the other final

states used in the relation. Hence, the contribution to ahad, LOVP
µ using this relation is

aKK̄2π(old)
µ (

√
s ≤ 2 GeV) = (3.63± 1.34)× 10−10. (2.138)

The error, which includes linear correlation between the channels used in the isospin

relation, is huge. It was in fact, the second largest error from a single channel and is

bigger than the error of the new isospin relation by more than a factor of two. Therefore,

it was an easy decision to discard the old relation.
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2.4.6 The KK̄3π related channels

The KK̄3π final state (iso51)

This includes the (K+K−π+π−π0)no η and (K0K̄0π+π−π0)no η states resulting from

K+K−ω dominance and excluding the ηφ contribution. The missing modes not covered

by the K+K−ω dominance should be small below 2 GeV and are ignored. First,

aµ((K+K−π+π−π0)no η) = aµ(K+K−π+π−π0)−
aµ(ηφ)B(φ→ K+K−)B(η → π+π−π0) (2.139)

and then we assume

aµ((K0K̄0π+π−π0)no η) = aµ((K+K−π+π−π0)no η), (2.140)

with a systematic error that is 50% of the mean of aµ((K+K−π+π−π0)no η). Hence in

total, this channel can be expressed as

aµ(KK̄3π) = 2[aµ(K+K−π+π−π0)−
aµ(ηφ)B(φ→ K+K−)B(η → π+π−π0)], (2.141)

where we use data for the K+K−π+π−π0 (ch24) and ηφ (ch27) final states as de-

scribed in Sections 2.3.7 and 2.3.8. Since ch24 is not summed separately, there is only

linear correlation with ch27. Thus the total error (assuming δaµ((K0K̄0π+π−π0)no η) =

0.5aµ((K+K−π+π−π0)no η)), is given by

δaµ(ch27 + iso51) =
{

[δaµ(ch24)]2 + [(1−B51)δaµ(ch27)]2+

[aµ(ch27)δB51]2 + [δaµ((K0K̄0π+π−π0)no η)]2
} 1

2 , (2.142)

where

B51 = B(φ→ K+K−)B(η → π+π−π0) (2.143)

and

δB51 =
{

[B(η → π+π−π0)δB(φ→ K+K−)]2+

[B(φ→ K+K−)δB(φ→ π+π−π0)]2
} 1

2 . (2.144)

Alternatively, the error can be calculated by assuming 100% linear correlation between

the data based channels in aµ((K+K−π+π−π0)no η) and aµ((K0K̄0π+π−π0)no η)

δaµ(ch27 + iso51(alt)) =
{

[2δaµ(ch24)]2 + [(1− 2B51)δaµ(ch27)]2+

[2aµ(ch27)δB51]2
} 1

2 , (2.145)

which gives something that is slightly smaller than Eq. (2.142) when the terms are

substituted with actual numbers. Thus we take the more conservative error estimate

and the contribution is,

aKK̄3π
µ (

√
s ≤ 2 GeV) = (0.08± 0.04)× 10−10. (2.146)
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However, the error is not added separately due to another correlation with the following

channel.

The ω(→ npp)KK̄ final state (iso52)

The following relation is used to compute this contribution

aµ(ω(→ npp)KK̄) = aµ(KK̄3π) · B(ω → npp)
B(ω → π+π−π0)

. (2.147)

Hence, there is linear correlation with ch27 and iso51 and the total error can be ex-

pressed as

δaµ(ch27 + iso51 + iso52) =
{

[(1 +B52)δaµ(ch24)]2+

[(1−B51 −B51B52)δaµ(ch27)]2+

[(1 +B52)aµ(ch27)δB51]2+

[aµ(ch24)δB52]2 + [aµ(ch27)δB52]2+

[(1 +B52)δaµ((K0K̄0π+π−π0)no η)]2
} 1

2 , (2.148)

where B52 = B′24 and δB52 = δB′24. The contribution from this channel is

aω(→npp)KK̄
µ (

√
s ≤ 2 GeV) = (0.01± 0.04)× 10−10, (2.149)

where the error contains the combined uncertainties of the ηφ, KK̄3π and ω(→ npp)KK̄

final states with linear correlation.

The ηφ final state (iso53)

This is simply the ηφ (ch27) final state as discussed in Section 2.3.8.

2.4.7 The η4π channels

The η2π+2π− final state (iso61)

This is simply the η2π+2π− (ch25) channel as described in Section 2.3.8.

The ηπ+π−2π0 final state (iso62)

The following relation is assumed,

aµ(ηπ+π−2π0) = aµ(η2π+2π−) (2.150)

with the error taken as 50% of aµ(η2π+2π−). Therefore the contribution from this

channel is

aηπ
+π−2π0

µ (
√
s ≤ 2 GeV) = (0.11± 0.06)× 10−10. (2.151)
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2.5 Other contributions

Other contributions include predictions ChPT, pQCD and narrow resonances. The

method used to calculate them remain unchanged from the previous analysis [61].

2.5.1 Chiral perturbation theory predictions

As mentioned earlier, certain exclusive channels have additional contributions from

ChPT in the energy region below the experimental measurements. The first is the

π0γ channel in the region mπ ≤
√
s < 0.6 GeV. We describe the π0γγ vertex by a

Weiss-Zumino-Witten (WZW) local interaction term

LWZW = − α

8πfπ
π0eµνρσFµνFρσ, (2.152)

where fπ ' 92.4 MeV is the pion decay constant. We also assume ω meson dominance

because ω meson exchange is what couples π0γ to the electromagnetic current. Thus

as used in [239]

σVMD(e+e− → π0γ) =
8παΓ(π0 → 2γ)

3m3
π

(
1− m2

π

s

)3(
m2
ω

m2
ω − s

)2

, (2.153)

and the contribution to ahad, LOVP
µ is

aπ
0γ
µ (mπ ≤

√
s < 0.6 GeV; ChPT) = (0.13± 0.01)× 10−10. (2.154)

Second we have the π+π− channel where contribution from ChPT is calculated in

the energy range 2mπ ≤
√
s < 0.305 GeV. We write the pion form factor Fπ(s) as

Fπ(s) = 1 +
1
6
〈r2〉πs+ cπs

2 +O(s3), (2.155)

where the coefficients are fitted [240] from space-like pion scattering data [241]

〈r2〉π = 0.431± 0.026 fm2, and cπ = 3.2± 1.0 GeV−4. (2.156)

Therefore the contribution from ChPT is,

aπ
+π−
µ (2mπ ≤

√
s < 0.305 GeV; ChPT) = (0.87± 0.02)× 10−10. (2.157)

Note that Fig. 2.8 shows how the prediction from ChPT matches with the π+π− data.

The third is the π+π−π0 final state. Due to the lack of good quality data below√
s < 0.66 GeV as mentioned before, we use results from [242,243] giving

aπ
+π−π0

µ (3mπ ≤
√
s < 0.66 GeV; ChPT) = (0.01± 0.00)× 10−10. (2.158)

Finally we have the ηγ channel where ChPT is used in the region mη ≤
√
s < 0.66

GeV. The method is summarised in Appendix A of [61], which resulted in a contribution

to ahad, LOVP
µ that is less than 10−12. Therefore it is completely insignificant.
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2.5.2 J/ψ, ψ′ and Υ resonance contributions

The contributions of narrow resonances from J/ψ, ψ′ and Υ(1S− 6S) states are added

in manually using the zero-width approximation since they are not resolved by data,

σ(e+e− → V ) = 12π2 Γ0
ee

MV
δ(s−M2

V ). (2.159)

Here V represents the various resonances, and Γ0
ee = CresΓ(V → e+e−) is the bare

electronic width of V , stripped of photon VP effects and FSR corrections with the

correction factor Cres as mentioned in earlier in Section 2.1.1,

Cres =
(

α

αnoV (M2
V )

)2(
1 +

3
4
α

π

)−1

. (2.160)

The contributions from these resonances are,

aµ(J/ψ) = (6.24± 0.16)× 10−10, (2.161)

aµ(ψ′) = (1.56± 0.05)× 10−10, (2.162)

aµ(Υ(1S − 6S)) = (0.10± 0.00)× 10−10. (2.163)

2.5.3 Perturbative QCD contributions

As mentioned before, we use pQCD in the energy domains 2.6 ≤ √s ≤ 3.73 GeV and√
s > 11.09 GeV, where the former has already been accounted for in Eq. (2.89). The

contribution to ahad, LOVP
µ from the latter is

apQCD
µ (

√
s > 11.09 GeV) = (2.11± 0.00)× 10−10, (2.164)

where the error includes uncertainties of αs(M2
Z) (dominant), pole masses of the top

and bottom quarks, and varying the renormalisation scale between
√
s/2 ≤ µ ≤ 2

√
s.

2.6 Inclusive vs Exclusive

As stated earlier, in the energy region 1.43 .
√
s ≤ 2 GeV we can either use the sum

of all exclusive channels or data for the inclusive channel, which allows a comparison

between the two approaches. When this was done in [61], a discrepancy was found

where the contribution to aµ from the sum of exclusive channels was larger than that

of the inclusive,

aexcl
µ (1.43 .

√
s ≤ 2 GeV; HMNT (03)) = 35.68± 1.71 (2.165)

aincl
µ (1.43 .

√
s ≤ 2 GeV; HMNT (03)) = 31.91± 2.42. (2.166)

Fig. 2.35, which is reproduced from Figure 4 of [61], compares the Rhad values of the

inclusive channel with the sum of exclusive channels in 2003. We see that the sum of
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Fig. 2.35: Rhad(s) behaviour of inclusive data versus the sum of exclusive final states
from HMNT (03).

exclusive is consistently higher than inclusive from about 1.6 GeV, but they share a

similar shape.

From our partial update of [61, 62] reported at the PhiPsi09 conference in Beijing

[244], the sum of exclusive was reduced to

aexcl
µ (1.43 .

√
s ≤ 2 GeV; PhiPsi09) = 35.04± 1.62. (2.167)

There was no change in the contribution from inclusive, so the discrepancy remains.

Now in this work, the sum of exclusive have been reduced further along with a significant

improvement in the error,

aexcl
µ (1.43 .

√
s ≤ 2 GeV; This work) = 34.61± 1.11 (2.168)

aincl
µ (1.43 .

√
s ≤ 2 GeV; This work) = 31.99± 2.43. (2.169)

However, the discrepancy still has not disappeared, which can also be seen in the

updated Rhad plot of inclusive versus sum of exclusive in Fig. 2.36. There, the sum

of exclusive from [61] is now represented by the (blue) dashed lines while the sum of

exclusive from this work is the (yellow) band, with a solid (red) line representing the

mean. In this analysis, the exclusive sum as compared to [61], is unsurprisingly lower in

most regions. However, it now has a different shape, with a much flatter tail that better

matches the data from inclusive above 2 GeV. A detailed breakdown of the changes can

be seen in Table 2.4. There are fluctuations of the mean both upwards and downwards,

resulting in some cancellations giving the moderate decrease in the sum of exclusive

shown.
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Fig. 2.36: Updated Rhad(s) plot showing the behaviour inclusive data (dotted line)
versus the sum of exclusive final states ((yellow) band) from this work. The dashed
(blue) lines indicate the error band of the old exclusive sum from HMNT (03) [61].

Channel This work HMNT (03) [61] Difference
π+π−2π0 10.80± 0.77 10.84± 0.73 −0.04
2π+2π− 8.64± 0.28 8.61± 0.30 +0.03
5π, 6π(incl. η) 5.92± 0.41 7.65± 0.43 −1.73
KK̄π 2.69± 0.15 2.48± 0.23 +0.21
KK̄2π 3.31± 0.58 3.63± 1.32 −0.32
π+π−π0 1.25± 0.07 0.61± 0.09 +0.64
Others 1.99± 0.17 1.86± 0.56 +0.13
Sum of excl. 34.61± 1.11 35.68± 1.71 −1.08
Inclusive 31.99± 2.43 31.91± 2.42 +0.08
Weighted avg. 34.15± 1.10

Table 2.4: Contributions to aµ from the most important channels in the region from
1.43 to 2 GeV. The numbers given in the second column (‘This work’) are our new
results based on the updated compilation, whereas the column labelled ‘HMNT (03)’
refers to our old analysis [61]. The last column gives the difference, which, due to
changes in the treatment of radiative corrections, is also present in the combination of
the inclusive data, for which no new data sets are available. The last three lines give the
different options for use of data in this region: sum of exclusive channels (our preferred
choice), inclusive data, or the weighted average. (All values in units of 10−10.)

The reason for this discrepancy is unknown. Double counting could have occurred

in the sum of exclusive, as numerous final states are added together. However, it is not

clear where this occurs as any misidentification of the final states should be accounted

for properly by the experiments themselves. The lack of neutral final states in the

inclusive data is another possible reason since they are hard for experiments to see.
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However as mentioned earlier, the missing neutrals are already estimated and added

in. Hence, in order to choose between the two ways of counting the contribution to

ahad, LOVP
µ for 1.43 .

√
s ≤ 2 GeV, [61] conducted a QCD sum rule analysis and found

that the use of inclusive data is preferable. In this work, an improved analysis has been

performed, the details and the results are presented in the following section.

2.7 QCD sum rule analysis

2.7.1 Introduction

In order to check if inclusive or the sum of exclusive data should be used in the energy

region 1.43 .
√
s ≤ 2 GeV, we update the QCD sum rule analysis performed in

[61]. Now QCD sum rules were first introduced by Shifman, Vainstein and Zakharov

[245–247], where they were used to measure condensates - the vacuum expectation

values of operators from the operator product expansion (OPE). In this work, the sum

rules are based on the analyticity of the vacuum polarisation function Π(s), which

implies ∫ s0

sth

dsRhad(s)f(s) =
∫
C

dsD(s)g(s) (2.170)

for a non-singular function f(s). The circular contour C has radius s0, and C along

with the line segments l+ and l− (which have length s0 − sth) shown in Fig. 2.37 make

up the whole contour C ′. Finally, the function g(s) can be determined once f(s) is

chosen. Now Rhad(s) is

Rhad(s) = 12π
Im Π(s)

s
, (2.171)

and D(s), the Adler function is defined by

D(s) ≡ −12π2s
d
ds

(
Π(s)
s

)
. (2.172)

Therefore, if experimental data are used for Rhad(s) and D(s) is determined from

theory, then we can check the consistency of data against theory. Specifically, if s0 is

chosen large enough to allow D(s) to be found using QCD, then the data that appears

as Rhad(s) can be checked for s ≤ s0. This is done by first calculating the left hand

side (LHS) of the sum rule. Then, a well known, fundamental parameter of the theory

that appears in D(s) is fitted (varied) until the right hand side (RHS) of the sum rule

matches the LHS. The value of the parameter is then compared to its known world

average. The parameter in our case is αs(M2
Z), the running of the QCD coupling at

the Z-boson mass. Furthermore by tuning f(s), we can emphasise the contribution of

Rhad(s) to the sum rule from the energy region of interest (i.e. 1.43 .
√
s ≤ 2 GeV),

which improves the discriminating ability of the sum rules since ‘contamination’ of data

from other energy domains would be reduced. In this work, our choices of s0 as shown

later on, differs from those in the previous analysis [61]. However, they are still below
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the open charm threshold (i.e.
√
s0 < 3.73 GeV) so we can still use the three-flavour

(nf = 3) QCD expression for the Adler function. Thus, the J/ψ and ψ′ resonance

contributions to Rhad(s) still do not need to be taken into account.

Fig. 2.37: Contour C for the r.h.s. of the sum rule relation.

2.7.2 Sum rules with different choices of f(s)

To begin, let us consider the simplest case where f(s) = 1. Using the definition of R(s),∫ s0

sth

dsRhad(s) = 12π
∫ s0

sth

ds
Im Π(s)

s

=
12π
2i

(∫ s0+iε

sth+iε
ds−

∫ s0−iε

sth−iε
ds
)

Π(s)
s

, (2.173)

where the second line is a result of the Schwarz reflection principle Π(s)/s = (Π(s∗)/s∗)∗.

Hence it can be seen that the above equation goes over the contour C ′ − C,∫ s0

sth

dsRhad(s) = −6πi
(∫

C′
ds−

∫
C

ds
)

Π(s)
s

. (2.174)

In the equation above the first term vanishes by Cauchy’s Integral theorem because

Π(s)/s is holomorphic inside C ′. Integrating by parts on the second term gives,∫ s0

sth

dsRhad(s) = 6πi
{[

Π(s)
]s0−iε
s0+iε

−
∫
C

ds s
d
ds

(
Π(s)
s

)}
. (2.175)

It is easy to see that the integrand in the equation above is ∼ D(s) and the first term

is 12πIm Π(s0) = s0Rhad(s0), which can be re-written as an integral of D(s)s0/s over

C. First, use the differentiated version of Eq. (2.171), which gives∫ s0

sth

ds
d
ds
Rhad(s) = 6πi

∫
C

ds
d
ds

(
Π(s)
s

)
(2.176)

by following the same logic that produced Eqs. (2.173) and (2.174). Then by applying

the Second Fundamental Theorem of Calculus on the LHS,

Rhad(s0)−Rhad(sth) = 6πi
∫
C

dsD(s)
−1

12π2s
,

Rhad(s0) = − i

2π

∫
C

dsD(s)
1
s
. (2.177)
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where in the last step we used the fact that Rhad(sth) = 0 by definition. Finally we

arrive at the following relation,∫ s0

sth

dsRhad(s) =
i

2π

∫
C

dsD(s)
(

1− s0

s

)
. (2.178)

Now let f(s) = (s/s0)n where n ≥ 0, then by following the same logic as above it

is easy to see that∫ s0

sth

dsRhad(s)
(
s

s0

)n
=

i

2π

∫
C

ds
D(s)
n+ 1

[(
s

s0

)n
− s0

s

]
. (2.179)

For our sum rule analysis, we use f(s) = (1 − s/s0)m(s/s0)n where m,n ≥ 0 and

m+ n ≤ 2, thus the sum relations are different linear combinations of Eq. (2.179)∫ s0

sth

dsRhad(s) =
i

2π

∫
C

ds
[
1− s0

s

]
D(s), (2.180)∫ s0

sth

dsRhad(s)
s

s0
=

i

2π

∫
C

ds
1
2

[
s

s0
− s0

s

]
D(s), (2.181)∫ s0

sth

dsRhad(s)
(

1− s

s0

)
=

i

2π

∫
C

ds
[
−1

2
s

s0
+ 1− 1

2
s0

s

]
D(s), (2.182)∫ s0

sth

dsRhad(s)
(
s

s0

)2

=
i

2π

∫
C

ds
1
3

[(
s

s0

)2

− s0

s

]
D(s), (2.183)

∫ s0

sth

dsRhad(s)
(

1− s

s0

)
s

s0
=

i

2π

∫
C

ds

[
−1

3

(
s

s0

)2

+
1
2
s

s0
− 1

6
s0

s

]
D(s), (2.184)

∫ s0

sth

dsRhad(s)
(

1− s

s0

)2

=
i

2π

∫
C

ds

[
1
3

(
s

s0

)2

− s

s0
+ 1− 1

3
s0

s

]
D(s). (2.185)

Hence these relations can be labelled by (m,n,
√
s0) and in order to do the integrals on

the RHS, we need to know the functional form of D(s).

2.7.3 Updated prediction for D(s)

Using QCD, the contribution to Adler D function can be expressed as the sum

D(s) = D0(s) +Dm(s) +Dnp(s). (2.186)

D0(s) is the prediction from three-flavour massless QCD, Dm(s) is a small correction

from the quark mass and Dnp(s) is a very small non-perturbative effect estimated from

condensates.

The massless QCD contribution is given by [248],

D0(s) = Nc

∑
f

Q2
f

[
1 + d0as(s) + d1a

2
s(s) + d̃2a

3
s(s) + d̃3a

4
s(s) +O(a5

s)
]
, (2.187)
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which is one order higher in αs compared to the analysis [61]. Here, the QCD running

coupling appears in as(s) = αs(s)/π and

d0 = 1, (2.188)

d1 =
(

365
24
− 11ζ3

)
−
(

11
12
− 2

3
ζ3

)
nf

' 1.985707− 0.115295nf , (2.189)

d̃2 =
(

87092
288

− 1103
4

ζ3 +
275
6
ζ5

)
+
(
−7847

216
+

262
9
ζ3 − 25

9
ζ5

)
nf +

(
151
162
− 19

27
ζ3

)
n2
f +

(
55
72
− 5

3
ζ3

) (∑
f Qf

)2

Nc
∑

f Q
2
f

' − 0.636936− 1.200134nf − 0.005178n2
f − 1.239539

(∑
f Qf

)2

Nc
∑

f Q
2
f

+
β2

0π
2

48
, (2.190)

(2.191)

with

d̃3 =
(

144939499
20736

− 5693495
864

ζ3 +
5445

8
ζ2

3 +
65945
288

ζ5 − 7315
48

ζ7

)
+(

−13044007
10368

+
12205

12
ζ3 − 55ζ2

3 +
29675
432

+
665
72

ζ7

)
nf +(

1045381
15552

− 40655
864

ζ3 +
5
6
ζ2

3 −
260
27

ζ7

)
n2
f +(

−6131
5832

+
203
324

ζ3 +
5
18
ζ5

)
n3
f

' 135.792− 34.440nf + 1.8753n2
f − 0.01009n3

f , (2.192)

which was found in 2008 by [249]. Here Nc = 3 is the number of colours and the sum

f in the d̃2 term is the sum over flavours (i.e. u,d, s). So Qf = 2/3, −1/3, −1/3, are

the electric charges of the u, d and s quark respectively. In addition, the ζis are the

Riemann Zeta functions and

β0 = 11− 2
3
nf , (2.193)

which is the first coefficient of the β-function, see Eq. (2.198).

There have been no changes to the expressions of both Dm(s) and Dnp(s). The

quark mass correction is given by

Dm(s) = −3
∑
f

Q2
f

mf (s)2

s

[
6 + 28as(s) + (294.8− 12.3nf )a2

s(s)
]
, (2.194)

where we have used ms((2 GeV)2) = 105 MeV in the MS scheme [23], while the mass
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of u and d quarks are taken as zero. The contribution from condensates read

Dnp(s) = 3
∑
f

Q2
f

{
2π2

3

[
1− 11

18
as(s)

] 〈asGG〉
s2

+

8π2 [1− as(s)] 〈mf q̄fqf 〉
s2

+
32π2

27
as(s)

∑
k

〈mkq̄kqk〉
s2

+

12π2 〈O6〉
s3

+ 16π2 〈O8〉
s4

}
, (2.195)

where we take,

〈asGG〉 = 0.037± 0.019 (GeV)4 (2.196)

by following [250]. In addition,

〈msq̄sqs〉 = −f2
πm

2
K (2.197)

where fπ ' 92.4 MeV is the pion decay constant and mK = 493.667 MeV [23]. We

neglect the 〈O6〉 and 〈O8〉 condensates since their contributions to Dnp(s) are very

small.

2.7.4 Expansion of the QCD coupling

The QCD coupling αs(s) appears prominently in D(s) and it can be expressed as an

expansion of itself at some reference scale e.g. µ2 = s0. This approximation simplifies

the contour integral on the RHS of the sum rule. The expansion can be found using

the renormalisation group equation

∂as
∂ lnµ2

= −β0

4
a2
s −

β1

8
a3
s −

β2

128
a4
s −

β3

256
a5
s − · · · , (2.198)

where the coefficients are

β0 = 11− 2
3
nf (2.199)

β1 = 51− 19
3
nf (2.200)

β2 = 2857− 5033
9

nf +
325
27

n2
f (2.201)

β3 =
(

149753
6

+ 3564ζ3

)
−
(

1078361
162

+
6508
27

)
nf+(

50065
162

+
6472
81

ζ3

)
n2
f +

1093
729

n3
f . (2.202)

The convention for β0, β1 and β2 is the same as the PDG [23] while the form of β3 is

taken from [251]. We want to find the expansion to O(a4
s), which matches the order we

know D0(s) to. Thus we solve the RGE by making the following ansatz

as(s) = as(s0) + (c11L0) a2
s(s0) +

(
c21L0 + c22L

2
0

)
a3
s(s0) +(

c31L0 + c32L
2
0 + c33L

3
0

)
a4
s(s0) +O(a5

s), (2.203)
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where L0 = ln(s/s0) and cij (i, j = 1, 2, 3 i ≤ j) are unknown constants. This is

reasonable since the expansion to O(a3
s) determined in [61] is

as(s) = as(s0)− β0

4
L0 a

2
s(s0)−

(
β1

8
L0 − β2

0

16
L2

0

)
a3
s(s0) +O(a4

s). (2.204)

Now take µ2 = s, then the LHS of the RGE (2.198) after applying the ansatz is,

(LHS of (2.198)) =
∂

∂ ln s
as(s)

= c11a
2
s(s0) + (c21 + 2c22L0) a3

s(s0)+(
c31 + 2c32L0 + 3c33L

2
0

)
a4
s(s0) +O(a5

s). (2.205)

Similarly, the RHS is

(RHS of (2.198)) =− β0

4
[
as(s0) + (c11L0) a2

s(s0) +
(
c21L0 + c22L

2
0

)
a3
s(s0) +O(a4

s)
]2

− β1

8
[
as(s0) + (c11L0) a2

s(s0) +O(a3
s)
]3

− β2

128
[
as(s0) +O(a2

s)
]4 +O(a5

s). (2.206)

Hence by comparing equations (2.205) and (2.206), we can determine the unknown

constants cij . The most trivial solutions are the ci1 terms, since they are proportional

to L(1−1)
0 ai+1

s

c11 = −β0

4
, c21 = −β1

8
, c31 = − β2

128
. (2.207)

Next, the ci2 unknowns are found by comparing terms ∼ L(2−1)
0 ai+1

s

2c22 = −β0

4
2c11, 2c32 = −β0

4
2c21 − β1

8
3c11, (2.208)

c22 =
β2

0

16
, c32 = 5

β1β0

64
. (2.209)

Finally, by comparing terms ∼ L3−1
0 a4

s,

3c33 = −β0

4
2c22 − β0

4
c2

11, (2.210)

c33 = −β
3
0

64
. (2.211)

Therefore putting it all together,

as(s) = as(s0)− β0

4
L0 a

2
s(s0)−

(
β1

8
L0 − β2

0

16
L2

0

)
a3
s(s0)−(

β2

128
L0 − 5

β1β0

64
L2

0 +
β3

0

64
L3

0

)
a4
s(s0)−O(a5

s). (2.212)
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2.7.5 Computing the RHS of the sum rules

Now that we have an expansion for αs(s) in terms of αs(s0), we can finally calculate

the RHS of the sum rules. First, we express D0(s) in terms of αs(s0). Using Eq. (2.212)

we derive,

a2
s(s) = a2

s(s0)− 2
β0

4
L0a

3
s(s0)−

[
2
(
β1

8
L0 − β2

0

16
L2

0

)
− β2

0

16
L2

0

]
a4
s(s0) +O(a5

s),

(2.213)

a3
s(s) = a3

s(s0)− 3
β0

4
L0a

4
s(s0) +O(a5

s), (2.214)

a4
s(s) = a4

s(s0) +O(a5
s). (2.215)

Then substitution into Eq. (2.187) gives,

D0(s) = Nc

∑
f

Q2
f

{
1 + d0as(s0) +

[
d1 − β0

4
L0

]
a2
s(s0) +

[
d̃2 −

(
β1

8
+
d1β0

2

)
L0 +

β2
0

16
L2

0

]
a3
s(s0) +[

d̃3 −
(
β2

128
+
d1β1

4
+ 3

d̃2β0

4

)
L0 +(

5
β1β0

64
+ 3

d1β
2
0

16

)
L2

0 −
β3

0

64
L3

0

]
a4
s(s0) +O(a5

s)
}
. (2.216)

When this is placed into the RHS the terms that contain the integration variables are

proportional to (L0)p(s/s0)q where p = 1, 2, 3 and q = −1, 0, 1, 2. The calculations

of these integrals are found in Appendix A. Second, for Dm(s) and Dnp(s), we take

as(s) = as(s0) since their contributions are very small. Finally, the explicit expressions

for the RHS can then be constructed from the following pieces. First we have the
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massless nf = 3 QCD contributions,∫
C

ds
s0

s
D0(s) = 2πis0Nc

∑
f

Q2
f

{
1 + as(s0) + d1a

2
s(s0) +

[
d̃2 − π2

3
L22

]
a3
s(s0) +

[
d̃3 − π2

3
L32

]
a4
s(s0) +O(a5

s)
}
, (2.217)∫

C
dsD0(s) =−πis0Nc

∑
f

Q2
f

{
2L11a

2
s(s0) +

[
2L21 + 4L22

]
a3
s(s0) +

[
2L31 + 4L32 + 2(6− π2)L33

]
a4
s(s0) +O(a5

s)
}
, (2.218)∫

C
ds

s

s0
D0(s) =−πis0Nc

∑
f

Q2
f

{
L11a

2
s(s0) +

[
L21 + L22

]
a3
s(s0) +

[
L31 + L32 +

(
3
2
− π2

)]
a4
s(s0) +O(a5

s)
}
, (2.219)∫

C
ds
(
s

s0

)2

D0(s) =−πis0Nc

∑
f

Q2
f

{
2
3
L11a

2
s(s0) +

[
2
3
L21 +

4
9
L22

]
a3
s(s0) +

[
2
3
L31 +

4
9
L32 +

2
3

(
2
3
− π2

)
L33

]
a4
s(s0) +O(a5

s)
}
, (2.220)

where

L11 =
β0

4
, (2.221)

L21 =
β1

8
+
d1β0

2
, L22 =

β2
0

16
, (2.222)

L31 =
β2

128
+
d1β1

4
+ 3

d̃2β0

4
, L32 = 5

β1β0

64
+ 3

d1β
2
0

16
, L33 =

β3
0

64
. (2.223)

Then quark mass corrections are given by,∫
C

ds
s0

s
Dm(s) = 24πiNc

∑
f

Q2
fm

2
f (s0)as(s0) +O(m2

fa
2
s), (2.224)∫

C
dsDm(s) = 4πiNc

∑
f

Q2
fm

2
f (s0)(3 + 14as(s0)) +O(m2

fa
2
s), (2.225)∫

C
ds

s

s0
Dm(s) = −24πiNc

∑
f

Q2
fm

2
f (s0)as(s0) +O(m2

fa
2
s), (2.226)

∫
C

ds
(
s

s0

)2

Dm(s) = −12πiNc

∑
f

Q2
fm

2
f (s0)as(s0) +O(m2

fa
2
s). (2.227)
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Finally, the contributions from the condensates are∫
C

ds
s0

s
Dnp(s) =

πi

4
Nc

∑
f

Q2
f

β0

s0

[
−11π2

27
〈asGG〉 − 8π2〈mf q̄fqf 〉

+
32π2

27

∑
k

〈mkq̄kqk〉
]
a2
s(s0), (2.228)∫

C
dsDnp(s) =

πi

2
Nc

∑
f

Q2
f

β0

s0

[
−11π2

27
〈asGG〉 − 8π2〈mf q̄fqf 〉

+
32π2

27

∑
k

〈mkq̄kqk〉
]
a2
s(s0), (2.229)∫

C
ds

s

s0
Dnp(s) = 2πiNc

∑
f

Q2
f

1
s0

[
2π2

3

(
1− 11

18
as(s0)

)
〈asGG〉+

8π2(1− as(s0))〈mf q̄fqf 〉+
32π2

27
as(s0)

∑
k

〈mkq̄kqk〉
]
, (2.230)

∫
C

ds
(
s

s0

)2

Dnp(s) =− πi

2
Nc

∑
f

Q2
f

β0

s0

[
−11π2

27
〈asGG〉 − 8π2〈mf q̄fqf 〉

+
32π2

27

∑
k

〈mkq̄kqk〉
]
a2
s(s0). (2.231)

2.7.6 Results

In HMNT (03) [61],
√
s0 = 3.0, 3.73 GeV, which meant the energy region that we are

interested in only accounted for ∼ 13 − 30% of the total contribution (see e.g. Figure

19 in [61]). In this work, we have decided to use 2.0 and 2.6 GeV as our choices for
√
s0, which gives the region of interest much more weight (∼ 26−55%). Fig. 2.38 gives

an idea of weighting of the different sum rules by plotting the value for the various f(s)

(including the Jacobian factor) considered in this analysis against the energy
√
s. We

can see that the (1, 0) sum rule for
√
s0 = 2 GeV and (2, 0) sum rules for

√
s0 = 2,

2.6 GeV do not give lots of weight to the energy region of interest, hence they are not

used. In addition, the (0, 1) and (0, 2) sum rules are also ignored similar to [61].

Since we want to fit αs(M2
Z) but αs(s0) appears in D(s), we used the latest rhad

routine [252], which includes the latest contributions of O(α4
s), to turn αs(M2

Z) into

αs(s0) with the correct running and matching. The results of the fitting using the

various sum rules can be seen in Fig. 2.39. The error bars on the sum rules are the

result of varying the experimental data within their combined systematic and statistic

errors. They are much larger than the uncertainties from pQCD, which were estimated

by comparing the results using O(α3
s) precision to the ones using O(α4

s). Results using

the inclusive data are shown on the top half of the graph, while the sum of exclusive

results are on the bottom half. The band represents the PDG2010 world average and

error for αs(M2
Z) = 0.1184± 0.0007 [23]. It is clear that the sum rules now favour the
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Fig. 2.38: Plot of sum rule f(s) weight function with Jacobian factor included.

more precise sum of exclusive channels rather than the inclusive data. This is not just

due to the changes in the 1.43 .
√
s ≤ 2 GeV energy region, as the data in there are only

a part of the total contribution to the sum rules (the percentages of their contributions

are listed in the brackets in Fig. 2.39). Changes to data in the ρ-resonance region and

above 2 GeV for example, are also responsible. In light of this result, and the recent,

significant improvements in the exclusive channels, we have decided to use the sum of

exclusive in the energy region 1.43 .
√
s ≤ 2 GeV. This leads to a large improvement

in the error for this region but also an upward shift of the mean value, see Table 2.4.

2.8 Total contribution to ahad, LOVP
µ

The total contribution to ahad, LOVP
µ from the various energy regions and channels are

summarised in Tables 2.5 to 2.8 below. The final result, with the choice of using the

sum of exclusive (and isospin) channels in the energy region 1.43 .
√
s ≤ 2 GeV is

ahad, LOVP
µ = (694.91± 3.72exp ± 2.10rad)× 10−10, (2.232)

where the first error is due to statistical and systematic uncertainties in the experi-

mental data and the second error is from our treatment of the radiative corrections

and vacuum polarisation. Table 2.5 lists all the contributions and the energy regions

they cover, which directly make up the result above. It also lists the new data sets

that did not appear in HMNT (03) [61] and HMNT (06) [62]. Note that the number

of exclusive channels from this table and the number of channels in Table 2.3 add up

to 27, i.e. the total number of distinct exclusive and isospin that contribute directly to

ahad, LOVP
µ mentioned in Section 2.2. Table 2.6 lists all the measured final states that
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Fig. 2.39: Results of fitting αs(M2
Z) using sum rules ((2.180), (2.182) and (2.184))

with various choices of (m,n,
√
s0), and different input data in the energy range 1.43 .√

s ≤ 2 GeV. Top half: using inclusive data; bottom half: using the updated sum of
exclusive channels. Results that uses data only are shown by the (red) round markers
and those that uses pQCD above 2 GeV have (blue) triangle markers. The thin (orange)
band displays the world average and error of αs(M2

Z) from PDG2010 [23].

are used to make up the contribution from the sum of the isospin channels. The last

column shows the isospin channel they are used in and changes to the data set(s) used

from the previous analyses. Note that the number of channels in this table and the

number of exclusive channels in Table 2.5 add up to 26, i.e. the number of measured

final states that is used in this work, which was first stated at the start of Section 2.2.

2.8.1 Comparison with HMNT (06)

Table 2.7 compares the contribution from different energy regions from this work to the

analysis in 2006 [62]. Note that in this table, the lower integration limit is 0.32 GeV

instead of 0.305 GeV to facilitate the comparison. From the last column it is clear that

the differences between the two analyses partly cancel. However, the presence of new

radiative return data from BaBar and KLOE makes the increase in the 0.32 to 1.43
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Contribution aµ × 1010 Energy region New data set(s)

ChPT, 2π 0.87± 0.02 2mπ − 0.305 GeV -
ChPT, 3π 0.01± 0.00 3mπ − 0.66 GeV -
ChPT, π0γ 0.13± 0.01 mπ − 0.60 GeV -
ChPT, ηγ 0.00± 0.00 mη − 0.66 GeV -
φ→ unaccounted 0.04± 0.04 - -

Exclusive states - 0.305− 2.00 GeV See below

π0γ 4.54± 0.14 0.60− 1.31 GeV -
π+π− 505.77± 3.09 0.305− 2.00 GeV KLOE [129,130], BaBar [131]
π+π−π0 47.51± 0.99 0.66− 2.00 GeV CMD-2 scans [151]
2π+2π− 14.65± 0.47 0.6125− 2.00 GeV -
π+π−2π0 20.37± 1.26 0.915− 2.00 GeV -
K+K− 22.15± 0.46 1.0086− 2.00 GeV CMD-2 [181], SND [182]
K0
SK

0
L 13.33± 0.16 1.0037− 2.00 GeV SND [188]

ηγ 0.69± 0.02 0.66− 1.36 GeV SND scans [198]
ω(→ π0γ)π0 0.77± 0.03 0.9200− 2.00 GeV KLOE [205]
pp̄ 0.06± 0.00 1.8887− 2.00 GeV -
nn̄ 0.07± 0.02 1.9154− 2.00 GeV -
Isospin states 12.73± 0.75 - See Section 2.4 for details

Inclusive channel 41.19± 0.82 2.0− 11.09 GeV BES [221,222], CLEO [223]
J/ψ + ψ′ 7.80± 0.16 - -
Υ(1S − 6S) 0.10± 0.00 - -
pQCD 2.11± 0.00 11.09−∞ GeV -

Total 694.91± 3.72 mπ −∞ GeV -

Table 2.5: Summary of the explicit contributions that make up the total value of
ahad, LOVP
µ used in this work. The last column also gives any new data set(s) not present

in the previous analyses [61,62]. The sum of contributions from isospin channels is taken
from Table 2.3, where the individual contributions can also be found. All the measured
final states that contributed to the sum of the isospin channels are listed separately in
Table 2.6.

GeV region dominate over the changes in other energies. Keeping in mind that [62]

used inclusive data in the region 1.43 to 2 GeV and the change in the inclusive data

above 2 GeV are also important, so ahad, LOVP
µ from this work is almost 0.9σ larger

compared to the one used in [62]. However, the increase would only be slight if [62]

used exclusive rather than inclusive in the region 1.43 to 2 GeV. This is because the

new sum of exclusive in this region has seen a significant decrease as shown.

2.8.2 Comparison with DHMZ (10)

Table 2.8 gives the comparison of the results from exclusive channels in this work

with those used in the analysis from Davier et al. [78] in the region 0.305 to 1.8 GeV.
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Channel aµ × 1010 Energy region Notes

2π+2π−π0 1.42± 0.09 1.0127− 2.00 GeV Used in (2π+2π−π0)no η

Data: +BaBar [176]; −M3N [160].

3π+3π− 0.28± 0.02 1.3125− 2.00 GeV Used in (π+π−4π0)no η;
also summed separately.
Data: +BaBar [178]

2π+2π−2π0 1.89± 0.24 1.3223− 2.00 GeV Used in (2π+2π−2π0)no η and
(π+π−4π0)no η and ω(→ npp)3π.
Data: +BaBar [178]; −M3N [160],
−DM2 [179].

K0
SK
±π∓ 0.91± 0.05 1.26− 2.00 GeV Used in KK̄π.

Data: +BaBar [194].

K∗Kπ (new) 0.78± 0.03 1.5875− 2.00 GeV Used in KK̄2π.
Data: +BaBar [195,196].

K+K−π+π− 0.99± 0.04 1.4125− 2.00 GeV Used in KK̄2π.
Data: +BaBar [195,196].

K+K−2π0

(new)
0.16± 0.01 1.46− 2.00 GeV Used in KK̄2π.

Data: +BaBar [195,196].

K+K−π+π−π0

(new)
0.09± 0.01 1.6125− 2.00 GeV Used in KK̄3π;

Data: +Babar [176].

ηπ+π− 0.98± 0.24 1.2946− 2.00 GeV Used in (2π+2π−π0)no η and
(π+π−3π0)no η;
also summed separately.

η2π+2π− (new) 0.11± 0.02 1.3375− 2.00 GeV Used in ηπ+π−2π0; also summed
separately.
Data: +BaBar [176].

ηω (new) 0.43± 0.07 1.3325− 2.00 GeV Used in (2π+2π−2π0)no η and
(π+π−4π0)no η; also summed sep-
arately.
Data: +BaBar [178] (BW fit).

ηφ (new) 0.46± 0.03 1.5693− 2.00 GeV Used in KK̄3π, ω(→ npp)KK̄;
also summed separately.
Data: +BaBar [176,194].

ωπ+π− 0.79± 0.10 1.2923− 2.00 GeV Used in ω(→ npp)2π.

φπ0 (new) 0.04± 0.01 1.25− 2.00 GeV Used in KK̄2π.
Data: +BaBar [194].

φπ+π− (new) 0.14± 0.01 1.4875− 2.00 GeV Used in KK̄2π.
Data: +BaBar [195,196].

Table 2.6: Summary of the measured final states that contributed to the sum of
isospin channels that appeared in Tables 2.3 and 2.5. Channels that did not appear in
the previous analyses [61, 62] are labelled by ‘new’ in brackets. The last column lists
which isospin channel they were used in and whether they have to be added separately
in the sum. Finally, a new (removed) data set is preceded by a ‘+’ (‘−’) sign.
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Contribution This work HMNT (06) [62] difference
2mπ − 0.32 GeV (ChPT, 2π) 2.36± 0.05 2.36± 0.05 ±0.00
3mπ − 0.66 GeV (ChPT, 3π) 0.01± 0.00 0.01± 0.00 ±0.00
mπ − 0.60 GeV (ChPT, π0γ) 0.13± 0.01 0.13± 0.01 ±0.00
mη − 0.69 GeV (ChPT, ηγ) 0.00± 0.00 0.00± 0.00 ±0.00
φ→unaccounted modes 0.04± 0.04 0.06± 0.06 −0.02
0.32− 1.43 GeV 606.50± 3.35 601.96± 3.19 +4.54
1.43− 2 GeV (excl. only) 34.61± 1.11 36.38± 1.66 −1.77
1.43− 2 GeV (incl. only) 31.99± 2.43 32.05± 2.43 −0.06
1.43− 2 GeV (incl.-excl. avg.) 34.15± 1.01 n/a n/a
2− 11.09 GeV 41.19± 0.82 42.75± 1.08 −1.56
J/ψ + ψ′ 7.80± 0.16 7.90± 0.16 −0.10
Υ(1S− 6S) 0.10± 0.00 0.10± 0.00 ±0.00
11.09−∞ (pQCD) 2.11± 0.00 2.11± 0.00 ±0.00
Sum (excl.–excl.–incl.) 694.86± 3.71 693.77± 3.84 +1.09
Sum (excl.–incl.–incl.) 692.25± 4.23 689.44± 4.17 +2.81
Sum (excl.–avg.–incl.) 694.40± 3.67 n/a n/a

Table 2.7: Contributions to ahad, LOVP
µ obtained in this work compared to the values

used in our analysis [62]. The last column gives the differences. (All values in units
of 10−10.) The first four lines give our predictions of contributions close to threshold
where no data are available and are based on chiral perturbation theory (ChPT), see
Section 2.5.1 for details. For 2.6 ≤ √s ≤ 3.73 GeV pQCD with errors comparable to
those of the latest BES data is used as default for this work, see the discussion in the
text. The different choices quoted in the last three lines refer to the energy regions
below 1.43 GeV, for 1.43 .

√
s ≤ 2 GeV and above.

Note that for the π+π− result, we have included the contribution from ChPT theory

since [78] extended the π+π− data to threshold and included this extra contribution in

their result. From the table we see that there is reasonable agreement between the two

results, where the one in this work is moderately higher. Nevertheless, for individual

contributions there are still differences that are on the order of the error, for example,

π+π−, π+π−π0 and K+K− channels. These differences presumably come from the

different choices in selecting, processing, combining and integrating the data between

our groups. The total result for the leading order hadronic contribution to aµ are

ahad, LOVP
µ (This Work) = (694.9± 4.3)× 10−10, (2.233)

ahad, LOVP
µ (DHMZ (10)) = (692.3± 4.2)× 10−10, (2.234)

where the individual error components have been added in quadrature. Part of the

difference (1.22 × 10−10) is already accounted for in Table 2.8. Most of the remaining

difference comes from the use of pQCD by Davier et al. between 1.8 and 3.7 GeV. If we

use pQCD from 1.8 to 3.7 GeV, our result would be lower by 1.28× 10−10. The rest of

the difference (∼ 0.1× 10−10) could be from our use of ChPT for the π0γ and π+π−π0

channels since Davier et al. was not explicit on this matter with only the remark
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Channel This work DHMZ (10) [78] Difference
ηπ+π− 0.88± 0.10 1.15± 0.19 −0.27
K+K− 22.09± 0.46 21.63± 0.73 0.46
K0
SK

0
L 13.32± 0.16 12.96± 0.39 0.36

ωπ0 0.76± 0.03 0.89± 0.07 −0.13
π+π− 506.52± 3.09 507.80± 2.84 −1.28

2π+2π− 13.50± 0.44 13.35± 0.53 0.15
3π+3π− 0.11± 0.01 0.12± 0.01 −0.01
π+π−π0 47.38± 0.99 46.00± 1.48 1.38
π+π−2π0 18.62± 1.15 18.01± 1.24 0.61
π0γ 4.54± 0.14 4.42± 0.19 0.12
ηγ 0.69± 0.02 0.64± 0.02 0.05

η2π+2π− 0.02± 0.00 0.02± 0.01 0.00
ηω 0.38± 0.06 0.47± 0.06 −0.09
ηφ 0.33± 0.03 0.36± 0.03 −0.03

φ(→ unaccounted) 0.04± 0.04 0.05± 0.00 −0.01
Sum of isospin channels 5.98± 0.42 6.06± 0.46 −0.08

Total 635.15± 3.53 633.93± 3.61 1.22

Table 2.8: Contributions to aµ (in units of 10−10) in the energy region from 0.305
to 1.8 GeV from exclusive channels: Results based on the data compilation as used
in this analysis compared to the results as given by Davier et al. [78]. Note that the
ChPT contribution for the π+π− channel is also included in the π+π− result from this
analysis since Davier et al. included a similar estimate in their result.

“We also perform a reestimation of missing low-energy contributions using results on

cross sections and process dynamics from BABAR”. Otherwise, it is probably due to

rounding of the numbers but either way this is inconsequential.
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Chapter 3

The running of the QED coupling
and its value at the Z-boson mass

3.1 Introduction

The QED coupling α is one of the most fundamental quantities in physics, and as

mentioned in Section 1.3, its value at the zero momentum transfer has been measured

with a very high precision. However, when calculating processes that involve a virtual

photon exchange at high energies, most of the radiative corrections can be absorbed

into the running or effective coupling α(q2) [119], where q2 is the virtuality of the

exchanged photon.

Fig. 3.1: Vacuum polarisation diagram with momentum transfer q.

The running of the QED coupling can be thought of as the screening of the electric

charge, and is therefore affected by the energy of the probing photon. Hence it is

subject to photon vacuum polarisation effects with momentum transfer q2, such as the

one shown in Fig. 3.1. However, time-like (q2 = s > 0) and space-like (q2 = −s < 0)

momentum transfers give rise to different effects. For α(q2 = s), the running coupling

follows the structure of the hadronic spectrum including resonances at low energy.

However, for α(q2 = −s) it is a smooth function in those regions. These differences

can be as high as a few percent in certain places, hence, for calculations that require

high precision, they cannot be neglected. For example, in the treatment of the e+e−

hadronic annihilation data mentioned earlier, computing the VP corrections to the

data requires precise knowledge of both α(s) and α(−s) in order to arrive at the most

accurate and precise determination for the muon g− 2. Furthermore, these can also be

used for the precise determination of α(q2) as explained below and also, in particular,

α(M2
Z). The QED coupling at the Z-boson mass MZ is the least precise of the set of
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parameters, [GF ,MZ , α(M2
Z)] that are normally perceived to define the EW sector of

the SM. Therefore, one of the main limiting factors in precision electroweak physics is

the uncertainty on α(M2
Z), which affects for example, the indirect calculation of the

mass of the Higgs boson.

3.2 Computing α(q2) and ∆α
(5)
had(q2)

We use the same description of the running of the QED coupling from Eq. (2.1) except

the VP function will be given in terms of Π′(s) rather than Π̃,

α(q2) =
α

1−∆α(q2)
=

α

1 + e2Re Π′(q2)
. (3.1)

Again Re Π′(q2) is the real part of the photon VP function, and corresponds to defining

the effective charge by summing the 1-particle irreducible ‘blobs’ to arbitrary order

(see Fig. 2.1). We break the quantity ∆α(q2) into three separate pieces as was done in

Eq. (2.3),

∆α(q2) = ∆αlep(q2) + ∆α(5)
had(q2) + ∆αtop(q2). (3.2)

The leptonic and top quark contributions can be calculated perturbatively, however

the five flavour hadronic contribution, ∆α(5)
had(q2), contains non-perturbative effects

and cannot be computed reliably using pQCD. Therefore, using the same prescription

defined in Section 1.5.2 we can write,

Re Π′(q2) =
q2

π
P
∫ ∞
sth

ds
Im Π′(s)
s(s− q2)

, (3.3)

where P denotes taking the principal value for q2 > sth. With the use of the optical

theorem again we arrive at the dispersion relation for ∆α,

∆α(5)
had(q2) = −αq

2

3π
P
∫ ∞
sth

ds
Rhad(s)
s(s− q2)

. (3.4)

Here Rhad(s) has the same definition as Eq. (1.53), and the same compilation of e+e−

hadronic annihilation data along with pQCD, ChPT, treatment of narrow resonances

etc, used in the determination of aµ can be applied to Rhad in this case.

However, for computing ∆α(5)
had(q2) the integration of Rhad(s) is done on a specific

grid of energies si . Thus Rhad(s) takes the form

Rhad(s) = Rhad(si) + (s− si)Rhad(si+1)−Rhad(si)
si+1 − si , (3.5)

92



for si < s < si+1. This means Eq. (3.4) can be expressed as

∆α(5)
had(q2) = −αq

2

3π

N−1∑
i=1

P
∫ si+1

si

ds
Rhad(s)
s(s− q2)

(3.6)

= − α

3π

N−1∑
i=1

1
si+1 − si

{[
siRhad(si+1)− si+1Rhad(si)

]
ln
si+1

si
+

[
(q2 − si)Rhad(si+1)− (q2 − si+1)Rhad(si)

]
ln
∣∣∣∣q2 − si+1

q2 − si

∣∣∣∣
}
, (3.7)

where N is the total number of grid points. It is easy to see that the ‘singularities’ at

q2 = si cancel between adjacent intervals. The calculation of the error proceeds exactly

as the g − 2 case described in Section 2.1.4. The error from radiative corrections is, of

course, also treated the same way.

3.3 Results

Fig. 3.2 displays the results of ∆α(5)
had(q2)/α in both the time-like q2 = s > 0 (top graph)

and space-like q2 = −s < 0 (bottom graph) cases.1 The bands show the uncertainty of

the results due to all the errors associated with the use of the data mentioned above.

The dashed line in the top graph is the central value for the space-like result, drawn for

comparison purposes. The large structures exhibited by the time-like result follows the

hadronic resonances. Thus it is flat once the running is above the Υ states, where the

time-like and space-like results are almost identical2. Note that in regions very close

to narrow resonances for the time-like case, the idea of an effective charge through the

summation of the 1PI blobs is no longer valid. Since ∆α ∼ O(1), Eq. (3.1) is no longer

compatible with this summation due to the radius of convergence. This is the reason

that when removing VP effects that dress narrow resonances, αnoV (s), the running

coupling with the contribution from the narrow resonances removed is used. Further

details regarding the running of the QED coupling in different energy regions, along

with discussions and comparisons with other works are not finalised yet and will be

presented in our upcoming paper [253].

Using the same compilation of e+e− → hadrons data (along with pQCD and other

contributions) as in the aµ analysis, the five-flavour hadronic contribution to the run-

ning of the QED coupling at the Z boson mass is

∆α(5)
had(M2

Z) = (276.26± 1.16exp ± 0.74rad)× 10−4. (3.8)

1These graphs actually show preliminary results because they have included an additional set of
the data (BaBar Rb measurement [236]) that was not present in the main g − 2 analysis (see Sec-
tion 2.3.10). The inclusion of this data is described in Section 3.4 below and details on our determination

of ∆α
(5)
had(q2) and α(q2) with this data included will be published in an upcoming paper [253].

2For example, at s = M2
Z , ∆α(M2

Z)−∆α(−M2
Z) ∼ −4× 10−5.
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Fig. 3.2: Plots of the hadronic contributions ∆α(5)
had(q2)/α to the running of the QED

coupling. The results for the time-like q2 = s > 0 case is shown in the top graph by
the (red) band. The space-like q2 = −s < 0 case is shown in the bottom graph and as
a dashed line in the top graph for comparison.

Summing this with the leptonic [254] and top quark [255–257] contributions

∆αlep(M2
Z) = 314.98× 10−4, (3.9)

∆αtop(M2
Z) = −(0.728± 0.014)× 10−4, (3.10)
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where the mass of the top quark is taken as mt = (172.6± 1.6) GeV [23], we arrive at

the final result for the running of the QED coupling at the Z-boson mass,

α(M2
Z)−1 = 128.944± 0.019. (3.11)

This is a noticeable improvement from the previous analysis [62], whose result is

α(M2
Z)−1 = 128.937± 0.030. (3.12)

Thus the error has been reduced by a factor of just over one third.

Group, year, ref. ∆α(5)
had(M2

Z) Remarks

Kühn+Steinhauser (98) [258] 0.02775± 0.00017 pQCD

Martin et al. (00) [259] 0.02738± 0.00020 data driven

Troconiz+Yndurain (05) [260] 0.02749± 0.00012 pQCD

Burkhardt+Pietrzyk (05) [261] 0.02758± 0.00035 data driven

HMNT (06) [62] 0.02768± 0.00022 data driven

Jegerlehner (08) [262] 0.027594± 0.000219 data driven/pQCD

0.027515± 0.000149 Adler function (
√
s0 = 2.5 GeV)

Jegerlehner (10) [263] 0.027498± 0.000135 Adler function (
√
s0 = 2.5 GeV)

Davier et al. (10) [78] 0.02750± 0.00010 pQCD from 1.8 <
√
s < 3.7 GeV

HLMNT (11), this work 0.027626± 0.000138 data driven

Table 3.1: Results for ∆α(5)
had(M2

Z) from different groups. The column ‘remarks’
indicates if the analysis is mainly relying on data as input in the dispersion integral
(3.4) or if pQCD is used outside the resonance regions; another approach proposed by
Jegerlehner is based on the use of the Adler D function, thus reducing the dependence
on data and improving the error.

Table 3.1 compares the result for ∆α(5)
had(M2

Z) from this work with recent deter-

minations from other groups. Note that result from Davier et al. is noticeably lower

than this work. The reason is due to their use of pQCD from 1.8 to 3.7 GeV. In the

ahad, LOVP
µ analysis, this has already made a visible difference between Davier et al.

and this work, where the weighting of this energy region is suppressed (see Fig. 4.2)

due to the g − 2 kernel. Thus in this case where the weighting of this energy region is

much larger, it has created an even bigger difference between the two analyses.

It is also worth noting that the ∆α(5)
had(M2

Z) result from this work is slightly higher

but much more precise than the default prediction used by the LEP Electroweak Work-

ing group [261] for their precision fits [265]. This is can be seen from the graph in

Fig. 3.3, which is also known as the ‘Blue-band plot’. It summarises the indirect deter-

mination on the mass of the Higgs boson. The effect of the new α(M2
Z) value in this

work is shown by the steeper parabola with the (red) solid line. The resulting fit for

the mass of the Higgs is [264]

mH =
(
91+30
−23

)
GeV, (3.13)
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had(M2
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which can be compared to

mH =
(
89+35
−26

)
GeV, (3.14)

the value from using the default option (July 2010)3. Therefore by also taking into

account the excluded regions (shown by the (yellow) shaded rectangles) from direct

Higgs searches by LEP and Tevatron, this might be indicating another problem for the

SM, which is however, less compelling than the g − 2 deviation.

3.4 Inclusion of the BaBar Rb data

The BaBar collaboration recently measured the quantity Rb between 10.54 GeV and

11.20 GeV [236]. This analysis is very precise and contains lots of data points, which will

improve the quality of the measurement in this previously sparsely populated region.

However, before this data can be used here, we must correct the data by removing
3The latest fit from the Working Group gives mH =

`
92+34
−26

´
GeV, see [265].
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the initial state radiation (ISR) and the radiative tails of the resonances from the

Υ(1S− 4S) states. We follow the procedure outlined in [266], where the data was used

for a different purpose.

First, the tails of the Υ(1S−3S) resonances were subtracted using the data provided

in the supplementary material from [236]. To calculate the tail of the Υ(4S) resonance,

the following Breit-Wigner function was used

σ(s) = 12π
Γee(Υ(4S))Γtot(Υ(4S))

(s−M2)2 +M2Γ2
tot(Υ(4S))

. (3.15)

Here M = 10.58 GeV, the mass of the Υ(4S) state, Γee(Υ(4S)) = 0.272 × 10−6 GeV,

the electronic width and Γtot(Υ(4S)) = 20.5× 10−3 GeV, an energy-independent total

width. However, since the BaBar data includes ISR, the Υ(4S) tail must also be

‘convoluted’ with ISR before it can be subtracted. In order to do this, we use the

following integral to calculate the cross section (σISR) including ISR effects,

σISR(s) =
∫ 1

z0

dz G(z)σ(sz). (3.16)

G(z) is the radiator function in the form presented by equation (3) in [267], which was

based on the resummed next-to-next-to-leading order result from [268],

G(z) = β · (1− z)β−1 · eδyfs · F · (δV+S
C + δHC (z)). (3.17)

Define L = ln(s/m2
e) and a = α/π then

β = 2a(L− 1) (3.18)

F =
e−βγE

Γ(1 + β)
(3.19)

δyfs = a

(
L

2
− 1 + 2ζ(2)

)
(3.20)

δV+S
C = 1 + a(L− 1) +

1
2

(aL)2 (3.21)

δHC (z) = −1− z2

2
+ aL

(
−1

4
(1 + 3z2) ln(z)− 1 + z

)
, (3.22)

where γE is the Euler-Mascheroni constant and ζ(2) = π2/6. The variable z is defined

through
s0

s
= z0 ≤ z ≤ 1, (3.23)

so the invariant mass of the system (after correcting for ISR) is sz. Here we took
√
s0 = 10.5408 GeV, corresponding to the energy of the first BaBar point. With the

radiative tail of Υ(4S) ‘convoluted’ with ISR, it is then subtracted from the BaBar

data, which was converted from Rb to nano-barns. Finally, we have to remove or ‘de-

convolute’ ISR effects from the BaBar data. From equation (3.16), we can solve for

σ iteratively if σISR have been given as data. Let us define δG(z) ≡ G(z) − δ(1 − z)
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and σ0(s) ≡ σISR(s), so the starting (zeroth iteration) cross section corresponds to the

cross section including ISR. Then in the ith iteration,

σi(s) = σ0(s)−
∫ 1

z0

dz δG(z)σi−1(sz). (3.24)

Since the cross section comes from data points, which are discrete, we can re-write the

above equation as

σi(sn) = σ0(sn)−
n∑
k=1

∫ zk

zk−1

dz δG(z)σi−1(snz). (3.25)

Here, n (and k) is the index of the data points, thus zk = sk/sn and zn = 1. For the

lower bound, z0 = s0/sn = 10.61782/sn, corresponding to the energy where the cross

section vanishes i.e. σ0(s0) = 0. Note that z = s/sn is still continuous so s0 ≤ s ≤ sn

(or sk−1 ≤ s ≤ sk within each integral in the sum) in equation (3.25). This means

σi−1(snz) is continuous and we calculate its value using linear interpolation based on

neighbouring data points. Thus for zk−1 ≤ z ≤ zk

σi−1(snz) = σi−1(sk)− (ek − e(z))σi−1(sk)− σi−1(sk−1)
ek − ek−1

, (3.26)

where ek is the energy of the kth cross section so e(z) =
√
zsn =

√
s. For this procedure,

we have taken the number of iterations, i, to be 50, giving results4 that seem to be

stable up to a precision of 10−5. Specifically, there is no difference between σ50(sn) and

σ100(sn) in the 5th decimal place for all n. To check the correctness of the results, we

placed σ50(sn) in equation (3.16) and found that the output agree with σ0(sn) in the

5th decimal place5.

The determination of the error of the BaBar data without ISR, is not completely

trivial. In the BaBar paper [236], they construct a full covariance matrix using

Vij = [δσ2
stat(sj) + δσ2

unc(sj)]δij + δσcorr(si)δσcorr(sj), (3.27)

where δσstat, δσunc and δσcorr are the statistical, uncorrelated and correlated systematic

uncertainties respectively. Hence if we can express σi(sn) in terms of σ0(sk) i.e.

σi(sn) =
n∑
k=1

Cinkσ0(sk), (3.28)

then we can write an equivalent equation to (2.36) and compute the error for each

σi(sn). This also has the added benefit of being another check on the correctness of
4The results are roughly O(10−1) and the errors, which will be discussed later, are O(10−2)
5In [266], they found differences of less than 0.5% after 5 iterations.
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σi(sn) themselves. In order to do this, recall that

σi(sn) = σ0(sn)−
∫ 1

z0

dz [G(z)− δ(1− z)]σi−1(snz)

= σ0(sn)−
n∑
k=1

∫ zk

zk−1

dz G(z)
[
σi−1(sk)− (ek − e(z))σi−1(sk)− σi−1(sk−1)

ek − ek−1

]
+ σi−1(sn)

= σ0(sn)−
n∑
k=1

{
Ikσi−1(sk)− Ĩk [σi−1(sk)− σi−1(sk−1)]

}
+ σi−1(sn), (3.29)

where

Ik =
∫ zk

zk−1

dz G(z) and Ĩk = Ik
ek − e(z)
ek − ek−1

. (3.30)

Hence in the first iteration,

σ1(sn) =
n∑

k1=1

(δnk1 − Ik1 + Ĩk1)σ0(sk1)−
n∑

k1=1

Ĩk1σ0(sk1−1) + σ0(sn) (3.31)

Since σ0(s0) = 0, the sum in the second term above now starts at k1 = 2. Thus the

term itself, through the manipulation of the summation index, can then be re-written

as
n∑

k1=2

Ĩk1σ0(sk1−1) =
n−1∑
k1=1

Ĩk1+1σ0(sk1)

=
n∑

k1=1

[1− θ(k1 − (n− 1))]Ĩk1+1σ0(sk1), (3.32)

where θ is the Heaviside function. Let C0
nk1

= δnk1 − Ik1 + Ĩk1 , then

σ1(sn) =
n∑

k1=1

{
C0
nk1 − [1− θ(k1 − (n− 1))]Ĩk1+1 + δnk1

}
σ0(sk1)

=
n∑

k1=1

C1
nk1σo(sk1). (3.33)

For the next iteration,

σ2(sn) =
n∑

k2=1

C0
nk2σ1(sk2)−

n−1∑
k2=1

Ĩk2+1σ1(sk2) + σ0(sn)

=
n∑

k2=1

{
C0
nk2 − [1− θ(k2 − (n− 1))]Ĩk2+1

}
σ1(sk2) + σ0(sn). (3.34)

Now let Cnkj = C0
nkj
− [1− θ(kj − (n− 1))]Ĩkj+1 and using (3.33),

σ2(sn) =
n∑

k2=1

k2∑
k1=1

(
Cnk2C

1
k2k1 + δnk1

)
σ0(sk1)

=
n∑

k2=1

k2∑
k1=1

C2
nk1σ0(sk1). (3.35)
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Hence in general for the mth iteration,

σm(sn) =
n∑

km=1

...

k2∑
k1=1

(
CnkmC

m−1
kmk1

+ δnk1

)
σ0(sk1)

=
n∑

km=1

...

k2∑
k1=1

Cmnk1σ0(sk1). (3.36)

Therefore the uncertainty for each data point without ISR is then given by

(δσm(sn))2 =
n∑
a=1

n∑
b=1

∂σm(sn)
∂σ0(sa)

Vab
∂σm(sn)
∂σ0(sb)

(3.37)

=
n∑
a=1

n∑
b=1

CmnaVabC
m
nb. (3.38)

In addition, the results from equation (3.36) match the ones calculated using the itera-

tion procedure. The final step in this ‘de-convolution’ involves subtracting the photon

VP effects. Recall that the BaBar Rb data was converted to cross section measurements

when subtracting the Υ(4S) tail and that for this measurement, BaBar used the bare

e+e− → µ+µ− process for normalisation. Thus, this corresponds to case (1) in how to

correct for VP effects from Section 2.1.1. So

Rb, w/o ISR(s) =
3s

4πα2(s)
σm(s), (3.39)

where the running of α(s) was taken as a constant with the value of α2(s) = α2/0.929

within the energy region covered by the BaBar data points. This was done because

α(s) does not vary by a lot in this region, hence it is akin to applying a small effect on

to a small correction of α itself, which can be ignored. Fig. 3.4 shows the result of the

whole ‘de-convolution’ procedure, this matches the results shown in Figure 1 of [266].

With the BaBar Rb data ‘de-convoluted’ of ISR, we can then add Rudsc and include

it as a data set in the inclusive channel. This is done with the help of the rhad program

again, where the quantity Rhad(s)−Rt(s)−Rb(s) was calculated at the energies of the

BaBar data points6 and then added to them. The result of including this BaBar Rb
data in the fit can be seen in Fig. 3.5. It is clear from the fit shown by the (yellow)

band that much more structure can now be observed in this energy region, which was

populated by only a couple of old data points previously. The (red) curved line displays

the result of adding the Υ(5S) and Υ(6S) resonances (calculated using a Breit-Wigner

parametrisation) incoherently to Rudsc values (from the program rhad). This shows

that adding these contributions on the level of the cross section is a poor approximation.

Interference effects on the amplitude level plays an important role here and the different

contributions must be summed coherently. Since the new BaBar Rb data is able to
6Note that Rt(s) ≡ 0 since the energies used are too low for the top quark to have any measurable

contribution.

100



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10.6  10.7  10.8  10.9  11  11.1  11.2  11.3

R
b(

s)

√s [GeV]

BaBar (09)
BaBar (09) (incl. ISR)

Fig. 3.4: Plot of the BaBar Rb data (with the radiative tails of the Υ(1S − 4S)
resonances subtracted) before and after removing ISR.
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(red) curved line with two peaks shows the result of incoherently adding the Υ(5S) and
Υ(6S) resonances with Rudsc.

resolve the resonances of these two Υ states, there is no longer any need to add them

separately in future analyses. Due to the weighting of the g−2 kernel function, this will
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have minimal impact on the aµ result. However, for ∆α(5)
had(q2) and α(q2), the effects

from this change will be more important and they will be presented in our upcoming

paper [253].
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Chapter 4

Conclusions and outlook

4.1 The SM prediction of the muon g − 2

4.1.1 Total hadronic contribution

The leading order hadronic vacuum polarisation contribution to aµ using the updated

methodology, updated data compilation along with contributions from pQCD, ChPT

and narrow resonances is determined to be

ahad, LOVP
µ = (694.91± 3.72exp ± 2.10rad)× 10−10, (4.1)

where the first error comes from experimental data and the second error comes from the

treatment of radiative corrections. For the higher order hadronic vacuum polarisation

contribution, the individual results from the three classes of diagrams are

ahad, HOVP(a)
µ = (−20.61± 0.11exp ± 0.07rad)× 10−10, (4.2)

ahad, HOVP(b)
µ = (9.94± 0.06exp ± 0.03rad)× 10−10, (4.3)

ahad, HOVP(c)
µ = (0.34± 0.01exp ± 0.00rad)× 10−10. (4.4)

Adding these together and keeping in mind that the errors from (a) and (b) are almost

completely anti-correlated and are thus subtracted linearly, the total HOVP contribu-

tion to aµ is

ahad, HOVP
µ = (−9.84± 0.06exp ± 0.04rad)× 10−10. (4.5)

For the hadronic light-by-light contribution, we have elected to use the recent compi-

lation from Prades, de Rafael and Vainshtein [112],

ahad, LbL
µ = (10.5± 2.6)× 10−10, (4.6)

which is equivalent to the recent result from Nyffeler and Jegerlehner, [11, 111],

ahad, LbL
µ = (11.6± 4.0)× 10−10. (4.7)

Therefore the total hadronic contribution to aµ comes to

ahad
µ = (695.6± 4.9)× 10−10. (4.8)
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The total uncertainty is calculated as follows. Since the LOVP and HOVP contributions

are almost completely anti-correlated, their errors are added linearly with a relative

minus sign. Then the uncertainty from the LbL contribution is added quadratically.

4.1.2 Total contribution to aµ and comparisons

For the QED contribution to aµ we use the value from [9,34]

aQED
µ = (11 658 471.808± 0.015)× 10−10, (4.9)

as stated in Section 1.3. For the electroweak sector, we use

aEW
µ = (15.4± 0.2)× 10−10 (4.10)

from [55]. Thus adding these to the total hadronic contribution from above we arrive

at

aSM
µ = (11 659 182.8± 4.9)× 10−10, (4.11)

where the errors have been added in quadrature. This result is now even more precise

than the formidable experimental measurement from BNL [10]. Recently there was

a slight change in the ratio of the muon-to-proton magnetic moment published from

CODATA [269]. This means the experimental value for aµ is now slightly increased

[270,271]

aEXP
µ = (11 659 208.9± 6.3)× 10−10, (4.12)

which leads to a difference of

aEXP
µ − aSM

µ = (26.1± 8.0)× 10−10, (4.13)

corresponding to a 3.3σ discrepancy.

Fig. 4.1 gives the comparison between some recent SM predictions from various

groups (shown by the markers) and the latest world average of the experimental value

of aµ ((orange) band), which is dominated by the results from the BNL experiment. It is

clear that in spite of the changes in recent years, the different SM predictions agree quite

well with each other. Furthermore, the discrepancy in this observable have consolidated

at a level of more than 3σ. Although this discrepancy is not large enough to establish

a definitive deviation from the SM, it should be noted that all the contributions have

been carefully checked1. In addition, it is becoming more challenging to explain this

discrepancy by altering the hadronic data to increase the total hadronic contribution.

Since this would result in more tension with the EW precision fits of the SM and the

limits on the mass of the Higgs boson [274,275].
1Although the very recent developments in the hadronic light-by-light contribution need to be

investigated further.
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Fig. 4.1: Standard model predictions of aµ by several groups compared to the mea-
surement from BNL [10, 270, 271]. The SM predictions are from HMNT (06) [62], JN
(09) [11], Davier et al. [78], JS (11) [82], HLMNT (10) [272, 273], and HLMNT (11) is
this work. Note that the value from Jegerlehner and Szafron includes τ spectral func-
tion data, which, in their approach, are fully consistent with and confirm the e+e− data.
HLMNT (10) is a preliminary version of this work, presented at conferences [272,273],
but before the full updated data set was available.

4.2 The running of the QED coupling at the Z-boson mass

With the same compilation of hadronic data, we have also been able to compute the

updated prediction of the five-flavour hadronic contribution to the running of the QED

coupling, with a value of

∆α(5)
had(M2

Z) = (276.26± 1.38)× 10−4 (4.14)

at the Z-boson mass. This updates the prediction of the running of the QED coupling

itself, whose value at the Z scale is,

α(M2
Z)−1 = 128.944± 0.019. (4.15)

Fig. 4.2 shows that the contribution to ∆α(5)
had(M2

Z) receives very different weightings

from the energy of the hadronic data compared to ahad, LOVP
µ . There is much less
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Fig. 4.2: The pie diagrams in the left- and right-hand columns show the fractions
of the total contributions and (errors)2, respectively, coming from various energy in-
tervals in the dispersion integrals (1.52) and (3.4). The pie diagrams for the LO
hadronic contribution to g− 2, shown in the first row, correspond to sub-contributions
with energy boundaries at mπ, 0.6, 0.9, 1.4, 2 GeV and ∞, whereas for the hadronic
contribution to the QED coupling, shown in the second row, the boundaries are at
mπ, 0.6, 0.9, 1.4, 2, 4, 11.09 GeV and ∞. In the (error)2 pie diagrams we also included
the (error)2 arising from the treatment of the radiative corrections to the data.

emphasis on the low energy regions, while the single biggest contribution comes from

above 11 GeV. Using the this updated value of ∆α(5)
had(M2

Z), the EW precision fits of

the SM gives a more constrained mass limit for the Higgs boson. The SM preferred

value at 68% confidence level is now

mH =
(
91+30
−23

)
GeV, (4.16)

which lies in a region excluded by the direct searches.

4.3 Summary

This work was aiming to obtain the most accurate and precise determination of the

anomalous magnetic moment of the muon aµ = (g − 2)/2 and for the QED coupling

at the Z-boson mass. These are two are quantities in the SM of particle physics. In

particular, the aµ discrepancy between the experimental measurement and theoretical

prediction is arguably the best clue at present for new physics beyond the SM.
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Currently, the greatest source of uncertainty for the predictions come from the

leading order hadronic vacuum polarisation contribution. This analysis employs a

data-drive approach to tackle this issue by making use of as many e+e− hadronic an-

nihilation measurements as possible. The combination of measurements from different

experiments in a reliable and consistent manner is achieved using a flexible clustering

algorithm, with local χ2 inflation where necessary. From the top pie graphs in Fig. 4.2,

the single largest central value and error of the LO VP contribution to aµ, both origi-

nate from the e+e− energy region between 0.6 and 0.9 GeV, where the π+π− final state

dominates.

The new radiative return data from BaBar and KLOE had a limited effect in de-

creasing the uncertainty of the π+π− channel given the level of precision of these data.

This is due to tension between data from the different measurements. In particular,

the BaBar data is significantly larger than ones from KLOE at energies above 0.8 GeV.

Thus, there is much room for improvement and investigation from future measurements.

Other new data using both direct scan and radiative return methods have improved

the description of the energy region below 2 GeV, especially for channels with high mul-

tiplicities. In addition, the use of new isospin relations derived by [78] have significantly

reduced the error from channels not measured by experiments. Therefore this analysis

has revisited the issue of choosing either the sum of exclusive final states or data from

the e+e− → all hadrons inclusive channel for the energy region 1.43 .
√
s ≤ 2 GeV.

There is a discrepancy between these two choices, where the sum of exclusive data

is more precise but higher than the inclusive data. Thus in a previous analysis [61],

QCD sum rules were used to discriminate between them. This procedure has also been

refined with an updated Adler function and better sum rule choices. Hence, along with

the updated data compilation, this analysis now finds good agreement of the sum rules

with the world average for αs(M2
Z) when the sum of exclusive channels is used, and less

agreement with the use of inclusive data. This reverses the finding of [61] and thus the

sum of exclusive channels is now the default choice. However, it is worth noting that

the sum of exclusive data is still higher than the inclusive data, and the shapes of their

hadronic R-ratio plot are still different.

Moreover, in the energy region between 2.6 GeV and the charm threshold, new

data from BES are in near perfect agreement with predictions from pQCD. Hence it

was decided that pQCD with a relative error corresponding to that from the BES data

should be used in this region. If the use of pQCD is extended further down to 2 GeV,

then the central value for aµ would be shifted down slightly (1.2× 10−10) and the sum

rules would favour the use of exclusive data even more (see Fig. 2.39).

With all these choices and refinements taken into account, this work arrives at the

results shown in the sections above. There is, however, one set of data that did not

make it into the main results. In the energy region 10.54 to 11.20 GeV, BaBar have
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taken a detailed measurement of Rb. However, this data includes initial state radiation,

which must be removed before the data can be used. This was done by following the

procedure described in [266]. Rusdc values was then added to this data so it can be used

as part of the inclusive channel. Due to the weighting of the g− 2 kernel, this will have

minimal impact on the central value and uncertainty of aµ. However, it will be very

useful for the calculation of the QED coupling, as the energy region this data covers

was not measured very well at all with only a couple of data points present. The effect

of including this BaBar Rb measurement on the running of the QED coupling will be

presented in a forthcoming paper [253].

4.4 Outlook

There are numerous interesting prospects for improvement in both the theoretical and

experimental side associated with the determination of the muon g − 2. Regarding

further measurements of e+e− → hadrons, the new CMD-3 and SND direct scan ex-

periments at the VEPP-2000 collider in Novosibirsk are already taking data [276]. They

will provide crucial cross checks in the energy region between 1− 2 GeV, especially for

hadronic final states with high multiplicities. Moreover the KEDR experiment at the

VEPP-4M collider are planning to take inclusive R(s) measurements up to 10 GeV.

This will provide very useful information and checks for the relatively sparsely popu-

lated higher energy regions. In addition, the BES-III experiment at the BEPCII collider

in Beijing are also going ahead with measurements of R at higher energies. Further-

more, more radiative return data from KLOE and BaBar are also expected. Further

in the future, there is a strong possibility for an upgraded DAΦNE detector [277] and

Super-B factories. These experiments will be pivotal in improving the precision of

the theoretical determinations of the hadronic vacuum polarisation contributions. The

very recent results on the τ versus e+e− data are very interesting and show encouraging

signs of fully resolving this issue in the future, and further improving the precision of

the hadronic vacuum polarisation contribution to aµ.

Regarding the hadronic light-by-light contribution, the proposed γγ physics pro-

gramme at the upcoming KLOE-2 experiment could be very useful. By measuring

the γγ transition form factors of pseudoscalars, it will provide better constraints on

these objects and hopefully help to improve the model predictions. Furthermore, Lat-

tice QCD looks promising in providing an independent determination of ahad, LbL
µ in

the near future. It will be very interesting to see how their results compare with the

mainstream, model dependent calculations.

The next generation of experiments for measuring aµ, which are striving for approx-

imately four fold increase in precision compared to BNL, are being planned at Fermilab

(E989) [278] and J-PARC [279]. Therefore, improvements to the theoretical calculation

of ahad
µ are critical if the SM prediction of aµ is to match the precision set by the new
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experiments. With this aim in mind the methodology of this analysis may also need

to be improved to include inter-experiment and inter-channel correlations. Some of

these refinements and prospects of course will also help with the determination of the

running of the QED coupling.

Lastly, the QCD sum rule analysis that is performed in this work have the potential

to be used for precise determinations of certain parameters within QCD. For exam-

ple, condensates are important for the study of low energy hadronic physics, however

they are not very well determined. For some, even their signs may be in disagreement

between different determinations [66, 280]. Condensates such as 〈GG〉 enter the sum

rule as part of the non-perturbative contribution to the Adler function. Therefore, by

keeping the condensate of interest as a free parameter but keeping other constants such

as αs(M2
Z) fixed, the e+e− hadronic annihilation data can then be used to determine

that condensate. In the same spirit αs(M2
Z) can also be determined this way. Further-

more, a fit with multiple parameters that simultaneously determines all the objects of

interest can also be done and may be preferred. With the increasing precision of the

e+e− data, this method has the potential to become quite competitive provided that a

suitable set of sum rules can be found.
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Appendix A

Sum rule integrals

A.1 Integrals for D0(s) contributions

This section will list integrals of the form∫
C

ds
(

ln
−s
s0

)p( s

s0

)q
, (A.1)

where the contour C runs counterclockwise from s = s0 + iε to s = s0− iε on a circle of

radius s0, centered on the origin in the complex s-plane. Therefore we can parametrise

s using the angle θ,

s = −s0e
iθ, (−π ≤ θ ≤ π) (A.2)

ds = −is0e
iθdθ. (A.3)

Take (p, q) = (0,−1) as an example,∫
C

ds
s0

s
=
∫ π

−π
dθ is0 = 2πis0. (A.4)

However, we require p = 1, 2, 3 and q = −1, 0, 1, 2 thus for q = −1∫
C

ds ln
(−s
s0

)(s0

s

)
= 0, (A.5)∫

C
ds ln2

(−s
s0

)(s0

s

)
= −2

3
π3is0, (A.6)∫

C
ds ln3

(−s
s0

)(s0

s

)
= 0. (A.7)

For q = 0, ∫
C

ds ln
(−s
s0

)
= 2πis0, (A.8)∫

C
ds ln2

(−s
s0

)
= −4πis0, (A.9)∫

C
ds ln3

(−s
s0

)
= (12π − 2π3)is0. (A.10)
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For q = 1, ∫
C

ds ln
(−s
s0

)(
s

s0

)
= πis0, (A.11)∫

C
ds ln2

(−s
s0

)(
s

s0

)
= −πis0, (A.12)∫

C
ds ln3

(−s
s0

)(
s

s0

)
=
(

3
2
π − π3

)
is0. (A.13)

For q = 2, ∫
C

ds ln
(−s
s0

)(
s

s0

)2

=
2
3
πis0, (A.14)∫

C
ds ln2

(−s
s0

)(
s

s0

)2

= −4
9
πis0, (A.15)∫

C
ds ln3

(−s
s0

)(
s

s0

)2

=
(

4
9
π − 2

3
π3

)
is0. (A.16)

A.2 Integrals for Dm(s) and Dnp(s) contributions

∫
C

ds
1
s2

ln
(−s
s0

)
= −2πi

1
s0
, (A.17)∫

C
ds

1
s3

ln
(−s
s0

)
= −πi 1

s2
0

. (A.18)

Other required integrals can be found above.
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