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Do we understand the unquenched value of fB?
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Abstract. I review our qualitative understanding of the increase in the value of the

B meson decay constant (fB), when dynamical fermions are included in lattice QCD

calculations.

1. Introduction

The over determination of the CKM matrix, using the new data from the B factories

at SLAC and KEK, is a sensitive test of the standard model [1]. The determination of

the CKM matrix elements from experiment depends critically on hadronic parameters,

such as fB, BB, BBs
and BK , most of which are inaccessible to experiment, but can be

calculated from lattice QCD.

In a recent survey of the latest lattice QCD results for the fB (the decay constant

of the B meson) Bernard [2] quotes: f quenched
B = 175(20) MeV from quenched QCD and

fB = 200(30) MeV for the value of the B decay constant in full QCD. Although all lattice

QCD calculations [2] have seen an increase in fB between quenched and unquenched

QCD, the effect in the world “average” is only at the one σ level. The increase in fB

between quenched and full QCD is more significant for an individual collaboration’s

results, for example CP-PACS, obtain [3]
f

nf =2

B

f
nf =0

B

= 1.11(6). As unquenched simulations

are so computationally demanding, it seems useful to review the additional arguments

that support the increase in decay constants due to the inclusion of dynamical fermions.

2. What are unquenching effects?

Lattice QCD is a “clever” finite difference approximation to continuum QCD [4]. Lattice

QCD calculations involve computing the partition function

Z =
∫ ∏

x

dU(x) exp(−SG)(det(M))nf (1)

where U describe the gauge fields, SG is the lattice representation of the gauge action

(1

4
FµνF

µν) and M is a lattice representation of the Dirac operator for quarks. The

quark fields have been integrated out. The dynamics of the gluon fields depends on
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the determinant of the Dirac operator. The determinant describes the dynamics of the

sea quarks and is very expensive to compute. Until recently, most phenomenological

lattice calculations did not include the determinant in the dynamics (quenched QCD).

Surprisingly, quenched QCD calculations describe experiment reasonably well. The

biggest recent study of quenched QCD by the CP-PACS collaboration [5] found that

the spectrum of light hadrons disagreed with experiment at the 10% level.

The results from an individual calculation depend on the lattice spacing a and

physical volume. These errors may be removed by repeating the calculation at different

lattice spacings and volumes and then extrapolating the results to the continuum and

infinite volume limit. For example, in the recent CP-PACS calculation [3] they obtain

fB = 287(7) MeV, 234(8) MeV, and 208(10) MeV, at lattice spacings: 0.22 fm, 0.16

fm, and 0.11 fm respectively, from a calculation of nf = 2 QCD. CP-PACS prefer to

quote fB = 208(10)(11) MeV as their continuum result, however Bernard [2] prefers to

extrapolate the CP-PACS data to the continuum assuming a quadratic dependence on

the lattice spacing (there are good, but not totally rigorous arguments for this type of

extrapolation) and obtains fB = 190(12)(26) MeV. This kind of ambiguity in the final

analysis of lattice results is the cause of the large systematic errors in the final results

of lattice calculations. The cost of lattice QCD calculations that include dynamical

fermions goes (something) like [6] 1

a6.5 where a is the lattice spacing, so halving the

lattice spacing is very computationally expensive.

3. How to understand unquenching

There is a simple model of the effect of unquenching that is based on the quark

model [7, 8, 9]. Consider the Richardson heavy quark potential [10].

V (q) ∼
4π

(11 − 2
nf

3
)

1

q2 ln(1 + q2/Λ2)
(2)

where nf is the number of flavours. Equation 2 or the potential extracted from a lattice

calculation is used in Schrödinger’s equation to calculate the wave function of mesons.

The decay constant is computed using the Van Royen-Weisskopf formulae

f ∝| ψ(0) | (3)

In position space the potential in equation 2 at small radial separations is deeper in

the full theory (nf=3) relative to the quenched theory (nf=0). So the decay constant

(computed from equation 3) is higher in the full theory than in quenched QCD. There

is evidence from many lattice QCD calculations of the heavy quark potential, that

dynamical fermions produce a similar effect to the nf dependence of the Richardson

potential [11].

The MILC collaboration [9] have systematically studied this model in an

unquenched simulation using staggered fermions. From the graphs in the paper [9],

at mPS/mV ∼ 0.58, the effect of unquenching is 3% for fπ and 7% for fB. The MILC

collaboration found that unquenching was smaller on the ratio of decay constants that
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on individual decay constants in this model. A key qualitative prediction of this model

is that the decay constant in unquenched QCD is greater than the quenched value. Also

the unquenching effect should be larger for fB than fπ.

Another way to understand the effect of unquenching is to use a quenched

Lagrangian [12, 13]. The idea is similar to Chiral Lagrangian’s, where a Lagrangian

is written in terms of hadron fields with the same symmetries as QCD. A number of

unknown parameters enter the Chiral Lagrangian, that must be fixed from experiment

(or from lattice calculations). Once the parameters are fixed, the Lagrangian can be

used to make predictions. For the case of quenched QCD, ghost fields are introduced to

cancel the quark determinants. The resulting theory has a different symmetry to QCD,

but the idea is basically the same as for continuum chiral perturbation theory.

The formalism for heavy-light mesons was developed by Booth [14] and Sharpe and

Zhang [15]. The quenching errors are estimated by comparing the chiral logs (some of

the loop effects) in quenched and full QCD. This is thought to be an upper bound on the

magnitude of the quenching effects [15]. Unfortunately, the estimate of the quenching

errors involves 7 parameters that are hard to determine accurately. The message from

this analysis was that fB in full QCD could be either greater than or less than the

quenched value. Also, it was possible that the ratio fBs
/fB had large quenching errors

(this has not been found in simulations [2]).

4. Lattice results for known decay constants

The results of the first systematic studies of decay constants in quenched QCD have

been reviewed by Sharpe [6]. Sharpe concluded that fπ

mρ
was lower than experiment,

after the continuum limit had been taken. The recent large CP-PACS collaboration [5]

study of quenched QCD found that in quenched QCD f quenched
π (f quenched

K ) = 120.0±5.7

(138.8 ± 4.4) MeV, that are smaller than experiment by 2σ (5σ).

After the continuum extrapolation, the light decay constants from quenched QCD

are lower than experiment, consistent with the quark model in section 3. The SESAM

collaboration [16] found at one lattice spacing that the pion decay constant was

approximately one sigma larger with dynamical fermions, than from an equivalent

quenched simulation. The opposite trend was seen in the QCDSF/UKQCD [17] data. It

will be difficult to determine the effect of dynamical fermions on light decay constants,

until a continuum extrapolation is done.

Including heavy quarks (Charm and Bottom) in lattice QCD calculations requires

the introduction of new techniques, such as effective field theories for the heavy

quarks [2]. As a test of the new heavy quark methods, the fDs
decay constant is

computed and compared against experiment. The value for fDs
quoted in the particle

data table [18] is 280 ± 19 ± 28 ± 34 MeV. In table 1, I have collected some results for

fDs
from lattice gauge theory calculations (all the various errors have been added in

quadrature). All the lattice results for quenched QCD are lower than the experimental

value. This is consistent with the picture that unquenching raises the value of a decay
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Group Comments fDs
MeV σ

Average (lattice) [19] Review in 1998 220(25) 2.2

JLQCD [20] Continuum limit 224(20) 2.8

MILC [21] Continuum limit 210(27) 2.6

Collins et al. [22] a = 0.18 fm 223(54) 1.1

UKQCD [23] a = 0.068 fm 241(30) 1.3

Table 1. Summary of recent quenched lattice results for fDs
. The σ column is the

number of lattice errorbars below the central experimental value of 280 MeV.

constant. The latest results [2] from lattice calculations show a 3-8% increase in fDs
,

when dynamical fermions are included.

5. Conclusions

A consistent picture does seem to emerge from lattice QCD calculations, that

unquenching does raise the value of decay constants. However, the errors on the

calculations need to be reduced. Ideally, a calculation of fB similar to the recent CP-

PACS calculation is required [3], but at lighter sea masses and smaller lattice spacings.

Improvements in lattice techniques and faster computers will reduce the errors on fB.

References

[1] Y. Nir, 2000, Preprint hep-ph/0008226.

[2] C. Bernard, 2000, Preprint hep-lat/0011064.

[3] CP-PACS, A. A. Khan et al., 2000, Preprint hep-lat/0010009.

[4] R. Gupta, 1999, Preprint hep-lat/9905027.

[5] CP-PACS, S. Aoki et al., Phys. Rev. Lett. 84, 238 (2000), Preprint hep-lat/9904012.

[6] S. R. Sharpe, 1998, Preprint hep-lat/9811006.

[7] A. X. El-Khadra, Nucl. Phys. Proc. Suppl. 30, 449 (1993), Preprint hep-lat/9211046.

[8] F. Butler, H. Chen, J. Sexton, A. Vaccarino, and D. Weingarten, Nucl. Phys. B421, 217 (1994),

Preprint hep-lat/9310009.

[9] C. Bernard et al., Phys. Rev. D62, 034503 (2000), Preprint hep-lat/0002028.

[10] J. L. Richardson, Phys. Lett. B82, 272 (1979).

[11] G. S. Bali, 2000, Preprint hep-ph/0001312.

[12] S. R. Sharpe, Phys. Rev. D46, 3146 (1992), Preprint hep-lat/9205020.

[13] C. W. Bernard and M. F. L. Golterman, Phys. Rev. D46, 853 (1992), Preprint hep-lat/9204007.

[14] M. J. Booth, Phys. Rev. D51, 2338 (1995), Preprint hep-ph/9411433.

[15] S. R. Sharpe and Y. Zhang, Phys. Rev. D53, 5125 (1996), Preprint hep-lat/9510037.

[16] SESAM, N. Eicker et al., Phys. Rev. D59, 014509 (1999), Preprint hep-lat/9806027.

[17] UKQCD, R. Horsley, 2000, Preprint hep-lat/0010059.

[18] D. E. Groom et al., Eur. Phys. J. C15, 1 (2000).

[19] T. Draper, Nucl. Phys. Proc. Suppl. 73, 43 (1999), Preprint hep-lat/9810065.

[20] JLQCD, K.-I. Ishikawa et al., Phys. Rev. D61, 074501 (2000), Preprint hep-lat/9905036.

[21] C. Bernard et al., Phys. Rev. Lett. 81, 4812 (1998), Preprint hep-ph/9806412.

[22] S. Collins et al., 2000, Preprint hep-lat/0007016.

[23] UKQCD, K. C. Bowler et al., 2000, Preprint hep-lat/0007020.

http://arXiv.org/abs/hep-ph/0008226
http://arXiv.org/abs/hep-lat/0011064
http://arXiv.org/abs/hep-lat/0010009
http://arXiv.org/abs/hep-lat/9905027
http://arXiv.org/abs/hep-lat/9904012
http://arXiv.org/abs/hep-lat/9811006
http://arXiv.org/abs/hep-lat/9211046
http://arXiv.org/abs/hep-lat/9310009
http://arXiv.org/abs/hep-lat/0002028
http://arXiv.org/abs/hep-ph/0001312
http://arXiv.org/abs/hep-lat/9205020
http://arXiv.org/abs/hep-lat/9204007
http://arXiv.org/abs/hep-ph/9411433
http://arXiv.org/abs/hep-lat/9510037
http://arXiv.org/abs/hep-lat/9806027
http://arXiv.org/abs/hep-lat/0010059
http://arXiv.org/abs/hep-lat/9810065
http://arXiv.org/abs/hep-lat/9905036
http://arXiv.org/abs/hep-ph/9806412
http://arXiv.org/abs/hep-lat/0007016
http://arXiv.org/abs/hep-lat/0007020

