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Abstract 

 
The reversible covalent conjugation of the small highly conserved ubiquitin 

protein modifier to selective substrates plays central roles in countless 

proteolytic and non-proteolytic cellular functions. Substrate protein 

ubiquitination is co-ordinated by the sequential activity of three distinct classes 

of proteins: (i) E1-activating enzymes, (ii) E2-conjugating enzymes, and (iii) 

E3-protein ligases. Really Interesting New Gene (RING) proteins represent 

the largest family of E3-proteins comprising over half of predicted human E3-

ligases. As such, E3-RING proteins play pivotal roles in controlling both 

specificity and functionality within the ubiquitin system. E3-RING proteins 

function as catalytically inactive molecular scaffolds that position Ub~E2 and 

substrate proteins in close proximity for ubiquitination to occur. Within the 

active ligase complex, E3-RING proteins and E2 conjugating enzymes are 

believed to select protein substrate(s) and the form of conjugated ubiquitin 

upon them, respectively. Whilst E3-RING/E2 partners have been investigated 

in recent HTP screen approaches, a key area of data paucity exists for 

integral membrane E3-RING (TM-E3-RING) proteins. 

 

As such, high throughput yeast-two-hybrid assays were performed for the 

entire complement of TM-E3-RING proteins and E2-conjugating enzymes. A 

broad subset of TM-E3-RING/E2 positive and negative Y2H interactions was 



re-tested in secondary luciferase protein complementation assays (PCAs), 

which increased confidence in Y2H-derived interactions and extended 

network coverage. Data from these studies was collated with previously 

published binary TM-E3-RING/E2 interaction data to provide a high-

confidence TM-E3-RING/E2 network consisting of 312 unique binary 

interactions. In vitro auto-ubiquitination assays were employed to assign 

functional activity to TM-E3-RING/E2 protein pairs, revealing high verification 

rates for both positive and negative Y2H or PCA binary interaction data. 

Furthermore, novel trends in the generation of different forms of ubiquitin 

modifications were identified between selective TM-E3-RING/E2 pairs. 

 

Finally, Y2H screens were also performed to identify TM-E3-RING 

dimerization events, which represent an emerging theme in ubiquitin system 

regulation. In total 71 TM-E3-RING/TM-E3-RING interactions were reported 

demonstrating high incidence of these binding events. Novel data was 

combined with known interactions to generate a TM-E3-RING network 

containing >500 binary interactions, encompassing both components of the 

core ubiquitin cascade and non-ubiquitome proteins. This TM-E3-RING-

centric network provides a valuable tool for the investigation of specificity and 

regulation of TM-E3-RING proteins and specific ubiquitin cascades. 
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Chapter 1: Introduction       

1.1. The human ubiquitin system   

1.1.1. Intracellular proteolysis and the history of ubiquitin 

Intracellular proteins exist in a dynamic state of synthesis and degradation. Prior to 

the discovery of intracellular protein degradation in mammalian cells, the accepted 

paradigm was that structural proteins were both stable and static whilst dietary 

proteins served predominantly as energy providing fuel (Ciechanover 2005). This 

prevailing notion was challenged by the demonstration that following administration 

of 15N-labelled tyrosine to rats, only ~ 50% was recovered within urine with the 

remainder accumulating in tissue proteins (Schoenheimer, Ratner et al. 1939). 

Subsequent extensive research in the field of protein turnover has elevated 

intracellular proteolysis from a vague concept to a spatially and temporally 

controlled process, which is essential for the correct functioning of all eukaryotic 

cells (Ciechanover 2005). 

 

The discovery of the lysosome provided the first mechanistic description of how 

proteins could be degraded in a selective manner within the cell ((De Duve, Gianetto 

et al. 1953) and reviewed in (Luzio, Pryor et al. 2007)). The acidified, hydrolase-rich 

environment of the membrane-enclosed lysosomal compartment provides an 

intracellular location where endocytosed and proteins from the late secretory 

pathways are degraded whilst protecting other cellular contents from non-specific 

actions of lysosomal hydrolases (Luzio, Pryor et al. 2007). However, subsequent 

experimental evidence indicated that lysosomal activity could not be entirely 

responsible for the degradation of all intracellular proteins. Firstly, inhibition of 

lysosomal proteases by lysosomotropic agents selectively inhibited degradation of 
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endocytosed proteins while soluble cytoplasmic proteins remained vulnerable to 

degradation (Poole, Ohkuma et al. 1977). In addition, rabbit reticulocytes, which lack 

lysosomes, were found to be capable of degrading abnormal haemoglobin proteins 

in an ATP-dependent manner (Etlinger and Goldberg 1977).  

 

The characterisation of a cell-free proteolytic preparation derived from rabbit 

reticulocytes identified a heat-stable low molecular weight protein, termed ubiquitin, 

which could be covalently conjugated to target substrates in a reversible manner 

upon reconstitution of the entire cell-free proteolytic preparation (Ciechanover, Elias 

et al. 1980; Wilkinson, Urban et al. 1980). The addition of four or more ubiquitin 

moieties to substrate proteins was shown to serve as a signal for degradation via 

the high molecular weight 26S proteasome complex (Ciechanover, Elias et al. 1980; 

Hough and Rechsteiner 1986; Hough, Pratt et al. 1987; Arrigo, Tanaka et al. 1988). 

The 26S proteasome is a chambered protease complex comprising a central 20S 

proteolytic core and two 19S regulatory complexes, which are responsible for the 

binding of ubiquitinated substrates, the cleavage of ubiquitin, and the unfolding and 

translocation of substrates into the proteolytic core (Pickart and Cohen 2004).  

 

Following the discovery of ubiquitin as a key regulator of intracellular protein 

degradation, the importance of the ubiquitin system in countless non-proteolytic 

processes has been defined. Indeed, much of the recent focus in ubiquitin-related 

research has focussed on the non-degradative roles of ubiquitin (Welchman, 

Gordon et al. 2005). As such, the covalent conjugation of ubiquitin to substrate 

proteins is now recognised as a key regulator of a vast array of cellular functions 

including protein turnover, DNA repair, cell cycle control, intracellular signalling, 
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endocytosis and other membrane trafficking events (Welchman, Gordon et al. 

2005).  

1.1.2. Introduction to the human ubiquitination enzymatic cascade 

The canonical mechanism of protein ubiquitination is co-ordinated by the sequential 

activity of three distinct classes of proteins: (i) E1-activating enzymes, (ii) E2-

conjugating enzymes, and (iii) E3-ligases. In addition, ~ 80 deubiquitinating 

enzymes (DUBs) have been identified, which remove ubiquitin moieties from 

modified substrates and disassemble ubiquitin chains (Sowa, Bennett et al. 2009). 

As such, protein ubiquitination should be regarded as a highly dynamic process, 

which controls the function and stability of a vast array of different cellular 

components (Figure 1.1). 

 

This chapter provides an overview of the current understanding of the ubiquitin 

conjugation machinery and how these cascade components operate in a co-

ordinated manner to control modification of specific substrates. Finally, a range of 

protein-protein interaction methods will be reviewed and their potential utility for 

investigating human ubiquitination networks introduced. 

1.2. Ubiquitin and ubiquitin-like molecules    

Ubiquitin is a small highly conserved, 76 residue (8.5kDa), protein which undergoes 

reversible covalent conjugation to target proteins, predominantly via isopeptide bond 

formation between the C-terminal glycine of ubiquitin and either the ε-amino group 

of a lysine residue or the N-terminus of substrate proteins (Weissman 2001; Dye 

and Schulman 2007). Atypical conjugation of ubiquitin to target proteins can also 

occur by formation of thioester linkages between ubiquitin’s C-terminal glycine and 

target protein cysteine, threonine or serine residues in the presence of 
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Figure 1.1. The ubiquitination cascade. The conjugation of ubiquitin requires the sequential action of three classes of enzymes: 

E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. The active site cysteine of the E1-activating enzyme forms a 

thioester bond with the C-terminal glycine carboxyl group of ubiquitin in an ATP-dependent manner (A). The activated ubiquitin 

moiety is subsequently transferred to the active site cysteine of an E2-conjugating enzyme via a transthiolation reaction (B). 
Ubiquitin is attached to substrate lysine residues by an isopeptide bond in a reaction facilitated by E3 ligase proteins. E3 ligases 

can function either as catalytic intermediates, which bind ubiquitin via a thioester bond (HECT domain containing E3 ligases) (C) or 

act as molecular scaffolds to juxtapose E2 and substrate proteins in close proximity to facilitate direct transfer of ubiquitin from E2 

to substrate (D).  
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viral (Cadwell and Coscoy 2005) and human E3 ligase proteins (Shimizu, Okuda-

Shimizu et al. 2010). 

 

Ubiquitin is encoded by 4 genes within the human genome (UBB, UBC, UBA52, 

RPS27A) that encode either multiple concatenated ubiquitin moieties (UBB & UBC), 

or ubiquitin-fusion proteins, in which single ubiquitin moieties are fused to the N-

terminus of L40 (UBA52) or S27a (RPS27A) proteins (Wiborg, Pedersen et al. 1985; 

Baker and Board 1991). In each case, post-translational processing of gene 

products results in the generation of an intracellular pool of unconjugated ubiquitin 

terminating in a di-glycine motif that is required for ‘activation’ by specific E1 

enzymes for entry into the ubiquitination cascade. 

 

Since the discovery of ubiquitin, 17 other human ubiquitin-like (Ubl) proteins have 

been identified (Schulman and Harper 2009), which exhibit remarkable structural 

similarity to ubiquitin despite often exhibiting low sequence similarity (E.g. 

Figure 1.2B); NEDD8 shows the closest homology to ubiquitin sharing 58% 

homology (Schulman and Harper 2009). Ubl proteins belong to 9 subfamilies: 

Neuronal precursor cell-expressed developmentally down-regulated protein 8 

(NEDD8, (Kumar, Yoshida et al. 1993; Shen, Pardington-Purtymun et al. 1996)), 

small ubiquitin-like modifier (SUMO, (Loeb and Haas 1992; Shen, Pardington-

Purtymun et al. 1996)), interferon stimulated gene 15 (ISG15, (Loeb and Haas 

1992)), gamma-aminobutyric acid receptor-associated protein (GABARAP, (Tanida 

et al., 2002)), microtubule-associated protein 1 light chain 3 (MAP1LC3, (He, Dang 

et al. 2003)), ubiquitin-fold modifier 1 (UFM1, (Komatsu, Chiba et al. 2004)), 

ubiquitin-related modifier 1 (URM1, (Furukawa, Mizushima et al. 2000)), autophagy 

12 (ATG12, (Mizushima, Sugita et al. 1998)), and FAT10 (Bates, Ravel et al. 1997).  
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All Ub/Ubl proteins adopt a similar tertiary structure consisting of a highly compact 

and tightly hydrogen-bonded tertiary domain, comprising a four-stranded mixed β-

sheet, an α-helix, and a flexible C-terminal tail region terminating in a diglycine motif 

(Welchman, Gordon et al. 2005) (Figure 1.2B). In analogy to ubiquitin, members of 

the Ubl-subfamilies undergo covalent modification to target proteins (Schulman and 

Harper 2009).  

 

Ubiquitin, SUMO, and ISG15 moieties are conjugated to a diverse range of 

intracellular substrates whilst other Ubl proteins often exhibit more restricted 

substrate profiles, potentially reflecting more specific or restricted cellular functions 

(Kerscher, Felberbaum et al. 2006). For example, ATG12 has two reported 

substrates (ATG3 and ATG5) (Mizushima, Sugita et al. 1998; Radoshevich, Murrow 

et al. 2010), and ATG8 is attached to a specific phospholipid 

(phosphatidylethanolamine) (Ohsumi 2001) to regulate multiple steps in the process 

of autophagy. In agreement with potentially more restricted roles of many Ubls, the 

conjugation machinery for each of these modifiers comprises a limited number of 

enzymes in comparison to the expansive ubiquitin conjugation system (Kerscher, 

Felberbaum et al. 2006). The specialised roles of many Ubls may also be inferred 

by the finding that the expression and/or activation of many Ubl modifiers is 

controlled by specific cellular events. For example, ISG15 expression is induced by 

stimulation with type I interferons (IFN) (Loeb and Haas, 1992); ATG12 is activated 

during autophagy (Mizushima et al., 1998); and FAT10 expression is cell cycle 

regulated (Lim et al., 2006). 
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Figure 1.2. The ubiquitin superfold. (A) Ribbon diagram representing the tertiary structure of ubiquitin and the functional 

implications of specific linkages (Komander 2009). (B) Structural similarities of Ub and Ubl moieties through overlay of ribbon 

diagrams: ubiquitin (blue; PDB code P62988), SUMO-1 (green; PDB code P63165) and NEDD8 (red; PDB code Q15843) 

(Welchman, Gordon et al. 2005). 
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1.2.1. Differential architecture of Ub/Ubl modification 

Ubiquitin can be conjugated to other ubiquitin molecules through any of the six 

lysine residues in its primary sequence (K11, K27, K29, K33, K48, K63) or to the 

free amino group of its N-terminal methionine residue (Figure 1.2A). This allows for 

the assembly of a diverse range of ubiquitin architectures upon target proteins from 

conjugation of single ubiquitin moieties to one (mono-ubiquitination) or multiple 

substrate lysine residues (multi-ubiquitination) to the formation of ubiquitin chains 

linked through specific lysine residues (poly-ubiquitination). Additionally, linear poly-

ubiquitin chains have also been reported by formation of isopeptide bond linkages 

between the C-terminal glycine and N-terminal methionine residue of ubiquitin 

molecules both in vitro (Kirisako, Kamei et al. 2006) and in vivo (Niu, Shi et al. 

2011). Mass spectrometric analysis of ubiquitin chain linkage abundance within 

yeast (Xu, Duong et al. 2009) and humans (Ziv, Matiuhin et al. 2011) revealed that 

poly-ubiquitin chains of all lysine linkage specificity were detected, in the order of 

abundance: K48 (29%), K11 (28%), K63 (17%), K6 (11%), K27 (9%), K29 (3%), and 

K33 (3%) (Xu, Duong et al. 2009). Further complexity is added to the ubiquitin signal 

by the formation of complex, mixed linkage chain topologies that include branched 

chains (Komander 2009). The Ubl proteins belonging to the SUMO family (SUMO-1, 

SUMO-2, SUMO-3) have been also reported to poly-SUMOylate substrate proteins 

to mediate differential effects compared to mono-SUMOylation (Ulrich, Vogel et al. 

2005; Denuc and Marfany 2010). 

 

The elucidation of crystal structures for K11-, K6-, K63-, and linear di-ubiquitin 

structures and K48-tetra-ubiquitin chains has revealed the adoption of unique 

conformations dependent upon linkage type (Eddins, Varadan et al. 2007; 
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Komander, Reyes-Turcu et al. 2009; Bremm, Freund et al. 2010; Matsumoto, 

Wickliffe et al. 2010; Virdee, Ye et al. 2010) (Figure 1.3). Differences in topology are 

most evident when comparing K48-linked with K63- or linear-ubiquitin chains. K48-

linked tetra-ubiquitin chains predominantly adopt compact folds with intermolecular 

interactions between hydrophobic patches centred on the Ile44 residue of ubiquitin 

(Figure 1.3A). In contrast, K63-linked and linear ubiquitin chains exhibit more 

extended and open conformations with minimal contact between ubiquitin moieties 

(Figure 1.3D&E). The distinct conformations of ubiquitin modifications on target 

proteins allows for the selective recognition of ubiquitinated proteins by a multitude 

of downstream effector proteins via non-covalent interactions with specific Ubiquitin 

Binding Domains (UBD) to mediate wide-ranging physiological outcomes. 

1.3. Ubiquitin binding (UBD) domains 

1.3.1. Diversity of ubiquitin binding domains and Ub linkage specificity 

The discovery of the first ubiquitin binding domain (UBD) in the yeast S5a subunit of 

the 26S proteasome provided the first description of how the 26S proteasome was 

capable of selecting poly-ubiquitinated substrates for degradation (Young, Deveraux 

et al. 1998). Since this time, ~ 20 different families of UBDs have been described, 

which show considerable structural diversity and mechanisms of ubiquitin 

recognition (reviewed in (Dikic, Wakatsuki et al. 2009)). Most ubiquitin binding motifs 

interact with the hydrophobic patch of ubiquitin centred on the Ile44 residue located 

within ubiquitin’s β-sheet surface (Hicke, Schubert et al. 2005). Whilst these 

interactions are predominantly mediated by α-helical structures, β-sheets are also 

employed for ubiquitin binding, for example by E2-conjugating enzymes belonging 

to UBE2D and UBE2G2 families ((Brzovic, Lissounov et al. 2006; Choi, Jeon et al. 

2009) and reviewed in (van Wijk and Timmers 2010)). 
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Figure 1.3. Poly-ubiquitin chains adopt different topologies based upon ubiquitin linkage specificity. (A) Ribbon diagram 

showing structural diagrams of K48 linked tetra-ubiquitin (PDB code 2O6V, (Eddins, Varadan et al. 2007)), (B) K6 linked di-

ubiqiutin (PDB code 2XK5 (Virdee, Ye et al. 2010)), (C) K11 linked di-ubiquitin (PDB codes 3NOB (Matsumoto, Wickliffe et al. 

2010)), (D) K63 linked di-ubiquitin (PDB code  2JF5 (Komander, Reyes-Turcu et al. 2009)) and (E) linear di-ubiquitin (PDB code 

2W9N, (Komander, Reyes-Turcu et al. 2009)). Ribbon diagrams were generated using Jmol by Jonathan Woodsmith (Jmol: an 

open-source Java viewer for chemical structures in 3D. http://www.jmol.org/). Lys48 and Met1 residues in the distal ubiquitin 

moieties are highlighted in A and E, respectively. 
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Pioneering work in the field of linkage-specific UBD recognition revealed distinct 

preferences for specific poly-ubiquitin chain topologies when investigating 30 

different UBDs (Raasi, Varadan et al. 2005). Structural studies have provided 

mechanistic insights into how UBDs exhibit specificity for ubiquitin chain linkages. 

For example, the UBA domain of hHR23A utilises the proximity of hydrophobic 

isoleucine patches in the closed structure of K48-linked ubiquitin to interact with two 

ubiquitin moieties (Figure 1.3A) (Varadan, Assfalg et al. 2005). In contrast, the 

extended conformations of the RAP80 UIM and the NEMO UBAN domain exhibit 

interaction preference for the extended conformations of the K63 and linear linked 

chains, respectively (Figure 1.3D&E) (Rahighi, Ikeda et al. 2009; Sato, Yoshikawa et 

al. 2009). DUB family members also exhibit remarkable specificity for poly-ubiquitin 

linkages, underlying their restricted activity profiles for poly-ubiquitin chains of 

specific topologies in vitro ((Komander, Reyes-Turcu et al. 2009) and reviewed in 

(Komander 2010)).  

1.4. The human ubiquitin conjugational machinery 

1.4.1. Introduction 

The sequential actions of Ub-activating (E1), Ub-conjugating (E2), and Ub-ligating 

(E3) enzymes mediate the covalent conjugation of ubiquitin to target proteins. 

Discrete E1-E2-E3 combinations have been reported for specific attachment of 

Ub/Ubl moieties to cellular substrates and will be discussed in greater detail below. 

1.4.2. Human E1-activating enzymes 

Early studies utilising a mouse cancer cell line that exhibited a temperature-sensitive 

decrease in ubiquitin conjugation led to the isolation of a temperature-sensitive 

mutant protein required for ubiquitination, termed the E1 ubiquitin-activating enzyme 

(Finley, Ciechanover et al. 1984). The E1 enzyme functions to activate the C-
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terminal glycine residue of Ub moieties in an ATP and Mg2+-dependent adenylation 

reaction, to form a high-energy acyl-phosphate linkage between ubiquitin and AMP. 

The E1 catalytic cysteine residue subsequently attacks the Ub-AMP, releasing AMP 

and forming a thioester linkage with the C-terminal ubiquitin glycine residue (Lee 

and Schindelin 2008). A second adenylation reaction results in the asymmetric 

loading of an individual E1 molecule with two molecules of activated Ub (Dye and 

Schulman 2007), prior to the transfer of the thiol-linked Ub moiety to the catalytic 

cysteine residue of the next enzyme in the ubiquitination cascade, the E2 

conjugating enzyme. Sequence homology between E1 proteins dedicated to Ub and 

specific Ubl families (Table 1.1) have implicated similar mechanisms of activation for 

a number of Ubl molecules and has been experimentally confirmed in a limited 

number of cases (Dye and Schulman 2007). 

    
Ub/Ubl E1 Gene Symbol (EntrezID) 

Ubiquitin UBA1 (7317) & UBA6 (55235) 

ISG15 UBA7 (7318) 

FAT10 UBA6 (55235) 

SUMO SAE1/2* (10054/10055) 

NEDD8 NAE1/UBA3* (8883/9039) 

URM1 MOCS3 (27304) 

GABARAP family ATG7 (10533) 

UFM1 UBA5 (79876) 

 
Table 1.1. Known E1-Ub and E1-Ubl pairs. Gene symbols and corresponding 

Entrez gene IDs for known E1-ubiquitin or E1-Ubl pairs. *Two E1s are hetero-

dimeric enzymes and therefore have two associated independent genes. Ubiquitin 

has two annotated E1-activating enzymes.  
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1.4.3. Human E2-conjugating enzymes 

Following activation of Ub, the thiol-linked Ub is transferred from E1 to the active 

site cysteine of an E2-conjugating enzyme via a transthiolation reaction. E2 proteins 

are characterised by the presence of an ~ 150 residue ubiquitin conjugating domain 

(UBC), which provides an interaction platform for E1, E3, and activated Ub proteins. 

UBC domains are comprised of a core four-stranded antiparallel β-sheet flanked by 

(i) a C-terminal extension containing a β-hairpin and one or two helices and (ii) an 

N-terminal extension containing an α-helix (Figure 1.4A). The active-site cysteine 

residue and other highly conserved residues are located within the C-terminal β-

hairpin structure. Upon Ub binding to the catalytic Cys, the C-terminal β-hairpin 

region undergoes a conformational shift to position the Ub tail for attachment to 

target lysine residues within protein substrates (Reverter and Lima 2006; Yunus and 

Lima 2006; Burroughs, Jaffee et al. 2008). Amino acid residues flanking the β-

hairpin structure are proposed to provide specificity of E1 binding and to prevent 

mis-charging of a given E2 with a non-cognate Ub (Pickart 2001). 

1.4.3.1. Family Diversity and Ub/Ubl Selection 

The human genome encodes 37 E2-conjugating enzymes and 5 ubiquitin E2 variant 

proteins (UEV; AKTIP, TSG101, UEVLD, UBE2V1, UBE2V2), which adopt the UBC 

structural fold yet lack a catalytic cysteine residue required for Ub/Ubl conjugation 

(Figure 1.4 B). The majority of E2 enzymes are composed solely of a UBC domain 

with variable N- and/or C-terminal extensions (Figure 1.4B), which can provide 

specificity for particular E3 ligases, enable membrane anchoring, permit E3-ligase 

independent ubiquitination, or dictate the topology of poly-ubiquitin signals (see 

Figure 1.4B) (Dye and Schulman 2007). A limited number of E2s contain additional 

protein domains located within the N- and/or C- terminal tails suggesting functions 
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Figure 1.4. The UBC fold and E2-conjugating enzyme family. (A) Ribbon 
diagram representation of the E2-conjugating enzyme UBE2N, which consists of 
solely a UBC domain and lacking N- or C-terminal extensions (PDB Code 2GMI 
(Eddins, Carlile et al. 2006). (B) Dendrogram of the human E2-conjugating enzyme 
family with schematic representations of annotated protein domains. E2 proteins 
represented by official gene symbols are ordered according to protein sequence 
alignment in CLUSTALW. BIRC6 and UBE2O are too large to fit to scale on the 
diagram and are proportional representations of their annotated gene size. Figure 
generated using ITOL. 

Figure 1.XX. The UBC fold and E2-conjugating enzyme family. (A) Ribbon diagram 
representation of the crystal structure of the E2-conjugating enzyme UBE2N consisting of 
solely the UBC domain (PDB Code 2GMI (Eddins, 2006). (B) Dendrogram of the human E2 
Conjugating Enzyme family with schematic representations of their annotated protein domains. 
Each E2 is represented by its official gene symbol and ordered based on a basic primary 
protein sequence alignment in CLUSTALW. BIRC6 and UBE2O are too large to fit to scale on 
the diagram and are proportional representations of their annotated gene size. Figure 
generated using ITOL. 
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within and outside of ubiquitination events. UBE2K contains a C-terminal UBA 

domain, which contributes to its specificity for generation of K48 poly-ubiquitin chain 

linkages (Wilson, Edmondson et al. 2011). The BIR domain located within the 

~ 5000 residue BIRC6 E2 conjugating enzyme promotes ubiquitination and 

degradation of both SMAC and caspase-9 proteins to function in the negative 

regulation of apoptosis (Bartke, Pohl et al. 2004; Zhao, Beaudenon et al. 2004). The 

Vps23_core domain of the TSG101 UEV protein mediates stable binding of TSG101 

to other components of the ESCRT-1 machinery to mediate endosomal sorting 

(Teo, Gill et al. 2006). Whilst the vast majority of E2 proteins are soluble, UBE2J1 

and UBE2J2 proteins contain a single transmembrane region, anchoring both 

proteins to the ER membrane (Tiwari and Weissman 2001). 

 

The selective recruitment of Ubl~E1 by E2 proteins allows each Ub/Ubl moiety to be 

equipped with cognate E2-conjugating enzyme(s), responsible for transfer through 

their specific conjugational cascade (Figure 1.4B, coloured boxes). Indeed the 

majority of Ubl proteins have a sole and often dedicated E2-protein for their 

conjugation. Of the well-studied Ubl modifiers, the SUMO family is established to 

function with a sole dedicated E2, UBE2I, to regulate SUMOylation of a large 

number of target proteins (Gareau and Lima 2010). The non-redundant and 

essential role of UBE2I in SUMOylation is illustrated by the embryonic lethality 

associated with gene knockout in mammals (Nacerddine, Lehembre et al. 2005). Of 

the lesser characterised Ubl proteins, UFC1 serves as the cognate E2 for Ufm1 

(Tatsumi, Sou et al. 2010; Lemaire, Moura et al. 2011), whilst UBE2Z which can 

mediate ubiquitin transfer, has recently been shown to facilitate FAT10 conjugation 

to targets (Aichem, Pelzer et al. 2010). Additionally, ATG12 and GABARAP (ATG8) 

conjugation to substrates is mediated by the autophagy specific E2 proteins, ATG3 
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and ATG10 (Geng and Klionsky 2008). Ubiquitin, NEDD8, and ISG15 modifiers 

have each been reported to utilise more than one E2 protein for conjugation. 

NEDD8 utilises two closely related E2 enzymes (UBE2M and UBE2F) for its 

selective conjugation to cullin substrates (Huang, Ayrault et al. 2009). Similarly, 

UBE2L6 is dedicated to ISG15-conjugation whilst UBE2E1 and UBE2E2 can also 

receive activated ISG15 and are shared between ISG15 and ubiquitin conjugational 

machineries (Zhao, Beaudenon et al. 2004; Takeuchi, Iwahara et al. 2005). 

Interestingly, ISG15 exhibits distinct specificity for utilisation of the UBE2L6 but not 

the closely related E2 protein, UBE2L3 (Durfee, Kelley et al. 2008). 

 

Whilst UEV proteins are not capable of directly conjugating ubiquitin, both UBE2V1 

and UBE2V2 act in conjunction with the active E2 conjugating enzyme, UBE2N, to 

determine the topology of ubiquitin chain linkages (Andersen, Zhou et al. 2005; 

Eddins, Carlile et al. 2006) and will be discussed in further detail later. Equivalent 

roles of other UEV proteins (UEVLD, AKTIP, TSG101) in ubiquitination events have 

not yet been reported.  

1.4.3.2. Roles in regulating the architecture of ubiquitin modification on 
substrate protein 

As discussed in section 1.2.1, ubiquitin can be conjugated to target proteins either 

as single moieties (mono- and multi-ubiquitin) or as poly-ubiquitin chains via any of 

the six lysine residues within ubiquitin’s primary sequence or to the free amino 

group of its N-terminal methionine residue (Komander 2009; Ye and Rape 2009). 

Whilst E3 proteins represent the crucial regulators of substrate selection, an 

increasing body of experimental evidence has highlighted the key role of E2s, alone 

or in combination with UEV proteins, in dictating the architecture of conjugated 

ubiquitin on target proteins.  
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The addition of single ubiquitin moieties to target proteins serves as a distinct 

cellular signal ranging from receptor trafficking events to epigenetic control and DNA 

repair (Komander 2009). UBE2A, in complex with different E3-RING proteins, mono-

ubiquitinates target proteins to regulate gene expression and participate in the DNA 

damage response; UBE2A/RNF20-mediated mono-ubiquitination of histone H2B 

acts to regulate histone H3 methylation levels and gene expression (Kim, Guermah 

et al. 2009) whilst UBE2A/RAD18-mediated mono-ubiquitination of PCNA functions 

in the DNA damage and repair response (Hoege, Pfander et al. 2002). Additionally, 

UBE2T has been reported to mono-ubiquitinate another component of the DNA 

damage response, FANCD2 (Machida, Machida et al. 2006), suggesting a key role 

of mono-ubiquitination in nuclear/DNA functions. Members of the UBE2D family 

have also been implicated in the mono-ubiquitination of substrates in vivo. 

UBE2D3/CBL-mediated mono-ubiquitination has been reported to induce 

internalisation of RTKs (Mosesson, Shtiegman et al. 2003), whilst UBE2D2 and 

UBE2D3 mediated mono-ubiquitination is necessary for efficient internalisation of 

cell surface immunoreceptors (Dodd, Allen et al. 2004). Despite this, members of 

the UBE2D family predominantly generate ubiquitin chains with broad linkage 

specificity in vitro (Christensen, Brzovic et al. 2007; Kim, Kim et al. 2007). It is 

plausible that E2 proteins may have context dependent roles in both mono- and 

poly-ubiquitination and as such further study is necessary to determine the specific 

activities and functions of individual E2 proteins in vivo. 

 

The formation of poly-ubiquitin chains on substrate proteins provides additional and 

distinct signals for various downstream effectors. A small subset of E3 proteins, 

termed HECT-E3s, serve as catalytic intermediates to bind and transfer ubiquitin 
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Figure 1.5. Schematic representations of differential architecture of target ubiquitination. (A) Mono- or multi-ubiquitination; 

ubiquitin is conjugated to target substrates as individual moieties by a single E2-E3 pair. Chains can be formed on target 

substrates through either the sequential addition of single moieties by a single E2-E3 pair (A+B), through the combinatorial action 

of different E2 enzymes (A+C), or en bloc transfer of a preformed chain from the E2 enzyme (D). 
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from E2 to substrate, and play key roles in determining poly-ubiquitin chain linkage 

specificity. For example both the E6AP and KIAA10 HECT E3 proteins catalyse the 

formation of K48-specific Ub chains either upon their active cysteine residue or as 

‘free’ chains, respectively (Scheffner and Whitaker 2003; Wang, Cheng et al. 2006). 

However, for the largest number of E3 proteins, the E3-RING family, experimental 

evidence highlights the central role of E2 proteins in catalysing ubiquitin transfer and 

dictation of chain topology. Mechanistically, polyubiquitination of substrate proteins 

can take two main forms: (1) addition of a single Ub moiety, ‘initiation’, and 

subsequent ‘elongation’ of poly-ubiquitin chains on substrates via sequential 

recruitment of the same or different E2 enzymes (Figure 1.5 A-C) or (2) the transfer 

of preassembled poly-ubiquitin chains from a single E2 to a substrate (Figure 1.5 D).  

 

During initiation, there can be many sequence or structural variations surrounding 

target lysine residues. In contrast, elongation of ubiquitin chains is subject to specific 

sequence determinants surrounding the ubiquitin target lysine. As such, whilst the 

sequential recruitment of a single E2 can be responsible for both initiation and 

elongation steps (for example UBE2C generates short K11-linked ubiquitin chains 

on the APC (Garnett, Mansfeld et al. 2009)) (Figure 1.5 A&B), specialised E2s 

responsible for initiation and elongation of polyubiquitination chains would represent 

a more efficient mechanism of chain formation (Ye and Rape 2009) (Figure 

1.5 A&C). This mechanism was first reported for the hetero-dimeric E3-RING ligase 

BRCA1/BARD1 complex which can utilise the UBE2D, UBE2E, UBE2W E2s to 

nucleate substrate proteins with a single ubiquitin moiety for subsequent K63 and 

K48 poly-ubiquitin chain elongation by the hetero-dimeric UBE2N/UBE2V1 and 

UBE2K E2s (Christensen, Brzovic et al. 2007). A similar division of labour is 

observed for the APC/C E3-RING ligase, which recruits UBE2C to prime APC/C 
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substrates for subsequent K11-chain elongation by UBE2S during cell cycle 

regulation (Garnett, Mansfeld et al. 2009; Wu, Merbl et al. 2010). Finally, UBE2D 

family members can serve as initiation E2s for UBE2N- (Dodd, Allen et al. 2004) 

and CDC34- (Wu, Kovacev et al. 2010) chain elongation to control K63-mediated 

internalisation of cell surface receptors and K48-mediated degradation- of the SCF 

substrate IκB, respectively. In contrast to the mechanism of poly-ubiquitin chain 

synthesis by initiation and elongation processes, preassembled poly-ubiquitin 

transfer from E2 to substrate protein is characterised for the UBE2G2 E2 enzyme 

(Figure 1.5 D). UBE2G2 assembles K48-linked poly-ubiquitin chains at its catalytic 

cysteine prior to transfer of the preformed chain to a substrate lysine residue 

facilitated by the E3-RING protein, AMFR (Li, Tu et al. 2007). 

1.4.3.3. Control of Chain specificity 

The majority of E2 proteins are capable of building ubiquitin chains of specific 

topology at their catalytic cysteine or on generic substrates in vitro (David, Ziv et al.). 

Whilst the in vivo relevance of many of these events remain to be addressed, the 

finding that E2 proteins exhibit distinct preferences for poly-ubiquitin chain linkages 

highlights the ability of E2 proteins to control specificity of chain linkages. In 

agreement with mass spectrometric analyses of poly-ubiquitin chain linkage 

abundance in yeast (Xu, Duong et al. 2009) and human (Ziv, Matiuhin et al. 2011) 

cells, these findings demonstrated that E2 proteins exhibit clear preferences for 

generation of K11, K48 and K63 linkage types. 

 

The prevailing model of linkage specificity is such that elongating E2 proteins, 

charged with a donor ubiquitin moiety, non-covalently bind a substrate-bound 

acceptor ubiquitin and optimally positions the acceptor and/or donor ubiquitin 
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molecules for isopeptide bond formation between a specific lysine residue of the 

acceptor and the C-terminal glycine of the donor ubiquitin (Wickliffe, Lorenz et al. 

2011). In addition, two UEV proteins have been shown to act in conjunction with 

active E2 conjugating enzymes to determine the topology of poly-ubiquitin chains; 

both UBE2V1 and UBE2V2 form hetero-dimer complexes with the active UBE2N to 

catalyse formation of K63-linked poly-ubiquitin chains. Structural studies of the 

Ub~UBE2N/UBE2V2 complex has revealed that UBE2V2 binds and orients an 

acceptor ubiquitin to optimally facilitate Lys63 conjugation with the Ub~UBE2N 

moiety (Eddins, Carlile et al. 2006). 

 

Interestingly, many single-subunit E2 proteins that are capable of elongating poly-

ubiquitin chains are capable of non-covalently interacting with ubiquitin. UBE2D 

proteins utilise a β-sheet surface opposing the active site cysteine to non-covalently 

interact with Ub moieties and is required for the formation of poly-ubiquitin chains of 

broad linkage specificity (Brzovic, Lissounov et al. 2006). The UBA domain located 

within C-terminal tail of UBE2K (Figure 1.4 B) contributes to its selectivity by 

positioning acceptor Ub moieties in an optimal orientation for K48-linkage formation 

(Wilson, Edmondson et al. 2011). Finally, the Ub~UBE2S active site transiently 

recognises acceptor ubiquitin moieties via electrostatic interactions around the 

acceptor K11 residue. In this complex a single residue (Glu34) in the donor ubiquitin 

moiety is predicted to suppress the pKa of the acceptor Lys11 residue to promote 

linkage-specific ubiquitin chain formation via substrate-assisted catalysis (Wickliffe, 

Lorenz et al. 2011). Consistent with the non-covalent interaction between E2 

proteins and ubiquitin serving a key role in poly-ubiquitin chain formation, a number 

of E2 proteins that primarily mediate mono-ubiquitination of targets appear 

incapable in NMR experiments of non-covalently binding ubiquitin moieties 
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(Christensen, Brzovic et al. 2007). However, whilst UBE2E and UBE2W are capable 

of assembling poly-ubiquitin chains when expressed in fusion with a generic 

substrate (David, Ziv et al. 2010), they do not appear capable of non-covalently 

binding ubiquitin (Christensen, Brzovic et al. 2007). As such, it should be assumed 

that there must exist diverse mechanisms of poly-ubiquitin chain formation for these 

E2 proteins. In accordance with the central role of E2 proteins in determining the 

architecture of conjugating ubiquitin, individual E3 ligases induce the assembly of 

variable poly-ubiquitin chain architectures depending upon E2 usage (Christensen, 

Brzovic et al. 2007).  

1.4.4. Human E3 ‘ligases’ 

1.4.4.1. Role(s) in the ubiquitination cascade 

During the final stages of ubiquitination, charged Ub~E2 proteins interact with an 

E3-ligase to facilitate the formation of an isopeptide bond linkage between 

ubiquitin’s C-terminal glycine residue and the ε-amino group of substrate lysine 

residues. The human ubiquitin system is hierarchical with few E1-activating 

enzymes, tens of E2 conjugating enzymes, and hundreds of E3 ligases encoded 

within the human genome, consistent with a role of E3 proteins in imparting 

substrate selectivity. Previous bioinformatic analysis has identified > 600 human 

proteins encoding motifs associated with E3 proteins, which can be divided into 3 

broad subfamilies based upon their E2-binding domains: (1) Homologous to E6-AP 

Carboxy Terminus (HECT), (2) Really Interesting New Gene (RING) and RING-like 

(including, PIAS, plant homeodomain (PHD), U-box, F-box, and Cullin-RING 

proteins), and (3) those resembling neither HECT nor RING classes (ZnF A20, para-

caspase) (Li, Bengtson et al. 2008). The E3-mediated transfer of ubiquitin to 

substrate proteins occurs by one of two mechanisms, dependent upon the type of 
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E3 ligase involved. HECT domain-containing E3 proteins accept ubiquitin from E2 

conjugating enzymes by formation of direct thioester linkages with ubiquitin at a 

catalytic cysteine residue prior to ubiquitin transfer to substrates (Huibregtse, 

Scheffner et al. 1995; Kee and Huibregtse 2007) (Figure 1.1 C). In contrast, RING-

domain containing E3 proteins function as catalytically inactive molecular scaffolds 

that juxtapose Ub~E2 and substrate proteins to facilitate direct transfer of Ub from 

E2 to substrate (reviewed in (Deshaies and Joazeiro 2009)) (Figure 1.1 D). RING-

domain containing proteins are the principle focus of this thesis and as such this 

class of E3-ligase is described in greater detail below.  

1.4.4.2. RING-type E3 proteins 

1.4.4.2.1. RING domain structure 

The RING domain was originally identified by Freemont and colleagues and 

characterised by the presence of a distinct arrangement of conserved cysteine and 

histidine residues (Freemont, Hanson et al. 1991). The canonical amino acid 

sequence of the C3HC4 RING domain is Cys-X2-Cys-X(9-39)-Cys-X(1-3)-His-X(2-3)-Cys-

X2-Cys-X(4-48)-Cys-X2-Cys, where X represents any amino acid (Figure 1.6).  

 

Subsequent three-dimensional structural studies of individual RING domains have 

revealed that the conserved histidine and cysteine residues are buried within the 

core of the RING domain, where they co-ordinate two Zinc cations (Zn2+) in an 

interleaved, or cross-brace, arrangement (Figure 1.6 A) (Borden, Boddy et al. 1995). 

The conserved histidine and cysteine residues play a key role in maintaining 

structural integrity, enabling the RING domain to adopt a rigid, globular platform for 

protein-protein interaction. Since the initial characterisation of the canonical RING 

domain, numerous variations of the RING sequence have been described, typically 
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involving the interchange of the conserved cysteine and histidine residues (Figure 

1.6 B). For example, an atypical RING variant, characterised by the sequence 

C4HC3, is present in the Membrane-Associated RING-CH (MARCH) family of 

transmembrane domain-containing E3-RING proteins (Bartee, Mansouri et al. 

2004). Additionally, exchange of cysteine and histidine residues for other residues 

capable of chelating Zn2+ ions has also been reported; the Rbx1/Roc1 RING domain 

substitutes an aspartate residue in place of a cysteine at the eighth Zn2+ co-

ordination site (Zheng, Schulman et al. 2002). An additional variation on this theme 

is observed for the U-Box domain-containing class of E3 proteins, wherein 

conserved Zn2+-chelating residues are replaced by charged and polar residues 

which engage in hydrogen bonding networks to maintain a structure with 

considerable homology to the RING domain (Vander Kooi, Ohi et al. 2006). Whether 

the sequence variations observed between RING and RING-like domains have 

functional significance largely remains unclear. Whilst PHD and LIM	
  domains exhibit 

a high degree of sequence homology to the RING domain, they have been reported 

to fold differently and not adopt the interleaved structure characterised by RING 

domains and have not yet been implicated in the process of ubiquitination (Deshaies 

and Joazeiro 2009). 

 

In addition to the highly conserved Zn2+-chelating residues, a number of semi-

conserved residues exist within RING domain sequences, which are implicated in 

contributing to the core structure of the RING domain or the recruitment of 

interacting protein partners, such as E2-conjugating enzymes (Deshaies and 

Joazeiro 2009). 
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Figure 1.6. The RING zinc finger fold. (A) Schematic representation of the 

canonical cross-brace RING finger domain and (B) variations on the canonical 

RING finger sequence. C and H are the single letter codes for cysteine and histidine 

respectively. Less conserved primary protein sequence is represented by a solid 

black line whilst co-ordinating bonds between amino acid side chains and the 

chelated Zn2+ ion are shown as dashed lines in (A). Variations from canonical Cys 

and His residues are highlighted by red font in (B).  
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RING-HC (C4HC4) Cys-X-Cys-X(9-39)-Cys-X(1-3)-His-X(2-3)-Cys-X2-Cys-X(4-48)-Cys-X2-Cys 

RING-H2 (C3H2C3) Cys-X-Cys-X(9-39)-Cys-X(1-3)-His-X(2-3)-His-X2-Cys-X(4-48)-Cys-X2-Cys 

RING-CH (C4HC3) Cys-X-Cys-X(9-39)-Cys-X(1-3)-Cys-X(2-3)-His-X2-Cys-X(4-48)-Cys-X2-Cys 

C2H2C4 Cys-X-Cys-X(9-39)-His-X(1-3)-His-X(2-3)-Cys-X2-Cys-X(4-48)-Cys-X2-Cys 

C4H4 (Cnot4) Cys-X2-Cys-X(9-39)-Cys-X(1-3)-Cys-X(2-3)-Cys-X2-Cys-X(4-48)-Cys-X2-Cys 

RBX1 Cys-X2-Cys-X(9-39)-Cys-X(1-3)-His-X(2-3)-Cys-X2-Cys-X(4-48)-Cys-X2-Asp 
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1.4.4.2.2. The RING domain and ubiquitination 

The first evidence of a RING domain-containing protein participating in the process 

of ubiquitination was reported for Rad18, which promoted ubiquitination of histone 

H2B in yeast (Bailly, Lauder et al. 1997). Subsequent studies categorically 

demonstrated that the RING domain binds to E2-conjugating enzymes to promote 

the direct transfer of Ub-moieties from E2 to substrate (Zheng, Wang et al. 2000; 

Brzovic, Keeffe et al. 2003). Functional activity for a large proportion of RING-

domain containing proteins has been reported indicating that most E3-RING 

proteins possess ubiquitination activity (Deshaies and Joazeiro 2009). However, 

there is increasing evidence that some E3-RING proteins may not possess such 

intrinsic ubiquitin ligase activity. The BARD1, BMI1, and MDMX E3-RING proteins 

do not exhibit ubiquitin ligase activity in complex with E2 enzymes, but function to 

stimulate or enhance the ubiquitination activity of their hetero-dimeric E3-RING 

partners BRCA1, RING1B, and MDM2, respectively (Hashizume, Fukuda et al. 

2001; Linares, Hengstermann et al. 2003; Wang, Wang et al. 2004). 

1.4.4.2.3. Family Diversity 

In total 318 RING domains are currently annotated in the human genome, arising 

from a total of 308 individual genes ((Rheinbach 2005; Li, Bengtson et al. 2008; 

Markson, Kiel et al. 2009) and personal communication Jonathan Woodsmith). 

Previous bioinformatic analyses show that the majority of E3-RING proteins (> 75%) 

are annotated for at least one of > 65 different domain types outside of their RING 

domain (Li, Bengtson et al. 2008). The diversity of domain architecture is similarly 

reflected by use of the Pfam domain batch analysis tool (Finn, Mistry et al. 2009), 

Human Protein Reference Database (HPRD; (Prasad, Kandasamy et al. 2009)), and 

transmembrane domain prediction server (TMHMM; (Krogh, Larsson et al. 2001)). 
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In total, over 1000 individual domains were identified, belonging to 275 distinct Pfam 

families for the complement of E3-RING proteins. These domains are implicated in 

diverse processes including membrane anchoring, catalytic and kinase functions, 

and DNA and protein binding (For a full list of domains see Supplementary File 

E3RING annotation). The variety of domains observed for the E3-RING proteins is 

consistent with the proposed pleiotropic role of ubiquitin/Ubl conjugation in cellular 

physiology and reflects the variety of substrates and mechanisms involved for 

substrate recognition and for roles outside of ubiquitination. 

 

Sequence homology and domain architecture has been used to define subfamilies 

of E3-RING proteins. The largest E3-RING subfamily is the tripartite motif (TRIM) 

subfamily which contain ~ 1/4 of the predicted 308 family members and are 

characterized by the presence of a RING, B-box and coiled coil domain. The 14 

members of the RING-between-RING (RBR) make up the second largest subfamily 

and exhibit two RING domains separated by an in-between RING (IBR) structural 

domain. Strikingly, the largest number of a single annotated domain within the E3-

RING family is the transmembrane region with 144 domains annotated between 53 

E3-RING proteins. 

1.4.5. Transmembrane E3-RING proteins 

1.4.5.1. Family diversity 

Domain architecture varies dramatically amongst TM-E3-RING family members, 

which contain between 1 and 14 transmembrane domains located either N- or C- 

terminal to the RING domain (Figure 1.7A). Pfam analysis identified 31 TM-E3-

RING proteins that are annotated as possessing only RING and TM domains with a 

further 22 TM-E3-RING s having one or more additional domains (Figure 1.7A&B). 
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Figure 1.7. The TM-E3-RING protein family and domain architecture. (A) 
Dendrogram and schematic representations of TM-E3-RING domain architecture. 
Each TM-E3-RING is represented by official gene symbol and ordered based on a 

basic primary sequence alignment in CLUSTALW. Figure generated using ITOL 

(Letunic and Bork 2007).  (B) Protein domains which are present in ≥ 2 TM-E3-

RING proteins. 
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Outside of the RING and TM region the most commonly occurring domains are PA 

(nine), IBR (four), and zf-B_box (two) domains (Figure 1.7B). 

 

TM-E3-RING proteins are distributed throughout the phylogeny of E3-RING sub-

families suggesting a potential broad range of functions in ubiquitination events 

(Figure 1.8). Despite the diverse distribution, several TM-E3-RING proteins do 

cluster into distinct sub-families, which are characterised by the presence of distinct 

domains or features. For example, each of the eleven MARCH E3-ligase family 

contain an N-terminal variant RING (vRING; C3HC4) domain and most commonly 2 

C-terminal TM regions, yet four (MARCH5), thirteen (MARCH6), and zero (MARCH7 

and MARCH10) TM regions are also predicted (Figure 1.7 & 1.8).  

 

A second TM-E3-RING family consists of nine members which share an N-terminal 

protease associated (PA) domain, TM region, and C-terminal RING-H2 (C2H2C3) 

domain, with the exception of RNF130, which contains an additional C-terminal TM 

region (Figure 1.7 & 1.8). The PA domain is proposed to function as a protein–

protein interaction domain (Mahon and Bateman 2000). In addition to these families, 

there are a number of other closely related TM-E3-RING proteins belonging to the 

TRIM (TRIM13 and TRIM59) and RBR (RNF144A, RNF144B, RNF19A, RNF19B) 

E3-RING subfamilies.  

1.4.5.2. Known roles of TM-E3-RING proteins 

The emergence of a large cohort of human TM-E3-RING proteins may underlie a 

requirement of a range of selective ubiquitination events at cellular membranes. 

Consistent with this proposal, TM-E3-RING proteins have been shown to mediate a 

range of cellular functions such as membrane transport, receptor internalisation and  
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Figure 1.8 Dendrogram of the human E3-RING ligase family showing the 
diverse distribution of TM-E3-RING proteins within the protein family. Proteins 

are ordered by primary protein sequence alignment in CLUSTALW. TM-E3-RING 

are indicated by red bars. The PA-TM-RING and MARCH families of TM-E3-RING 

proteins are annotated. Figure generated using ITOL (Letunic and Bork 2007). A 

high-resolution image with gene symbols annotated can be found in Supplementary 

File E3RING_dendrogram. 
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other organelle-specific processes including ER-associated degradation (ERAD) 

and mitochondrial fission/fusion. 

 

Overexpression of several MARCH proteins down-regulates cell surface 

immunoreceptors such as MHC Class I (Bartee, Mansouri et al. 2004), MHC Class II 

(Ohmura-Hoshino, Matsuki et al. 2006), CD86 and ICAM1 proteins (Hoer, Smith et 

al. 2007). In particular, MARCH1 and MARCH8 promote ubiquitination of cell 

surface MHC II receptors, initiating their internalisation and endolysosomal 

degradation (Ohmura-Hoshino, Matsuki et al. 2006; Matsuki, Ohmura-Hoshino et al. 

2007). Recently these proteins have been shown to target other proteins which are 

internalized by clathrin-independent endocytosis (CIE) (Eyster, Cole et al. 2011). 

Alternative roles in intracellular trafficking have been reported for MARCH2 and 

MARCH3 with overexpression resulting in redistribution of TGN46, a trans-Golgi 

Network (TGN) marker, presumably through the recognition and ubiquitination of 

syntaxin 6, which is important for recycling of endosomes to the TGN (Fukuda, 

Nakamura et al. 2006). Finally, the mitochondrial MARCH5 protein plays a key role 

in mitochondria organelle dynamics through recognition of proteins involved in 

mitochondrial fusion (MFN2) and division (Dpn1) (Nakamura, Kimura et al. 2006). 

 

PA-TM-RING family members also have diverse roles in cellular events. RNF128 

(gene related to anergy in lymphocytes/GRAIL) represents one of the most 

extensively studied human PA-TM-RINGs and has reported roles in mediating T-cell 

anergy, a state of unresponsiveness following antigen challenge (reviewed in 

(Whiting, Su et al. 2011)). RNF128 utilises the extracellular PA domain to capture 

CD80 and CD40L integral membrane proteins for RING-mediated ubiquitination 

within the cytosol (Lineberry, Su et al. 2008). RNF13 has been implicated in cellular 
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proliferation events with overexpression suppressing cell proliferation in response to 

extracellular ligands (Zhang, Wang et al. 2010). RNF13 has been proposed to have 

a key role in nuclear signaling; activation of PKC signaling by Phorbol myristate 

acetate (PMA) leads to a redistribution of RNF13 from endosomes to the inner 

nuclear membrane, positioning the RING domain in the nucleoplasm (Bocock, 

Carmicle et al. 2010). 

 

A well-characterized role of several TM-E3-RING proteins is the degradation of 

misfolded proteins within the ER in a process termed Endoplasmic Reticulum 

Associated Degradation (ERAD). In a typical cell one third of all synthesised 

proteins are predicted to enter the secretory pathway (Nyfeler, Michnick et al. 2005). 

The ER represents the major entry point for secretory pathway proteins, which are 

imported into the ER in an unfolded state through the Sec61αβγ protein 

translocation complex (reviewed in (Mehnert, Sommer et al. 2010)). Following 

import, nascent polypeptides are folded and post-translationally modified by 

attachment of sugar moieties and/or formation of disulphide bond linkages to aid 

folding. ER quality control (ERQC) machinery supports protein biogenesis by 

retaining misfolded polypeptides to allow further folding (Mehnert, Sommer et al. 

2010). Polypeptides that remain in an inappropriate conformation are ubiquitinated, 

which acts as a signal to undergo retrograde transport into the cytoplasm for 

proteolysis (Mehnert, Sommer et al. 2010). The TM-E3-RING proteins AMFR (Chen, 

Mariano et al. 2006) and SYVN1 (Burr, Cano et al. 2011) have been extensively 

studied in this process leading to the identification of numerous substrates. In 

addition, a growing number of TM-E3-RING proteins (RNF5, MARCH6 (TEB4), 

TRIM13 (RFP2), RNF103 (Kf-1), RNF139 (TRC8), and ZNRF4) have also been 

implicated in ERAD events, although more limited numbers of substrates have been 
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identified for these TM-RING proteins. Furthermore, recent subcellular analysis 

revealed 24 of the 53 TM-E3-RING proteins co-localised with the ER resident 

proteins calnexin or calretinin (Neutzner, Neutzner et al. 2011), suggestive of 

potential roles of even more TM-E3-RING proteins in ERAD processes.  

 

Finally, TM-E3-RING proteins also participate in a number of specific cellular 

processes such as the negative regulation of apoptosis (BFAR; (Roth, Kermer et al. 

2003)) and control of mitochondrial protein synthesis through recognition of stop 

codons and peptide release mechanisms in yeast (ZNF179; (Kutner, Towpik et al. 

2008)) 

1.4.6. Deubiquitinating (DUB) enzymes 

In analogy to other post-translational modifications such as phosphorylation, 

ubiquitination is a dynamic and reversible process. In humans, the de-conjugation 

machinery is composed of 79 active deubiquitinating (DUB) enzymes, which can be 

divided into five families: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific 

proteases (USPs), ovarian tumour proteases (OTUs), Josephins or Machado-

Joseph Disease (MJDs), and Jab1/MPN/MOV34 metalloenzymes (MPNs, also 

known as JAMMs) (Komander, Clague et al. 2009). DUB enzymes function to: (i) 

cleave expressed Ub-fusions to generate the ‘free’ ubiquitin pool for conjugation; (ii) 

remove mono- or poly-ubiquitin from post-translationally modified substrates; (iii) 

edit the form of ubiquitin modification by trimming of ubiquitin chains (Komander, 

Clague et al. 2009). 

1.5. Protein interactions within the ubiquitin system 

The interactions that occur between the constituents of the ubiquitin conjugational 

machinery confer a high level of complexity and specificity to ubiquitin and Ubl 
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systems. As such, defining these interactions and the molecular mechanisms 

underlying them has been intensively studied and has provided insight into the 

specificity of ubiquitin and Ubl conjugational events.  

1.5.1. Ub/Ubl and E2 protein selection by E1-activating enzymes  

In addition to their fundamental roles in the initiation of conjugational cascades, E1 

activating enzymes establish specificity of Ub/Ubl cascades by selectively binding 

and matching individual Ub/Ubl moieties with E2 proteins (Table 1.1). The molecular 

determinants underlying the specificity of E1 enzymes for certain Ub/Ubl moieties 

are best described for the ubiquitin (UBA1) and NEDD8 (UBA3) E1-activating 

enzymes. Both E1 enzymes establish selective positive interactions with a single C-

terminal tail residue in their cognate Ub/Ubl protein; UBA1 contacts Arg72 of 

ubiquitin and UBA3 contacts Ala72 of NEDD8. Additionally a unique arginine 

residue in UBA3 repels ubiquitin moieties to prevent mis-loading (Walden, 

Podgorski et al. 2003; Lee and Schindelin 2008; Souphron, Waddell et al. 2008). 

 

The interactions that occur between E1 and E2 proteins in each of the Ub, NEDD8, 

SUMO, and ISG15 cascades are predominantly mediated via hydrophobic 

interaction surfaces. A Ubiquitin Fold Domain (UFD) within the E1 contacts N-

terminal sequences within the E2-UBC domain. The substitution of the UFD domain 

of UBA6 with UBA1, or the N-terminal UBC-domain sequences of UBE2L3 with that 

of UBE2L6 alters E1/E2 binding preferences, highlighting the importance of these 

regions for binding and selectivity (Huang, Walden et al. 2004; Durfee, Kelley et al. 

2008). Pathway-specific E1/E2 interactions also exist; N-terminal extensions of the 

UBE2M and UBE2F proteins form positive interactions with a groove exclusive to 

UBA3 conferring specificity for NEDD8 conjugation and preventing mischarging with 
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the non-cognate Ub protein (Huang, Ayrault et al. 2009). Similarly, unique residues 

in UBA1 (Ub-E1) and UBA2 (SUMO-E1) near their catalytic cysteine residues have 

also been implicated in their selective binding to cognate E2 proteins and also 

selects against mischarging with an inappropriate Ub/Ubl protein (Schulman and 

Harper 2009). 

 

The binding of multiple E2s to any given E1 is a requisite given the increase in their 

numbers (37 catalytically active E2) compared to E1s. The structural 

characterisation of UBE2M and UBE2F usage by the sole NEDD8 hetero-dimeric E1 

enzyme, NAE1-UBA3, has demonstrated how pliability in the hydrophobic E2 

interaction surface allows for recruitment of multiple E2 proteins by a single E1 

(Huang, Ayrault et al. 2009).  

1.5.2. E2-conjugating enzyme/E3-RING protein interactions 

1.5.2.1. Canonical E2/E3-RING binding 

To form active ubiquitin ligase complexes E3-RING proteins must selectively 

interact with E2-conjugating enzymes. E3-RING/E2 interactions reported to date are 

predominantly weak and transient in nature, typically in the low micromolar range 

(E.g. UBE2N/TRAF6 KD=1.2µM (Yin, Lin et al. 2009); UBE2D3/BMI1-RING1B, 

KD ≈ 7 µM (Bentley, Corn et al. 2011)). Structural studies of E1/E2 and E2/E3 

complexes have revealed that E1 and E3 binding sites on E2 conjugating enzymes 

partially overlap, and that these binding events are mutually exclusive (Eletr, Huang 

et al. 2005). The necessity of E2 discharge from E3-RING proteins to allow 

recharging with a Ub/Ubl moiety may underlie the low affinity of binding reported for 

E2/E3 protein pairs. 
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Despite the weak affinity of E2/E3-RING interactions a limited number of crystal 

structures have been obtained for this class of interaction, which have revealed key 

binding determinants in both E3-RING and E2 proteins. From the E2 perspective, 

the crystal structure determination of UBE2L3 (also called UBCH7) in complex with 

c-CBL or E6AP identified the Ubiquitin Conjugating domain (UBC) as the major 

interaction surface for both RING and HECT-type E3 ligases, respectively (Huang, 

Kinnucan et al. 1999; Zheng, Wang et al. 2000). Subsequent structural and NMR 

studies of several E3-RING/E2 complexes (E.g. UBE2D1/BRCA1 (Brzovic, Keeffe et 

al. 2003), UBE2D1/CNOT4 (Dominguez, Bonvin et al. 2004), UBE2N/TRAF6 (Yin, 

Lin et al. 2009), UBE2D3/BIRC3 (Mace, Linke et al. 2008))  have identified residues 

in Helix 1 (H1) and Loops 1 and 2 (L1 & L2; also referred to as L4 & L7 in literature) 

of the UBC domain as providing major contact points for E3-RING partners (Figure 

1.9A&B).  

 

From the E3 perspective, the crystal structures of the UBE2L3/c-CBL and 

subsequent E2/E3-RING complexes identified a shallow groove between the E3-

RING’s two Zn2+-chelating loop regions and the helix connecting the first and 

second Zn2+ co-ordination site as forming critical contacts for E2 interaction (Figure 

1.9 A&B). This surface predominantly consists of a hydrophobic core surrounded by 

an acidic region. E2 L1 and L2 loops protrude into the shallow groove within the E3- 

RING and form hydrophobic contacts, which dominate the E2/E3-RING interaction 

(Zheng, Wang et al. 2000). Mutagenesis of equivalent residues in a number of E3-

RING proteins for those important for c-Cbl binding to UBE2L3 (Ile383 and Trp408; 

Figure 1.9B) ablated almost all interactions detectable via Y2H, highlighting the 

importance of single residues in contributing to E3-RING/E2 binding (Markson, Kiel 

et al. 2009). Finally, variable regions immediately N-terminal of the RING domain  
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Figure 1.9 E3-RING/E2 interaction surface and contact points. Crystal structure 

of the E2-conjugating enzyme UBE2L3 (green) bound to the E3-RING ligase CBL 

(blue) highlighted the key interaction surfaces (PDB Code 1FBV (Zheng et al., 

2000)) (A) and residues (B) involved in E3-RING/E2 binding. Co-ordinated Zn2+ ions 

by the Cbl E3-RING are represented by grey circles in (A). 
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have also been demonstrated to interact with E2 proteins often via salt bridges with 

the E2 H1 helix . 

 

Taken together, these findings implicate not only the RING and UBC domains of E3-

RING and E2 proteins, but also proximal flanking regions as forming the main 

interaction surfaces for this class of interaction. Analysis of the growing number of 

E3-RING/E2 complexes has demonstrated a plasticity of the E2-E3/RING interface, 

with specific residues within these regions important for formation of different E3-

RING/E2 complexes (Wenzel, Stoll et al. 2010).  

1.5.2.2. Non-canonical E3-RING/E2 binding 

In addition to the canonical E3-RING/E2 interaction surfaces between RING and 

UBC domains, emerging evidence point towards surfaces outside of these domains 

as contributing to the formation or stability of E3-RING/E2 complexes. A β-sheet 

surface opposing the UBC catalytic site and previously reported to form non-

covalent interactions with ubiquitin molecules for UBE2D members is important in 

E3-RING binding to UBE2G2. In this case, the AMFR E3-RING protein utilises a 

distinct structural UBE2G2-Binding-RING (G2BR) domain ~200 residues from the 

RING domain, to interact with UBE2G2’s β-sheet surface via hydrophobic 

interactions (Das, Mariano et al. 2009) to increase the affinity of the AMFR/UBE2G2 

interaction 50 fold, in comparison to the isolated RING domain (Chen, Mariano et al. 

2006). It is plausible that the β-sheet surface of other E2 and UEV proteins could 

provide an analogous binding site for other E3-RING proteins away from the shared 

E1/E3 binding site. 

 



 39 

Additionally, non-UBC extensions of certain E2 proteins provide interaction binding 

surfaces for both E3-ligase proteins and substrates. The 37-residue C-terminal 

extension of CDC34 contains a high density of acidic residues, which reinforces the 

interaction with the SCF E3-RING complex by forming positive interactions with a 

basic surface of the CUL1 subunit (Kleiger, Saha et al. 2009). Similarly, the N-

terminal extensions of the UBE2E family may form novel interactions with some 

Cullin-RING-ligases (CRLs) as mutations in canonical E3 and E2 binding sites do 

not ablate the observed interactions (Plafker, Singer et al. 2009). As such, regions 

outside the RING and UBC domains of E3-RING and E2 proteins may reflect 

relevant sites for E3-RING/E2 interactions. In agreement with these findings, 

comparison of two recent directed Y2H studies revealed a higher rate of E3-

RING/E2 interaction detection using full-length E2 clones as opposed to isolated 

UBC domains with fewer E2 proteins annotated one or more E3-RING interaction 

partners using UBC domains alone (Markson, Kiel et al. 2009; van Wijk, de Vries et 

al. 2009). 

1.5.3. E3-RING/E3-RING ligase interactions 

A limited number of E3-RING proteins have been reported to form dimers to 

mediate a variety of functions (de Bie and Ciechanover 2011), including recruitment 

of differential E2 proteins to substrates, auto-ubiquitination of active E3-RING 

complexes and enhancement of ubiquitination activity of an E3-ligase. Recruitment 

of differential E2 proteins by hetero-dimeric partners has been demonstrated in 

yeast whereby the Rad5 E3-RING protein recruits the E2 Rad6 to mono-ubiquitinate 

its substrate, PCNA. Rad5’s hetero-dimeric partner, Rad18, subsequently recruits 

the Mms2/Uev3 E2 complex to facilitate elongation of K63-linked poly-ubiquitin 

chains on mono-ubiquitinated PCNA substrates (Parker and Ulrich 2009). 
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Enhancement of E3-RING ubiquitin ligase activity has been observed for a number 

of hetero-dimeric complexes including RING1-BMI1 and BRCA1-BARD1 (Buchwald, 

Stoop et al. 2006; Christensen, Brzovic et al. 2007; de Bie and Ciechanover 2011). 

In both of these cases one E3-RING recruits E2 enzyme(s) while the second 

facilitates the efficient ubiquitination of selective substrates (Buchwald, van der 

Stoop et al. 2006; Bentley, Corn et al. 2011). In addition, both RNF4 and BIRC2 

require homo-dimerisation in order to function in ubiquitination events (Mace, Linke 

et al. 2008; Plechanovova, Jaffray et al. 2011). Recent determination of E3-RING 

dimerization events by preliminary HTP-Y2H screens within the Sanderson 

laboratory revealed a high degree of E3-RING dimerization events across the 

phylogeny of E3-RING proteins with >220 reported interactions (unpublished data; 

personal communication Jonathan Woodsmith). 

 

Structural studies of several E3-RING homo- and hetero-dimeric partners have 

highlighted common interaction surfaces responsible for complex formation. For the 

heterodimer MDM2/MDMX and homodimers, BIRC3 and RNF4, these interaction 

surfaces predominantly comprise residues in β-strand structures located within and 

immediately flanking the core RING domain (Linke, Mace et al. 2008; Mace, Linke et 

al. 2008; Liew, Sun et al. 2010). E3-RING domains therefore perform dual roles in 

binding both E2 and E3 proteins. For those E3-RING dimers for which both the E2 

and E3 binding interfaces have been determined by crystallographic, mutagenesis, 

or modelling approaches, E2 and E3 interfaces have been shown to reside on 

distinct surfaces of the three-dimensional RING complex thus allowing both binding 

events to occur simultaneously. 
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In addition to these shared binding surfaces, the RNF2/BMI1 and BRCA1/BARD1 

hetero-dimers contain additional interaction domains located in larger helical 

structures outside of the RING domain (Buchwald, Stoop et al. 2006; Christensen, 

Brzovic et al. 2007). In addition to homo- and hetero-dimerisation, a subset of E3-

RING proteins have been reported to form higher order multimeric complexes, 

which exhibit increased catalytic activity compared to their monomeric subunits 

(Reymond, Meroni et al. 2001; Kentsis, Gordon et al. 2002; Poyurovsky, Priest et al. 

2007). Members of the TRAF E3-RING subfamily have been characterised in the 

formation of higher order structures using coiled-coil regions to trimerise and RING-

domains to dimerise. The TRIM subfamily of E3-RING proteins also utilise coiled-

coil regions to homo- and hetero-dimerise, suggesting that this mechanism of 

regulation is not restricted to TRAF proteins. 

 

Two recent studies have highlighted the importance of E3-RING dimerization for the 

mechanism and specificity of ubiquitination events (Bentley, Corn et al. 2011; 

Plechanovova, Jaffray et al. 2011). Computational docking and mutagenesis 

analysis of the RNF4 homo-dimer in complex with loaded UBE2D1~ubiquitin 

revealed that upon canonical binding of UBE2D1~ubiquitin to one monomer of 

RNF4, the thioester-linked ubiquitin extends across the dimer and engages the 

second RNF4 monomer through ubiquitin’s hydrophobic Ile44 patch and a 

conserved tyrosine residue at the dimer interface. The RNF4 homo-dimer therefore 

facilitates ubiquitin transfer to substrates by positioning the E2~ubiquitin thioester 

across the RNF4 dimer and activating the thioester bond for catalysis 

(Plechanovova, Jaffray et al. 2011). Secondly, the crystal structure determination of 

a BMI1/RING1B/UBE2D3 complex has demonstrated that whilst E2 recruitment is 

mediated solely by the RING1B monomer, a basic surface patch unique to the 
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BMI1/RING1B dimer and provided by both RING domains binds directly to short 

duplex DNA sequences, with mutation of residues at this surface ablating the 

selective ubiquitination of H2A. Hetero-dimerization of E3-RING domains can 

therefore contribute to selection of specific substrates and assist in directing E2s to 

preferred substrate lysines (Bentley, Corn et al. 2011). Taken together, these 

findings have challenged the prevailing model of E3-RING proteins as merely 

‘bridging’ proteins by juxtaposing E2 and substrates for ubiquitin transfer. 

1.6. Protein interaction networks (PINs) 

Physiological processes are regulated by a complex network of interactions 

occurring between cellular constituents including proteins, metabolites, lipids, and 

nucleic acids (Barabasi and Oltvai 2004). As such, most proteins do not function in 

isolation but as components of one or more protein complexes, which in turn 

regulate selective cellular pathways (Morell, Ventura et al. 2009). Comprehensive 

knowledge of the protein-protein interactions occurring within a given system is 

therefore of paramount importance to understanding physiological and 

pathophysiological processes. The identification of protein-interacting partners for a 

protein of interest can provide a tool in prediction of protein function according to the 

‘guilt-by-association’ principle whereby the function of an uncharacterised protein 

can be inferred by the functions of its interaction partners (Oliver 2000), with the 

caveat that individual proteins may have discrete functions in multiple complexes. 

Furthermore, protein-protein interactions connect protein complexes involved in 

disparate cellular processes. The identification of proteins that connect multiple 

modules or complexes by network analysis approaches can provide an elevated 

understanding of communication between different biological processes (Cusick, 

Klitgord et al. 2005). Finally, analysis of biological protein-protein interaction 
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Figure 1.10. Schematic representations of key HTP protein interaction 
detection techniques. In each case proteins Y and Z represent direct and indirect 

(co-complex) interaction partners for protein X, respectively. (A) AP/MS. Transient 

or stable expression of tagged bait proteins (GST-tagged X) followed by purification 

and identification of both binary and indirect interacting partners of protein X by MS. 

(B) Y2H. Detection of binary interactions between proteins X and Y through 

reconstitution of reporter activity. Interaction of fusion proteins reconstitutes 

transcription factor activity by bringing both binding (BD) and activating (AD) 

domains to the promoter of reporter genes. (C) PCA. Reconstitution of reporter 

protein (e.g. DHFR, EGFP, Firefly luciferase) upon binary protein-protein interaction 

allows read-out in various formats depending upon PCA system (Sanderson 2009). 

F-1 and F-2 represent two fragments of a complete dissected reporter protein. 
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networks can reveal emergent properties of a given network or the interactome as a 

whole (Rual, Venkatesan et al. 2005); global analyses of interaction networks have 

revealed a trend for biological networks to obey a power-law distribution whereby 

the majority of proteins have few interaction partners with few highly connected 

proteins, termed hubs. Whilst the biological significance of power law distributions of 

protein-protein interaction networks have been challenged (Khanin and Wit 2006; 

Lima-Mendez and van Helden 2009), the removal of hub proteins and ‘module-

connecting’ proteins have however been shown to be more likely to cause the 

greatest network disruption and be essential gene products in yeast (Jeong, Mason 

et al. 2001; Yu, Kim et al. 2007). 

 

On a physiological level, protein-protein interactions occur in a spatiotemporal 

manner within the functional context of the cell. Furthermore, many proteins are 

predicted to have multiple spliced isoforms, which may have altered protein 

interaction partners and exert synergestic or even antagonistic functions (Tsai, Ma 

et al. 2009). Whilst the generation of interaction maps at subcellular and isoform 

levels will become a necessity to reveal the full complexity of the interactome, it is 

initially necessary to define interaction partners for the multitude of proteins that still 

have poorly defined functions. As such, large-scale PPI networks provide new 

insight into the function of uncharacterised genes and the organisation and interplay 

between different physiological processes. The integration of secondary datasets 

such as expression and localization data with binary interaction networks can deliver 

increased confidence in interaction networks and to define distinct subgroups such 

as those limited to a given cell type. 
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1.6.1. Interaction detection methodologies for medium/high throughput 
screening 

At present two main complementary branches of protein interaction analysis have 

been extensively performed on a HTP or proteome-wide scale. Dissection of protein 

complexes by affinity purification and mass spectrometry (AP/MS) identifies both 

directly and indirectly associated proteins (Figure 1.10A). In contrast yeast two-

hybrid (Y2H) methods identify only binary, or direct, protein-protein interactions 

(Figure 1.10B). Split protein complementation assays (PCA) have also recently 

been utilized in large-scale HTP format to investigate binary protein-protein 

interactions in eukaryotic systems (Figure 1.10C). In addition, a number of other 

protein-protein interaction techniques have been employed in increasingly HTP 

formats, including LUMIER, mammalian protein-protein interaction trap (MAPPIT), 

membrane yeast-two-hybrid (MYTH) and nucleic acid programmable protein array 

(NAPPA). In analogy to Y2H, both MAPPIT and MYTH rely on transcription factor 

activation following protein-protein interaction whilst LUMIER and NAPPA utilise 

affinity purification of tagged bait proteins and enzymatic activity measurements to 

deliver readouts of protein-protein interactions. 

1.6.1.1. Yeast-two hybrid (Y2H) matrix matings and library screens 

The Y2H system was first described by Fields and Song in 1989 as a genetic 

method to study protein-protein interactions using the model organism 

Saccharomyces cerevisiae (Fields and Song 1989). Transcription factors are 

modular proteins containing two functionally required domains, which mediate 

transcription factor binding to DNA promoter regions (BD) and activation of 

transcription (AD). The separation of BD and AD domains and fusion to the 

interaction partners SNF1 and SNF4 reconstituted transcription factor activity and 

reporter gene activation, which could not be observed when isolated BD and AD 
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domains were co-expressed (Fields and Song 1989) (Figure 1.10B). Since its 

inception, the Y2H system has been utilised for the identification of interaction 

partners between predicted or unknown protein pairs. Numerous Y2H systems have 

been developed to improve both sensitivity and accuracy, including truncation of 

promoters to reduce protein expression levels and employing more than one 

reporter gene to reduce the incidence of non-specific activation being reported as 

true-positive interaction (James, Halladay et al. 1996). Interestingly, it is now clear 

that Y2H systems which utilise different vectors and yeast strains generate distinct 

but overlapping protein interaction profiles (Chen, Rajagopala et al. 2010). The use 

of different Y2H systems can therefore increase the coverage of a given interaction 

space and enables detection of a broader spectrum of interactions.  

 

There have now been several proteome-wide HTP-Y2H studies and the potential 

application of Y2H screens for human proteome-wide interactome mapping has 

been demonstrated by two major studies. Initially, the matrix testing of ~7200 

human full-length ORFs identified 2754 positive protein interactions (Rual, 

Venkatesan et al. 2005). Secondly, Y2H arrays generated from a human foetal brain 

cDNA library and a collection of full-length ORFs identified 3156 positive protein 

interactions (Stelzl, Worm et al. 2005). Combined, these two datasets identified over 

5900 protein interactions, a large proportion of which were novel (Rual, Venkatesan 

et al. 2005; Stelzl, Worm et al. 2005). 

 

Recently, two focused medium-scale Y2H studies systematically assessed the 

interactions that occur within the human ubiquitin system, between E2 conjugating 

enzymes and E3-RING proteins (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 

2009). Together, these studies have contributed to a higher-density E3-RING/E2 
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interaction map, delivering new insights into the combinatorial nature of the human 

ubiquitin system. 

 

Advantages of Y2H systems: 

1) Using S.cerevisiae as a model organism allows for very large numbers of 

protein coding sequences to be assayed quickly in a cost-effective and 

relatively simple manner. 

2) The in vivo nature of the Y2H assay provides advantages over in vitro 

assays. A recent comparative analysis revealed five of eight phosphorylation-

dependent interactions were detectable within Y2H screens suggesting that 

some post-translational modification dependent interactions can be detected 

(Chen, Rajagopala et al. 2010). 

3) A broad range of interaction affinities can be detected. Interactions with a 

dissociation constant (Kd) > 70µM can be detected (Yang, Wu et al. 1995). 

This is not true for many other binary interaction assays, which fail to detect 

many weak or transient interactions. 

 

Disadvantages of Y2H systems: 

1) Interactions involving full-length proteins which contain transmembrane 

regions are found comparatively less often than by other methods (Rual, 

Venkatesan et al. 2005). 

2) Human proteins are not in their native cellular environment and binding 

occurs within the yeast nucleus, which may not be the site of endogenous 

interactions. 

3) Cooperative binding cannot be assessed in traditional Y2H systems as only 

two proteins are tested at any one time. 
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1.6.1.2. Affinity purification and mass spectrometry 

Co-affinity purification and mass spectrometry (MS) represents the prevailing 

strategy for detection of stable protein complexes, which can be purified from cells 

(Poetz, Hoeppe et al. 2009). Typically, affinity tags are fused to a protein of interest 

(bait) enabling affinity-purification with an epitope-specific antibody or column. 

Protein complexes are separated by column or polyacrylamide gel electrophoresis 

methods prior to trypsin digestion. Peptide samples are subsequently ionized by 

laser pulses and the mass-to-charge ratio (m/z) of each composite peptide fragment 

measured by mass spectrometry. The m/z ratio values provide a ‘peptide-mass 

fingerprint’ that can be correlated with reference peptide MS sequences in online 

databases. This technique has been used in human cells utilizing tagged baits 

within transient expression systems on a HTP scale with 338 disease-associated 

bait proteins yielding ~6500 interactions between >2000 distinct proteins (Ewing, 

Chu et al. 2007). Additionally, this technique has been performed using stable cell 

lines in more directed studies for example to define the interaction landscape for the 

family of DUB enzymes, identifying ~770 candidate interaction partners for 75 DUBs 

(Sowa, Bennett et al. 2009). 

 

Recently, mass spectrometry technologies targeting the ubiquitin system have 

focussed upon analysing the ubiquitinated proteome in both yeast (Peng, Schwartz 

et al. 2003) and human cells under basal conditions and following induction of 

Epidermal Growth Factor (EGF) signalling (Argenzio, Bange et al. 2011). 

 

Advantages of AP/MS systems:  

1) Enables the unbiased study of a vast array of proteins simultaneously in vivo. 

2) Identifies functional protein complexes that may be dependent on multiple 
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protein components. 

3) Proteins can be expressed in the context of their normal cellular environment 

and correct localisation and in some cases at endogenous expression levels. 

4) Proteins are subject to their appropriate post-translation modifications such 

as phosphorylation and ubiquitination (reviewed in (Choudhary and Mann 

2010)). 

5) Tandem MS/MS enables the assessment of post-translational modifications 

of peptide sequences, and identification of ubiquitin chain linkages upon 

modified substrates (reviewed in (Kirkpatrick, Denison et al. 2005)). 

 

Disadvantages of AP/MS systems:  

1) Proteins that exhibit weak binding affinities are likely to avoid detection due to 

dissociation during washing steps. 

2) Discrimination between direct and indirect protein-protein interaction partners 

is not possible. 

3) Reduced ability to detect membrane proteins due to solubility/extraction 

problems and reduced ionization of resulting peptides (Eichacker, Granvogl 

et al. 2004). 

4) Detects a snapshot of potential interactions in a given cellular context and will 

therefore likely have a degree of false negative interactions. 

5) AP/MS systems are more technically demanding and incur higher costs 

compared to the relatively simple and cheap Y2H interaction assay. 

1.6.1.3. Protein complementation assays (PCA) 

Protein complementation assays (PCA) operate on the principle that two separated 

fragments of a reporter protein will spontaneously refold into their native 
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conformation when brought into close proximity by the binary interaction of fused 

interacting protein pairs (Morell, Ventura et al. 2009) (Figure 1.10C). This 

reconstitution strategy has been successfully employed in the reassembly of several 

reporter genes including dihydrofolate reductase (DHFR), Firefly/Renilla luciferase, 

and fluorescent proteins (EGFP and its spectral variants) (Morell, Ventura et al. 

2009). As such, the experimental read-out varies depending upon the PCA system 

used, but these include: fluorescence (E.g. EGFP); luminescence, (E.g. Firefly 

luciferase), survival (E.g. DHFR) or colorimetric (E.g. Beta-Lactamase, DHFR), 

assays. 

 
A recent proteome-wide protein-interaction study covering 93% of all S.cerevisiae 

ORFs utilised DHFR as a survival readout to identify ~ 2770 interactions amongst 

> 1100 proteins. The DHFR screen demonstrated high correlation (16-41%) with 

previous interactions from large-scale Y2H and AP/MS screens and identified a 

large number of novel protein pairings, thus highlighting the complementary nature 

of data from different interaction technologies (Tarassov, Messier et al. 2008). The 

survival readouts of the DHFR PCA system offer many of the same advantages and 

disadvantages as described for the Y2H assay, whilst also allowing for interactions 

of soluble and integral membrane proteins in yeast at appropriate subcellular 

localisations. 

 

Advances in technologies such as retroviral vectors to efficiently activate and tag 

host genes within cDNA libraries have recently enabled the characterisation of 

protein interaction partners on a large-scale in mammalian cells. For example, a 

YFP-based fluorescent complementation assay was recently employed to 

systematically test 6 telomere-associated proteins for interaction partners against 
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12212 prey proteins, identifying ~300 interaction partners providing a high-resolution 

map of the telomere interactome (Lee, Kim et al. 2011). 

 

Luciferases form a family of proteins that emit light following oxidation of 

bioluminescent substrates. The Photinus pyralis (Firefly) luciferase enzyme was the 

first to be adapted for protein complementation assays, with reconstitution of 

enzymatic activity upon the interaction of fusion proteins MyoD and Id proteins 

(Paulmurugan, Umezawa et al. 2002). Since the initial description of a Firefly 

luciferase PCA system, a number of luciferases have been similarly adapted for 

PCA-based interaction detection including Renilla reniformis (Paulmurugan and 

Gambhir 2003), and Guassia princeps (Remy and Michnick 2006). Split-luciferase 

based systems exhibit very low background luminescence and higher sensitivity 

compared to other split fluorophore-based PCA techniques, which require 

exogenous illumination, which can ‘bleach’ signal and contribute to higher 

background signals (Massoud and Gambhir 2003). Additionally, the faster folding of 

split luciferase fragments and the reversible nature of luciferase reconstitution have 

culminated in the use of this system in the evaluation of protein-protein interactions 

in both living cells and whole organisms (Hida, Awais et al. 2009).  

 

Advantages of mammalian PCA systems: 

1) Proteins are expressed in the context of their normal cellular environment  

enabling correct localisation and appropriate post-translational modifications. 

2) Transmembrane-domain containing proteins can be localised to their 

appropriate subcellular compartment. 

3) Protein pairs that exhibit a broad range of interaction affinities can be 

detected within PCA methodologies. Interactions can be detected for 
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interactions with dissociation constants in the micromolar range and above 

(Magliery, Wilson et al. 2005; Morell, Espargaro et al. 2007) 

4) Fluorophore-based, and to a limited extent split-luciferase-based, PCA 

systems can now provide spatial and temporal annotation to protein-protein 

interactions (Ding, Liang et al. 2006; Stefan, Aquin et al. 2007). 

5) Reversible nature of split-luciferase reconstitution allows for investigation of 

the dynamics of protein-protein interactions and conditional or signal 

dependent interactions in mammalian cells (Hida, Awais et al. 2009). 

 

Disadvantages of mammalian PCA systems: 

1) Cooperative binding cannot be assessed in traditional PCA systems as only 

two proteins are tested at any one time. 

2) PCA-based systems are more technically demanding and incur higher costs 

compared to the relatively simple and low-cost Y2H interaction assay. 

1.6.1.4. Comparative analysis between interaction detection techniques 

Each protein-protein interaction methodology will have inherent limitations that 

dictate the potential interaction space covered by individual methods. Each protein-

protein interaction system utilises different protein tags in distinct in vivo or in vitro 

environments and variable interaction read-outs and stringencies. As such, it is 

perhaps unsurprising that early comparisons of AP/MS, Y2H, and literature curated 

protein-protein interactions screens exhibited only modest overlap in reported 

interactions (Yu, Braun et al. 2008). Comparative analyses of data obtained from 

independent orthogonal assays have highlighted the utility of using data from 

multiple experimental methodologies to obtain higher coverage of interaction 
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partners across common clone sets (Braun, Tasan et al. 2009; Rajagopala, Hughes 

et al. 2009; Chen, Rajagopala et al. 2010). 

 

A recent comparative analysis of a gold-standard interaction dataset using five 

distinct techniques (Y2H, LUMIER, MAPPIT, MYTH, and NAPPA) verified ~60% of 

the total positive reference dataset yet each of five distinct techniques reconfirmed 

only 21-36% of known binary protein pairs (Braun, Tasan et al. 2009). When tested 

against a random reference clone set to assess potential false positive discovery 

rates, each assay reported a < 5% false discovery rate. Significantly, investigation of 

the same positive and negative reference datasets in five independent Y2H systems 

revealed differential Y2H approaches to have overlapping but distinct interaction 

coverage providing an equivalent level of specificity and accuracy to that observed 

using distinctly orthogonal interaction detection systems (Chen, Rajagopala et al. 

2010). 

 

These analyses highlight the benefits of utilising multiple protein-protein interaction 

methodologies to enable maximal coverage of a given interaction space (Braun, 

Tasan et al.). Furthermore, while the use of orthogonal interaction screens is 

valuable for assessing systematic bias in any individual assay system, the degree of 

complementarity between data from different assays stipulates that ‘verification’ 

between different assay systems should not be considered absolute and should be 

based upon a process of increasing confidence through benchmarking. 

1.7. Aims of this study 

In this chapter the human Ub/Ubl conjugational machinery has been introduced. 

Furthermore, the combinatorial interactions that occur between constituents of this 
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conjugational machinery and how such interactions underlie selectivity of 

ubiquitination events have been discussed. To ascertain the existing coverage of 

ubiquitin system interactions E3-RING/E2 interactions were extracted from publically 

available databases and recent HTP-Y2H TM-E3-RING data published by our 

laboratory to generate a high density network of ~ 700 binary full length E3-

RING/E2 protein interactions (Markson, Kiel et al. 2009). As can be seen from 

Figure 1.11 there exists a key area of data paucity for E3-RING proteins, which 

contain transmembrane domains (TM-E3-RING protein) with approximately half of 

all TM-E3-RINGs annotated having no cognate E2 partners. This highlights the 

necessity for directed interaction studies to address areas of low network density, 

which remain following proteome-wide studies. 

 

A major drawback of conventional Y2H approaches is that interactions involving full-

length proteins that contain transmembrane regions are found comparatively less 

often than by other methods (Rual, Venkatesan et al. 2005). Y2H systems are 

based upon the principle that protein interaction mediated reconstitution of an active 

transcription factor within the nucleus enables the expression of reporter genes 

(Fields and Song 1989). Furthermore, transmembrane domain containing proteins 

have a tendency to become insoluble or form aggregates when expressed outside 

of cellular membranes. Therefore, ORFs encoding full-length transmembrane 

proteins are poor candidates for interaction detection in these systems. To address 

the poor coverage of TM-E3-RING/E2 interactions it was proposed that a directed 

Y2H approach using TM-E3-RING ORF clones encoding the entire cytoplasmic 

RING-domain (CRD) containing region for each human TM-E3-RING protein would 

maintain an optimal E2 binding surface whilst overcoming the associated issues of 

using transmembrane domains in Y2H analyses. 
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Figure 1.11 Binary TM-E3-RING/E2 interaction network. (A) E3-RING/E2 

interaction coverage at the time of initiating the current study with data collated from 

full-length GAL4 screens (Markson, Kiel et al. 2009) and other literature-derived 

interaction data. Nodes (circles) represent proteins and edges (lines) represent 

binary interactions between proteins.  
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The aims of this study were: 

1. To systematically generate comprehensive binary protein-protein interactions 

maps of human TM-E3-RING/E2 using Y2H as a primary interaction detection 

method. 

2. To validate and extend interaction coverage in secondary protein-protein 

interaction detection systems. 

3. To integrate datasets with publically and commercially available datasets to 

generate higher coverage TM-E3-RING interaction maps. 

4. To investigate the potential functional significances of TM-E3-RING/E2 

pairings using in vitro ubiquitination assays.   
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2. Chapter 2: Materials and methods 

2.1. Molecular biology 

2.1.1. Reagents 

Human Brain and Testes Marathon-Ready cDNA libraries were obtained from 

Clontech (Mountain View, Ca, USA). One Shot ccdB Survival 2 T1R Competent 

Cells, Gateway® BP and LR reaction kits, the RfB-Gateway® cassette, SybrSafe 

DNA gel stain and primers were purchased from Invitrogen (Paisley, UK). Human 

KOD HotStart DNA Polymerase was obtained from Merck Chemicals Ltd 

(Nottingham, UK). BIOTaq DNA polymerase, α-select chemically competent silver 

efficiency cells, DNA HyperLadder and Agarose were from BioLine (London, UK). 

dNTPs (100 mM solutions) were from GE Healthcare (Buckinghamshire, UK). 

Tris/Borate/EDTA buffer (TBE; 10X) was obtained from VWR International Ltd 

(Lutterworth, UK). Restriction endonucleases, antarctic phosphatase and T4 DNA 

ligase were obtained from New England Biolabs (Hertfordshire, UK). Wizard® Plus 

SV Miniprep kits were obtained from Promega (Southampton, UK). QIAfilterTM 

Midiprep kits and QIAQuickTM DNA purification kits were from Qiagen (Crawley, 

UK). Tryptone was from Fisher (Loughborough, UK). Yeast extract and BioAgar 

were from BioGene (Cambridge, UK) and glucose from Formedium (Norfolk, UK). 

All other chemicals were obtained from Sigma-Aldrich (Poole, UK).  

2.1.2. Agarose gel electrophoresis 

Agarose gels (0.8% to 1%) were prepared by the addition of electrophoresis grade 

agarose to 0.5X TBE buffer and heating in a microwave for ~ 2 min or until agarose 

had dissolved completely. Sybr Safe DNA gel stain was added to cooled 

agarose/TBE solution at a 1:20,000 dilution to allow visualisation of DNA bands. 1% 

Orange G buffer (5% w/v sucrose, 0.05% Orange G) was added to PCR products 
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prior to sample loading and resolving in 0.5X TBE buffer using a horizontal mini-

electrophoresis tank (BioLine, UK). DNA HyperLadder (5 µl/well) was loaded 

alongside DNA samples to facilitate estimation of PCR product base pair size and 

DNA concentration. DNA bands were visualised using an ultraviolet (U.V.) light 

source. 

2.1.3. Sequencing 

Sequencing of DNA constructs was performed by automated fluorescent DNA 

sequencing at GATC BioTech (London, UK). PCR products amplified from 

transformed yeast colonies were PCR purified and 5’ end sequenced-tagged by 

automated fluorescent DNA sequencing at GATC BioTech (London, UK) to ensure 

correct ORF insertion into Y2H vectors. 

2.1.4. Bacterial glycerol stocks 

Glycerol stocks of transformed bacterial cells were generated from 9 ml 2xTY 

overnight cultures (plus appropriate antibiotic) inoculated with an individual bacterial 

colony and incubated for 16 h at 200 rpm, 30 °C.  200 µl samples of individual 

bacterial cultures were combined with 80 µl 80% autoclaved glycerol in 1.5 ml 

microfuge tubes and stored at -80 °C. 

2.1.5. TM-E3-RING Gene Identifier (ID) acquisition 

Initial identification of human E3-RING proteins was performed by interrogation of 

InterPro (http://www.ebi.ac.uk/interpro) and Human Protein Reference Database 

(http://www.hprd.org) databases for any human proteins predicted to contain RING-

finger domains. Each E3-RING protein was allocated an Entrez Gene ID – uniquely 

assigned to individual genes by the National Centre for Biotechnology Information 

(NCBI) – and duplicates removed to generate a non-redundant list of human E3-

RING proteins. To identify putative TM-E3-RING proteins, Reference cDNA 
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Sequences (RefSeq) for isoform 1 of each E3-RING protein were extracted from 

GenBank and used as query for transmembrane domain prediction using the batch 

search function of the transmembrane domain prediction server TMHMM 

(http://www.cbs.dtu.dk/services/TMHMM-2.0/). 

 

GatewayTM-compatible nucleotide primer sequences were manually designed using 

cDNA RefSeq to facilitate PCR amplification of full-length and cytoplasmic RING 

domain (CRD) TM-RING-E3 ORF clones. Full-length primers were designed from 

the 5’ region ATG start to the penultimate 3’ codon to remove STOP codons. CRD-

E3 primers were designed to amplify solely the cytosolic RING domain region 

according to RING and TM domain architecture predicted using the Pfam domain 

batch analysis tool (Finn, Mistry et al. 2009). Gateway®-compatible 5’ and 3’ 

primers typically contained 18-25 gene specific base pairs (bp) and included attB 

flanking regions to enable Gateway® transfer of PCR-amplified products into the 

pDONR223 ‘Entry’ vector by a BP reaction. TM-E3-RING ORFs were amplified by 

high-fidelity HotStart KOD DNA polymerase from either (i) Brain or Testes derived 

Marathon-ready cDNA libraries, (ii) available yeast constructs within our laboratory 

or (iii) Mammalian Gene Collection (MGC) I.M.A.G.E. clones. 

 

All PCR reactions were performed using either the MJ Research PTC-200 or PTC-

225 Peltier Thermal Cycler (supplied by GRI Ltd, Essex, UK). Size verification and 

estimation of DNA was performed by analysis of PCR products by agarose gel 

electrophoresis prior to utilisation in BP recombination reactions. 
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A	
  

Reagent µl / reaction [Conc] 

Forward Primer (10µM) 0.5 0.2µM 

Reverse Primer (10µM) 0.5 0.2µM 

dNTPs (2mM) 2.5 0.2mM 

KOD Buffer (10x) 2.5 1x 

MgSO4 (25mM) 1.5 1.5mM 

HotStart KOD 0.5 0.5 U 

dH2O 17 – x - 

  

*Brain/Testis cDNA library x (0.5-1) - 

**Yeast lysis sol. x (2) - 

***cDNA clone x (0.5) - 

Total 25 - 
 

B	
  

Step Cycles Temp (°C) Duration 

1 1 95.0 2 min 

2 29-39* 

95.0 30 secs 

60.0 60 secs 

70.0 30 secs /kb 

3 1 4.0 For ever 

 
 
 
Table 2.1. KOD HotStart PCR amplification. (A) Reagents and typical 

concentrations for high-fidelity HotStart KOD PCR reactions. All components were 

added to a thin walled PCR tube on ice. * denotes cDNA-library PCR, ** denotes 

YC-PCR, *** denotes MGC cDNA clone PCR. (B) Typical PCR thermocycling 

conditions; annealing temperature  (step 2; row 2) varied according to predicted 

primer Tm to facilitate primer-DNA annealing; extension temperature (step 2; row 3) 

varied according to template DNA source (YC-PCR was performed for 39 cycles). 
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2.1.6. TM-RING-E3 ORF amplification from cDNA libraries 

The majority (40/53) of TM-E3-RING ORFs obtained during the course of this study 

were amplified from Brain or Testes Marathon-ready cDNA libraries. PCR reagents 

and typical concentrations for cDNA library PCR experiments are outlined in Table 

2.1 A and typical thermo-cycling conditions are outlined in Table 2.1 B.   

2.1.7. TM-RING-E3 ORF amplification from Y2H expression constructs 

Seven TM-E3-RING ORF clones were amplified from yeast pACTBE-B clones, 

previously generated by in vivo gap-repair cloning techniques (Semple, Prime et al. 

2005; Markson, Kiel et al. 2009). TM-E3-RING ORFs were amplified directly from 

specific yeast colonies by KOD HotStart DNA polymerase Yeast Colony PCR (YC-

PCR) using the Gateway® compatible vector specific primers, A1F and A2R 

(Supplementary file TMRING Cloning Summary). Initially, yeast colonies were lysed 

in 10 µl 20 mM NaOH for 20 min and cell debris pelleted by centrifugation at 10,000 

rpm for 10 s. 2 µl of supernatant was combined with all other components of YC-

PCR mix (Table 2.1A) prior to thermo-cycling (Table 2.1B). 

2.1.8. TM-E3-RING ORF amplification from cDNA I.M.A.G.E. clones 

Finally, four TM-E3-RING ORFs were amplified from MGC cDNA clones obtained 

from the Integrated Molecular Analysis Of Genomes And Their Expression 

Consortium (IMAGE; http://image.hudsonalpha.org). PCR reagents and typical 

concentrations for PCR experiments using I.M.A.G.E. clones are described in Table 

2.1A and typical thermo-cycling conditions are outlined in Table 2.1B. 

2.1.9. Gateway® BP reaction to generate Gateway ENTR™ vector 

PCR products were combined with the Gateway® vector pDONR223 by BP 

recombination reactions to generate an ENTR™ vector to enable future shuttling of 

TM-E3-RING ORFs into Gateway®-compatible expression vectors. BP reaction 
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components were combined on ice as described in Table 2.2. BP Clonase® enzyme 

mix was combined immediately prior to incubation of reaction mixtures at 25°C for 

16 h. BP recombination reactions were terminated by addition of 0.5 µl Proteinase K 

enzyme and incubation at 37°C for 10 min. 

2.1.10. Gateway® LR reaction to generate GatewayTM expression vector 

To rapidly transfer TM-E3-RING ORFs into expression vectors for further study LR 

reactions were undertaken. LR recombination reaction components were combined 

on ice as described in Table 2.2. LR Clonase® enzyme mix was added immediately 

before incubation of reaction mixtures at 25 °C for 16 h. LR reactions were 

terminated by addition of 0.5 µl Proteinase K enzyme and incubation of samples at 

37 °C for 10 min. Gateway® destination vectors utilised within this study are 

described in the text where appropriate. A schematic representation of the Gateway 

recombination cloning methodology is shown in Figure 2.1. 

 

BP Reaction LR Reaction µl / reaction 

BP Clonase® Enzyme 

Mix 
LR Clonase® Enzyme Mix 2 

BP Reaction Buffer LR Reaction Buffer 2 

AttB flanked PCR 

Product 

pDONR223 AttL Entry 

Construct 
x (200ng of PCR product) 

AttP pDONR223 Vector AttR Expression vector 
y (200ng of vector DNA 

stock) 

dH2O dH2O 6 -x-y 

Total Total 10 

Table 2.2 BP and LR reaction components. All components were added to a thin 

walled 1.5 ml microfuge tube on ice prior to incubation in a heat block at 25 °C for 

16 h. 
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Figure 2.1 The Gateway system. Full-length and CRD TM-E3-RING ORFs were 

amplified with Gateway primers with 5’ (forward) or 3’ (reverse) overhangs. 

Amplified TM-E3-RING ORFs are flanked by the attB1 and attB2 sites (in red). This 

PCR product can be recombined with the attP1 and attP2 sites (in blue) on an entry 

vector (pDONR223) to produce an entry construct flanked by attL1 and attL2 sites 

(not shown) in what is called a BP reaction. This entry construct can be subjected to 

further recombination with destination vectors (for bacterial or mammalian 

expression) containing the attR1 and attR2 sites (in green) in a Gateway® LR 

reaction.  
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2.1.11. Transformation of competent bacterial cells, DNA amplification and 
purification 

BP and LR reaction products were transformed into α-select silver efficiency 

competent bacterial cells to propagate individual clones and allow generation of 

DNA stock solutions. Typically, 6 µl BP or LR reaction product was combined with 

30 µl α-select cells, which were thawed on ice immediately prior to use. 

Transformation mixtures were incubated on ice for 30 min prior to heat shock 

treatment at 42°C for 45 s and incubation on ice for a further 2 min before addition 

of 200 µl room temperature Super Optimal broth with Catabolite repression media 

(SOC; tryptone, 2% (w/v); yeast extract, 0.5%  (w/v); glucose, 0.4% (w/v); NaCl, 

10mM; KCl, 2.5mM; MgCl2, 10mM; MgSO4, 10mM) and incubation for 1 h at 37°C, 

220 rpm. 150 µl reaction product was evenly distributed onto 2xTY solid medium 

(yeast extract, 1% (w/v); BioAgar, 2% (w/v); tryptone, 1.6% (w/v); NaCl, 85mM; plus 

appropriate antibiotic), using a sterile glass spreader and incubated for 16 h at 

37 °C. 

 

Size-verification of ORF inserts was performed by diagnostic Bacterial Colony 

diagnostic PCR (BCPCR) and agarose gel electrophoresis using BIOTaq™ DNA 

polymerase and vector specific primers flanking the Gateway®-recombination sites 

(For a list of GatewayTM-compatible primers see supplementary file TMRING 

Cloning Summary). Reaction components were combined on ice and an individual 

bacterial colony transferred from 2xTY solid medium to PCR reaction mixture 

followed by 2xTY liquid media using a sterile toothpick (yeast extract, 1% (w/v), 

tryptone, 1.6% (w/v), NaCl, 85 mM; plus appropriate antibiotic). For size-verified BC-

PCR bacterial colonies, the corresponding 2xTY liquid media was incubated 

overnight at 37°C, 220 rpm in 9 ml or 25 ml 2xTY liquid media (plus appropriate 
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A	
  

Reagent µl / reaction [Conc] 

Forward Primer (10µM) 0.7 0.7µM 

Reverse Primer (10µM) 0.7 0.7 µM 

dNTPs (25mM) 0.25 0.625mM 

NH4 Buffer (10x) 1.0 1x 

MgCl2 (50mM) 0.45 2.25mM 

dH2O 6.9 - x - 

BIOTaq 0.05 - 

DNA 

Individual 

bacterial 

colony 

- 

TOTAL 10 - 

 

 

B	
  

Step Cycles Temp (°C) Duration 

1 1 95.0 5 min 

2 35 

95.0 1 min 

55.0 - 68.0 1 min 

72.0 1 min/kb 

3 1 72.0 5 min 

4 1 4.0 Forever 

 
Table 2.3. Concentration and reaction conditions for bacterial colony (BC-
PCR). A All components were added to a thin walled PCR tube on ice. B Typical 

thermocycling conditions for BC-PCR. The annealing temperature (second segment 

of step 2) is dependent on the primer pair used, according to primer Tm. The 

extension step of the polymerase (third segment of step 2) is dependent on the 

polymerase used and the length of the insert in the vector.  
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B 

 1:1 1:3 Insert alone 
Vector 

alone 

Vector x µl x µl - x µl 

Insert y µl 3y µl y µl - 

10x T4 Ligase buffer 1µl 1µl 1µl 1µl 

T4 Ligase 1µl 1µl 1µl 1µl 

dH2O 10µl – x – y 10µl – x – y 10µl – x – y 10µl – x – y 

Total 10µl 10µl 10µl 10µl 

 
Table 2.4 Ligation reaction using T4 DNA ligase. (A) Formula to calculate 

appropriate ratios for blunt end ligation. (B) Ligation mixtures were set up on ice as 

indicated. Volumes of vector (y) and insert (x) DNA solutions used varied depending 

on concentration. 
 

antibiotic) for miniprep or midiprep DNA stock preparation, respectively. Mini- and 

midi-preps were performed according to manufacturer’s instructions. Concentrations 

of DNA stocks were 

estimated by measuring optical density at 260nm wavelength (OD260). 

2.1.12. Gateway® destination vectors 

Gateway® destination vectors used in this study contain either an N- or C-terminal 

tag. pEGFP-N2 GW, pcDNA3-myc GW, pGEX6P1 GW were previously available as 

Gateway®-converted vectors within the laboratory. pcDNA3-FLucC and pcDNA3-

FLucN vectors were converted into Gateway®-compatible vectors in house.  Briefly, 

pcDNA3-FLucC and pcDNA3-FLucN split luciferase vectors were digested with 
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BamHI and XhoI prior to removal of 3’ overhangs by T4 DNA polymerase. The 5’ 

ends of blunt end digested vectors were dephosphorylated by incubation with 

Antarctic Phosphatase according to manufacturer’s instructions to prevent re-

ligation. Linear pcDNA3-FLucC and pcDNA3-FLucN vectors were blunt-end ligated 

with the Reading frame B (RfB) Gateway® conversion cassette using T4 DNA ligase 

at 1:1 and 3:1 RfB Cassette:Vector molar ratios (Table 2.4). Reaction mixtures were 

incubated for 16 h at 4 °C. For transformation, 2 µl of ligation reaction was used to 

transform 50 µl OneShot ccdB 2T1 Survival cells. Transformation reactions were 

evenly spread onto 2xTY solid medium containing Ampicillin (100 µg/ml) and 

Chloramphenicol (27 µg/ml), conferred by the pcDNA3 vector and RfB Gateway 

cassette, respectively. OneShot ccdB 2T1 Survival cells are permissive to growth of 

constructs expressing the ccdB gene product encoded within the Gateway® 

Reading frame cassette, which is otherwise lethal to bacteria. Diagnostic BC-PCR, 

mini-prep DNA purification, vector sequencing, and glycerol stocks were undertaken 

as described previously. Once the correct ligated product was obtained and 

sequenced, midipreps were performed from individual bacterial colonies streaked 

onto selective 2xTY agar containing Ampicillin (100 µg/ml) and Chloramphenicol (27 

µg/ml) from the corresponding sequenced glycerol stock. To distinguish between 

vectors, the Gateway®-converted pcDNA3-FLucC and pcDNA3-FLucN were 

renamed pcDNA3-FLucC GW and pcDNA3-FLucN GW. 

2.2. Yeast clone generation 

2.2.1. Reagents 

Salmon testis DNA and primers were from Invitrogen (Paisley, UK). Polyethylene 

glycol (PEG), amino acid powders, and chemicals were obtained from Sigma Aldrich 

(Poole, UK). Peptone, yeast nitrogen base lacking amino acids, yeast extract and 
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glucose were purchased from Formedium (Norfolk, UK). The yeast two-hybrid host 

bait and prey strains utilised within this study were PJ69-4A (MatA trp1-901 leu2-3, 

112 ura3-52, his3-200 gal4Δ gal80Δ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-

lacZ), and its switch mating type PJ69-4α, respectively (provided by Phil James; 

University of Wisconsin, USA). Yeast strains carried three independent GAL4-

responsive reporter genes (GAL1-HIS3, GAL2-ADE2 and GAL7-lacZ). 

2.2.2. Media constituents 

Media for yeast experiments were prepared according to Table 2.5. YPAD media 

provides strong growth conditions for yeast growth. Synthetic defined (SD-X) media 

allows for selection of yeast transformed with a given expression vector and 

determination of binary protein-protein interactions (Table 2.5D). 

2.2.3. Yeast Glycerol Stocks 

Successfully transformed MatA and Matα yeast colonies were grown for 3-4 days on 

synthetic deficient solid medium lacking appropriate selective nutrients (SD-X); 

growth selection markers conferred by all yeast vectors used within this study are 

outlined in Table 2.5D and Figure 2.2. Glycerol stocks were generated from 200 µl 

SD-X liquid media inoculated with an individual yeast colony in 1.5 ml microfuge 

tubes and incubated for 24 h at 200 rpm, 30°C. 80 µl of 80% autoclaved glycerol 

was added to yeast cultures prior to storage in at -80°C. 

2.2.4. Yeast two hybrid vectors 

All bait and prey Y2H expression vectors used in Y2H screens encoded the GAL4 

DNA-binding domain (BD) or Activation Domain (AD), respectively. TM-E3-RING 

ORFs were inserted into prey and bait vectors for the generation of N- and C-

terminal fusion proteins (Figures 2.2). E2-conjugating enzymes were previously 

generated within the laboratory within the pGBAE-B vector and were used for all 
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A Basic yeast media constituents 

YPAD (500 ml)  SD-X (500 ml) 

D-glucose 10 g D-glucose 10 g 

BioAgar (solid media) 10 g BioAgar (solid media) 10 g 

Yeast Extract 5 g Yeast Nitrogen Base 3.35 g 

Peptone 10 g 
Amino acid mix 0.1 g 

Adenine 0.1 g 

 

B SD-X amino acid supplements for yeast gap repair and transformation.  

 

C SD-X amino acid supplement mixes for autoactivation and interaction studies 

 
SD-X mix (for 10 L) 

LA* LH*/** WA WH** WL WLA WLH** WLU 

Adenine 0.6 0.6 - 0.6 0.6 - 0.6 0.6 

Leucine - - 1.0 1.0 - - - - 

Histidine 0.2 - 0.2 - 0.2 0.2 - 0.2 

Uracil 0.2 0.2 0.2 0.2 0.2 0.2 0.2 - 

A/H/L/W/U  5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 

Total g / L 0.63 0.61 0.67 0.71 0.63 0.57 0.61 0.61 

 

 

A/H/L/W/U DO  SD-X mix (for 10 L) 

Amino acid Grams / 100L Amino acid Grams / 100L 

Arginine 2  L* W* 

Isoleucine 3 Adenine 0.6 0.6 

Lysine 3 Leucine  - 1.0 

Methionine 2 Histidine 0.2 0.2 

Phenylalanine 5 Uracil 0.2 0.2 

Threonine 20 A/H/L/W/U DO 5.3 5.3 

Tyrosine 3 Total g / L 0.63 0.73 

Valine 15  

Total (g/L) 0.53 
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D 

Name Deficiency Selection 

YPAD None (Nutrient rich) None (Strong growth of yeast) 

-W Tryptophan Bait yeast (pGBAE-B/pBGBD) 

-L Leucine Prey yeast (pACTBE-B/pBACT2) 

-WA Tryptophan and Adenine 
Autoactivation of bait constructs 

-WH(AT) Tryptophan and Histidine 

-LA Leucine and Adenine 
Autoactivation of prey constructs 

-LH(AT) Leucine and Histidine 

-WL Tryptophan and Leucine Diploid yeast 

-WLA Tryptophan, Leucine, and Adenine 
Protein-Protein Interactions 

-WLH(AT) Tryptophan, Leucine, and Histidine 

 
 
Table 2.5 Yeast media. (A) Basic yeast media constituents for YPAD and synthetic 

defined (SD-X) media. (B) SD-X amino acid supplements for yeast gap repair and 

transformation. (C) SD-X amino acid supplements for auto-activation and interaction 

studies. Amino acid supplement mixes for autoactivation and interaction studies. 

*Filter-sterile Tryptophan was added to SD-X media post-autoclaving to a final 

concentration of 20 mg/L. **Histidine dropout media was supplemented with a 

competitive analogue of histidine, 3-amino-1,2,4-triazole (3AT) to a final 

concentration of 2.5 mM, to increase the stringency of the reporter. (D) 
Selection/use of different yeast growth medias. YPAD provides strong conditions for 

yeast growth. Synthetic defined (SD-X) media allows for selection of yeast 

transformed with a given expression vector, auto-activation, and determination of 

binary protein-protein interactions, as indicated. 

 

 



71 

 
Figure 2.2 Y2H vectors used in this study. (A & B) pACTBE-B and pBACT2 prey vectors based on pACT2 and (C&D) pGBAE-B 

and pBGBD bait vectors based on pGBD-C1. pACTBE-B and pGBAE-B have a one base-pair insertion at the recombination site 

separated by the attB flanking regions to allow frame-shift and stop codon insertion following homologous recombination. (E) Y2H 

vector growth selection markers and GAL4 domain conjugation. 
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interaction assays. The selection of TM-E3-RING ORFs for either N- or C-terminal 

fusion protein generation is described in Chapter 3 and shown in Figure 2.3. To 

accommodate ORFs lacking stop codons, the N-terminal vectors pACTBE-B (prey) 

and pGBAE-B (bait) were designed to insert a stop codon 3’ of the recombination 

site upon ORF insertion. 

2.2.5. Yeast clone generation 

To enable the in vivo homologous recombination of CRD TM-E3-RING ORFs with 

the desired Y2H-expression vectors (Figure 2.2), generic primers (pDONR223 gap 

repair F and pDONR223 gap repair R) were utilised to amplify ORFs from 

pDONR223 ENTR™ constructs by proof-reading KOD HotStart PCR, as described 

in section 2.1.3.  

 

pACTBE-B, pBACT2, pGBAE-B, and pBGBD vectors were linearised by restriction 

enzyme digestion with BamHI and diluted to a working concentration of 20 ng/µl in 

dH2O. Linearised DNA vector and PCR-amplified insert were recombined in MatA 

and Matα yeast strains by lithium acetate transformation (Ito, Fukuda et al. 1983). 

All yeast incubations described below were performed at 30 °C in an orbital shaking 

incubator at 220 rpm. Briefly, 2 ml YPAD liquid media was inoculated with a single 

colony of MatA or Matα yeast and incubated for 16 h. Following this period, an 

additional 8 ml YPAD liquid media was added and cultures incubated for a further 

5 h. Yeast were harvested by centrifugation at 2300 rpm for 5 min and resuspended 

in 5 ml 100 mM Lithium acetate. For 10 yeast transformations, 1.5 ml of yeast 

suspension was transferred to a microfuge tube and cells harvested by 

centrifugation at 2300 rpm for 5 min, the supernatant discarded, and the pellet 

resuspended in transformation mixture described in Table 2.6. 
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Figure 2.3 Selection and generation of N- and C-terminal GAL4 fusion proteins 
by in vivo gap repair cloning. CRD TM-E3-RING ORFs (black solid bars within 
red dotted lines) are amplified from pDONR223 with vector specific primers with 5’ 
(forward) or 3’ (reverse) overhangs for in vivo homologous recombination with Y2H 
expression vectors in yeast following lithium acetate transformation. Purple 
represents flanking region. Brown rectangles in (a-d) represent transmembrane 
domains and are therefore located outside of the CRD region. For those TM-E3-
RING proteins, which contain TM-domains solely N- or C-terminal (a&c) to the 
RING domain, prey vectors were chosen such that the GAL4 domain substituted the 
cleaved TM-domain region at that terminus. However, for TM-E3-RING proteins that 
contain both N- and C-terminal TM-domains (b&d), the GAL4 domain was 
positioned at the terminus of the CRD domain most distally located to the RING 
domain, to reduce the potential of steric hindrance of the GAL4 domain. 
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Reaction Component Volume (µ l) 

50% (w/v) PEG 3350 230  

1M Lithium acetate 35 

Denatured salmon testes DNA (10 mg/ml) 9 

20 ng/µl BamHI linearised DNA 1 

Distilled H2O 45 

Table 2.6. Typical reaction mixture for transformation of yeast with linearised DNA 

vector and PCR product. Sufficient for 10 transformation reactions. Transformations 

were performed at room temperature. 

 

32 µl of yeast transformation mixture was combined with 4 µl of PCR reaction for in 

vivo gap repair recombination reactions, or 4 µl dH2O for determination of 

undigested vector contamination. Samples were incubated in a thermal cycler as 

follows: 

i. 30°C for 30 min 

ii. 42°C for 25 min 

iii. 30°C for 1 min  

The resulting reaction mixture was spread onto appropriate SD-X media as 

described in Table 2.5D and incubated for 3-4 days at 30 °C prior to diagnostic 

yeast colony PCR and auto-activation tests. 

2.2.6. Diagnostic yeast colony PCR (YCPCR) and auto-activation 

Colonies were tested for transformation and homologous recombination of linear 

DNA vector and PCR products by diagnostic yeast colony PCR (YCPCR) and 

agarose gel electrophoresis using BIOTaq™ DNA polymerase and vector specific 

primers flanking the homologous recombination sites (Supplementary file TMRING 

Cloning Summary). Reaction components were combined on ice and an individual 

yeast colony transferred using a sterile toothpick from SD-X media to 5 µl 0.02 M 
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NaOH followed by 10 µl SD-W or SD-L media, as appropriate. Yeast / NaOH 

solutions were incubated for ~ 15 min at room temperature prior to centrifugation at 

10,000 rpm for 10 s. 12 µl of YCPCR mix (Table 2.7A) was combined with 3 µl yeast 

/ NaOH solution and incubated in a thermal cycler as described in Table 2.7B. 5 µl 

of the resulting PCR product was size-verified by agarose gel electrophoresis. 

Colonies exhibiting a DNA band of the correct estimated size following diagnostic 

YCPCR were spotted (3 µl) onto selective SD-X media for determination of auto-

activation. 

2.2.7. Auto-activation screening 

Auto-activation tests were performed to identify haploid yeast clones capable of 

constitutively activating reporter genes within the PJ69-4A/α strain in the absence of 

the reciprocal GAL4 domain fusion protein. Of the three GAL4-responsive reporter 

genes present in PJ69-4A/α (GAL1-HIS3, GAL2-ADE2 and GAL7-lacZ), both the 

HIS3 and ADE2 reporters were assayed for auto-activation; colonies were incubated 

at 30°C for 10 days on selective SD-X media described in Table 2.5D. Yeast 

colonies that did not display auto-activation growth phenotypes upon –His or –Ade 

reporters were selected for generation of glycerol stocks. Prior to Y2H screening, 

≥ 3 individual glycerol stocks of each TM-E3-RING clone were pooled, and 4 µl 

spotted onto SD-L or SD-W agar for further experimentation. Each pooled yeast 

colony was sequence-tagged to confirm the presence of the desired insert.  

2.2.8. Yeast construct clone set coverage and storage 

Gap repair cloning resulted in the generation of bait (pGBAE-B/pBGBD; MatA) and 

prey (pACTBE-B/pBACT2; Matα) constructs representing 51 and 50 unique TM-E3- 

RING genes, respectively. Bait and prey yeast constructs were stored in two 

separate 96 well plate arrays. 



 76 

 
 
 
 
A	
  

Reagent µl / reaction [Conc] 

Forward Primer (10µM) 0.75 0.5 µM 

Reverse Primer (10µM) 0.75 0.5 µM 

dNTPs (25mM) 0.25 0.42 mM 

NH Buffer (10x) 1.5 1 x 

MgCl2 (50mM) 0.45 1.5 mM 

BIOTaq (5 U / µl) 0.15 0.75 U 

DMSO 0.3 - 

dH2O 7.35 - 

NaOH yeast suspension 3.0 - 

TOTAL 15 - 

 

B	
  

Step Cycles Temp (°C) Duration 

1 1 95.0 5 min 

2 39 

95.0 1 min 

55.0 - 68.0 1 min 

72.0 1 min/kb 

3 1 72.0 5 min 

4 1 4.0 For ever 

 

Table 2.7. YCPCR. (A) Reaction mix for a yeast colony PCR. DMSO was added to 

increase the efficiency of primer annealing to the template DNA. The PCR mix was 

combined on ice prior to addition to thin walled PCR tubes. (B) Typical thermo-

cycling conditions for YCPCR reactions. 
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2.3. Yeast two hybrid matrix matings 

2.3.1. Reagents 

5-bromo-4-chloro-3indoyl-β-D-galactosidase (X-Gal) reagent was purchased from 

Melford Laboratories (Ipswich, UK). Whatman filter paper (3mm) was purchased 

from Fisher Scientific (Loughborough, UK). All plasticware was from VWR 

(Lutterworth, UK). All other chemicals were purchased from Sigma Aldrich, unless 

otherwise stated. 

2.3.2. Y2H matrix mating screen protocol 

Yeast glycerol stocks were spotted onto the appropriate selective SD-X media and 

incubated at 30 °C for 3-5 days for yeast colony growth. Bait and prey yeast 

constructs were re-suspended to a similar opacity (assessed by eye) in 3 µl SD-X 

liquid media per yeast colony to be tested against. Initially, 2 µl prey yeast 

suspension was spotted onto YPAD agar in an 8 x 12 format and allowed to dry at 

room temperature. 2 µl of each of the bait yeast suspensions was subsequently 

spotted on top of the dried prey yeast constructs and dried at room temperature. 

YPAD agar plates were incubated at 30 °C for 24 h to encourage MatA and Matα 

yeast mating. Yeast spots were replica-transferred onto SD-WL media using a 

sterilised velvet cloth and incubated for 48 h at 30 °C for diploid yeast selection prior 

to replica-transfer onto SD-WL, SD–WLA and SD-WLH(AT) selection media. SD-WL 

media plates were incubated for 5 days at 30 °C and processed for determination of 

β-Galactosidase activity (described in Section 2.3.3). SD-WLA and SD-WLH(AT) 

media plates were incubated at 30 °C for 10 days with selective yeast growth scored 

and recorded following 3 days and subsequently every 2-3 days; scoring was based 

upon number of colonies per pairwise interaction tested: 0-5 colonies, background 

growth (0), 5-20 colonies, weak growth (1), 20-200 colonies, medium growth (2), full 
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plaque, strong growth (3). An overview of the Y2H matrix mating protocol is shown 

as a schematic in Figure 2.4.   

2.3.3. LacZ enzymatic assay 

In addition to the biosynthetic reporter assays described above, the lacZ assay was 

utilised as an alternative for identification of interacting partners. For transfer of 

diploid yeast growth from SD-WL media, a dry 15 x 20 cm 3mm Whatman filter 

paper was placed on the yeast growth and an even downward pressure applied to 

transfer an equal amount of yeast from each plaque to the filter paper. The filter 

paper was submerged in liquid nitrogen for 20 s and allowed to thaw, and the 

process repeated to maximise lysis of yeast. Following thawing, the filter paper was 

positioned yeast-side-up onto two sheets of Whatman filter paper saturated with β-

gal reagent (6 ml Z-buffer (60 mM Na2HPO4, 40 mM Na2H2PO4, 10 mM KCl, 1 mM 

MgSO4, pH 7.0), 1.6 mg/ml X-Gal reagent (100 mg/ml in N,N-dimethylformamide), 

11 µl β-mercaptoethanol), in a 150 mm petri-dish. β-gal plates were incubated at 

37 °C for up to 12 h to allow the progressive development of a white to blue colour 

change, diagnostic of β-Galatisidase production within yeast and as such a positive 

binary interaction. β-gal plates were scored every hour for 6 h and at 12 h to 

optimise positive results observed over background. Each biosynthetic/enzymatic 

assay was undertaken twice and the results from each recorded. 
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Figure 2.4. A flow diagram representation of the experimental procedure undertaken for Y2H determination of protein 
interactions. Construct generation was undertaken prior to insertion of the ORF of interest into MatA or Matα yeast. Yeast 

constructs were verified by PCR band size and assayed for activation of the growth reporter genes in the absence of a binding 

partner. Non-autoactivating clones were then moved forward in to yeast two hybrid matrix matings. 
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2.3.4. Y2H scoring and data storage 

To allow integration and comparison of interaction data with that previously obtained 

a scoring methodology was adopted from that utilised in a recently published E3-

RING/E2 Y2H screen within our laboratory (Markson, Kiel et al. 2009). Each tested 

protein pair was assigned an interaction score of 0-7 dependent upon both the 

number and combination of reporter genes activated as described in Table 2.8. 

Scores above zero required reproducible reporter activation in two independent 

matrix-mating screens with growth of ≥ 5 yeast colonies per interaction in both 

screens. The lowest positive interaction score, 1, was awarded to activation of the 

enzymatic LacZ reporter alone due to the predominantly subjective nature of this 

experimental readout. The ADE reporter is reported to be inherently more stringent 

than the HIS reporter (James, Halladay et al. 1996) and therefore activation of the 

ADE reporter alone represented an unexpected growth phenotype and assigned a 

lower confidence score than the HIS reporter alone. Interaction scores increase 

incrementally according to the above criteria and number of reporters activated. 

 

Reporter activated Number reporters activated Interaction Score 

None 0 0 

LacZ+ 1 1 

Ade+ 1 2 

His+ 1 3 

Ade+ LacZ+ 2 4 

His+ LacZ+ 2 5 

His+ Ade+ 2 6 

His+ Ade+ LacZ+ 3 7 

 Table 2.8 Y2H Stringency Criteria and Interaction Score. A Table to show each 

possible positive interaction phenotype and the corresponding interaction score. 

 



 81 

2.4. Cell biology 

2.4.1. Reagents 

All cell culture reagents were obtained from Invitrogen unless otherwise stated. All 

plasticware, including 96 well opaque luminometry plates (white) were obtained from 

Corning Inc. (NY, USA). GeneJuice was obtained from Merck Biosciences 

(Nottingham, UK). Dual-luciferase® reporter assay system was purchased from 

Promega (Southampton, UK); reagents were prepared according to manufacturer’s 

instructions. 

2.4.2. Mammalian cell culture 

HEK 293T cells were cultured in a humidified 5% CO2 atmosphere at 37 °C in 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% foetal bovine 

serum (FBS), 1% non-essential amino acids (NEAA), and 1% penicillin/streptomycin 

sulphate. Cells were maintained by growing to ~ 80% confluency in 75 cm2 flasks 

prior to trypsin treatment and transfer to fresh 75 cm2 flasks at 1:5 or 1:10 dilutions 

every 2-4 days as appropriate. 

2.4.3. Mammalian cell transfection 

HEK 293T cells were typically seeded at such a density such that they would reach 

~ 50% confluency at the time of transfection and cells lysed 24 h post-transfection. 

Cells were routinely transfected with GeneJuice in 1 ml DMEM media lacking 

additional supplements at a ratio of 3 µl transfection reagent to 1 µg total DNA. 

Medium was changed to complete DMEM including supplements 4 h post-

transfection. MG132, proteosomal inhibitor, was added to a final concentration of 

100 nM where indicated. 
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2.4.4. Split Luciferase Protein Complementation Assay (PCA) 

HEK 293T cells were seeded in 12-well cell culture plates at a density of 1.5 x 105 

cells per well. Split Firefly luciferase (pcDNA3-FLucC GW and pcDNA3-FLucN GW) 

and Renilla luciferase (pRL-SV40) constructs were transfected at 0.5 ng / well and 

0.1 ng / well, respectively, 24 h post-transfection. For sequential measurement of 

Firefly and Renilla luciferase activities the Dual-luciferase® reporter assay system 

was utilised, according to manufacturer’s instructions (Promega Ltd), and photon 

emission recorded using a VICTOR Light luminometer (Perkin Elmer, Cambridge, 

UK). 

 

Briefly, cells were washed twice with room temperature PBS and lysed by addition 

of 200 µl 1X Passive Lysis Buffer (PLB) with gentle rocking at room temperature for 

5 min. Lysates were collected in pre-cooled sterile 1.5 ml microfuge tubes and 

placed on ice. 20 µl sample was added to individual wells of a pre-cooled 96-well 

opaque (white) luminometry plate. For measurement of Firefly luciferase activity, 

100 µl Luciferase Assay Reagent II (LARII; containing Firefly luciferase substrate, 

luciferin) was combined to each well and photon emission (Relative Light Units 

(RLUs)) recorded for a period of 4 s. Subsequently, Firefly luciferase activity was 

quenched and Renilla luciferase activity measured by addition of 100 µl Stop & 

Glo® Buffer plus Stop & Glo® Reagent (contains Renilla luciferase substrate, 

coelenterazine) and RLUs recorded over a period of 0.2 s. To prevent depreciation 

of RLU signals, LARII and Stop & Glo® reagents were combined with only batches 

of 6 samples at a time for recording of RLU measurements. 
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To minimise experimental variation caused by differences in cell viability, 

transfection and cell lysis efficiency, Firefly luciferase values were normalised to the 

internal Renilla luciferase control (Firefly RLU / Renilla RLU) and a normalised 

average RLU obtained from two separate transfections calculated. To reduce false 

positive interaction detection, for each TM-E3-RING/E2 pair, TM-E3-RING-FLucC 

and E2-FLucN constructs were co-transfected with the predicted non-interaction 

partners FKBP-pcDNA3-FLucN and FRB-pcDNA3-FLucC, to provide appropriate 

negative normalisation controls for each tested protein pair.  

2.5. Protein biochemistry 

2.5.1. Reagents 

Agar, peptone, tryptone and yeast extract were from Formedium. Sodium chloride, 

zinc chloride, 2-mercaptoethanol, ammonium persulphate (APS), N,N,N’,N’-

Tetramethylethylenediamine (TEMED) and mammalian protease inhibitor cocktail 

were from Sigma. Amersham Hybond™ ECL™ nitrocellulose membrane was from 

GE Healthcare. BenchMark Prestained Protein Ladder was from Invitrogen. 

Protogel electrophoresis buffers (ProtoGel® 30% Acrylamide/Bisacrylamide solution 

(37.5:1 w/v ratio), ProtoGel resolving buffer, ProtoGel stacking buffer) were from 

GeneFlow. Glycine and Tris-Base were from Fisher. Isopropyl-ß-D-thio-

galactopyranoside (IPTG) was from Melford Laboratories Ltd. Rosetta™ 2(DE3) 

Singles™ Competent Cells were from Merck. Glutathoine Sepharose was from 

Bioline. 

2.5.2. SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Gels were assembled in a Mini-Protean® electrophoresis system, according to 

manufacturer’s instructions (Bio-Rad). Samples were suspended in 5X Laemmli 

Sample buffer (Tris-HCl pH 6.8, 60 mM; SDS, 2% v/v; glycerol, 10% v/v; β-
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mercaptoethanol, 5% v/v; bromophenol blue, 0.01% v/v) and protein content 

denatured by boiling at 98 °C for 5 min. Polyacrylamide gel recipes for the stacking 

and resolving of protein samples are given in Table 2.9. 4% acrylamide stacking 

gels were used in all SDS-PAGE experiments whilst the percentage of acrylamide 

for resolving gels varied depending upon the expected size of proteins being 

analysed. Samples were run in 1X electrophoresis running buffer (Tris-HCl, 50 mM; 

SDS, 0.1%; glycine, 380 mM), typically for 15 min at 125 V for protein stacking, 

followed by 40 to 60 min at 175 V to achieve optimal separation of protein bands. 

Polyacrylamide gels were removed from the electrophoresis system for processing. 

For assessing total protein content, gels were incubated for 1 h at room temperature 

in Coomassie-Blue stain (methanol, 50% (v/v); acetic acid, 7% (v/v); Coomasie Blue 

R250, 0.1% (w/v)) and excess dye was removed with de-stain solvent (methanol, 

5% (v/v); dH2O, 85%  (v/v); acetic acid, 10% (v/v)) prior to scanning polyacrylamide 

gels using the 700 nm wavelength channel of a Licor Odyssey infrared imaging 

system. 

 

Reagent 
Stacking Gel Resolving Gel 

4% 8% 10% 12% 

Protogel Acrylamide 

Solution (ml) 
1.3 2.67 3.33 4.0 

Resolving Buffer (ml) - 2.6 2.6 2.6 

Stacking Buffer (ml) 2.5 - - - 

dH2O (ml) 6.1 4.62 3.96 3.29 

TEMED (ml) 0.01 0.01 0.01 0.01 

10% APS (ml) 0.05 0.05 0.05 0.05 

Total Volume (ml) 9.95 9.95 9.95 9.95 

Table 2.9. Recipes for SDS-PAGE gels. Resolving gels of differing acrylamide 

percentage were utilised dependant on size of expected protein molecular weight. 
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2.5.3. Western blotting 

Following SDS-PAGE, resolved proteins were transferred to nitrocellulose 

membranes using a Mini-Trans Blot Cell system (BioMol, Exeter, UK) at a constant 

current of 300 mA for 90 min in Transfer Buffer (Tris, 25 mM; glycine, 192 mM; 

methanol, 20%). Nitrocellulose membranes were stained with Ponceau S to ensure 

efficient protein transfer followed by incubation at room temperature for 1 h in TBS 

Blocking Buffer (Tris-HCl, 50 mM; NaCl pH 7.6, 150 mM; Tween 20, 0.1% (w/v); 

Marvel, 5% (w/v)). Membranes were incubated overnight at 4°C on a rocker in TBS 

Blocking Buffer supplemented with specific primary antibody. Unbound antibodies 

were removed by 3 X 5 min washes in TBS-Tween prior to incubation for 1 h in 

blocking buffer containing IRDye-linked secondary antibodies. Unbound secondary 

antibody was removed by 3 X 5 min washes in TBS-Tween followed by an 

additional 5 min wash in TBS to remove detergent. Immunoreactive bands were 

detected using a LI-COR Odyssey infrared imaging system. A complete list of 

primary and secondary antibodies and the dilutions used within this study are listed 

in Table 2.10. 

 

Antibody Antigen Source Company Dilution in Blocking Buffer 

Anti-GST (AB92) Mouse  Abcam 1 : 1000 

Anti Ubiquitin (07-375) Rabbit Millipore 1 : 2000 

Anti-mouse IRDye 

800CW 
Donkey 

Licor 

BioSystems 
1 : 15000 

Anti-rabbit  IRDye 

680CW 
Donkey 

Licor 

BioSystems 
1 : 15000 

Table 2.10. A list of primary and secondary antibodies utilised in western blotting 

analysis. 
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2.6. In vitro ubiquitination assay 

2.6.1. Reagents 

His-tagged E1 activating enzyme was purchased from Boston BioChem (MA, USA). 

Bovine ubiquitin and adenosine tri-phosphate (ATP) were from Sigma-Aldrich 

(Poole, UK). 

2.6.2. GST-tagged construct generation 

TM-E3-RING and E2 ORFs were transferred into the Gateway®-converted bacterial 

expression GST-tag vector, pGEX6p-GW, by LR recombination reactions. Typically, 

7 µl of LR reaction product was directly transformed into 35µl Rosetta™ 2(DE3) 

Singles™ Competent Cells prior to overnight incubation at 37 °C on 2xTY solid 

media plus antibiotic. Rosetta™ 2(DE3) Competent Cells have been optimised to 

enhance the expression of eukaryotic proteins by supplying tRNAs for 7 rare human 

codons (AGA, AGG, AUA, CUA, GGA, CCC, and CGG). Diagnostic BCPCR was 

performed and glycerol stocks generated from size-verified bacterial colonies, which 

were subsequently streaked using a sterile wire loop onto 2xTY solid media 

supplemented with Ampicillin (100 µg/ml) and Chloramphenicol (27 µg/ml), 

conferred by the pGEX6p vector and a plasmid encoded by Rosetta™ 2(DE3) 

Singles™ Competent Cells, respectively. 

2.6.3. GST-tagged TM-E3-RING protein production 

A single transformed Rosetta bacterial colony was picked into 5 ml of 2xTY plus 

appropriate antibiotics and incubated overnight at 37°C, 220 rpm. This culture was 

combined with 45 ml 2xTY liquid media plus antibiotics and supplemented with 

100 µM ZnCl2, to facilitate the correct folding of the zinc-chelating RING domain. 

Cultures were incubated to an OD600 of 0.8-1.0 and protein expression induced by 

addition of 100 µM isopropyl β-D-1-thiogalactopyranoside (IPTG) followed by 
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incubation for 16-18 h at 18 °C, 220 rpm. Bacterial cells were harvested by 

centrifugation at 4300 rpm for 20 min at 4°C, the supernatant discarded and the 

pellet re-suspended in 1 ml filter sterilised, ice-cold PBS. Protease inhibitors were 

added (PMSF, 1 mM; leupeptin hemisulphate, 1 µM; pepstatin, 1 µM) and samples 

were snap-frozen by immersion in liquid nitrogen for 1 min prior to storage at -80 °C. 

Samples were thawed in ice-cold water prior to the addition of 1 mg/ml lysozyme 

and incubation on ice for 30 min. Bacterial cell lysis was performed by sonication of 

samples for 3 x 10 s (1 s pulse, 1 s rest). To reduce viscosity of sonicated samples 

1 µl DNAse1 was added and samples passed through a hypodermic needle 

(25 gauge) three times. Samples were centrifuged at 33 000 rpm for 1 h at 4 °C and 

the supernatant carefully transferred to a 2 ml microfuge tube and incubated with 50 

µl glutathione cellulose beads for 2 h at 4 °C with rotation at 50 rpm to bind GST-

conjugated TM-E3-RING protein. Beads were washed three times in 1 ml High Salt 

Buffer (NaCl, 500 mM; Tris, 25 mM pH 8.5) followed by three washes in 1 ml Low 

Salt Buffer (NaCl, 150-200 mM; Tris, 25 mM, pH 8.5). GST-conjugated TM-E3-RING 

proteins were eluted in 1 ml Elution Buffer (Tris, 50 mM; NaF, 50 mM; sucrose, 270 

mM; glycerol 2-phosphate disodium salt hydrate, 10 mM; reduced glutathione, 20 

mM pH 8.0) by incubation for 20 min at room temperature with rotation at 50 rpm. 

Beads were pelleted by centrifugation at 3000 rpm for 5 min, and the supernatant 

carefully removed and snap-frozen by immersion in liquid nitrogen prior to storage at 

-80 °C. The procedure outlined above was repeated twice to obtain a second and 

third eluate for an individual sample.  

2.6.4. E2-conjugating enzyme production 

To produce unconjugated E2 proteins for in vitro ubiquitination assays volumes of 

2xTY culture (lacking ZnCl2), inhibitors, and glutathione cellulose beads were 
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ratiometrically scaled from those described in section 2.6.3 to generate a 500 ml 

culture. Cells were harvested and re-suspended in 10 ml PBS for snap-freezing. A 

more vigorous sonication procedure was employed with pulses for 3 X 20 s (1 s 

pulse, 1 s rest). Incubation and wash steps were undertaken using an Econo-

Column (Bio-Rad) to accomodate the increased volumes of lysate, wash, and 

elution solutions. Lysates were incubated with 500 µl glutathione cellulose beads for 

2 h at 4 °C to bind GST-conjugated E2 proteins. Beads were sequentially washed 

with 500 ml High Salt Buffer and 500 ml Low Salt Buffer prior to incubation with 5 ml 

Low Salt buffer supplemented with 50 µl PreScission™ Protease (2 U / µl) overnight 

at 4°C. Cleaved protein was eluted from the column in 10 ml Elution Buffer lacking 

reduced glutathione. Samples were concentrated to ∼ 5 µg/µl (assessed by OD280) 

using a Vivaspin 6 3kDa MWCO column (GE Healthcare) by centrifugation at 4300 

rpm, 4 °C. Concentrated samples were snap-frozen and stored at -80 °C until use.  

 

All eluates of GST-tagged TM-E3-RING and unconjugated E2 protein were 

analysed by SDS-PAGE to size-verify protein products. 

2.6.5. In vitro ubiquitination assay 

All in vitro ubiquitination assay reagents were thawed on ice and combined in pre-

cooled thin-walled PCR tubes. In vitro ubiquitination reaction components were 

combined to make mastermixes for each TM-E3-RING or E2 protein tested, 

dependent upon experiment. A typical ubiquitination reaction mastermix for a TM-

E3-RING tested against a panel of E2 conjugating proteins is described in 

Table 2.11. In this scenario, E2 conjugating enzymes were added individually to 

specific tubes. Typically, reaction mixtures were incubated at 37 °C for 90 min, 

unless stated otherwise. Following incubation, 3.75 µl 5 X Laemmli sample buffer 
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was added and proteins denatured at 95 °C for 5 min. Samples were subjected to 

analysis by SDS-PAGE and western blotting using rabbit anti-ubiquitin antibody or 

anti-GST antibody as described in Section 2.5.3. 

 

Reagent Stock Conc [Conc] *Vol Required (µl) 

E1 Activating Enzyme 5 µM 250 nM 9.0 

E3/RING Protein ∼1 µg/µl 2 µg 2.0 

L-Buffer 20 X 1 X 9.0 

ATP 0.1 M 10 mM 18.0 

Ubiquitin 20 mg/ml 5 µg 1.5 

Total (dH2O) - 15 µl 180 

Table 2.11 Mastermix for a TM-E3-RING assayed within in vitro ubiquitination 

assays against a panel of E2 proteins. *Volume required represents the volume of 

mastermix required for 12 individual reactions. E2 conjugating enzymes were added 

individually to each reaction to a final amount of 1 µg. 20X L-Buffer contained 

800 mM Tris-HCl pH 7.5, 200 mM MgCl2 and 12 mM DTT. 

 

2.7. Construction and analysis of binary protein-protein interaction networks 

2.7.1. Data storage 

When dealing with high-throughput data it is crucial to minimise error by ensuring 

accurate data storage. Additionally, accurate storage and curation of high-

throughput data is of paramount importance in the performance of computational 

analyses, to provide meaningful insights from protein interaction networks.  

 

For interaction data, ORFs were assigned an entrez gene ID as a unique identifier 

to allow removal of duplicates. All tested interactions were recorded to reduce user 

input error when scoring interactions and also allow tested but negative results to be 

reported. Standard methods of storing data were established to facilitate 
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comparative and integrative analysis of obtained data with literature datasets. All 

tested interactions from Y2H, protein complementation, and in vitro ubiquitination 

assays were stored as tab delimited flat files containing all associated interactions. 

2.7.2. Database curation 

Four public databases and one commercial database (MetaCore™) were mined by 

Russell Hyde and Jonathan Woodsmith to provide overlapping yet complementary 

datasets to detail as many literature-reported interactions as possible. The four 

public databases were Human Protein Reference Database (HPRD) (Keshava 

Prasad, Goel et al. 2009), Molecular Interactions database (MINT) (Ceol, Chatr 

Aryamontri et al. 2010), IntAct (Aranda, Achuthan et al. 2010) and BioGrid 

(Breitkreutz, Stark et al. 2008). As a result of this data integration approach the final 

combined human ‘interactome’ network contains both binary protein-protein 

interactions observed and more ambiguous protein interactions derived from co-

complex detection techniques. All unique identifiers were converted to entrez gene 

IDs to standardise interaction reporting. In order to ensure the highest possible 

coverage of the TM-E3-RING interaction networks, three of the public databases 

(HPRD, Biogrid, and IntAct) were again mined for TM-E3-RING interactions in 

June 2011 prior to performance of computational analyses. 

2.7.3. Data integration, analysis and visualisation 

To integrate interaction data obtained within the present study with other available 

datasets and to analyse the interaction data obtained on a systematic level 

computational filters written by Jonathan Woodsmith using the PERL computational 

language were utilised. For visualisation of some protein-protein interaction 

networks, such as heatmap representations, R statistical programming environment 

was implemented. PERL and R tools are more flexible in their implementation than 
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standard software such as Microsoft Excel allowing visualisation of data from a wide 

variety of experimental input. 

 

Visualisation of integrated protein-protein interaction data in the form of node and 

edge graphs were generated using the open source bioinformatics software platform 

Cytoscape. All cytoscape Figures were generated using Cytoscape version 2.8.1. 
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3. Chapter 3: TM-E3-RING/E2 Conjugating Enzyme Interaction Mapping 

3.1. Introduction 

The selection and differential modification of cellular substrates by the ubiquitin 

system is to a large extent regulated by the E3-RING and E2 protein components of 

the ubiquitin machinery. The combinatorial interactions that occur between E3-RING 

and E2 proteins therefore represent a key regulatory step within the ubiquitin 

cascade, orchestrating the differential architecture of ubiquitin modifications to 

determine the fate or function of specific substrate proteins. To develop a deeper 

understanding of how E3-RING and E2 proteins cooperate to coordinate substrate 

selection and specific ubiquitination events, the determination of E3-RING/E2 

protein partner preferences would provide an invaluable resource for interrogation 

and provide a framework for future hypothesis-driven research. During the early 

stages of this project, a high-throughput Y2H study directed at E3-RING/E2 protein 

interactions was published by our laboratory which was integrated with literature-

derived information to generate a high density network consisting of ~ 700 binary 

E3-RING/E2 protein interactions (Markson, Kiel et al. 2009). 

 

Despite the increased coverage of human E3-RING/E2 pairs, analysis of the 

integrated E3-RING/E2 network revealed a key area of data paucity for those E3-

RING proteins predicted to contain transmembrane regions with ~ 1/2 of all TM-E3-

RING proteins having no known E2 partners (Figure 3.8A&D). The poor 

representation of TM-E3-RING/E2 protein partners may result from the lack of 

amenability of proteins containing transmembrane regions to Y2H analysis due to a 

tendency to become insoluble, or form aggregates when expressed outside of lipid 

membranes. Additionally, as protein-protein interaction mediated reconstitution of an 



 93 

active transcription factor must occur within the nucleus, proteins that contain 

transmembrane regions are poor candidates for determination of interaction 

partners by Y2H analysis. Indeed, a number of genome-wide Y2H screens have 

highlighted the poor coverage of protein interaction partners for integral membrane 

proteins in yeast (Uetz, Giot et al. 2000; Ito, Chiba et al. 2001) and human (Rual, 

Venkatesan et al. 2005) protein interaction networks. 

 

This study sought to address the poor coverage of TM-E3-RING/E2 interactions by 

employing a directed Y2H approach using TM-E3-RING ORF clones encoding the 

entire cytoplasmic RING-domain (CRD) specific region for each human TM-E3-

RING protein (see methods Figure 2.3). To this end, both CRD- and full-length TM-

E3-RING ORF libraries were constructed for use in directed CRD GAL4-based Y2H 

matrix interaction studies and complementary secondary assays. 

 

During the course of this project a second HTP Y2H screen directed at binary E3-

RING/E2 interactions was published (van Wijk, de Vries et al. 2009). In comparison 

with our study, the interaction network compiled by van Wijk and colleagues utilised 

truncated E3-RING ORF clones. However, this study differed from the CRD-GAL4 

Y2H screen in three key respects: (i) a LexA rather than GAL4-based Y2H system 

was used, (ii) UBC-domain specific E2 clones rather than full-length E2 clones were 

used, and (iii) RING-domain specific E3 clones rather than the entire cytoplasmic 

RING domain were used. A recent comparative study of different Y2H vector 

systems has highlighted the value of utilising different Y2H systems to increase 

coverage of interaction datasets (Chen, Rajagopala et al. 2010). Therefore, 

comparison of interactions observed in the CRD-GAL4 Y2H screen with the LexA 

screen and all other publically available TM-E3-RING/E2 interaction data was 
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performed (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009), prior to 

collation into the most comprehensive TM-E3-RING/E2 interaction network 

available. 

3.2. pBACT2 vector validation 

Interactions between E3-RING and E2 proteins have been reported to be both weak 

and transient (Deshaies and Joazeiro 2009). As such, directed Y2H studies 

performed within our laboratory have utilised Y2H expression vectors containing an 

ADH1 promoter that drives moderate, rather than low, expression of N-terminal 

GAL4-fusion proteins (pACTBE-B/pACTBD-B E3-RING, Matα, Prey; pGBAE-

B/pGAD-B, E2, MatA, Bait) (Markson, Kiel et al. 2009). Previous work within the 

Sanderson laboratory has demonstrated that the rational use of C-terminal GAL4 

fusion constructs, which leave N-terminal regions more accessible for binding can 

reveal interactions that are not detected by conventional N-terminal Gal4 domain 

fusions (Tsang, Connell et al. 2006).  In this study Y2H prey vectors were selected 

to generate N-terminal (pACTBE-B) or C-terminal (pBACT2) fusion-proteins to 

reflect the in vivo topology of each TM-E3-RING protein. For those TM-E3-RING 

proteins that contain TM-domains solely N- or C-terminal to the RING domain, Y2H 

vectors were chosen such that the GAL4AD domain substituted the cleaved TM-

domain region at that terminus. However, for TM-E3-RING proteins that contain 

both N- and C-terminal TM-domains, the GAL4AD domain was positioned at the 

terminus of the CRD domain most distally located to the RING domain, to reduce 

the potential of steric hindrance of the GAL4 domain (see methods Figure 2.3). 

 

As the previous directed E3-RING/E2 Y2H studies performed within our laboratory 

utilised only N-terminal fusions (Markson, Kiel et al. 2009), it was necessary to 
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validate the use of C-terminal pBACT2 vector constructs for GAL4-Y2H based 

determination of binary interactions between TM-E3-RING and E2 proteins. 

Therefore, 12 TM-E3-RINGs with domain architecture that fulfilled the criteria for 

testing as C-terminal GAL4AD fusions were generated as both pACTBE-B (N-

terminal) and pBACT2 (C-terminal) GAL4AD prey constructs within Matα yeast. 

Each clone was then mated against the available array of 44 bait E2 conjugating 

enzyme pGBAD-B/pGBAE-B GAL4BD clones (representing 39 unique E2 genes) 

(Figure 3.1A). In this study all interaction data is related to Entrez Gene ID numbers, 

with interactions for different isoforms of a given gene product being collapsed onto 

a single node. As such, positive and negative interactions refer to binary interactions 

between the 53 TM-E3-RING proteins and the 39 unique E2 conjugating enzyme 

ORFs. 

 

TM-E3-RING proteins demonstrated selective interactions on both biosynthetic 

reporters across many of the E2 enzymes in both pACTBE-B (N-terminal) and 

pBACT2 (C-terminal) prey vectors (Figure 3.1). For example, RNF185 exhibited an 

extensive E2 partner profile over a range of E2 families including the UBE2D1-4, 

UBE2E1-3, UBE2W, and UBE2K whilst RNF144A displayed a more restricted E2 

interaction profile, interacting with UBE2L3 and UBE2L6 in both pACTBE-B and 

pBACT2 vectors (Figure 3.1B&C; blue boxes). Extended E2 interaction profiles were 

reported for a number of TM-E3-RING proteins when tested in the pBACT2 vector 

compared with pACTBE-B as exemplified by RNF152 (Figure 3.1D; blue and red 

boxes). 

 

Analysis of total interactions revealed > 55% (35/63) of interactions were observed 

in both pBACT2 and pACTBE-B screens. Significantly, > 80% (35/43) of pACTBE-B  
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Figure 3.1. CRD-GAL4 Y2H matrix matings (A) E2 bait array layout. Each clone is 

represented by its official gene symbol. (B-D) Representative images of TM-E3-

RING/E2 binding profiles observed on SD-X media selective for histidine (SD-WLH) 

or adenine (SD-WLA) reporter activity for CRD E3-RING clones expressed in either 

pACTBE-B (left) or pBACT2 (right) prey Y2H vectors. (B) RNF185, (C) RNF144B, 

and (D) RNF152. Images were recorded 9 d after replication onto triple selection 

SD-X plates. Blue and red boxes on WLH arrays represent shared and differential 

interaction profiles, respectively.  
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derived TM-E3-RING/E2 interactions were reconfirmed in pBACT2 screens (Figure 

3.2A; black and grey segments). Furthermore, pBACT2 screens identified 20 novel 

TM-E3-RING/E2 interactions, which were not reported in pACTBE-B screens. 

Importantly, 32/33 higher stringency pACTBE-B interactions observed on –HIS and 

–ADE biosynthetic reporter arrays were reconfirmed in pBACT2 screens, on both 

biosynthetic reporters (Figure 3.2B). Therefore 7/8 unconfirmed pACTBE-B 

interactions were observed in -HIS reporter array alone (Figure 3.2B). To establish 

the main differences between datasets the degree contribution of pBACT2 and 

pACTBE-B screens for each TM-E3-RING was calculated (Figure 3.2C); 6/8 

pACTBE-B interactions that were unconfirmed in pBACT2 screens were restricted to 

a single TM-E3-RING ORF construct (bifunctional apoptosis regulator (BFAR)) 

(Figure 3.2C). This analysis also highlights that novel interactions observed in the 

pBACT2 screen result from both extension of pACTBE-B derived interaction 

profiles, exemplified by RNF152 and RNF144A, and detection of E2 interaction 

partners for TM-E3-RING clones which have no interaction partners in the pACTBE-

B screen (MARCH8, MARCH1, MARCH6) (Figure 3.2 C). 

 

The high reproducibility of pACTBE-B interactions and extension of E2 partners for 

a number of TM-E3-RING proteins in pBACT2 compared to pACTBE-B supported 

the rational use of the pBACT2 C-terminal GAL4AD-tag for appropriate TM-E3-

RING proteins during Y2H assays. 
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Figure 3.2. pACTBE-B and pBACT2 Y2H vector comparison. (A) Breakdown of 

co-tested CRD-Y2H interactions observed in pACTBE-B and pBACT2 screens. (B) 
Verification of pACTBE-B derived interactions by pBACT2 screening according to 

activation of different biosynthetic reporters. (C) Relative degree contributions of 

pACTBE-B and pBACT2 CRD E3-RING vector constructs to total number of E2 

interaction partners for co-tested CRD TM-E3-RING ORFs. 
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3.3. CRD TM-E3-RING ORF strategy validation 

The proposed utilisation of truncated TM-E3-RING ORFs encoding the entire 

cytoplasmic RING domain-containing (CRD) region was based on two principles. 

Firstly, previous structural and binding studies demonstrated that E3-RING residues 

responsible for interaction with E2 conjugating enzymes reside within or immediately 

flanking the RING domain ((Zheng, Wang et al. 2000) and discussed in section 

1.5.2.1). Secondly, use of transmembrane domain containing proteins in Y2H 

analyses often lead to high false negative and/or false positive rates. Therefore, 

CRD TM-E3-RING ORFs would maintain an optimal E2 interaction surface whilst 

circumventing the inherent problems associated with using integral membrane 

proteins in Y2H screens. Finally, inclusion of the entire cytoplasmic RING domain 

may reduce the incidence of steric hindrance that may occur using RING-domain 

specific clones in Y2H fusions. Data from the published TM-E3-RING/E2 GAL4-Y2H 

network, which employed a number of full-length TM-E3-RING clones (Markson, 

Kiel et al. 2009), provided an opportunity to assess the applicability of CRD TM-E3-

RING ORFs for the determination of E2 protein interaction partners using the 

identical Y2H technology, E2 conjugating enzyme ORFs, and comparable Y2H 

expression vector backgrounds. 

 

Studies performed using full-length E3-RING clones identified 74 interactions 

between 27 TM-E3-RING and 21 E2 proteins (Markson, Kiel et al. 2009) and 

supplementary file ‘full-length_CRD GAL4Y2H comparison’). To test whether the 

CRD TM-E3-RING screening strategy facilitated detection of previously observed 

interactions and also increased interaction profiles, 7 highly connected TM-E3-RING 

proteins that accounted for 54/74 interactions full-length interactions, and 3 TM-E3-

RING proteins that exhibited zero full-length interactions were tested as CRD clones 
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against the 44 E2 ORFs (39 unique genes). As incomplete β-gal reporter data was 

available for full-length interactions, comparisons between studies were based on 

the activation of two biosynthetic reporters, -HIS and -ADE. In total, 390 binary TM-

E3-RING/E2 interactions were tested in both screens. A strong positive correlation 

was observed between screens with 53% of total interactions detected in both 

datasets (Figure 3.3A). Importantly, a high reconfirmation rate (39/54; 72%) of full-

length screen interactions were observed using equivalent CRD clones, with an 

additional 20 interactions observed solely in the CRD screen (Figure 3.3A). 

Significantly, 25/28 high confidence (-HIS/-ADE positive) full-length screen 

interactions were reconfirmed within the CRD-Y2H screen with 20/25 reconfirmed 

on both biosynthetic reporter arrays. As such, 12/15 unconfirmed full-length 

interactions were only observed in –HIS reporter full-length arrays (Figure 3.3B). 

 

To investigate differences in interaction profiles between CRD and full-length 

datasets, degree contributions of TM-E3-RING proteins from each screen were 

calculated (Figure 3.3C). Differential interaction partners were observed 7/10 TM-

E3-RING proteins between screens whilst 2 TM-E3-RING proteins (MARCH8 and 

RNF13) were found to interact with E2 proteins in CRD- but not full-length screens 

(Figure 3.3C). The data was further interrogated to identify E2 proteins responsible 

for the differential profiles between TM-E3-RING clones that showed interaction 

partners in both screens (Figure 3.3D). A number of E2 proteins displayed 

remarkable correlation of TM-E3-RING interaction profiles between full-length and 

CRD-Y2H screens; the UBE2D, UBE2E, UBE2L, and UBE2W families display 100% 

overlap between functional TM-E3-RING clones in both full-length and CRD 

screens. However, a number of E2 proteins exhibit unique interactions in either the  
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Figure 3.3. Comparison of data from full-length and CRD TM-E3-RING/E2 Y2H 
screens. (A) Percentage of total co-tested Y2H interactions observed in full-length 

and CRD Y2H screens. (B) Verification of full-length Y2H interactions in CRD 

screens, according to activation of different biosynthetic reporters. (C) Relative 

contribution of full-length and CRD screens to total number of E2 interaction 

partners for co-tested TM-E3-RING proteins. (D) Relative contribution of full-length 

and CRD screens to E2 degree for TM-E3-RINGs that were functional in both 

screens (≥ 1 E2 interaction partner in each screen). 
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full-length or CRD-Y2H screen; UBE2J1/2 and the UEV proteins, AKTIP and 

TSG101 exhibit interactions with CRD E3 clones whilst UBE2I, UBE2M, UBE2Z, 

and the UEV proteins UBE2V1/V2 exhibit interactions with full-length E3 clones 

(Figure 3.3D). The high rate of correlation between full-length and CRD screens 

supports the use of CRD TM-E3-RING ORFs for large scale screening of TM-E3-

RING/E2 partner profiles. 

3.4. High-throughput yeast 2-hybrid screen results 

In total 51 sequence-verified TM-E3-RING CRD ORFs were successfully amplified 

from cDNA libraries, cDNA I.M.A.G.E. clones, or previous yeast constructs and 

cloned into Y2H prey vectors (pACTBE-B or pBACT2) by in vivo gap repair cloning. 

Of these haploid TM-E3-RING yeast constructs, only RNF103 displayed any auto-

activation phenotype, which activated both –ADE and -HIS biosynthetic growth 

reporters and was therefore not used in directed Y2H matrix screens. As such, a 

total of 50 TM-E3-RING proteins were used in directed Y2H matrix matings against 

the panel of 44 available E2 conjugating enzyme bait constructs (representing 39 

unique E2 genes).  This strategy enabled the systematic investigation of 1950 

potential binary TM E3-RING/E2 protein interactions. Following repeated matrix 

matings, 196 reproducible Y2H positive interactions involving 33 TM-E3-RING and 

22 E2-proteins were detected. Of these, 49% were detected on at least two 

reporters with a further 51% being reproducibly detected on the -HIS reporter alone 

(Figure 3.4A). Importantly, a high rate of reproducibility of positive interactions was 

reported between repeats of the CRD-Y2H screen; > 92% of interactions observed 

on –HIS or multiple reporter arrays were reported in both screens (supplementary 

file E3RING/E2 CRD-Y2H). 
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Figure 3.4 CRD GAL4 Y2H interactions. (A) Breakdown of positive CRD-Y2H interactions according to differential Y2H reporter 

activation. (B) Heatmap representation of TM-E3-RING/E2 interactions obtained in CRD-Y2H screens. TM-E3-RING (horizontal) 

and E2-conjugating enzyme (vertical) entrez gene symbols are ordered based on primary protein primary sequence alignment in 

ClustalW. Differential reporter gene activation is indicated by colour code. 
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The heatmap representation of TM-E3-RING/E2 interactions shown in Figure 3.4B 

highlights a large proportion of TM-E3-RING proteins to have selective E2 

interaction partners, with individual TM-E3-RING proteins binding multiple E2 

proteins. In agreement with E3-RING/E2 profiles reported in recently published TM-

E3-RING/E2 datasets (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009), a 

small subset of E2 proteins, notably UBE2D, UBE2E and UBE2W E2 family 

members, appear responsible for a high proportion of total TM-E3-RING/E2 

interaction partners (Figure 3.4B).  

3.4.1. Full-length TM-E3-RING GAL4 system comparison 

In total, 27 full-length TM-E3-RING proteins had been previously tested against the 

identical panel of 44 E2 clones used in this study. The total number of E2 

interactions observed for the complement of co-tested TM-E3-RING proteins was 

considerably higher using CRD (102 interactions) compared to full-length E3 clones 

(73 interactions) (Figure 3.5A). Of the 73 interactions observed within the full-length 

screen, 42 (> 58%) were reconfirmed within the truncated study (Figure 3.5A; black 

and grey segments). Importantly, 25/28 high stringency (-HIS/-ADE positive) 

interactions observed within the full-length screen were reconfirmed using truncated 

TM-E3-RING clones (Figure 3.5B). As such, 28 of the 31 unconfirmed full-length 

interactions were reported solely on -HIS biosynthetic reporter arrays 

(Figure 3.5A&B). Finally, a total of 60 and 31 interactions were uniquely detected 

using CRD or full-length clones, respectively (Figure 3.5A). To determine the main 

differences between Y2H screen datasets, the degree contribution for each TM-E3-

RING and E2 protein from full-length and CRD Y2H datasets was calculated 

(Figure 3.5C&D). Notably, 5 TM-E3-RING proteins that exhibited a degree of zero in 

full-length screens interacted with 23 E2 partners in CRD screens (Figure 3.5C)  
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Figure 3.5. Total full-length and CRD TM-E3-RING Y2H comparison. 

(A) Breakdown of total co-tested Y2H interactions observed in full-length and CRD 

screens. (B) Verification of full-length Y2H interactions by CRD screens according to 

activation of different biosynthetic reporters. (C) Degree contribution of full-length 

and CRD TM-E3-RING clones for each co-tested TM-E3-RING protein. (D) Degree 

contribution of full-length and CRD Y2H screens for each co-tested E2 protein.  
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demonstrating the value of CRD TM-E3-RING ORF clones in the Y2H determination 

of TM-E3-RING/E2 protein interaction profiles. 

 

TM-E3-RING clones that were functional in both screens revealed 68 interactions 

that reflected different binding profiles between CRD and full-length TM-E3-RING 

clones; 31 and 37 interactions were unique to full-length or CRD screens, 

respectively (Table 3.1). A small subset of TM-E3-RING and E2 clones within the 

full-length screen were responsible for a large proportion of the differential 

interactions that were not seen when respective CRD clones were analysed. For 

example, MARCH3 exhibited 7 interactions in the full-length screen, however only 

one was identified using the CRD clone (Figure 3.5C). Also higher numbers of TM-

E3-RING interactions were observed for the UBE2T (3), UBE2K (4), UBE2V1/V2 (4) 

and UBE2I (6) E2s in full-length compared to CRD screens (Figure 3.5D). 

 

 
Full-length CRD Union Intersection 

Co-tested TM-E3-RING clones 27 

TM-E3-RING/E2 Interactions 73 102 133 42 

Interacting TM-E3-RING clones 14 19 19 14 

Interacting TM-E3-RING clones in one 
screen 0 5 5 - 

Interactions from TM-E3-RING ORFs with 
degree 0 in alternative screen 0 23 23 - 

Differential interactions if degree ≥ 1 in 
both screens 31 37 68 - 

 
Table 3.1. Tabular breakdown of total interactions observed in full-length and CRD 

GAL4-Y2H screens. ‘Union’ refers to interactions or clones in either dataset. 

‘Intersection’ refers to common interactions or clones in both screens. 
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3.4.2. Comparison with LexA Y2H-derived interaction data 

During the course of this study, an E3-RING/E2 interaction network was published 

using an orthogonal LexA-based Y2H system with RING and UBC domain specific 

clones to identify selective binding partners (van Wijk, de Vries et al. 2009). Data 

from the LexA-based Y2H study provided an opportunity to compare protein-protein 

interaction data between two non-identical but orthogonal Y2H systems involving 32 

common TM-E3-RING and 34 common E2 ORFs (1088 co-tested protein-protein 

interactions) (supplementary file LexA_CRD comparison). The union of co-tested 

TM-E3-RING/E2 pairs revealed a total of 170 interactions of which 25% (42) were 

detected in both studies, 25% (42) were only observed in the LexA screen and 50% 

(86) were uniquely observed in our GAL4-based screen (Figure 3.6A). The 25% 

overlap between HTP Y2H interactions observed in this analysis is comparable to 

correlation rates previously reported between orthogonal Y2H systems for an 

identical ‘gold-standard’ positive protein interaction reference dataset (Chen, 

Rajagopala et al. 2010). Similarly, a considerably higher correlation between 

screens was observed compared to that described for the LexA versus total E3-

RING/E2 study (8% overlap; personal communication Jonathan Woodsmith). This 

highlights the value of using differing Y2H systems for interaction detection, as 

ORFs may not function in any given screen for numerous reasons including steric 

hindrance, mis-folding, or poor expression.  

 

The percentage of interactions observed for each E2 conjugating enzyme was 

analysed to investigate similarities in TM-E3-RING binding profiles between studies 

(Figure 3.6B&C). Highly similar trends in E2 binding pattern were observed between 

LexA and CRD-GAL4 Y2H screens with UBE2D, UBE2E, and UBE2W families 

exhibiting broad TM-E3-RING partner preference in both screens; the UBE2D and 
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UBE2E E2 families account for approximately half of all interactions within GAL4 

(49%) and LexA (54%) systems (Figure 3.6B). Highly comparable patterns of E2 

degree contributions for TM-E3-RING proteins were also observed in full-length 

GAL4 Y2H screens and were also observed in the extended E3-RING/E2 networks, 

encompassing all E3-RING proteins tested in LexA and full-length GAL4 screens 

(Figure 3.6C). UBE2D, UBE2E, UBE2W proteins display similar interaction 

coverage for TM-E3-RING proteins between CRD-GAL4, full-length-GAL4 and LexA 

Y2H screens with the exception of UBE2E2, which reported a sole soluble E3-RING 

interaction partner in the entire LexA interaction screen (Figure 3.6C). Considering 

the high sequence similarity between members of the UBE2D and UBE2E families 

and the highly connected nature of this protein in GAL4 screens it is plausible that 

the UBE2E2 clone had limited functionality in the LexA screen. Despite considerable 

similarities in TM-E3-RING/E2 binding profiles between studies, a number of 

functional E2s (UBE2H, UBE2N, UBE2Z and the highly promiscuous UBE2U clone) 

show considerable differences in the proportion of (TM-)E3-RING binding partners 

derived from LexA and GAL4 screens (Figure 3.6B&C). Additionally, UBE2K 

appears non-functional in the LexA screen yet reported 7 interactions in the CRD-

GAL4 screen whilst UBE2G2 displayed a strong autoactivation phenotype in GAL4-

based Y2H screens but had 3 specific TM-E3-RING interaction partners in the 

LexA-based study. As such, whilst highly comparable interaction profiles were 

observed between screens the collation of datasets provides a higher density 

network of TM-E3-RING/E2 interactions (Figure 3.6B&C). 

 

Taking into consideration the highly similar trends in E2 degree between screens 

the modest overlap in total interactions between studies (~ 25% intersection) was 

surprising. Therefore, a comparative analysis of TM-E3-RING clone binding profiles  
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Figure 3.6. Comparison of data from LexA and CRD-GAL4 Y2H studies. (A) Breakdown of co-tested TM-E3-RING/E2 Y2H 

interactions observed in LexA and CRD-GAL4 Y2H screens. (B) Percentage degree contribution of each E2 protein to total TM-E3-

RING interactions in the LexA and CRD-GAL4 based Y2H screens (C) Percentage degree contribution of each E2 protein to total 

(TM-)E3-RING interactions in the LexA, CRD-GAL4, and full-length GAL4 Y2H systems. 
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was undertaken to investigate whether the modest overlap between screens was 

due to individual TM-E3-RING clones that were functional in one or the other 

screen, or the result of differential E2 binding patterns of individual TM-E3-RING 

clones between screens. In total, 62 interactions were uniquely observed in a given 

system for TM-E3-RING proteins, which displayed a degree of zero in the alternate 

screen (Figure 3.7A&C). Taking into consideration only those TM-E3-RING proteins 

that were functional in both screens (i.e. degree ≥ 1 in both screens) the total 

number of total interactions that could be reported in both screens was 108, of 

which 39% (42/108) were common to both studies. Therefore, 66 interactions 

unique to one or the other screen belonged to TM-E3-RING proteins that were 

functional in both studies yet exhibited differential E2 binding partners; CRD-GAL4 

screens generated more extended profiles than the LexA screen with 49 unique 

interactions compared to 17 within the LexA screen (Figure 3.7C). A large 

proportion of TM-E3-RING/E2 interactions unique to the LexA screen belong to a 

small number of E2 clones (UBE2N, UBE2U, and UBE2Z) (Figure 3.7B), which 

account for 12/17 interactions. 

 

Comparison of data obtained in CRD-GAL4 and isolated RING-domain LexA clones 

with that derived from comparable full-length E3-RING screens reveals 4 E2 

enzymes (UBE2M, UBE2I, UBE2V1 and UBE2V2) that interact with full-length but 

not truncated E3-RING clones (Figure 3.6C). These findings may indicate that 

regions outside of the cytoplasmic RING domain may contribute to E2 protein 

binding. Conversely, the hydrophobic or charged regions of full-length TM-E3-RING 

clones may lead inappropriate interaction profiles with this sub-set of E2 proteins in 

our Y2H system. 
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Figure 3.7 Comparison of LexA and CRD-Y2H contributions to total TM-E3-
RING and E2 degree. (A) Degree contribution of LexA and CRD-GAL4 Y2H 

screens to total interactions for TM-E3-RING proteins tested in both screens. (B) 
Contribution of LexA and CRD-GAL4 screens to E2 degree for TM-E3-RING 

proteins that are functional in both screens. (C) Tabular format showing interactions 

observed in LexA and CRD-GAL4 based Y2H studies. 
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Figure 3.8 Binary TM-E3-RING/E2 interaction networks. Comparative coverage 

of the human TM-E3-RING/E2 interaction network before (A & B) and after (C) the 

CRD-GAL4 screen. (A) TM-E3-RING/E2 interaction coverage at the time of initiating 

the current study with data collated from full-length GAL4 screens (Markson, Kiel et 

al. 2009) and other literature-derived interaction data. (B) Integration of full-length 

GAL4 plus literature data with LexA-based Y2H data (van Wijk, de Vries et al. 2009) 

and (C) integration with CRD-GAL4 screen data. Nodes (circles) represent proteins 

and edges (lines) represent binary interactions between proteins. (D) Tabular 

display of TM-E3-RING/E2 network coverage showing interactions and number of 

TM-E3-RINGs and E2s represented in each network (panels A, B & C). 

E2 conjugating enzyme TM-E3-RING Soluble E3-RING 
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Post-Y2H Screen 

!" #"

$"

Soluble E3-RING/E2 Literature Verified Novel 

%&'()"

*'+()" ,-.*/"
01%2" *3"

!" !"#$ #%&'($ #($

#" !)!$ (%&'($ #'$

$" ("#$ *'&'($ #)$

Full-length GAL4, LexA plus literature 

4"

Nodes: 

Edges: 

TM-E3-RING/E2 interaction Summary  



 113 

Comparative analysis of interaction data from CRD-GAL4 screens with full-length 

GAL4 and LexA based Y2H screens emphasise the value of utilising CRD TM-E3-

RING clones in directed Y2H assays. Despite the high number of novel interactions 

identified in our CRD-GAL4 screen, the orthogonal LexA and full-length GAL4 Y2H 

screens provide additional coverage of TM-E3-RING/E2 interactions and therefore 

represent highly complementary datasets. 

3.5. Generating a high-density TM-E3-RING/E2 interaction network 

In order to develop a high-density TM-E3-RING/E2 interaction network, data from 

CRD GAL4, full-length GAL4, and LexA Y2H screens was collated with other 

literature-derived interactions. In terms of network coverage, ~ 80% of TM-E3-

RINGs were tested in at least two screens with only 11/53 TM-E3-RING proteins 

being tested in only one Y2H screen. Similarly 38/39 E2 proteins were tested in 

more than one study, with UBE2G2 being the exception, as this clone displays an 

autoactivation phenotype in both GAL4 based Y2H screens. 

 

Literature-derived interactions were obtained from the two directed TM-E3-RING/E2 

Y2H studies (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009), manual 

curation and data derived from three independent databases (HPRD, BioGrid, 

IntACT). All data was combined to form a non-redundant binary network of all 

known human E3-RING/E2 protein interactions (Figure 3.8B). Upon collation with 

CRD-Y2H data obtained within this study, the unified TM-E3-RING/E2 network 

incorporated 28 E2 proteins and 45 TM-E3-RING proteins (Figure 3.8C), with the 

number of known TM-E3-RING/E2 interactions increasing from 181 to 302. This 

represents a 67% increase in network density with 121 previously unreported 
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interactions detected in CRD-GAL4 screens highlighting the novelty of data obtained 

in this study (Figure 3.8B-D). 

 

Analysis of E2 degree profiles before and after inclusion of CRD-Y2H data reveals 

20 E2 proteins to have novel TM-E3-RING interaction partners as a result of the 

CRD-Y2H screen (Figure 3.9A). Furthermore, UBE2O and the UEV proteins 

TSG101 and UEVLD are annotated specific TM-E3-RING partners in CRD-Y2H 

screens, which were previously not linked into the TM-E3-RING/E2 network. Striking 

differences in connectivity of E2 proteins is observed in the collated network, 

ranging from highly restricted to broad-specificity interaction profiles (Figure 3.9A). 

Members of the UBE2D, UBE2E, UBE2U, UBE2W, UBE2N, and UBE2K families all 

exhibit high TM-E3-RING degree with ≥ 10 TM-E3-RING interaction partners. The 

UBE2D family accounts for approximately one third of all TM-E3-RING interactions 

in the combined TM-E3-RING/E2 network with 101 interactions observed between 

the four family members. Members of the closely related UBE2E family account for 

a further 42 interactions between the 3 family members (Figure 3.9A). In contrast a 

number of E2 proteins such as UBE2O, UBE2M and UBE2Q1, represent highly 

specific E2s with ≤ 2 selective TM-E3-RING protein partners. Finally, a number of 

E2 proteins (UBE2S, UBE2F, UBE2C, UBE2A, UBE2B, UBE2G1, UBE2R2, 

CDC34, BIRC6, UBE2Q2) still lack any known TM-E3-RING interaction partners 

(Figure 3.9A) despite several of these proteins were found to interact with soluble 

E3-RING proteins (supplementary file ‘full-length_CRD GAL4Y2H comparison’). 

 

From the TM-E3-RING perspective, the integration of all available interaction data 

resulted in ~ 85% (45/53) of TM-E3-RING proteins being assigned selective E2 

interaction partners (Figure 3.9B). CRD-Y2H screens identified novel E2 interaction 
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Figure 3.9 CRD-Y2H and literature contributions to TM-E3-RING and E2 degree. (A) E2 degree and (B) TM-E3-RING degree 

pre- (black bars) and post- (white bars) CRD-GAL4 Y2H screens. Pre-screen data (black bars) incorporates both previous directed 

HTP-Y2H screens (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009) and all literature curated information. 
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Figure 3.10 Total binary TM-E3-RING/E2 interactions provided by all available 
datasets. (A) Heatmap representation of binary TM-E3-RING/E2 interactions 

according to the number of data sources in which a given interaction has been 

observed. E2 and TM-E3-RING proteins are ordered based on primary sequence 

similarity in ClustalW. (B) Breakdown of total TM-E3-RING/E2 binary interactions 

according to interaction data source. (C) Reconfirmation rates of total, non-Y2H, and 

Y2H literature derived interactions in CRD-Y2H screens. 
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partners for 33/53 TM-E3-RING proteins whilst E2 partners were identified for 8 TM-

E3-RING proteins, which previously had none (Figure 3.9B). 

 

To assess the contribution of the CRD-GAL4 Y2H screen to overall network density 

the verification rate of reported interactions and novelty of CRD-GAL4 Y2H data was 

calculated. Importantly, 65% (196/302) of total TM-E3-RING/E2 interactions were 

observed in the CRD-GAL4 screen, of which 121/302 (> 40%) represent novel 

interactions, demonstrating a significant contribution to overall network density 

(Figure 3.10B). Of the literature interactions retested in our study 47% (75/161) were 

reconfirmed (Figure 3.10C), reflecting a high rate of verification compared to that 

expected between orthogonal Y2H assay systems (Braun, Tasan et al. 2009; Chen, 

Rajagopala et al. 2010). Retested interactions derived from literature databases 

were also analysed to establish verification rates of data derived from different 

interaction methodologies revealing comparable reconfirmation rates for Y2H 

(71/146; 49%) and non-Y2H (10/23; 43%) interaction sources (Figure 3.10 C). 

 

TM-E3-RING/E2 interactions observed in the total network are dispersed throughout 

the phylogeny of TM-E3-RING proteins with few areas of data paucity 

(Figure 3.10A & 3.11). However, a number of TM-E3-RING proteins, including 

several members of the MARCH sub-family (black box in Figure 3.10A) and TM-E3-

RINGs closely related to the peroxisomal PXMP3 and PEX10 proteins exhibit few or 

zero E2 interaction partners. To observe phylogenetic trends in TM-E3-RING/E2 

interaction patterns combined interaction data was plotted in phylogenetic order in 

heatmap format (Figure 3.10A). Despite the observation of clusters of TM-E3-

RING/E2 interactions, there are few distinct patterns based on E2 or TM-E3-RING 

primary sequence similarity. For example, whilst clusters of phylogenetically 
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Figure 3.11 Dendrogram showing E2 binding degree across the TM-E3-RING 
family. TM-E3-RING entrez gene symbols are ordered within the dendrogram 

according to primary protein sequence similarity in ClustalW. Red bars and 

associated numbers for each TM-E3-RING protein represent E2 degree. Clusters of 

related TM-E3-RING proteins with limited/no E2 interaction partners are highlighted 

by black bars. Figure generated using ITOL (Letunic and Bork 2007). 
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similar TM-E3-RING proteins interact with members of the UBE2D family of E2 

proteins, this can be observed across the entire family of TM-E3-RING proteins 

(Figure 3.10A; purple boxes). This is also apparent for other highly connected, or 

promiscuous, E2 proteins (E.g. UBE2E, UBE2W, UBE2U) as well as those that 

exhibit more restricted TM-E3-RING interaction profiles. For example RNF144A and 

RNF144B interact with the closely related UBE2L3 and UBE2L6 TM-E3-RINGs as 

well as the phylogenetically distinct RNF19A and RNF19B proteins (Figure 3.10 A; 

green boxes). 

 

To further investigate phylogenetic trends, TM-E3-RING/E2 interaction data was 

mapped onto the total combined E3-RING/E2 interaction network (Figure 3.12). In 

similarity to the TM-E3-RING/E2 heatmap, clusters of E2 interactions are observed 

between phylogenetically similar E3-RING proteins yet this can be observed across 

the entire family of E3-RING proteins. For example, whilst clusters of soluble and 

transmembrane TM-E3-RING proteins interact with the UBE2L3 and UBE2L6 

proteins, they are dispersed across the entire phylogeny of E3-RING proteins 

(Figure 3.12; green boxes). In addition, numerous clusters of related E3-RING 

proteins interact with UBE2D family members (Figure 3.12; purple box). As such, 

prediction of interaction partners based on sequence similarity remains a difficult 

challenge. It is however interesting to note that soluble E3-RING proteins closely 

related to the MARCH family of E3-RING proteins largely also appear to lack 

interactions with UBE2D, UBE2E and other highly promiscuous E2 proteins with a 

more limited selection of E2-binding partners.  
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Figure 3.12 Total E3-RING/E2 interactions (A) Heat-map showing all known E3-RING/E2 interactions. E2 and TM-E3-RING 

proteins are ordered based on primary sequence similarity. TM-E3-RING proteins are indicated by blue bars above heatmap. 

UBE2D interaction promiscuity with E3-RINGs is highlighted by purple bar. A cluster of E3-RING proteins, which includes MARCH 

TM-E3-RINGs and a number of soluble RINGs, that exhibit restricted E2 interaction profiles are highlighted by black bar. 

!!!!!!! !! ! !! ! ! !! !! !!! !!!!!!!!!!!!!!! ! !! ! ! !!!! ! !! !! !!
"#$%&' ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
"#$%(' '' '' '' '' ''
"#$%)*' '' '' '''' '' '' '' '''''' '''' '''' '' '' '' '''' '' '' '''' '' '' '' ''
"#$%)+' '' '' '' '' '' '' '' '' '' '''''' '''' '''' '' '' '' '' '' '''' '' '' '' '' '' '' '' ''
"#$%,' '' '' '' '' '' '' ''
"#$%-' '' '' '' ''
"#$%.' '' '' '' '' '' '' '' '' '' '' '' ''
"#$%/' '' '' '''''' '''' '' '' '' '' '' '''' '' '''' '' '' '''' '''' '' '''''''''''' '''' '''' '' '' '' '' '''''' '''' '' '' '' '''' '''' '' '' '' ''
"#$%0' '' '' '' '' '' '' '' '' '' '' '''' '' '' '' '' '' '' '' '' '' '' '' '''' '''' '''' '' '''' '''' '' '' '''' '''' '' '' '' '' '' '''' '' '' ''
"#$%$!' '' '' '' '''' '' '''' '''''' '''' '''' '' '' '' '''' '' '' '' '' '' '' '' '''''''' '' '''''' '''''' '' '' '''' '' '' '' '''' '' '' '''' '''' '''''' '' '' '' ''
"#$%$*' '' '' '' '''' '''''' '' '''' '' '' '' '' '' '' '' '' '''''''' '' '''''' '''''' '' '' '' '''' '' '''' '''' '' '' '' ''
"#$%$%' '' '' '' '' '''' '' '''' '' '' '' '' '' '' '' '' '' '' '''''' '' '''''' '' '''' '' '' '''' '' '' '''' '''''' '' '' '' '' ''
"#$%1/)' '' '' '' ''
"#$%1!' '' '''' '' '''''' '''' '''''''''' '''''''' '' '''''''''' '''' '' '''' '' '''' '''' '' '' '' '' '' '' '' '''''''' '' '''''' '''''''' '' '''''''' '''''' '' '' '' '' '''' '' '''' '''''' '''' '' '''' '''''' '' '' '''''' '' '''''' '' '' '' '' '' '' '' '' ''''
"#$%1%' '' '' '''' '''''''''''''''' '''''''''''''''' '''' '' '''' '' '' '''' '' '''' '' '' '' '' '' '' '''''' '' '''''''' '' '''''''' '''''''' '' '' '''''''' '''''' '' '' '' '''' '''''''''''' '''' '' '''' '' '' '''' '''''' '' '''''' '' '' '''' '' '' '' '' '' '' ''''
"#$%1*' '' '' '''' '''''' '''''''''' '''''''' '''' '''' '' '''' '''' '' '' '' '''' '' '' '' '' '' '' '' '' '' '''''''' '' '''''' '''''''' '' '''''''' '''' '' '' '''' '''' '' '''' '''' '' '' '''' '''''' '' '' '''''' '' '''''' '' '' '' '' '' '' '' '' ''''
"#$%12' '' '' '' '''' '''''''''' '''''''' '' '''''''' '''' '' '' '' '''' '' '' '' '' '' '' '' '' '' '''''''' '' '''''' '''''' '' '' '''''''' '''' '' '' '' '' '''' '''''''''' '''' '''' '' '' '' '''' '''' '' '' '' '' '' '' '' ''
"#$%3' '''' '''''''' '''' '' '' '''' '' '''' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '''' '' '' '' '' '' '' '' '' '' '' '' '' '''' '''''''' '' '''' '' '' '' '' '' '' ''
"#$%4' '' '' '' '' '' ''
"#$%"' '' '' '''' '' '' '' '' '' '' '' '''' '' '' '' '' '' '' '' '''''' '' '' '' '' '' '' '' '' '''''' '' '' '''' '' '' '' '' '' '''''' '' '''' '''''''''''' '' '''''' '' '''' '''''' '''' '' '' '' '' ''
"#$%5' '' '' '' '' '' '' '' '' '' '' '' '' '' '''' '' '''' '' '' '' '' '' '' '' '''' '' '' '''''' '' '' ''
"#$%6' '' '''' '' '' '' '' ''
"#$%#' '' '''' '''''' '' '' ''
"#$%7%' '' '' '' '' '' '' '' '' '' '''' '''' '' '' '' '' '' ''
"#$%7!' '' '' '''' ''
"#$%8%' '' '' '' '' '' '' '' '' ''
414*2' '' '' '' ''
"#$%9' '' '' '' '''''' '' '''' '''' '' '''' '' '' '' '''' '''' '' '' '''' '' '' '' '''' '''''' '''' '' '''''''' '' '' '' '' '' '' '''''''''' '''' '' '' '' '''''' '' '' '' '' '' ''
#584+' '' '' ''
"#$%:' '' '' '' '' '' '' '' '' '' '' '''' '''' '' '' '' '' '' '' '' '' ''
"#$%;%' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '''' '' '' ''
"#$%;!' '' '' '' '' '' '' '' ''
"#$%<!' '' '''' '' '' '' '' '' '' '' '''' '' '' '' '' '' '' '''' '' '' '' '' '' ''
"#$%<%' '' '' '' '' '' '' '' '' '' '' ''
"#$%=%' '' '' '' ''
"#$%=!' '' '' '' '' ''
60.5>' '' '' '' '''' '' '''' '' '' '' ''
"-4!' '' ''
.&7!?!' '' '''' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '' '''' '''' '' '' '' ''


TM-E3-RING Proteins 
E

2 
C

on
ju

ga
tin

g 
E

nz
ym

es
 



 121 

3.5.1. Co-occurrence of E2 partners for a given TM-E3-RING 

Whilst E3 proteins are largely considered to regulate substrate selection, E2 

proteins have been shown to play a central role in dictating the architecture of poly-

ubiquitin chain formation on modified substrates (David, Ziv et al. 2010). 

Mechanistically, the poly-ubiquitination of substrate proteins can be controlled by 

designated ‘initation’ and ‘elongation’ E2 proteins, which can be recruited by the 

same E3-RING protein ((Christensen, Brzovic et al. 2007) and see section 1.4.3.2). 

To identify potential functionally linked E2 proteins, co-occurrence analyses were 

performed to determine the frequency with which any two E2 proteins appear 

together in the binding profiles of TM-E3-RING or soluble E3-RING proteins. The 

frequency that pairs of E2s exhibit common TM-E3-RING protein partners was 

calculated and expressed in heatmap format as a ratio of the total number of 

interactions detected for each E2 protein. To limit potential biases as a result of low 

coverage and to allow meaningful insights to be drawn, only those E2 proteins that 

exhibited ≥	
 4 TM-E3-RING interactions (with the exception of UBE2V1 and 

UBE2V2) were investigated. This analysis could address a number of questions, 

including; ‘if a given E2 (X) is present in a subset of E3-RING binding profiles, what 

proportion of these E3-RINGs also bind to a second common E2 protein (Y)?’ As 

such, it was also possible to determine if a pair of E2 proteins always co-occur in the 

interaction profiles of E3-RING proteins, or whether the interaction profile of one E2 

is the subset of a second. 

 

Naturally, a single E2 enzyme will always occur in 100% of its own E3 interaction 

profiles and is represented in Figure 3.13A&B by the dark blue diagonal line. Given 

their primary sequence similarity, E2s within the same subfamily may be expected 
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to exhibit highly similar binding profiles (Figure 3.13C). This trend is observed for 

both the expansive UBE2D and UBE2E families, whereby individual family members 

largely co-occur in the binding profiles of TM-E3-RING proteins. This analysis 

reveals several emergent properties of E3-RING/E2 interaction networks, which 

may be important in guiding future investigations into the molecular basis of E3-

RING/E2 specificity. Notably, the UBE2E and UBE2W families are largely restricted 

to a subset of TM-E3-RING partners that interact with the UBE2D subfamily. 

However, UBE2D does not always co-occur with UBE2E or UBE2W (Figure 3.13A; 

red and yellow boxes). Highly similar patterns of co-occurrence were also observed 

for these E2 proteins when investigating the more expansive soluble E3-RING/E2 

network implying a general trend within the ubiquitome network (Figure 3.13B). The 

high rate of co-occurrence between UBE2D, UBE2E and UBE2W proteins may 

suggest functional linkages between these proteins and members of the UBE2D 

family, whilst UBE2D proteins may have a range of different functions independent 

of UBE2E and UBE2W proteins. 

 

Members of the UBE2D family have been shown to prime substrates with a single 

ubiquitin moiety prior to UBE2N (Dodd, Allen et al. 2004) and CDC34 (Wu, Kovacev 

et al. 2010) mediated K63 and K48 poly-ubiquitin chain elongation, respectively. 

Additionally, independent studies revealed that a single E3-ligase complex 

(BRCA1/BARD1) can utilise the UBE2D, UBE2E, UBE2W E2s to nucleate substrate 

proteins with a single ubiquitin moiety, which acts as an initiation signal for 

subsequent K63 and K48 chain elongation by the hetero-dimeric UBE2N/UBE2V1 

and UBE2K E2s (Christensen, Brzovic et al. 2007). In agreement with these reports, 

the present analysis reveals a high degree of co-occurrence between the elongation 

E2s UBE2N and UBE2K with members of the UBE2D and UBE2W families (and to 
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a lesser extent UBE2E) (Figure 3.13A&B; black boxes). Additional functional 

linkages may be inferred for several other E2 proteins, including UBE2G2, UBE2Z, 

and UBE2J2, that exhibit a similar rate of co-occurrence with the 

UBE2D/UBE2W/UBE2E families. 

 

Interrogation of the soluble and transmembrane E3-RING/E2 network reveals 

additional trends. Interestingly, the four catalytically inactive UEV proteins with ≥ 4 

E3-RING partners in these datasets exhibit differential patterns of E2 co-occurrence. 

Three of the UEV proteins (UBE2V1, UBE2V2 and AKTIP) bind almost exclusively 

to a small subset of E3-RING proteins that bind to the UBE2D family of E2 proteins 

(Figure 3.13A&B; central turquoise box), whilst TSG101 co-occurs less frequently 

with UBE2D family members (Figure 3.13A; central turquoise box). Despite their 

high sequence similarity, UBE2V1 and UBE2V2 appear to have different co-

occurrence patterns. UBE2V2 is present almost exclusively in a subset of UBE2V1 

E3-RING binding profiles yet co-occurs with UBE2N to a much higher degree than 

UBE2V1 (left turquoise box) which in contrast exhibits an increased frequency of co-

occurrence with UBE2W (right turquoise box). AKTIP exhibits a highly similar profile 

to UBE2V1 whilst TSG101 appears to have a diverse co-occurrence binding profile 

to other UEV proteins.  

 

Whilst UEV proteins are not capable of directly conjugating ubiquitin, UBE2V1 and 

UBE2V2 act in conjunction with UBE2N to specify formation of K63-linked poly-

ubiquitin chains in NF-kB signalling (Andersen, Zhou et al. 2005) and DNA repair 

(Windheim, Peggie et al. 2008), respectively. This is achieved by UBE2V1 or 

UBE2V2-mediated orientation of a donor ubiquitin moiety for optimal formation of 

K63 chains by the active E2, UBE2N (Eddins, Carlile et al. 2006). Equivalent roles 
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Figure 3.13 Co-occurrence of E2 proteins in (TM-)E3-RING binding profiles. 
Heatmap representation of E2 co-occurrence within TM-E3-RING (A) and soluble-

E3-RING (B) interaction profiles. Colour scheme represents the proportion of E3-

RING interactions mediated by E2s on the vertical axis that are also mediated by 

E2s on the horizontal axis. Dark blue tends towards 100% of TM-E3-RING 

interactions by E2s on the vertical axis shared by E2s on the horizontal axis. Pale 

yellow represents low-scale values. Schematic representation of E2s within (A) the 

same or (B) different families co-occurring in E3-RING binding profiles.  
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of other UEV proteins have not currently been reported. However, the highly similar 

co-occurrence profiles of UBE2V1 and AKTIP may implicate a similar role and 

mechanism of action of AKTIP in ubiquitination events. Similarly, TSG101 may also 

fulfil a similar role but aid polyubiquitination with other active E2 enzymes. 

3.6. Discussion 

To develop a comprehensive understanding of how specificity and functionality is 

controlled within the human ubiquitin system it is essential that we first define the 

interactions that occur between its composite parts. The combinatorial nature of TM-

E3-RING/E2 interactions was initially proposed by small-scale studies (Brzovic and 

Klevit 2006; Christensen, Brzovic et al. 2007) with subsequent HTP Y2H analysis 

revealing the true complexity of the E3-RING/E2 network (Markson, Kiel et al. 2009; 

van Wijk, de Vries et al. 2009). Despite the resulting increase in coverage of E3-

RING/E2 interactions, a considerable area of data paucity remained for the subset 

of E3-RING proteins predicted to contain transmembrane regions. The work 

described in this chapter provides the first comprehensive and high-density binary 

interaction map of the human TM-E3-RING/E2 protein network through the adoption 

of a Y2H approach using the cytosolic RING domain (CRD) containing fragments of 

individual TM-E3-RING proteins, preserving the E2-binding RING domain region 

whilst removing problematic hydrophobic transmembrane domains. This data 

dramatically increased network density, and revealed new trends in TM-E3-

RING/E2 partner preferences. 

3.6.1. Orthogonal Y2H-systems generate different interaction profiles 

Recent analyses of data derived from independent orthogonal assays highlights the 

value of using different interaction assays to increase coverage across common 

clone sets (Braun, Tasan et al. 2009; Rajagopala, Hughes et al. 2009; Chen, 
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Rajagopala et al. 2010). Interestingly, different Y2H approaches have been shown 

to enhance detection of novel protein-protein interactions as using a combination of 

more diverse orthogonal interaction assays (Chen, Rajagopala et al. 2010).  

 

Comparative analysis of data from CRD-Y2H or full-length Y2H screens 

demonstrated the utility of CRD-clones for identifying novel E2 interaction partners, 

exhibiting considerably elevated numbers of total interactions for co-tested TM-E3-

RING/E2 protein pairs coupled with a high rate of reconfirmation of full-length 

interactions (58%). An additional 60 novel interactions were observed for 5 TM-E3-

RING clones which were only functional in CRD-Y2H screens. As such, CRD 

fragment clones represent a valuable tool in determination of this class of protein-

protein interaction. Despite these findings, 30 interactions were only observed in full-

length TM-E3-RING screens. These interactions were subsequently shown to be 

attributed to E2s that exhibit higher numbers of interaction partners then observed 

with full-length compared to CRD TM-E3-RING clones (UBE2K, UBE2I, UBE2M, 

UBEV1, UBE2V2). It remains to be seen whether these findings implicate regions 

outside of the cytosolic RING domain in the formation of positive interactions with 

these E2 proteins, or whether hydrophobic or charged regions of transmembrane 

domains result in interaction detection with this cohort of E2 proteins within the Y2H 

system. 

 

During the course of this study, a second directed E3-RING/E2 interaction network 

was published using a LexA-based Y2H system and UBC or E3-RING domain-

specific clones (van Wijk, de Vries et al. 2009). Comparison of data for TM-E3-

RING/E2 pairs tested in both studies revealed a 25% overlap between screens, 

which is comparable to the degree of similarity expected between other orthogonal 
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Y2H studies (Chen, Rajagopala et al. 2010). As different Y2H vectors, yeast strains, 

and domain regions were used in the two studies it is difficult to ascribe differences 

in interaction profiles to any one factor. Comparative analysis of data from the CRD-

GAL4 Y2H study with analogous data from both the LexA-based and full-length 

GAL4 Y2H screens revealed similar emergent properties of the TM-E3-RING/E2 

interaction network, which are discussed below. Furthermore, these analyses 

revealed how different Y2H approaches can provide highly complementary data. As 

such, the utilisation of multiple Y2H and other interaction approaches is necessary 

to enable maximal coverage of binary protein-protein interaction networks to be 

achieved 

3.6.2. Emergent trends in TM-E3-RING/E2 interaction partners 

3.6.2.1. Highly connected E2 enzymes and TM-E3-RING protein pairs 

Interrogation of TM-E3-RING/E2 interaction profiles reveals several emergent 

properties of the network. Notably, the UBE2D and UBE2E families of E2 proteins 

were responsible for almost half of the total TM-E3-RING/E2 interactions. 

Additionally, a single UBE2W clone displayed similar interaction coverage in 

comparison to UBE2D or UBE2E members. The ‘promiscuous’ nature and diffuse 

localisation (cytosolic and nuclear) of UBE2D family members (Plafker, Plafker et al. 

2004) may reflect a broad role of this E2 family in cellular ubiquitination events 

(Markson, Kiel et al. 2009). The UBE2E and UBE2W family display more restricted 

TM-E3-RING partner profiles to UBE2D and exclusively bind to a subset of TM-E3-

RINGs that interact with UBE2D proteins with the sole exception of CGRRF1, which 

interacts with UBE2W but not UBE2D or UBE2E proteins. Both UBE2E and UBE2W 

family members exhibit restricted subcellular localisation patterns and are 

predominantly expressed within the nucleus yet shuttle between this compartment 
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and the cytosol dependent upon ubiquitin ‘loading’ of their active site cysteine 

residue (Plafker and Macara 2000; Yin, Ji et al. 2006). Taken together these 

findings may implicate more specific roles of the UBE2E and UBE2W family in 

nuclear ubiquitination events compared to potential ‘housekeeping’ functions of the 

UBE2D family, which is in agreement with previous reported functions for UBE2E 

(Lee, Hong et al. 2008) and UBE2W (Zhang, Zhou et al. 2011) proteins. 

 

A large number of TM-E3-RING proteins that interact with UBE2E (50%; 8/18) or 

UBE2W (32%; 7/22) belong to a discrete subset of TM-E3-RING proteins, the PA-

TM-RING subfamily. In agreement with potential nuclear roles of this subfamily, a 

member of the PA-TM-RING subfamily (RNF13) has been reported to undergo 

retrograde transport from endosomes to the inner nuclear membrane (INM) 

following activation of PKC signalling, positioning the RING domain in the 

nucleoplasm where it may mediate ubiquitination events (Bocock, Carmicle et al. 

2010). Furthermore, Nuclear Localisation Signals (NLS) are predicted for 4 PA-TM-

RING proteins between their N-terminal TM-region and C-terminal RING-domain 

(RNF13, RNF130, RNF150, and RNF167) whilst another PA-TM-RING has a 

predicted N-terminal NLS (ZNRF4) (supplementary file PsortII NLS prediction). 

Cytoplasmic tails of proteins released from the membrane by regulated proteolysis 

frequently undergo NLS-mediated import into the nucleus where they modulate 

transcription (Wolfe 2009). Regulatory proteases can promote the intramembranous 

cleavage of RNF13 allowing for dissociation of the C-terminal RING-domain from 

the membrane to enable ubiquitination events at multiple subcellular locations 

(Bocock, Carmicle et al. 2009; Bocock, Carmicle et al. 2011). Similarly, in vitro 

translation of a second PA-TM-RING in the presence of microsomal membranes led 

to the production of two forms of RNF128, with a cleavage of the full-length E3-
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RING protein in the ER or cis-Golgi resulting in the generation of a smaller isoform 

(Guais, Siegrist et al. 2006). As such, intramembrane-cleavage or retrograde 

transport to the INM may reflect a recurring theme within the PA-TM-RING family, 

which enables participation in nuclear ubiquitination events. In addition to the PA-

TM-RING proteins, a number of other UBE2E and UBE2W interactors are also 

predicted to either contain NLSs (RNF43, MARCH3, and RNF103) or have been 

previously localised to the nuclear membrane (RNF19A, RNF43, MUL1, RNF5, and 

AMFR) (supplementary file PsortII NLS prediction). 

3.6.2.2. Highly specific E2 proteins and TM-E3-RING protein pairs 

Results from this study also highlight a number of E2 proteins that have highly 

specific TM-E3-RING interaction partners. For example, UBE2O, UBE2M and 

UBE2Q1 all have ≤ 2 TM-E3-RING partners, which may reflect highly specialised 

roles in cellular ubiquitination events. As UBE2M is a NEDD4 specific E2 our data 

indicates a potentially novel role for RNF167 and RNF185 in NEDDylation events. 

Both RNF167 and RNF185 also interact with ubiquitin-specific E2 proteins and 

therefore both may direct ubiquitination and NEDDylation events. The UBE2O and 

UBE2Q1 E2 enzymes remain relatively uncharacterised in the literature, however 

identification of selective TM-E3-RING partners may provide new insight into the 

mode of action of these E2 proteins. A number of E2 proteins (UBE2S, UBE2F, 

UBE2C, UBE2A, UBE2B, UBE2G1, UBE2R2, CDC34, BIRC6, UBE2Q2) have no 

known TM-E3-RING interaction partners. These findings are largely mirrored in the 

total E3-RING/E2 network, with the majority of these E2 proteins exhibiting ≤ 3 E3-

RING interaction partners (with the exception of UBE2R2, UBE2A, UBE2B which 

have 6, 4, and 5 E3-RING partners, respectively; supplementary file ‘total interaction 

datasets’). 
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Whilst further investigation is required to determine whether the apparent fidelity of 

some E2 proteins is a true reflection of highly selective ubiquitination events, 

annotation of selective TM-E3-RING partners within this study may be used to 

inform future studies of E2 function. For example, the highly specific interaction 

observed between UBE2O and the peroxisomal TM-E3-RING ligase, PEX10, may 

implicate a role for this uncharacterised E2 protein in ubiquitination events at the 

peroxisomal membrane, potentially relating to PEX10-mediated peroxisomal 

biogenesis and protein import mechanisms (Cepinska, Veenhuis et al. 2011). As 

such, the comprehensive TM-E3-RING/E2 protein interaction map has provided a 

resource to direct future hypothesis-driven research and determine the physiological 

relevance of individual interactions reported in this study. 

3.6.3. Combinatorial complexity of TM-E3-RING/E2 interactions 

Analysis of the integrated TM-E3-RING/E2 network clearly demonstrates that the 

majority of TM-E3-RING proteins have the potential to interact with multiple E2 

protein families. Such combinatorial complexity may underlie the ability of individual 

TM-E3-RING proteins to mediate distinct ubiquitination events within context-

dependent complexes for selective ubiquitination of substrates. In addition, such 

combinatorial complexity may underlie the sequential activity of E2 proteins in the 

initiation and elongation of different forms of poly-ubiquitin chains (Christensen, 

Brzovic et al. 2007). The generation of a comprehensive TM-E3-RING/E2 

interaction map in the present study has enabled the computational prediction of 

such potential functional linkages by determination of E2 co-occurrence in TM-E3-

RING profiles. In agreement with the role of UBE2D, UBE2W, and UBE2E in 

priming substrates with a single ubiquitin moiety prior to subsequent elongation by 

UBE2N or UBE2K proteins (Christensen, Brzovic et al. 2007), a high degree of co-
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occurrence was observed between UBE2N and UBE2K with UBE2D and UBE2W 

family members, and to a lesser extent UBE2E. The similarly high rate of co-

occurrence of other E2s (UBE2G2, UBE2Z, UBE2J2) with UBE2D/UBE2W/UBE2E 

families may be suggestive of analogous functional linkages and may imply a 

general role of the UBE2D and UBE2W proteins in polyubiquitin chain ‘initiation’ for 

a number of other E2 proteins. 

3.6.4. Remaining area of data paucity 

Nine human TM-E3-RING proteins still have no known E2 interaction partners. 

Furthermore, certain phylogenetic TM-E3-RING sub-families exhibit lower numbers 

of E2 interactions including the MARCH family and the peroxisomal (PEX10 and 

PXMP3) and closely related TM-E3-RING proteins. It remains to be seen whether 

those TM-E3-RING proteins that have no E2 interaction partners have lost their 

ability to interact with E2 proteins or reflect false-negative interactions within Y2H 

studies. One additional possibility may be that some TM-E3-RING proteins may bind 

indirectly to E2 proteins through a process of heterotypic E3-RING/E3-RING 

interaction as described for a growing number of soluble E3-RING proteins (Brzovic, 

Keeffe et al. 2003; Linares, Hengstermann et al. 2003; Buchwald, van der Stoop et 

al. 2006). As such, it would be of interest to determine whether the restricted or lack 

of E2 partners for certain TM-E3-RING proteins reflects a true physiological fidelity 

of these TM-E3-RING/E2 pairings or whether additional co-factors or dimerization 

events are required in order for E2 binding to occur (Deshaies and Joazeiro 2009). 

Finally, it remains to be established whether E2 proteins, which exhibit lower 

numbers of interaction partners using CRD compared to full-length TM-E3-RING 

clones represent protein interactions which require determinants outside of the 

cytosolic RING domain in E2 binding. 
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A key question to be addressed is which of the interactions observed in this study 

represent physiologically relevant interactions in vivo. This is a difficult question to 

address due to the diverse range of cellular processes that could be regulated by 

different E2/TM-E3-RING combinations. However, development of interaction 

assays which can be used in live human cells, such as the firefly luciferase protein 

complementation (PCA) assay described in the next chapter may begin to deliver 

insights into the spatial, temporal and conditional nature of putative interaction 

profiles identified in this study. 
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4. Chapter 4: Secondary Verification of Y2H-derived TM RING/E3-E2 Network 
by Protein Complementation in mammalian cells 

4.1. Introduction 

To assess confidence in binary protein-protein interaction data it is important to re-

assess a representative selection of primary interactions in alternative interaction 

systems or functional screens (Braun, Tasan et al. 2009). Detection of E3-RING/E2 

protein interactions has proven to be problematic in most protein interaction 

systems. Whilst co-immunoprecipitation methods have been utilised to verify a 

subset of domain specific RING/UBC interactions (van Wijk, de Vries et al. 2009), 

the transient and weak nature of most E3-RING/E2 interactions has limited the 

applicability of this approach (Deshaies and Joazeiro 2009). For this reason, in vitro 

ubiquitination assays have been widely used to assess the potential relevance of 

putative E3-RING/E2 interactions detected in primary Y2H screens (Christensen, 

Brzovic et al. 2007; Markson, Kiel et al. 2009). 

 

To provide an initial measure of interaction network confidence, TM-E3-RING/E2 

interactions reported by CRD-GAL4 Y2H screening was compared in the previous 

chapter with two high-quality orthogonal Y2H datasets, which share many common 

tested TM-E3-RING/E2 pairs (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 

2009). Whilst favourable correlation was observed between CRD-Y2H and 

orthogonal Y2H assays was that was comparable to previously reported orthogonal 

studies assayed using an identical ‘gold-standard’ positive interaction ORF 

collection (Chen, Rajagopala et al. 2010), we sought to investigate the utility of a 

protein complementation assay (PCA) system to examine selective TM-E3-RING/E2 

interactions in vivo.  
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4.2. Protein complementation assay (PCA) 

Protein complementation assays (PCA) exploit the modular nature of certain 

reporter proteins in order to identify and quantify protein interactions in prokaryotic 

or eukaryotic cells (Morell, Ventura et al. 2009). Following the rational dissection of 

a reporter protein into two non-functional fragments, functional activity can be 

restored upon proximity induced refolding of reporter fragments. The co-expression 

of potential interaction partners in fusion with reciprocal reporter fragments therefore 

allows for binary protein interactions to be investigated, which position the two 

complementary PCA reporter fragments in close proximity facilitating protein 

refolding and reconstitution of functional activity (Hu and Kerppola 2003). The PCA 

reconstitution strategy has been successfully utilised in the investigation of binary 

protein interactions for several different PCA systems including luminescent (e.g. 

Firefly and Renilla luciferase (Paulmurugan and Gambhir 2003; Hida, Awais et al. 

2009)), fluorescent (e.g. GFP and spectral variants (Lee, Kim et al. 2011)) and other 

enzymatic reporters (e.g. DHFR and Beta-Lactamase (Tarassov, Messier et al. 

2008)). 

 

Fluorescence-based PCA systems may represent useful tools for detection of 

weakly-associating or transient protein interactions in mammalian cells due to the 

irreversible nature of fluorescent reporter refolding (Nyfeler, Michnick et al. 2005). 

However, previous studies within the Sanderson laboratory have suggested that 

split-GFP PCA interaction systems are ineffective in the study of E3-RING/E2 

interactions (personal communication, Prof. Christopher Sanderson), which may 

result from the requirement for de novo formation of the chromophore within the 

reassembled reporter protein providing a relatively slow response to protein-protein 

interactions (Reid and Flynn 1997). Furthermore, the lack of enzymatic amplification 
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and requirement for exogenous illumination may limit the interaction sensitivity of 

split-fluorophore based systems compared to other PCA-based systems (Massoud 

and Gambhir 2003; Misawa, Kafi et al. 2010). As such, binary TM-E3-RING/E2 

interactions may avoid detection in these assay systems due to their low affinity and 

transient nature or may require high levels of expression to achieve signals above 

background cellular fluorescence.  

 

In contrast, the reversible and instantaneous reconstitution of functional activity 

associated with luciferase fragment complementation, coupled with low background 

luminescence in mammalian cells, promotes the use of luciferase-based PCA 

systems for investigation of transient or conditional interactions in human cells 

(Hida, Awais et al. 2009). The previous exhaustive examination of N- and C-terminal 

polypeptide fragments of the dissected Firefly luciferase reporter have identified the 

optimal amino acid fragments for generation of superior signal-to-noise ratio for 

reporter refolding as: 1-416 (N-terminal fragment; FLucN) and 398-550 (C-terminal 

fragment; FLucC) (Ozawa, Kaihara et al. 2001; Luker, Smith et al. 2004; Hida, 

Awais et al. 2009). The previously characterised pcDNA3-FLucN and pcDNA3-

FLucC firefly luciferase PCA vectors were selected as a candidate mammalian PCA 

assay system for investigation of binary TM-E3-RING/E2 interactions and were 

GatewayTM-converted to exploit the available library of sequence verified TM-E3-

RING and E2 proteins. To this end, the RfB GatewayTM cloning cassette was 

introduced into the pcDNA3-FLucC and pcDNA3-FLucN split firefly luciferase 

vectors, which were conFigured to generate either N-terminal (FLucN) or C-terminal 

(FLucC) domain fusions, in accordance with the orientation used in preliminary 

studies (Luker, Smith et al. 2004). As the available ORF library contained E2 

proteins with in-frame stop codons and TM-E3-RING proteins without stop codons, 
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E2 and TM-E3-RING ORFs were expressed as FLucC and FLucN fusion proteins, 

respectively. 

 

In addition to Firefly luciferase, a number of additional luciferase enzyme reporters 

have been identified and utilised in mammalian systems (Remy and Michnick 2006; 

Stefan, Aquin et al. 2007). In particular, firefly and Renilla luciferases catalyse the 

oxidation of different substrates with no crossover in activity or bioluminescence 

emission spectra; D-luciferin, 440-550 nm and coelenterazine, 575-610 nm, 

respectively (Fan and Wood 2007). As such, an ‘unsplit’ luciferase can be 

expressed in tandem with an alternative split luciferase reporter to provide an 

internal control for transfection efficiency and cell death (Hida, Awais et al. 2009). In 

the current PCA system, the Renilla luciferase was adopted as the internal control 

for normalisation of split firefly luciferase activity.  

4.3. Validation of GatewayTM converted firefly luciferase PCA vectors 

Preliminary studies have highlighted optimization of linker length in luciferase-fusion 

proteins as an important factor in improving the efficiency of luciferase reporter 

fragment complementation and generation of optimal luminescence signals upon 

protein-protein interaction (Remy and Michnick 2001; Misawa, Kafi et al. 2010). To 

assess the effect of introducing GatewayTM flanking sequences into the linker 

regions of pcDNA3-FLucC and pcDNA3-FLucN PCA vectors upon the efficiency of 

protein complementation reactions, firefly luciferase reporter activity was compared 

for the rapamycin-dependent interaction between FK506-binding protein (FKBP) 

and FKBP-binding domain of human mTOR (residues 2024-2113; FRB) using 

conventional and Gateway-converted pcDNA3-FLucC and pcDNA3-FLucN vectors. 
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In each case, reciprocal luciferase-fusion proteins were co-expressed in human 

HEK 293T cancer cells, and luciferase activity was measured 24 h post-transfection 

in the presence or absence of rapamycin (100 nM for 4 h). Reconstituted Firefly 

luciferase activity was measured following addition of D-luciferin substrate (LARII 

reagent) by total photon counts over a period of 4 s. Firefly luciferase signals were 

quenched and Renilla luciferase activity measured by total photon counts over 0.2 s 

following addition of co-elenterazine substrate (Stop&Glo reagent). Expression of a 

sole PCA fusion protein (FLucC-FRB or FLucN-FKBP), or co-expression of FKBP-

FLucN and FRB-FLucC constructs in the absence of rapamycin, generated low-level 

luminescence signals in the presence of D-luciferin. The addition of rapamycin 

resulted in a dramatic increase in firefly luminescence signal for the FRB-FKBP 

positive interaction pair compared to identically transfected cells that were not 

subjected to rapamycin treatment for both conventional and GatewayTM-converted 

luciferase PCA fusion constructs (Figure 4.1A; p < 0.005, n = 5). Importantly, no 

statistical difference was observed in reconstituted firefly luminescence signal 

between conventional and GatewayTM-converted PCA fusion constructs. 

To account for differences in firefly luminescence that may result from variations in 

transfection efficiency or cell death, firefly luciferase PCA signal was normalised to 

the internal un-split Renilla luciferase signal for each individual sample and 

expressed as fold change in normalised luciferase activity from HEK 293T cells 

transfected with the Renilla control alone. This normalised luciferase activity 

similarly revealed no statistical difference between conventional and GatewayTM 

fusion constructs (Figure 4.1B). As such, GatewayTM-converted firefly luciferase 

vectors were used for investigation of all future TM-E3-RING/E2 interactions in PCA 

screens. 
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Figure 4.1 GatewayTM conversion of firefly luciferase PCA vectors does not 
adversely affect interaction-induced reconstitution of luciferase PCA activity. 
Using the characterised rapamycin-dependent FKBP/FRB interaction, HEK 293T 

cells were transiently transfected with conventional or GW-converted firefly 

luciferase vectors (FKBP-FlucN and/or FRB-FLucC; 0.5 ng/well) and pRL-SV40 

(Renilla luciferase; 0.1 ng/well). Luciferase activity was measured 24 h post-

transfection in the presence or absence of rapamycin (100 nM for 4 h). HEK 293T 

cells were lysed using PLB and sequential measurements of firefly and Renilla 

luciferase activity was measured upon addition of appropriate substrate. Total 

photon counts were recorded for 4 s (Firefly) and 0.2 s (Renilla). (A) Total firefly 

luciferase activity and (B) normalised relative light units (RLU) are shown (n = 5). 

Error bars represent std dev. Student’s T-Test was performed for analysis. P-values 

< 0.005 (***) are indicated.  
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Figure 5.1 Gateway conversion of split firefly luciferase PCA vectors does not significantly 

reduce interaction signals. Using the well-characterised rapamycin-dependent FKBP/FRB 

interaction as a positive control, HEK 293T cells were transiently transfected with conventional or 

GW-converted firefly luciferase vectors (FKBP-FlucN and/or FRB-FLucC) and pRL-SV40 (Renilla 

luciferase). Luciferase activity was measured 24 h post-transfection in the presence or absence of 

rapamycin (100nM for 4 h). HEK 293T cells were lysed using PLB and sequential measurements 

of Firefly and Renilla luciferase activity was measured upon addition of appropriate substrate. Total 

photon counts were recorded for  4 s (Firefly) and 0.2 s (Renilla). (A) Total firefly luciferase activity 

and (B) normalised relative light units (RLU) are shown (n=5). Error bars represent std dev. 

Student’s T-Test was performed for analysis. P-values < 0.05 (*), < 0.01 (**), and < 0.005 (***) are 

indicated.#
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4.4. Direct orthogonal luciferase PCA assays 

To perform a direct comparison with data obtained in primary CRD-Y2H screens, 

sequence-verified CRD TM-E3-RING and full-length E2 ORFs were transferred by 

LR recombination reactions into FLucC GW and FLucN GW Firefly luciferase PCA 

vectors, respectively. This strategy enabled the investigation of potential interactions 

between distantly related TM-E3-RING proteins across a broad range of E2 

conjugating enzyme families (UBE2Ds, UBE2Es, UBE2L, UBE2W, and UBE2N 

families).  

4.4.1. Catalytically-inactive and wild type E2 comparison 

The ability of E3-RING proteins to catalyze their own auto-ubiquitination in the 

presence of E2 enzyme partners is a recurring theme in ubiquitin systems (de Bie 

and Ciechanover 2011), as exemplified by the MDM2 and CBL ligases (Fang, 

Jensen et al. 2000; Ryan, Davies et al. 2006). This may represent a potential 

obstacle for the detection of TM-E3-RING/E2 interactions within mammalian cells, in 

which turnover of active complexes could limit interaction detection of protein 

interaction partners. 

To address this possibility, putative TM-E3-RING/E2 complexes involving UBE2D2, 

UBE2E1, and UBE2W proteins were generated and tested in luciferase PCAs as 

wild-type and catalytically-inactive mutant FLucN fusions. Inactive mutant clones 

were generated by substitution of the E2 UBC domain catalytic cysteine with an 

alanine residue to render E2s incapable of becoming charged with ubiquitin 

moieties. 
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Figure 4.2 E2 protein inactivation confers differential effects upon CRD TM-E3-
RING/E2 activity in luciferase PCA assays.  HEK 293T cells were transiently 

transfected with pRL-SV40 (0.1 ng / well), FlucC GW and FlucN GW (0.5 ng / well) 

fusion constructs. Luciferase activity was measured 24 h post-transfection. Total 

photon counts were recorded for 4 s (Firefly luciferase) and 0.2 s (Renilla 

luciferase). Results are a normalised ratio of Firefly:Renilla activity and expressed 

as fold change from the most stringent negative control for each TM-E3-RING/E2 

pair (n = 3). Error bars represent std dev. Student’s T-Test was performed to 

determine statistical differences in luciferase PCA activity for wild type and C>A E2 

proteins in combination with each TM-E3-RING protein. P-values < 0.01 (**) and 

and < 0.005 (***) are indicated. 
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Figure 5.2 Catalytic inactivation of different E2 proteins exerts differential effects 

upon CRD-E3/E2 activity in luciferase PCA assays.  HEK293T cells were transiently 

transfected with pRL-SV40, FlucC GW and FlucN GW fusion constructs as indicated 

(ng’s!!!!????). Luciferase activity was measured 24 h post-transfection. Sequential 

measurements of Firefly and Renilla luciferase activity was measured following addition of 

appropriate substrate buffers (Promega) according to manufacturers instructions. Total 

photon counts were recorded for  4 s (Firefly) and 0.2 s (Renilla). Results are expressed as 

a ratio of Firefly:Renilla activity and normalised to negative control HEK293T cells 

transfected with Renilla luciferase alone. (n=3). Error bars represent std dev. Student’s T-

Test was performed for analysis. P-values < 0.05 (*), < 0.01 (**), and < 0.005 (***) are 

indicated."
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E2 mutations used in this study were: UBE2D2 (C85A), UBE2E1 (C131A) and 

UBE2W (C91A). To provide appropriate normalisation controls for each tested TM-

E3-RING/E2 pair, CRD-E3-RING FLucC and FLucN E2 constructs were co-

transfected with a reciprocal non-interacting firefly luciferase fusion protein (FRB-

FLucN or FKBP-FLucC). UBE2D2 C85A-FLucN and UBE2E1 C131A-FLucN fusions 

exhibited significantly elevated normalised luciferase PCA activity with RNF13-

FLucC and RNF152-FLucC compared to the corresponding wild-type E2 fusion 

protein (p-value < 0.01, n = 3) (Figure 4.2). A striking ~ 20 fold increase in 

normalised luminescence signal was observed for UBE2E1 C131A compared to 

UBE2E1 WT when co-expressed with RNF13 as firefly luciferase PCA fusions. No 

significant decrease in luminescence signal was observed for UBE2D2 C85A or 

UBE2E1 C131A compared to corresponding wild type fusions in combination with 

any of the 4 TM-E3-RING FLucC fusions. In contrast, UBE2W C91A exhibited 

significantly reduced normalised luminescence signal compared to UBE2W WT 

when co-expressed with RNF13 and RNF152 FLucC fusions  (p-value < 0.005, 

n = 3).  

As a result of these findings, UBE2D2 C85A, UBE2E1 C131A and UBE2W WT E2-

FLucN fusion proteins were utilized in subsequent luciferase PCA assays with a 

selection of TM-E3-RING FLucC fusions. Wild type UBE2E3, UBE2L3, UBE2L6 and 

UBE2N-FLucN fusions each generated strong luciferase PCA signals in luciferase 

PCA screens (Figure 4.3B) and therefore catalytic inactive C>A mutants were not 

generated for use in this system. 

4.4.2. Comparison of orthogonal luciferase CRD-PCA and CRD-Y2H assays 

In total, 16 CRD TM-E3-RING FLucC constructs were systematically co-expressed 

with 7 E2 FLucN clones, representing 112 potential binary protein interactions 
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(Figure 4.3). It is likely that individual CRD E3-RING FLucC and E2-FLucN fusion 

proteins exhibit different levels of background luciferase activity when co-expressed 

with fusion proteins encoding reciprocal luciferase fragments. As described in 

section 1.4.1. CRD-E3-RING FLucC and FLucN E2 constructs were co-transfected 

with a reciprocal non-interacting luciferase PCA fusion protein (FRB-FLucN and 

FKBP-FLucC, respectively) to provide two appropriate normalisation controls for 

each tested TM-E3-RING/E2 pair. Interactions were only considered positive if a 

reproducible ≥ 1.5 fold increase in firefly:Renilla luciferase activity was observed 

relative to the most stringent appropriate negative control (i.e. either TM-E3-RING 

FLucC/FRB FLucN or FKBP FLucC/E2 FLucN). Averages of two independent 

positive values were recorded and represent ‘normalised luciferase PCA activity’ 

(Figure 4.3B). 

In total > 20% (45/196) of primary CRD-Y2H interactions were retested in the CRD-

luciferase PCA system. CRD-PCA screens revealed 37 binary TM-E3-RING/E2 

interactions (Figure 4.3B&C). The union of CRD-Y2H and CRD-PCA data showed 

37% of total interactions to be observed in both CRD-Y2H and CRD-PCA screens 

(Figure 4.4A), representing comparable reconfirmation rates to those previously 

reported using identical clone sets in orthogonal interaction assay systems (Braun, 

Tasan et al. 2009). Of the 45 interactions observed in primary CRD-Y2H screens, 

22 (~ 50%) were reconfirmed by CRD-PCA screens with an additional 15 

interactions observed in CRD-PCA studies that were not reported in the CRD-Y2H 

dataset (Figure 4.4A). Significantly, ~ 80% (52/64) of negative CRD-Y2H 

interactions were also found to be negative in CRD-luciferase PCA screens (Figure 

4.3C), representing a high degree of interaction specificity between screens. 

Interestingly,  
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Figure 4.3 Co-tested TM-E3-RING/E2 interactions in CRD-luciferase PCA and 
CRD-Y2H screens. (A) Results from CRD-Y2H assays showing interaction score. 

Different colour represent number of Y2H reporters activated for each TM-E3-

RING/E2 pair. (B) Normalised luciferase PCA activity observed in CRD-luciferase 

PCA studies. All positive values represent normalised average fold change for 

protein pairs a reproducible ≥ 1.5 fold increase in normalised Firefly luciferase 

activity (represented by light to dark blue colour gradient). (C) Comparison of data 

from CRD-Y2H and CRD-luciferase PCA assays. Asterisks represent TM-E3-RING 

proteins functional in CRD-luciferase PCAs. TM-E3-RINGs are shown on horizontal 

axis and E2-conjugating enzymes on the vertical axis.
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for the subset of TM-E3-RING proteins that displayed ≥ 1 interaction partner in 

CRD-PCA screens and were therefore demonstrated functional in this system 

(Figure 4.3; denoted by asterisks), > 80% (22/27) of CRD-Y2H interactions were 

reconfirmed. 

The activation of multiple reporters in Y2H systems has been proposed to represent 

higher confidence interactions (Serebriiskii and Golemis 2001), with the -ADE 

reporter inherently more stringent than the -HIS reporter in the GAL4-based Y2H 

system (James, Halladay et al. 1996). CRD-PCA reconfirmation of CRD-Y2H 

interactions on different reporter combinations was therefore calculated to 

investigate correlations between interaction ‘strength’ between interaction detection 

systems and to establish reasonable criteria for benchmarking CRD-Y2H positive 

interactions. CRD-PCA screens reconfirmed equivalent proportions of -HIS 

(10/18; 56%), -HIS/-ADE (7/15; 47%), and -HIS/-ADE/β-gal (5/12; 42%) CRD-Y2H 

screen interactions (Figure 4.4B). These findings are in agreement with in vitro 

functional reconfirmation of interactions observed on the -HIS reporter alone in 

previously published GAL4-Y2H screens from our laboratory (Markson, Kiel et al. 

2009) and benchmarks CRD-GAL4 Y2H interactions of this reporter strength as true 

positives for this particular class of protein interaction in primary screens. 

A strength of the firefly luciferase PCA system is its ability to quantify the magnitude 

as well as dynamics of protein interactions in cell-based assays (Luker, Gupta et al. 

2009), whilst additional PCA readouts such as fluorescence generated by 

fluorophore-based PCAs can correlate with the interaction strength of a given 

protein pair (Morell, Espargaro et al. 2007). Correlative analysis between CRD-Y2H 

and CRD-PCA reporter strengths revealed CRD-Y2H interactions observed on all 3  
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Figure 4.4 Comparison of co-tested TM-E3-RING/E2 interactions from CRD-
PCA and primary CRD-Y2H screens. (A) Total overlap between CRD-PCA and 

CRD-Y2H screens. (B) Verified and unverified CRD-Y2H interactions within CRD-

PCA assays according to number of Y2H reporters activated. (C) Comparison of 

CRD-Y2H and CRD-PCA interaction ‘strength’ for TM-E3-RING/E2 interactions 

observed in both interaction systems. The Student’s T-Test was performed to 

determine statistical differences in normalised luciferase PCA signals for TM-E3-

RING/E2 interactions observed by differential reporter activation in CRD-Y2H 

assays. P-values < 0.05 (*) and < 0.01 (**) are indicated. 
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Comparison of CRD-Y2H and CRD-luciferase PCA interaction strength. Student’s T-Test 

was performed for analysis. P-values < 0.05 (*), < 0.01 (**), and < 0.005 (***) are 

indicated. 
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reporters exhibited an elevated median luciferase PCA signal compared to 

interactions observed on –HIS (p < 0.05) or -HIS/-ADE selection (p < 0.01) (Figure 

4.4C). Whilst this trend appears logical, it is important to note that the maximal 

signal observed in CRD-PCAs was observed for a protein pair observed solely on –

HIS selection in primary CRD-Y2H screens, RNF13/UBE2E3 (Figure 4.3C). 

4.4.3. Contribution of PCA signal derived from interactions occurring prior to 
or after cell lysis 

As TM-E3-RING FLucC and E2 FlucN fusion proteins are co-expressed in 

HEK 293T cells, the presumption is that positive luciferase PCA activity results from 

interaction of fusion proteins and luciferase complementation in vivo. However, the 

lysis of HEK 293T cells prior to addition of the firefly luciferase substrate raised the 

possibility that the formation of positive binary interactions between fusion proteins 

may occur post-lysis. To investigate which of these two scenarios is responsible for 

the observed luciferase activity in our PCA system, a subset of CRD-PCA positive 

TM-E3-RING FLucC and E2 FLucN interaction partners were (i) co-expressed in 

HEK 293T cells and (ii) expressed individually in HEK 293T cell cultures and mixed 

post-lysis to compare luciferase activity for corresponding protein pairs following 

between experimental protocols (Figure 4.5A). For each tested CRD TM-E3-

RING/E2 pair, a statistically significant increase in normalized firefly luciferase 

activity was observed for co-expressed fusion proteins compared to single 

expression and lysis mixing (Figure 4.5B). Significantly, RNF26/UBE2W and 

AMFR/UBE2N each exhibited > 10 fold increase in normalised luciferase PCA 

activity compared to their most stringent appropriate negative control for co-

expression expression experiments yet did not exceed interaction cut-off criteria 

(≥ 1.5 fold increase) following single transfection and lysate mixing (Figure 4.5B).  
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Figure 4.5 Luciferase PCA activities for CRD TM-E3-RING/E2 partners 
following co-expression and lysate mixing protocols. (A&B) HEK 293T cells 

were (i) co-transfected with CRD TM-E3-RING-FLucC and E2-FLucN constructs 

(0.5 ng / well) (grey bars) or (ii) transfected individually (0.5 ng / well) prior to lysate 

mixing (white bars). All HEK 293T cells were also transfected with the pRL-SV40 

un-split Renilla luciferase vector (0.1 ng / well, respectively). Luciferase activity was 

measured 24 h post-transfection. Total photon counts were recorded for 4 s (Firefly) 

and 0.2 s (Renilla). Results are represented as fold change in Firefly:Renilla activity 

ratio compared to the most stringent negative control for each corresponding protein 

pair and experimental protocol.  Error bars represent std dev. Student’s T-Test was 

performed to determine statistical differences in normalised PCA activity between 

co-expression and lysate mixing protocols for each CRD TM-E3-RING/E2 protein 

pair. P-values < 0.005 (***) are indicated. 
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Figure 5.5 Lysate mixing generates reduced luciferase PCA activity for positive 

CRD-E3/E2 pairs compared to co-expression of CRD-E3-FLucN/E2-FlucC 
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following addition of appropriate substrate buffers (Promega) according to manufacturers 
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bars represent std dev. Student’s T-Test was performed for analysis. P-values < 0.05 (*), 

< 0.01 (**), and < 0.005 (***) are indicated."
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Additionally, whilst the RNF144A FLucC and UBE2L3 FLucN protein pair passed 

the positive PCA interaction criteria following lysate mixing, significantly higher 

normalised luciferase PCA activity was observed when the partners were co-

expressed (Figure 4.5B). These findings indicate that interactions detected within 

the luciferase PCA system predominantly result from interactions occurring in vivo. 

4.4.4. Full-length luciferase PCA screen results 

An important advantage of the luciferase PCA system over several interaction 

techniques is the ability to investigate binary protein interactions in mammalian cells 

at an appropriate subcellular location. Therefore, unlike primary GAL4 Y2H screens 

that require soluble fusion protein generation for interaction detection at the yeast 

nucleus, integral membrane proteins can be investigated in luciferase PCA systems 

allowing spatial aspects of protein interactions to be considered in human cells 

(Morell, Ventura et al. 2009). 14 full-length TM-E3-RINGs were generated as FLucC 

fusion proteins for determination of interaction profiles with all available E2 FLucN 

fusions. Full-length TM-E3-RING FLucC fusions were selected to allow direct 

comparison of binary interaction data in CRD-PCA screens. As such, 12/14 tested 

TM-E3-RING full-length clones were also tested as CRD-fusions with 84/98 tested 

full-length interactions common to both screens. 

 

Initial inspection of data revealed that full-length TM-E3-RING FLucC fusion proteins 

yielded fewer E2 interaction partners than their corresponding CRD FLucC fusions 

with a total of 14 full-length TM-E3-RING/E2 interactions detected (Figure 4.6B). 

The union of co-tested full-length PCA and CRD PCA protein pairs generated 30 

binary TM-E3-RING/E2 interaction partners of which: 9 (30%) were common to both 

datasets, 18 (60%) were only observed in CRD-PCA screens, and 3 (10%) were 
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only detected in full-length PCA screens (Figure 4.6A-C and supplementary file 

luciferase PCA analysis). Significantly, interactions derived from full-length PCA 

screens predominantly represent a subset (9/12) of CRD-PCA screen interactions. 

Furthermore, the 3 interactions unique to full-length PCA screens observed for 2 

TM-E3-RING clones (RNF26 and ZNRF4) that exhibited zero interaction partners as 

CRD TM-E3-RING fusions (Figure 4.6C, red boxes). These findings represent high 

specificity of full-length PCA screen interactions in the reconfirmation of CRD-PCA 

data. Two TM-E3-RING proteins (RNF185 and RNF148) were tested solely as full-

length PCA fusions and extended the PCA TM-E3-RING/E2 network by an 

additional 2 interactions (Figure 4.6B&C).  

 

As TM-E3-RINGs represent integral membrane proteins they can exhibit either 

cytosolic/nuclear or extracellular/luminal C-terminal topologies. In contrast, tested 

E2 conjugating enzymes are soluble proteins and exhibit N- and C-terminal cytosol/ 

nuclear topologies. Current GatewayTM firefly luciferase PCA vector availability 

solely allowed the expression of TM-E3-RING proteins in fusion with the C-terminal 

FLucC domain. This topological constraint may preclude interaction detection 

between TM-E3-RING and E2 proteins that display alternative C-terminal FLucC 

and N-terminal FLucN locations as the physical separation of PCA fragments by 

cellular membranes could prevent complementation of luciferase PCA fragments. 

TM-E3-RING protein topology prediction demonstrated only 64% correlation in C-

terminal location for tested TM-E3-RING proteins using two independent prediction 

tools (TMHMM and HMMTOP) (supplementary file ‘luciferase PCA analysis’), 

highlighting the current difficulty in calculating the orientation of integral membrane 

proteins in cellular membranes by primary protein sequence alone. Based on RING 

and TM domain architecture, and the assumption that RING domains are oriented to  
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Figure 4.6 CRD and full-length luciferase PCA comparison. Normalised 

luciferase PCA activity is shown for CRD-luciferase PCA screen (A) and full-length 

luciferase PCA screen (B). Comparison of data from co-tested clones in CRD-

luciferase (left column) and full-length luciferase (right column) PCA assays (C). 
Values ≥ 1.5 represent average normalized fold change relative to most stringent 

negative control. Light to dark blue colour scale represents lower to higher 

normalised PCA signal for TM-E3-RING/E2 pairs. 

!"
#$

%&
'!

!$
(
)*
+!
!

!$
(
),
--
#!

!.
(
$)
-!

!$
(
),
'!

!$
(
),
**
!

!$
(
),
''
!

!/
)#

$!

!$
(
),
0+
!!

!$
(
)1
!

!"
#$

%&
1!

!$
(
),
1*
!

!#
"
)$
!!

!$
(
),
12
!!

!$
(
),
0'
!

!$
(
),
3#

!

4/5*6'! 2! 2! -1! 2! *7,! 37,! 2! 2! 2! 2! 2! ,'! *70! -78! 2! 2!
4/5*6+! 2! 2! -3! 2! 2! *7,! 2! 2! 2! 2! 2! *78! 2! 2! 2! 2!
4/5*(! 178! 2! 2! 2! '8! '71! +7*! 2! 2! 2! '7+! '3! ,'! '70! '+! 2!
4/5*5,! 2! 2! 2! 2! '+! 2! '! 2! 2! 2! 2! -78! 2! 2! 2! 2!
4/5*5'! 2! 2! 2! 2! +,! 2! *7-! 2! 2! 2! 2! -70! 2! ,70! 2! 2!
4/5*9*! 2! 2! 2! 2! ,1! 2! *7+! 2! 2! 2! 2! '7,! *7*! 2! 2! 2!
4/5*:! *7+! 2! 2! 2! '*! 2! ,,! 2! 2! 2! '7+! ,-! 37,! '73! *'! 2!

!"
#$

%&
'!

!$
(
)*
+!
!

!$
(
),
--
#!

!.
(
$)
-!

!$
(
),
'!

!$
(
),
**
!

!$
(
),
''
!

!/
)#

$!

!$
(
),
0+
!!

!$
(
)1
!

!"
#$

%&
1!

!$
(
),
1*
!

!$
(
),
01
!

!$
(
),
-0
!

4/5*6'! 272! 272! 272! 272! 272! 172! 272! 272! 272! 272! 272! 272! 272! 272!
4/5*6+! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272!
4/5*(! 272! 272! 272! '7'! *72! 272! 272! 272! 272! 272! 272! 272! 272! 272!
4/5*5,! 272! 272! 272! 272! *7-! 272! '7-! 272! 272! 272! 272! 272! 272! *72!
4/5*5'! 272! 272! 272! 272! +7'! 272! *7+! 272! 272! 272! 272! 272! 272! 272!
4/5*9*! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272! 272!
4/5*:! 272! 07-! 272! *78! '7+! 272! '7'! 272! 272! 272! '72! 272! 272! '71!

!"
#$

%&
'!

!$
(
)*
+!

!$
(
),
--
#!

!.
(
$)
-!

!$
(
),
'!

!$
(
),
**
!

!$
(
),
''
!

!/
)#

$!

!$
(
),
0+
!!

!$
(
)1
!

!"
#$

%&
1!

!$
(
),
1*
!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

4/5*6'! 2! 2! 2! 2! -1! 2! 2! 2! *7,! 2! 37,! 1! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! ,'! 2!

4/5*6+! 2! 2! 2! 2! -3! 2! 2! 2! 2! 2! *7,! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! *78! 2!

4/5*(! 178! 2! 2! 2! 2! 2! 2! '7'! '8! *! '71! 2! +7*! 2! 2! 2! 2! 2! 2! 2! '7+! 2! '3! 2!

4/5*5,! 2! 2! 2! 2! 2! 2! 2! 2! '+! *7-! 2! 2! '! '7-! 2! 2! 2! 2! 2! 2! 2! 2! -78! 2!

4/5*5'! 2! 2! 2! 2! 2! 2! 2! 2! +,! +7'! 2! 2! *7-!*7+! 2! 2! 2! 2! 2! 2! 2! 2! -70! 2!

4/5*9*! 2! 2! 2! 2! 2! 2! 2! 2! ,1! 2! 2! 2! *7+! 2! 2! 2! 2! 2! 2! 2! 2! 2! '7,! 2!

4/5*:! *7+! 2! 2! 07-! 2! 2! 2! *78! '*! '7+! 2! 2! ,,! '7'! 2! 2! 2! 2! 2! 2! '7+! '! ,-! 2!

!""CRD-PCA"

#""Full-length PCA 

$""CRD and full-length PCA 

Figure 4.6 Results from tested CRD-E3/E2 and full length luciferase PCA assays and 

collation. Normalised luciferase PCA activity is shown for CRD-luciferase PCA studies (A) 

and full-length luciferase PCA studies (B). Comparison of data from co-tested clones in CRD-

luciferase (left column) and full-length luciferase (right column) PCA assays (C). Values > 0 

represent average fold change RLUs relative to background for interactions with a 

reproducible ! 1.5 fold change in normalised RLU compared to the most stringent negative 

control. 

!$
(
),
01
!

!$
(
),
-0
!

!#
"
)$
!!

!$
(
),
12
!!

!$
(
),
0'
!

!$
(
),
3#

!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

!%
$9

!
!)
6!

2! 2! 2! !! 2! *70! 2! -78! 2! 2! 2! 2!

2! 2! 2! !! 2! 2! 2! 2! 2! 2! 2! 2!

2! 2! 2! !! 2! ,'! 2! '70! 2! '+! 2! 2!

2! 2! *! !! 2! 2! 2! 2! 2! 2! 2! 2!

2! 2! 2! !! 2! 2! 2! ,70! 2! 2! 2! 2!

2! 2! 2! !! 2! *7*! 2! 2! 2! 2! 2! 2!

2! 2! '71! !! 2! 37,! 2! '73! 2! *'! 2! 2!



 151 

the cytosol/nucleus to enable interaction with E2 proteins, 3/14 tested TM-E3-RING 

proteins (RNF152, RNF144A, BFAR) full-length and CRD-PCA screens were 

interpreted to encode extracellular/luminal C-terminal topologies (see 

supplementary ‘luciferase PCA analysis’). Significantly, this subset of TM-E3-RING 

proteins did not yield any E2 interactions in full-length PCA screens yet E2 partners 

were reported for both RNF144A and RNF152 when tested as CRD TM-E3-RING 

clones that lack the topological constraints associated with membrane insertion, 

(Figure 4.6B&C). 

4.4.5. Collation of data from luciferase PCA and CRD-Y2H screens to form a 
secondary interaction dataset  

Upon completion of CRD and full-length luciferase PCA studies, TM-E3-RING/E2 

PCA interaction data was collated and compared with available literature data to 

determine overlap and novelty of reported interactions. In total 126 potential binary 

interactions were tested in CRD- and/or full-length luciferase PCA assays revealing 

a total of 42 TM-E3-RING/E2 interaction pairs. 45 of the tested protein pairs were 

reported positive in the combined previous literature ((Markson, Kiel et al. 2009; van 

Wijk, de Vries et al. 2009) and others), of which 21/45 (47%) were reconfirmed by 

luciferase PCA screens (supplementary file supplementary file ‘luciferase PCA 

analysis’). As such, 21 PCA-derived interactions were novel compared to previous 

literature. 

 

A similar reconfirmation rate of CRD-Y2H data alone (26/53; 49%; Figure 4.7A – red 

and grey segments) or CRD-Y2H plus total literature data (32/66; 48%; Figure 4.7B 

– red and grey segments) by luciferase PCA screens was observed. Significantly, 6 

PCA-derived TM-E3-RING/E2 interactions that were not observed in CRD-Y2H 

screens reconfirm previously unverified interactions from other HTP interaction  
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Figure 4.7 CRD-Y2H and total TM-E3-RING/E2 comparison with PCA 
interaction data. (A) Comparison of PCA positive interactions with CRD-Y2H data 
and (B) CRD-Y2H plus literature data (total network). (C) Heat-map representation 
of PCA and total TM-E3-RING/E2 interactions. TM-E3-RING clones with no 
interactions in luciferase PCAs are contained in broken black border. Squares with 
black outlines represent binary interactions reported in literature but not CRD-Y2H 
screens. (D) Verification of CRD-Y2H and total network interactions by functional 
TM-E3-RING clones in PCA screens. (E) Known and PCA interaction contributions 
to E2 degree for functional TM-E3-RING clones. Functional TM-E3-RING clones 
have ≥1 interaction in both screens. 
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studies (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009) (Figure 4.7C; red 

box with black border). The remaining, 10/42 interactions observed in luciferase 

PCA screens represent novel TM-E3-RING/E2 interactions that have not been 

reported in primary CRD-Y2H or other studies (Figure 4.7B). A high rate of negative 

reconfirmation was also reported for luciferase PCA system with 86% of non-

interacting TM-E3-RING/E2 pairs in the total interaction network also negative in 

PCA screens (Figure 4.7C – white boxes; and supplementary file ‘luciferase PCA 

analysis’).  

 

Given the relatively strict topological constraints inherent in PCA systems, it is 

possible that several constructs may not be effective as PCA partners. Discounting 

TM-E3-RING fusions that exhibit no E2 interactions in PCA screens (Figure 4.7C; 

broken black border), results in > 65% reconfirmation of CRD-Y2H and CRD-Y2H 

plus literature datasets (Figure 4.7D). Furthermore, the vast majority of unconfirmed 

TM-E3-RING/E2 interactions in the total dataset (94; 16/17) were attributed to 

UBE2D and UBE2E family members, suggesting that these E2 proteins may not 

function effectively as FLucN fusions in the present PCA system (Figure 4.7E). As 

such, high rates of reconfirmation of CRD-Y2H and literature-derived interactions 

were observed for the four remaining E2 proteins (UBE2W, UBE2L3, UBE2L6, and 

UBE2N).  

4.5. Discussion 

No single interaction detection system is absolute in its scope and different 

interaction systems cover distinct interaction spaces (Braun, Tasan et al. 2009; 

Sanderson 2009). As such, the utilization of multiple interaction assays can increase 

network coverage and provide increased confidence in interactions detected in a 
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given interaction system(s). Previous HTP Y2H studies have used different methods 

to reassess putative E3-RING/E2 interactions including co-immunoprecipitation (Co-

IP) assays (van Wijk, de Vries et al. 2009) and in vitro interaction partners observed 

in recent HTP-Y2H screens. Aside from these studies, very few methods have been 

successfully employed for the detection of a broad range of E2/E3-RING protein 

interactions and fewer still have attempted to reconfirm interactions between E2 and 

TM-E3-RING proteins. The instantaneous reconstitution of luciferase activity in PCA 

systems upon reporter protein refolding coupled with a low background luminescent 

signal in mammalian cells may enable a luciferase-based PCA system to detect 

transient interactions of low affinity (Hida, Awais et al. 2009), such as those reported 

for TM-E3-RING/E2 complexes (Yin, Lin et al. 2009; Bentley, Corn et al. 2011). 

4.5.1. Generation and validation of an orthogonal Gateway compatible 
luciferase PCA system  

The work in this chapter has described the Gateway modification and successful 

application of a firefly luciferase-based PCA system for investigation of CRD and 

full-length TM-E3-RING/E2 interaction partners within human cells. Importantly, 

considerable overlap was observed between CRD-Y2H and CRD-luciferase PCA 

screens (37% total overlap), corresponding well with previous reports of 

reconfirmation rates between orthogonal interaction assay systems using identical 

ORF clones (Braun, Tasan et al. 2009). This analysis validated the use of the 

luciferase PCA assay system for detecting TM-E3-RING/E2 interactions and 

enabled us to benchmark CRD-Y2H interactions reported on the –HIS biosynthetic 

reporter alone as high confidence interactions. As such, the generation of the 

luciferase PCA assay provides an orthogonal system for benchmarking positive Y2H 

interactions. Furthermore, full-length TM-E3-RING clones generated E2 interaction 

profiles which represented a subset of CRD-TM-E3-RING/E2 interactions for TM-
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E3-RING clones functional in both screens. The union of CRD- and full-length 

luciferase PCA screens and comparison with the total TM-E3-RING/E2 network 

revealed strong positive and negative verification rates, representing high accuracy 

and specificity of detected interactions.  

4.5.2. Luciferase PCA system extends TM-E3-RING/E2 interaction coverage 

Orthogonal interaction techniques cover different interaction spaces due to 

limitations of individual techniques and differential assay stringency (Braun, Tasan 

et al. 2009). As such, alternative binding profiles between orthogonal screens 

should not automatically be considered false-positive in either system. Therefore, In 

addition to increasing confidence in primary interaction data, orthogonal assay 

systems can also serve to extend interaction coverage. The luciferase PCA system 

undertaken identified 16 interactions that were not observed in CRD-Y2H screens. 6 

of these interactions were however present as previously unverified interactions in 

the combined TM-E3-RING/E2 network with 10 interactions entirely novel to 

luciferase PCA screening. As such the TM-E3-RING/E2 interaction network is 

extended to 312 binary protein-protein interactions with novel data provided from 

CRD-Y2H, literature, and luciferase PCA screens (Figure 4.8), thus highlighting how 

different experimental approaches contribute to increasing network density. 

4.5.3. Luciferase PCA system measures interactions occurring within 
mammalian cells in vivo  

Preliminary experiments indicate that interactions detected within the PCA system 

largely occur in vivo. Current vector availability only allowed for the expression of 

TM-E3-RING FLucC and E2 FLucN proteins as C-terminal and N-terminal fusions, 

respectively. Given the belief that interactions occur in vivo it was argued that TM-

E3-RING proteins predicted to have C-terminal luminal/extracellular topologies may 

avoid E2 interaction detection due to physical separation of firefly luciferase reporter 
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fragments by cellular membranes. In accordance with this proposal, proteins with 

predicted luminal/extracellular C-terminal domains did not yield any interactions in 

full-length luciferase PCA arrays. In addition, breakdown of reconfirmed interactions 

for individual E2 proteins revealed ~95% (16/17) of total unconfirmed TM-E3-RING 

interactions were attributed to members of the UBE2D and UBE2E families, 

suggesting that these proteins may not function effectively as fusions in this PCA 

system. 

 

 

Figure 4.8. Complementary interaction detection systems contribute to higher 
density binary protein-protein interaction maps. Total interactions reported in 

CRD-Y2H, Literature and PCA screens and the overlap between datasets are 

annotated. 
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4.6. Differential effects of wild-type and mutant E2 proteins 

Interestingly, the use of catalytically inactive E2 proteins revealed differential effects 

during luciferase PCA screens compared with wild type clones; UBE2D2 and 

UBE2E1 exhibit increased levels of activity as mutant clones whilst UBE2W exhibit 

decreased activity as mutant clones. Whilst our rationale was such that the 

catalytically inactive clones may enhance the stability of TM-E3-RING/E2 

complexes, there are further possibilities that could underlie the increased luciferase 

activity observed with mutant clones. Firstly, the nuclear distribution of UBE2E and 

UBE2W families is dependent upon the ‘loading’ of their respective active site 

cysteine residues with ubiquitin (Plafker and Macara 2000; Yin, Ji et al. 2006) and 

as such these E2s shuttle between nuclear and cytoplasmic compartments 

dependent upon their ubiquitinated state. Therefore, whilst these E2s have the 

potential to come into contact with TM-E3-RING proteins in both nuclear and 

cytosolic compartments, UBE2E1 C131A and UBE2W C91A FLucN fusions may 

display a more cytoplasmic localisation, which could result in increased interaction 

with cytosolic TM-E3-RING proteins. E3-RING proteins appear to bind both free and 

loaded forms of E2 proteins (Deshaies and Joazeiro 2009). However, limited 

experimental evidence supports the notion that E3-RING/E2 binding is stronger with 

charged E2~Ub proteins (Siepmann, Bohnsack et al. 2003; Saha and Deshaies 

2008). The decrease in luciferase PCA activity for the UBE2W C91A compared to 

wild type UBE2W FLucN fusion proteins may therefore result from a decreased 

affinity of UBE2W C91A for its cognate TM-E3-RING proteins. As such, the precise 

mechanisms underlying the differential activity of catalytic inactive E2 FlucN fusion 

proteins remain unclear and may differ between different E2 families. 
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4.6.1. Future Directions 

A major strength of the firefly luciferase PCA is the ability to quantify the magnitude 

as well as dynamics of protein interactions in cell-based assays (Luker, Gupta et al. 

2009). This luciferase-based PCA system described in this chapter could therefore 

be utilized to investigate conditional or signal-dependent TM-E3-RING/E2 

interactions (Hida, Awais et al. 2009). As such, the development of this assay may 

aid future investigation of TM-E3-RING/E2 interactions following the initiation of 

specific physiological events such as Endoplasmic Reticulum Associated 

Degradation (ERAD) to identify putative protein partners, which function within a 

given process.   
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5. Chapter 5: TM-E3-RING/E2 in vitro ligase activity 

5.1. Introduction 

E3-RING proteins must bind selectively to E2-conjugating enzymes to facilitate the 

modification of selective substrate proteins. In total 312 unique binary TM-E3-

RING/E2 complexes have been identified (Figure 4.8): 181 literature-reported 

interactions (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009) were 

extended by 131 previously unreported interactions in CRD-Y2H and/or PCA 

screens. However, few of these potential TM-E3-RING/E2 complexes have been 

investigated to test their ability to function as active ligase complexes in vitro. 

 

A recurring theme in ubiquitin cascades is the ability of E3-RING proteins to drive 

auto-ubiquitination events in the presence of an appropriate E2 partner (de Bie and 

Ciechanover 2011), exemplified by the MDM2 and the CBL ligases (Fang, Jensen et 

al. 2000; Ryan, Davies et al. 2006). Auto-ubiquitination activity has previously been 

used to assess the functional potential of several putative E3-RING/E2 complexes 

(Christensen, Brzovic et al. 2007; Markson, Kiel et al. 2009). These studies have 

shown a strong correlation between primary Y2H data and in vitro ubiquitination 

activity and revealed novel relationships between E3-RING/E2 partner preference 

and the formation of different forms of ubiquitin modification (Christensen, Brzovic et 

al. 2007). Given the established utility of this approach similar combinatorial in vitro 

ubiquitination assays were undertaken to investigate a representative selection of 

putative TM-E3-RING/E2 pairings including interactions observed in: (i) CRD-Y2H 

screens with different reporter stringencies (ii) complementary PCA screens and (iii) 

as yet unverified interactions observed in other high throughput Y2H studies.  
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To perform in vitro auto-ubiquitination assays (IUAs) sequence-verified CRD TM-

E3-RING clones were transferred by LR reactions into the pGEX6p GW vector to 

allow bacterial expression of human TM-E3-RING proteins in fusion with N-terminal 

GST moieties that would provide additional substrate lysine residues for 

modification in auto-ubiquitination reactions. A number of E2 proteins expressed in 

fusion with a red fluorescent protein (RFP) protein tag have been previously shown 

to become auto-ubiquitinated within IUAs in the absence of cognate E3-RING 

proteins (David, Ziv et al. 2010). For this reason, expressed E2-GST fusion proteins 

were cleaved and E2s purified prior to use within in vitro auto-ubiquitination assays. 

Furthermore, E2 proteins were independently assayed in the presence and absence 

of potential E3-RING partners to define the extent and form of E3-RING dependant 

modifications.  

5.2. In vitro auto-ubiquitination assays 

Previous studies have typically performed in vitro ubiquitination assays at 30°C or 

37°C for 1:30 h (Lorick, Jensen et al. 1999; Christensen, Brzovic et al. 2007). To 

optimise assay conditions the efficiency of auto-ubiquitination was assessed at 

either 30°C or 37°C for 1:30 h using two TM-E3-RING GST fusion proteins (RNF152 

and RNF167) and a panel of E2 conjugating enzymes (Figure 5.1). Auto-

ubiquitination activity was assessed qualitatively following Western blot analysis 

using rabbit polyclonal anti-ubiquitin antibody (1:2000; 07-375; Millipore). Auto-

ubiquitination activity of functional TM-E3-RING/E2 complexes was observed as 

generation of high molecular weight (HMW) ubiquitin bands or smears and was 

more pronounced following incubation at 37 °C compared to 30 °C (Figure 5.1A&B). 

As such, subsequent auto-ubiquitination reactions were performed at 37°C for 

1:30 h.
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Figure 5.1 Optimization of incubation temperature for in vitro ubiquitination assays. E2 conjugating enzymes, CRD TM-E3-

RING GST-fusion proteins, and all other assay components were combined on ice. In vitro auto-ubiquitination reactions were 

initiated by addition of MgATP and reactions were incubated at either 30°C (A) or 37°C (B) for 1:30 h.  E2 auto-ubiquitination 

activity was assessed by incubation of reaction components for 1:30 h at 37°C in the absence of TM-E3-RING fusion proteins (C). 
Auto-ubiquitination activity was qualitatively assessed by Western blot analysis using rabbit polyclonal anti-ubiquitin antibody 

(1:2000; 07-375; Millipore) and is signified by HMW ubiquitin bands or smears. CRD-Y2H and PCA scores for binary TM-E3-

RING/E2 protein pairs are indicated above each lane. 

Figure 6.1 Determination of incubation temperature for in vitro ubiquitination assays. 
Assay components were combined on ice and initiated by addition of MgATP. Reactions 
were incubated for 1:30 h at 30°C (A) or 37°C (B). Ubiquitination activity of E2 enzymes 
was also assessed following incubation for 1:30 h at 37°C in the absence of cognate E3-
RING interacting partners (C).  
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In the absence of TM-E3-RING GST fusions, the majority of E2 proteins were 

incapable of generating HMW ubiquitin modifications (Figure 5.1C). As such, the 

majority of auto-ubiquitination activity was dependent on the formation of active E3-

RING/E2 complexes. However, in agreement with previous reports (Markson, Kiel et 

al. 2009; Wilson, Edmondson et al. 2011) UBE2K and the UBE2N/UBE2V1 hetero-

dimer generated HMW ubiquitin modifications in the absence of TM-E3-RING GST 

fusion partners (Figure 5.1C). 

5.2.1. TM-E3-RING/E2 in vitro auto-ubiquitination assays 

In total, 10 CRD TM-E3-RING GST fusion proteins and 10 E2 conjugating enzymes 

were successfully expressed and assayed in the in vitro auto-ubiquitination assay 

system, enabling the analysis of functional ligase activity across the phylogeny of 

TM-E3-RING and E2 proteins (UBE2D1/2, UBE2E1/3, UBE2L3, UBE2W, 

UBE2N/UBE2V1 and UBE2K). UBE2N and UBE2V1 were tested in combination 

due to the known co-operative role of this E2/UEV hetero-dimer complex in the 

formation of poly-ubiquitin chains (Hofmann and Pickart 1999).  

 

Probing IUA reaction products for total ubiquitin revealed HMW ubiquitin smears for 

8/10 TM-E3-RING GST fusion proteins in combination with UBE2D and UBE2E 

protein family members (Figure 5.2 A-J). For this subset of E2 proteins, in vitro 

ubiquitin ligase activity exhibits strong correlation with primary interaction data; 

100% of CRD-Y2H positive interactions (25/25) exhibited functional in vitro ligase 

activity. Significantly, two TM-E3-RINGs that did not interact with UBE2D or UBE2E 

family members in either CRD-Y2H or PCA screens were not functionally active in 

vitro (8/8 negative interactions reconfirmed; Figure 5.2I&J).  However, 2 TM-E3-

RING     fusions     that     exhibited     ubiquitin     ligase     activity     in  vitro     with 
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Figure 5.2 In vitro ubiquitination assay screen. 10 TM-E3-RING GST fusion proteins were tested for functional auto-

ubiquitination activity against a panel of E2 conjugating enzymes. All assay components were combined on ice. In vitro auto-

ubiquitination reactions were initiated by addition of MgATP and reactions incubated at 37°C for 1:30 h. Auto-ubiquitination activity 

was qualitatively assessed by Western blot analysis using rabbit polyclonal anti-ubiquitin antibody (1:2000; 07-375; Millipore) and 

is signified by HMW ubiquitin bands or smears. CRD-Y2H and PCA positive interactions for each TM-E3-RING/E2 pair are 

indicated according to number of biosynthetic reporters activated and normalized firefly luciferase fold change, respectively. As all 

TM-E3-RING/E2 pairs were tested in CRD-Y2H but not all in luciferase PCA screens, non-tested pairs in PCA screens are 

represented by empty box whilst tested but negative interactions are indicated by a 0. 

Figure 6.2 In vitro ubiquitination assays performed with 10 GST-TM RING/E3 proteins and a panel of E2 

conjugating enzymes. Ubiquitin ligase activity is indicated by the generation of high molecular weight ubiquitin 

smears (A-J). Ligase activity detected by this method was observed solely for the UBE2D- and UBE2E- families. 

Activation of CRD-Y2H biosynthetic reporters, literature reported, and split luciferase PCA is highlighted above for 

each TM RING/E3-E2 tested pair. 

NEED TO EXPLAIN NUMBERS! TESTED IN PCA BUT NOT OBSERVED IS A 0 – NOT TESTED IN PCA IS BLANK 
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UBE2D/E family members were not reported as binary interaction pairs in CRD-Y2H 

screens; RNF150 formed active ubiquitin ligase complexes with all tested UBE2D 

and UBE2E proteins (Figure 5.2H), whilst RNF152 formed a functional pairing with 

UBE2E3 (Figure 5.2C). Interestingly, 2 of these 5 CRD-Y2H negative pairs were 

detected as positive binary interactions in PCA screens (RNF152/UBE2E3 and 

RNF150/UBE2E3), highlighting the utility of using multiple orthogonal assay 

systems to increase network coverage and further emphasising the value of the 

developed luciferase PCA system for detection of potential functionally relevant TM-

E3-RING/E2 interactions. 

 

Increasing the concentration of E3-RING and/or E2 proteins within in vitro auto-

ubiquitination assays did not extend activity profiles beyond members of the UBE2D 

and UBE2E families (personal communication, Jonathan Woodsmith). This 

suggests that shifting the reaction equilibrium in favour of catalysis by mass action 

does not affect the activity of these E2 proteins within IUAs. Additionally, 

modification of reaction conditions to incorporate an ATP-regeneration system 

(1 mM creatine phosphate and 15 U creatine phosphokinase, as previously reported 

(Lee, Choi et al. 2001)) similarly did not reveal additional activity profiles for E2s 

outside of these subfamilies (data not shown). 

 

E3-RING proteins have been reported to yield different forms of ubiquitin 

modification (from mono- to poly-ubiquitin conjugates) in combination with different 

E2 partners (Christensen, Brzovic et al. 2007; Garnett, Mansfeld et al. 2009). 

Therefore, IUA products were probed with monoclonal anti-GST antibody to 

selectively analyse modifications occurring on TM-E3-RING GST-conjugates in an 

attempt to allow better detection of lower molecular weight (LMW) ubiquitin  
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Figure 5.3 Systematic in vitro auto-ubiquitination assays involving 10 GST-
TM-E3-RING proteins in combination with UBE2W and UBE2L3 E2 conjugating 
enzymes. Ubiquitin ligase activity was assessed by the formation of HMW or LMW 

ubiquitin modifications upon TM-E3-RING GST fusions with anti-GST antibody 

(1:1000; AB92; Abcam) (A-J). CRD-Y2H (red) and luciferase PCA (blue) positive 

interactions are indicated above each lane. Pre-stained protein ladder molecular 

weight (kDa) are shown in (A) and by corresponding dashes in (B&J).   
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Figure 5.4 Systematic in vitro auto-ubiquitination assays involving 10 GST TM 
–E3-RING proteins in combination with UBE2N/V1 and UBE2K E2 conjugating 
enzymes. Ubiquitin ligase activity was assessed by the formation of HMW or LMW 

ubiquitin modifications upon TM-E3-RING GST fusions with anti-GST antibody 

(1:1000; AB92; Abcam) (A-C). CRD-Y2H and PCA positive interactions are 

indicated above each lane.  

 1
3 

 1
44

A 
 1

44
B

 

 1
49

 

 1
52

 

 1
67

 

 1
85

 

 1
86

 

 5
 

 N
on

e 
!"# $# !%# $# $# $#

 1
3 

 1
44

A 

 1
44

B
 

 1
49

 

 1
52

 

 1
67

 

 1
85

 

 1
86

 

 5
 

 N
on

e 

 1
3 

 1
44

A 

 1
44

B
 

 1
49

 

 1
52

 

 1
67

 

 1
85

 

 1
86

 

 5
 

 N
on

e 

$# $# $# $# $# $#

182 
156 

82 

49 
37 

67 

No E2 

UBE2N/UBE2V1 

UBE2K 

!

"

#

182 
156 

82 

49 
37 

67 

182 
156 

82 

49 
37 

67 

Y2H Score 

#
#

#
#

-HIS/-ADE 

-HIS/-ADE/!-Gal 

PCA Activity 

  

1.5 fold change 

61 fold change 



 168 

modifications. This strategy revealed additional LMW and HMW ubiquitin 

modifications for selective TM-E3-RING proteins in complex with UBE2W and/or 

UBE2L3 E2 proteins that were not previously detected by probing for total ubiquitin 

alone (Figure 5.3A-J). This approach also provided an effective method of 

distinguishing between auto-ubiquitination of active TM-E3-RING/E2 complexes and 

E3-independent activity observed for UBE2K and UBE2N/V1 proteins (Figure 5.4C). 

As a result of this optimized Western blotting procedure, 19 additional active TM-E3-

RING/E2 complexes were observed, increasing the total number of active TM-E3-

RING/E2 ligase complexes to 49 between 8 E2 proteins and 10 TM-E3-RING 

specific CRDs. 

5.2.2. Comparison of in vitro activity with data from Y2H and Luciferase PCA 
methods 

Upon completion of in vitro auto-ubiquitination assays, all functional data was 

compared with CRD-Y2H, PCA and literature curated interaction datasets. 

Significantly, 89% (40/45) of binary TM-E3-RING/E2 interactions detected in CRD-

Y2H and/or PCA screens exhibited ubiquitin ligase activity in vitro, with only 5 

predicted interaction partners not exhibiting functional activity within IUAs 

(Figure 5.5A).  

 

A modest reconfirmation (26/35, 74%) of CRD-Y2H and/or PCA negative TM-E3-

RING/E2 pairs was observed with 9 TM-E3-RING/E2 pairs exhibiting ubiquitin ligase 

activity that could not be predicted from CRD-Y2H or PCA interaction data 

(Figure 5.5A; blue segment). However, 5/9 of these functionally active pairs, 

belonging to RNF150 and RNF167, reconfirm previously unverified interactions 

reported in other interaction studies (Figure 5.5C; red square, black outline). 
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Comparison with all known TM-E3-RING/E2 interactions revealed an overall more 

favourable negative reconfirmation rate compared to CRD-Y2H and/or PCA data 

obtained in the course of this study alone (86%; 25/29 predicted negative TM-E3-

RING/E2 pairs did not exhibit ligase activity in vitro), whilst positive reconfirmation 

rates remain comparable to CRD-Y2H plus PCA screen data (88%; 45/51 positive 

interactions reconfirmed). This is reflected across all families of E2 proteins with 

each showing a high positive correlation with IUA data (Figure 5.5E). As such, in 

vitro activity showed strong correlation with CRD-Y2H, PCA, and literature data 

datasets (Figure 5.5D). Finally, only 6 active ubiquitin ligase complexes were 

observed that were reported as negative in the combined TM-E3-RING/E2 network 

(Figure 5.5B&C). 

 

Remarkable specificity was observed between functional ligase activity and binary 

protein-protein interaction data. This is exemplified by the specificity of RNF186 for 

UBE2D but not UBE2E sub-families in both primary interaction screens and 

functional ubiquitin ligase activity (Figure 5.5C). Additionally, the highly specific 

binary interaction profiles observed for RNF144A and RNF144B TM-E3-RING 

proteins (UBE2L3 but not UBE2D or UBE2E) are largely mirrored in their functional 

activity profiles. For those binary interactions that were not verified by functional IUA 

activity, three belonged to a single E2 clone, UBE2L3 (Figure 5.5C&E). Specifically, 

RNF152 did not exhibit in vitro activity with UBE2L3 despite binary interactions 

having been reported in both CRD-Y2H and PCA screens (Figure 5.5C). These 

findings may suggest an inability of certain physical TM-E3-RING/E2 complexes to 

function as active ligase complexes.  
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Figure 5.5. Binary protein-protein interaction (PPI) and in vitro activity 
comparison for TM-E3-RING/E2 pairs tested in IUAs. Overlap between IUA 

activity and binary PPI data obtained from CRD-Y2H and/or PCA screens alone (A) 
or in combination with all literature known TM-E3-RING/E2 pairs (B). (C) Heatmap 

representation of reported TM-E3-RING/E2 interactions and IUA activity. (D) In vitro 

functional ‘verification’ of TM-E3-RING/E2 interactions by interaction source. (E) 
Breakdown of binary PPIs and in vitro ubiquitination activity for tested E2 proteins.  
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The in vitro functional testing of a broad range of TM-E3-RING and E2 proteins 

allowed investigation of positive and negative ubiquitin ligase activity for TM-E3-

RING/E2 pairs that were reported at different stringencies of interaction in CRD-Y2H 

(number of reporters activated) and PCA (luciferase activity fold change) screens. In 

agreement with the high rate of PCA reconfirmation of CRD-Y2H interactions 

reported on –HIS arrays in Chapter Four, 13/14 CRD-Y2H interactions of this 

strength represented functionally active ligase complexes in vitro (Figure 5.2 A, B, G 

and 5.3 E & G). This is highly comparable to the positive correlation rate between in 

vitro functional activity and CRD-Y2H interactions detected on double (-HIS/-ADE; 

8/10) and triple (-HIS/-ADE/β-gal; 14/14) selection. With respect to luciferase PCAs, 

13/16 positive interactions exhibited auto-ubiquitination activity in vitro (Figures 5.2, 

5.3, 5.4 and Figure 5.5D) with 5 PCA positive interactions demonstrated activity in 

vitro that were not reported in CRD-Y2H screens (Figure 5.5C; red box with green 

outline). Importantly, in vitro functional activity was observed for PCA-reported 

positives across the broad range of signal strengths; for example the 

RNF150/UBE2W protein pair reported a 1.8 x fold change in normalized luciferase 

PCA signal and delivered strong in vitro ubiquitination activity. 

5.2.3. Different TM-E3-RING/E2 ubiquitin ligase complexes induce different 
ubiquitin modifications in vitro 

E2 proteins are largely responsible for determining the form of ubiquitin modification 

conjugated to substrates (Christensen, Brzovic et al. 2007; David, Ziv et al. 2010). 

As such, it is interesting to note that several TM-E3-RING proteins (RNF5, RNF152, 

RNF185 and RNF186) induce different patterns of ubiquitin modification in 

combination with different E2 proteins within in vitro auto-ubiquitination reactions 

(Figures 5.2-5.4 and summarised in Table 5.1). In conjunction with UBE2D, UBE2E, 

UBE2N/V1, and UBE2K proteins all functional TM-E3-RING partners facilitated the 
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generation of HMW ubiquitin modifications, consistent with previous reports that 

each of these E2 proteins dictate formation of poly-ubiquitin chains in the presence 

of cognate E3-RING partners (Haldeman, Xia et al. 1997; Eddins, Carlile et al. 2006; 

Kim, Kim et al. 2007). LMW ubiquitin modifications represented the dominant 

product of active UBE2L3/TM-E3-RING complexes, again in agreement with 

previous in vitro findings (Wenzel, Lissounov et al. 2011). 

 

In contrast to UBE2D, UBE2E, UBE2N/V1, UBE2K, and UBE2L3 E2 conjugating 

enzymes, UBE2W generated variable patterns of auto-ubiquitination signals within 

IUAs dependant upon differential TM-E3-RING protein usage (Table 5.1). 

Specifically, 6/9 functional UBE2W/TM-E3-RING complexes dictated the formation 

of LMW ubiquitin modifications upon the TM-E3-RING GST fusion whilst HMW auto-

ubiquitination signals were observed for UBE2W in conjunction with TM-E3-RING  

 

 UBE2D UBE2E UBEW UBE2L3 UBEN/V1 UBE2K 

Linkage 
specificity 

(David, Ziv et 
al. 2010) 

All possible K11 + K48 Mono + 
K11 K11 K63 K48 

RNF13 +++ +++ +++ - +++ +++ 
RNF167 +++ +++ +++ - +++ +++ 
RNF152 +++ +++ + - +++ - 

RNF5 +++ +++ + - +++ +++ 
RNF185 +++ +++ + - - +++ 
RNF186 +++ - + - - - 
RNF149 +++ +++ - - - - 
RNF150 +++ +++ +++ - - - 

RNF144A - - + + - - 
RNF144B - - + + - - 

 
Table 5.1 Tabular display of positive and negative TM-E3-RING/E2 pairs tested 
in IUAs. Individual TM-E3-RING proteins were tested against each E2 protein within 

IUAs. Functional activity is shown according to the dominant reaction product 

formed for each TM-E3-RING/E2 protein pair: no activity (- , white box), LMW 

modifications (+ , yellow box), HMW modifications (+++ , red box). 
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proteins (RNF13, RNF167 and RNF150) (Figure 5.6A-C and Table 5.1). As such, 

different TM-E3-RING/UBE2W combinations have the ability to confer different 

forms of substrate modification in vitro. Interestingly, TM-E3-RING proteins that 

were shown to function with UBE2W to generate HMW ubiquitin modifications all 

belong to a discrete subfamily of closely related TM-E3-RING proteins characterised 

by the presence of an N-terminal protease associated (PA) domain, TM region, and 

C-terminal RING domain (PA-TM-RING). 

 

The HMW ubiquitin modifications observed for 3 TM-E3-RING/UBE2W complexes 

could potentially represent poly-ubiquitination or multiple mono-ubiquitination 

signals. To investigate both possibilities and explore the specific nature of these 

HMW modifications, a selection of ubiquitin mutant proteins was utilized within in 

vitro auto-ubiquitination reactions with the RNF13/UBE2W TM-E3-RING/E2 pair 

(Figure 5.6D). Substitution of wild-type ubiquitin in the IUA reaction mixture with a 

Ub-K0 mutant protein (UM-NOK; BostonBiochem) in which all 7 lysine residues had 

been mutated to arginine led to a reduction in HMW ubiquitin modifications and 

concomitant increase of modifications in the LMW range  (Figure 5.6D; anti-GST 

blot). As the K0-ubiquitin mutant prevents lysine-dependent ubiquitin chain 

elongation, the diverse modification pattern observed compared to wild-type 

ubiquitin implicates poly-ubiquitin chains as a major reaction product for selective 

TM-E3-RING/UBE2W complexes. Whilst remaining HMW modifications lack precise 

description they are consistent with either multiple mono-ubiquitination events or 

linear poly-ubiquitin chain formation.  

 

To investigate potential linkage specificity of HMW ubiquitin signals, IUAs were 

performed using ubiquitin mutants encoding a single lysine > arginine mutation.  
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Figure 5.6 PA-TM-RING/UBE2W protein complexes generate HMW ubiquitin 
modifications a dominant reaction product in vitro. (A-D) TM-E3-RINGs, E2s 

and all other assay components were combined on ice. IUA reactions were initiated 

by addition of MgATP and reactions incubated at 37°C for 1:30 h. Auto-

ubiquitination activity was qualitatively assessed by Western blot analysis using 

rabbit polyclonal anti-ubiquitin antibody (1:2000; 07-375; Millipore) and anti-GST 

antibody (1:1000; AB92; Abcam) and is signified by either HMW or LMW signals. 
(D) Wild-type ubiquitin was substituted for specific ubiquitin mutants in reaction 

buffer as indicated above each lane for investigation of HMW signals (WT, wild-type; 

K48R and K11R, single lysine to arginine mutants; K0, all lysines to arginine mutant) 
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Specifically, K11R and K48R ubiquitin mutants were selected as: (i) UBE2W-RFP 

fusion proteins have been reported capable of selectively synthesising K11-specific 

ubiquitin chains upon the RFP substrate chains in vitro (David, Ziv et al. 2010) and 

(ii) K48-linked polyubiquitin chains represent the most abundant ubiquitin linkage 

type in yeast (Xu, Duong et al. 2009) and human cells (Ziv, Matiuhin et al. 2011). 

However, neither of these single residue ubiquitin mutants exerted any clearly 

observable effect on the HMW ubiquitin modifications generated by RNF13/UBE2W 

within the in vitro auto-ubiquitination system. 

5.3. Discussion 

The majority of E3-RING proteins are thought to mediate protein ubiquitination 

events (Deshaies and Joazeiro 2009). Despite this, there is growing evidence that 

some E3-RING proteins may not possess intrinsic E3 ubiquitin ligase activity. For 

example the E3-RING proteins BARD1, BMI1, and MDMX are well characterised to 

lack intrinsic ligase activity and function to enhance or activate the ubiquitination 

activity of hetero-dimeric E3-RING partners (BRCA1 (Hashizume, Fukuda et al. 

2001), RING1B (Wang, Wang et al. 2004), and MDM2 (Linares, Hengstermann et 

al. 2003), respectively). The demonstration that all 10 TM-E3-RING proteins tested 

for in vitro ubiquitination activity, which are dispersed throughout the TM-E3-RING 

family according to primary sequence similarity, form active ligase pairs with 

selective E2 proteins implies a direct role of the majority of TM-E3-RING proteins in 

substrate ubiquitination events. 

5.4. Several E2-conjugating enzymes appear to dictate the form of ubiquitin 
modifications in vitro 

Target ubiquitination can take two general forms in the cell; mono-/multi-

ubiquitination whereby single target lysine residue(s) are modified by a single 

ubiquitin moiety and poly-ubiquitination, which is characterised by the assembly of 



 176 

ubiquitin chains often via specific iso-peptide linkages (Ye and Rape 2009). The 

differential architecture of ubiquitin modification determines the function or fate of 

modified substrate proteins. The in vitro ubiquitination assays described in this 

chapter demonstrate individual TM-E3-RING proteins in combination with different 

E2 partners to yield different forms of ubiquitin modification. These findings are in 

agreement with the prevailing perception that whilst TM-E3-RING proteins 

determine substrate specificity, E2 conjugating enzymes dictate the form of ubiquitin 

modification upon substrates (David, Ziv et al. 2010). 

 

In conjunction with TM-E3-RING proteins the major in vitro reaction product 

observed for a number of E2 proteins (UBE2D1, UBE2D2, UBE2E1, UBE2E3, 

UBE2K, UBE2N/V1) in the present study is that of HMW ubiquitin signals. 

Importantly, these findings support previous findings of E2 specificity including: 

UBE2D proteins generate poly-ubiquitin chains using all possible isopeptide bond 

linkages in vitro (Kim, Kim et al. 2007); the UBE2N/UBE2V2 hetero-dimer and 

UBE2K specify poly-ubiquitin chains of Lys63- (Chen and Pickart 1990; Eddins, 

Carlile et al. 2006) and Lys48- specificity (Haldeman, Xia et al. 1997). The 

UBE2N/UBE2V2, UBE2K, and UBE2D1 proteins non-covalently bind ubiquitin to 

facilitate poly-ubiquitin chain formation, with differences in the geometry of ubiquitin 

binding between E2s suggested to control the different ubiquitin chain linkage 

specificities (Haldeman, Xia et al. 1997; McKenna, Spyracopoulos et al. 2001; 

Brzovic, Lissounov et al. 2006). However, UBE2W and UBE2E proteins are reported 

to be incapable of non-covalently binding ubiquitin moieties. In light of the data 

presented in this chapter and previous in vitro evidence it should therefore be 

assumed that there must exist a diverse mechanism of poly-ubiquitin chain 

formation for UBE2E members (Christensen, Brzovic et al. 2007). 
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5.5. UBE2W generates either HMW or LMW ubiquitin modifications in complexes 
with different TM-E3-RING proteins 

Several examples exist of E2s acting in concert to facilitate the initiation and 

elongation of ubiquitin chains. In particular, UBE2W has been shown to be an 

initiation factor for both the K63-specific UBE2N/UBE2V1 hetero-dimer and K48-

specific UBE2K in BRCA1/BARD1 mediated ubiquitination, by nucleation of 

substrates with a single ubiquitin moiety (Christensen, Brzovic et al. 2007). The 

generation of (multi) mono-ubiquitin conjugates by active TM-E3-RING/UBE2W 

complexes supports their role in the process of mono-ubiquitination either as a 

distinct signal or as initiators of poly-ubiquitin chain elongation processes. However, 

in addition to the (multi) mono-ubiquitination activity observed for TM-E3-

RING/UBE2W complexes, a subset of TM-E3-RING proteins promoted the 

formation of HMW ubiquitin modifications in complex with UBE2W. Therefore, 

specific E3-RING proteins in combination with UBE2W appear capable of dictating 

ubiquitin architecture on protein substrates. The use of a lysine-less ubiquitin mutant 

highlighted poly-ubiquitin chains as major contributors to these signals. K11R and 

K48R ubiquitin mutants did not significantly alter TM-E3-RING/UBE2W 

ubiquitination patterns. Whilst this may implicate alternative lysine residues in this 

poly-ubiquitin chain type, single lysine ubiquitin mutants may result in the utilisation 

of proximal lysine residues (K6/K11, K27/K29, K29/K33) within in vitro ubiquitination 

reactions (Kim, Kim et al. 2007; Komander 2009). 

 

TM-E3-RING proteins responsible for HMW ubiquitin modifications with UBE2W all 

belong to a closely related TM-E3-RING subfamily, which are characterised by the 

presence of an N-terminal protease associated (PA) domain, TM region, and C-

terminal RING domain (PA-TM-RING). As such, these findings may suggest a 
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conserved mechanism of action with UBE2W to generate HMW, to regulate 

disparate ubiquitination events to mono-ubiquitination signalled dictated by distinct 

TM-E3-RING/UBE2W pairs. Members of the PA-TM-RING subfamily are expressed 

at low levels in all mammalian tissues and are conserved between species, although 

no orthologs appear to exist in yeast; implying metazoan specific functions. The 

physiological roles of PA-TM-RING proteins in humans are diverse ranging from 

ERAD (ZNRF4) (Neutzner, Neutzner et al. 2011) to regulation of T-cell anergy and 

cellular proliferation (RNF128/GRAIL; (Lineberry, Su et al. 2008); RNF13 (Bocock, 

Carmicle et al. 2011)). Whilst the PA-TM-RINGs have a broad range of cellular 

functions, the E2 proteins with which they function in vivo remains largely unknown. 

Given the conserved interactions and in vitro ubiquitination profiles between PA-TM-

RING protein and UBE2W it would be of interest to determine whether any of these 

cellular functions are controlled by a potentially novel mechanism of poly-ubiquitin 

chain synthesis in vivo implied from IUAs. Finally, the observation that UBE2W can 

participate in distinct mono- and poly-ubiquitination events with different E2 proteins 

may underlie the ability of TM-E3-RING/UBE2W complexes to participate in distinct 

processes by the selective and variable decoration of substrate proteins. 

 

The dominant reaction product for active TM-E3-RING/UBE2L3 complexes is mono-

ubiquitination, with evidence of some HMW modifications. UBE2L3 has been shown 

to exhibit broad specificity for HECT-type E3s (Anan, Nagata et al. 1998) but has 

frequently been shown to lack ubiquitin ligase activity in combination with E3-RING 

proteins with which they form specific complexes (Brzovic, Keeffe et al. 2003; 

Huang, de Jong et al. 2009). Despite these findings, UBE2L3 has been shown to 

exhibit ligase activity with members of the RING-in-between-RING (RBR; defined by 

the presence of two RING domains separated by an IBR domain) E3-RING 



 179 

subfamily, which can function as RING/HECT hybrids by forming thioester-linkages 

with donor Ub-moieties prior to transfer to substrates (Wenzel, Lissounov et al. 

2011). In the current in vitro functional assays the RBR proteins (RNF144A and 

RNF144B) but not the non-RBR proteins (RNF13, RNF150 and RNF152) exhibit 

ubiquitin ligase activity in conjunction with UBE2L3, despite all being predicted to 

interact with the E2 from binary interaction screens. These findings highlight that 

whilst TM-E3-RING/E2 proteins may form interacting complexes, this alone is not 

always sufficient for transfer of ubiquitin moieties. 
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6. Chapter 6: TM-E3-RING ubiquitome network generation and analysis 

6.1. Introduction 

E2 and E3-RING proteins control the architecture of ubiquitin modification and 

substrate specificity in the E1/E2/E3-RING enzymatic cascade. The generation of a 

comprehensive TM-E3-RING/E2 network by directed CRD-Y2H and luciferase PCA 

screens has revealed the combinatorial complexity of interactions between these 

ubiquitination cascade components. Furthermore, in vitro functional investigation 

has delivered insight into the potential regulation of the type of ubiquitin modification 

by selective TM-E3-RING/E2 complexes. To develop a deeper understanding of 

TM-E3-RING function and regulation the identification of additional E3-RING 

partners would provide a list of potential ubiquitination targets and/or regulators of 

specific E3-RING/E2 pairs. To this end, we sought to create an extended TM-E3-

RING one-step network incorporating additional core cascade components (CCCs) 

of the ubiquitin system as well as components external to the ubiquitin system. 

6.2. TM-E3-RING dimerization 

An increasing mass of experimental evidence points towards a central role of E3-

RING/E3-RING interactions in the regulation of ubiquitination cascades (de Bie and 

Ciechanover 2011). Several structurally and/or functionally characterised E3-RING 

dimer complexes are composed of a non-E2 binding E3-RING protein that provides 

structural or activating roles to an active E3-RING partner. Several ‘activating’ E3-

RING proteins have been identified including BARD1, BMI1, and MDM4 E3-RING 

proteins, which enhance the ligase activity of the hetero-dimeric partners BRCA1 

(Brzovic, Keeffe et al. 2003), RNF2 (Buchwald, van der Stoop et al. 2006), and 

MDM2 (Linares, Hengstermann et al. 2003) towards cognate substrate(s). Certain 

ubiquitin cascades require E3-RING dimerization for the facilitation of ubiquitin 
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transfer from E2 conjugating enzymes to substrates (e.g. RNF4 homo-dimerization 

(Plechanovova, Jaffray et al. 2011)) whilst E3-RING dimerization can also define the 

specificity of substrate selection (e.g. a unique surface at the BMI1/RING1B RING-

RING dimer interface is required for recognition of short duplex DNA substrates 

(Bentley, Corn et al. 2011). E3-RING/E3-RING interactions can also represent 

ligase-substrate interactions as observed for the TM-E3-RING protein AMFR, which 

is trans-ubiquitinated by a second TM-E3-RING protein to provide a signal for AMFR 

degradation (Shmueli, Tsai et al. 2009). Finally, the dimerization of E3-RING 

proteins has been shown to enable recruitment of multiple identical or alternative 

E2-conjugating enzymes for participation in ubiquitination events (Parker and Ulrich 

2009).  

 

A recent Y2H based study of soluble E3-RING dimerization events has revealed a 

high occurrence of both homo- and hetero-dimers (329 interactions were observed 

in the E3-RING/E3-RING network of which 59 were homo-dimers and 270 hetero-

dimers (personal communication Jonathan Woodsmith). However, TM-E3-RING 

dimers were not investigated in this previous Y2H study and remain poorly defined 

in the literature with only four known interactions: RNF128/RNF128 (Soares, 

Seroogy et al. 2004), MARCH9/MARCH9 (Hoer, Smith et al. 2007), PEX10/PEX10 

and PEX10/PXMP3 (Okumoto, Abe et al. 2000). Given that the majority of 

structurally defined E3-RING dimerization events are governed by regions within, or 

immediately flanking, the RING domain (Linke, Mace et al. 2008; Mace, Linke et al. 

2008; Liew, Sun et al. 2010), it was proposed that the use of CRD TM-E3-RING 

clones in directed Y2H screens would allow the determination of previously 

unknown TM-E3-RING dimers. 
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6.3. High-throughput yeast-2-hybrid screen results 

To systematically investigate TM-E3-RING/TM-E3-RING interactions CRD TM-E3-

RING ORFs were required in both bait and prey Y2H vectors. Utilizing the same in 

vivo gap repair methodology that was used to create the prey TM-E3-RING ORF 

collection (see Chapter 3.2), 51 sequence-verified TM-E3-RING CRD ORFs were 

cloned into either pBGD-B (N-terminal) or pGAD-B (C-terminal) bait vectors and 

systematically tested against the array of 50 prey CRD TM-E3-RING yeast 

constructs. A total of 2550 protein-protein interactions were tested with 71 

reproducible interactions between 28 TM-E3-RING proteins observed on –HIS or 

multiple reporter arrays (Figure 6.1). As such, approximately 1/35 tested interactions 

were positive, comparable to the 1/25 positive interaction rate observed for soluble 

E3-RING/E3-RING interactions and suggesting a high incidence of dimerization 

events amongst both soluble and transmembrane TM-E3-RINGs. 

 

A higher proportion of interactions (79%) were reported on at least two reporter 

arrays (-HIS/-ADE) for this class of interaction compared to the TM-E3-RING/E2 

screen with the remaining 21% reported on –HIS arrays alone (Figure 6.1B). 

Interaction data was combined with the four previously known TM-E3-RING dimers 

to generate an up-to-date TM-E3-RING dimerization network, consisting of 75 

interactions between 29 proteins. Despite the prevalence of homo-dimerization 

events between soluble E3-RING proteins (personal communication Jonathan 

Woodsmith, unpublished data) and throughout the proteome (Levy, Boeri Erba et al. 

2008), only four homo-dimers are present in the combined TM-E3-RING network 

(TRIM59/TRIM59, PEX10/PEX10, MARCH9/MARCH9, RNF128/RNF128), with the 

remaining 71 interactions representing hetero-dimer complexes. 
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Figure 6.1 TM-E3-RING/TM-E3-RING interaction network. (A) Heatmap 

representation of TM-E3-RING/TM-E3-RING interactions derived from CRD-Y2H 

screens or literature curation. TM-E3-RINGs are ordered by primary sequence 

similarity. (B) Breakdown of interactions according to Y2H reporter activation in the 

CRD-GAL4 screen and number of literature only derived interactions. (C) Scatter 

plot showing TM-E3-RING and E2 degree for each TM-E3-RING protein.
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To predict phylogenetic trends TM-E3-RING/TM-E3-RING interaction profiles were 

displayed in heat-map format and proteins ordered based upon primary sequence 

similarity (Figure 6.1A). Dimerization events are dispersed amongst TM-E3-RING 

subfamilies with clusters of closely related TM-E3-RING proteins exhibiting shared 

interaction partners. For example, MARCH9 and MARCH4 selectively interact 

RNF144A, RNF144B and RNF183 (black outline) whilst an alternative dimerization 

profile is common to four other MARCH proteins (blue outline). However, this 

dimerization profile is also observed for a number of distantly related TM-E3-RING 

proteins (green boxes) highlighting a current difficulty in the prediction of TM-E3-

RING interaction profiles based upon primary sequence similarity alone. 

6.4. E2/TM-E3-RING/TM-E3-RING sub-network analysis 

To investigate the ability of TM-E3-RINGs to interact with different components of 

the ubiquitin machinery, the number of E2 and TM-E3-RING interaction partners 

was calculated for each TM-E3-RING protein. The scatter plot representation of this 

data revealed no correlation between TM-E3-RING or E2 degree for TM-E3-RING 

proteins (Figure 6.1C). However, focussing on TM-E3-RING and E2 degree for 

individual TM-E3-RING proteins allowed identification of four potentially distinct 

classes of TM-E3-RING proteins (Figure 6.2A) according to whether they bind; TM-

E3-RING proteins that interact with: (i) both TM-E3-RINGs and E2s (black bar), (ii) 

TM-E3-RINGs alone (red bar), (iii) E2s alone (blue bar), (iv) neither TM-E3-RINGs 

nor E2s (white bar). 

 

5 TM-E3-RING proteins selectively interact with TM-E3-RING but not E2 proteins in 

the combined TM-E3-RING/TM-E3-RING/E2 network (Figure 6.3B; RNF24, 

ZNF179, 
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Figure 6.2 TM-E3-RING/TM-E3-RING/E2 interaction network. (A) Bar chart comparing TM-E3-RING and E2 degree for each 

TM-E3-RING protein. (B) Heatmap representation of binary E2 interactions with a given TM-E3-RING protein (red) or with a TM-

E3-RING proteins dimeric partner if that E2 does not occur within its own binding profile (blue). 
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RNF217, RNF121, PXMP3). Each of these proteins interact with at least one E2-

binding TM-E3-RING (E.g. Figure 6.3A-C), which may implicate them in structural or 

activating functions for their dimeric partners such as those described for 

BARD1/BRCA1, BMI1/RNF2, and MDM4/MDM2 complexes. 

 

A high proportion of TM-E3-RING proteins exhibit both E2 and TM-E3-RING binding 

(14/24 TM-E3-RINGs have ≥ 3 TM-E3-RING and E2 protein partners). As discussed 

previously, binary interactions between two E2-binding TM-E3-RING proteins may 

represent ligase-substrate interactions and serve to negatively regulate TM-E3-

RING protein levels (Shmueli, Tsai et al. 2009; de Bie and Ciechanover 2011). 

Alternatively, E3-RING hetero-dimerization can increase the combinatorial 

complexity of ubiquitination cascades by facilitated recruitment of the same or 

different E2 proteins to substrates by each member of the TM-E3-RING pair (Parker 

and Ulrich 2009). The occurrence of E2 proteins in the binding profile of a TM-E3-

RING proteins binding partner that do not occur within its own binding profile was 

calculated to investigate the potential for recruitment of additional E2 proteins in 

ubiquitination cascades via selective TM-E3-RING/TM-E3-RING binding. As can be 

observed in Figure 6.2B the number of E2 proteins that can be potentially recruited 

to substrates is considerably extended as a result of hetero-dimerization events. In 

this analysis, binary TM-E3-RING/E2 interactions are shown (red) alongside 

additional E2 proteins, which occur in the binding profile of each TM-E3-RING 

proteins’ hetero-dimeric partner(s) (blue). Similarly, TM-E3-RING dimers can also 

recruit the same E2 protein to substrates (supplementary file TMRING dimerization). 
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Figure 6.3 TM-E3-RING/TM-E3-RING/E2 sub-networks. (A) RNF112/RNF144B 

and RNF112/RNF152 heterodimers. (B) PEX10/PXMP3 heterodimer. (C) 
RNF217/RNF152 and RNF121/RNF152 heterodimers. TM-E3-RING (purple), E2 

conjugating enzyme (green) and non-ubiquitin cascade components (pink) are 

shown as nodes (circles). Edges (lines) represent binary protein interactions 

between TM-E3-RING/TM-E3-RING (purple), TM-E3-RING/E2 Enzyme (blue) and 

TM-E3-RING/non-ubiquitin cascade components (green). 

!"

#"

Figure 6.4 TM-E3-RING/TM-E3-RING/E2/Substrate sub-network. (A) MARCH9 and 
MARCH4 (B) PEX10/PXMP3 (C) RNF217/RNF152 and RNF121/RNF152 (D) RNF112/
RNF144B/RNF152  complex.!

$"
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6.5. Systematic E3-RING dimerization characterisation 

To characterise potential functional effects of different TM-E3-RING homo- and 

hetero-dimers the sub-cellular localisation of these components were extracted from 

HPRD. The subcellular distribution of a significant proportion of TM-E3-RING 

proteins (21/53) was not reported in this database whilst 11 were reported at a 

single subcellular compartment and 21 at ≥ 2 locations. The ER and (peri) nuclear 

compartments are each annotated > 10 TM-E3-RINGs whilst the Golgi, endosome, 

lysosome and plasma membrane are each reported to contain ≥ 5 TM-E3-RINGs, 

suggestive of shared or co-operative roles in organelle-specific processes. Finally, a 

number of additional organelles (mitochondria, peroxisomes, centrosomes, 

cytoskeleton, and extracellular compartments) have limited numbers of TM-E3-

RINGs annotated (≤ 3) (Figure 6.4A). 

 

To represent physiologically relevant complexes, TM-E3-RING proteins of a hetero-

dimer complex must be capable of physically interacting in a spatiotemporal 

manner. Additionally, extension of the ‘guilt-by-association’ principle dictates that 

proteins that share common functions are more likely to be physically linked than 

those involved in disparate processes (Oliver 2000). To investigate this, analyses 

were performed to determine whether predicted TM-E3-RING interaction partners 

exhibited a higher incidence of shared subcellular distributions and/or molecular 

functions compared to tested but non-interacting TM-E3-RING pairs. The subcellular 

localization of each TM-E3-RING protein was extracted from HPRD and molecular 

functions from the Protein Analysis Through Evolutionary Relationships 

(PANTHER) classification database, which classifies genes by their functions using 

published scientific experimental evidence and evolutionary relationships to predict  
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Figure 6.4 Conserved localisations and functions of TM-E3-RING dimers. (A) 
Number of TM-E3-RING proteins reported at different subcellular organelles within 

HPRD. Comparison of the number of conserved localisations (B) and molecular 

functions (C) across TM-E3-RING/TM-E3-RING pairs observed by CRD-Y2H 

compared to CRD-Y2H tested but not observed interaction pairs. 
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function (Thomas, Kejariwal et al. 2003). Following extraction of the molecular 

functions of the 53 TM-E3-RINGs from the PANTHER database, they were 

manually condensed into 20 general functional terms prior to comparison 

(supplementary Figure TMRING dimerization). However, TM-E3-RING hetero-

dimers did not reveal any obvious differences in the distribution of common 

subcellular localisations and molecular functions compared to tested but non-

interacting TM-E3-RING protein pairs (Figure 6.4B&C). These analyses rely on the 

thorough reporting of TM-E3-RINGs subcellular localisation and molecular function 

and it is therefore likely that incomplete data for TM-E3-RING proteins (exemplified 

by the fact that 21/53 TM-E3-RINGs are not assigned to a subcellular compartment 

in HPRD) prevents accurate prediction of potential shared localisations and 

functions at this time. 

 

To ascertain whether less complex organisms could give insight into functional or 

phenotypic correlations between TM-E3-RING hetero-dimers, E3-RING orthologs in 

yeast (S. cerevisiae) and worm (C. elegans) model organisms were investigated. 

There has been a significant expansion of the E3-RING family from yeast (~ 50 E3-

RINGs) to humans (308 E3-RINGs) with only 10/53 human TM-E3-RING orthologs 

present in S. cerevisiae (Supplementary file E3RING annotation), which hinders 

meaningful inference of TM-E3-RING dimer functions from S. cerevisiae. The 

C. elegans E3-RING system represents a more comprehensive system (~ 150 

annotated E3-RINGs) with 31 C. elegans genes encoding putative orthologs of 

human TM-E3-RING proteins. Phenotype information was extracted for C. elegans 

orthologs of human E3-RING proteins from wormbase (http://www.wormbase.org), 

which provides a catalogue of RNAi knockout phenotype information in the C. 

elegans model (Harris, Antoshechkin et al. 2010). Significantly,  > 80% of both 
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soluble and TM-E3-RINGs exhibit lethality phenotypes following siRNA knockdown. 

The high percentage of lethality phenotypes associated with (TM)-E3-RINGs is in 

contrast to E2 proteins, where only 3/25 were lethal upon RNAi knockdown (Jones, 

Crowe et al. 2002). Whilst this high rate of lethality prevents analysis of conserved 

functions or phenotypes between TM-E3-RING hetero-dimers, it is however 

indicative of a non-redundant role for most TM-E3-RING proteins in essential 

cellular processes (Supplementary file E3RING annotation). 

 

Investigation of conserved interactions between orthologs, termed interologues, of 

human TM-E3-RING proteins in model organisms revealed only 3 TM-E3-RING/TM-

E3-RING interaction pairs (PEX10/PEX10; SYVN1/SYVN1; RNF185/RNF185). 

Given that S. cerevisiae represents the most complete eukaryotic interactome yet 

contains only 10 predicted TM-E3-RING orthologs (Li, Bengtson et al. 2008; 

Venancio, Balaji et al. 2009), it is perhaps unsurprising that the interologue 

interaction network focussed around TM-E3-RING proteins is of low coverage.  

6.6. Generation of a TM-E3-RING non-ubiquitome one-step 

To identify potential substrates and/or regulators of selective TM-E3-RING/E2 pairs 

known TM-E3-RING interaction partners that are not core cascade components of 

the ubiquitin conjugation machinery (E1, E2, E3 or DUB proteins) were extracted 

from three public databases (HPRD, BioGrid, IntAct). In total, 119 binary interactions 

were detected between 30 TM-E3-RING proteins and 101 non-ubiquitome proteins  

(Figure 6.6C). Investigation of the degree of each TM-E3-RING for core cascade 

components and proteins external to the ubiquitin cascade reveals that whilst many 

TM-E3-RINGs have known interactions with components of the ubiquitination 

cascade, few of these TM-E3-RINGs have known interaction partners external to 
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the core cascade components (Figure 6.5); > 77% (41/53) of TM-E3-RING have ≤ 2 

known interactions outside of the ubiquitin system (Figure 6.5; black bar) with 24 of 

these lacking any known non-ubiquitin cascade component interactions. 

Furthermore, 33% (39/119) of total TM-E3-RING/non-ubiquitome interactions belong 

to two extensively studied ERAD related TM-E3-RING proteins, AMFR and SYVN1 

(Fang, Ferrone et al. 2001; Shmueli, Tsai et al. 2009), highlighting the need for 

systematic investigation of TM-E3-RING substrates to further understand TM-E3-

RING function. 

6.7. Network-driven investigation of the extended TM-E3-RING network 

The collation of all data from this study generated an up-to-date TM-E3-RING one-

step network encompassing core cascade and non-ubiquitome components 

(Figure 6.6A-D). Although network coverage is not comprehensive, an analysis of 

the 
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components (internal degree) and non-ubiquitin cascade components (external 

degree).  

extended TM-E3-RING one-step was undertaken to attempt to identify combinatorial 

sub-networks based upon common non-ubiquitome binding partners of hetero-meric 

TM-E3-RING proteins. This analysis revealed one TM-E3-RING hetero-dimer 

(PEX10/PXMP3) that shared a common non-ubiquitome interaction partner (PEX5) 

(Figure 6.3B). Whilst both PXMP3 and PEX10 interact with PEX5, only PEX10 has 

been reported to recruit E2 proteins in CRD-Y2H and literature studies, which may 

infer a structural or functional role of PXMP3 in this ubiquitination event. 

Interestingly, PEX10 exhibits a highly restricted E2 partner profile with UBE2O, 

UBE2J1 and UBE2I. It would therefore, be of interest to determine whether PXMP3 

and PEX10 cooperate as a hetero-dimeric complex to selectively ubiquitinate PEX5 

through one of these E2 proteins. The undefined role of UBE2O in cellular 

ubiquitination events and its high specificity for a limited number of E3-RINGs 

makes this sub-network a potentially interesting module for further investigation. 

6.8. Discussion 

6.8.1. E3/RING dimerization 

Dimerization of E3-RING proteins is emerging as an important mechanism of 

regulating the specificity or activity of protein ubiquitination complexes (Poyurovsky, 

Priest et al. 2007; Bentley, Corn et al. 2011; de Bie and Ciechanover 2011; 

Plechanovova, Jaffray et al. 2011). Investigation of TM-E3-RING homo- and hetero-

dimerization on a systematic scale identified a total of 75 TM-E3-RING dimers, 

increasing the TM-E3-RING dimer network coverage by approximately 20 fold. Also, 

dimerization events were distributed throughout all phylogenetic sub-groups of TM-

E3-RING proteins. 
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Figure 6.6 TM-E3-RING interaction networks. (A) TM-E3-RING/E2 interaction 

network. (B) TM-E3-RING/TM-E3-RING dimerization network. (C) TM-E3-

RING/Non-ubiquitome interactions. Relative number of non-ubiquitome interactions 

is indicated by TM-E3-RING node size. (D) Total TM-E3-RING one-step network 

incorporating ubiquitome and non-ubiquitome components. TM-E3-RING (purple), 

E2 conjugating enzyme (green) and non-ubiquitin cascade components (pink) are 
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shown as nodes (circles). Edges (lines) represent binary protein interactions 

between proteins. 

The extent of dimerization events reveals a significant potential for functional 

linkages between TM-E3-RING proteins and highlights the potential combinatorial 

complexity in ubiquitin conjugation events. Furthermore, potential mechanisms of 

complexity can be inferred. For example, differential dimerization profiles for 

members of the MARCH subfamily may be suggestive of diverse mechanisms of 

action between MARCH9/MARCH4 and other family members. Indeed, whilst 

considerable diversity exists between the predicted structures of MARCH proteins, 

many share extensive homology with another family member (MARCH1/8, 

MARCH2/3, MARCH4/9) (Nathan and Lehner 2009) that target common substrates: 

MARCH4/MARCH9, MHCI (Bartee, Mansouri et al. 2004); MARCH1/MARCH8, 

MHCII (Ohmura-Hoshino, Matsuki et al. 2006; Matsuki, Ohmura-Hoshino et al. 

2007); MARCH2/MARCH3, syntaxin 6 (Fukuda, Nakamura et al. 2006). 

6.8.2. Generation and analysis of a TM-E3-RING one-step 

Despite incomplete network coverage, the ability of network analysis to provide 

functional insights is demonstrated by the PEX10/PXMP3/PEX5 sub-network. The 

import of peroxisomal matrix proteins can be divided into four steps: (1) cargo 

recognition by a cytosolic receptor (PEX5); (2) docking of cargo-loaded receptors at 

the peroxisome membrane (PEX13, PEX14 and PEX17); (3) translocation into the 

peroxisome lumen and cargo release; (4) mono-ubiquitin mediated recycling of 

receptors back to the cytosol for further rounds of protein import (Platta, El Magraoui 

et al. 2009). The RING peroxins PEX10, PEX2, and PEX12 are thought to function 

as an “importomer” complex in matrix protein import and PEX5 receptor recycling, 

yet the precise mechanism remains unclear (Platta, El Magraoui et al. 2007; Brown 

and Baker 2008). Analysis of the TM-E3-RING one-step network shows that whilst 
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PEX10 and PXMP3 form heterodimers and both interact with PEX5, only PEX10 

recruits E2 proteins. PEX10 selectively interacts with UBE2J1, UBE2I, and the 

uncharacterised UBE2O protein. Whilst PEX10 ubiquitinates PEX5 in yeast in a 

Ubc4 (UBE2D)-dependent manner (Williams, van den Berg et al. 2008) and also 

interacts with a second yeast E2 ubiquitin-conjugating enzyme PEX4 (Eckert and 

Johnsson 2003), no such role has been observed for PXMP3. As such, PXMP3 may 

serve a predominantly structural role in the “importomer” complex or ‘activate’ 

PEX10 in ubiquitination events. Furthermore, as PEX4 does not have a clear human 

ortholog it will be interesting to investigate the potential role(s) of UBE2J1, UBE2I, or 

UBE2O in peroxosome specific processes. 

 

Through integration of all E2, TM-E3-RING, and non-ubiquitome interactions for 

each TM-E3-RING into a more comprehensive network it was hypothesised that the 

interaction context of each TM-E3-RING dimerization event could be investigated. 

This analysis revealed considerable potential for recruitment of different E2 proteins 

to substrates via hetero-dimeric interaction partners. Additionally, the analyses 

described within this chapter highlight the limited knowledge of putative TM-E3-

RING substrates as a major obstacle for prediction of functionally relevant 

ubiquitination events. The unbiased elucidation of TM-E3-RING substrates would 

facilitate the prediction of function dependant information flow within the human 

ubiquitome. Recent advances in mass spectrometric (Meierhofer, Wang et al. 2008; 

Xu, Paige et al. 2010) and protein microarray (Persaud, Alberts et al. 2009) based 

methodologies may aid the systematic characterisation of E2/E3-RING/substrate 

specificity whilst HTP PCA-based systems also hold promise for determination of 

interaction partners between the integral membrane TM-E3-RING family (Lee, Kim 

et al. 2011).  
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7. Chapter 7: Conclusions and Final Discussion 

7.1. Introduction 

This chapter outlines the key scientific questions that were addressed during this 

project and summarises the key findings that have resulted from this work. In 

addition, remaining areas of data paucity and future research are discussed. 

 

Most proteins do not function in isolation but as components of protein complexes or 

within distinct networks which regulate cellular pathways (Morell, Ventura et al. 

2009). Recent advances in mass spectrometric and Y2H interaction detection 

methods have enabled the unbiased mapping of binary and co-complex interactions 

on a proteome-wide scale, thereby dramatically increasing network coverage of the 

human interactome (Rual, Venkatesan et al. 2005; Stelzl, Worm et al. 2005; Ewing, 

Chu et al. 2007). However, individually these proteome-wide studies are estimated 

to cover only 10-20% of all possible human protein-protein pairs. The collation of 

protein-protein interaction information derived from HTP methodologies with data 

derived from focussed small and medium-scale interaction studies increases 

network density thus enabling more comprehensive mapping of protein-protein 

interactions within distinct biological processes or pathways. The recent completion 

of targeted Y2H studies directed at determining E3-RING/E2 interactions by our 

group (Markson, Kiel et al. 2009) and others (van Wijk, de Vries et al. 2009) have 

dramatically increased both network coverage and the density of human E3-

RING/E2 partners. Despite the successes of these studies, key areas of data 

paucity remained within the human ubiquitination network, notably including 

information relating to interaction profiles for integral membrane E3-RING proteins 
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(TM-E3-RING proteins), only half (27/53) of which were annotated to have E2 

binding partners prior to the initiation of this study. 

 

The primary aim of this study was to systematically identify E2 conjugating enzyme 

interaction partners for the complement of TM-E3-RING proteins. As such, a 

comprehensive collection of sequence-verified human cytoplasmic RING domain 

(CRD) and full-length TM-E3-RING ORF clones was generated in a GatewayTM 

format, which was amenable for use in CRD-Y2H and complementary interaction 

detection and functional assay systems.  

7.2. Systematic analysis increases the known network of TM-E3-RING/E2 
interactions 

Literature curation and domain analysis approaches were initially undertaken to 

establish bona fide TM-E3-RING encoding genes. This resulted in the compilation of 

a final list of 53 unique putative TM-E3-RING proteins. A final panel of 51 unique 

cytoplasmic RING domain (CRD) and full-length TM-E3-RING ORFs was produced 

using the Gateway cloning system (Invitrogen), providing a powerful tool for 

elucidating TM-E3-RING cellular function. This set of TM-E3-RING ORFs was 

utilized to generate a collection of 51 Y2H bait and prey constructs which were used 

to define selective interactions between TM-E3-RING preys and an existing 

collection of 44 E2-conjugating enzyme bait constructs, representing 39 unique 

genes (Markson, Kiel et al. 2009). Using a targeted CRD-GAL4 Y2H binary 

interaction assay a total of 196 TM-E3-RING/E2 interactions were identified. 

 

Recent studies have highlighted how utilisation of multiple protein-protein interaction 

methodologies is necessary to ensure maximal coverage of any interaction space 

(Braun, Tasan et al. 2009; Chen, Rajagopala et al. 2010). Firstly, comparative 
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analysis of gold-standard positive reference interaction dataset revealed that each 

of five distinct interaction methodologies verified 21-36% of known interactions, 

together reconfirming ~ 60% of the total positive dataset (Braun, Tasan et al. 2009). 

Subsequently, the identical positive reference dataset was utilized in five alternative 

Y2H systems and revealed highly similar positive reconfirmation rates were 

observed compared to entirely different orthogonal assay systems. Therefore, 

different Y2H and other orthogonal interaction methodologies provide highly similar 

levels of accuracy and interaction coverage (Chen, Rajagopala et al. 2010). In 

accordance with these findings, comparative analysis between CRD-Y2H interaction 

data with that of the two published E3-RING/E2 Y2H interaction networks (Chapter 

Three), highlighted the complementary nature of different interaction techniques and 

facilitates the generation of an extended TM-E3-RING/E2 network, consisting of 302 

interactions (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009).  

 

The CRD-Y2H screening described in this thesis contributes a further 121 novel 

interactions to the existing combined TM-E3-RING/E2 network, representing a 67% 

increase in network density. Out of the 121 interactions identified in this study, 49% 

(71/146) of previously reported Y2H interactions were reconfirmed, in comparison to 

43% (10/23) of interactions previously identified by in vitro binding or co-

immunoprecipitation assays. This reflects a favorable positive reconfirmation rate of 

TM-E3-RING interactions compared to that expected between orthogonal Y2H or 

other interaction assay systems (Braun, Tasan et al. 2009; Chen, Rajagopala et al. 

2010). As a result of this study coverage of TM-E3-RING proteins in the TM-E3-

RING/E2 interaction network now stands at 80% with 45/53 TM-E3-RINGs 

annotated E2 interaction partners.  



 200 

7.3. The TM-E3-RING/E2 network provides a frame-work for better global 
analysis 

Comparisons of global trends in the TM-E3-RING/E2 network revealed key trends in 

E2 binding profiles, providing insight into network architecture and redundancy in 

the TM-E3-RING/E2 network. Notably, striking differences in E2 binding profiles 

were observed for different TM-E3-RING proteins. This binding pattern implies that 

functionally distinct classes of E2 enzymes have evolved, which display broad or 

highly restricted binding profiles. It will be interesting to determine whether such 

binding profiles reflect generic and/or specialised roles in different cellular 

ubiquitination events. For example, the highly specific interaction observed between 

UBE2O and the peroxisomal PEX10 TM-E3-RING ligase may imply a role of the 

presently uncharacterised UBE2O protein in ubiquitination events at the 

peroxisomal membrane where PEX10 resides (Cepinska, Veenhuis et al. 2011)). 

Equally, the interaction of RNF167 and RNF185 with the NEDD8-specific UBE2M 

protein may implicate these RINGs in conjugation of this Ubiquitin-like protein. 

 

Several E3-RING proteins have been shown to function with multiple E2s to mediate 

different forms of ubiquitination (Christensen, Brzovic et al. 2007). In agreement with 

these findings, integration of data from this study with available literature data 

reveals 29 TM-E3-RINGs that interact with ≥ 5 E2 partners, highlighting the complex 

combinatorial nature of the TM-E3-RING/E2 system. By analysing these 

combinatorial binding profiles, it may be possible to identify novel regulatory 

features of TM-E3-RING/E2 networks. For example, co-occurrence of E2 proteins in 

TM-E3-RING profiles shows that UBE2E almost exclusively interacts with a subset 

of TM-E3-RING proteins that also bind to UBE2D family members, implying a more 
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restricted role in cellular ubiquitination events consistent with the restricted nuclear 

expression of UBE2E family members. 

7.4. Use of orthogonal protein complementation assays to investigate TM-E3-
RING/E2 interactions 

Generation of comprehensive protein-protein interaction networks requires close 

scrutiny of datasets to ensure data quality is of a sufficiently high standard (Braun, 

Tasan et al. 2009). In particular, it is important to assess the overall quality of data 

from different methods and studies in order to be perform meaningful analysis of 

protein interaction information. Furthermore, the use of orthogonal assay systems 

increases the interaction space that can be analysed (Braun, Tasan et al. 2009). 

Chapter four describes the Gateway modification and development of an orthogonal 

protein complementation assay system based upon split firefly luciferase reporter 

activity to permit the analysis of selective TM-E3-RING/E2 interactions in vivo. In 

total a collection of 16 unique CRD-E3 FLucC constructs and 7 E2 FLucN 

constructs were generated to analyze the selective interactions between 

phylogenetically distant TM-E3-RING and E2 proteins in human cells. 

 

CRD-luciferase PCA screening identified 37 potential TM-E3-RING/E2 interactions, 

representing a 37% overlap with primary CRD-Y2H screens, which is comparable to 

the observed overlap between other orthogonal assay systems (Braun, Tasan et al. 

2009). In addition to the 55% of positive CRD-Y2H interactions verified by luciferase 

PCA assays, 6 luciferase PCA positive interactions reconfirm previously unverified 

interactions reported in other HTP Y2H studies that were not detected in CRD-Y2H 

studies. A further 10 interactions were observed within luciferase PCA screening 

that had not been reported in any previous interaction studies. Taken together, 
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these findings further highlight the value of utilising multiple interaction methods to 

provide maximal coverage of a given interaction space.  

 

Furthermore, it is informative to compare the rate at which CRD-Y2H interactions 

were reconfirmed within the CRD-luciferase PCA assay. Interestingly, equivalent 

proportions of CRD-Y2H interactions detected in -HIS (56%), -HIS/-ADE (47%), or -

HIS/-ADE/-β-gal (42%) arrays were reconfirmed in orthogonal CRD-luciferase 

PCAs. These findings implicate interactions reproducibly detected on -HIS only 

selection as likely to represent true physical positive partners compared to 

interactions detected on two or three independent Y2H reporters. 

7.5. Use of orthogonal PCAs for investigation of full-length TM-E3-RING/E2 
interactions 

A key advantage of protein complementation assays is the potential to investigate 

interactions involving full-length clones in live human cells as proteins can be 

expressed in the context of their normal cellular environment, with appropriate post-

translational modifications, and at the correct subcellular localisation (Morell, 

Ventura et al. 2009). Therefore, the use of this type of orthogonal in vitro assay 

enables both spatial and conditional aspects of TM-E3-RING/E2 protein interactions 

to be taken into consideration. Preliminary co-expression versus lysate mixing 

experiments (Chapter Four) indicated that interactions detected within the luciferase 

PCA assay are predominantly the result of interactions occurring within HEK 293T 

cells, and not post-lysis association. Furthermore, data from this study demonstrates 

the applicability of using the luciferase PCA system to analyse interactions between 

full-length TM-E3-RING and E2 clones; in total 7 full-length TM-E3-RING clones 

were found to have selective interactions with 5 different E2 proteins. This remains 
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one of the few binary interaction methods in which the highly labile E3-RING/E2 

proteins interactions can be detected. 

7.6. Functional analysis of predicted TM-E3-RING/E2 partners 

The majority of E3-RING proteins are thought to mediate protein ubiquitination 

events. However, of the 312 TM-E3-RING/E2 complexes identified in the literature, 

CRD-Y2H and luciferase PCA data from this study, very few of the predicted 

complexes have been investigated to test their ability to function as active ligase 

complexes (Markson, Kiel et al. 2009; van Wijk, de Vries et al. 2009). Chapter Five 

describes the development and utilisation of an in vitro auto-ubiquitination assay 

system to prescribe in vitro functional activity profiles for predicted TM-E3-RING/E2 

pairs. The observation that 10 TM-E3-RING proteins, derived from 3 

phylogenetically distinct branches of the TM-E3-RING family all exhibit ubiquitin 

ligase activity in vitro highlights the probability that many more predicted E2-binding 

TM-E3-RING complexes will be functionally active.  

 

Despite these findings, there has been emerging evidence that some E3-RING 

proteins do not possess intrinsic E3-ligase activity. For example, BARD1, BMI1, and 

MDMX do not function in isolation with E2 enzymes to ubiquitinate selective 

substrates. However, these proteins do function to enhance the ubiquitination 

activity of a second E3-RING protein (BRCA1, RING1B, and MDM2, respectively) 

through the formation of specific heterodimeric complexes (Hashizume, Fukuda et 

al. 2001; Linares, Hengstermann et al. 2003; Wang, Wang et al. 2004). It therefore 

remains to be determined whether TM-E3-RING proteins that have few or no E2 

partners function in a mechanistically similar manner or alternatively if these 
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restricted E2 binding profiles represent a more selective role in substrate 

ubiquitination events. 

 

In vitro functional data (Chapter Five) also highlights the fact that individual E3-

RING proteins, in combination with different E2 partners can yield different forms of 

ubiquitin modifications, consistent with the prevailing notion that whilst E3-RING 

proteins serve to select substrates for ubiquitination events, E2 proteins dictate the 

type of ubiquitin modification conjugated to the selected substrates (David, Ziv et al. 

2010). A number of E2 proteins (UBE2D1, UBE2D2, UBE2E1, UBE2E3, UBE2K, 

UBE2N/V1) were shown to predominantly generate HMW ubiquitin modifications in 

vitro whilst the predominant product formed for active TM-E3-RING/UBE2L3 

complexes was mono-ubiquitination. Whilst UBE2L3 has been shown to exhibit a 

broad specificity for HECT-type E3s (Anan, Nagata et al. 1998) they have recently 

been reported to have ubiquitin ligase activity in combination with only those E3-

RING proteins belonging to RING-in-between-RING subfamilies (Wenzel, Lissounov 

et al. 2011). Although E3-RING proteins belonging to both RBR and non-RBR 

families were found to interact with UBE2L3 within CRD-Y2H screens, only those 

belonging to the RBR (RNF144A and RNF144B) family exhibited ubiquitin ligase 

activity in our studies. These findings suggest that whilst E3-RING/E2 proteins may 

form interacting complexes this alone is not sufficient for transfer of ubiquitin 

moieties. Indeed recent studies have shown that in complex with UBE2L3, RBR 

proteins serve as RING/HECT hybrids by binding E2s via one RING domain yet Ub 

transfer occurring via an obligate thioester-linkage with the donor Ub-moiety at a 

conserved cysteine residue in RING2. 
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In contrast to the in vitro activity profiles of most tested E2 proteins, UBE2W 

generated different forms of ubiquitin modifications (mono- to poly-ubiquitination) 

dependent upon TM-E3-RING partner. The implication of these findings is that some 

E3-RING proteins may contribute to the specificity of ubiquitination architecture on 

selective substrates. Whilst the precise architecture of HMW TM-E3-RING/E2 

ubiquitination remains to be determined the use of a K0-mutant highlighted poly-

ubiquitin chains as the major product of these reactions. TM-E3-RING proteins, 

which form HMW ubiquitin modifications with UBE2W all belong to the closely 

related PA-TM-RING subfamily, which may reflect a conserved mechanism of poly-

ubiquitin chain formation by PA-TM-RING/UBE2W ligase pairs. It would be 

interesting to elucidate both the molecular determinants and potential physiological 

relevance of these findings events. 

 

Finally, Y2H screens and previously known interaction data was utilised to generate 

an extended TM-E3-RING-centric interaction network to identify potential regulators 

and/or ubiquitin cascade targets. The obtained data increased the TM-E3-RING 

dimerization identified 71 interactions and may serve as a useful tool in the 

investigation or prediction of dimerization functions in humans whilst highlights the 

elucidation of potential substrates as a priority for determination of the control and 

regulation of specific ubiquitin cascades by TM-E3-RING/E2 pairs.  

7.7. Investigating the specificity of ubiquitination events in vivo 

7.7.1. Tissue specificity of ubiquitome components 

The specific interactions that occur between ubiquitin cascade components, 

substrates and auxiliary proteins dictate the formation of specific ubiquitin signals 

upon substrates. Whilst the yeast two-hybrid system and other HTP interaction 
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detection techniques enable generation of high-density interaction maps of potential 

protein interaction partners, it is unlikely that all reported interactions will occur in the 

context of the human cell. To represent physiologically relevant interactions it is a 

prerequisite that protein interaction partners are expressed together in a given 

tissue/cell at the same time. The integration of secondary datasets, such as tissue 

mRNA expression profiles, with high-density interaction networks therefore allows 

for refinement of interactions into more functionally relevant modules for 

investigation of tissue or cell-type specific interactions (Taylor, Linding et al. 2009).  

 

To assess the tissue specificity of predicted TM E3-RING/E2 protein pairs, the 

mRNA expression profiles of TM E3-RING and E2 proteins were extracted from a 

published genome-scale mRNA expression screen incorporating 79 distinct human 

tissues (Su, Cooke et al. 2002). In accordance with a recent study, a normalised 

expression level of ≥ 250 was used as a high-confidence measure of gene 

expression (Bossi and Lehner 2009). 30 TM E3-RING and 40 E2 conjugating 

enzymes were represented within the mRNA expression dataset. In agreement with 

previous reports, the majority of E2 conjugating enzymes examined were expressed 

in the majority of human tissues tested (van Wijk and Timmers 2010) (83% 

expressed in ≥ 51 tissues; Figure 7.1A). A smaller yet significant subset of TM E3-

RING proteins were also reported in a large number of tested tissues 50% 

expressed in ≥ 51 tissues; Figure 7.1A). Interestingly, 100% of binary interactions 

reported in the total TM E3-RING/E2 network that were included in the mRNA 

expression study co-express in 1 or more human tissues. Interestingly, 37% of 

these TM E3-RING/E2 interactions were reported for TM E3-RING and E2 proteins 

that co-express in ≥ 51 tissues (Figure 7.1B). Whilst this finding potentially 

implicates a large proportion of total TM E3-RING/E2 interactions in ubiquitination  
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Figure 7.1 TM-E3-RING and E2 tissue expression analysis. (A) TM E3-RING and 

E2 proteins with positive mRNA expression data in a given number of 79 tested 

human tissues (Su, Cooke et al. 2002). (B) Percentage of binary TM E3-RING/E2 

interactions occurring between TM E3-RING and E2 proteins that were co-

expressed in a given number of 79 tested human tissues (Su, Cooke et al. 2002).  
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events that are common to the majority of human tissues, a number of TM E3-

RING/E2 interaction pairs co-express in a more limited number of tissues (22% of 

total protein partners co-occur in ≤ 20 tissues), suggestive of a similarly high degree 

of tissue-specific ubiquitination events.  

 

As most E2 proteins are expressed in the majority of tested human tissues it is 

possible that the more selective expression of TM E3-RING proteins may account 

for a large proportion of the predicted tissue-specific E3-RING/E2 complexes. In 

agreement with this hypothesis, 91% of the E3-RING/E2 interactions that were 

restricted to ≤ 20 tissues were attributed to TM E3-RING proteins that were 

expressed in less than half of tested tissues, compared to only 30% that were 

attributed to E2 proteins reported in the same number of tissues. Therefore a model 

could be envisaged whereby a ‘core’ E2 machinery exists in the majority of human 

cell types and specificity of ubiquitination may be controlled by the selective 

expression of interacting TM E3-RING protein partners, with the caveat that the 

restricted tissue expression of a small number of E2 conjugating enzymes (notably 

UBE2U (urogenital tract (van Wijk, de Vries et al. 2009)), UBE2O (skeletal and heart 

muscle (Yokota, Nagai et al. 2001)) and UBE2K (brain (Kikuchi, Furukawa et al. 

2000) will also contribute to tissue-specific ubiquitination events. The integration of 

such secondary datasets can therefore be used to refine large-scale protein-protein 

interaction networks for guided investigation. For example, Figure 7.2 shows the 

refinement of the total TM E3-RING/E2 network (A) into brain (B) and ovary (C) 

tissue specific sub-networks. The number of human tissues with positive mRNA 

expression (Su, Cooke et al. 2002) and literature curated tissue expression profile 

for each TM E3-RING and E2 protein is shown in Table 7.1 & 7.2. 
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Figure 7.2. Binary TM E3-RING/E2 interaction networks. (A) Total, (B) brain-specific and (C) ovary-specific TM E3-RING/E2 

interaction networks. Nodes (circles) represent proteins and edges (lines) represent binary interactions between proteins. 
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Figure X. Binary TM E3-RING/E2 interaction networks. (A) Total, (B) brain-specific and (C) ovarian-specific TM E3-

RING/E2 interaction networks. Nodes (circles) represent proteins and edges (lines) represent binary interactions 

between proteins. 
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7.7.2. Subcellular localization of ubiquitome components 

To identify the subcellular localisation of TM E3-RING and E2 proteins literature 

searches were performed (shown in Tables 7.1 & 7.2). Whilst TM E3-RING proteins 

reside at distinct subcellular organelle membranes, almost half show at least partial 

localization to the ER membrane suggestive of a key importance of ubiquitination 

events at this subcellular organelle. Indeed, numerous TM E3-RING proteins have 

been reported to function in ERAD ubiquitination events (see section 1.4.5.1. Known 

roles of TM E3-RING proteins). Similarly, the localization of TM E3-RING proteins to 

other subcellular organelles including endosomes, lysosomes, nucleus, golgi, 

mitochondria, plasma membrane, peroxisome and centrosomes is likely to reflect 

their specialized roles in ubiquitination events at these organelles; for example, 

peroxisomal protein import (PXMP3, PEX10; (Prestele, Hierl et al. 2010)), control of 

mitochondrial fusion/fission dynamics (MARCH5, (Nakamura, Kimura et al. 2006)) 

and nuclear signaling (RNF13; (Bocock, Carmicle et al. 2010)). 

 

In stark contrast to the restricted localizations of TM E3-RING proteins, the majority 

of E2 proteins exhibit diffuse distributions, present in both the cytosol and nucleus. 

Therefore, most E2 proteins may be capable of interacting spatially with all TM E3-

RING proteins resident at any cellular organelle to participate in ubiquitination 

events at numerous locations dependent upon TM E3-RING partner. The broad 

subcellular distribution of E2 proteins highlights a difficulty of predicting high-

confidence TM E3-RING/E2 partners based upon subcellular localization. Of the 13 

E2 conjugating enzymes that display more restricted subcellular localization 

patterns, 2 are present in the cytosol but excluded from the nucleus, 7 are solely 

present in the nuclear compartment (UBE2E1-3, UBE2H, UBE2I, and UBE2U) and 
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4 are anchored to the ER membrane either by transmembrane domains (UBE2J1/2) 

or via ER-resident protein interaction partners (UBE2G1/2) (Biederer, Volkwein et al. 

1997). The more restricted localization for these E2 proteins may underlie organelle-

specific roles in cellular ubiquitination events; for example the four ER-associated 

E2 proteins have been shown to function in ERAD events (Biederer, Volkwein et al. 

1997) whilst UBE2I, UBE2W and UBE2E family members have known roles in 

nuclear substrate ubiquitination events (Spektor, Congdon et al. 2011; Zhang, Zhou 

et al. 2011). 

7.8. Regulation of protein-protein interactions within the ubiquitin system 

7.8.1. Spatial and temporal availability of ubiquitin and substrate components 

In order to ensure the appropriate timing and duration of selective ubiquitination 

events additional levels of system regulation exist in vivo. The current knowledge of 

such regulation will be discussed here. 

 

The temporal availability of ubiquitin cascade components, substrate proteins and 

auxiliary factors represents an initial mechanism of controlling specificity of protein-

protein interactions in ubiquitin cascades. Indeed, the activity of SCF E3-RING/E2 

ligases are regulated by the availability of their substrates (Vodermaier 2004). From 

an auxiliary factor perspective, elevated levels of sterols within the ER membrane 

recruit a TM E3-RING protein (RNF138) to HMG CoA reductase, a critical enzyme 

in sterol biosynthesis, to signal the substrate for proteasomal degradation, allowing 

RNF138 to serve as an effective sensor and regulator of appropriate sterol levels in 

the cell (Jo, Lee et al. 2011).  
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Table	
  7.1	
  TM	
  E3-­‐RING	
  Protein	
  Expression	
  Information	
  
	
  

	
  

 Subcellular	
  Localization Tissue	
  Expression:	
  ♯	
  tissues*|Literature	
  data Temporal	
  Expression	
  Patterns 
RNF19B Cytolytic	
  granules	
  in	
  NK	
  cells 79 Upregulated	
  in	
  NK	
  cells	
  following	
  IFN/cytokines	
  stimulation 
RNF167 Endolysosomal	
  system 79 	
   
MARCH1 Endolysosomal	
  system 17|Widely	
  expressed Downregulated	
  in	
  dendritic	
  cells	
  upon	
  cell	
  maturation 
TRIM59 ER 46 	
   
RNF5 ER 28 	
   
ZNRF4 ER 57 	
   
AMFR ER 76|Widely	
  expressed Upregulated	
  following	
  induction	
  of	
  ER	
  stress 

RNF133 ER 29|Widely	
  expressed	
  but	
  at	
  low	
  levels;	
  high	
  expression	
  in	
  
brain	
  (all	
  cell	
  types) 	
   

RNF148 ER NT 	
   
TRIM13 ER 79 Upregulated	
  (protein	
  stabilized)	
  following	
  induction	
  of	
  ER	
  stress 
BFAR ER 73 	
   
RNF26 ER NT 	
   
CGRRF1 ER 74 	
   
MARCH6 ER 74|Widely	
  expressed 	
   
RNFT1 ER 68 	
   
RNF150 ER NT 	
   
RNF170 ER 11 Important	
  for	
  embryonic	
  development	
  in	
  D.	
  melanogaster 

MARCH4 ER NT|Restricted	
  tissue	
  expression:	
  brain,	
  placenta,	
  lung,	
  
pancreas 	
   

SYVN1 ER 79|Widely	
  expressed	
  (most	
  cell	
  types) Upregulated	
  following	
  induction	
  of	
  ER	
  stress 

MARCH2 ER|endolysosomal	
  system|plasma	
  
membrane 56|Widely	
  expressed 	
   

MARCH8 ER|endosome NT|Widely	
  expressed 	
   
MARCH3 ER|endosome 50|Widely	
  expressed 	
   

RNF128 ER|endosome|golgi|perinuclear	
  
region 

20|Expressed	
  in	
  T-­‐cells,	
  brain,	
  kidney,	
  heart,	
  liver,	
  ovary,	
  
testes,	
  thymus 

In	
  CD4	
  T-­‐cells	
  expression	
  levels	
  are	
  elevated	
  upon	
  induction	
  of	
  
anergy 

RNF13 ER|endosome|nucleus 79|Widely	
  expressed Expression	
  levels	
  are	
  developmentally	
  regulated	
  during	
  
myogenesis 

RNF122 ER|golgi 78 	
   
RNF185	
   ER|mitochondria	
   3	
   	
  	
  
RNF139 ER|plasma	
  membrane 73|Widely	
  expressed 	
   
RNF24 golgi|nucleus 79 	
   
RNF43	
   ER|nucleus|extracellular	
   39|Restricted	
  tissue	
  expression:	
  lung	
  and	
  kidney	
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Table	
  7.1	
  TM	
  E3-­‐RING	
  Protein	
  Expression	
  Information	
  (continued)	
  
	
  

 Subcellular	
  Localization Tissue	
  Expression:	
  ♯	
  tissues*|Literature	
  data Temporal	
  Expression	
  Patterns 
RNF152 Lysosome NT|Expressed	
  in	
  all	
  cancer	
  cell	
  lines	
  tested	
  from	
  multiple	
  

origins 	
   

MARCH9 Lysosome 27|Widely	
  expressed 	
   
MARCH5 Mitochondria 78|Widely	
  expressed 	
   
MUL1 Mitochondria|peroxisome 72|Widely	
  expressed Essential	
  for	
  embryonic	
  development	
  in	
  mice 
RNF144A Nucleus|golgi 42 	
   
ZFPL1 Nucleus|golgi 38|Widely	
  expressed 	
   
RNF19A Perinuclear	
  region|centrosome 8|Widely	
  expressed 	
   
PEX10 Peroxisome NT|Widely	
  expressed 	
   
PXMP3 Peroxisome 74|Widely	
  expressed 	
   
RNF149 Plasma	
  membrane 15 	
   
RNF183 	
   69 	
   
RNF186 	
   52 	
   
RNF144B 	
   NT|Widely	
  expressed Expression	
  is	
  Induced	
  by	
  p53 

RNF130 	
   58|Widely	
  expressed 
Developmentally	
  expressed	
  during	
  embryonic	
  development	
  D.	
  
melanogaster	
  |upregulated	
  following	
  induction	
  of	
  apoptosis 

RNF145 	
   79 	
   

DCST1 Plasma	
  membrane NT|human	
  dendritic	
  cells Selectively	
  expressed	
  in	
  activated	
  but	
  not	
  resting	
  blood	
  dendritic	
  
cells 

RNF175 	
   NT 	
   
RNF103 	
   NT 	
   
RNF182 	
   16|Restricted	
  tissue	
  expression:	
  enriched	
  in	
  brain 	
   
ZNF179 	
   67|Expressed	
  in	
  a	
  number	
  of	
  tissues:	
  enriched	
  in	
  brain 	
   
RNF121 	
   67 	
   
RNF217 	
   NT 	
   
ZNRF3 	
   42 	
   
RNF222 	
   NT 	
   

 

Table 7.1. TM E3-RING protein expression information. The known subcellular localization, tissue distribution, and temporal 

expression patterns for each TM E3-RING protein are shown. For tissue expression, the total number of human tissues with positive 

mRNA transcripts are shown for each TM E3-RING protein (*79 tested tissues (Su, Cooke et al. 2002)) alongside literature reported 

data. Further information and references can be found in Supplementary Excel File_TMRING&E2_Expression. 
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Table	
  7.2	
  E2	
  Protein	
  Expression	
  Information	
  
	
  

	
  

 Subcellular	
  Localization Tissue	
  Expression:	
  ♯	
  tissues*|Literature	
  data Temporal	
  Expression	
  Patterns 
UBE2D1 Nucleus|cytosol 36|Widely	
  expressed 	
   
UBE2D2 Nucleus|cytosol 79|Widely	
  expressed 	
   
UBE2D3 Nucleus|cytosol NT|Widely	
  expressed 	
   
UBE2D4 Nucleus|cytosol 79|Widely	
  expressed 	
   
TSG101 Nucleus|cytosol NT|Widely	
  expressed Expressed	
  at	
  similar	
  levels	
  during	
  all	
  stages	
  of	
  development 
AKTIP Nucleus|cytosol 74|Widely	
  expressed 	
   

UBE2L3 Nucleus|cytosol 79 
Expression	
  is	
  cell-­‐cycle	
  regulated	
  (downregulated	
  during	
  S-­‐phase	
  
but	
  restored	
  by	
  G2	
  phase) 

UBE2N Nucleus|cytosol 79|Widely	
  expressed 	
   

UBE2O Nucleus|cytosol 26|Widely	
  expressed:	
  predominantly	
  skeletal	
  and	
  heart	
  
muscle 	
   

UBE2T Nucleus|cytosol 
55|Restriction	
  tissue	
  expression	
  and	
  expressed	
  at	
  low	
  levels	
  -­‐	
  
highest	
  in	
  skeletal	
  muscle	
  and	
  testes 

	
   

UBE2Z Nucleus|cytosol NT|Widely	
  expressed 	
   

CDC34 Nucleus|cytosol 68|Widely	
  expressed 
Upregulated	
  in	
  meiotic	
  and	
  postmeiotic	
  haploid	
  germ	
  cells	
  co-­‐
inciding	
  with	
  when	
  chromatin	
  modifications	
  occur. 

UBE2A Nucleus|cytosol 79|Widely	
  expressed Constitutively	
  expressed.	
  Upregulated	
  in	
  testis	
  during	
  
spermatogenesis. 

UBE2B Nucleus|cytosol 76|Widely	
  expressed Constitutively	
  expressed.	
  Upregulated	
  in	
  testis	
  during	
  
spermatogenesis. 

UBE2V1 Nucleus|cytosol 79|Widely	
  expressed 	
   
UBE2V2 Nucleus|cytosol 57|Widely	
  expressed 	
   

UBE2C Nucleus|cytosol 79|Widely	
  expressed	
  at	
  low	
  levels 
Expression	
  is	
  cell-­‐cycle	
  regulated	
  (transcriptionally	
  activated	
  by	
  
the	
  spindle	
  assembly	
  checkpoint	
  protein	
  Cdc20	
  following	
  
chromosome	
  segregation) 

BIRC6 Nucleus|cytosol 79|Widely	
  expressed 	
   
UBE2M Nucleus|cytosol 60|Widely	
  expressed 	
   
UBE2Q1 Nucleus|cytosol 79 	
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Table	
  7.2	
  E2	
  Protein	
  Expression	
  Information	
  (continued)	
  
	
  

	
  

 Subcellular	
  Localization Tissue	
  Expression:	
  ♯	
  tissues*|Literature	
  data Temporal	
  Expression	
  Patterns 
UBE2K Cytosol 66|Widely	
  expressed:	
  predominantly	
  brain 	
   
CDC34 Cytosol 79 	
   

UBE2W Nucleus 
40|High	
  expression	
  levels	
  in	
  heart,	
  brain,	
  liver,	
  and	
  pancreas.	
  
Marginally	
  expressed	
  in	
  16	
  other	
  tissues 

	
   

UBE2H Nucleus 74 	
   
UBE2E1 Nucleus NT 	
   
UBE2E2 Nucleus NT|Expressed	
  in	
  majority	
  of	
  tested	
  tissues 	
   
UBE2E3 Nucleus NT|Widely	
  expressed:	
  predominantly	
  skeletal	
  muscle 	
   
UBE2U Nucleus NT|Urogenital	
  tract 	
   
UBCE9 Nucleus 79|Widely	
  expressed Constitutively	
  expressed	
  throughout	
  all	
  stages	
  of	
  development 
UBE2J2 ER 79 	
   
UBE2J1 ER 67 	
   
UBE2G1 ER 79|Widely	
  expressed 	
   
UBE2G2 ER 75|Widely	
  expressed 	
   
UBE2L6 -­‐ 28|Preferentially	
  expressed	
  in	
  immune	
  cells Expression	
  induced	
  following	
  IFNα	
  stimulation 
UEVLD -­‐ 16 	
   
UBE2F -­‐ NT|Widely	
  expressed 	
   
UBE2DNL -­‐ NT 	
   
UBE2S -­‐ NT 	
  Expression	
  is	
  cell-­‐cycle	
  regulated 
UBE2Q2 -­‐ 69 	
   

 

 
Table 7.2. E2 protein expression information. The known subcellular localization, tissue distribution, and temporal expression 

patterns for each E2 conjugating enzyme are shown. For tissue expression, the total number of human tissues with positive mRNA 

transcripts are shown for each E2 conjugating enzyme (*79 tested tissues (Su, Cooke et al. 2002)) alongside literature reported 

information. Further information and references can be found in Supplementary Excel File TMRING_E2_Expression.
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The spatial redistribution of ubiquitome and/or substrate components in response to 

certain cellular signals also serves as a mechanism of regulating protein-protein 

interactions in ubiquitin cascades. For example, in response to activation of PKC 

signalling the TM E3-RING protein RNF13 undergoes retrograde transport from 

recycling endosomes to the inner nuclear membrane, exposing the RING domain to 

the nucleoplasm (Bocock, Carmicle et al. 2010) and altering the available cohort of 

ubiquitin cascade and substrate proteins for ubiquitination events. Similarly, the 

redistribution of substrates can also regulate substrate ubiquitination events. For 

example, nuclear export of the cell-cycle regulatory protein p27Kip1 upon quiescent 

cell re-entry into the cell cycle is necessary for its recognition by cytosolic E3-

RING/E2 ligase complexes for ubiquitin-proteasomal degradation (Hara, Kamura et 

al. 2001).  

 

Regulation of ubiquitin cascade components also provides an effective mechanism 

of regulating specific ubiquitin cascades. A striking example exists for the cascade 

components dedicated to the process of ISGylation whereby the expression of 

ISG15 (Ubl), UBE1L (E1-activating), and UBE2L6 (E2-conjugating) is induced by 

stimulation with interferons, leading to the specific temporal control of ISG15-

conjugation to a variety of targets (Durfee, Kelley et al. 2008). Another example 

exists for the ERAD-associated TM E3-RING, AMFR, which is stabilized following 

induction of ER-stress to provide an acute mechanism of increasing degradation of 

unfolded ER proteins through increased association of AMFR with both E2 and 

substrate proteins (Shen, Ballar et al. 2007). Finally, the UBE2S and UBE2L3 E2-

conjugating enzymes are tightly regulated during the cell cycle allowing for 

activation and termination of substrate ubiquitination events by the APC/C E3 ligase 
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complex and control progression through the cell cycle (Williamson, Wickliffe et al. 

2009). 

7.8.2. Regulation by post-translational modifications 

7.8.2.1. Phosphorylation, glycosylation and hydroxylation 

Post-translational modifications of ubiquitin cascade and substrate proteins can 

influence cellular ubiquitination events by altering or increasing the affinity of 

protein-protein interactions (Pines and Lindon 2005). Phosphorylation has been 

widely reported to control substrate ‘ubiquitination’ state (Deshaies and Joazeiro 

2009). For example, the phosphorylated but not unmodified Sic1 substrate is 

recognized and ubiquitinated by the SCFCdc34 ligase (Verma, Annan et al. 1997). In 

addition, a considerable number of E3-RING substrates are targeted to their ligase 

by various covalent modifications including glycosylation (Yoshida, Chiba et al. 

2002) and proline hydroxylation (Ivan, Kondo et al. 2001). For example the ER-

resident E2 protein UBE2J2 specifically targets hydroxylated amino acids upon ER-

associated substrates (Wang, Herr et al. 2009). Finally, CDK-mediated 

phosphorylation of the APC/C E3-RING upon mitotic entry enables interaction 

between APC/C and specific substrates (Vodermaier 2004), whilst  SGK1-mediated 

phosphorylation of NEDD4-2 prevents its binding to the Epithelial Sodium Channel 

(ENaC) substrate (Wiemuth, Lott et al. 2010).  

 

Post-translational modifications can also directly regulate the formation of active E3-

RING/E2 complexes. For example, the Cdk-mediated phosphorylation of UBE2A 

affects E2 activity by increasing its association with E3-RING protein partners 

(Sarcevic, Mawson et al. 2002). Additionally, the casein kinase 2-mediated 

phosphorylation of CDC34/UBE2R1 exerts a variety of effects on E2 activity 
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including altered localization, which may influence available E3-RING or substrate 

interaction partners (Coccetti, Tripodi et al. 2008; Deshaies and Joazeiro 2009). 

7.8.2.2. Modification with Ubiquitin or Ubiquitin-like molecules 

Specificity of binding events in the ubiquitin conjugational machinery can also be 

regulated by the covalent conjugation of ubiquitin or ubiquitin-like moieties at 

multiple stages in the cascade. As discussed in section 1.5.3 many E3-RING 

proteins are known to be ubiquitinated often by an autocatalytic process in the 

presence of an appropriate E2 partner (de Bie and Ciechanover 2011), which can 

lead to downregulation of E3 activity owing to degradation by the proteasome. For 

example, the autocatalytic turnover of MDM2 has been thought to play a critical role 

in titrating its activity towards its substrate p53 (Li, Brooks et al. 2004). Additionally, 

the TM-E3-RING protein, AMFR, is trans-ubiquitinated by a second TM-E3-RING 

protein, SYVN1, to provide a signal for AMFR degradation (Shmueli, Tsai et al. 

2009). The conjugation of NEDD8 to the CRLs results in conformation changes that 

allow binding of CRLs to substrate or facilitates ubiquitin transfer from E2 to 

substrate potentially through a mechanism involving the tighter binding of E3-RING 

to E2 proteins (Saha and Deshaies 2008). In contrast, the covalent modification of 

the E2 enzyme UBE2K by SUMO within helix 1 inhibits interaction with the ubiquitin 

E1 thus preventing charging of UBE2K with ubiquitin (Pichler, Knipscheer et al. 

2005). It is therefore evident multiple levels of regulation exist in the ubiquitin system 

to control the timing, duration and specificity of ubiquitin/Ubl conjugation events in 

vivo. 

 

The high-density TM-E3-RING interaction maps generated during the course of this 

study using a variety of binary interaction and functional assays have provided new 
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insights into specificity and potential regulation within ubiquitination cascades. The 

identification of potential interaction partners for this subset of proteins can be used 

to inform hypothesis-driven study into investigation of novel regulatory features 

within the ubiquitin system and mechanisms of selective ubiquitination events. 
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