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We present details of our investigations of the parallel tempering algorithm. We consider the application of
action matching technology to the selection of parameters. We then present a simple model of the autocorre-
lations for a particular parallel tempered system. Finally we present results from applying the algorithm to
lattice QCD with O(a)-improved dynamical Wilson fermions for twin sub-ensemble systems.
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[. INTRODUCTION configurations between pairs of sub-ensembles, while keep-
ing all sub-ensembles in equilibrium. This is done in such a
The computational cost of lattice QCD has always beerway that the factorization of the joint equilibrium distribu-
enormous. During the last few years the power of supercomiion of configurations into the individual distributions for
puters has grown immensely but simulations with dynamicakach sub-ensemble is not disturbed by the swapping.
fermions are still very time consuming. The acceptance of these swap attempts depends on how
One of the most popular algorithms for dynamical fer- close the sub-ensembles are to each other in parameter space.
mion simulations is the hybrid Monte Carl¢iMC) algo- The concept of distance in parameter space is formalized in
rithm [1]. However it has been suggested that the HMC al{10-12 by the machinery of action and observable match-
gorithm is not very efficient at decorrelating some long rangdang. In theory, this technology should allow the selection of
observables such as the topological chd&jeOn the other an optimal set of parameters to maximize the swap accep-
hand, results from the SESAM Collaboratip8] indicate tance rate between the sub-ensembles.
that HMC simulations using Wilson fermions seem to tunnel  Another possibility is to use the action matching technol-
between topological sectors at an adequate rate. The resutigy to define curves in parameter space on which some ob-
of SESAM indicate an autocorrelation time for the topologi- servable such as, [13] is constant. PT can, in principle be
cal charge of about 50 HMC trajectories. used to simulate numerous points on such a curve in one
With such high computational costs it is always necessargimulation. However it must be stressed that this scenario is
to keep an eye open for alternative algorithms. Parallel temdifferent from the one above. Matching observables is not
pering(PT) or exchange Monte Carlo was proposed4hto  the same as matching the actidi2]. Hence in this case one
assist decorrelation in spin-glass systems. A lucid descriptiodoes not in general have as good control over the swap ac-
of PT and related algorithms such as simulated temperingeptance rate as in the situation outlined previously.
and their applications to spin-glass and other systems may be The remainder of this paper is organized as follows:
found in[5,6]. Our particular variant of the PT algorithm is described in
Recently PT has been applied to simulations of latticedetail in the following section, where we show that it satis-
QCD with staggered fermior{§’] and this preliminary study fies detailed balance and present a formula for the acceptance
indicated that the autocorrelation times for some observableste of the swap attempts. We then relate this formula to the
were significantly improved over the normal HMC results. distance in parameter space as defined in the context of ac-
In this paper we present our study of the PT algorithmtion matching technology.

using 2 flavors of degenera@(a)-improved Wilson fermi- The swapping of configurations between sub-ensembles is
ons [8] with a non-perturbatively determined improvement expected to reduce the autocorrelation times of observables
coefficient[9]. within individual sub-ensembles with respect to their HMC

PT simulates several lattice QCD ensembles concurrenthgutocorrelation times. In Sec. Il we discuss the simple case
hereafter referred to amib-ensemblesvith different simula- of a PT system consisting of two sub-ensembles. We suggest
tion parameters. PT exploits the fact that the equilibriuma model for the autocorrelation function in the PT sub-
distributions of the configurations in individual sub- ensembles in terms of that of the original HMC ensembles.
ensembles have an overlap, and occasionally tries to swap Our simulations are discussed in Sec. IV and our results
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are presented in Sec. V. We show that indeed our acceptanceding requirement to add parallel tempering to the UKQCD
rate formula of Sec. Il is borne out by the simulation results. HMC code was minimized. Choosing to swap the links only
We estimate the autocorrelation time of the plaquette fowould have required the development and integration of sig-
several swap acceptance rates and compare these estimatédiant additional code to calculate fermion determinants.
with the prediction of the model outlined in Sec. Ill. In principle, implementing only one possibility could po-
Our summary and conclusions are presented in Sec. Vl.tentially have left a gap in the analysis of the performance of
the PT method for lattice QCD. However, as we report be-

Il. THE PARALLEL TEMPERING ALGORITHM Iqw, the single implgmentatic_)n we h_ave executed has pro-
vided us with sufficient detail to estimate also the perfor-
Algorithm description mance of the second possibility. We find, in fact, that the

Normal Monte Carlo integration in lattice QCD generates!inks-only swap would have performed better than the links
an ensemble of configurations distributed according to £US pseudofermion swafproviding we ignore the addi-

specified probability measure determined by the action of thdonal computational work required to evaluate the fermion
system. In practice, in a modern lattice QCD simulation, zdeterminant This gain in performance is not sufficient how-

number of ensembles are generated for varying lattice size2Ver 0 change the basic conclusions of this paper.
and action parameters. This is done to analyze parameter

dependence of results, to measure volume effects and to Notation
carry out extrapolations to infinite volume and zero quark | et each sub-ensemble be labelled by an indexd let
mass. the phase space of sub-ensenidieI’; . Each sub-ensemble

~In PT, at least two separate sub-ensembles are generaiggs an actiors; which depends upon the set of parameters
in parallel. At regular periods within the parallel sub- 544 the fields of the sub-ensemble.

ensemble generation process, the current configurations e simulate two flavors of dynamical fermions using the
within pairs of sub-ensembles are subjected to a Metropoligiangard pseudofermionic action

acceptance test, the outcome of which is used to determine
whether or not a swap of these configurations between the — S;=—BWo(U)+¢'(MT(k;,c)M(k;.,c)) 1o (1)
pair of sub-ensembles should take place.

In lattice QCD with dynamical fermions the fundamental where Wy is the Wilson plaquette actiot) are the gauge
degrees of freedom are the lattice gauge variabledefined  fields, ¢ are the pseudofermion fields, and is the
on the lattice links. Normally a configuration is defined to O(a)-improved fermion matrix with hopping parameter
consist only of the values of all the link variables. However,and clover coefficient. In addition, for HMC algorithms we
the algorithm which we use to integrate single sub-need to introduce momentum fields and construct Hamil-
ensembles is HMC. This algorithm enlarges the subtgnian functionsiH;=#?+S;. A state in sub-ensembieis
ensemble phase space by introducing additional pseudofefen represented by the tripte= (U, , 7 ,¢;) while the pa-
mion, ¢, and link conjugate momentumy, degrees of rameter set for sub-ensembilés the triple of real numbers
freedom. The conjugate momenta are included as an additives. . c.). Note that the subscrifitserves only to distin-
term in the action, and play no role in the version of PTqyish ensembles and will be dropped when discussing a
which we have implemented. The pseudofermion fleldssing|e sub-ensemble.
however, introduce an important complication. In normal  Each sub-ensemble has the phase space
HMC, pseudofermions allow the replacement of the loga-
rithm of the fermion determinant term in the lattice action Ti={Ule{mle{e. )
with a pseudofermion bilinear term, which contains the in- ' ' ' '

verse of the fermion hopping matrix. Computationally, theWe note at this stage that eaEhis an identical copy of the
pseudo_fermion _bilin_ear is much simpler to calculate than the‘same fundamental phase space, and that the only distinguish-
determinant which it replaces. . . ing features of individual sub-ensembles are the parameter
The consequence of the above for our implementation Of oy o yices ysed in their generation, and the consequent dif-
PT was, that we were facgd with having to choose betweefbrences in the distributions of configurations which result.
the following two schemes: A PT simulation state is thus the collection of states

(1) A “configuration” in the PT sense is defined to in- a;|li=1...n}, wheren is the number of sub-ensembles. The
clude links only. The acceptance test then requires the eval verall PT phase space is the direct product of the phase
ation of the fermion determinant for each parameter set fog

) . paces of the sub-ensembles
each configuration.

(2) A “configuration” is defined to include both links and n
pseudofermions. The acceptance test here requires the evalu- — H T ®)
ation of the pseudofermion bilinear for each parameter set Pl o
for each configuration.

In implementing the PT algorithm we chose to adopt the
second approach here, and swapped both links and pseudo-
fermion fields at each successful PT swap step. The funda- In a PT simulation one needs to construct a Markov pro-
mental reason for this choice was simply that the additionatess which hagoint) equilibrium probability distribution:

Detailed Balance
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. . sub-ensembles are not essential for convergence to the cor-
Pea=11 PYU,7,¢) (4 rect distributions, but without such transitions PT would be
' identical to running several independent HMC simulations.

where P*Y{U,m, ¢) is the desired equilibrium probability

distribution of the individual sub-ensembleln our case Swap acceptance rate and action matching
1 Any extra decorrelation of observables in PT over and
PYU, 7, )= Z_e*HmUnw) (5) above normal HMC must necessarily come from the swap-
[

ping transitions. Understanding the factors which determine

the acceptance rate for swapping transitions is therefore of
Zi=f [dU][dm][d¢][dpT]e iV mé), (6) fundamental importa_mce in determining_any possible im-

provements which might result from applying PT. The swap-
ping probability between two sub-ensembles is determined

Equation (4) formalizes our notion of simulating en- b . :
X : the energy chang®™ (9) which would result if the swa
sembles independently. To be more precise, the MarkovéS accept%. In tr?fap(pr)oximation whev®( is small, thep

steps within any individual sub-ensemble are independent of g .
those in the others, but the resulting sub-ensembles are ngﬁrz?sgﬁiﬁgﬁggzgﬁfgﬁggﬁ f[(c))rbl\ée;]ropolls like algorithms

independent as they are coupled by the swapping steps.
However the overall joint equilibrium distribution of the PT 1
system is not affected by the swapping, and remains the <A)=erfc(§\/<AH>1z), (11
product of the individual equilibrium distributions of the

sub-ensembles. o where (AH) is the expectation value ok in the joint
We define two kinds of Markov transitions: measure of the two sub-ensembles for which the swap is

(1) Transitions within a single sub-ensemble:These attémpted. _ o
transitions can be made with any desired Markovian update 10 make the notation explicit, 1&,[U] andS,[U] be the
procedure that satisfies detailed balance with respeBffo actions of two lattice gauge theories defined on the same
for its sub-ensemble. In our case such transitions are mad¥1ase space but with different parameter values. The indi-
with HMC. We refer to the set of HMC trajectories that are vidual partition functions corresponding to these actions are

performed between swaps as an HMC step.
(2) Transitions between sub-ensemblesThese transi- Zi:f [dU] exp{—S[U]} i=1,2 (12)
tions are used to connect the phase spaces of the sub-

ensembles. Such a transition would be a proposed swap be- . . .
: . and the expectation of an observalilen ensemblé is
tween any two sub-ensembleils and j. Let a be a

configuration in sub-ensembleandb be a configuration in 1
sub-ensembl¢ The swap transition can be denoted (O)i=§f [dU] O(U) exg{ —S[U]}. (13
i
(b,a) if swap is accepted, . . . -
(a,b)— _ o (7)  The partition function for the joint system containing two PT
(a,b) if swapis rejected. sub-ensembles, one simulated with act&nand the second

simulated with actiors, is defined over the direct product of

Let us denote byPy(i,]) the probability that the swap suc- the single system phase space with itself, and is given as

ceeds. The detailed balance condition is

Py(i,j)e M@e MPI=p(j,i)e Mi@e ") (g) zlz=f [dU[dU], exp— Si[ U] exp{ — S,[Up ]}

as the contributions from the other ensembles cancel on both (14)
sides. A suitable choice fd?, is the simple Metropoli§14]

acceptance probability Here thea and b subscripts on the measures label the indi-

vidual copies of the integration phase space and on the link
P4(i,j)=min(1,e"2%) (99  variables they indicate the copy of the phase space from

which the link variables have been drawn.
where Expectations of observables defined on the product phase

space are denoted as
AH={H;(a)+ Hi(b)}—{Hi(a) +H;(b)} (10

which satisfies the detailed balance condition by construc- <O>12=Zif [dU][dU], O(U,,Up)
tion. 12

The required overall Markov transition should be con- Xexp{—Si[Ualiex{ —S[Upl}. (15
structed of a number of both kinds of transitions. HMC steps
within all the sub-ensembles are necessary and sufficient for Straightforward generalizations apply if we include
convergence of the individual sub-ensembles to the requiregseudofermions and/or link conjugate momenta as funda-
equilibrium probability distributions. Transitions between mental phase space degrees of freedom.
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If the parameters defining the two actioi$s,andS, dif- We now identify s with — §'in (3.15 in [10]. Following the
fer by a small amount only, then the expectation values of amnalysis of{ 10] one may obtain the acceptance rate formula
observable in the two measures can be related by a cumulaot the action matching mechanism

expansion which, to first order, takes the form L
<A)=erfc(§\/ Z(Alz)). (20

One can then deduce that

(O>2:<0>1+<(~9312>1+"' (16)

whereA,=S,—S, and 0=0- (O) etc.
An interesting feature of this formula is that the first order

cumulant expansion tern{,OA,), is actually measurable
numerically.(The first order term is a correlation which has
fluctuations of order the system size, so finite but large workvhere the second approximate equality is required to derive
is required to evaluate these correlatiprihis allows the the acceptance ratdl).

development of numerical techniques to calculate the formal Our PT parameters were tuned using the action matching
distance in parameter space between two different actions. {echnology to maximise the acceptance between two sub-
also allows the numerical tuning of action parameters teensembles using the action

maximize the overlap of specified features of two ensembles

generated by different actions. There are a humber of appli- Si==BWo—Ti (22
cations of such “action matching” technolod{0]. .

For example, given two actions with different structuresw'th
(e.g. one _might include a Wilson fermion term, while the T,=Trin(Q Y (23)
second might include a Kogut Susskind fermion tgroon- :
sider the problem of adjusting the parameters of the secong},
action in any of the following ways:

(1) to match the values of some subset of the observables Qi=MT (k)M (k)L (24)

i.e. require that 0),=(0),,

(2) to minimize the formal distance between two actionsThe tuning was carried out before performing the PT simu-
in parameter space, lation using configurations from a preliminary HMC run at

(3) to maximize the acceptance in an exact algorithm forthe desired reference parameter set. This tuning would have
S, constructed via accept/reject step applied to configuramaximized acceptance in the PT swap steps for the imple-
tions generated with actio8;. mentation where only the links are swappgdls discussed

It was shown in[10] that the last two conditions are above, the swap steps for this implementation depend on the
equivalent to lowest order in a cumulant expansion. Undedifferences in the link action including a fermion determi-
special circumstances the first condition is also equivalent tmant term,(22).]
the other two to lowest order. The prescriptions differ in a However, as also previously discussed the PT implemen-
calculable way at the next order. tation we chose involved swapping both links and pseudo-

The relevance of this action matching technology for PTfermions. The action to be evaluated for this case is
is that it allows us, firstly, to generate estimates for the av-
erage acceptance of PT swaps, and secondly, to analyze the Si=—BWat¢'Qie. (25

dependence of the average acceptance rate on the structure of . .
the actions for the PT sub-ensembles, and on the differend&/€ note that tuning parameters to maximise the PT swap

in parameter values between sub-ensembles. acceptance for Eq(22) do_es not necessarily (_)ptimize the
The acceptance of PT swaps is determined by the energg"/ap acceptance for the link plus pseudofermion swap case.

differences before and after the swap. This energy differenceince the details are of considerable importance in the fol-
; lowing discussions, we present them here.

1
o(A1p)=(AH)~ S0*(AH) (21)

is
Consider first the distance? between actionsS; where
S5=AH. (17) the S, are as given by Eg22). Then
= +
The momentum fields cancel exactly in the Hamiltonian A=A+ AT (26)
terms and one can deal directly with the actions with
Ezsl(ub1¢b)+SZ(Uaa¢a)_Sl(Ua-¢a)_SZ(Ubu¢b()i8) AB=pBr= B (27
Collecting the terms depending on the same fields one ob-
tains The variance ofA 1, in an individual sub-ensemble is
5=A1AUp )~ A1 Uq, ). (19 o2 (A1Di=((ABWL +AT)?);. (29
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One can see that for a givexiT one can tuné\B to mini-  Here,0?(0) is the variance of operatd@® given by
mize this variance. ) 5 )
However when one examines the case of the pseudofer- o“(0)=(0%)—(0) (36)

mionic action of Eq.(25) one finds that and 7, is the integrated autocorrelation time, defined as

Ap=ABWH+¢'(Q1— Q) ¢. (30 »
When calculating the variance d&,, one encounters the 70:241 Col(t) (37)
guadratic term
" s and whereCy(t) is the normalized autocorrelation function
(¢'(Q1=Q2) ¢ (Q1—Q2) ¢);i . (31
This term gives .rise to_both connected and di_scon_necte_d CO(t):2;((O(t+|)—<(9>)((9(l)—((9>)) (39)
pieces when the integration over the pseudofermion fields is a“(0)
carried out ) )
and the expectation values are over all pair®pfkeparated
(¢T(Q1—Q,) pp"(Q1—Q,) &) by an intervalt. From now on we shall drop the subscriit
5 Y from these formulas except where necessary. Furthermore
=(Tr((Q1—Q2)Q; )i the term “autocorrelation time” will always be used to refer

_ 1A —1\U to the integrated autocorrelation time.
HTMQ1=Q)Q (Qu=Q)Q - (32 The practical meaning of the statements above is that 2

Here the superscrifid on the expectations indicates that they T 1 correlated measurements Of are needed in order to
are now to be carried out over the gauge fields only. Henceeduce the error ir¥ by the same amount as if two uncor-

one finds that related measurements were used. Markov methods in general
o produce correlated sequences of configurations, and hence
Uiz(Alz):<[ABWD+TF((Q1—Qz)Qi_l)]2>iU correlated sequences of measured observables. The inte-

grated autocorrelation time is therefore an important indi-
HTr(Q:—Q2)Q; H(Q:—Q2)Q M. (33  cator of the performance of a Monte Carlo simulation that is
carried out with the intention of measuring observable
We also note that to first order @;—Q; In particular, if one assumes that the autocorrelation func-

_ tion decays exponentiall
AT~Tr(Q;~Q)Q; Y. (34) ys exp Y

Comparing Eq(29) and(33) it can be seen that using a
pseudofermionic action gives rise to a connected piece iRith k>0, one finds that
a?(Alz) which one would not get using the action of Eq.
(22). This connected piece cannot be tuned away by chang- T
ing AB and it increases the distances in parameter space exp{—k}= +1 (40
compared to when the action of EQ2) is used. If param-
eters are tuned using the action of E§2) and the simula- which is a result we shall use later.
tion is carried out using pseudofermions the acceptance rate
of the swaps will not be optimized. Autocorrelations in twin sub-ensemble PT

C(t)=exp[—kt} (39

We are interested in whether or not PT will reduce the
lll. AUTOCORRELATIONS integrated autocorrelation time of an observable measured on
The cost of measuring observables an ensemble with some parameter set relative to the corre-
sponding autocorrelation time of the same observable mea-

The gain from PT is expected to come from the SWappINg;,req on an ensemble generated at the same parameters using

of configurations between sub-ensembles. This reduction 'MMC. We refer to the former of these autocorrelation times

autocorrelation time is supposed to occur due to the fact thaa{S the PT autocorrelation time and the latter as the HMC
the sub-ensembles are simulateétween swapswith inde- autocorrelation time.

pendent Markov processes. However the swaps couple the Let us examine the situation of a PT system with two

ensembles and include cross correlations between therQub-ensembles Sub-ensemble 1 has the desired parameter
Thus care must be taken when using results from separageet' and the other sub-ensemble has its parameters chosen so

sutxens%mbltis ;%gfthir' . 1SR as to give some acceptance rg#). We assume that the
ccording to[ 16,17 if successive measuremen '®  HMC autocorrelation functions of both ensembles are the

correlated, the sample meéhis given(we use the conven- same. We demonstrate in Sec. V that over the distances in

tion of [16]) by parameter space for which we can use PT, and with the sta-
P tistics available, we cannot differentiate between the autocor-
_ I ; ; )
0=(0)= [£To o2(0). (35) relation times of the plaquette operator _ between sub
N ensembles, so we regard the above assumption as reasonable.
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Having made the above assumption, the changes in the 1
autocorrelation time due to PT are now controlled solely by Pe:§{1+(1_2<A>)t} (47)
the number of successful swaps between the sub-ensembles.
The swap probability in general depends on the particular Peading to the result
state at which the swap is attempted, but for simplicity we
assume that we can replace individual swap probabilities
with the overall average swap probability which is none
other than the acceptance rg#e).

Let the HMC autocorrelation function be denot€d(t), = We consider three separate cases:
and the PT autocorrelation function of the sub-ensemble of (i) (A)=0: In this caseCpr(t) = Cy(t), which is what we

interest be denote@p1(t). Consider the connected autocor- t wh q " ¢ ful
relation function(38) written in the more compact notation expect when we do not carry out any Successiul swaps.

1
CPT(t):§{1+(1_2<A>)t}CH(t)- (48)

introduced in Eq(16) (i) 0<{(A)=<3: In this caseCpre[3Cy,Cy) and we can
see a reduction in the autocorrelation function of at most a
nt_ooL factor of 2.
Ch(t)= = Z 0 +10; (41) (i) 3<(A)<1: In this case the term (22(A))! in Eq.
(OF) 1=0 (48) becomes oscillatory. In particular{f)=1 (every swap

_ - succeedsit is impossible to get an even number of success-
wheren is the number of samples @, . ful swaps out of an odd number of trials, whereas it is a
The autocorrelation function in the PT ensemble of inter-certainty for an even number of trials.

est can now be written as ) )
If one models the autocorrelation function by an exponen-

tial decay as in Eq(39), it is possible to calculate the PT

Cpr(t)= ;{Sﬁ So} (42)  integrated autocorrelation time for the ensemble:
02
where 7'PT:; Cpr(t) (49
=S 0.0 1 1
Se_%n O|+t0| ’ (43) = ETH—’_ E ; ((1_2<A>)6Xp{—k})t (50)
5 [ 1+ (AN Ty—1)]

So=2 0i+10;. 44 =

0 %d i+t ( ) 1+2<A>TH (51)

By the even sum we mean that the only terms contributing tgvhere the last line follows from using E(t0), summing the
the sum are those where an even number of swaps succeed€§ulting geometric series and simplifying. The ratiorpf

out of thet tried between the measurementsf’l;fH and (~’)i . to 7y is then

Given some configuration in one sub-ensemble, after an o1 1+(AN(14—1)
odd number of successful swaps it can only be in the other —_———
one. As the HMC steps are independent in different sub- TH 1+2(A)y
ensembles, we expeto a first approximationno correla-  \we remark on several features of the ratio in &)
tion between configurations in a sub-ensemble that are sepa- (i) When(A)=0, one is, in effect, carrying out two un-
rated by an odd number of swaps. Hence we assumeSthat coypled HMC simulations and the autocorrelation times in

sums to zero an_d we consider only tBeterm. each sub-ensemble remain the same as they would be for
We then rewrite Eq(42) as HMC simulations.

(52

(i) For a fixed(A) e (0,5) increasingry from O has the
effect that the ratio of Eq(52) aeproaches the value gf
whereP, is the probability that an even number of success-from ab?]ve T?e chsgr(A} IS 10 2, thehfaster this I|rr|1|t 'Sh. :
ful swaps occur irt trials. P, is given by approac _ed. If one is interested in both sub-ensembles this is

still a gain. If one of the two ensembles serves only to de-
correlate the other and is not otherwise interestiigis
Po=> CH1—(A) (A (46)  thrown away at the endhen one would lose over HMC as
[ one would have done twice the work, but gained less than a
factor of two.
where the index runs from O to the largest even integer less (i) For (A)=3 the ratio is exactlys and a break-even is
than or equal td, i is even ancCit is the number of ways of reached, in the sense that one does the work of two simula-
choosingi swaps front. tions, but in each sub-ensemble the integrated autocorrela-
Carrying out the sum in Eq46) one finds tion is halved. This is the stage when a sub-ensemble which

Cpr=PCr(t) (45
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originally served no other purpose than to help decorrelate TABLE I. Simulation parameters used for twin ensemble runs
the other one may be thrown away without losing out. and the reference HMC run.

(iv) For (A) e (3,1] the ratio approache} rapidly from

below In this case one clearly wins even if one is only in- [h] Simulation B (B2,C2,K2)

terested in a single sub-ensemble. However the gain is not HMmC (5.2,2.0171,0.133)

much, as for any reasonable valuewf the ratio will have

already approached the asymptotic limitiofo a good level Sl (5.2,2.0171,0.133)  (5.2060,2.01002,0.13280)
of accuracy. S (5.2,2.0171,0.133)  (5.2105,2.00471,0.13265)

2
One can therefore win most with PT when the acceptance ~ S3 (5.2,2.0171,0.133)  (5.2150,1.99940,0.13250)
rate is very high,_and_ the observable_ of i_ntere_st has a very 4 (5.2,2.0171,0.133) (5.2,2.0171,0.13280)
shprt autocorrelation time. In such a situation it is possmlg to S5 (5.2,2.0171,0.133) (5.2,2.0171,0.13265)
gain more than a factor of two over the HMC autocorrelation
time in each ensembile if the swap acceptance rate is greater
than 3. However if an observable has such a short HMC
autocorrelation time, it may not be worthwhile employing
PT. In a typical situation, it would be expected that the gain
in each ensemble is very close to a factor of 2.

We also had data from a previous HMC simulation with
parameters=5.2c=2.01714«=.13300) on lattices of vol-
ume &x 16 and 8x24.

The results from the reference run on th&xal6 lattice
were used to validate the PT code. Our PT simulations were
also carried out on lattices of this size. Furthermore, it was

Our PT simulations were carried out on the PPARC CrayPossible to compare the autocorrelation times of the
T3E facility in Edinburgh. Code for performing the HMC plaquette from this HMC run with the autocorrelation times
trajectories was taken from the GHMC code written for theOf the plaguette from the first sub-ensembles of the PT runs.
UKQCD Dynamical Fermions project, described[it8]. For the second sub-ensembles, the GHMC code was used
only to achieve equilibration. Thus there is insufficient data
to calculate the HMC autocorrelation times of the second
) i sub-ensembles.

The PT code ran trajectories on each sub-ensemble in |n the PT simulations each HMC step was one trajectory
series Sub-ensembles were labelled from ONe-1, where  |ong. The plan matrix used was the default one described
N was the total number of sub-ensembles. Swaps of configusarlier, SimulationsS1, S2 and S3 ran for 6000 swap at-
rations between sub-ensembles were attempted according #9mpts giving 6000 trajectories for each sub-ensemble, while
a booleanplan matrix M If, after carrying out the HMC g4 and 'S5 ran for only 1000 swap attempts due to time
trajectories in sub-ensembigethe elemenM;; was found to  ¢onstraints.
containtrue, the code would attempt to swap configurations  The matching procedure was performed using reference

jandj+1. (je[ON—2]) The default matrix had all its HMC results from §x 24 lattices, and the methods outlined
elements set ttalseexcept for the last row which had all its i, [12].

elements set ttrue. This way the program would perform all
the HMC trajectories on all the ensembles and would then
attempt a chain of pairwise swaps.

The number of HMC trajectories per sub-ensemble was We examined the acceptance rate as a function of the
controlled through an independent parameter file for eaciaverage swap energy changel), and ofA k= k,— x4, the
sub-ensemble. This way a sub-ensemble could be equilFhange in the hopping parameters. We investigated the auto-
brated with the GHMC code and if desired, it could easily becorrelation time of the average plaquette.
taken and further evolved on its own using the GHMC code. Errors in ensemble averages were estimated using the
Likewise each sub-ensemble had an associated set of Id¥potstrap method. Autocorrelations were estimated using the
files for the plaquette and for solver statistics. The overalsliding window scheme of Sokalt al. [17].
driver routine kept a log file of the success or failure of swap
attempts and the swap energies. V. RESULTS

IV. SIMULATION DETAILS

Program features

Analysis

A summary of our results is shown in Table Il. We show
for each simulationA 8= B,— B4, the corresponding\ «,

Five PT simulationsS1, S2, S3, S4 andS5 were per- (AH), the acceptance rafé), the integrated autocorrelation
formed, each of which comprised two sub-ensembles. Théme 7 for the plaquette in sub-ensemble 1 and the autocor-
parameters for these simulations are shown in Table I. In altelation time in sub-ensemble 1 divided by the HMC auto-
five simulations one sub-ensemble had parametgds (correlation time,r;/7qmc -
=5.2£=2.0171x=.13300). The parameters for the second
sub-ensemble were given by action matchingSby S2 and
S3, while for S4 andS5 only k was varied. Thus we could
investigate the PT swap acceptance rate for different dis- Figure 1 shows the measured swap acceptance rates of the
tances in parameter space. simulations. The solid line is the acceptance rate formula in

Simulation parameters

Swap acceptance rate

114501-7
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TABLE II. Results from the PT simulations showing the appropriate results from HMC for comparison.

Simulation AB(X1073) Ax(X107% (AH) (A) T 71/ Tame
HMC 26(6) 1
S1 6 -2.0 1.23(2) 0.43(1) 12(3) 0.5(2)
S2 10.5 -35 3.76(4) 0.17(1) 19(4) 0.7(2)
S3 15 -75 7.64(6) 0.051(2) 24(6) 0.9(3)
4 0 -20 0.91(4) 0.49(1) 9(4) 0.3(2)
S5 0 -35 2.29(7) 0.26(2) 18(10) 0.7(4)

Eqg. (11). It can be seen that the measured results are in

excellent agreement with its predictions.

Calibration and matching

It can be seen from Table Il that simulatioB8 andS3

(Tr(Q—QQ; Q- QWQ; H)P=6.62) (53
for simulationS3.

Note that if during our swap acceptance steps, we were to
discard the pseudofermion fields, and calculate the energy

which had parameters given by matching the TrIn actions ofhange using the Trin action by the methods outlined in

Eqg. (22) have lower acceptance rates thés and S5 for
which tempering was carried out only in We expect that
this is due to the noise term of E3) and is the result of

[12], we would suffer a workload hit due to the additional
work required to calculate the necessary fermion determi-
nants, but would expect an acceptance rate of around 48% in

using the pseudofermion action for calculating the swap enthe case of simulatio83. Thus, using pseudofermions was a

ergy differences.

poor way to proceed originally. However as the action dif-

To see how large the effect of this noise term is, we carference scales like the lattice volume, going to larger lattices

compare the residual varianeg(A,,) from the matching
procedurel12], using the Trin action with the variance as
measured in our PT simulations through#). Note that we
only have biased estimators fo’(A;,) from the matching

procedure, and that we have calculated the residual variance

estimate only forA k=0.0005.

Table 1l contains our comparison of the TrIn matching
predictions and pseudofermionic measurements for simul
tion S3. We can see in column 2, our biased estimate of th
residual variance on matching and in column 4 the corre
sponding predicted acceptance rate. In column 3 we see t

actual variance as measured in the simulation and in colum

5 the corresponding measured acceptance rate. We exp
the difference in the variances to be due to the four poin
term in equation Eq(33). We can therefore numerically es-

timate the four point term to be

1.0 T T T
081
\ as2
o 0.8 ’\\ o83
b= \ AS4
[1a 06 \ VS5
8 \ ——— erfc(0.5<AH>")
8 A
Soal R
8 AN
< V~o
02| ~a__
““““““ o
0.0 1 1 1 1 L I 1
0 1 2 3 4 5 6 7 8
<AH>

FIG. 1. Acceptance rate againgi?). Error bars are smaller
than the symbols.

a-
e

he

would effectively cancel all the gain one could obtain by
using the TrIn action to evaluate the swap action or energy
difference.

Autocorrelation times and efficiency

The autocorrelation times of the plaquette operator on the
sub-ensembles with parameter=.1330 are shown in col-
umn 5 of Table Il. We also show for comparison the auto-
correlation time estimated from our independent HMC run at
the same parameter set. In Table IV we gather some esti-
mates of the integrated autocorrelation time of the plaquette
for some independent HMC runs at similar parameters to our

runs. It can be seen that the HMC autocorrelation times
agree with each other within estimated errors, justifying the
assumptions of our model of Sec. Il.

Figure 2 shows the ratio of PT to HMC autocorrelation
times. The errors on the ratios were obtained by simple error
combination. The line superimposed on the data in Fig. 2 is
the prediction of the model in Sec. [Itf. Eg. 53. It can be
seen that it is not inconsistent with the data.

VI. SUMMARY AND CONCLUSIONS

In this paper we presented our study of the parallel tem-
pering algorithm applied to lattice QCD with
O(a)-improved Wilson fermions. We showed how the algo-

TABLE IIl. Comparison of TrIn matching and acceptance with
pseudofermionic acceptance.

Simulation 02(A12)Trln UZ(A)p.f=<AH> <A>Tr In <A>p.f

0.48(5) 0.051(2)

S3 1.02(20) 7.64(6)
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TABLE IV. The integrated autocorrelation times of some other i

. ) "OHMC
simulations. 10| asi
’ __ O%2
B c K THMC 1.06 ﬁgi
5.2 1.99 0.1335 18(8) 008 \ Vs
' ' : sV '\\ —- Model Prediction
5.2 2.0171 0.1330 26(6) e \
5.232 1.98 0.1335 20(6) I S S
K ————
0.4
rithm satisfies detailed balance, and gave a formula for the 02+ o
swap acceptance rate in terms of the swap energy change
AH. We highlighted the connection between PT and the 0-000 o1 02 0.3 04 o5
technology of action matching. We presented and discussed ) " Swap Acceptance Rate

a simple model of autocorrelations in a twin sub-ensemble

PT system, and found that the algorithm is unlikely to im-  FIG. 2. Integrated autocorrelation times for the plaquette nor-
prove autocorrelation times by more than a factor of two formalized by that from GHMC simulations.

such a system. We verified our simple model assumptions b

gathering autocorrelation time data from previous simula—%OUId lower the acceptance rate and lose all that could be

tions gained by using the Trln action.
We carried out a numerical study where we verified the We note that the above failings are problems inherent to

acceptance formula and the predictions of the autocorrela’tiok"flti'Ce cher andf|ttshsng#lat|on by I:]MlC.dThgy are not mhetr—
model within statistical errors. We also obtained informationS"t Probiems ot the approach. indeed given a system
on how the acceptance rate of the algorithm falls with in-Where some interesting observable has autocorrelation times

creasingA « which decrease rapidly with increases in the distance be-
We found that using the pseudofermions from HMC in fween sub-ensemble@vith distance being defined in the

the swap attempt is a poor way to proceed if the parameter%onteXt of action matchingthe PT approach may be highly

are matched for the TrIn action. We have shown analyticalhé)ljgtceelflsml' However lattice QCD appears not to be such a

that there is an extra noise term in the definition of the dis- Thus we were unable to take advantage of the fact that in
tance between actions when pseudofermions are used. We 9

have attempted to estimate the size of this noise term n e re_gion of parameter space aut_ocorrelation times are short
merically while in another they are long. With our parameter values,

We conclude that parallel tempering does not seem t&he HMC autocorrelation times of our sub-ensembles are the

give any real gain over HMC at the present time for simu->ame within experimental errors and the predictions of our

lating lattice QCD. We were unable to use PT to simulatemOdeI apply. A chain of sub-ensembles that would span the

sub-ensembles sufficiently far apart in parameter space. Tt{,:/@glljl'(;etgl?elséinsre]féggz{aﬁftg r?Sri(l:)eefi?st:J%?eonnssetrmugig,f(t)):n
acceptance rate drops too quickly wiltw. This situation ylarg

could be alleviated somewhat if the swap action or energ)lla'[tlces of interesting size.
differences were to be calculated using the TrIn action, for
simulations with parameters matched with that action. How-
ever in the end the real problem is that the swap action or We gratefully acknowledge support from PPARC grant
energy change scales with the volume for a fixed kappa, ando. GR/L22744, and EPSRC for funding under grant number
that when employing the PT algorithm on a realistic sizedGR/K41663. We also wish to thank Tony Kennedy and
(e.g. 16x 32) lattice, the scaling of the swap energy changeStephen Booth for helpful discussions.

ACKNOWLEDGMENTS

[1] S. Duane, A.D. Kennedy, B.J. Pendleton, and D. Roweth, [7] G. Boyd, Nucl. Phys. BProc. Supp). 60A, 341(1998.

Phys. Lett. B195 216 (1987. [8] B. Sheikholeslami and R. Wohlert, Nucl. PhyB259, 572
[2] B. Allés, G. Boyd, M. D’Elia, A. Di Giacomo, and E. Vicari, (1985.

Phys. Lett. B389 107 (1996. [9] K. Jansen and R. Sommer, Nucl. Phys. (Broc. Supp).
[3] B. Allés, G. Bali, M. D’Elia, A. Di Giacomo, N. Eicker, S. 63A-C, 853(1998.

Guesken, H. Heber, Th. Lippert, K. Schilling, A. Spitz, T. [10] A.C. Irving and J.C. Sexton, Phys. Rev.95, 5456(1997).
Struckmann, P. Ueberholz, and J. Viehoff, Phys. Rew6@ [11] A.C. Irving, J.C. Sexton, and E. Cahill, Nucl. Phys.(Broc.

071503(1998. Suppl) 63A-C, 967 (1998.
[4] K. Hukushima and J. Nemoto, cond-mat/9512035. [12] UKQCD Collaboration, A.C. Irving, J.C. Sexton, E. Cahill, J.
[5] E. Marinari, cond-mat/9612010. Garden, B. JogS.M., Pickles and Z. Sroczynski, Phys. Rev. D

[6] E. Marinari, G. Parisi, and J. Ruiz-Lorenzo, “Spin Glasses and 58, 114504(1998.
Random Fields,” edited by P. Young, cond-mat/9701016. [13] R. Sommer, Nucl. Phy$411, 839(1994.

114501-9



BALINT JOO et al. PHYSICAL REVIEW D 59 114501

[14] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. [16] I. Horvah, and A.D. Kennedy, Nucl. Phy8510, 367 (1998.

Teller, E. Teller, J. Chem. Phyg&1, 1087(1953. [17] N. Madras, and A.D. Sokal, J. Stat. Ph%€, 109(1988.
[15] S. Gupta, A. Irbak, F. Karsch, and B. Petersson, Phys. Lett. B[18] UKQCD Collaboration Z. Sroczynski, S.M. Pickles, and S.P.
242, 437 (1990. Booth, Nucl. Phys. BProc Supp). 63A-C, 949 (1998.

114501-10



