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We present details of our investigations of the parallel tempering algorithm. We consider the application of
action matching technology to the selection of parameters. We then present a simple model of the autocorre-
lations for a particular parallel tempered system. Finally we present results from applying the algorithm to
lattice QCD with O(a)-improved dynamical Wilson fermions for twin sub-ensemble systems.
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I. INTRODUCTION

The computational cost of lattice QCD has always be
enormous. During the last few years the power of superc
puters has grown immensely but simulations with dynam
fermions are still very time consuming.

One of the most popular algorithms for dynamical fe
mion simulations is the hybrid Monte Carlo~HMC! algo-
rithm @1#. However it has been suggested that the HMC
gorithm is not very efficient at decorrelating some long ran
observables such as the topological charge@2#. On the other
hand, results from the SESAM Collaboration@3# indicate
that HMC simulations using Wilson fermions seem to tun
between topological sectors at an adequate rate. The re
of SESAM indicate an autocorrelation time for the topolo
cal charge of about 50 HMC trajectories.

With such high computational costs it is always necess
to keep an eye open for alternative algorithms. Parallel te
pering~PT! or exchange Monte Carlo was proposed in@4# to
assist decorrelation in spin-glass systems. A lucid descrip
of PT and related algorithms such as simulated tempe
and their applications to spin-glass and other systems ma
found in @5,6#.

Recently PT has been applied to simulations of latt
QCD with staggered fermions@7# and this preliminary study
indicated that the autocorrelation times for some observa
were significantly improved over the normal HMC results

In this paper we present our study of the PT algorith
using 2 flavors of degenerateO(a)-improved Wilson fermi-
ons @8# with a non-perturbatively determined improveme
coefficient@9#.

PT simulates several lattice QCD ensembles concurren
hereafter referred to assub-ensembles, with different simula-
tion parameters. PT exploits the fact that the equilibriu
distributions of the configurations in individual sub
ensembles have an overlap, and occasionally tries to s
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configurations between pairs of sub-ensembles, while ke
ing all sub-ensembles in equilibrium. This is done in such
way that the factorization of the joint equilibrium distribu
tion of configurations into the individual distributions fo
each sub-ensemble is not disturbed by the swapping.

The acceptance of these swap attempts depends on
close the sub-ensembles are to each other in parameter s
The concept of distance in parameter space is formalize
@10–12# by the machinery of action and observable matc
ing. In theory, this technology should allow the selection
an optimal set of parameters to maximize the swap acc
tance rate between the sub-ensembles.

Another possibility is to use the action matching techn
ogy to define curves in parameter space on which some
servable such asr 0 @13# is constant. PT can, in principle b
used to simulate numerous points on such a curve in
simulation. However it must be stressed that this scenari
different from the one above. Matching observables is
the same as matching the action@12#. Hence in this case one
does not in general have as good control over the swap
ceptance rate as in the situation outlined previously.

The remainder of this paper is organized as follows:
Our particular variant of the PT algorithm is described

detail in the following section, where we show that it sat
fies detailed balance and present a formula for the accept
rate of the swap attempts. We then relate this formula to
distance in parameter space as defined in the context o
tion matching technology.

The swapping of configurations between sub-ensemble
expected to reduce the autocorrelation times of observa
within individual sub-ensembles with respect to their HM
autocorrelation times. In Sec. III we discuss the simple c
of a PT system consisting of two sub-ensembles. We sug
a model for the autocorrelation function in the PT su
ensembles in terms of that of the original HMC ensemble

Our simulations are discussed in Sec. IV and our res
©1999 The American Physical Society01-1
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are presented in Sec. V. We show that indeed our accept
rate formula of Sec. II is borne out by the simulation resu
We estimate the autocorrelation time of the plaquette
several swap acceptance rates and compare these esti
with the prediction of the model outlined in Sec. III.

Our summary and conclusions are presented in Sec.

II. THE PARALLEL TEMPERING ALGORITHM

Algorithm description

Normal Monte Carlo integration in lattice QCD generat
an ensemble of configurations distributed according to
specified probability measure determined by the action of
system. In practice, in a modern lattice QCD simulation
number of ensembles are generated for varying lattice s
and action parameters. This is done to analyze param
dependence of results, to measure volume effects an
carry out extrapolations to infinite volume and zero qua
mass.

In PT, at least two separate sub-ensembles are gene
in parallel. At regular periods within the parallel su
ensemble generation process, the current configurat
within pairs of sub-ensembles are subjected to a Metrop
acceptance test, the outcome of which is used to determ
whether or not a swap of these configurations between
pair of sub-ensembles should take place.

In lattice QCD with dynamical fermions the fundamen
degrees of freedom are the lattice gauge variables,U, defined
on the lattice links. Normally a configuration is defined
consist only of the values of all the link variables. Howev
the algorithm which we use to integrate single su
ensembles is HMC. This algorithm enlarges the s
ensemble phase space by introducing additional pseud
mion, f, and link conjugate momentum,p, degrees of
freedom. The conjugate momenta are included as an add
term in the action, and play no role in the version of P
which we have implemented. The pseudofermion fiel
however, introduce an important complication. In norm
HMC, pseudofermions allow the replacement of the log
rithm of the fermion determinant term in the lattice acti
with a pseudofermion bilinear term, which contains the
verse of the fermion hopping matrix. Computationally, t
pseudofermion bilinear is much simpler to calculate than
determinant which it replaces.

The consequence of the above for our implementation
PT was, that we were faced with having to choose betw
the following two schemes:

~1! A ‘‘configuration’’ in the PT sense is defined to in
clude links only. The acceptance test then requires the ev
ation of the fermion determinant for each parameter set
each configuration.

~2! A ‘‘configuration’’ is defined to include both links and
pseudofermions. The acceptance test here requires the e
ation of the pseudofermion bilinear for each parameter
for each configuration.

In implementing the PT algorithm we chose to adopt
second approach here, and swapped both links and pse
fermion fields at each successful PT swap step. The fun
mental reason for this choice was simply that the additio
11450
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coding requirement to add parallel tempering to the UKQC
HMC code was minimized. Choosing to swap the links on
would have required the development and integration of s
nificant additional code to calculate fermion determinants

In principle, implementing only one possibility could po
tentially have left a gap in the analysis of the performance
the PT method for lattice QCD. However, as we report b
low, the single implementation we have executed has p
vided us with sufficient detail to estimate also the perf
mance of the second possibility. We find, in fact, that t
links-only swap would have performed better than the lin
plus pseudofermion swap~providing we ignore the addi-
tional computational work required to evaluate the fermi
determinant!. This gain in performance is not sufficient how
ever to change the basic conclusions of this paper.

Notation

Let each sub-ensemble be labelled by an indexi and let
the phase space of sub-ensemblei beG i . Each sub-ensemble
has an actionSi which depends upon the set of paramet
and the fields of the sub-ensemble.

We simulate two flavors of dynamical fermions using t
standard pseudofermionic action

Si52b iWh~U !1f†
„M†~k i ,ci !M ~k i ,ci !…

21f ~1!

whereWh is the Wilson plaquette action,U are the gauge
fields, f are the pseudofermion fields, andM is the
O(a)-improved fermion matrix with hopping parameterk
and clover coefficientc. In addition, for HMC algorithms we
need to introduce momentum fieldsp i and construct Hamil-
tonian functionsHi5p i

21Si . A state in sub-ensemblei is
then represented by the tripleai5(Ui ,p i ,f i) while the pa-
rameter set for sub-ensemblei is the triple of real numbers
(b i ,k i ,ci). Note that the subscripti serves only to distin-
guish ensembles and will be dropped when discussin
single sub-ensemble.

Each sub-ensemble has the phase space

G i5$Ui% ^ $p i% ^ $f i%. ~2!

We note at this stage that eachG i is an identical copy of the
same fundamental phase space, and that the only disting
ing features of individual sub-ensembles are the param
set choices used in their generation, and the consequen
ferences in the distributions of configurations which resu

A PT simulation state is thus the collection of stat
$ai u i 51 . . .n%, wheren is the number of sub-ensembles. Th
overall PT phase space is the direct product of the ph
spaces of the sub-ensembles

GPT5)
i 51

n

G i . ~3!

Detailed Balance

In a PT simulation one needs to construct a Markov p
cess which has~joint! equilibrium probability distribution:
1-2
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PPT
eq5)

i
Pi

eq~U,p,f! ~4!

where Peq(U,p,f) is the desired equilibrium probability
distribution of the individual sub-ensemblei. In our case

Pi
eq~U,p,f!5

1

Zi
e2Hi ~U,p,f! ~5!

Zi5E @dU#@dp#@df#@df†#e2Hi ~U,p,f!. ~6!

Equation ~4! formalizes our notion of simulating en
sembles independently. To be more precise, the Mar
steps within any individual sub-ensemble are independen
those in the others, but the resulting sub-ensembles are
independent as they are coupled by the swapping st
However the overall joint equilibrium distribution of the P
system is not affected by the swapping, and remains
product of the individual equilibrium distributions of th
sub-ensembles.

We define two kinds of Markov transitions:

~1! Transitions within a single sub-ensemble:These
transitions can be made with any desired Markovian upd
procedure that satisfies detailed balance with respect toPeq

for its sub-ensemble. In our case such transitions are m
with HMC. We refer to the set of HMC trajectories that a
performed between swaps as an HMC step.

~2! Transitions between sub-ensembles:These transi-
tions are used to connect the phase spaces of the
ensembles. Such a transition would be a proposed swap
tween any two sub-ensemblesi and j. Let a be a
configuration in sub-ensemblei andb be a configuration in
sub-ensemblej. The swap transition can be denoted

~a,b!→H ~b,a! if swap is accepted,

~a,b! if swap is rejected.
~7!

Let us denote byPs( i , j ) the probability that the swap suc
ceeds. The detailed balance condition is

Ps~ i , j !e2Hi ~a!e2Hj ~b!5Ps~ j ,i !e2Hj ~a!e2Hi ~b! ~8!

as the contributions from the other ensembles cancel on
sides. A suitable choice forPs is the simple Metropolis@14#
acceptance probability

Ps~ i , j !5min~1,e2DH! ~9!

where

DH5$Hj~a!1Hi~b!%2$Hi~a!1Hj~b!% ~10!

which satisfies the detailed balance condition by constr
tion.

The required overall Markov transition should be co
structed of a number of both kinds of transitions. HMC ste
within all the sub-ensembles are necessary and sufficien
convergence of the individual sub-ensembles to the requ
equilibrium probability distributions. Transitions betwee
11450
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sub-ensembles are not essential for convergence to the
rect distributions, but without such transitions PT would
identical to running several independent HMC simulation

Swap acceptance rate and action matching

Any extra decorrelation of observables in PT over a
above normal HMC must necessarily come from the sw
ping transitions. Understanding the factors which determ
the acceptance rate for swapping transitions is therefor
fundamental importance in determining any possible i
provements which might result from applying PT. The swa
ping probability between two sub-ensembles is determi
by the energy changeDH ~9! which would result if the swap
was accepted. In the approximation whereDH is small, the
average acceptance rate,^A&, for Metropolis-like algorithms
of this kind is easily shown to be@15#

^A&5erfcS 1

2
A^DH&12D , ~11!

where ^DH& is the expectation value ofDH in the joint
measure of the two sub-ensembles for which the swap
attempted.

To make the notation explicit, letS1@U# andS2@U# be the
actions of two lattice gauge theories defined on the sa
phase space but with different parameter values. The i
vidual partition functions corresponding to these actions

Zi5E @dU# exp$2Si@U#% i 51,2 ~12!

and the expectation of an observableO in ensemblei is

^O& i5
1

Zi
E @dU# O~U ! exp$2Si@U#%. ~13!

The partition function for the joint system containing two P
sub-ensembles, one simulated with actionS1, and the second
simulated with actionS2 is defined over the direct product o
the single system phase space with itself, and is given a

Z125E @dU#a@dU#b exp$2S1@Ua#%exp$2S2@Ub#%.

~14!

Here thea andb subscripts on the measures label the in
vidual copies of the integration phase space and on the
variables they indicate the copy of the phase space f
which the link variables have been drawn.

Expectations of observables defined on the product ph
space are denoted as

^O&125
1

Z12
E @dU#a@dU#bO~Ua ,Ub!

3exp$2S1@Ua#%exp$2S2@Ub#%. ~15!

Straightforward generalizations apply if we includ
pseudofermions and/or link conjugate momenta as fun
mental phase space degrees of freedom.
1-3
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If the parameters defining the two actions,S1 andS2 dif-
fer by a small amount only, then the expectation values o
observable in the two measures can be related by a cum
expansion which, to first order, takes the form

^O&25^O&11^ÕD̃12&11••• ~16!

whereD12[S12S2 andÕ[O2^O& etc.
An interesting feature of this formula is that the first ord

cumulant expansion term,̂ÕD̃12&1 is actually measurable
numerically.~The first order term is a correlation which ha
fluctuations of order the system size, so finite but large w
is required to evaluate these correlations!. This allows the
development of numerical techniques to calculate the for
distance in parameter space between two different action
also allows the numerical tuning of action parameters
maximize the overlap of specified features of two ensemb
generated by different actions. There are a number of ap
cations of such ‘‘action matching’’ technology@10#.

For example, given two actions with different structur
~e.g. one might include a Wilson fermion term, while th
second might include a Kogut Susskind fermion term!, con-
sider the problem of adjusting the parameters of the sec
action in any of the following ways:

~1! to match the values of some subset of the observa
i.e. require that̂O&15^O&2,

~2! to minimize the formal distance between two actio
in parameter space,

~3! to maximize the acceptance in an exact algorithm
S2 constructed via accept/reject step applied to configu
tions generated with actionS1.

It was shown in@10# that the last two conditions ar
equivalent to lowest order in a cumulant expansion. Un
special circumstances the first condition is also equivalen
the other two to lowest order. The prescriptions differ in
calculable way at the next order.

The relevance of this action matching technology for
is that it allows us, firstly, to generate estimates for the
erage acceptance of PT swaps, and secondly, to analyz
dependence of the average acceptance rate on the struct
the actions for the PT sub-ensembles, and on the differe
in parameter values between sub-ensembles.

The acceptance of PT swaps is determined by the en
differences before and after the swap. This energy differe
is

d5DH. ~17!

The momentum fields cancel exactly in the Hamiltoni
terms and one can deal directly with the actions

d5S1~Ub ,fb!1S2~Ua ,fa!2S1~Ua ,fa!2S2~Ub ,fb!.
~18!

Collecting the terms depending on the same fields one
tains

d5D12~Ub ,fb!2D12~Ua ,fa!. ~19!
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We now identifyd with 2d in ~3.15! in @10#. Following the
analysis of@10# one may obtain the acceptance rate form
of the action matching mechanism

^A&5erfcS 1

2
As2~D12! D . ~20!

One can then deduce that

s2~D12!5^DH&'
1

2
s2~DH! ~21!

where the second approximate equality is required to de
the acceptance rate~11!.

Our PT parameters were tuned using the action match
technology to maximise the acceptance between two s
ensembles using the action

Si52b iWh2Ti ~22!

with

Ti5Tr ln~Qi
21! ~23!

and

Qi5„M†~k i !M ~k i !…
21. ~24!

The tuning was carried out before performing the PT sim
lation using configurations from a preliminary HMC run
the desired reference parameter set. This tuning would h
maximized acceptance in the PT swap steps for the im
mentation where only the links are swapped.@As discussed
above, the swap steps for this implementation depend on
differences in the link action including a fermion determ
nant term,~22!.#

However, as also previously discussed the PT implem
tation we chose involved swapping both links and pseu
fermions. The action to be evaluated for this case is

Si52b iWh1f†Qif. ~25!

We note that tuning parameters to maximise the PT sw
acceptance for Eq.~22! does not necessarily optimize th
swap acceptance for the link plus pseudofermion swap c
Since the details are of considerable importance in the
lowing discussions, we present them here.

Consider first the distances2 between actionsSi where
theSi are as given by Eq.~22!. Then

D125DbWh1DT ~26!

with

Db5b22b1 ~27!

DT5T22T1 . ~28!

The variance ofD12 in an individual sub-ensemble is

s2~D12! i5^~DbW̃h1DT̃!2& i . ~29!
1-4
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One can see that for a givenDT one can tuneDb to mini-
mize this variance.

However when one examines the case of the pseudo
mionic action of Eq.~25! one finds that

D125DbWh1f†~Q12Q2!f. ~30!

When calculating the variance ofD12 one encounters the
quadratic term

^f†~Q12Q2!ff†~Q12Q2!f& i . ~31!

This term gives rise to both connected and disconnec
pieces when the integration over the pseudofermion field
carried out

^f†~Q12Q2!ff†~Q12Q2!f& i

5^Tr2
„~Q12Q2!Qi

21
…& i

U

1^Tr~Q12Q2!Qi
21~Q12Q2!Qi

21& i
U . ~32!

Here the superscriptU on the expectations indicates that th
are now to be carried out over the gauge fields only. He
one finds that

s i
2~D12!5^@DbW̃h1Tr„~Q12Q2!Qi

21
…̃#2& i

U

1^Tr~Q12Q2!Qi
21~Q12Q2!Qi

21& i
U. ~33!

We also note that to first order inQ12Q2

DT'Tr„~Q12Q2!Qi
21

…. ~34!

Comparing Eq.~29! and ~33! it can be seen that using
pseudofermionic action gives rise to a connected piece
s i

2(D12) which one would not get using the action of E
~22!. This connected piece cannot be tuned away by cha
ing Db and it increases the distances in parameter sp
compared to when the action of Eq.~22! is used. If param-
eters are tuned using the action of Eq.~22! and the simula-
tion is carried out using pseudofermions the acceptance
of the swaps will not be optimized.

III. AUTOCORRELATIONS

The cost of measuring observables

The gain from PT is expected to come from the swapp
of configurations between sub-ensembles. This reductio
autocorrelation time is supposed to occur due to the fact
the sub-ensembles are simulated~between swaps! with inde-
pendent Markov processes. However the swaps couple
ensembles and include cross correlations between th
Thus care must be taken when using results from sepa
sub-ensembles together.

According to@16,17# if successive measurements ofO are

correlated, the sample meanŌ is given~we use the conven
tion of @16#! by

Ō5^O&6A2tO11

N
s2~O!. ~35!
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Here,s2(O) is the variance of operatorO given by

s2~O!5^O 2&2^O&2 ~36!

andtO is the integrated autocorrelation time, defined as

tO5(
t51

`

CO~ t ! ~37!

and whereCO(t) is the normalized autocorrelation functio

CO~ t !5
1

s2~O!
Š„O~ t1I !2^O&…„O~ I !2^O&…‹ ~38!

and the expectation values are over all pairs ofOi separated
by an intervalt. From now on we shall drop the subscriptO
from these formulas except where necessary. Furtherm
the term ‘‘autocorrelation time’’ will always be used to refe
to the integrated autocorrelation time.

The practical meaning of the statements above is thatt
11 correlated measurements ofO are needed in order to

reduce the error inŌ by the same amount as if two unco
related measurements were used. Markov methods in gen
produce correlated sequences of configurations, and h
correlated sequences of measured observables. The
grated autocorrelation timet is therefore an important indi
cator of the performance of a Monte Carlo simulation tha
carried out with the intention of measuring observableO.

In particular, if one assumes that the autocorrelation fu
tion decays exponentially

C~ t !5exp$2kt% ~39!

with k.0, one finds that

exp$2k%5
t

t11
~40!

which is a result we shall use later.

Autocorrelations in twin sub-ensemble PT

We are interested in whether or not PT will reduce t
integrated autocorrelation time of an observable measure
an ensemble with some parameter set relative to the co
sponding autocorrelation time of the same observable m
sured on an ensemble generated at the same parameters
HMC. We refer to the former of these autocorrelation tim
as the PT autocorrelation time and the latter as the H
autocorrelation time.

Let us examine the situation of a PT system with tw
sub-ensembles. Sub-ensemble 1 has the desired para
set, and the other sub-ensemble has its parameters chos
as to give some acceptance rate^A&. We assume that the
HMC autocorrelation functions of both ensembles are
same. We demonstrate in Sec. V that over the distance
parameter space for which we can use PT, and with the
tistics available, we cannot differentiate between the autoc
relation times of the plaquette operator between s
ensembles, so we regard the above assumption as reaso
1-5
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Having made the above assumption, the changes in
autocorrelation time due to PT are now controlled solely
the number of successful swaps between the sub-ensem
The swap probability in general depends on the particular
state at which the swap is attempted, but for simplicity
assume that we can replace individual swap probabili
with the overall average swap probability which is no
other than the acceptance rate^A&.

Let the HMC autocorrelation function be denotedCH(t),
and the PT autocorrelation function of the sub-ensemble
interest be denotedCPT(t). Consider the connected autoco
relation function~38! written in the more compact notatio
introduced in Eq.~16!

CH~ t !5
1

^Õ2&
(
i 50

n2t

Õi 1tÕi ~41!

wheren is the number of samples ofÕi .
The autocorrelation function in the PT ensemble of int

est can now be written as

CPT~ t !5
1

^Õ2&
$Se1So% ~42!

where

Se5(
even
Õi 1tÕi , ~43!

So5(
odd
Õi 1tÕi . ~44!

By the even sum we mean that the only terms contributing
the sum are those where an even number of swaps succe

out of thet tried between the measurements ofÕi 1t andÕi .
Given some configuration in one sub-ensemble, after

odd number of successful swaps it can only be in the o
one. As the HMC steps are independent in different s
ensembles, we expect~to a first approximation! no correla-
tion between configurations in a sub-ensemble that are s
rated by an odd number of swaps. Hence we assume thaSo
sums to zero and we consider only theSe term.

We then rewrite Eq.~42! as

CPT5PeCH~ t ! ~45!

wherePe is the probability that an even number of succe
ful swaps occur int trials. Pe is given by

Pe5(
i

Ci
t~12^A&! t2 i^A& i ~46!

where the indexi runs from 0 to the largest even integer le
than or equal tot, i is even andCi

t is the number of ways o
choosingi swaps fromt.

Carrying out the sum in Eq.~46! one finds
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Pe5
1

2
$11~122^A&! t% ~47!

leading to the result

CPT~ t !5
1

2
$11~122^A&! t%CH~ t !. ~48!

We consider three separate cases:

~i! ^A&50: In this caseCPT(t)5CH(t), which is what we
expect when we do not carry out any successful swaps.

~ii ! 0<ŠA‹< 1
2: In this caseCPTP@ 1

2 CH ,CH) and we can
see a reduction in the autocorrelation function of at mos
factor of 2.

~iii ! 1
2<ŠA‹<1: In this case the term (122^A&) t in Eq.

~48! becomes oscillatory. In particular if^A&51 ~every swap
succeeds! it is impossible to get an even number of succe
ful swaps out of an odd number of trials, whereas it is
certainty for an even number of trials.

If one models the autocorrelation function by an expon
tial decay as in Eq.~39!, it is possible to calculate the PT
integrated autocorrelation time for the ensemble:

tPT5(
1

`

CPT~ t ! ~49!

5
1

2
tH1

1

2 (
1

`

„~122^A&!exp$2k%…t ~50!

5
tH@11^A&~tH21!#

112^A&tH
~51!

where the last line follows from using Eq.~40!, summing the
resulting geometric series and simplifying. The ratio oftPT
to tH is then

tPT

tH
5

11^A&~tH21!

112^A&tH
. ~52!

We remark on several features of the ratio in Eq.~52!:
~i! When ^A&50, one is, in effect, carrying out two un

coupled HMC simulations and the autocorrelation times
each sub-ensemble remain the same as they would be
HMC simulations.

~ii ! For a fixed^A&P(0,1
2 ) increasingtH from 0 has the

effect that the ratio of Eq.~52! approaches the value of1
2

from above. The closer̂ A& is to 1
2 , the faster this limit is

approached. If one is interested in both sub-ensembles th
still a gain. If one of the two ensembles serves only to d
correlate the other and is not otherwise interesting~it is
thrown away at the end! then one would lose over HMC a
one would have done twice the work, but gained less tha
factor of two.

~iii ! For ^A&5 1
2 the ratio is exactly1

2 and a break-even is
reached, in the sense that one does the work of two sim
tions, but in each sub-ensemble the integrated autocorr
tion is halved. This is the stage when a sub-ensemble wh
1-6
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originally served no other purpose than to help decorre
the other one may be thrown away without losing out.

~iv! For ^A&P( 1
2 ,1# the ratio approaches12 rapidly from

below. In this case one clearly wins even if one is only i
terested in a single sub-ensemble. However the gain is
much, as for any reasonable value oftH the ratio will have
already approached the asymptotic limit of1

2 to a good level
of accuracy.

One can therefore win most with PT when the accepta
rate is very high, and the observable of interest has a v
short autocorrelation time. In such a situation it is possible
gain more than a factor of two over the HMC autocorrelat
time in each ensemble if the swap acceptance rate is gre
than 1

2 . However if an observable has such a short HM
autocorrelation time, it may not be worthwhile employin
PT. In a typical situation, it would be expected that the g
in each ensemble is very close to a factor of 2.

IV. SIMULATION DETAILS

Our PT simulations were carried out on the PPARC C
T3E facility in Edinburgh. Code for performing the HMC
trajectories was taken from the GHMC code written for t
UKQCD Dynamical Fermions project, described in@18#.

Program features

The PT code ran trajectories on each sub-ensembl
series. Sub-ensembles were labelled from 0 toN21, where
N was the total number of sub-ensembles. Swaps of confi
rations between sub-ensembles were attempted accordi
a booleanplan matrix M. If, after carrying out the HMC
trajectories in sub-ensemblei, the elementMi j was found to
containtrue, the code would attempt to swap configuratio
j and j 11. (j P@0,N22#) The default matrix had all its
elements set tofalseexcept for the last row which had all it
elements set totrue. This way the program would perform a
the HMC trajectories on all the ensembles and would th
attempt a chain of pairwise swaps.

The number of HMC trajectories per sub-ensemble w
controlled through an independent parameter file for e
sub-ensemble. This way a sub-ensemble could be eq
brated with the GHMC code and if desired, it could easily
taken and further evolved on its own using the GHMC co
Likewise each sub-ensemble had an associated set o
files for the plaquette and for solver statistics. The ove
driver routine kept a log file of the success or failure of sw
attempts and the swap energies.

Simulation parameters

Five PT simulationsS1, S2, S3, S4 andS5 were per-
formed, each of which comprised two sub-ensembles.
parameters for these simulations are shown in Table I. In
five simulations one sub-ensemble had parametersb
55.2,c52.0171,k5.13300). The parameters for the seco
sub-ensemble were given by action matching forS1, S2 and
S3, while for S4 andS5 only k was varied. Thus we could
investigate the PT swap acceptance rate for different
tances in parameter space.
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We also had data from a previous HMC simulation w
parameters (b55.2,c52.0171,k5.13300) on lattices of vol-
ume 83316 and 83324.

The results from the reference run on the 83316 lattice
were used to validate the PT code. Our PT simulations w
also carried out on lattices of this size. Furthermore, it w
possible to compare the autocorrelation times of
plaquette from this HMC run with the autocorrelation tim
of the plaquette from the first sub-ensembles of the PT ru
For the second sub-ensembles, the GHMC code was u
only to achieve equilibration. Thus there is insufficient da
to calculate the HMC autocorrelation times of the seco
sub-ensembles.

In the PT simulations each HMC step was one traject
long. The plan matrix used was the default one descri
earlier. SimulationsS1, S2 and S3 ran for 6000 swap at-
tempts giving 6000 trajectories for each sub-ensemble, w
S4 and S5 ran for only 1000 swap attempts due to tim
constraints.

The matching procedure was performed using refere
HMC results from 83324 lattices, and the methods outline
in @12#.

Analysis

We examined the acceptance rate as a function of
average swap energy change^DH&, and ofDk5k22k1, the
change in the hopping parameters. We investigated the a
correlation time of the average plaquette.

Errors in ensemble averages were estimated using
bootstrap method. Autocorrelations were estimated using
sliding window scheme of Sokalet al. @17#.

V. RESULTS

A summary of our results is shown in Table II. We sho
for each simulationDb5b22b1, the correspondingDk,
^DH&, the acceptance rate^A&, the integrated autocorrelatio
time t for the plaquette in sub-ensemble 1 and the autoc
relation time in sub-ensemble 1 divided by the HMC au
correlation time,t1 /tHMC .

Swap acceptance rate

Figure 1 shows the measured swap acceptance rates o
simulations. The solid line is the acceptance rate formula

TABLE I. Simulation parameters used for twin ensemble ru
and the reference HMC run.

@h# Simulation (b1 ,c1 ,k1) (b2 ,c2 ,k2)

HMC (5.2,2.0171,0.133)

S1 (5.2,2.0171,0.133) (5.2060,2.01002,0.13280
S2 (5.2,2.0171,0.133) (5.2105,2.00471,0.13265
S3 (5.2,2.0171,0.133) (5.2150,1.99940,0.13250

S4 (5.2,2.0171,0.133) (5.2,2.0171,0.13280)
S5 (5.2,2.0171,0.133) (5.2,2.0171,0.13265)
1-7
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TABLE II. Results from the PT simulations showing the appropriate results from HMC for compar

Simulation Db(31023) Dk(31024) ^DH& ^A& t1 t1 /tHMC

HMC 26(6) 1

S1 6 22.0 1.23(2) 0.43(1) 12(3) 0.5(2)
S2 10.5 23.5 3.76(4) 0.17(1) 19(4) 0.7(2)
S3 15 27.5 7.64(6) 0.051(2) 24(6) 0.9(3)

S4 0 22.0 0.91(4) 0.49(1) 9(4) 0.3(2)
S5 0 23.5 2.29(7) 0.26(2) 18(10) 0.7(4)
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Eq. ~11!. It can be seen that the measured results are
excellent agreement with its predictions.

Calibration and matching

It can be seen from Table II that simulationsS2 andS3
which had parameters given by matching the Tr ln actions
Eq. ~22! have lower acceptance rates thanS4 and S5 for
which tempering was carried out only ink. We expect that
this is due to the noise term of Eq.~33! and is the result of
using the pseudofermion action for calculating the swap
ergy differences.

To see how large the effect of this noise term is, we c
compare the residual variances2(D12) from the matching
procedure@12#, using the Tr ln action with the variance a
measured in our PT simulations through^DH&. Note that we
only have biased estimators fors2(D12) from the matching
procedure, and that we have calculated the residual varia
estimate only forDk50.0005.

Table III contains our comparison of the Tr ln matchin
predictions and pseudofermionic measurements for sim
tion S3. We can see in column 2, our biased estimate of
residual variance on matching and in column 4 the co
sponding predicted acceptance rate. In column 3 we see
actual variance as measured in the simulation and in colu
5 the corresponding measured acceptance rate. We ex
the difference in the variances to be due to the four po
term in equation Eq.~33!. We can therefore numerically es
timate the four point term to be

FIG. 1. Acceptance rate against^DH&. Error bars are smalle
than the symbols.
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^Tr~Q22Q1!Qi
21~Q22Q1!Qi

21& i
U56.6~2! ~53!

for simulationS3.
Note that if during our swap acceptance steps, we wer

discard the pseudofermion fields, and calculate the ene
change using the Tr ln action by the methods outlined
@12#, we would suffer a workload hit due to the addition
work required to calculate the necessary fermion deter
nants, but would expect an acceptance rate of around 48%
the case of simulationS3. Thus, using pseudofermions was
poor way to proceed originally. However as the action d
ference scales like the lattice volume, going to larger latti
would effectively cancel all the gain one could obtain
using the Tr ln action to evaluate the swap action or ene
difference.

Autocorrelation times and efficiency

The autocorrelation times of the plaquette operator on
sub-ensembles with parameterk5.1330 are shown in col-
umn 5 of Table II. We also show for comparison the au
correlation time estimated from our independent HMC run
the same parameter set. In Table IV we gather some e
mates of the integrated autocorrelation time of the plaqu
for some independent HMC runs at similar parameters to
PT runs. It can be seen that the HMC autocorrelation tim
agree with each other within estimated errors, justifying
assumptions of our model of Sec. II.

Figure 2 shows the ratio of PT to HMC autocorrelatio
times. The errors on the ratios were obtained by simple e
combination. The line superimposed on the data in Fig. 2
the prediction of the model in Sec. II@cf. Eq. 52#. It can be
seen that it is not inconsistent with the data.

VI. SUMMARY AND CONCLUSIONS

In this paper we presented our study of the parallel te
pering algorithm applied to lattice QCD with
O(a)-improved Wilson fermions. We showed how the alg

TABLE III. Comparison of Tr ln matching and acceptance wi
pseudofermionic acceptance.

Simulation s2(D12)Tr ln s2(D)p.f5^DH& ^A&Tr ln ^A&p.f

S3 1.02(20) 7.64(6) 0.48(5) 0.051(2)
1-8
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rithm satisfies detailed balance, and gave a formula for
swap acceptance rate in terms of the swap energy ch
DH. We highlighted the connection between PT and
technology of action matching. We presented and discus
a simple model of autocorrelations in a twin sub-ensem
PT system, and found that the algorithm is unlikely to im
prove autocorrelation times by more than a factor of two
such a system. We verified our simple model assumption
gathering autocorrelation time data from previous simu
tions.

We carried out a numerical study where we verified
acceptance formula and the predictions of the autocorrela
model within statistical errors. We also obtained informati
on how the acceptance rate of the algorithm falls with
creasingDk.

We found that using the pseudofermions from HMC
the swap attempt is a poor way to proceed if the parame
are matched for the Tr ln action. We have shown analytica
that there is an extra noise term in the definition of the d
tance between actions when pseudofermions are used
have attempted to estimate the size of this noise term
merically.

We conclude that parallel tempering does not seem
give any real gain over HMC at the present time for sim
lating lattice QCD. We were unable to use PT to simul
sub-ensembles sufficiently far apart in parameter space.
acceptance rate drops too quickly withDk. This situation
could be alleviated somewhat if the swap action or ene
differences were to be calculated using the Tr ln action,
simulations with parameters matched with that action. Ho
ever in the end the real problem is that the swap action
energy change scales with the volume for a fixed kappa,
that when employing the PT algorithm on a realistic siz
~e.g. 163332) lattice, the scaling of the swap energy chan

TABLE IV. The integrated autocorrelation times of some oth
simulations.

b c k tHMC

5.2 1.99 0.1335 18(8)
5.2 2.0171 0.1330 26(6)
5.232 1.98 0.1335 20(6)
th

,

.

.

n
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would lower the acceptance rate and lose all that could
gained by using the Tr ln action.

We note that the above failings are problems inheren
lattice QCD and its simulation by HMC. They are not inhe
ent problems of the PT approach. Indeed given a sys
where some interesting observable has autocorrelation ti
which decrease rapidly with increases in the distance
tween sub-ensembles~with distance being defined in th
context of action matching!, the PT approach may be highl
successful. However lattice QCD appears not to be suc
system.

Thus we were unable to take advantage of the fact tha
one region of parameter space autocorrelation times are s
while in another they are long. With our parameter valu
the HMC autocorrelation times of our sub-ensembles are
same within experimental errors and the predictions of
model apply. A chain of sub-ensembles that would span
required distance in parameter space can be constructed
would take an unfeasibly large number of sub-ensembles
lattices of interesting size.
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FIG. 2. Integrated autocorrelation times for the plaquette n
malized by that from GHMC simulations.
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