
 

 

 

 

 

Investigating the genetic basis of pyrethroid 

resistance in two members of the  

Anopheles gambiae complex 

 

 

 

 

 

Thesis submitted in accordance with the requirements of the  

University of Liverpool for the degree of Doctor in Philosophy 

 

 

 

 

 

 

 

Submitted by 

 

 

 

 

Claudia Anna Elisabeth Witzig 

 

March 2012 

 

 

 



ACKNOWLEDGEMENTS   II 

Acknowledgements 

I would like to express my sincere gratitude to my supervisors Prof. Hilary 

Ranson, Dr. Charles Wondji and Dr. Clare Strode for the guidance, 

support and encouragement they have given me throughout the course of 

my project. I am especially thankful to Hilary for giving me the opportunity 

to work in the group and her patience and optimism. Charles’ enthusiasm 

and positive thinking were always very inspiring.  

I am grateful to all members of the Vector Group who have helped me 

over the past few years and have made my time in Liverpool enjoyable. I 

am particularly grateful to Sara Mitchell and Amy Lynd for helping with lab 

work and being patient with me whenever I was seeking help and advice. 

Helen Irving, Keith Steen, Chris Jones and Rodolphe Poupardin have also 

been of great help. I greatly appreciate the advice and discussions kindly 

offered by Dave Weetman. Special thanks go to Gwen Finnegan for 

always finding a way. 

I owe a great deal to my parents for their continuous support, 

encouragement and belief in me.  

Finally I acknowledge the moral support and encouragement from all my 

friends in Liverpool. I owe special thanks to Paul and Michael who have 

always offered support and retreat in stressful times and kept me sane.  

 

 



ABSTRACT  III 

Abstract 

Investigating the genetic basis of pyrethroid resis tance in two 

members of the Anopheles gambiae complex 

Chemical control of mosquito vectors, via indoor residual spraying or insecticide 

treated bed nets, is an integral component of malaria control strategies. Limited 

availability of insecticides licensed for public health and the rapid development of 

resistance in mosquito populations to these insecticides, in particular to some 

pyrethroids, may compromise vector control efforts. 

With the exception of mutations in the insecticide target sites, relatively little is 

known about the genetics of pyrethroid resistance in malaria vectors. In some populations 

candidate effector genes, e.g. cyp6p3 or cyp6m2 in An. gambiae s.s. from Akron, Benin, 

have been identified as being over expressed in resistant strains but the underlying 

mechanisms responsible for the increased expression remain unknown. In this study, a 

combination of quantitative PCR, genetic mapping and microarray tools were used to 

investigate the mechanisms responsible for pyrethroid resistance in two African major 

malaria vectors, Anopheles gambiae and An. arabiensis.  

The current work was unable to confirm an association of these known 

candidates in either a laboratory colony established from Akron or in recent field caught 

material. Therefore a genetic mapping approach was adopted using field collected mated 

females to generate F2 isofemale lines. A major QTL on chromosome 3R was identified 

which coincides with a genomic region previously implicated in pyrethroid resistance in 

East African populations. This is the first genetic mapping of insecticide resistance using 

natural out-bred populations of Anopheles and the advantages and limitations of this 

approach are discussed.  

In a second experiment, genetic loci involved in permethrin resistance in An. 

arabiensis were mapped by establishing genetic crosses between a permethrin resistant 

strain from Chad and a susceptible strain from Mozambique. A single QTL on 

chromosome 2R was identified in the F2 progeny that accounts for ~24% of the 

phenotypic variance. This QTL coincides with a large cluster of detoxification genes. 

Pyrethroid resistance is not associated with target-site mutations in this population. 

Finally, microarrays were used to identify genes differentially expressed between a 

backcross population, generated by crossing the F1 population from the resistant Chad 

strain and the susceptible Mozambique strain of An. arabiensis back to the parental 

resistant strain, with the susceptible strain. A number of candidate genes were identified, 

including the P450 genes cyp4h24 and cyp9j5, but neither of these were located within 

the boundaries of the QTL on 2R. 

These findings support the presence of metabolic resistance in this population 

and fine mapping of the identified QTL as well as further investigation of the microarray 

hits is warranted.  



CONTENT  IV 

Table of contents 

ACKNOWLEDGEMENTS .................................. ....................................... II 

ABSTRACT  ......................................... .............................................. III 

LIST OF FIGURES ................................................................................. VIII 

LIST OF TABLES .................................... .................................................. X 

LIST OF ABBREVIATIONS ............................. ........................................ XI 

CHAPTER 1.  INTRODUCTION ............................................................. 1 

1.1 Malaria .......................................................................................... 1 

1.2 Malaria vectors ............................................................................. 1 

1.2.1 The Anopheles gambiae complex .......................................... 2 

1.2.2 Chromosomal and molecular forms of An. gambiae s.s. ........ 5 

1.3 Malaria and vector control ............................................................ 8 

1.3.1 Use of insecticides in vector control ....................................... 8 

1.3.1.1 Indoor residual spraying .................................................. 9 

1.3.1.2 Insecticide-treated bed nets ............................................ 9 

1.3.2 Chemical classes of insecticides and modes of action ......... 11 

1.3.2.1 Organochlorides ............................................................ 11 

1.3.2.2 Organophosphates and carbamates ............................. 11 

1.3.2.3 Pyrethroids .................................................................... 13 

1.3.3 The use of insecticides for malaria control in Africa ............. 14 

1.4 Insecticide resistance ................................................................. 16 

1.4.1 Emergence of resistance ..................................................... 16 

1.4.2 Resistance mechanisms ...................................................... 18 

1.4.2.1 Target-site resistance .................................................... 19 

1.4.2.2 Metabolic resistance ...................................................... 23 

1.4.2.3 Reduced penetration ..................................................... 27 

1.4.2.4 Behavioural resistance .................................................. 28 

1.4.3 Impact of resistance on vector control .................................. 29 

1.4.4 Monitoring of insecticide resistance ..................................... 30 

1.5 Techniques to investigate resistance mechanisms ..................... 31 

1.5.1 Gene expression analysis .................................................... 31 

1.5.2 Functional validation of candidate genes ............................. 32 

1.5.3 QTL Mapping ....................................................................... 33 

1.6 Aims of the study ........................................................................ 35 

  



CONTENT  V 

CHAPTER 2.  GENERAL MATERIALS AND METHODS.................... 3 7 

2.1 Mosquito samples ....................................................................... 37 

2.1.1 Anopheles gambiae s.s ........................................................ 37 

2.1.1.1 Lab colonies ...................................................................... 37 

2.1.1.2 An. gambiae s.s. field samples from Benin, West Africa ... 39 

2.1.1.3 Resistance phenotyping of F2 offspring ............................ 41 

2.1.2 Anopheles arabiensis from Chad and Mozambique ............. 42 

2.1.2.1 Field collections, establishment and characterization of 
mosquito colonies............................................................... 42 

2.1.2.2 Establishment of genetic crosses and experimental 
populations ......................................................................... 45 

2.1.2.3 Resistance profile of genetic crosses ............................... 46 

2.2 Genetic characterisation of mosquitoes ...................................... 47 

2.2.1 Species identification and molecular cytotyping ................... 47 

2.2.2 Genotyping of the kdr and ace-1 mutation ........................... 47 

2.3 Quantitative RT PCR .................................................................. 49 

2.3.1 RNA extraction and cDNA generation .................................. 49 

2.3.2 qPCR primers and experimental set up ............................... 50 

2.3.3 Construction of standard curves for plasmid copy number 
determination ....................................................................... 52 

2.4 QTL mapping .............................................................................. 54 

2.4.1 Selection of informative microsatellite and SNP markers ..... 54 

2.4.2 Genotyping microsatellite and SNP markers ........................ 56 

2.4.3 Software used for marker data analysis, linkage mapping, and 
LOD scoring ......................................................................... 62 

CHAPTER 3.  PRELIMINARY STUDIES ON PERMETHRIN 
RESISTANCE IN ANOPHELES GAMBIAE S.S. FROM BENIN, WEST 
AFRICA  ........................................... ........................................... 64 

3.1 Introduction ................................................................................. 64 

3.2 Aims of the chapter ..................................................................... 68 

3.3 Materials and Methods ............................................................... 69 

3.3.1 Lab colonies and Akron field samples .................................. 69 

3.3.2 Sequencing of candidate genes in Akron field samples ....... 69 

3.3.3 qPCR on candidate genes cyp6p3, cyp6m2 and cplcg4 ...... 75 

3.3.3.1 RNA extraction and cDNA generation ........................... 75 

3.4 Results ........................................................................................ 76 

3.4.1 Akron field samples .............................................................. 76 

3.4.2 Akron lab strain .................................................................... 77 

3.4.3 Sequencing of candidate genes in Akron field samples ....... 78 

3.4.4 qPCR on candidate genes cyp6p3, cyp6m2 and cplcg4 ...... 81 

3.5 Discussion .................................................................................. 84 

  



CONTENT  VI 

CHAPTER 4.  QTL MAPPING OF PERMETHRIN RESISTANCE IN 
ISOFEMALE FAMILIES OF AN. GAMBIAE S.S. FROM BENIN ............ 87 

4.1 Introduction ................................................................................. 87 

4.2 Aims of the chapter ..................................................................... 89 

4.3 Material and Methods ................................................................. 90 

4.3.1 Adult mosquito collections, forced egg laying and generation 
of mapping families .............................................................. 90 

4.3.2 Resistance phenotyping of F2 offspring ................................ 90 

4.3.3 Genotyping of mapping families ........................................... 90 

4.3.4 Software used for marker data analysis, linkage mapping, and 
LOD scoring ...................................................................................... 91 

4.4 Results ........................................................................................ 92 

4.4.1 Adult mosquito collections and forced egg laying ................ 92 

4.4.2 Resistance phenotyping of F2 offspring ................................ 92 

4.4.3 Genotyping of mapping families ........................................... 93 

4.4.3.1 Species identification and genotyping for target-site 
mutations ....................................................................... 93 

4.4.3.2 Selection of informative markers ................................... 94 

4.4.3.3 Genotyping microsatellite and SNP markers in F2 samples
  ...................................................................................... 94 

4.4.4 Linkage mapping .................................................................. 98 

4.4.5 QTL analysis ...................................................................... 102 

4.5 Discussion ................................................................................ 107 

CHAPTER 5.  MAPPING A QTL CONFERRING PERMETHRIN 
RESISTANCE IN THE AFRICAN MALARIA VECTOR AN. ARABIENSIS 
  .................................................................................... 115 

5.1 Introduction ............................................................................... 115 

5.2 Aims of the chapter ................................................................... 117 

5.3 Methods .................................................................................... 118 

5.3.1 Field collections, establishment and characterization of 
mosquito colonies .............................................................. 118 

5.3.2 Selection of informative markers and genotyping of mapping 
families ............................................................................... 118 

5.3.3 Linkage mapping and QTL analysis ................................... 118 

5.4 Results ...................................................................................... 119 

5.4.1 Insecticide susceptibility profile of field collected strains and 
the genetic crosses ............................................................ 119 

5.4.2 Genotyping of experimental populations ............................ 119 

5.4.2.1 Informative markers and genotyping of mapping families .. 
  .................................................................................... 119 

5.4.3 Linkage mapping ................................................................ 122 

5.4.4 QTL analysis ...................................................................... 125 

5.5 Discussion ................................................................................ 130 



CONTENT  VII 

CHAPTER 6.  MICROARRAY ANALYSIS OF PERMETHRIN 
RESISTANT AN. ARABIENSIS FROM CHAD ..................................... 134 

6.1 Introduction ............................................................................... 134 

6.2 Materials and Methods ............................................................. 135 

6.2.1 Microarray experimental procedure.................................... 135 

6.2.1.1 Experimental and microarray design ........................... 135 

6.2.1.2 Sample preparation and labelling ................................ 135 

6.2.1.3 Microarray hybridization .............................................. 136 

6.2.1.4 Microarray scanning and feature extraction ................. 137 

6.2.2 Microarray data analysis .................................................... 137 

6.2.2.1 Enrichment analysis .................................................... 138 

6.2.3 Quantitative RT-PCR on candidate genes ......................... 138 

6.3 Results ...................................................................................... 139 

6.3.1 Microarray .......................................................................... 139 

6.3.1.1 Functional analysis / Enrichment analysis ................... 140 

6.3.1.2 Candidate gene approach ........................................... 142 

6.3.2 Candidate gene validation .................................................. 144 

6.3.2.1 cyp4h24 Real-time quantitative PCR ........................... 144 

6.4 Discussion ................................................................................ 147 

CHAPTER 7.  CONCLUSIONS .......................................................... 152 

7.1 Key findings of the current study .............................................. 152 

7.2 Alternative approaches and suggestions for further work ......... 155 

CHAPTER 8.  LITERATURE ........................................ ...................... 158 

CHAPTER 9.  APPENDIX .................................................................. 176 

Appendix 9.1: ..................................................................................... 178 

Appendix 9.2: . ................................................................................... 180 

Appendix 9.3: ..................................................................................... 180 

Appendix 9.4: ..................................................................................... 181 

Appendix 9.5:  .................................................................................... 183 

Appendix 9.7: ..................................................................................... 185 

Appendix 9.8: ..................................................................................... 187 

Appendix 9.9: ..................................................................................... 189 

Appendix 9.10: ................................................................................... 191 

Appendix 9.11:. .................................................................................. 192 



LIST OF FIGURES  VIII 

List of Figures 

Figure 1.1: An. gambiae s.s. and An. arabiensis in Africa ......................... 3 

Figure 1.2: Evolutionary relationships within Anopheles gambiae s.l. ........ 4 

Figure 1.3: Chromosomal Inversions in An. gambiae s.s. .......................... 5 

Figure 1.4: Scale of IRS and ITN coverage in Africa ............................... 10 

Figure 1.5: Chemical structure of the organochloride DDT ...................... 11 

Figure 1.6: Examples of organophosphates and carmabates. ................. 12 

Figure 1.7: Chemical structures of two pyrethroids .................................. 13 

Figure 1.8: The use of insecticides in Africa ............................................ 15 

Figure 1.9: Trends for the use of organochlorines and pyrethroids.......... 15 

Figure 1.10: Pyrethroid resistance in malaria vectors across Africa ........ 17 

Figure 1.11: Major mechanisms conferring resistance ............................ 18 

Figure 1.12: Illustration of the nerve synapse .......................................... 19 

Figure 1.13: The voltage-gated sodium channel. ..................................... 20 

Figure 1.14: Locations of An. gambiae GSTEs, COEs and P450s. ......... 23 

Figure 2.1: Outline of Africa with countries of origin of samples .............. 37 

Figure 2.2: Larval collection, cleaning and rearing for bioassays. ........... 39 

Figure 2.3: Preparation for forced egg laying ........................................... 40 

Figure 2.4: Experimental crosses of An. arabiensis. ................................ 45 

Figure 2.5: Amplification of fluorescent labelled PCR-products. .............. 55 

Figure 3.1: Map showing location of the collection site Akron. ................ 64 

Figure 3.2: Resistance status of An. gambiae s.l. in Benin. ..................... 66 

Figure 3.3: Volcano plot of microarray experiment (Djouaka et al. 2008). 68 

Figure 3.4: Schematic overview of genes cyp6p3, cyp6m2, cplcg4/3. ..... 70 

Figure 3.5: Trend in mortality during selection of Akron colony. .............. 77 

Figure 3.6: Summary of the qPCR on cyp6p3, cyp6m2 and cplcg4. ........ 82 

Figure 3.7: Absolute copy numbers of the control genes s7 and cpr  ...... 83 

Figure 4.1: Summary of the genetic linkage maps for single families. ..... 99 

Figure 4.2: Genetic linkage maps using the combined data .................... 99 

Figure 4.3: Phenotype-genotype association of single markers. ........... 100 

Figure 4.4: Plots of LOD scores associated with permethrin resistance. 103 

Figure 4.5: LOD plots of combined data (An. gambiae s.s.). ................. 104 

Figure 4.6: LOD plots of combined data alongside the genetic maps. ... 105 



LIST OF FIGURES  IX 

Figure 4.7: P450s and candidate cplcs on chromosome arm 3R. ......... 112 

Figure 5.1: Anopheles gambiae s.s. and An. arabiensis in Chad. ......... 115 

Figure 5.2: Summary of genetic linkage maps for the separate families. 123 

Figure 5.3: Genetic linkage maps using the combined data. ................. 123 

Figure 5.4: Genotype-phenotype association ........................................ 124 

Figure 5.5: LOD plots of combined data alongside the genetic maps. ... 125 

Figure 5.6: Plots of LOD scores for family 2 (An. arabiensis) ................ 126 

Figure 5.7: Plots of LOD scores for family 3 (An. arabiensis). ............... 127 

Figure 5.8: Plots of LOD scores for the combined data (An. arabiensis) 128 

Figure 5.9: P450s and gstz1 on polytene chromosome arm 2R. ........... 132 

Figure 6.1: Results from the enrichment analysis .................................. 141 

Figure 6.2: Sequence alignment of cyp4h24 ......................................... 145 

Figure 6.3: Summary of the qPCR results on cyp4h24 .......................... 146 

 



LIST OF TABLES  X 

List of Tables 

Table 2.1: WHO susceptibility test results for An. arabiensis ................... 43 

Table 2.2: Survival of experimental crosses of An. arabiensis ................. 46 

Table 2.3: Primers used for species identification and genotyping .......... 48 

Table 2.4: Primer details for qPCR assays .............................................. 51 

Table 2.5: Details of calibration curves for all five qPCR assays. ............ 53 

Table 2.6: Plasmid sizes and calculated copy number . .......................... 53 

Table 2.7: Microsatellite markers tested for informativity ......................... 60 

Table 2.8: SNP markers scored via pyrosequencing or RFLP * .............. 61 

Table 3.1: Primers and PCR conditions for the candidate genes. ........... 72 

Table 3.2: Pyrosequencing primers and PCR conditions ......................... 74 

Table 3.3: Bioassay results from larval collections Benin, West Africa. ... 76 

Table 3.4: Summary for genotyping of target-site mutations  .................. 78 

Table 3.5: Number of substitutions in candidate gene sequences. .......... 78 

Table 3.6: List of SNPs identified in the candidate genes. ....................... 79 

Table 3.7: Chi2 and p-values for SNP polymorphisms ............................. 80 

Table 3.8: Ratio of gene expression. ....................................................... 82 

Table 4.1: Summary of WHO bioassay results for F2 progeny. ................ 92 

Table 4.2: Results of molecular karyotyping for the 2La  ......................... 93 

Table 4.3: Summary of phenotype in the families used for genotyping. ... 94 

Table 4.4: Details of microsatellite and SNP markers. ............................. 96 

Table 4.5: Chi2 and p-values for microsatellite and SNP markers ........... 97 

Table 4.6: Summary of map size and map resolution .............................. 98 

Table 4.7: Multiple Interval Mapping estimates (An. gambiae). ............. 106 

Table 5.1: Chi2 and p-values for microsatellite and SNP markers. ........ 121 

Table 5.2: Summary of map sizes and resolution. ................................. 122 

Table 5.3: Multiple Interval Mapping estimates (An. arabiensis). ........... 129 

Table 6.1: Statistical test parameters and results for the microarray. .... 139 

Table 6.2: Significantly differentially expressed detoxification genes. .... 143 

Table 6.3: Transcript levels of cyp4h24 and ratios of transcript levels ... 146 

Table 6.4: Significantly differentially expressed detoxification genes with 

references to previous microarray experiments in Anopheles species. . 148 

 



LIST OF ABBREVIATIONS  XI 

List of abbreviations 

AChE acetylcholinesterase  
Ae.       Aedes  
An.       Anopheles  
cDNA complementary DNA 
cM centi Morgan 
Cx.      Culex  
D. Drosophila 
dd double distilled 
DDT      1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane 
DEPC diethyl pyrocarbonate 
EDTA ethylenediaminetetraacetic acid 
gDNA       genomic DNA  
GST       glutathione-S-transferase  
IRM Insecticide resistance management  
IRS      indoor residual spraying   
ITN      Insecticide-treated (bed) net  
kdr       knockdown resistance  
LLIN      long-lasting insecticidal net  
LSTM       Liverpool School of Tropical Medicine  
M molar 
M. Musca 
MgCl2 magnesium chloride 
MIM Multiple Interval Mapping 
MR4 Malaria Research and Reference Resource Center 
NaCl sodium chloride 
Nav voltage-gated sodium channel 
P. Plasmodium 
P450       cytochrome P450  
PBO       piperonyl butoxide  
PCR      polymerase chain reaction  
QTL quantitative trait locus 
RBM Roll Back Malaria 
RFLP       restriction fragment length polymorphism  
RT room temperature 
SDS sodium dodecyl sulfate 
s.l.       sensu lato  
s.s.       sensu stricto  
SNP       single nucleotide polymorphism  
TDR Special Programme for Research and Training in Tropical Diseases 
Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride 
WHO      World Health Organisation  
WHOPES     WHO pesticide evaluation scheme  

  



CHAPTER 1 INTRODUCTION 1 

Chapter 1. Introduction  

1.1 Malaria 

Malaria is caused by the Plasmodium parasite, which is transmitted by 

Anopheles mosquitoes. Despite extensive control efforts, over half the 

world’s population remain at risk and the disease has a massive impact on 

health and economic development, particularly in Africa (WHO 2011c). 

There were an estimated 216 million malaria episodes in 2010 with over 

80% of these occurring in Africa. These cases resulted in an estimated 

655,000 malaria deaths worldwide of which 91% were in Africa. Children 

under five are at greatest risk (WHO 2011c). A more recent analysis 

however suggests that malaria mortality may be larger than previously 

estimated, with up to 1,134,000 malaria related deaths in Africa in 2010 

(Murray et al. 2012).The malaria burden however goes beyond death or 

acute illness. Malaria infection increases the risk of other illnesses leading 

to malnutrition and infant mortality, and low birth weight in newborns. 

Mosquitoes are important vectors of many diseases including malaria, 

dengue, and yellow fever. Only mosquitoes of the genus Anopheles are 

capable of transmitting the pathogens that cause human malaria 

(Plasmodium falciparum, P. vivax, P. ovale and P. malariae). Furthermore, 

of the around 430 species of Anopheles only about 70 are malaria vectors 

and of these probably only 40 are of medical importance (Service 2004).  

1.2 Malaria vectors  

Anopheline malaria vectors are present on nearly every single continent 

(Kiszewski et al. 2004). However, the majority of the worldwide malaria 

cases occur in Sub-Saharan Africa (WHO 2011c), where the three main 

African malaria vectors co-exist. Three species of Anopheles, An. gambiae 

Giles 1902, An. arabiensis Patton 1905 and An. funestus are responsible 

for most of the malaria transmission in this continent. The highly 

anthropophilic behaviour of these vectors make these species efficient 

malaria vectors. Other secondary vectors however, play an important role 

in certain ecological niches (Service 2004). 
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1.2.1 The Anopheles gambiae complex 

Many of the anopheline vectors of malaria parasites are members of 

cryptic species complexes. Species “complexes of Anopheles typically 

include both vector and non-vector species, with two or more member 

species often being found sympatrically.” (Collins & Paskewitz 1996). The 

existence of an An. gambiae species complex was first noted by Davidson 

in 1964 (Davidson 1964) and the names An. gambiae Giles, 1902 and An. 

arabiensis Patton, 1905 were assigned to the two most abundant of its 

members (White 1974). Anopheles gambiae sensu lato is now known to 

contain at least seven species, namely An. gambiae sensu stricto, An. 

arabiensis, An. melas, An. merus, An. bwambae, An. quadriannulatus and 

An. quadriannulatus species B (Coluzzi et al. 1979). By definition cryptic 

species are reproductively isolated from each other, but they are 

morphologically indistinguishable from each other.  

Five of the members of the An. gambiae complex (An. gambiae, An. 

arabiensis, An. quadriannulatus, An. merus, and An. melas) can be 

distinguished from each other by a species-specific RFLP (restriction 

fragment length polymorphism) (Collins et al. 1987) or by varying product 

size following multiplex PCR (Scott et al. 1993).  

Members of the An. gambiae complex are native to tropical Africa. 

Anopheles gambiae s.s. and An. arabiensis have the most widespread 

distribution and live in sympatry over much of Africa (Figure 1.1) with An. 

gambiae s.s. favouring areas with high nocturnal humidity and An. 

arabiensis thriving in relatively arid savannas and steppes (White 1975).  

Together with An. funestus, they are the major African malaria vectors. 

They live closely associated with humans (Service 2004) and their larvae 

are found in a wide range of water sources such as swamps, rice fields, 

edges of streams or rivers as well as in puddles and water filled hollows 

such as hoof prints. Anopheles gambiae is generally very anthropophagic 

(prefers to feed on human blood) and endophilic (prefers to rest indoors 

after taking a blood meal) whereas An. arabiensis is partially zoophagic 

(will feed on animals) and more exophilic (Service 2004). These 

mosquitoes, however, seem to be rather opportunistic and are able to 
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adapt their behaviour if environmental factors change, e.g. host availability 

for blood feeding behaviour, or insecticide sprayed houses for resting 

behaviour (Collins & Besansky 1994; Killeen et al. 2001). An. 

quadriannulatus and An. quadriannulatus B (non-malaria vectors) are 

freshwater breeding and feed predominantly on cattle. An. bwambae 

females are endophagic and partially endophilic, but the species is 

exclusively known to mineral water springs in Uganda (White 1974). The 

East and West African salt water breeders An. merus and An. melas are 

more minor vectors due to their limited distribution (Coetzee et al. 2000; 

Service 2004). They are predominantly zoophilic but will feed on humans 

in the absence of animals (White 1974).  

 

 
 

Figure 1.1: Predicted species range of An. gambiae s.s. and An. arabiensis 

(A) An. gambiae s.s. and (B) An. arabiensis with black dots representing record of 

occurrence (Sinka et al. 2010), and (C) an overlay map of both An. gambiae s.s. (grey) 

and An. arabiensis (stippled) showing the extended north and south boundaries of An. 

arabiensis range; adapted from Donnelly et al., 2001. 
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Originally An. quadriannulatus was thought to be the best candidate for 

the ancestral An. gambiae (Coluzzi et al. 2002; Coluzzi et al. 1979) but 

opinion was later changed to favour An. arabiensis (Ayala & Coluzzi 

2005). An. gambiae s.s. seems to be an unlikely candidate for the 

ancestral An gambiae as the evolution of this highly anthropophilic species 

must have been driven by human impact (Coluzzi et al. 2002). 

The current hypothesised topologies of the An. gambiae complex give 

conflicting relationships between An. gambiae s.s. and An. arabiensis 

(White et al. 2011a). Figure 1.2 shows the conflict arising from the 

question if the sister species to An. gambiae s.s. is An. merus (a) or An. 

arabiensis (b). In addition, contrary to expectations, the two salt water 

species An. merus and An. melas and the two antropophilic species An. 

gambiae and An. arabiensis are not sister taxa but seem to be the result of 

convergent evolution (Coluzzi & Sabatini 1969).  

The frequency and extent of genetic introgression differs depending on the 

genomic region under investigation. This genetic introgression between 

the member species of the Anopheles gambiae complex and in particular 

between An. gambiae s.s. and An. arabiensis make it difficult to 

reconstruct the evolutionary relationships (White et al. 2011a). 

 

 
 

Figure 1.2: Evolutionary relationships within the Anopheles gambiae complex 

showing sister species to An. gambiae to be An. merus (a) or An. arabiensis (b). 

Trees are based on (a) X-linked sequences and fixed inversion differences (Coluzzi & 

Sabatini 1969) or (b) autosomal sequences and mtDNA. An. christyi belongs to the same 

subgenus as the other shown species and is used as an outgroup to tentatively place the 

root of the trees. (White et al. 2011a).  
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1.2.2 Chromosomal and molecular forms of An. gambiae s.s. 

Members of the An. gambiae complex show ecological and behavioural 

diversification and this behaviour is associated, in part, with fixed patterns 

of fixed chromosomal inversions which can be used to facilitate the 

identification of field specimens (Coluzzi et al. 2002; Coluzzi et al. 1979). 

In An. gambiae s.s. the greatest density of inversions is found on 

chromosome arm 2R (Pombi et al. 2008) and the inversions most 

frequently observed are inversions j, b, c, d and u on 2R and inversion 2La 

(Figure 1.3).  

 
Figure 1.3: Chromosomal Inversions in An. gambiae s.s. 

Paracentric chromosomal inversions of An. gambiae s.s.. (A) Location of 82 rare 

chromosomal inversions (above) and 7 common chromosomal inversions (below) on the 

An. gambiae polytene chromosome complement (Pombi et al. 2008). (B) Close up of 

chromosome arms 2R and 2L showing the six most common chromosomal inversions in 

An. gambiae s.s. (Torre della et al. 2005). 

 

Originally An. gambiae s.s. was classified into different chromosomal 

forms (Bryan J. H. et al. 1982; Favia et al. 1997; Torre della A. et al. 2001) 

based on specific inversion karyotypes arising from combinations of intra-

specific chromosomal inversions. Five partly isolated sub-populations 

A

B
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were defined and named as chromosomal forms Forest, Bissau, Bamako, 

Savannah and Mopti (Bryan J. H. et al. 1982; Coluzzi et al. 1985; Torre 

della A. et al. 2001). Various combinations of these inversions are 

associated with ecotypic differences, and each form is adapted to a 

different ecology (Coluzzi et al. 1979; Touré et al. 1994), indicating that 

selection played a role in those differences (Lehmann & Diabate 2008). 

Populations from forest areas, for example, are characterized by high 

frequencies of chromosome 2Rb and 2La standard arrangements whereas 

in savannah populations, inversion polymorphisms 2Rb/+ and 2La/+ are 

more common and correlate with the degree of aridity (Coluzzi et al. 

1985). The association of 2La/+ to increased tolerance to thermal stress in 

larvae is supported by a recent microarray study (Cassone et al. 2011). 

Polymorphic chromosomal inversions restrict recombination locally by 

suppressing the pairing of homologous chromatids. Hence inversions are 

thought to be hotspots for differentiation as recombination suppression in 

these regions facilitates functional divergence of the inverted and the wild 

type arrangements (Neafsey et al. 2010). 

In addition, An. gambiae s.s. exists as two sympatric sub-taxa known as 

molecular forms, namely M and S (Gentile et al. 2001; Torre della A. et al. 

2001). Originally M and S-form were thought to covary with certain 

chromosomal forms (Torre della et al. 2005; Torre della A. et al. 2001). 

Most recent data however suggests that the different 2R karyotypes are 

not directly responsible for the evolution of M and S-forms and probably 

pre-date the division of M and S molecular form (Costantini et al. 2009; 

Simard et al. 2009; White et al. 2009). 

M and S-forms have diverged in larval ecology and reproductive behaviour 

(Lehmann & Diabate 2008) and results of various studies suggest an 

incipient speciation of An. gambiae M and S molecular forms (Lawniczak 

et al. 2010; Torre della et al. 2005). The two forms exist largely in 

sympatry throughout West Africa (geographically and microspacially) and 

gene flow between forms does continue as the build-up of barriers of gene 

flow is not yet completed (Torre della et al. 2005). M and S-form F1 hybrids 

are fully viable and fertile, not showing reduced fitness, at least under 
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laboratory conditions (Diabaté et al. 2007). Considerable levels of 

hybridization in the wild are observed but to varying degrees (Caputo et al. 

2008; Tripet et al. 2001), and it is suggested that reproductive isolation 

between M and S-form varies across Africa, being higher in the west of the 

continent (Marsden et al. 2011; Weetman et al. 2012). 

One important example of gene flow between those molecular forms is the 

introgression of the knock down resistance (kdr) allele (Milani 1954). This 

is a single-nucleotide mutation in the gene for the Sodium channel which 

causes an amino acid change in the protein. This mutation termed kdr 

confers resistance to DDT and pyrethroid insecticides and is therefore 

extensively studied in An. gambiae populations across Africa. The 

mutation probably originated in the S-form first (Fanello et al. 2003) and 

was later acquired by the M-molecular form through introgression (Weill M 

et al. 2000) rather than through an independent de novo mutation.  

It was long thought that reproductive isolation was due to changes at a 

small number of loci called speciation islands (near centromeres) (Turner 

et al. 2005) and that hybridization lead to M-S genome homogenization in 

all except those few small regions. More recently however, results from a 

SNP genotyping (Neafsey et al. 2010) and a whole genome sequencing 

study (Lawniczak et al. 2010) support a different model. This suggests that 

gene flow between forms is much lower and the process of speciation 

more advanced than thought although the use of samples from lab 

colonies in the study of Lawniczak et al. may have introduced bias 

(Weetman et al. 2012). The process by which species or genomes evolve 

and the key genes driving differentiation in the case of An. gambiae s.s. 

remain largely unknown.  

Morphologically M and S-forms are indistinguishable at all life stages 

(Torre della A. et al. 2001) but can genetically be distinguished by specific 

single nucleotide polymorphisms (SNPs) in the spacer regions of 

ribosomal DNA (rDNA) (Fanello et al. 2002) or by the amplification of a 

SINE (short interspersed element) retrotransposon on the X chromosome 

(SINE200) (Santolamazza et al. 2008b).  
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1.3 Malaria and vector control 

The Global Malaria Action Plan promoted by the international Roll Back 

Malaria (RBM) initiative outlines a global strategy to control malaria and 

eventually eliminate malaria country by country. Recommended control 

strategies are rapid diagnosis and prompt treatment as well as effective 

malaria prevention. 

The introduction of rapid diagnostic tests have improved detection of 

malaria, and improved treatment regimes, involving artemisinin-based 

combination therapy, are being scaled up across Africa (WHO 2008). 

However, drug resistance is an increasing threat (Kappe et al. 2010). 

Extensive efforts have been directed at developing a vaccine against 

malaria and the most advanced vaccine candidate is RTS,S/AS01, 

produced by GlaxoSmithKline, which is currently undergoing phase 3 

studies in seven African countries (The RTS 2011). Initial results are 

promising with >59% vaccine efficacy against all malaria episodes in 

infants, but trials are ongoing (Asante et al. 2011).  

Malaria prevention relies extensively on vector control and this can take 

different forms. Local success has been achieved by biological control, for 

example using larvivorous fish, and environmental control via draining and 

reducing breeding sources. Genetic methods are also being explored. 

However, currently chemical control using insecticides is the most widely 

applied method. 

1.3.1 Use of insecticides in vector control 

In most malaria control programs, vector control is directed at adult 

mosquitoes. The main methods applied are indoor residual spraying (IRS) 

and the use of insecticide-treated bed nets (ITN). These reduce mosquito 

density but more importantly, they directly reduce disease transmission by 

shortening the mosquito’s life span thereby reducing its vectorial capacity. 

Larval control measures, in contrast reduce disease transmission indirectly 

by reducing overall vector density (Walker & Lynch 2007). In an 

environment where mosquito breeding sites are permanent and few as 

well as easy to treat, larvicides to control vector density directly may be 
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used to complement IRS and ITNs. Another method is space spraying 

which is mainly used to control urban epidemics of mosquito transmitted 

disease and is of minor importance for malaria control (WHO 2011a). 

1.3.1.1 Indoor residual spraying 

Indoor residual spraying (IRS) is “the application of long-acting chemical 

insecticides indoors, in order to kill the adult vector mosquitoes that land 

and rest on these surfaces”. (WHO 2006). After having taken a blood-meal 

the main malaria vectors in Africa frequently rest indoors. If walls are 

treated with insecticide, the mosquito may be exposed to a toxic dose and 

may die. IRS aims to reduce disease transmission and to reduce the 

density of vector populations. Some insecticides may also have an 

additional effect in repelling mosquitoes from entering a treated room 

(WHO 2006). Currently twelve insecticides belonging to four chemical 

groups are recommended for IRS by WHO (WHO 2011c). 

Effective implementation and good planning of spray operations are 

crucial for the success of IRS. This involves monitoring of vector 

susceptibility, choice of insecticide and timing of spraying prior to 

implementation and effective monitoring and evaluation post spraying. 

IRS is also one of the main foci of the US President’s Malaria Initiative 

launched in 2005, which provides international funding and coordination 

for the control of malaria (USAID-CDC Interagency Working 2005). According 

to WHO, in Africa IRS now protects 11% of the people at risk (WHO 

2011c) (Figure 1.4).  

1.3.1.2 Insecticide-treated bed nets 

Insecticide-treated bed nets (ITN) or now more commonly long-lasting 

insecticidal nets (LLINs) are the mainstay of malaria vector control in 

Africa. If used and maintained correctly, bed nets protect by acting as a 

physical barrier between humans and mosquitoes to reduce the man-

vector contact.  

Incorporating an insecticide into the net extends its protective effect to 

others. Modest coverage of all adults and children with ITNs can have a 

good community-wide protective effect (Killeen et al. 2007). Various 
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studies have shown the beneficial effects of using ITNs, by reducing 

transmission rates, the incidence of malaria and decreasing mortality 

(Lengeler 2004). The percentage of African households owning at least 

one ITN has risen from 3% in 2000 to 50% in 2011and ITN coverage in 

sub-Saharan Africa is higher than IRS coverage, especially in West Africa 

(WHO 2011c) (Figure 1.4).  

 

 

 

Figure 1.4: Scale of IRS and ITN coverage in Africa  

(A) Trend in estimated population at risk of malaria protected by IRS across Sub-Saharan 

Africa, 2002-2010 and estimated proportion of population at risk of malaria protected by 

IRS in the different countries of Sub-Saharan Africa. (B) Trend in estimated proportion of 

households with at least one ITN in Sub-Saharan Africa, 2000-2011; and estimated 

proportion of households with at least one ITN in the different countries of Sub-Saharan 

Africa, June 2011. Graphs (WHO 2011c), source (Flaxman et al. 2010). Note: colour 

coding between maps of ITN coverage and IRS coverage does vary slightly. 

A IRS coverage overall 11%

B ITN coverage overall 50%
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1.3.2 Chemical classes of insecticides and modes of  action 

Most insecticides act on the nervous system, where they interfere with the 

transmission of nervous impulses. Very few insecticide classes are 

available for use in public health.  

1.3.2.1 Organochlorides 

The first insecticide used on a large scale in public health was the 

organochloride DDT (1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane, 

Figure 1.5) (Zeidler 1874). Easy and cheap to produce, with a long lasting 

toxicity, DDT revolutionized malaria control, when in 1957 the World 

Health Organisation (WHO) embarked on a global initiative to eradicate 

malaria vectors, relying on indoor residual spraying with DDT. DDT is the 

only organochloride insecticide used in vector control today (WHO 2011a). 

DDT is a neurotoxin, targeting the peripheral nervous system of 

arthropods. It acts by paralysing the sodium channels impeding channel 

closing, causing the neurons to fire spontaneously leading to spasm and 

eventually death. 

 

Figure 1.5: Chemical structure of the organochlorid e DDT 

1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (Zeidler 1874) adapted from (Davies et al. 

2007b). 

 

1.3.2.2 Organophosphates and carbamates  

Organophosphates are esters of phosphoric acid, and are structurally 

characterised by a reactive phosphate bonded to a terminal oxygen, two 

lipophilic groups (generally methyl or ethyl) and a leaving group (Fukuto 

1990). Carbamates are esters of carbamid acid, NH2COOH, an unstable 

compound. Most carbamate insecticides are methylcarbamates, derivates 
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of methylcarbamic acid, NHCH3COOH, containing a phenol ring (Fukuto 

1990).  

Organophosphates and carbamates inhibit acetylcholinesterase (AChE) 

by binding to it either irreversibly (organophosphates) or reversibly 

(carbamates). Inhibition of acetylcholinesterase results in the build up of 

acetylcholine at neuromuscular junctions which causes repetitive firing of 

neurones, leading to paralysis and eventual death (Fukuto 1990).  

Organophosphorus and carbamate insecticides exist as a variety of 

chemical structures with different physical and chemical properties. 

Examples of members of these classes recommended for use in public 

health include the organophosphates malathion, fenitrothion, pirimiphos-

methyl, and the larvicide temephos and the carbamates bendiocarb and 

propoxur (http://www.who.int/whopes/Insecticides_IRS_Malaria_ok.pdf) 

(Figure 1.6).  

 

Figure 1.6: Chemical structures of examples of orga nophosphates and carmabates. 

The organophosphate insecticides, malathion and temephos, showing one or two 

reactive phosphorus-ester groups, and the carbamates, bendiocarb and propoxur, 

showing the methylcarbamic group, NH2COOH (Fukuto 1990).  
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1.3.2.3 Pyrethroids  

Synthetic pyrethroids are the major class of insecticides used in public 

health. Pyrethroids are the only insecticide class recommended for 

impregnation of mosquito nets, but are also used for IRS, space spraying, 

and larviciding. 

Pyrethroids are analogues of the naturally occurring insecticidal esters of 

chysanthemic acid (pyrethrins I) and pyrethric acid (pyrethrins II) (Davies 

et al. 2007b). These natural compounds were not cost effective in 

production and lacked photostability. Structural modifications soon led to 

photostable chemicals with high insecticidal, yet low mammalian toxicity.  

Pyrethroids cause effects similar to those of DDT: overstimulation of nerve 

cells by arresting the sodium channels in an open state that will eventually 

cause paralysis and death. However, with pyrethroids, the nerve cells will 

continue to function in a state of abnormal hyperexcitability, and the insect 

suffers an effect known as “knock-down”. This is a sub lethal effect, from 

which the insect can recover. Type II pyrethroids which contain a cyano 

group generally kill more efficiently (Bloomquist 1996). This is because 

“the duration of modified sodium currents by Type I compounds lasts only 

tens or hundreds of milliseconds, whilst those of Type II compounds last 

for several seconds or longer” (Davies et al. 2007b).  

Permethrin, type I, and deltamethrin, type II, (Figure 1.7) are some of the 

most commonly used pyrethroids. Other pyrethroids used for public health 

purposes are alpha-cypermethrin, bifenthrin, cyfluthrin, etofenprox, and 

lambda-cyhalothrin.  

 

 
Figure 1.7: Chemical structures of pyrethroids   

(left), permethrin a Type I pyrethroid and (right), deltamethrin a type II pyrethroid bearing 

the cyano group, CN (Davies et al. 2007b). 
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1.3.3 The use of insecticides for malaria control i n Africa 

Insecticides from the above four chemical classes are used in three main 

applications for malaria control: indoor residual spraying, treatment of nets 

and larviciding.  

A recent review of insecticide use in public health provided information on 

the use of each insecticide class for malaria control in Africa, based on a 

10-year average (2000-2009) (WHO 2011a): 

 

(1) Indoor residual spraying  

• DDT accounts for over 90% (by tons) of the insecticide used even 

though all four chemical classes can be applied  

• When measured in spray coverage, 35% of IRS is with DDT and 

62% with pyrethroids (pyrethroids are generally effective at an 

application rate 60 times lower than DDT). 

(2) Bed net impregnation  

• accounts for 45% of overall insecticide used for vector control (in 

spray coverage, i.e. the surface treated with a specific insecticide)  

• pyrethroids are the only insecticide class used for net treatment and 

make up 100% of insecticides used in this area. 

(3) Larviciding 

• Insecticides used for space spraying or larviciding account for a 

very small fraction of less than 1% 

 

The pie chart (A) shows the percentage in spray coverage of insecticides 

used for the different control methods in Africa. The pie chart (B) is based 

on spray coverage by insecticide class and shows the importance of the 

pyrethroid classes (WHO 2011a) (Figure 1.8).  
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Figure 1.8: The use of insecticides in Africa based  on spray coverage 

The charts show (A) percentages of insecticides expressed in method of control and (B) 

percentage of insecticide used overall; data 10-year average 2000-2009 (WHO 2011a).  

 

Figure 1.9 shows a trend of DDT and pyrethroid usage in vector control in 

Africa over the last 10 years (2000-2009). Use of pyrethroids has 

escalated in recent years. Organophosphate use has decreased over this 

time period and carbamate use has remained relatively stable (WHO 

2011a).  

Given that IRS and ITNs are the mainstay of malaria control programmes, 

insecticide resistance and pyrethroid resistance particularly to the 

pyrethroid class, clearly poses a major threat to malaria control. 

 
Figure 1.9: Trends for the use of organochlorines a nd pyrethroids  

for vector control in the WHO African region shown in tons per year. Note that pyrethroids 

achieve approximately 60-times higher spray coverage * (WHO 2011a).   
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1.4 Insecticide resistance 

Insecticide resistance is defined by WHO as an inherited trait that allows 

the insect to survive a dose of a pesticide, which would normally be lethal. 

With maintained selection pressure, the eventual result is reduced effect of 

the respective chemical to control the target-organism or even complete 

failure to do so.  

Resistance has occurred against the four main classes of insecticides 

sanctioned for public health (Hemingway & Ranson 2000) and is of 

growing concern. Currently there is a lack of alternative, cost-effective and 

safe insecticides to use against resistant populations. 

1.4.1 Emergence of resistance 

Mosquitoes reproduce fast and produce a large number of offspring, and 

they can adapt fast to environmental changes. As a consequence of this 

and the widespread use of insecticides in agriculture and public health, 

resistance has arisen relatively rapidly in malaria vectors. 

Insecticide resistant phenotypes are favoured where mosquitoes are 

exposed to sub-lethal doses of the pesticide. Under these conditions 

resistant individuals have a better chance to survive until reproduction. If 

insecticides target young mosquitoes, susceptible individuals are more 

likely to be killed before they reproduce; this means selection pressure 

towards resistant populations. Such conditions can result from vector 

control through insecticide decay (on treated walls or nets) or bad spraying 

technique.  

The use of insecticides for control of agricultural pests has been linked 

with the development of insecticide resistance in mosquito vectors (Brooke 

et al. 2001; Chandre et al. 1999; Diabate et al. 2002; Yadouleton et al. 

2009). Other chemicals and factors aside from insecticides may create a 

selective environment, which gives rise to resistant populations (Poupardin 

et al. 2008). For example urban pollution with xenobiotics from human 

waste or oil contamination has been suggested to be the major selective 

force for pyrethroid resistance in Southern Benin (Djouaka et al. 2008).  
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Resistance to pyrethroids was first reported in An. gambiae s.s. in 1993 in 

Cote d’Ivoire (Elissa et al. 1993). Initially resistance appeared largely 

restricted to West Africa but in recent years, pyrethroid resistant 

Anopheles populations have been reported throughout Africa (Balkew et 

al. 2010; Chandre et al. 1999; Diabate et al. 2002; Fanello et al. 2003; 

Kerah-Hinzoumbe et al. 2008) (Figure 1.10). As DDT and pyrethroids have 

the same target site, cross-resistance between these classes frequently 

occurs (Dabiré et al. 2009; Ranson et al. 2011).  

Resistance to carbamate (Djogbénou et al. 2009; N'Guessan et al. 2003; 

Ranson et al. 2009) and organophosphate (Ranson et al. 2009) 

insecticides has been reported in An. gambiae s.l. and, although less 

prevalent than resistance to DDT and pyrethroids, resistance is increasing, 

particularly in West Africa (Chouaïbou et al. 2008; Corbel et al. 2007).  

 

Figure 1.10: Pyrethroid resistance in malaria vecto rs across Africa 

Map of Africa showing (A) the distribution of pyrethroid resistance in the main malaria 

vectors and (B) their underlying mechanisms (Ranson et al. 2011).  

 

 

Specifically targeting mosquitoes responsible for disease transmission, 

older mosquitoes, could considerably reduce this selection pressure for 

insecticide resistance. In theory this may be an easier task as the older, 

potentially infected mosquitoes, are generally more susceptible to 

insecticides (Jones et al. 2012a; Rajatileka et al. 2010). This led to the 

A B
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hypothesis (Glunt et al. 2011) that in areas, where a high spray coverage 

can be realized and maintained, application of low insecticide 

concentrations (lower than currently suggested by WHO) would achieve 

reduction of malaria transmission in the absence of the strong selection 

pressure of current practice as both, resistant and susceptible mosquitoes, 

would have the same chance to reproduce.  

1.4.2 Resistance mechanisms 

Resistance mechanisms are generally classed as target-site resistance, 

metabolic resistance, cuticular, or behavioural. Studies usually focus on 

target-site and metabolic resistance (Figure 1.11) and to a lesser extent on 

cuticular and behavioural resistance. 

The two major resistance mechanisms and their relative role in conferring 

resistance to each insecticide class are shown in Figure 1.11. Cross 

resistance may occur due to kdr conferring resistance to both pyrethroids 

and DDT, and ace-1 based resistance to carbamates and 

organophosphates. Less is understood about metabolic cross resistance 

patterns (Mitchell et al. 2012). 

 

 
Figure 1.11: Major mechanisms conferring resistance  to important classes of 

insecticides in mosquitoes . 

++ indicates an important resistance mechanism; + means this mechanism has been 

described but is considered to be of lesser importance (adapted from (Nauen 2007)).  
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1.4.2.1 Target-site resistance 

Target-site resistance results from amino acid substitutions in the 

insecticide target-site, which reduce the binding of the insecticide but 

maintain the function of the protein. The four classes of insecticide 

primarily target three proteins essential for the functioning of the 

mosquito’s nervous system (Figure 1.12): acetylcholinesterase, the 

voltage-gated sodium channel and to a lesser extend (not shown) γ-

aminobutyric acid receptors, ligand-gated chloride channels.  

 

 
Figure 1.12: Illustration of the nerve synapse incl uding the main target sites  

for DDT and pyrethroid insecticides (voltage-gated sodium channel) and carbamate 

insecticides (Acetylcholinesterase) are depicted. 

 

Acetylcholinesterase 

Acetylcholinesterase (AChE) is the target for organophosphate and 

carbamate insecticides. Amino acid substitutions in AChE can result in an 

enzyme with decreased sensitivity or complete insensitivity to these 

insecticides (Russell et al. 2004).  

The ace locus (ace-2) coding for AChE has been mapped in Drosophila 

melanogaster (Hall & Spierer 1986) and several point mutations have 

been identified each conferring low levels of resistance (Mutero et al. 

1994; Pralavorio & Fournier 1992).  

However, the ace-2 locus does not code for the insensitive AChE 

identified in resistant mosquitoes, and a second locus, ace-1, encoding the 

insecticide target AChE was identified in An. gambiae and Culex pipiens 

(Weill 2002). A single glycine to serine substitution at position 119 

(G119S), resulting from a point mutation GGC to AGC in the gene ace-1 

Sodium-channel

Acetylcholinesterase

ACh = Acetylcholine

Nerve impulse

Sodium-channel
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(Weill et al. 2003) is responsible for highly insensitive acetylcholinesterase 

in resistant strains of these mosquito species (Djogbénou et al. 2011). The 

resistance allele for ace-1 is thought to have a high fitness cost in the 

absence of insecticide.  

 

Voltage-gated sodium channel 

The gene for the voltage-gated sodium channel (Nav) was initially cloned 

and sequenced in Drosophila (Loughney et al. 1989). The pore-forming α-

subunit consists of four internally homologous hydrophobic domains (I-IV) 

(Figure 1.13). Each domain consists of six transmembrane helices, five 

hydrophobic (S1, S2, S3, S5, and S6) and one positively charged 

segments (S4). Altogether these form a central ion-conducting pore 

controlled by a voltage sensing part.  

Organophosphates, such as DDT, and pyrethroid insecticides act on the 

Nav and prevent it from functioning normally. Some insect pest species 

have evolved modifications of the sodium channel protein resulting in a 

resistant phenotype. This resistance phenotype was termed knock-down 

resistance (Milani 1954). 

 

Figure 1.13: The transmembrane topology of the volt age-gated sodium channel.  

The pore-forming α-subunit consists of a single polypeptide chain with four internally 

homologous domains (I – IV), each having six transmembrane helices (S1 – S6) adapted 

from (Davies et al. 2007a). The red and green boxes indicate the position of the amino-

acid changes termed kdr and super-kdr. 

 

Kdr is not unique to mosquitoes and was first recognized in the housefly 

Musca domestica in the 1950s (Milani 1954). The genetic linkage of kdr to 

kdr

super-kdr

domain I domain II domain III domain IV

inside

outside
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the insect sodium channel genes was shown in the housefly in the early 

1990s (Knipple et al. 1994; Williamson et al. 1993). The kdr mutation in 

houseflies results from an single point mutation (TTA to TTT) causing an 

amino acid change from leucine to phenylalanine at amino acid residue 

1014 (L1014F) in the S6 segment of the sodium channel protein (Miyazaki 

et al. 1996; Williamson et al. 1996). The phenotype known as super-kdr 

confers much higher resistance (Sawicki 1978) to pyrethroids. It is a 

combination of the original L1014F mutation combined with a methionine 

to threonine alteration at position 918 (M918T) in the S4-S5 loop which 

has been found in the housefly (Williamson et al. 1996).  

Many other mutations in the sodium channel have been reported including 

an alternative substitution at 1014 resulting in an amino acid change from 

leucine to serine (L1014S) (Martinez-Torres et al. 1999a; Martinez-Torres 

et al. 1999b; Ranson et al. 2000a). O’Reilly and colleagues (O'Reilly et al. 

2006) give a summary of the different mutations and locations identified in 

the insect sodium channel that have been associated with insecticide 

resistance. Modelling of the sodium channel (O'Reilly et al. 2006) enables 

predictions of residues in the insecticide binding pocket and facilitates 

prediction of mutations likely to be associated with resistance.  

In An. gambiae s.l., the two mutations 1014F and 1014S have been found. 

The 1014S mutation was first found in East Africa (Ranson et al. 2000a), 

whereas the 1014F mutation was first found in West Africa (Martinez-

Torres D et al. 1998). Both alleles now have a wide distribution across 

Africa. Both the L1014F and L1014S kdr mutations are present in M and 

S-forms of An. gambiae s.s. and in An. arabiensis throughout their range 

(Donnelly et al. 2009; Ranson et al. 2011) and the frequency of 1014F is 

approaching fixation in the S-form of An. gambiae in many parts of West 

Africa.  

Recently a new mutation N1575Y has been identified in An. gambiae s.s. 

which occurs on only a single long-range haplotype also bearing the kdr 

mutation 1014F. The 1014F-1575Y haplotype was found in both M and S-

molecular forms of An. gambiae in West/Central Africa (Jones et al. 

2012b). 
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Kdr-alleles can be detected in both homozygous and heterozygous states 

using a range of molecular techniques including allele specific PCR 

(Martinez-Torres D et al. 1998; Ranson et al. 2000a), Hot Ligation 

Oligonucleotide Assay (HOLA) (Lynd et al. 2005), TaqMan real-time assay 

(Bass et al. 2007) or SNP detection using pyrosequencing. 

In An. gambiae, where kdr resistance is well investigated, the association 

between the kdr mutations and the pyrethroid and/ or DDT-resistance 

phenotype has been shown in several studies using QTL mapping 

(Ranson et al. 2004) and genotype/phenotype association approaches 

(Chandre et al. 2000; N’Guessan et al. 2007). There is a clear link 

between kdr genotype and resistance phenotype, although this 

association in An. gambiae seems to be strongest for kdr and DDT, less 

strong for kdr and permethrin and even less strong for kdr and 

deltamethrin (Brooke & Koekemoer 2010). The kdr genotype may only 

explain part of the variance in a resistance phenotype (Brooke & 

Koekemoer 2010; Donnelly et al. 2009; Saavedra-Rodriguez et al. 2008) 

and the full contribution of kdr to the efficacy of pyrethroids against An. 

gambiae is not clear. It is possibly for this reason that studies that try to 

link kdr frequency to effectiveness of control intervention yield 

contradictory results as they omit the factor metabolic resistance (next 

section).  

γ-aminobutyric acid receptors (GABA) 

The receptors for the neurotransmitter γ-aminobutyric acid (GABA) are 

implicated as site of action for chlorinated hydrocarbons other than DDT, 

such as dieldrin (Nauen 2007). In An. gambiae s.s. an alanine to glycine 

mutation in this receptor confers resistance to dieldrin, rdl, whereas an 

alanine to serine mutation at the same position has been associated with 

resistance to dieldrin in An. arabiensis (Du et al. 2005). Dieldrin is no 

longer used in public health although other insecticides, such as fipronil, 

which have the same target site, are important in agriculture (Caboni et al. 

2003).  
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1.4.2.2 Metabolic resistance 

Metabolic detoxification of insecticides is a common resistance 

mechanism (Hemingway & Ranson 2000). Metabolic resistance can be 

inferred from studies with synergists or using biochemical assays which 

measure the levels of enzyme families associated with insecticide 

metabolism. This resistance mechanism is prevalent in malaria vectors 

(Awolola et al. 2009; Djouaka et al. 2008; Müller et al. 2008b; Verhaeghen 

et al. 2008; Wondji et al. 2007).  

Metabolic resistance is based on an increased rate of insecticide 

metabolism due to enhanced activity of detoxifying enzymes which can 

degrade insecticides before they reach their targets. This can be either 

due to enhanced expression levels of the respective enzyme (enhanced 

expression or gene duplication), or mutations in the enzymes. Three large 

multigene enzyme families are responsible for insecticide metabolism: 

monooxygenases (cytochrome P450s), carboxylesterases (COEs) and 

glutathione S-transferases (GSTs) (Ranson et al. 2002a). 

One noticeable feature that these three gene families have in common in 

insects is the high number of recent duplication events, which tends to 

result in closely related genes being clustered in the genome (Figure 1.14) 

(Ranson et al. 2002a). 

 

 
 

Figure 1.14: Cytological locations of An. gambiae GSTEs, COEs and P450s.  

(from (Ranson et al. 2002a)). 
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Monooxygenase based resistance 

The P450 enzymes (also known as mixed function oxidases and 

cytochrome P450 monooxygenases) are a diverse family, one of the 

largest and oldest, of haem containing enzymes found from bacteria to 

mammals. They fulfil a range of important tasks, from synthesis to 

degradation. In insects they are associated with detoxification of plant 

defence chemicals against herbivores (Gould 1984) and certain 

subfamilies are also involved in insecticide resistance (Ronis & Hodgson 

1989).  

P450s are both diverse in function, due to a wide range in structure, and 

large in number. This diversity arose from extreme gene duplications that 

formed large gene clusters of up to 15 P450 genes per cluster (Ranson et 

al. 2002a; Werck-Reichhart & Feyereisen 2000) with CYP4 and CYP6 

being the largest gene families in Drosophila (Tijet et al. 2001) and An. 

gambiae (Ranson et al. 2002a). Many insect species carry about a 

hundred different P450 genes, e.g. there are 111 in An. gambiae (Ranson 

et al. 2002a), and all evolved from one ancestral gene (Feyereisen 1999).  

With such a number and diversity, some P450s may adopt a new function 

linked to insecticide detoxification whilst the others are able to maintain the 

normal metabolic functions. Possibly small conformational changes of 

cytochrome P450s may increase the affinity or the metabolic turnover of 

insecticides, leading to resistance, although resistance via elevated 

transcript levels is more common (Li et al. 2007; Scott 1999). In An. 

gambiae, the two P450 genes most strongly implicated in pyrethroid 

resistance, cyp6p3 and cyp6m2, were identical or near identical in 

sequence to those in susceptible strains (Müller et al. 2008b; Stevenson et 

al. 2011) but expression is elevated in resistant strains. Gene duplication 

of P450s has been implicated in resistance in An. funestus (Wondji et al. 

2009), Ae. aegypti (Bariami et al. 2012) and the crop pest Myzus persicae 

(Puinean et al. 2010). 

The CYP6 family is exclusive to insects (Tijet et al. 2001) and has been 

linked to insecticide resistance in Drosophila (Cohen & Feyereisen 1995) 
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and various other insects including An. gambiae. In a Kenyan lab strain of 

An. gambiae s.s. resistance to pyrethroids has been mapped to a genetic 

region that contains clusters of the P450 families, CYP4, CYP6 and 

CYP12 (Ranson et al. 2004). In microarray studies other members of the 

CYP6 gene family have been shown to be involved in DDT or pyrethroid 

resistance. Increased transcript levels of cyp6z1 and cyp6z2 (David et al. 

2005; Müller et al. 2007; Nikou et al. 2003; Vontas J 2005), and cyp6p3 

and cyp6m2 (Djouaka et al. 2008; Müller et al. 2008a) have been found in 

resistant An. gambiae populations. This alone does not establish a causal 

relationship with resistance and a biochemical link with enhanced 

insecticide metabolism has to be ascertained. The recombinant An. 

gambiae CYP6P3 (Müller et al. 2008b) and CYP6M2 proteins (Stevenson 

et al. 2011) are able to metabolise pyrethroids in vitro. 

 

Carboxylesterase based resistance 

Carboxylesterases (COE) is a collective term for enzymes that hydrolyse 

carboxylic esters into their acid and alcohol moiety. They are involved in 

metabolism of endogenous as well as exogenous compounds and their 

target substrates are diverse. No unified classification system exists for 

carboxylesterases.  

Esterases can target insecticides that contain ester bonds, such as 

organophosphates (most contain a phosphotriester bond), carbamates 

and pyrethroids (carboxylester bonds). There are generally two 

mechanisms by which carboxylesterases can contribute to insecticide 

resistance: (i) increase in catalytic efficiency through overexpression, (ii) 

high levels of carboxylesterase that act as suicide inhibitors and delay or 

prevent interaction between toxin and target site (Wheelock et al. 2005). 

Overexpression of non-specific carboxylesterases that hydrolyse the 

insecticide before it reaches the target molecule AChE is a common 

mechanism of organophosphate resistance in insects (Devonshire et al. 

1998). Resistance to organophosphates in Culex quinquefasciatus is 

associated with increased production of two non-specific 
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carboxylesterases, ESTα2 and ESTβ2 (Vaughan et al. 1997) and a DDT 

resistant strain of An. stephensi had elevated levels of one COE (Vontas 

et al. 2007).  

COEs have also been associated with pyrethroid resistance in An. 

gambiae (Vontas J 2005); however, they do not seem to be the major 

mechanism causing resistance against this class of insecticides.  

 

Glutathione S-transferase based resistance 

Glutathione transferases (GSTs) are a diverse family of dimeric, mainly 

cytosolic proteins with strong ligand binding properties found in almost all 

living organisms. They play a central role in the detoxification of 

endogenous and xenobiotic compounds, as well as in transport, 

biosynthesis of hormones and protection against oxidative stress (Enayati 

et al. 2005). Mammalian GSTs are classified into eight cytosolic and one 

microsomal class, whereas in insects GSTs are classed into six groups 

(delta, epsilon, zeta, sigma, omega and theta, with the exception of a few 

GSTs that are unclassified) of which the delta and epsilon class are insect 

specific (Ranson et al. 2002a). The delta and epsilon classes have 

expanded independently in D. melanogaster and An. gambiae, suggesting 

a role in specific adaptation for these enzymes. The majority of GSTs 

implicated in xenobiotic metabolism belong to the delta or epsilon classes 

(Ranson et al. 2002a). 

GSTs catalyze the transfer of a thiol group to xenobiotic compounds, 

neutralizing electrophilic sites and rendering the products more water-

soluble (Habig et al. 1974). In the context of insecticide metabolism insect 

this helps excretion of the toxic compounds. GSTs of An. gambiae and 

other disease vectors such as Aedes aegypti are of special interest 

because of their role in DDT resistance (Lumjuan et al. 2005; Ortelli et al. 

2003; Wang et al. 2008). Studies on DDT resistant An. gambiae (Ding et 

al. 2005) and Ae. aegypti (Lumjuan 2005) strains have revealed 

overexpression of gste2, an epsilon class GST. The structure of the An. 

gambiae gste2 has recently been determined (Wang et al. 2008) and 
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modelling of DDT into the putative binding pocket of the enzyme supports 

a role for this enzyme in the conversion of DDT to the non-toxic metabolite 

DDE (1,1-dichloro-2,2-bis-(p-chloro-phenyl)ethylene). Gste2 and two other 

GST epsilon class genes, gste5 and gste7, have more recently been 

shown to confer resistance to DDT and the pyrethroid deltamethrin in Ae. 

aegypti (Lumjuan et al. 2011). At present no direct involvement of GSTs in 

pyrethroid resistance has been shown (Lumjuan et al. 2011). However, it 

is postulated that activity of GSTs contributes indirectly to pyrethroid 

resistance by offering protection against oxidative stress (Vontas et al. 

2001). 

1.4.2.3 Reduced penetration 

Insects are covered by a hard outer layer, called an exoskeleton. This 

provides a very tough, non-mineral covering for the insect, maintains the 

body’s structure, protecting it from mechanical injury and dehydration. The 

exoskeleton is made up of different layers, with the top layer being the 

cuticle. The insect cuticle consists of protein and the polysaccharide chitin 

(Rebers & Riddiford 1988). Arthropod cuticular proteins (Magkrioti et al. 

2004) are a very diverse group that may play an important role in 

insecticide resistance. The majority of cuticular proteins belong to a family 

with the R&R consensus, first identified by Rebers and Riddiford (Rebers 

& Riddiford 1988; Rebers & Willis 2001) named CPRs. The R&R 

consensus is a domain of about 35-36 amino acids, which is extensively 

conserved suggesting that it binds to chitin (Rebers & Willis 2001). In An. 

gambiae 156 of such CPRs have been identified (Cornman et al. 2008). 

However, there are other families of cuticular proteins such as the CPLCs 

(cuticular proteins with low-sequence complexity), of which 18 members 

have been annotated in An. gambiae (He et al. 2007).  

Insecticides need to penetrate the cuticle to reach their target site. Hence 

the rate of insecticide absorption has an important impact on insecticide 

toxicity. Decreased absorption of insecticides could protect the insect, or 

at least encourage resistance by allowing detoxification mechanisms more 

time to act (Plapp 1976). 
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Cuticular resistance was first reported in M. domestica in 1968 (Hoyer & 

Plapp JR. 1968). Delayed cuticular penetration involved in enhanced 

pyrethroid resistance has been shown in a number of insect pests (Ahmad 

et al. 2006; Puinean et al. 2010; Valles et al. 2000). Recent studies on 

insecticide resistant An. gambiae and An. stephensi using microarray 

experiments have found two cplcs, namely cplcg3 and cplcg4, significantly 

overexpresssed in the resistant mosquito strains (Awolola et al. 2009; 

Djouaka et al. 2008; Vontas et al. 2007).  

1.4.2.4 Behavioural resistance 

It is known that avoidance of insecticide treated surfaces is a behaviour 

displayed by insects (Lockwood et al. 1985). Knowledge about 

behavioural resistance of mosquito vectors, however, is very limited. This 

behaviour can take the form of hypersensitivity to a particular insecticide 

or a lowered sensitivity threshold or both.  

Insecticides, too, can have a deterrent effect on mosquitoes. Insecticide 

irritancy can be demonstrated by a strong stimulation to take off and fly, 

mosquitoes exiting from a treated house, or both (Pates & Curtis 2005). 

Behavioural resistance in some countries has developed in response to 

spraying programs. This may include shifts in biting times, or a shift 

towards outdoor biting. For example An. farauti on the Solomon Islands 

showed a change in mosquito behaviour towards outdoor biting as a result 

of indoor use of insecticides (Taylor 1975). A more recent paper on 

malaria vectors in Kenya showed a small shift in biting times for An. 

arabiensis but not for An. funestus (Mathenge et al. 2001).  

There is a lack of comprehensive studies to assess whether behavioural 

resistance affects vector control and whether behavioural changes may be 

an immediate response to the irritant insecticides, or a genetic trait 

evolved under the selection of the presence of insecticides in houses 

(Pates & Curtis 2005).  
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1.4.3 Impact of resistance on vector control  

Insecticide resistance was first reported in malaria vectors in the 1950s 

(Elliott & Ramakrishna 1956) and resistance to DDT and pyrethroids is 

now widespread (Ranson et al. 2011). Resistance may be expected to 

impair malaria control efforts but evidence from field studies is limited and 

potentially conflicting.  

An experimental hut trial conducted in Southern Benin showed, that a high 

frequency of kdr correlates to reduced efficacy of pyrethroid-based vector 

control efforts using insecticide-treated bed nets and indoor residual 

spraying (N’Guessan et al. 2007). However, in North-Benin pyrethroid-

treated nets still remained effective against An. gambiae in a pyrethroid-

resistance area (Corbel et al. 2004). Pyrethroid resistance has been 

implicated in the failure of IRS on Bioko Island and specifically linked to 

kdr (Sharp et al. 2007). 

Perhaps the best example of resistance negatively impacting malaria 

control is in Kwazulu Natal in South Africa, where over 30 years of malaria 

case data are available (Craig et al. 2004). Here, a change in insecticide 

used for IRS from DDT to pyrethroids resulted in the reappearance of An. 

funestus from neighbouring Mozambique and a dramatic increase in 

malaria cases. The An. funestus population was highly resistant to 

pyrethroids and found resting inside sprayed houses. A later change in 

policy to reintroduce DDT was accompanied by a decrease in malaria 

incidence (Hargreaves et al. 2000).  

A systematic review is in preparation trying to quantify the impact of 

resistance on malaria control (Dr. Clare Strode, LSTM, personal 

communication).  

Emergence of resistance however may be delayed or even prevented 

through good practice, e.g. choice of insecticide, rotation of insecticides, 

combination with synergists, or mosaic spraying. The current spread of 

insecticide resistance in the major malaria vectors stresses the need for 

frequent and careful monitoring of resistance in disease vectors.  
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1.4.4 Monitoring of insecticide resistance 

Surveillance to monitor the emergence and spread of resistance is an 

essential step in insecticide resistance management (IRM) providing 

baseline data for programme planning and pesticide selection (Black IV et 

al. 2008). Effective resistance monitoring can improve the efficacy of 

vector control and may also delay or prevent the onset and spread of 

resistance. 

Insecticide resistance is commonly assessed through bioassays by 

exposing mosquitoes to a diagnostic dose of insecticide using standard 

protocols published by the World Health Organization (WHO 2011b). 

Knockdown time is an indicator for resistance. However, if resistance 

alleles are partially or fully recessive, like kdr (Chandre et al. 2000) 

bioassays will only detect resistance, when alleles have already reached a 

frequency high enough for resistant homozygotes to occur.  

Detection of resistance at the molecular level is more sensitive and can 

provide early warning of resistance. Target-site mutations can, once 

characterised, be detected via PCR based methods (Bass et al. 2007; 

Bass et al. 2010; Du et al. 2005).  

Metabolic resistance is more complex and there is no quick and easy field 

compatible approach to identify the mechanisms or enzymes involved. 

Biochemical assays, whilst relatively low cost and simple to perform 

(Hemingway 1989; Penilla et al. 1998) lack specificity. Microarrays, e.g. 

‘detox chips’ can identify genes putatively conferring resistance but require 

specialist equipment and training and are relatively expensive (David et al. 

2005; Strode et al. 2007). 
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1.5 Techniques to investigate resistance mechanisms  

1.5.1 Gene expression analysis 

Microarray and quantitative RT-PCR are RNA based assays used to 

assess transcription levels of genes of a number of samples, tissues or 

conditions.  

A microarray experiment is a targeted expression analysis to create a 

snapshot of transcriptional activity. Expression profiles of large numbers of 

genes can be measured simultaneously in two samples through probe-

target hybridization, to assess the relative abundance of sequences in the 

target (Schulze & Downward 2001). This process seeks to identify 

candidate genes which are differentially expressed in a sample of interest, 

i.e. in resistant mosquito populations (David et al. 2005; Djouaka et al. 

2008; Müller et al. 2008a).  

Small scale microarray platforms, known as ‘detox-chips’ were developed 

to specifically study expression profiles of detoxification genes (primarily 

cytochrome P450s, GSTs and COEs) in both Anopheles and Aedes 

mosquitoes (David et al. 2005; Strode et al. 2007). These have been 

extensively used to study insecticide resistance in mosquitoes (Awolola et 

al. 2009; Christian et al. 2011; David et al. 2005; Djouaka et al. 2008; 

Müller et al. 2008a; Müller et al. 2007; Poupardin et al. 2008; Strode et al. 

2007; Strode 2006).  

More recently, use of these specific microarray platforms has been largely 

replaced by whole genome microarrays (Mitchell et al. 2012; Poupardin et 

al. 2012), which have the advantage of being able to identify additional 

mechanisms that may play an important role in insecticide resistance.  

The microarray process is an initial screen which will generate a list of 

candidate genes which need to be validated by further steps. A microarray 

screen of all known P450s in Drosophila led to the identification of a single 

gene (cyp6g1) conferring insecticide resistance to DDT (Daborn et al. 

2002). Since then a cis-acting regulatory element of cyp6g1 has been 

shown to cause tissue specific over-transcription of this gene (Chung et al. 

2007). Similarly cyp6p3 and cyp6m2 were identified by microarray as 
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overtranscribed in permethrin resistant field populations of An. gambiae 

(Djouaka et al. 2008; Müller et al. 2008b).  

Candidate genes can be investigated further by quantitative RT-PCR to 

confirm elevated expression levels of a number of candidate genes (Müller 

et al. 2008b; Munhenga & Koekemoer 2011) or measure tissue related 

expression (Stevenson et al. 2011). As a typical follow-up for microarray 

experiments, quantitative RT-PCR is cheaper and quicker to carry out and 

a larger number of samples can be assayed in parallel for comparison. 

The method is based on the principle that DNA amplification can be 

measured in real-time by measuring the increase in fluorescence as a 

chemical compound is incorporated into a newly synthesised double 

stranded DNA fragment (Morrison et al. 1998).  

Expression analysis however lacks the potential to establish a functional 

link between gene candidates and the phenotype. 

1.5.2 Functional validation of candidate genes 

Functional assessment is an important part of candidate validation. An in 

vitro approach to functional validation is heterologous protein expression, 

subsequent purification and biochemical assays to investigate the 

metabolic properties of candidate enzymes. Two An. gambiae cytochrome 

P450 genes, cyp6p3 and cyp6m2, were initially highlighted as candidates 

for pyrethroid resistance by microarray experiments (Djouaka et al. 2008; 

Müller et al. 2008b). Subsequently their ability to metabolise pyrethroids 

was validated in vitro (Mitchell et al. 2012; Stevenson et al. 2011). 

RNA interference (RNAi) is an in vivo approach (it may also be carried out 

in vitro in cell lines), to the functional validation of expression candidates. 

This technique is a genetic interference tool (Fire et al. 1998) which 

creates a loss-of-function phenotype by depleting a chosen transcript. The 

first description of An. gambiae immune genes that have an antagonistic 

effect on Plasmodium development was carried out with RNAi (Osta et al. 

2004). RNAi induced gene silencing in a pyrethroid resistant strain of Ae. 

aegypti led to increased susceptibility to deltamethrin (Lumjuan et al. 
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2011) and in vivo knock down of cytochrome P450 reductase increased 

permethrin susceptibility in An. gambiae (Lycett et al. 2006). 

1.5.3 QTL Mapping 

Expression analysis will fail to identify regulatory factors that change a 

phenotype due to structural changes in proteins rather than 

overexpression, such as target-site mutations or enzymes with enhanced 

substrate affinity. Quantitative trait locus mapping has the potential to 

identify these factors.  

Quantitative Trait Loci (QTL) mapping is a whole genome based approach 

that involves the study of associations between phenotype and genotype 

in order to understand and dissect the regions of the genome that affect 

complex traits (Doerge 2002). The main requirements for QTL mapping 

are a population of a measured phenotype and availability of genetic 

markers. The population is then genotyped for a chosen set of those 

markers followed by construction of a genetic map which is used to 

identify loci linked to the trait of interest.  

Microsatellite markers are a type of genetic markers commonly applied for 

QTL mapping. A genetic map consisting of 131 microsatellite markers with 

an average resolution of 1.6 cM was constructed for An. gambiae many 

years before the genome sequence of this species was determined (Wang 

et al. 1999; Zheng et al. 1996; Zheng et al. 1993). With a draft genome 

now complete (Holt et al. 2002) there is a vast array of putative markers 

that can be used for genetic mapping studies. 

QTL mapping has successfully been applied in vectors of disease. 

Examples include mapping of insecticide resistance in various mosquito 

species such as An. gambiae (Ranson et al. 2000b; Ranson et al. 2004), 

An. funestus (Wondji et al. 2007) and Ae. aegypti (Saavedra-Rodriguez et 

al. 2008) as well as susceptibility to Plasmodium infection in An. gambiae 

(Niare et al. 2002; Riehle et al. 2006). 

Previous work on genetic mapping of the genes responsible for insecticide 

resistance in mosquitoes all used experimental crosses between two 

inbred lab strains of mosquitoes, a resistant and a susceptible population, 
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to generate mapping populations (Ranson et al. 2004; Saavedra-

Rodriguez et al. 2008; Wondji et al. 2007). QTL studies can also be used 

for continuous traits in unmanipulated natural populations (Slate 2005). 

Two studies on Plasmodium infection in An. gambiae s.s. (Niare et al. 

2002; Riehle et al. 2006) used phenotypic variation in natural populations 

of An. gambiae to map allelic variants effecting parasite development.  
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1.6 Aims of the study 

This study investigates the genetic basis of permethrin resistance in two of 

the most important African malaria vectors.  

 

(A) Permethrin resistance and QTL mapping of permet hrin 

resistance in isofemale families of Anopheles gambiae s.s. 

from Benin, West Africa.  

 

Pyrethroid resistance is prevalent in South Benin (Corbel et al. 2007; 

Djegbe et al. 2011; Djogbénou et al. 2010). Previous studies had 

demonstrated the presence of the 1014F kdr alleles but also implicated 

both metabolic and cuticular genes in the resistance phenotype (Djouaka 

et al. 2008). 

In this study genetic mapping was used to identify the genetic basis of 

pyrethroid resistance in field populations of An. gambiae s.s. in Benin.  

The specific objectives were to: 

 

1. Identify the main QTLs associated with permethrin resistance using 

F2 isofemale lines from Benin 

2. Assess how much target-site and metabolic resistance contribute to 

the overall variance in the resistant phenotype 

3. Validate the association of the candidate genes with resistance 

using qPCR  
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(B) Investigating the genetics of permethrin resist ance in 

Anopheles arabiensis using a combination of microarray study 

and QTL mapping 

 

Anopheles arabiensis is the most important malaria vector in Chad, 

Central Africa (Kerah-Hinzoumbe et al. 2009). Resistance to pyrethroids is 

prevalent in the south of the country (Kerah-Hinzoumbe et al. 2008; 

Ranson et al. 2009) but this resistance is not associated with target-site 

mutations.  

This study aimed to identify the genes conferring resistance to permethrin 

in this vector. Specifically the objectives were to:  

 

1. Identify the major loci associated with pyrethroid resistance in the 

Ndja laboratory strain 

2. Identify genes differentially expressed in the resistant strain relative 

to a laboratory susceptible strain 
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Chapter 2. General Materials and Methods 

2.1 Mosquito samples 

A range of mosquito samples from three countries across West, Central and 

East Africa was used in this study. These include lab colonies as well as 

larval and adult field collections belonging to two species of the Anopheles 

gambiae complex, An. gambiae s.s. and An. arabiensis, both important 

African malaria vectors.  

 

2.1.1 Anopheles gambiae s.s.  

2.1.1.1 Lab colonies 

During maintenance in the insectaries adult mosquitoes were kept at 

T=26±1°C and relative humidity=75±5% (photoperiod o f 12 hours) in cubic 

cages (25 cm), supplied with 1% sugar solution applied to cotton balls on top 

of the cage. Mosquitoes were allowed to mass mate for around one week, 

when females were blood-fed on human blood using artificial membranes 

and electric feeder arms (blood heated to 37°C). Gr avid females were 

provided with cups half filled with water and lined with filter paper for egg 

laying. The eggs were then transferred to clean filter paper, rinsed with 1% 

bleach for surface-cleansing, followed by rinsing multiple times with distilled 

water to remove remaining bleach. Eggs were stored on moist filter paper in 

a plastic bag for one day until they were set up for hatching in distilled water. 

This procedure seemed to result in more synchronised hatching. Larvae 

were fed finely ground tetra flake fish food (Tetra GmbH, Germany) until the 

Benin

Chad

Mozambique

Figure 2.1: Outline of Africa  with countries of origin  

of the field samples used in this work. An. gambiae s.s. 

from Benin (red) in West Africa, and An. arabiensis 

collected from Chad (blue) in Central Africa and 

Mozambique (green) in the south-east of the continent.  
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pupal stage, and 1st and 2nd instar larvae were supplemented with yeast 

extract (Holland & Barrett, Burton Upon Trent, UK). Larvae were kept to a 

density of about 1 larva/ ml in plastic basins (20x25x5 cm) containing distilled 

water to a depth of 4 cm. Pupae were removed from the water trays with 

plastic pipettes before emerging and transferred into cages.  

Akron lab colony 

The Akron lab colony is an insecticide resistant strain of An. gambiae s.s., 

originating from Porto-Novo, Benin, which was established in MR4 (Malaria 

Research and Reference Resource Center, USA) in June 2008. This colony 

is described by MR4 as being An. gambiae M-form and containing the ace-1 

and 1014F kdr alleles and being resistant to carbamates. Initial 

characterisation of the strain once received at LSTM confirmed the 

carbamate resistance phenotype (0% mortality after 1 hour exposure to 

bendiocarb 0.1%) and also a low level of resistance to permethrin (32.5 % 

mortality after 20 minutes exposure to permethrin 0.75%). 

The colony was split into two. One part was subjected to selection for 

permethrin resistance, henceforth referred to as Akron-permethrin-selected 

or Pakron strain. Selections with permethrin (0.75%) were performed on one 

to two-day old adults, survivors of each assay were pooled and allowed to 

mass mate for the next generation, non-survivors were discarded. The initial 

exposure time of 20 minutes (for generation F5) was gradually increased to 

60 minutes. 

The second colony was subjected to selection for bendiocarb resistance, 

henceforth referred to as Akron-carbamate strain. Selections were performed 

sporadically by exposing 3-5 day old adults to bendiocarb (0.1%) for one 

hour. Survivors were allowed to mass mate for the next generation, non-

survivors were discarded. 

Ngousso lab colony 

The Ngousso lab colony is an insecticide susceptible strain of An. gambiae 

s.s., M molecular form. This strain was colonised in 2006 in Ngousso, a 

district of Yaoundé, Cameroon, West Africa, and was kindly provided by 

Antonio Christophe, OCEAC, Cameroon.  
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2.1.1.2 An. gambiae s.s. field samples from Benin, West Africa 

Larval collections 

The material for the study consisted of An. gambiae collected in 2009 

between September 17th and 23rd.  

Larvae and pupae were collected on three different days from various 

breeding pools between the vegetable fields, filtered, put into fresh water and 

transferred to the laboratory (Figure 2.2). Larvae were fed with finely ground 

dog food and raised to adults. The emerging adults were retained until they 

were 2-5 days old and then used in bioassays. All insecticide bioassays 

described in this report were carried out according to standard WHO 

specifications using WHO insecticide susceptibility kits and insecticide 

treated papers (permethrin 0.75%, DDT 4% and bendiocarb 0.1%) (WHO 

1998). After an exposure of 1 hour, mosquitoes were maintained on honey 

water in insecticide free tubes for 24 hours. Dead and alive individuals were 

stored in silica gel for further analysis. Survivors from a subset of the 

permethrin bioassays were killed 24 hours after exposure and stored in RNA 

later ® (Sigma-Aldrich, UK). 

 

Figure 2.2: Larval collection, cleaning and rearing  for bioassay experiments.  

Another set of field samples collected by Dr. Rousseau Djouaka, IITA, Benin, 

from Akron in 2008 was already available. The set consisted of 69 An. 

gambiae s.s. specimens (34 alive, 35 dead; exposed to 0.75% permethrin for 

one hour). Some of these samples were used for the sequencing of the 

candidate genes and SNP genotyping. 
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Adult mosquito collections and forced egg laying  

The material for this part of the study consisted of An. gambiae collected 

between September 17th and 23rd, 2009. Adult mosquitoes were collected 

inside houses in Akron either in the early morning hours (between 6 and 8 

am) or during the night (between 12 midnight and 6 am). Mosquitoes were 

collected in a cage, transferred to the laboratory and only female Anopheles 

mosquitoes were retained. The Anopheles mosquitoes were blood fed on 

two to three subsequent nights using guinea pigs that were physically 

immobilised and left in the cage overnight.  

Four to six days after blood feeding gravid females were individually 

transferred into 1.5 ml Eppendorf tubes (Morgan et al. 2010) (Figure 2.3) 

containing a square of moistened filter paper lining the inside of the tube. 

The tubes also had two small holes in the lid and further down the tube to 

provide the insect with oxygen. Tubes with female mosquitoes were put 

upright into racks and left to stand in the insectaries.  

 

 

Figure 2.3: Preparation of 1.5 ml Eppendorf tubes f or forced egg laying  

(A-C), individualisation of gravid females (D), female with eggs (E) and raising of larvae (F) 

(pictures John Morgan). 

  

A B C

D E F
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Tubes were checked for eggs daily and those females which had oviposited 

were cooled down in the fridge for 1-2 hours to reduce the motility of the 

female. Each female was then separated from her eggs and stored in a tube 

with silica gel for further molecular analysis. 

Eggs were stored in the original Eppendorf tubes until transported to LSTM, 

where they were set up in distilled water and raised to adults as described 

above (Lab colonies). Their F1 generations were left to randomly intermate to 

produce the second generation. The F2 offspring were then phenotyped and 

used for QTL mapping experiments.  

2.1.1.3 Resistance phenotyping of F2 offspring  

Three isofemale families (families 15, 17, and 25) yielded sufficient progeny 

to be phenotyped. WHO insecticide treated papers (permethrin 0.75%) were 

used to phenotype F2 offspring of family 17. Due to very high survival rates 

on these papers F2 offspring of families 15 and 25 were phenotyped on self 

made 2% permethrin papers. These were made by dissolving 100 mg of 

permethrin (Chem Service, West Chester; purity 46% cis – 52% trans) in 

5 ml of acetone and an equal volume of Dow Corning 556 Silicone Fluid 

(BDH/ Merck). Aliquots of 1.4 ml were evenly spread on 12x15 cm pieces of 

Whatman No. 1 (1 mm) paper until all paper was covered. Papers were dried 

overnight, wrapped in tin foil and stored at 4°C. 

After exposure mosquitoes were maintained on sugar water in insecticide 

free tubes for 24 hours. Dead and alive individuals were counted, sexed and 

put on silica gel for further analysis.  
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2.1.2 Anopheles arabiensis from Chad and Mozambique 

2.1.2.1  Field collections, establishment and characterization of mosquito 

colonies 

Gravid or blood fed resting An. gambiae s.l. adult females were collected by 

the National Malaria Control Programme in houses in N’Djamena (12° 6' 47" 

North, 15° 2' 57" East), capital city of Chad, in S eptember 2009 between 6 

and 12 am. They were left in cages until they had laid eggs which were then 

transported to the Liverpool School of Tropical Medicine (LSTM). This work 

was done by Clément Kerah-Hinzoumbé (Programme National de Lutte 

contre le Paludisme, NDjaména, Tchad) who kindly provided the Ndja eggs 

to LSTM. The eggs were reared and fed with TetraminTM baby fish food and 

a colony, named Ndja, was established. Additionally, a similar sampling of 

females An. gambiae s.l. was carried out from Chokwe (24° 33' 37" S, 33° 1'  

20" E) in Southern Mozambique in July 2009 by Charles Wondji (LSTM) and 

Nelson Cuamba (National Institute of Health, Maputo, Mozambique). Eggs 

were also transported to LSTM for rearing and establishment of a colony 

named Moz. All field collected females used to establish the laboratory 

colony were morphologically identified as belonging to the An. gambiae 

species complex according to the key of (Gillies & Coetzee 1987) and 

identified as An. arabiensis by PCR (Scott et al. 1993).  

To characterize the newly established colonies, insecticide susceptibility 

assays were carried out using 3-5 day old F1 adults from both colonies 

following the WHO protocol (WHO 1998). The following insecticides were 

tested: the pyrethroids permethrin (0.75%), and deltamethrin (0.05%); the 

carbamate bendiocarb (0.1%); the organophosphate malathion (5%); and the 

organochlorines DDT (4%) and dieldrin (4%). The work in LSTM was carried 

out by Dr. Charles Wondji and Matthew Parry, LSTM.  

As P450 monooxygenases have previously been implicated in pyrethroid 

resistance in An. arabiensis (Müller et al. 2008b), their potential involvement 

in the resistance was assessed in the Ndja strain using the P450 inhibitor 

PBO (piperonyl butoxide) (Scott 1999). The synergist PBO effect was 

analyzed in combination with 0.75% permethrin and also 4% DDT to 
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compare between the two insecticide classes. 100 female mosquitoes were 

pre-exposed to 4% PBO paper for 1h and immediately exposed to 0.75% 

permethrin or 4% DDT for 1h. Final mortality was assessed after 24h and 

compared to the results obtained without PBO. Resistant mosquitoes were 

stored at -80°C for subsequent DNA and RNA extracti on, and dead 

mosquitoes were stored with silica gel. 

Results of insecticide susceptibility assays with a range of insecticides for the 

established strains Ndja and Moz are shown in Table 2.1. The Ndja colony 

shows resistance to the type I pyrethroid, permethrin (64.9% mortality after a 

1 hour exposure) and reduced susceptibility to the type II pyrethroid 

deltamethrin (90.6% mortality for females). A mortality of 100% was restored 

by exposure to 4% piperonyl butoxide, PBO, prior to 0.75% permethrin. PBO 

increased DDT mortality from 69.1 % to 84%. 

 

Insecticide 

(Concentration %) 

Females Males Total 

n % Mortality n % Mortality n % Mortality 

Ndja 

Permethrin (0.75) 81 54.3 131 75.6 212 64.9 

Deltamethrin (0.05) 85 90.6 120 98.3 204 95.5 

DDT (4.0) 97 69.1 114 91.2 211 81.0 

Bendiocarb (0.1) 83 100 72 100 155 100 

Malathion (5.0) 80 95.0 73 100 153 97.4 

Dieldrin (4.0) 81 90.1 67 100 148 94.6 

Moz 

Permethrin (0.75) 109 100 70 100 179 100 

Deltamethrin (0.05) 93 100 77 100 170 100 

DDT (4.0) 114 89.5 81 95.1 195 91.7 

Bendiocarb (0.1) 87 100 55 100 142 100 

Malathion (5.0) 81 100 62 100 143 100 

Dieldrin (4.0) 65 100 58 100 123 100 

exposure time 1 hour 
      

       

Table 2.1: WHO susceptibility test results for 2-5 day old An. arabiensis  

from the colonies Ndja, and Moz; the median number of mosquitoes genotyped per 

insecticide is 84 females and 73 males (data from Dr. Charles Wondji LSTM). 
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The An. arabiensis Moz strain is susceptible to all insecticides apart from 

DDT where a reduced susceptibility is observed with 89.5 and 95.1% 

mortality respectively for females and males (Table 2.1).  

A subset of 92 mosquitoes was genotyped for both L1014F and L1014S kdr 

mutations, comprising of 82 from the Ndja strain (25 permethrin resistant 

females, 15 permethrin resistant males, 9 deltamethrin resistant females and 

13 DDT resistant females, as well as 15 females and 5 males that were 

permethrin susceptible) and 10 permethrin susceptible females from Moz 

strain. Additionally, all the mosquitoes alive after bioassays with the 

organophosphate malathion were screened for the presence of the 

acetylcholinesterase target-site mutation G119S (ace-1) associated with 

carbamate and organophosphate resistance using the pyrosequencing 

method. No kdr mutation was found in the Ndja strain or in the Moz strain. 

No ace-1 mutation was observed for the 50 mosquitoes genotyped (25 Ndja 

and 25 Moz) with all samples showing the wild type susceptible allele in both 

strains. This work was carried out by Dr. Charles Wondji and Matthew Parry, 

LSTM. 
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2.1.2.2 Establishment of genetic crosses and experimental populations 

Reciprocal crosses between the pyrethroid resistant (Ndja) and susceptible 

(Moz) colonies were established by Dr. Charles Wondji and Matthew Parry. 

Pupae from each strain were individually placed in a tube for emergence and 

newly emerged male and female adults of one strain were placed in mating 

cages with the opposite sex of the other strain (Ndja (RR) males with Moz 

(SS) females and vice versa). Mosquitoes were allowed to mate for 4 days 

after which they were blood fed for oviposition. Eggs from each crossing 

were collected and reared separately to adults. One part of the resulting F1 

hybrid generation was then intercrossed to generate the F2 generation; the 

other part was backcrossed to the resistant parent, the NDJA strain, to 

generate the backcross generation B1 (Figure 2.4). This set up provided us 

with two sets of mosquito samples: (a) a backcross B1 generation, providing 

RNA for microarray analysis as well as qPCR assays and (b) F2 progeny 

from reciprocal crosses to yield DNA for QTL mapping.  

 

 
Figure 2.4: Experimental crosses of An. arabiensis. 

Shown is a schematic overview of the experimental set-up of the genetic crosses of the two 

An. arabiensis strains Ndja and Moz yielding progeny B1 and F2 for the two different 

experiments.   

x

Ndja (RR)         Moz (SS)

F1

Intercross

F1 to

F2

Backcross of F1

to resistant parent

B1

Experiment 2

QTL mapping

Experiment 1

microarray 
comparing B1 to Moz (SS)
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2.1.2.3 Resistance profile of genetic crosses 

WHO Bioassay were carried out using 0.75% permethrin for 1h, as described 

above for susceptibility assays on the F1 progeny, the F2 progeny from F1 

intercross as well as the B1 backcross of F1 with the parental Ndja strain.   

Permethrin induced mortalities for the reciprocal crosses family 2 and 3 in 

the F1 and F2 generations were similar (72-78 %) (Table 2.2). Backcrossing 

to the parental resistant Ndja strain reduced the mortality to 27%.  

Survivors and non-survivors of the F2 samples were dried and stored on 

silica gel for later DNA extraction and are further referred to as alive and 

dead; survivors of the B1 cross were snap frozen and stored at -80°C for lat er 

RNA extraction. DNA of the F2 samples was used for QTL mapping 

(Chapter 5) and RNA of the B1 samples was used for microarray and qPCR 

experiments (Chapter 6).  

 

Table 2.2: Survival of experimental crosses of An. arabiensis 

Shown is mortality [%] 24hr post exposure following exposure to 0.75% permethrin for 1 h 

(data from Dr. Charles Wondji, LSTM). 

 

  

Cross n tested mortality [%] 

Parental strains    

Ndja (RR) 213 61.0± 10.2 

Moz (SS) 270 100±0.0 

F1 from reciprocal parental crosses    

F1-Family 2 ( SS ♂ x RR ♀) 129 78.3± 5.5 

F1-Family 3 ( SS ♀ x RR ♂) 168 75.0± 6.3 

Backcross to RR    

B1 (F1(♀) family 3 X RR(♂)) 148 27.0± 6.0 

F2 from F 1 intercross    

F2-family 2 ( F1(♀) x F1(♂)) 168 77.4±  8.4 

F2-family 3 ( F1(♀) x F1(♂)) 534 72.1± 11.0 
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2.2 Genetic characterisation of mosquitoes 

Genomic DNA was extracted from single mosquitoes using the protocol by 

Livak (Livak 1984). Each mosquito was ground in 100 µl buffer (0.5% 

SDS/0.08 M NaCI/0.16 M sucrose/0.06 M EDTA/0.I2 M Tris-HCI, pH 9) in a 

1.5 ml Eppendorf tube, and incubated at 65°C for 30 min. A volume of 14 µl 

of potassium acetate (8M) was added and the homogenate incubated on ice 

for 30 min. The mixture was then centrifuged for 15 min (13,000 rcf) to collect 

debris and precipitated protein. The supernatant was transferred to a clean 

tube and nucleic acid precipitated by adding 200 µl of ice cold ethanol 

(100%). The mixture was vortexed for a couple of seconds and then left on 

ice for 20-60 min. The pellet was collected by centrifuging for 15 min (13,000 

rcf) and washed twice in ice cold ethanol (70%). It was then dried, re-

dissolved in 100 µl sterile water and kept at -20°C. 

2.2.1 Species identification and molecular cytotypi ng  

Molecular identification to species level was performed for all mosquito 

samples using the PCR protocol developed by (Scott et al. 1993). For 

specimens identified as An. gambiae s.s. the molecular form of each sample 

was confirmed using the PCR protocol based on the amplification of a SINE 

transposon (Santolamazza et al. 2008b) as well as the karyotype for the 2La 

inversion (White et al. 2007) (Table 2.3). The 2Rb karyotype was determined 

in all parental females and a small number of F1 offspring (Lobo et al. 2010) 

(Table 2.3). 

2.2.2 Genotyping of the kdr and ace-1 mutation 

Single mosquitoes were genotyped for the 1014F kdr allele using either the 

TaqMan assay (Bass et al. 2007) or a pyrosequencing assay (developed by 

Charles Wondji, LSTM). The ace-1 allele was genotyped using a 

pyrosequencing assay (Charles Wondji, LSTM). For the three field collected 

An. gambiae s.s. parental females (families 15, 17 and 25) from Akron the 

kdr genotype was additionally confirmed through sequence analysis 

(sequencing service, Macrogen, Korea). 
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Table 2.3: Details of the primers used for species identification and genotyping of An. 

gambiae gDNA samples.  

 

For a subset of the samples additional regions of the sodium channel were 

amplified using primer sets Ex20, Ex29 and Ex27-31 (Table 2.3) and 

sequenced by Macrogen, Korea. 

Primer name Primer sequence 5’-3’ 
Prod. 

size [bp] 

MgCl2 

[mM] 

TA 

[°C] 

Primer source  

and comments  

Species ID      

UN_F GTGTGCCCCTTCCTCGATGT   1.75 50 (Scott et al. 1993) 

GA_R CTGGTTTGGTCGGCACGTTT 390   

ME_R TGACCAACCCACTCCCTTGA 464/466    

AR_R AAGTGTCCTTCTCCATCCTA 315    

QD_R CAGACCAAGATGGTTAGTAT 153    

Inversion Karyotyping 2Rb     

2Rb_For CGGGAGCAAAGATAAGTAGCA 429 or 1.75 58 (Lobo et al. 2010) 

2Rb_Rev AACCCTACCATATACCAGTACCAACG 630    

2Rb+_Rev CCGGATAATCGACGCTCTAC     

Inversion Karyotyping 2La     

Universal CTCGAAGGGACAGCGAATTA 207 or 2.5 60 (White et al. 

2007) 

2La ACACATGCTCCTTGTGAACG 492    

2L+
a
 GGTATTTCTGGTCACTCTGTTGG     

Molecular Form Genotyping     

SINE200_F TCGCCTTAGACCTTGCGTTA M: 479; 

S: 249 

1.5 54 (Santolamazza et 

al. 2008b) SINE200_R CGCTTCAAGAATTCGAGATA   

1014F kdr Taqman Assay     

kdr-Forward CATTTTTCTTGGCCACTGTAGTGAT    (Bass et al. 2007) 

kdr-Reverse CGATCTTGGTCCATGTTAATTTGCA     

probe WT  CTTACGACTAAATTTC    VIC labelled 

probe 1014F ACGACAAAATTTC    FAM labelled 

probe 1014S  ACGACTGAATTTC    FAM labelled 

1014F kdr Pyrosequencing Assay     

kdr-PyrAg_F TTGTGTTCCGTGTGCTATGC 154 1.5 50 Charles Wondji 

kdr-PyrAg_R-bio AAAAACGATCTTGGTCCATGT    (5’Biotin) labelled 

kdr-Ag-seq TGTAGTGATAGGAAAT   T C/T A/T GTCGTAAG ¥ 

Ace-1 Pyrosequencing Assay     

AChE-PyrAg_F CCTGTCCGAGGACTGTCTGT 164 1.5 55 Charles Wondji 

AChE-PyrAg_R-bio ACCACGATCACGTTCTCCTC     (5’Biotin) labelled 

AChE-seq  TGTGGATCTTCGGCGG   C A/G GCTTCTACTCC ¥ 

Sequencing of Sodium channel 
    

Ex20_F AAATGTCTCGCCCAAATCAG 568 3.5 61 (Lynd et al. 2010) 

Ex20_R GCACCTGCAAAACAATGTCA     

Exon 29_F AAATGCTCAGGTCGGTAAACA 330 1.8 61 Hilary Ranson 

Exon 29_R GCCACTGGAAAGAATGGAAA     

EX27-31_F GAATGCGTTGGTTCAAGCTA 1355 3.0 57 C. Wondji 

EX27-31_R TTTGACGTGCATGAAAAATGA     

¥ sequence to be analysed     
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2.3 Quantitative RT PCR 

2.3.1 RNA extraction and cDNA generation 

RNA was extracted from pools of three An. gambiae s.s. using the Trizol 

extraction method or from 10 An. arabiensis using the PicoPure™ RNA 

Isolation Kit (Arcturus®, Applied Biosystems). All mosquito samples were 

three day-old, unmated female mosquitoes. All mosquito samples with the 

exception of the An. gambiae s.s. Benin field samples and the An. arabiensis 

B1 samples (described in Chapter VI), were unexposed specimens, snap 

frozen and stored at -80°C. RNA was also extracted from the Benin field 

samples that survived a 1 hour exposure to 0.75% permethrin and after a 

recovery period of 24 hours were snap frozen and stored in RNAlater® 

(Ambion, Applied Biosystems).  

For the Trizol extraction samples were homogenized in 200µl Trizol using a 

pestle and centrifuged at 13,000 rcf for 10 minutes (4°C). The clear 

supernatant was transferred to a fresh tube, left to stand for 5 minutes (RT) 

and then 40µl of chloroform was added. Samples were vortexed for several 

seconds, left to stand for 2-15 minutes (RT) and centrifuged at 13,000 rcf for 

15 minutes (4°C). The upper aqueous phase was trans ferred to a new tube, 

RNA precipitated by adding 100 µl of isopropanol and the mixture left to 

stand for 5-10 minutes (4°C). RNA was pelleted by c entrifuging at 13,000 rcf 

for 10 minutes (4°C). The supernatant was removed, the pellet washed in 

200 µl of ethanol (75%), vortexed and centrifuged at 5000 rcf for 5 minutes 

(4°C). The pellet was briefly air-dried and re-diss olved in 26 µl of DEPC 

water. For the extractions with the Pico pure kit, instructions were followed as 

stated in the handbook by the manufacturer. 

For DNase treatment, 1 µl 10x DNase buffer and 1 µl DNase (Promega UK, 

Southampton) was added to 8 µl RNA (~300ng/µl), the mixture was 

incubated at 37°C for half an hour, and the reactio n stopped with 1 µl of 

DNase stop solution (65°C for 10 minutes). RNA was stored at -80°C for later 

use. 

An aliquot of RNA served as template for making cDNA by reverse 

transcription. To obtain single stranded cDNA a reaction mix of 20 µl was 
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made consisting of 2 µl oligo dTs 18 (50 µM), 1 µl dNTPs (10 mM), 4 µl 5x 

transcriptase buffer, 1 µl Reverse Transcriptase (RevertAid Premium 

Reverse Transcriptase, Fermentas), 0.5 µl RNase inhibitor (RiboLock, 

Fermentas), 1.5 µl dd. H2O and 10 µl RNA containing up to 5 µg RNA. The 

reaction mixture was incubated at 50°C for 30 min f ollowed by 85°C for 5 

minutes. The resulting cDNA was RNase treated to remove RNA, by adding 

5 µl 10x RNase buffer, 1 µl RNase (New England Biolabs UK) and 24 µl dd. 

H2O. The mixture was incubated at 37°C for 1 hour fol lowed by heat 

inactivation at 65°C for 20 minutes. The cDNA was f urther cleaned-up by 

column purification (QIAquick PCR Purification Kit, Qiagen) and eluted in 

30 µl dd H2O.  

To check for genomic DNA contamination in the cDNA a PCR reaction using 

s7 primers (targeting the transcript for the ribosomal subunit s7 

AGAP010592-RA (Salazar et al. 1993), used as a control gene) was carried 

out. The primers span an intron of 149 bp, hence PCR products from gDNA 

will be longer than the product from cDNA, a result which can easily be 

visualized by running the PCR products on a 1.5% agarose gel. Details for 

s7 primers are listed in Table 2.4. The 25 µl reaction mixture was as follows: 

2.5 µl 10x reaction buffer, 0.1 µl Taq Polymerase (Kapa), 0.5 µl dNTPs (10 

mM), 1.25 µl of each primer (10 µM), 18.4 µl H2O and 1 µl cDNA. Cycling 

conditions are 95°C/ 2‘ (95°C/ 30‘‘,60°C/ 30‘‘,72°C / 30‘‘)x 40, 72°C/ 2‘. 

2.3.2 qPCR primers and experimental set up  

The quantitative PCR reaction was performed on the Stratagene Mx3005P 

qPCR system (Agilent Technologies) and analyzed using Agilent’s qPCR 

software, MxPro. The qPCR primers for cyp6p3, cyp6m2, cplcg4 and cpr 

were designed against the An. gambiae consensus sequence from Akron 

field samples (Chapter 3.3.2). Primers for cyp4h24 were designed against 

the An. arabiensis consensus sequence from Ndja and Moz samples 

(Chapter 2.1.2).  

The qPCR assays were optimized with respect to MgCl2 concentration and 

annealing temperature. The optimal conditions were no additional MgCl2 

(concentration in reaction butter not defined by manufacturer) and an 
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annealing temperature of 60°C for the primer sets d etecting cyp6p3, cplcg4, 

cyp4h24, s7 (Salazar et al. 1993) and cytochrome P450 reductase, cpr, and 

62°C for those targeting cyp6m2. The real-time qPCR reaction mixture was 

prepared to a final volume of 25 µl using the Maxima® SYBR/ROX qPCR 

Master Mix (Thermo Fisher Scientific): 10 µl nuclease free water, 0.75 µl of 

each primer (final concentration 0.3 µM), 12.5 µl reaction mix 2x, and 1 µl 

template cDNA (diluted to 10 µM). The thermal cycling protocol was as 

follows: initial denaturation for 10 min at 95 °C followed by 40 cycles of 15 s 

at 95 °C, 30 s at 60/62 °C and 30 s at 72 °C. The fluorescence signal was 

measured at the end of each extension step at 72 °C. After amplification, a 

melting curve analysis with a temperature gradient of 0.1 C/s from 60 to 

95 °C was performed to confirm that only the specific products were 

amplified.  

For each sample three biological replicates were run alongside three 

technical replicates of the standard curves. Primer details are listed in Table 

2.4. 

Target gene 
Primer 

name 

Accession 

number 

Primers 5’-3’ 

F forward and R reverse 

Prod. size [bp] TA 

[°C] 

gDNA cDNA 

cyp6p3 P3.7 AGAP002865 
F: CGGCGTGTTTACCAATGC 

R: GGTTGGTTGTAGCTTTGCTCC 
192 192 60 

cyp6m2 M2.5 AGAP008212 
F: TACGATGACAACAAGGGCAAG 

R: GCGATCGTGGAAGTACTGG 
130 130 62 

cplcg4 G4 AGAP008447 
F: CTTGCCGTCGTCTCGGA 

R: CAGATAAGCGCCATGGTGA 
141 141 60 

cyp4h24 H24 AGAP013490 
F: GATGTGCTCGGCGTCGATTACC 

R: CGATAAACGAAACGGGTGGCAGC 
121 121 60 

control gene      

S7 S7_rtq AGAP010592 
F: AGAACCAGCAGACCACCATC 

R: GCTGCAAACTTCGGCTATTC 
298

¥
 149 60 

cytochrome 

P450 

reductase 

CPR_rtq AGAP000500 
F: CCCAGACAGAAACGGAAGTG 

R: ACGAGTTCTCCACCATCGTC 
301

¥
 207 60 

¥
 different sizes in gDNA and cDNA due to primers spanning an intron 

Table 2.4: Primer details for qPCR assays  

for the target genes cyp6p3, cyp6m2, cplcg4, cyp4h24 and the control genes s7 and cpr. 
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2.3.3 Construction of standard curves for plasmid c opy number 

determination 

To enable absolute quantification of expression for each of the target and 

control genes a plasmid containing the targeted fragment was established 

using pGEM®-T Easy (Promega) or for s7 pJET 1.2 (Thermo Fisher 

Scientific). In the case of cyp6p3 a plasmid pcWompA2 containing an insert 

of the entire gene was used. All plasmids with one exception contained 

fragments from An. gambiae s.s.; for cyp4h24 a fragment from An. 

arabiensis was cloned. As s7 and cpr control plasmids were used in An. 

arabiensis experiments also (normalization of cyp4h24), s7 and cpr 

sequences of An. gambiae and An. arabiensis were compared. Sequences 

were near identical; no SNPs were detected in the primer binding sites.  

The concentration of the plasmid was measured in triplicate using the 

NanoDrop and then diluted accordingly to a concentration of 1 ng/µl. A ten-

fold serial dilution series of each plasmid ranging from 100 pg/µl to 1 fg/µl 

was used to construct standard curves for each target. Each standard curve 

was generated by linear regression of the plotted points. From the slope of 

each curve, the value PCR efficiency E was calculated according to the 

equation below (Rasmussen 2001) and listed in Table 2.5: 

 

 � �%�  �  �10
� ����� � 1�  � 100% 

 

The absolute copy number per pg of plasmid DNA was calculated based on 

the exact size and molecular weight of the plasmid DNA plus insert 

sequence)Table 2.6: 
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experiment target efficiency [%] slope intercept r
2
 

An.  

gambiae s.s. 

cyp6p3 100 -3.313 17.390 0.9994 

cyp6m2 102 -3.282 18.663 0.9987 

cplcg4 102 -3.268 19.551 0.9977 

s7 98 -3.357 17.726 0.9942 

cpr 102 -3.265 17.790 0.9987 

An. 

arabiensis 

cyp4h24 103 -3.249 16.416 0.9977 

s7 115 -3.007 17.067 0.9934 

cpr 102 -3.276 18.884 0.9986 

      

Table 2.5: PCR efficiencies, slopes, intercept and correlation coefficient r 2 of 

calibration curves for all five qPCR assays.  

 

 

target plasmid 
insert + plasmid 

[g/mol] 

mass of single 

plasmid [g] 
copies/ng 

cyp6p3 pcWompA2 5107528 8.48125E-18 117907175 

cyp6m2 pGEM®-T Easy 1935033   3.2132E-18 311216500 

cplcg4 pGEM®-T Easy 2320020 3.85248E-18 259572848 

s7 pJET 1.2 1929636 3.20424E-18 312086910 

cpr pGEM®-T Easy 1981538       3.29E-18 303912546 

     

Table 2.6: Plasmid sizes and calculated copy number  per ng of plasmid DNA.  

After calculating all values for the absolute copy numbers for each gene and 

sample, average values were calculated for the three technical replicates of 

each sample. The copy numbers of the control genes ((a) ribosomal gene s7, 

accession no. AY380336 (Salazar et al. 1993); and (b) cpr, cytochrome P450 

reductase, accession no. AGAP000500) were used to normalize for variation 

in total cDNA concentration. To normalize the copy number, the value of the 

target gene is divided by the value of the control gene, as shown below.  

 

����%&�2�' ���3 ������ �  ���3 ������ �� ,%�!�, !������3 ������ �� ���,��& !��� 

 

For each pair of biological replicates the average of the ratios (candidate 

gene/ control gene) and standard deviations were calculated. To detect 

statistically significant differences two-tailed t-test were carried out.  
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2.4 QTL mapping  

The genomic DNA of the F0 parental females, eight F1 individuals from each 

family (four females and four males) for An. gambiae s.s. and four F1 

individuals per family for An. arabiensis, and all F2 samples was extracted 

from single mosquitoes using the protocol by Livak (Livak 1984) as described 

before. Parental females were identified to species level, molecular form (if 

applicable), genotyped for kdr and ace-1 target-site mutation as well as for 

chromosomal inversions 2La and 2Rb.  

2.4.1 Selection of informative microsatellite and S NP markers  

Informative markers were selected on the basis of the genotypes of the 

parental female F0 and F1 individuals. A total of 64 microsatellite loci were 

screened (51 in An. gambiae s.s. and 59 in An. arabiensis) (Table 2.7). 

To save costs, in initial screens a tailed primer system described by (Oetting 

et al. 1998) was used to label the PCR products with a fluorescent dye. This 

PCR reaction is performed with three primers: a sequence-specific forward 

primer with M13-tail at its 5′ end, a sequence-specific reverse primer, and the 

universal fluorescent-labelled M13 primer. During the reaction cycles the 

fluorescent labelled forward primer with the M13-sequence is incorporated 

into the accumulating PCR products. Three different fluorescent dyes were 

used in total using a specific M13 tail each:  

D2-CAC GAC GTT GTA GAA CGA C-3’,  

D3- GTA GTC GAC AAT CCG TAC G-3’  

and D4- ATC GGA CTC GAG CTA AG-3’.  

 

Each PCR reaction was made by mixing 9.7 µl dd H2O, 1.5 µl 10x Taq buffer 

(1.5 mM MgCl2, 0.2 µl of 10 mM dNTPs, 1 µl of 25mM MgCl2), 0.75 µl of the 

10 mM fluorescent labelled primer, 0.325 µl of 10 mM site specific forward 

and reverse primer, 0.2 µl of Taq Polymerase and 1 µl of gDNA to a final 

volume of 15 µl. Cycling conditions were as follows: 95°C/5’; (95 °C /45’’; 

57°C /45’’; 72°C /45’’) for 35 cycles; 72°C/ 10’.  
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5 µl of PCR product was run out on 1.5% agarose gels to confirm successful 

amplification. The PCR products of up to three loci were then combined and 

allele sizes determined using capillary gel electrophoresis (Beckman Coulter, 

Inc., USA). Allele scoring was performed using CEQTM 8000 Genetic 

Analysis System.  

 

Figure 2.5: Amplification of fluorescent labelled P CR-product via M13 tailing method.  

(A) represents the three primers used, with the hatched boxes indicating the site specific 

microsatellite primers, the undulating grey box indicating the M13-tail and the star indicating 

the Dx-fluorescent label. (B) In the first PCR cycles, the forward primer with the M13-tail is 

incorporated into the PCR products. These products are then the target for the labelled 

universal M13-primer, which is incorporated during subsequent cycles. The final product 

carries the fluorescent label and can be analyzed on a laser detection system (Schuelke 

2000). 

 

SNPs were either identified by ne novo sequence analysis of amplicons in 

the various target genes or, existing SNP markers, including the known 

target-site mutation kdr, were tested for informativity based on the genotypes 

of the parental females F0 and F1 individuals. A total of nine different SNP 

markers were used in the mapping study (5 in An. gambiae s.s. and 4 in An. 

arabiensis) (Table 2.8). The 1014 kdr marker was only informative in one 

family of An. gambiae s.s., family 17. In order to identify an alternative SNP 

marker in the sodium channel, sequences for exons 20, exon 29 and an 

amplicon spanning exons 27-31 were obtained (Macrogen, Korea) and 

aligned. Primer details and reaction information are listed in Table 2.3. 

 

  

Dx

Dx

Dx

Forward primer with 

M13-tail at 5’end

Reverse primer

Universal Dx labelled 

M13-primer

A B
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2.4.2 Genotyping microsatellite and SNP markers  

Informative microsatellite markers identified in the initial screen using tailed 

primers, were re-synthesised with the fluorescent label incorporated directly 

into the forward primer (unless otherwise stated) (Table 2.7).  

Each PCR reaction was made by mixing 11 µl dd H2O, 1.5 µl 10x Taq buffer 

(1.5 mM MgCl2), 0.3 µl of 10 mM dNTPs, 0.3 µl of 25mM MgCl2, 0.5 µl each 

of 10 mM site specific forward and reverse primer, 0.12 µl of Taq Polymerase 

and 1 µl of gDNA to a final volume of 15 µl. Cycling conditions were as 

follows: 95°C/5’; (95°C /45’’; 57°C /45’’; 72°C /45 ’’) for 35 cycles; 72°C/ 10’. A 

random subset of PCR products for each primer set was run on 1.5% 

agarose gels to confirm that the PCR reaction was successful and analyzed 

as described above. 

In An. gambiae five SNP markers were genotyped, four by pyrosequencing 

(kdr, cyp6p3 (P3_1033), cyp6m2 and cplcg4) and one (SODI) through 

restriction fragment polymorphism. In An. arabiensis four SNP markers 

(cyp4h24, cyp6p3 (P3_520), ex27 and chymotrypsin) were genotyped via 

pyrosequencing (Table 2.8) and used to complement the microsatellite data 

(Table 2.7).  
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tested in  genotyped in  

   
distance 

(vector 

base) 

  
gambiae arabiensis gambiae 

 
arabiensis 

 
marker $ 5'primer (5' --> 3') 3'primer (5' --> 3') 

  
15 17 25 2 3 

X
 C

h
ro

m
o

so
m

e
 

cyp4h24* 1 1.5 
   

x 
   

x x 

503 5 1.8 AGGTTAGAGTGAGCAACCAC GCACTGCATCTCTCCAATAC  x 
      

36 5 1.9 CGTATGTTTGCTAGGGGTGG GTCAAGAAATGGGCCACAGG 
 

x 
     

71 5 3.1 GCGGAGTTATTTCCTGAACC ACAGGCCAAGCAAATGCAGG  x x 
     

53 5 3.6 GTTTCGGGGCTTGAGAAGTG CTTCACGTGGCTTTGCTGTG x x 
 

x 
 

x x 

1002 5 5.5 GATCGGTATATGCTTCCCGC AATAAGCCACGGCGTATCCC 
 

x 
     

784 5 6.9 TGGTGAAAGAACAGACCCCG TGTAACGGGCAAGAAAAGC x x 
     

80 5 7.0 TGCTCTCTCCTACATCGAGG GCCAGTGCTCTAGATTAACG x x 
 

x 
 

x x 

99 5 8.4 CGGGAATTTGTTGCTTCCTG TCGCCCTCTTTCTCCATCTC x x 
     

49 5 9.3 CAGCGCCTCCATATAGAACG GATCATTCAGCTGAACCTGC 
 

x 
     

711 5 9.9 CCCACAGCAAAACGAGAATG  GACAACTTGCATTTCACTATG 
 

x 
     

 
7 5 11.2 CACGATGGTTTTCGGTGTGG ATTTGAGCTCTCCCGGGTG x x 

   
x x 

 
766 5 15.3 CAGGTAGTAGGAGTAGATGC AATTATGAGCACGGTGGGTG 

 
x 

     

 
678 5 19.2 CCTCTCCCCAGAATCGGTAC AAGAGCAGAAACAACCGCAG x x 

   
x x 

 

            

C
h

ro
m

o
so

m
e

 2
R

 46 5 1.2 CGCCCATAGACAACGAAAGG TGTACAGCTGCAGAACGAGC x x 
  

x 
  

803 5 1.9 CTCGATAAATCCCGTCGGTG GTCGGTTTGAGGTTGTAAAGC  x x x x 
 

x x 

199 3 3.3 CGATTGCAAGCAGTAAGTCG CCGGAACCATTTATCATCTCC 
 

x 
   

x x 

24 3 3.5 TGCCGTATTTCAATGTCAGC ACAACCACCACCCTAACTGC 
 

x 
   

x x 

175 5 6.6 AGGAGCTGCATAATTCACGC AGAAGCATTGCCCGCATTCC x 
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197 5 10.4 TACCTCTGTGTTCGGTTTCC GGTGGTATGGCGATGGAAGG  x x x x 
   

757 5 14.7 TGATCGCGCCCAATCAATCC ATCGATCGTACAGATGTGCC x x x x x x x 

799 5 14.8 TTATGGGCAACTGCGGATGG CGTGCGTTTGATACATCTACG x x 
  

x x x 

187 5 17.8 CCGGAGCAGAGATAAACAGC CACAGACGTACACCTAATGC  x 
      

26 5 24.6 GGTTCCTGTTACTTCCTGCC  CCGGCAACACAAACAATCGG 
 

x 
    

x 

 
60 5 25.0 TGTTTGGGACGGAACCGAG TCTCGTGACGGATGATACTG  

 
x 

     

 
2R_si_5  3 24.9 TTCTCGAAAGACTGCTGCTG ATTGGATCGAAAACGGTCTG x x x x x 

  

 
P3_520 * 1 28.5 

   
x 

   
x x 

 
P3_1033* 1 28.5 

  
x x x x x 

  

 
590 5 28.9 CGGGAAAGCGAAGTGTACGA TGCGGCTGGTGAACATTTTC  x x 

   
x x 

 
cyp304c1 3 32.0 CATCATTAACGGGCTCGACT AGCGTTAGGAAGAGTGCATTG 

 
x 

   
x x 

 
720 5 33.2 ATTAGAATCCAAACCAGCGG ATAAGCTAATGCGCTGCTCC 

 
x 

   
x 

 

 
135 5 34.4 TCATGCACTGTTTGCTCGGC CTGCCCCATTCAATTGCAGC 

 
x 

     

 
770 5 40.4 CAAGATGGAGGCGCATGATC GCGTTCCATCGAAATCAGAC x x 

 
x x x 

 

 
117 5 42.7 CGGAACGCACGGAACAATTG  CGTTGCAGATTTCCCAAACG  x x 

 
x x 

 
x 

 
125 5 45.7 AGGAGCATAACACATCGCCC  CGCTCGTCAAAGAAACTGGC 

 
x 

     

 
786 5 48.3 TGTGAAGCATTTCCTTGGCG TGCCCTTGAGTCGAGGTAGC x x 

   
x x 

 
1 5 53.7 CTTTTACACCGAGGGAAAG CGACCGTACACATAAACAC  x 

      

C
h

ro
m

o
so

m
e

 2
L 

325 5 16.0 CCGGTGTCCGTGTTG GCGCGAAAGCAAATGACACG  x x 
     

kdr * 4 24.2 
  

x x 
 

x 
   

ex27 * 1 24.2 
   

x 
   

x 
 

637 5 25.5 TCGAAATGTATGCGAAATGCAG CCTTCTTTCCTCGATGCATTCC x x x 
    

1012 5 25.5 AGTGTTCAGAGCGGGAAAAG GTACAACCCGCAGGAGAAAC  x 
      

787 5 26.8 CGGGTCAAAGAAAACTCAGC  GCATAAGAACGGCACATTGC  x x 
 

x x x x 
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772 5 42.0 TACAGCTGTTTGGGAGTTGG  GGGTCGGCTTTTATTTCCTCG x x 
  

x 
 

x 

 
603 5 42.0 TGCACCGTTGATGCACATGC 

GTGGACGATGTGAAAGATAAG

 
x x 

 
x 

 
x x 

 
675 5 46.9 CGTGACACTTTCAGGACACC GGCAAAAGGCTGGAAAACCG x x x 

 
x x x 

C
h

ro
m

o
so

m
e

 3
R

 

776 5 2.5 TGCGGATCATAATCGAGTCC TCACAAACACGCAACGAGTC  x x x x x x x 

746 5 3.8 TGGGTTCGAAATTCGCCAAC GACGTGTGCACCCGTTGTG x x 
     

59 5 4.2 CCCCTATTAAACCCTGGACG TGTTGTTGCCCTGCGTTACC x x x x x x x 

812 5 6.2 CTGGCCCATTTTGCATATGC TGCTCCACCCAAACCACATC x x x x x x x 

cyp6m2 * 1 6.9 
  

x x 
 

x x 
  

249 5 8.8 ATGTTCCGCACTTCCGACAC GCGAGCTACAACAATGGAGC  x x x x x x x 

30C1 2 9.6 GCCAAAAGATTCATTCGCTCG GCCAAAAGATTCATTCGCTCG x x x x x x x 

cplcg3 * 1 10.9 
  

x x x x x 
  

 
6M19 2 13.1 CACAAGGTCACACGCTGAAG AACACAACACCGAGCTTGC x x x x x x x 

 
119 5 14.8 GGTTGATGCTGAAGAGTGGG  ATGCCAGCGGATACGATTCG x x x 

 
x x x 

 
555 5 21.3 GCAGAGACACTTTCCGAAAC TGTCAACCCACATTTTGCGC x x x 

    

 
158 5 23.0 CTGGCACGATCAATCAATCG ACGATGGTGTACACGTAACG x x 

  
x 

  

 
341 5 23.0 CCCAAAGCAATGAACCTCGC AGTAGAAGAAGAGGGCAGCG  x x 

 
x x 

  

 
6H1 2 25.5 CCTGCTCCACCGGGTTCAAATG GATAATGCCACCGGTAATGC x x x x x 

  

 
33C1 3 25.6 ATGAAACACCACGCTCTCGG TTGCGCAACAAAAGCCCACG x x 

 
x 

   

 
6F5 2 31.6 TCTCTTTTCGCACGCTCTCG GTTCTTCCTTCCCTTTCCCTTTTA  x x 

 
x x 

  

 
88 5 34.7 TGCGGCGGTAAAGCATCAAC CCGGTAACACTGCGCCGAC  x x 

  
x 

  

 
30L17 2 41.1 CACCCATTTTCAGCTTGTTCTTC ATTACGCATGGATATTTTTGTGT x x 

 
x x 

  

 

chymo- 

trypsin* 
1 43.9 

   
x 

    
x 
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Table 2.7: Details of all microsatellite markers te sted for informativity in the F 1 progeny of the An. gambiae and An. arabiensis families.  

Those markers that proved informative were subsequently genotyped in the F2 progeny of the mapping populations An. gambiae and An. arabiensis. 

The table also includes the physical distances in Mb according to vector base and the names of the genotyped SNP markers (details in Table 2.8) in 

the order they share with the microsatellite markers.  

 

            

 

            

C
h

ro
m

o
so

m
e

 3
L 

SODI * 3 5.6 
  

x 
  

x 
   

811 5 14.8 AACCCACAGTACAGCTCGCG  GTTGCTGCATACTAACCTCG x x 
 

x x x x 

127 5 16.9 CCTCTAACTCGATTACCGTG  GTCAGGGAATTGGAAAGAGC x x 
     

577 3 19.8 TTCAGCTTCAGGTTGGTCTC GGGTTTTTTGGCTGCGACTG x x x x 
 

x 
 

817 5 31.9 ACTGGTCCGTTGCTGCGCG  ATGAGTGAATGGTGCGCTGG x x 
 

x x 
  

242 5 37.1 TTCATTTCCACCGCAGCTGC GGCGACACTCAATCCTTCC  x x 
     

46C3 2 40.4 AGTCGGCAGGTTCTTTCGGTG GAAGCTAGAAGCGGGAACAC x x 
   

x x 

46C2 2 41.4 CTGTGGCAGGTGGAATGGAATG GCCCTTTTTGGAGTGACCTCG x x 
 

x x x x 

     
sum all 56 67 18 30 28 31 31 

     
sum microsatellites 51 59 16 25 25 28 27 

* SNP marker (details Table 2.8) 
        

$ source 1, C. Witzig (LSTM); 2, H. Ranson (LSTM); 3, D. Weetman (LSTM); 4, Wondji Charles (LSTM); 5,  Zheng et al. 1996 
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Markers 
primers 5’-3’, forward, reverse 

(biotynilated) and sequence 

Product 

size 
alleles ¥ 

MgCl 

[mM] 

Ta 

[°C] 

X chromosome      

cyp4h24 F_GCGCACCTACTGGTACACGA 128 bp G/A 1.75 56 

 R_bio_ACACTTCCGAGCTCCTTTCC  syn   

 S_GAAGCTGATCCGACG     

Chromosome 2     

cyp6p3 (P3_520) F_CTTACGCCGACGTTCACCT 145 bp G/T 2.3 63 

 R_bio_GTCGTAAAACGGCCCAGGA  syn   

 S_GCAAAGCTACAACCAA     

cyp6p3 (P3_1033) F_CTGGCCGCGTTCATCTTC 124 bp C/A 2.3 64 

 R_bio_CCTTCGCATGCCCGAACA  non-syn   

 S_GCATAACTATTGGAAGGA     

kdr F_TTGTGTTCCGTGTGCTATGC 154 bp A/T 2.75 50 

 R_bio_AAAAACGATCTTGGTCCATGT  non-syn   

 S_TGTAGTGATAGGAAAT     

ex27 F_TGAACGATGCTATTGATTCTAGAGA 112 bp C/T 2.0 55 

 R_bio_TACCGACCTGAGCATTTAATCAT  syn   

 S_AAAACATGTTGTAAACAATT     

Chromosome 3     

cyp6m2 (M2.2_301) F_TACGATGACAACAAGGGCAAGC 130 bp C/T 2.3 50 

 R_bio_CGCGATCGTGGAAGTACTGG  syn   

 S_TCAGTTCGTGAAGCC     

cplcg4 (G3_1845) F_ACCAAACACCACCCAACTCAATC 171 bp T/A/C 2.3 64 

 R_bio_ACGGAAGCACTCCAGCCT  Intron   

 S_GACACAACACTCTCACCT     

chymotrypsin F_CCGGGTTGACCGATAGTACATATA 111 bp T/C 1.75 56 

 R_bio_GCAGCCTTGCGTATTCAAATG  syn   

 S_GGGTTGACCGATAGTACA     

SODI * F_GCATCGACGTAGTTGGGTCT 638 bp A/G 

PstI 

1.95 58 

(AGAP010517;  

Variant ID rs3582365 

R_TCATGGAGGTACGCAAGATG    

  syn   

¥ syn= synonymous mutation; non-syn= non synonymous mutation; Intron= SNP in Intron 

 

Table 2.8: Details of SNP markers scored via pyrose quencing or RFLP *  

in the F2 progeny of the mapping populations An. gambiae and An. arabiensis. 
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2.4.3 Software used for marker data analysis, linka ge mapping, 

and LOD scoring 

The JoinMap 2.0 software package (Stam & van Ooijen 1996) was used to 

build genetic linkage maps for each individual family and for combined 

genotyping data. Genotype data for each marker were tested for conformity 

to Mendelian ratio (Hardy-Weinberg equilibrium) with a χ2 goodness-of-fit 

analysis using the JoinMap single locus analysis module (JMSLA) 

procedure. A χ2 test for genotype/ phenotype association was performed 

using Haploview 4.2 (Barrett et al. 2005) (full data in Appendix 9.1). 

To build the genetic maps, loci were separated into linkage groups using the 

linkage group assignment and data file splitting modules (JMGRP and 

JMSPL) procedures with minimum and maximum LOD thresholds of 1.0 and 

4.0 respectively and LOD increments of 0.1. The JoinMap recombination 

estimation module (JMREC) program estimated pairwise centi Morgan (cM) 

distances between all pairs of informative loci in each linkage group and the 

map construction module (JMMAP) program estimated the maximum 

likelihood map using the Kosambi distances. MapChart 2.1 software 

(Voorrips 2002) was then used to plot the genetic maps.  

The JoinMap linkage positions along with the genotype/phenotype data were 

entered into Windows QTL Cartographer 2.5 (Wang et al. 2005). Interval 

mapping (IM) (Lander & Botstein 1989), composite interval mapping (CIM) 

(Zeng 1993) and Multiple Interval Mapping (MIM) (Zeng et al. 1999) 

procedures were performed for each family separately and for the combined 

data. The optimum LOD thresholds were estimated by permutation of trait 

and marker data 500 times with a walking speed of 1 cM. For Multiple 

Interval Mapping (MIM) an initial model was created by forward and 

backward selection on markers with criteria set to probability of partial R2 of 

0.05 for An. gambiae and 0.01 for An. arabiensis. The model was refined by 

optimizing QTL positions, searching for new and testing for existing QTLs. 

The MIM model estimates QTLs and gives map position in centimorgan, 

nearest marker, additive and dominance effects for single QTLs as well as 

the entire model. It gives an estimate of the genetic variance expressed as 

percentage of the phenotypic variance explained by the respective QTL.  
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SigmaPlot 11.0 (Systat Software Inc.) was used to plot LOD graphs, and 

MapChart 2.1 software (Voorrips 2002) was used to plot the LOD graphs 

next to the respective linkage maps for final visualization. 
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Chapter 3. Preliminary studies on permethrin resist ance in 

Anopheles gambiae s.s. from Benin, West Africa 

3.1 Introduction 

The Republic of Benin is a country in Western Africa. It borders Togo to 

the west, Nigeria to the east and Burkina Faso and Niger to the north. Its 

official capital is Porto-Novo in the south near the Atlantic coast; however 

the seat of government and economical capital is the city of Cotonou. The 

country’s main income sources are subsistence agriculture of fruit and 

vegetables (prevailing in the south) or cotton farming for export (prevailing 

in the more arid climate of the north).  

Benin covers three climatic zones. From south to north these regions are a 

Guinean bioclimatic zone, an intermediate zone with Sudano-Guinean 

climate and a Sudanian semi-arid bioclimatic zone in the north. As the 

bioclimatic characteristics change within the country, so do the main 

agricultural practices as well as species distribution of An. gambiae. The 

M-form is generally more prevalent in the Northern Guinean zone with the 

S-form predominating in the Southern regions. An. arabiensis is mainly 

located in the central regions (Djogbénou et al. 2008). 

Akron is an agricultural part of Porto-Novo, located on the outskirts of town 

(Figure 3.1).  

 
Figure 3.1: Map of Africa and Benin showing locatio n of the collection site Akron. 

The photo shows a representative view of one of the vegetable fields in Akron near Lake 

Nokoué. Maps from Google Maps and picture Claudia Witzig. 
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In Akron, former swamp land is used for growing vegetables. This makes 

the area a permanent breeding site for mosquitoes. The mosquitoes breed 

in puddles that build on the paths between the single vegetable fields. The 

heavy use of agricultural pesticides in this area puts the mosquitoes 

breeding at this site under strong selection pressure, and has resulted in 

the emergence of insecticide resistant populations (Corbel et al. 2007; 

Djouaka 2008; Djouaka et al. 2008).  

Two recent studies clearly confirm the massive and uncontrolled use of 

pesticides (sometimes unregistered ones) in vegetable farming in 

Southern Benin (Akogbéto et al. 2005; Yadouleton et al. 2009) suggests 

the overuse of pesticides to contribute to the widespread emergence of 

insecticide resistance in Anopheles.  

A countrywide survey on insecticide resistance in Anopheles gambiae s.l. 

in Benin provides an overview of the resistance status of this malaria 

vector (Djogbénou et al. 2010). Studies were carried out during 2006-

2007, before extensive vector control was undertaken. Bioassays were 

conducted on field collected mosquitoes from 18 localities using DDT, 

permethrin, carbosulfan and chlorpyrifos-methyl (belonging to the four 

chemical classes used in public health, DDT, pyrethroids, carbamates and 

organophosphates respectively) (Figure 3.2). Resistance to DDT and 

permethrin was widely distributed in An. gambiae in Benin, but stronger in 

the most southern climatic zone, whereas resistance to carbosulfan and 

chlorpyrifos-methyl was limited to a few localities in the more northern 

zones. Resistance to DDT is very prevalent with fully resistant populations 

in 10 locations, reduced susceptibility in seven locations and only one 

location that shows full susceptibility (mortality <80% counted as resistant; 

mortality 80-97% likely resistant and mortality above 98% fully susceptible 

according to WHO guidelines (WHO 1998)).  

Resistance to permethrin is prevalent in the very south of the country with 

no fully susceptible population tested in the Guinean area. Across the 

whole of Benin five out of 18 localities showed full susceptibility to 

permethrin, in 10 locations likely resistance was suspected and three 
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populations were resistant (including Pahou and Cotonou in the very 

south).  

 

 

 

 

 

 

 

 

 

 

 

In 2006-07 the 1014F kdr allele was present in the M-form in all localities 

of the Guinean zone, with average frequency of 0.5 and with the highest 

frequency 0.9 observed in Cotonou. The 1014F kdr allele was present in 

all S samples at frequencies between 0.1 and 0.9. Recent data from a 

TDR (Special Programme for Research and Training in Tropical Diseases) 

sponsored study in Benin found an increase in the frequency of kdr 

mutations in the M-form. The 1014F allelic frequency in the M-form in 

Figure 3.2: Resistance 

status of An. gambiae s.l. 

in Benin. 

Mortality rates and 

susceptibility/ resistance 

status of different 

Anopheles gambiae s.l. 

populations from Benin 

after 1 h of exposure to (a) 

DDT 4% and (b) 

permethrin 1 % (from 

(Djogbénou et al. 2010).  
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2010 ranged from 0.47 in Malanville in the North to 0.9 in Cotonou in the 

South. A small number of An. arabiensis with either the 1014F or 1014S 

allele were also found in Malanville in 2010 (Djegbe et al. 2011). 

The ace-1R allele was not detected in any of the An. arabiensis samples, 

or in the M-form of An. gambiae s.s., and was present at low frequencies 

in most S-samples in 2006-7 (allele frequency 0.01-0.17). 

A number of other studies looked at pyrethroid resistance in An. gambiae 

in Benin to assess the resistance status (Yadouleton et al. 2010) study its 

effects on the efficacy of ITN and IRS (Akogbéto & Yakoubou 1999; 

N’Guessan et al. 2007) or examine the mosquitoes’ behaviour when 

challenged with ITNs (Corbel et al. 2004). All of these studies used kdr 

frequency as a marker of resistance. N’Guessan and colleagues 

(N’Guessan et al. 2007) were able to show a loss of efficacy of ITNs and 

IRS associated with pyrethroid resistance near Cotonou (kdr frequency in 

field population 0.83 and resistant in WHO bioassays).  

Another study in 2008 (Djouaka et al. 2008) focussed on permethrin 

resistance in field populations of Southern Benin. Populations of An. 

gambiae from four different locations were collected, bioassays using 

permethrin were carried out, and kdr-frequencies were assessed. High 

frequencies of kdr (0.83-0.86) were found in the resistant populations. This 

study also included a microarray analysis using the An. gambiae detox 

chip (David et al. 2005) to identify genes associated with metabolic 

resistance to permethrin in M-form An. gambiae from Akron (Djouaka et al. 

2008). Three P450 genes including cyp6p3 and cyp6m2 that have been 

found over expressed in pyrethroid resistant populations previously (Müller 

et al. 2008b) and shown to metabolise pyrethroids in vitro (Müller et al. 

2008b; Stevenson et al. 2011) were overexpressed in the Akron 

population (Figure 3.3).  

The study by Djouaka et al. also identified two cuticular precursor genes 

(cplcg3 and cplcg4). Those same two genes were similarly found to be 

overexpressed in permethrin resistant An. gambiae samples from 

neighbouring Nigeria (Awolola et al. 2009).  
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Further evidence for metabolic resistance to pyrethroids in Benin comes 

from biochemical assays on four populations in Benin which show 

elevated levels of enzyme activity (mixed function oxidase, non-specific 

esterases and glutathione-S-transferases) (Corbel et al. 2007). Synergist 

assays with the monooxygenase inhibitor piperonyl-butoxide also support 

a role for elevated P450s in conferring pyrethroid resistance in Benin 

(Awolola et al. 2009; Djegbe et al. 2011). 

 

3.2 Aims of the chapter 

1. Collect field specimens of An. gambiae s.s. from Akron in Southern 

Benin, an area where this species is known to be resistant to 

pyrethroid insecticides. 

2. Confirm the association of candidate detoxification and cuticular 

genes with permethrin resistance in field collected populations and 

laboratory colonised strain of An. gambiae s.s. from Akron through 

quantitative RT-qPCR. 

3. Identify sequence polymorphisms in candidate resistance genes 

and develop assays to genotype these loci. 

 

  

Figure 3.3 : Volcano plot of 

microarray experiment showing 

the P450 genes cyp6p3 and 

cyp6m2 and the cuticular genes 

cplcg3 and cplcg4, as well as 

cyp325d2 (not further mentioned) 

significantly overexpressed in the 

permethrin resistant field 

population from Akron (Djouaka 

et al. 2008). 
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3.3 Materials and Methods 

3.3.1 Lab colonies and Akron field samples 

The characteristics of the Akron and Ngousso lab colonies are described 

in Chapter 2.1.1.1. Details of field collections (adults and larvae), rearing 

conditions and conditions for bioassays are described in Chapter 2.1.1.2.  

3.3.2 Sequencing of candidate genes in Akron field samples 

The four candidate genes identified in earlier microarray experiments, 

cyp6p3, cyp6m2, cplcg3 and cplcg4, were amplified from six individual An. 

gambiae M-form samples, collected by Dr. Rousseau Djouaka, IITA, Benin 

in 2008 Table 3.1. These samples include three each of survivors and 

non-survivors after a 1 hour exposure to 0.75 % permethrin. Details of the 

primer sequences and amplicon sizes are given in Table 3.1 and Figure 

3.4 shows the positions of these primers. 

For the P450 genes, amplicons P3-1, P3-2, P3-3, P3-4, M2-1, M2-2, M2-3, 

M2-A, M2-B, M2-D and M2-E were sequenced (Macrogen, Korea) from 

the PCR template. Amplicons P3-1.5 and M2-t were cloned into the 

pGEM®-T Easy vector (Promega) and transformed into E. coli DH5αTM 

Competent Cells (Invitrogen) for amplification. Cells were harvested and 

the plasmid DNA recovered (QIAprep® Spin Miniprep Kit, Qiagen). The 

plasmid DNA was used as template for the sequencing analysis. Primers 

and PCR conditions for amplification are listed in Table 3.5. 
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Figure 3.4: Schematic overview of genes cyp6p3 and cyp6m2, as well as cplcg3 

with cplcg4 indicating introns, UTRs and primer positions. Dis tances are not to 

scale. 

For the cuticular genes, amplicons G3 and G4 were sequenced 

(Macrogen, Korea) from the PCR templates. Amplicon ig (for the 

intergenic region between G3 and G4) was cloned into the pGEM Teasy 

vector (Promega, Madison, USA) and transformed into E.coli DH5α. Cells 

were harvested and the plasmid DNA recovered (QIAprep® Spin Miniprep 

Kit, Qiagen). The plasmid DNA was used as template for the sequencing 
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Intergenic region Exon 1               Exon 2    

2.1 kb 1.26 kb

P3-1

1.1 kb P3-2
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cplcg3 and cplcg4
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CPLC-ig_F 1785 bp
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CPLCG4-b_F     375 bp
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analysis. Primers and PCR conditions for amplification are listed in Table 

3.1.  

The DNA sequences for each amplicon were aligned and single nucleotide 

polymorphisms (SNPs) were identified using SeqMan TM II sequence 

analysis software from the Lasergene package (DNASTAR, Madison, 

USA). 

Based on the sequence data pyrosequencing assays were developed for 

14 SNPs in the three candidate genes (nine from cyp6p3, one from 

cyp6m2, three for cplcg4 and one for cplcg3, Table 3.2) and used to 

genotype a larger set of 69 permethrin phenotyped field samples collected 

from Akron in 2008 (Dr. Rousseau Djouaka, IITA). The status of the 1014F 

allele was determined using another pyrosequencing assay (Table 3.2). 

PCR reactions to generate the template for the pyrosequencing reaction 

were performed at the following conditions: 95°C/5’; (95°C/20’’; Ta°C/30’’; 

72°C/20’’) for 40 cycles; 72°C/5’.  

Test statistics were performed using Haploview 4.2 (Barrett et al. 2005). 

Each polymorphism was tested for by performing a Pearson's chi-squared 

(χ2) test, using the observed genotype frequencies obtained from the alive 

samples to compare them to the observed genotype frequencies in the 

dead samples.  
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Table 3.1: Details of primers and PCR conditions us ed to amplify the candidate genes from An. gambiae.   

PCR 

amplicon 
primer name forward primer 5’-3’ reverse primer 5’-3’ 

prod. size 

[bp] 

MgCl2 conc. 

[mM] 

annealing 

temp. [°C] 

P3-1 cyp6p3-1 CGATCCGAAGATGTTTACGC TAGTCATCGGGTGGCGATA 1100 1.75 59 

P3-2 cyp6p3-2 TGACCTCTCTGCCAACATCA CCGAACATTTGCTTCATTCG 930 1.75 59 

P3-1.5 cyp6p3_1.5 TGGCTTAAAGAGCTGATTCG TGAATTCGTTGAGATGTTCCT 582 2.5 56 

P3-3 cyp6p3-3 CGGTACGGCGGCATTAG GTCACCTCTCCACCGTTCTC 852 1.5 59 

P3-4 cyp6p3-4 GCTGCAGATCAAGAACAAGG GGTCGCCAATTGCAGTATCT 1007 2.5 59 

       

M2-1 cyp6m2-1 TCGGTGGACAGTCAAATCAA GTTACACTCAATGCCGAACG 638 2.5 63 

M2-2 cyp6m2-2 GTTCGAGCTGAAGGATCTGC CAATCCGGGTAAACAAGGTT 642 2.5 65 

M2-3 cyp6m2-3 GAAATCCTGCAAAAGCACAA CTATACAGATCTTAACAGCTAAGTGA 611 3.5 58 

M2-A M2-A CATACACAAAATGGCCAGAAG CACGATGTTTCCTCCTGTAGAC 632 1.75 55 

M2-B M2-B CTGTCGATCCTGGAGAAGC CGTGTTACTATGCAACATCTCC 511 1.75 60 

M2-D M2-D TCGTTTCACAGCACGTTAGC GCTATGAGTCGTTTGCACAA  507 3.5 55 

M2-E M2-E CACCCTTCTCTAACCCTCCTC CAGAAATGTGAAATCCAACAAGC  500 3.5 55 

M2-t M2-t GCTCGAAGCTACGACCCT CTTAAACGGCACGGTAATGT  1200 2.5 61 

       

G3 CPLCG3 GACGTTGGACGGTGCAG CCTTTATTCAAGCACTTTGCG                           755 1.5 56 

G4 CPLCG4_b CCACAGTGCATGGTAGCTG CTGCTGCTGGGAGACG                         375 1.5 62 

ig CPLC-ig CGACATGCACAGCACCTC CAACAACGGCGACCTGT                                       1785 1.5 66 

 CPLC-ig-gap GGCGACCGATCAGATACC (sequencing primer only)    
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assay name gene  sequence 5’-3’ 
length of template and  

sequence to analyse 

MgCl2 

[mM] 

TA 

[°C] 

CYP6P3_787 cyp6p3 

forward CGCCACCCGATGACTAGTACAA 
107 bp 2.3 61 

reverse biotin_GGCCAGCAGATAAATCAGCA 

sequencing 787 GGAACATCTCAACGAAT TCAC C/T GCA   

sequencing 812+814 CACACACAAACACACTGA CA A/G C T/G/A TG   

CYP6P3_926 cyp6p3 

forward CTCAGTTTGTCCCGGTGGC 
60 bp 3.0 62 

reverse biotin-CCAGCACCGCGTTAATTAGCTC 

sequencing GTTTGTCCCGGTGGC C/T CGAAT   

CYP6P3_1033 cyp6p3 

forward CTGGCCGCGTTCATCTTC 
124 bp 2.3 64 

reverse biotin_CCTTCGCATGCCCGAACA 

sequencing GCATAACTATTGGAAGGA C/A AATGG G/A TTT   

CYP6P3_1067 cyp6p3 

forward CAGTGTCGATCGTGTATCTGTTCA 
158 bp 3.3 62 

reverse biotin_GTACAGCTCCTGATGGATGTCG 

sequencing CCCGAATCCACACTT T C/T TGTTCG GGCATGCGAA   

CYP6P3_1211 cyp6p3 

forward AGTTTATCGTGCCCTCGGT 
208 bp 2.3 66 

reverse biotin_ACGTCGGCGTAAGCTTCTG 

sequencing 1211 CGGTCCTGGTGATCG A C/T CC A/G/C GAG   

sequencing 1229 CTGAGCTGGCGAAGA CGAT T/C CT   

sequencing 1280 CGGCGTGTTTACCAAT GC A/T AAGGA   
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Table 3.2: Details of pyrosequencing primers and PC R conditions; SNPs underlined are the ones genotype d by the respective assays.  

 

  

  

   

Cyp6M2.2_301 cyp6m2 

forward TACGATGACAACAAGGGCAAGC 
130 bp 2.3 65 

reverse biotin_CGCGATCGTGGAAGTACTGG 

sequencing CAGTTCGTGAAGCCG GGTGGCACTGAT C/T   

G3_1602 cplcg4 

forward CTTCGTACCATGTCCTTCCTG 
124 bp 3.0 61 

reverse biotin_ CTATTCCGAGCGTTTGGTATG 

sequencing 1602 GTACCATGTCCTTCCTG GAGT T/G GGAC C/T ACG G/C   

sequencing 1651 CTCGGGAGCTGACGT G/T GACGG T/A CAGG   

G3_1845 cplcg4 

forward ACCAAACACCACCCAACTCAATC 
171 bp 2.3 64 

reverse biotin_ACGGAAGCACTCCAGCCT 

sequencing GACACAACACTCTCACCT T T/A/C GA A/C CGCA T/C TAAC 

G/A CT  
  

G4_540 cplcg3 

forward TCCTGCCGTACGGTGGCT 
80 bp 1.5 66 

reverse biotin_ GGGTGGGCCAGCACATTC 

sequencing GGCCCTATGGTCATCT GGC C/T GCC   
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3.3.3 qPCR on candidate genes cyp6p3, cyp6m2 and cplcg4 

3.3.3.1 RNA extraction and cDNA generation 

Various mosquito samples were used for the qPCR experiment. These 

included samples from the Akron colony (permethrin resistant; selected or 

unselected), Ngousso colony (susceptible) and field samples raised from 

larval collections. RNA was extracted from pools of three 3-day-old, 

unmated female mosquitoes using the Trizol extraction method (Chapter 

2.3.1). All mosquito samples with the exception of the Benin field samples, 

were unexposed specimens, snap frozen and stored at -80°C. The Benin 

field samples are mosquitoes that survived a 1 hour exposure to 0.75% 

permethrin and after a recovery period of 24 hours were snap frozen and 

stored in RNAlater® (Ambion, Applied Biosystems) before RNA extraction. 

Materials and Methods for the quantitative PCR were as described in 

Chapter 2.3. Absolute quantification using standard curves generated with 

plasmid DNA and data from two control genes, cpr and s7, was 

performed. 
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3.4 Results 

3.4.1 Akron field samples 

A total number of 74 adult females were collected resting inside houses in 

Akron, Benin. DNA was extracted and assessed for species ID and 

molecular form. All specimens were An. gambiae s.s. M-form. The 74 

specimens were genotyped for kdr, and 32 of those for the ace-1 target-

site mutation using a pyrosequencing assay. The 1014F kdr frequency 

was very high (0.92), but the ace-1 mutation and 1014S kdr allele were not 

detected.  

For twelve females exon 20 (including the kdr locus at position 1014) and 

exon 29 of the voltage gated sodium channel (encompassing the F1534C 

mutation involved in insecticide resistance in Ae. aegypti (Harris et al. 

2010) and Anopheles species, N1575Y recently described in An. gambiae 

(Jones et al. 2012b)), were sequenced. The 1014 kdr genotype was 

confirmed and no other polymorphisms detected. 

Field collected larvae were reared to adults and exposed to permethrin 

(0.75%,), bendiocarb (0.1%,) or DDT (4%) for one hour. Twenty four hour 

mortality is shown in Table 3.3.  

 

exposure 1 hour n dead alive mortality [%] 

Permethrin 0.75% 82 43 39   50.6 

DDT 4% 60  0 60     0.0 

Bendiocarb 0.1% 96 96   0 100.0 

 

Table 3.3: Summary of bioassay results from larval collections in September 2009 

in Southern Benin, West Africa.  
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3.4.2 Akron lab strain 

Selecting the original parental Akron strain obtained from MR4 with the 

insecticide permethrin resulted in an increase in resistance in this strain 

(Figure 3.5) with a final mortality of approximately 17 % after 1 hour 

exposure to permethrin 0.75%.  

The carbamate resistance phenotype in Pakron was stable at 0% mortality 

after 1 hour exposure to 0.1% bendiocarb. Selections using bendiocarb 

were performed at generations F7 and F10 and the phenotype was 

confirmed through bioassays at generation F21. 

Table 3.4 summarizes frequencies of molecular form and the target-site 

mutations L1014F/S and ace-1 in various generations of the Akron/ 

Pakron lab colony. When received from MR4 the Akron colony contained a 

small proportion of S-form (0.11). This was later confirmed by Paul 

Howells at MR4 (personal communication). 

 

 

 

Figure 3.5: Trend in mortality during selection of Akron colony. 

Bar diagram showing the change in mortality (±standard deviation) after selections of 

subsequent generations of the Akron lab strain with 0.75% permethrin. Note the name of 

the colony was changed from Akron to Pakron due to the selection process which 

changed the phenotype.   
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selections n M-form 
1014S 

kdr 

1014F 

kdr 
ace-1 

Akron F0 none 20    0.89 0 0.60   0.93 

Akron F7 permethrin 0.75% 23    0.91 0   0.08
¥
   0.94 

Akron F26 permethrin 0.75% 16 1.0 0     1.0 no data  

Akron 

Carbamate 
carbamate 0.1% 16 1.0 0  0.06 1.0 

¥ the low kdr frequency is due to biased sampling (non-survivors after permethrin exposure). 

Table 3.4: Summary for genotyping of target-site mu tations in different generations 

of the Akron colony.  

 

3.4.3 Sequencing of candidate genes in Akron field samples 

All 69 field samples (Djouaka 2008) were molecularly confirmed as An. 

gambiae s.s. M-form. Frequencies of 1014F kdr were f(R) 0.97 and 0.85 

for alive and dead respectively. No resistance alleles for 1014S kdr or ace-

1 were observed.  

Three samples of each group, dead and alive (six each in the case of 

cyp6p3) were sequenced and sequence alignments produced in order to 

identify polymorphisms. The numbers of substitutions found in each gene 

are listed in Table 3.5. 

Table 3.6 lists SNP identities, codons, amino acid changes (if applicable) 

for the identified polymorphisms and genotype data and L1014F kdr status 

in the sequenced samples. Pyrosequencing assays were successfully 

designed for 13 SNPs. Those polymorphisms were assessed in the 69 

field samples and χ2 and p-values are listed in Table 3.7. 

     

 
substitutions/ 1 kb sequence 

gene upstream Exon 1
¥
 Intron

¥
 Exon 2

¥
 overall

¥
 overall 

non 
coding 

coding 

cyp6p3 40/ 0.9 28/ 1.1 4/ 0.08 14/ 0.5 86/ 2.66 32 45 26 

cyp6m2 57/ 0.9 38/ 1.1 2/ 0.07 9/ 0.4 106/ 2.44 43 63 31 

cplcg3 10/ 0.4 7/ 0.4 na na 17/ 0.85 20 25 18 

cplcg4 31/ 1.3 17/ 0.7 na na 48/ 1.98 24 24 24 

¥
 number of substitutions found / length of DNA sequence in kb 

 

Table 3.5: Number of substitutions found per kb of candidate gene sequences.  
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Table 3.6: List of SNPs identified in the candidate  genes. 

SNPs identified based on sequencing data, showing SNP identity and genotypes in the 

sequenced field samples A=alive and D=dead; all sequenced field samples show the 

listed insertion relative to the vector base sequence.   

gene cyp6p3 
       

assay  787 812 814 926 1033 1039 1067 1229 1280 

position  -153 -128 -126 -15 93 99 127 289 340 

 
UTR 

   
Exon 1 

   
 

codon 
    

GAA > 

GAC 

GGA > 

GGG 

TTG > 

CTG 

ATC > 

ATT 

GCA > 

GCT 

change
¥
 

    

Glu > 

Asp 
Gly Leu Ile Ala 

     
non syn syn syn syn syn 

vector 

base 
C G G T C A T C   

samples
§
 

        
  

A1 C/C G/G G/G T/T C/C A/A T/T C/C   

A2 T/T G/G G/G C/C A/A G/G T/T 
 

  

A3 T/T G/G G/G C/C A/A G/G T/T C/C A/A 

A4 C/C A/A G/G T/T C/C A/A T/T T/T T/T 

A5 
        

 A6 
       

T/T T/T 

D1 C/C G/G G/G T/T C/C G/G C/C C/C A/A 

D2 T/T G/G T/T C/C A/C G/G T/T C/C A/A 

D3 C/C G/G A/G C/T A/C A/A C/T C/C A/A 

D4 C/C G/G A/A T/T C/C G/G C/C C/C A/A 

D5 C/T G/G G/G 
    

C/C A/A 

D6 
       

C/C A/A 

          

gene cyp6m2 cplcg3 cplcg4 
 

sodium channel 

assay  m2.2_301 G4_540 
 

G3_1651 1845 1014F kdr 

position  255 87 
 

-136 62-74 1014 

 
Exon 1 Exon 1 

  
Intron 1 Exon 20 

codon ATC > ATT CTG > CCG 
   

TTA > TTT 

change
¥
 Ile Leu > Pro 

   
Leu > Phe 

 
syn non syn 

   
non syn 

vector 

base 
C T 

 
T A ¥ A 

samples
§
 

      
A4 C/C C/C 

 
T/T GCTTTCGCTCTAT T/T 

A5 C/C C/C 
  

GCTTTCGCTCTAT T/T 

A6 T/T C/T 
  

ACTCCTACTCTAC T/T 

D4 C/C C/T 
 

A/A ACTCCTACTCTAC T/T 

D5 C/C C/T 
  

heterozygous T/T 

D6 C/C C/T 
  

heterozygous T/T 

¥ non syn = non synonymous mutation; syn = synonymous mutation 
 

§ A = alive; D = dead 
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locus gene 
 

codons χ
 2

 p-value 

kdr 
sodium 

channel 
Exon20 TTA-Leu to TTT-Phe 4.66 0.03 

P3_787 cyp6p3 UTR G � A 1.44 0.23 

P3_812 “ UTR C � T 0.00 0.98 

P3_814 “ UTR G � A or T ¥ ¥ 

p3_926 “ UTR A � T 2.96 0.09 

P3_1033 “ Exon 1 GAA-Glu �GAC-Asp 2.94 0.09 

P3_1039 “ Exon 1 GGA and GGG-Gly 0.77 0.38 

p3_1067 “ Exon 1 CTG and TTG-Leu 1.66 0.20 

P3_1229 “ Exon 1 ATC and ATT-Ile 0.30 0.58 

P3_1280 “ Exon 1 GCA and GCT-Ala 0.92 0.34 

G4_540 cplcg3 Exon 1 CCG-Pro �CTG-Leu 0.00 0.96 

G3_1651 cplcg4 intergenic T � A 0.42 0.52 

G3_1845 “ Intron A � 13 bp insertion 1.11 0.29 

m2.2_301 cyp6m2 Exon 1 ATC and ATT - Ile 0.55 0.46 

 
 

    
Table 3.7: Table showing χ

2 and p-values for the SNP polymorphisms that were 

identified and genotyped in the field samples from Akron (R F Djouaka 2008; n=69). 

¥ not possible to calculate correct values due to multiple substitutions at this locus. 

 

Primers for quantitative RT PCR were based on the sequences of cyp6p3, 

cyp6m2 and cplcg3/4 obtained in this section. It was not possible to design 

exon junction spanning primers due to high levels of polymorphism 

detected and typical for cytochrome P450 genes (Wilding et al. 2009). 
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3.4.4 qPCR on candidate genes cyp6p3, cyp6m2 and cplcg4 

Two sets of qPCR experiments were carried out. In the first set, gene 

expression in the field samples from Benin, survivors after permethrin 

exposure, were compared to the Akron colony (prior to further selection at 

LSTM) and the susceptible Ngousso strain. In the second experiment 

three samples from the Akron colony (generation F0 before permethrin 

selection, F7 after a few generations of selection and F24 after several 

generations of selection) were compared (Table 3.8). 

For experiment 1 the ratios of transcript levels of cyp6p3 and cyp6m2 are 

increased in the Benin field samples compared to the lab strains Akron 

and Ngousso, irrespective of which control genes the data is normalized 

to. This difference is not significant (Figure 3.6 A and B). The transcript 

levels for cyp6p3 and cyp6m2 between the Akron F0 and Ngousso strain 

are similar. Comparing Akron F0 with Akron F24 samples in experiment 2, 

normalized against cpr, the ratios of transcript levels of cyp6p3 and 

cyp6m2 show a trend of increasing level, this however is not significant 

(Figure 3.6 C and D). This trend is not observed when transcript levels are 

compared after normalizing to the control gene s7.  

The absolute copy number of the control genes was compared in an 

attempt to explain the variable results obtained with the two genes (Figure 

3.7). Expression of the cpr genes is relatively consistent between samples 

but the s7 gene expression is highly variable with expression being 

particularly low in the pyrethroid exposed field samples. This will account 

for the higher ratio of expression in field samples compared to the colony 

samples when normalized against s7 (Table 3.8 and Figure 3.6 A). 

    cyp6p3 cyp6m2   

  

/s7 /cpr /s7 /cpr 

e
xp

e
ri

m
e

n
t 

1
 

Akron F0 0.050 0.01 0.218 0 0.143 0.01 0.617 0.16 

Benin field 0.134 0.05 0.299 0.02 0.442 0.18 1.132 0.04 

Ngousso 0.039 0.01 0.205 0.01 0.150 0.01 0.786 0.24 

 

cplcg4 

       

 

/s7 

 

/cpr 

     Akron F0 0.144 0.04 0.622 0.09 

    Benin field 0.285 0.17 0.730 0.17 

    Ngousso 0.214 0.02 1.119 0.49         
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e
xp

e
ri

m
e

n
t 

2
 

 

cyp6p3 

   

cyp6m2 

   

 

/s7 

 

/cpr 

 

/s7 

 

/cpr 

 Akron F0 0.079 0.02 0.356 0.04 0.163 0.04 0.731 0.02 

Akron F7 0.056 0.02 0.385 0.14 0.120 0.05 0.835 0.42 

Akron F26 0.070 0.03 0.455 0.10 0.178 0.06 1.158 0.25 

 

cplcg4 

       

 

/s7 

 

/cpr 

     Akron F0 0.168 0.03 0.766 0.16 

    Akron F7 0.167 0.03 1.150 0.36 

    Akron F26 0.159 0.02 1.051 0.04         

Table 3.8: Ratio of gene expression (mean values ± sdev). 

 

 
Figure 3.6: Summary of the qPCR (absolute quantific ation) results on the candidate 

genes cyp6p3, cyp6m2 and cplcg4. 

Control genes, s7 (left column) and cpr (right column) (mean4se). (A and B) Compared 

are the resistant lab colony (Akron F0), resistant field samples (exposed) and the 

susceptible lab colony, Ngousso. (C and D) Shown are the results from the second set of 

data comparing Akron colony samples only. 
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Figure 3.7: Absolute copy numbers of the control ge nes s7 and cpr for both 

experiments (mean 4CI 95%). 

 

 

 

absolute transcript levels for control genes s7 and cpr

s7 -exp 1 s7 -exp 2 cpr -exp 1 cpr -exp 2

ab
so

lu
te

 tr
an

sc
ri

pt
 le

ve
ls

0

105

2x105

3x105

4x105

experiment 1

experiment 2
Akron F0
Akron F7
Akron F24

Akron F0
Benin field
Ngousso



CHAPTER 3 DISCUSSION 84 

3.5 Discussion 

The objective of this chapter was to use association mapping and gene 

expression techniques to investigate whether any of the candidate genes, 

identified in an earlier microarray study (Djouaka et al. 2008), were 

associated with permethrin resistance in the field population from Akron or in 

a lab population colonised from the same site. Furthermore frequencies of 

the kdr and ace-1 target-site resistance alleles were assessed those 

populations. 

Analysis of the field samples collected from Akron in 2009 confirmed a high 

frequency of permethrin (and DDT) resistance in the M-form An. gambiae 

from this site. As expected there was a high frequency of the 1014F kdr 

allele. Sequencing of a larger region of the sodium channel, comprising the 

putative pyrethroid binding site (Bloomquist 1996; Ingles et al. 1996) did not 

identify any further non-synonymous SNPs, i.e. potential additional target-

site mutations.  

Genotyping the Akron colony for target-site mutations revealed a very 

different profile to the field populations. The Akron colony contained the 

1014F allele but at a lower frequency than the field samples (0.6 vs 0.9). The 

Akron colony had a high frequency of the 119S ace-1 allele (> 0.9) but the 

ace-1 allele was not detected in the field populations samples although the 

sample size (n=32) was relatively low.  

The 119S ace-1 allele is thought to exert a relatively high fitness cost 

(Djogbénou et al. 2009; Weill M. et al. 2004) and its allele frequency is 

expected to decline when selection pressure is reduced (Hemingway et al. 

1997). Carbamate insecticides are one of the main insecticides used to fight 

insect pests in Akron (Djouaka 2008). These may however be applied in 

rotation and it is possible that the low frequency of the ace-1R allele in the 

field collections is a result of the timing of the collections. Presumably the 

Akron strain had been selected extensively with carbamates before 

deposition in MR4. Selections of the original Akron MR4 strain with 

permethrin led to an increase in permethrin resistance resulting in a ‘new’ 

strain named Pakron. The selection resulted in an increase in the 1014F kdr 
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frequency, as expected, but one of the objectives of this chapter was to see if 

selection also increased expression of any of the candidate genes. 

Unfortunately, results of the first qPCR experiment on the candidate genes 

for populations from both a susceptible and permethrin resistant laboratory 

strain and the Benin field samples were inconclusive due to the variation 

obtained with the two control genes in particular s7. The presence of SNPs in 

the primer binding sites was not adequately investigated in all used strains. 

Another valid approach could have been to use another control gene.  

Earlier studies using microarray analysis demonstrate an up-regulation of 

cyp6p3 and cyp6m2 in permethrin resistant field populations of An. gambiae 

from Ghana and the genes showed good concordance between the 

microarray and quantitative RT-PCR results (Müller et al. 2008b).  

The individuals from Benin field samples surviving permethrin exposure do 

show very high transcript levels for the P450 genes; however this may be 

due to induction of those genes following insecticide exposure (Poupardin et 

al. 2008).  

In the second experiment transcript levels of different generations of the 

Akron/ Pakron lab colony were compared with the expectation that transcript 

levels of the candidate genes would increase from F0 to F7 and F24. This was 

not observed, even though the observed resistance to permethrin had 

increased. This may indicate that selection of the lab colony caused the 

increase of kdr frequency but did not select for any of the metabolic 

resistance mechanisms originally present in the population, but the reasons 

for this are unclear.  

The coding regions of cyp6p3, cyp6m2, cplcg3 and cplcg4 including ~900 bp 

upstream of each gene were sequenced in a small number of phenotyped 

field samples from Akron to identify sequence polymorphisms within these 

samples. The sequences for cyp6p3 and cyp6m2 show numerous 

polymorphisms and the SNP density is high in coding and non coding 

regions. The cplcg3 and cplcg4 sequences are less polymorphic between the 

sequenced samples (Table 3.5). The cuticular proteins CPLCG3 and 

CPLCG4 are assembled into fibrils to form part of the cuticule and, as 
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structural proteins, may be expected to be more conserved than 

detoxification enzymes which are known to be highly polymorphic (Andersen 

et al. 1995; Rebers & Willis 2001; Wilding et al. 2009). Changes in the 

promoter regions can affect transcriptional activity and have been linked to 

enhanced expression levels of detoxification genes (Daborn et al. 2002; Ding 

et al. 2005). Recently another type of element, called microRNAs, has been 

shown to play gene regulatory roles (Winter et al. 2012). A bioinformatics 

search using MicroInspector version 1.5 (Rusinov et al. 2005) predicted one 

of these micro RNA-binding sites in the 5’-UTR of the cyp6p3, as well as two 

miRNA-binding sites upstream of cyp6m2 (overlapping with identified 

sequence polymorphisms (Table 3.6)) and three in the intergenic region of 

cplcg3/g4. Due to lack of sequence information on the 3’-UTR no search 

could be performed downstream those genes. The potential role of 

microRNAs in regulating genes involved in insecticide resistance requires 

further investigation.  

A selection of SNPs identified in these ‘candidate’ loci were selected for 

genotyping in the 69 phenotyped field specimens; in an attempt to find 

statistical linkage to the resistant phenotype. Only the kdr locus showed 

significant linkage. The lack of linkage may be due to the relatively small 

sample size genotyped and/or due to bias in sample collection. However, the 

current data do not support an association between the candidate genes 

identified in earlier studies and resistance to permethrin in Akron.  

The lack of association between the candidate genes and the resistance 

phenotype, using either association mapping or qPCR, may be due to 

limitations of the techniques such as insufficient sample sizes. Alternatively, 

the candidates identified in the earlier microarray studies may not be 

responsible for the resistance observed in the population under study. This 

result was surprising given the association between several of these 

candidates and pyrethroid resistance in several independent studies 

(Amenya et al. 2008; Müller et al. 2007; Müller et al. 2008b; Wondji et al. 

2009). Nevertheless, as the role of the candidate genes could not be 

confirmed, a genetic mapping study was undertaken to identify the major loci 

responsible for resistance in this population. 
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Chapter 4. QTL mapping of permethrin resistance in 

isofemale families of An. gambiae s.s. from Benin 

4.1 Introduction 

Quantitative trait locus (QTL) mapping is a forward genetics approach 

used to identify genome regions associated with traits that govern certain 

phenotypes. One of the advantages of QTL mapping is that no prior 

assumptions about mechanisms involved need to be made. QTL mapping 

can be used to de novo discover candidate regions as well as to confirm 

existing candidate genes. QTL mapping has the power to detect trans-

acting factors involved in gene regulation, such as regulatory elements 

and transcription factors, just as well as cis-acting factors like mutations in 

target sites or structural enzymes.  

QTL mapping has been successfully applied to vectors of disease. Recent 

examples include mapping of insecticide resistance in various mosquito 

species such as An. gambiae (Ranson et al. 2000b; Ranson et al. 2004), 

An. funestus (Wondji et al. 2007) and Ae. aegypti (Saavedra-Rodriguez et 

al. 2008) as well as susceptibility to Plasmodium infection in An. gambiae 

(Niare et al. 2002; Riehle et al. 2006). A prerequisite for such studies is 

always the availability of a sufficient number of genetic markers as well as 

a suitable mapping population. 

Microsatellites are the genetic markers widely applied for QTL mapping as 

they are inherited in mendelian fashion, co-dominant, randomly distributed 

across the genome, and fast and easy to genotype. They are abundant 

and highly polymorphic within anopheline genomes. A first genetic map 

consisting of 131 microsatellite markers with an average resolution of 

1.6 cM was constructed for An. gambiae and published in 1993 (Wang et 

al. 1999; Zheng et al. 1996; Zheng et al. 1993). This enabled the first QTL 

studies on anopheline mosquitoes. 

A very common format of QTL studies in insects is the F2-design (or an 

advanced intercross design if it goes beyond generation F2) based on a 

cross of two individuals from two different populations representing the 
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phenotypic extremes one is interested in. The studies of insecticide 

resistance by Ranson, Wondji and Saavedra-Rodriguez mentioned above 

have in common, that they used experimental crosses between two inbred 

lab strains of mosquitoes, a resistant and a susceptible population, to 

generate mapping populations. This approach is well established and has 

proved to yield results but has its limitations. It is arguable as to how 

laboratory colonised insects represent natural breeding populations. 

These lab strains have often been under selective pressure purely by 

being kept under laboratory conditions for numerous generations. Through 

generations of inbreeding they are likely to have adapted to laboratory 

conditions and this may have altered both genotype and phenotype. As a 

result, QTL studies using this design may be trying to establish genotype-

phenotype associations in the context of a genetic make-up that is very 

unlikely to occur in nature (Dworkin et al. 2005). QTL mapping can be 

successful in unmanipulated natural populations of mammals (Slate 2005). 

Similarly studies on Plasmodium infection (Niare et al. 2002; Riehle et al. 

2006) have used phenotypic variation in natural populations of An. 

gambiae to map allelic variants affecting parasite development. No QTL 

studies on unmanipulated natural populations that seek to identify factors 

involved in insecticide resistance have been published. In this chapter field 

caught gravid females of An. gambiae from Benin were used to generate 

isofemale lines for a QTL mapping study investigating permethrin 

resistance.  
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4.2 Aims of the chapter 

Benin was chosen as a study site due to the high level of pyrethroid 

resistance in the South of the Country (see Chapter 3) and the data, from 

microarray experiments, suggesting metabolic and possibly cuticular 

resistance mechanisms were at least partially responsible for this 

phenotype. The specific objectives of this work are to: 

 

1. Assess how much target-site and metabolic resistance contribute to 

the overall variance in the resistant phenotype 

2. Identify the major loci conferring permethrin resistance in the field 

population 

 

An. gambiae females generally mate only once (Tripet et al. 2001). This 

and the large number of progeny produced by a single female enable a 

study design based on isofemale families. The isofemale families were 

raised from single F0 females caught in Akron, their F1 generation 

intercrossed and the F2 generation tested for permethrin resistance. F2 

individuals were genotyped with microsatellite and SNP markers.  

As mentioned above QTL mapping is a genome wide approach for which 

no preliminary knowledge about involved factors is required. However, as 

in this case there is evidence for a role of certain candidate genes, 

cyp6p3, cyp6m2, cplcg3, and cplcg4 (Djouaka et al. 2008) in this particular 

resistance phenotype, the initial screen on F2 samples included markers in 

the vicinity of these candidate genes.  
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4.3 Material and Methods 

4.3.1 Adult mosquito collections, forced egg laying  and 

generation of mapping families 

A detailed description of field work, mosquito samples and establishment 

of mapping families is found In Chapter 2.1.1.2. 

4.3.2 Resistance phenotyping of F 2 offspring  

All insecticide bioassays described in this report were carried out 

according to standard WHO specifications using WHO insecticide 

susceptibility kits (WHO 1998). Further details are described in Chapter 

2.1.1.3.  

4.3.3 Genotyping of mapping families 

Basic genetic characterization was carried out to standardized procedures 

described in Chapter 2.2.  

Informative markers were selected on the basis of the genotypes of the 

parental female F0 and F1 individuals. A total of 51 microsatellite loci were 

screened (Table 2.9). Additionally three new SNP markers were identified, 

one each in the candidate genes cyp6p3, cyp6m2 and cplcg4.  

Potential informative SNP markers, including known target-site mutations, 

were tested in the same way on basis of the genotypes of the parental 

female F0 and F1 individuals (four female and four male offspring). The 

1014 kdr marker was only informative in one family, family 17. In order to 

identify an alternative SNP marker in the sodium channel that could be 

genotyped in the remaining families, sequences for exons 20 and exons 

27-30 were determined (Macrogen, Korea) and aligned. Primer and PCR 

details are listed in Table 2.5. Informative microsatellite and SNP markers, 

identified in the initial screen were then genotyped in all F2 individuals of 

the three investigated An. gambiae families (38 for family 15; 63 for family 

17 and 43 for family 25) (Table 2.7). 
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4.3.4 Software used for marker data analysis, linka ge mapping, 

and LOD scoring 

The JoinMap 2.0 software package (Stam & van Ooijen 1996) was used to 

build genetic linkage maps, Haploview 4.2 (Barrett et al. 2005) for χ2 

testing, Windows QTL Cartographer 2.5 (Wang et al. 2005) for LOD 

analysis and MapChart 2.1 software (Voorrips 2002) for final visualization. 

More details can be found in Chapter 2.4.3. 
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4.4 Results 

4.4.1 Adult mosquito collections and forced egg lay ing  

A total of 109 females were set up to oviposit in individual Eppendorfs and 

56% (64 females) laid eggs. Forty seven of these egg batches were fertile 

(hatching rate 73%) and 21 of these were kept as separate families. 

4.4.2 Resistance phenotyping of F 2 offspring  

Of the 21 families, only four produced sufficient F2 progeny for 

phenotyping. All four families showed strong permethrin resistance. 

Families 15, 20 and 25 were initially phenotyped using 0.75% permethrin 

(the WHO diagnostic dose) but 100 % survived a one hour exposure and 

mortality rates ranging from 5.3% to 20% mortality were obtained after 90 

minutes. Using a higher concentration of permethrin (2%) and an 

exposure time of 60 minutes resulted in a higher mortality of 46%, 67% 

and 51% for families 15, 20 and 25 respectively (Table 4.1). The total 

numbers of phenotyped individuals in those four families ranged from 12 

to 201 mosquitoes. Mortality in females was generally lower than mortality 

in males ranging from 14-50% as compared to 24-100%.  

24 h post permethrin exposure  

overall female male  

family n mortality n mortality n mortality  

15
¥
  68 46%   30 20% 38  66% * 

17
$
 201 18% 111 14% 90  24% * 

20
¥
  12 67%    8 50%   4 100%  

25
¥
  43 51%  24 38% 19  68% * 

positive control
$
  71 99% 

    
 

negative control 104   1% 
    

 

¥ 
2% permethrin 

$
 0.75% permethrin  

n = number of mosquitoes phenotyped (overall, male and female)  

controls: susceptible An. gambiae Ngousso colony  

* differences between female and male mortality are significant at the 0.05 level; non 

parametric test (Mann-Whitney U test)  

Table 4.1: Summary of WHO bioassay results from a s ubset of the F 2 progeny. 

Families were raised from single females of An. gambiae. Mosquitoes of the susceptible 

Ngousso colony were used as positive (1 hour exposure to 0.75% permethrin) and 

negative controls (1 hour exposure to insecticide-free filter paper).  
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4.4.3 Genotyping of mapping families 

4.4.3.1 Species identification and genotyping for target-site mutations 

All parental females and F1 progeny for families 15, 20 and 25 from Akron 

were confirmed as An. gambiae s.s. and M-molecular form. In family 17 

the majority of F1 samples were M-form, however one specimen in the F1 

generation was identified to be an M/S-hybrid (n tested= 43). Microsatellite 

analysis of this F1 sample shows foreign alleles at a number of loci, which 

are not present in any other samples of family 17. To clean up the F2 

samples all M/S-hybrid and S-form specimens were removed. In a second 

step a microsatellite analysis was performed to find specimens carrying 

the contaminating M haplotype and all samples positive for the “foreign” 

alleles were discarded. Altogether 29 samples were removed from the F2 

sample set of family 17, 20 of these from the group of 37 dead samples 

(54%) and nine of these from the group of 56 alive samples (16%). The 

remaining F2 progeny was used for genetic mapping.  

The ace-1 mutation was not present but all tested samples were 

homozygous for kdr (1014F). The kdr-genotype was first determined via 

pyrosequencing and subsequently confirmed through sequence analysis 

(Macrogen, Korea). Karyotyping for the 2Rb inversion showed all F0 and 

F1 specimens homozygous for the inverted 2Rb+ arrangement. The 

results for the 2La karyotyping are shown in Table 4.2 below. Both the 

standard (S) and inverted (I) arrangements are present at frequencies of 

roughly 0.5 in the F2 progeny from each family. Family 25 deviates from 

this with values of f(S)=0.35 and f(I)=0.65.  

2La inversion 
F2 progeny family 

15 17 25 

frequency of allele in family 
f(S) 0.49 0.47 0.35 

f(I) 0.51 0.53 0.65 

association with phenotype 
χ

2
 0.05 0.58 1.32 

p-value 0.82 0.45 0.25 

    
Table 4.2: Results of molecular karyotyping for the  2La chromosomal inversion. 

Included are χ2 and p-values for comparing the frequencies in the two phenotype groups. 

Family 20 was excluded due to low numbers of F2 progeny.  
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4.4.3.2 Selection of informative markers  

Individual F2 progeny can be either maternal homozygotes, heterozygotes 

or paternal homozygotes for each marker locus. However, in some cases, 

it is not possible to assign each allele to a single parent. In this case the 

marker may be semi informative (if some but not all of the alleles can be 

tracked back to a specific parent). 

Of the 51 tested microsatellites, 34 were informative in at least one of the 

three families, nine of these were informative in all three families, 14 were 

informative in two families, and 11 were informative in one family only. 

Details of informative markers and the range of allele size for each marker 

are shown in Table 4.4. The 1014 kdr allele was informative in family 17 

only, in which the paternal genotype was deduced to be heterozygous 

1014F/1014L. The other two families were homozygous for the 1014F in 

all parents and progeny, meaning kdr as a marker was non-informative. 

Sequencing of exon 20 and exons 27-31 of the sodium channel in the F0 

and three F1 specimens of the three families did not identify any further 

informative SNPs.  

4.4.3.3 Genotyping microsatellite and SNP markers in F2 samples 

Of the four phenotyped families the three families with the largest number 

of F2 offspring were selected for genotyping (families 15, 17 and 25). The 

number of progeny genotyped ranged from 38 to 63 (Table 4.3). Family 20 

yielded the lowest number of F2 individuals with only eight survivors and 

four susceptible mosquitoes. No genotyping was carried out on F2 

samples of family 20.  

 
Number of F2 offspring genotyped 

  
dead 

  
alive 

  

family male female 
sum 

dead 
male female 

sum 

alive 

sum dead 

and alive 

15 13 6 19 13 6 19 38 

17 10 6 16 30 17 47 63 

25 6 15 21 13 9 22 43 

sum 29 27 56 56 32 88 144 

        Table 4.3: Summary of phenotype and sex in each of the three families used for 

genotyping. 
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Details of microsatellite and SNP markers successfully genotyped in each 

family are shown in Table 4.4. The full results for the tests for Hardy-

Weinberg equilibrium (dead and alive separate as well as combined) are 

shown in Appendix 9.1. Single marker analysis was performed for each 

family to test for association between genotype and resistance phenotype 

(haploview 4.2). Microsatellite markers for which a significant association 

was observed are listed in Table 4.5 (full data in Appendices 9.2 and 9.3). 

The p-values for the SNP markers in candidate genes are also included, 

even if not significant.  

 

 
marker 

location ¥ 

[Mb] 

allele size 

range [bp] 
15 17 25 

X Chromosome 53 3.6 87-97 
 

x 
 

 
80 7.0 80-108 

 
x 

 

  
 

    
Chromosome 2 46 1.2 133-142 

  
x 

2R 803 1.9 144-146 x x 
 

 
197 10.4 83-96 x x 

 

 
757 14.7 79-101 x x x 

 
799 24.9 74-93 

  
x 

 
2R_si_5 28.5 246-256 x x x 

 
cyp6p3 (P3_1033) 

$ 28.5 
 

x x x 

 
770 * 40.4 174-188 

 
x x 

 
117 * 42.7 116-123 

 
x x 

2L kdr 24.2 
  

x 
 

 
637 25.5 102-105 x 

  

 
787 * 26.8 131-135 

 
x x 

 
772 * 42.0 131-152 

  
x 

 
603 42.0 105-109 

 
x 

 

 
675 46.9 101-114 x 

 
x 

  
 

    
Chromosome 3 776 2.5 87-102 x x x 

3R 59 4.2 120-132 x x x 

 
812 6.2 107-131 x x x 

 
cyp6m2 (M2.2_301) 

$
 6.9 

  
x x 

 
249 8.8 108-132 x x x 

 
30C1 9.6 155-168 x x x 

 
cplcg4 (G3_1845) 

$
 10.9 

 
x x x 

 
06M19 13.1 160-170 x x x 

 
119 14.8 179-194 x 

 
x 

 
555 21.3 83-96 x 
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158 22.99 78-90 

  
x 

 
341 23.02 116-142 

 
x x 

 
06H01 25.5 127-156 x x x 

 
33C1 25.6 147-159 

 
x 

 

 
06F05 31.6 174-184 

 
x x 

 
88 34.7 184-197 

  
x 

 
30L17 41.1 71-79 

 
x x 

3L SODI (RFLP) 
$
 5.6 

  
x 

 

 
811 14.8 124-134 

 
x x 

 
577 19.8 80-103 x x 

 

 
817 * 31.9 143-149 

 
x x 

 
46C2 41.4 177-197 

 
x x 

  
sum Chromosome x 0 2 0 

  
sum Chromosome 2 7 10 10 

  
sum Chromosome 3 11 18 18 

  
 sum 18 30 28 

¥ According to vector base (08/2010)    

$ SNP markers    

* Markers used as M13-tailed (Oetting et al. 1998)    

     

Table 4.4: Details of microsatellite and SNP marker s. 

Markers found informative in the three tested families based on maternal and F1 

genotypes and subsequently used for genotyping the F2 samples. 
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marker χ
2
 p-value df 

family 15 cyp6p3 (P3_1033) 
$
 0.27 0.602 1 

637 4.07 0.044 ** 1 

675 5.32 0.021 ** 2 

776 3.27 0.071 * 1 

812 1.94 0.163 2 

249 4.33 0.037 * 2 

30C1 5.18 0.023 ** 1 

cplcg4 (G3_1845) 
$
 6.18 0.013 *** 1 

6M19 5.67 0.017 ** 1 

family 17 757 3.59 0.058 * 1 

cyp6p3 (P3_1033) 
$
 0.16 0.692 1 

kdr 0.36 0.547 1 

603 3.42 0.064 * 1 

cyp6m2 (M2.2_301) 
$
 0.48 0.488 1 

817 8.76 0.003 ** 2 

family 25 cyp6p3 (P3_1033) 
$
 0.38 0.538 1 

787 3.44 0.064 * 2 

cyp6m2 (M2.2_301) 
$
 0.20 0.659 1 

 
cplcg4 (G3_1845) 

$
 0.01 0.946 1 

811 3.83 0.050 * 2 

817
¥
 4.35 0.037 ** 1 

significance levels: *:0.1  **:0.05  ***:0.01   

$ SNP markers 

¥ those markers were not implemented in the genetic maps 

Table 4.5: Chi 2 and p-values for SNP (except SODI) and significant  microsatellite 
markers (haploview 2.0).   
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4.4.4 Linkage mapping  

Very few informative markers were identified on the X chromosome and it 

was not possible to generate a linkage map for this chromosome. 

A summary of the maps for chromosomes 2 and 3, including number of 

markers and resolution, is shown in Table 4.6. All generated maps for the 

separate family data are shown in Figure 4.1. Maps using the combined 

data set based on all three families are shown in Figure 4.2.  

 

Chromosome 2 Chromosome 3 
average 

res. 

map 

[cM] 

no of 

markers 

average 

res. 

map 

[cM] 

no of 

markers 

average 

res. 

per 

family 

fa
m

il
y

 

15 38.8 6 6.5 80.0 11 7.3 7.0 

17 105.7 7 15.1 103.7 16 6.5 9.1 

25 67.3 9 7.5 53.4 14 3.8 5.2 

co
m

b
in

e
d

 optimal 

physical  
67.5 10 6.8 112.5 16 7.0 6.9 

optimal 

genetic  
57.1 10 5.7 110.5 16 6.9 6.4 

 
 

       Table 4.6: Summary of map size and map resolution f or all maps with average 

resolution in cM/ marker. 
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Figure 4.1: Summary of the genetic linkage maps for  single families. 

Chromosomes 2 and 3 for families (A) 15, (B) 17 and (C) 25 when analysed separately. A 

scale of genetic distance in centimorgan is shown.    

 

 
Figure 4.2: Genetic linkage maps using the combined  data from the three F 2 

intercross families. A scale of genetic distance in centimorgan is shown. (A) Linkage 

maps of chromosomes 2 and 3 are shown, as based on physical marker order (A) and 

optimal genetic map (B), with those markers that appear in a different position marked 

with _*.    
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Plotting mortality rate as a function of the number of maternal alleles 

inherited is a simplified means of visualising the genotypic effect on a 

certain phenotype. Figure 4.3 plots this data for selected markers for 

chromosomes 2 and 3 for each family.  

 

Figure 4.3: Phenotype-genotype association of singl e markers. 

Mortality rate as a function of alleles inherited from the mother for a number of markers 

on the two chromosomes for families 15 (A), 17 (B) and 25 (C).  
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Figure 4.3 shows an association between the number of alleles inherited 

from the maternal parent and the insecticide resistance phenotype for 

some markers. No unidirectional trend within groups of adjacent markers 

is obvious for chromosome 2. In contrast, on chromosome 3, a strong 

association does exist, particularly in family 15. Associated markers are 

markers 812 and 249 (fully informative) and three adjacent semi-

informative markers 30C1, cplcg4 and 6M19. A similar pattern, but less 

strong, is observed in family 17 for markers 249 and 30C1 (fully 

informative). The adjacent markers cyp6m2 and cplcg4, however, show a 

trend in the opposite direction. The same set of markers is shown for 

family 25, but there is no association between their genotype and the 

resistance phenotype (mortalities between 47-60%). 
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4.4.5 QTL analysis 

The software Windows QTL cartographer version 2.5 (Wang et al. 2005) 

was applied to test for linkage between resistance phenotype and 

genotype. Both Interval Mapping (IM) and Composite Interval Mapping 

(CIM) were performed and the results compared. As each family had a 

different genetic background, the results from individual families were first 

analysed individually and then a QTL analysis based on the combined 

data and maps was performed. Interval Mapping and CIM are largely in 

agreement for all family data as well as for the combined data.  

One QTL was located in family 25 on chromosome 2L reaching a LOD 

value of 3.1 around 60 cM (only detected with CIM), together with 

significant χ2 values for the two microsatellite markers on arm 2L.  

On chromosome 3 one QTL was identified in family 15 on arm 3R with a 

LOD score of 2.5 at around 30 cM (spanning chromosomal divisions 30 A-

D). This QTL is detected by both IM and CIM although less pronounced by 

IM with a lower LOD of 1.4. The χ2 values for markers in this region are 

significant.  

When combining the data of all three families LOD scores approaching the 

2.5cM cut-off are observed on chromosome 2L (Figure 4.6 and 4.7). A 

peak is also visible on chromosome 3 with a LOD score of approx. 2.0 

(CIM). If family 25 is excluded from the analysis, the QTL on chromosome 

3 reaches significance (IM LODmax 2.53) (Figure 4.6 B and 4.7 B). The 

QTL on chromosome 2L remains. 
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Figure 4.4: Plots of LOD scores associated with per methrin resistance.  

Shown are chromosomes 2 and 3 for families 15, 17 and 25. Solid lines represent LOD 

estimated by composite interval mapping and dotted lines represent LOD estimated by 

interval mapping. The straight line along the top of each graph represents the threshold 

value for LOD, set at 2.5 (dashed). 
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Figure 4.5: LOD plots of combined data. 

Plot of LOD scores associated with permethrin resistance on chromosomes 2 and 3 for 

(A) the combined data of all three families and (B) for data from families 15 and 17 only. 

Solid lines represent LOD estimated by composite interval mapping and dotted lines 

represent LOD estimated by interval mapping. The straight line along the top of each 

graph represents the threshold value for LOD, set at 2.5 (dashed).   
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Figure 4.6: LOD plots of combined data alongside th e genetic maps. 

Plot of LOD scores estimated by (A) composite interval mapping for all three families and 

(B) interval mapping for families 15 and 17. The straight line along the top of each graph 

represents the threshold value for LOD, set at 2.5.  
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Multiple Interval Mapping (MIM) confirms the presence of the QTL on 

chromosome 3R in family 15 and estimates that its genetic variance (δg
2) 

accounts for 9.1% of the phenotypic variance (δp
2) of permethrin 

resistance (3.6% resulting from additive effect and 5.6% from dominance 

effect). In families 17 MIM estimates one QTL on chromosome 2R with 

8.8% of the genetic variance (δg
2) accounting for phenotypic variance (δp

2) 

(8.5% resulting from additive effect and 0.3 from dominant effect). In family 

25 MIM estimates that two QTLs on chromosome 2 are responsible for 

17.9% of genetic variance. For the combined data MIM estimates two 

QTLs accounting for 13.2% (all families) and 23.0% (families 15 plus 17) 

genotypic variance. The QTL close to marker 117 on chromosome 2R is 

possibly due to kdr. Results are summarised in Table 4.7. 

 

 
sum of 

δg
2
 [%] 

δg
2
 [%] 

per QTL 

nearest 

marker 
¥ 

genetic 

distance [cM] 
effect in %δg

2
 

family 15       

 9.1  812 3R 18.3  A: 3.6 

       D: 5.6 

family 17       

 8.8  2R_si_5 2R 32.0  A: 8.5 

       D: 0.3 

family 25       

 17.9 48 2R_si_5  2R 34.4  A: 8.8 

       D: -0.1 

  52 675  2L 66.7  A: 2.4 

       D: 6.9 

combined all families      

 13.2 56 117* 2R* 54.3  A: 2.2 

       D: 5.2 

  44 249  3R 18.3  A: 3.8 

       D: 2.0 

combined families 15 and 17      

 23.0 64 787  2R 56.5  A: 9.9 

       D: 4.1 

  41 30C1  3R 24.6  A: 6.3 

       D: 2.8 

δg
2
 [%] genetic variance in % of overall estimated phenotypic variance and per locus;  

¥ chromosome and location in genetic distance for nearest marker;  

A for additive effect; D for dominant effect;  

* associated marker located on chromosome 2R, but effect possibly due to kdr on 2L. 

  

Table 4.7 : Multiple Interval Mapping estimates of QTL position and associated genetic, 

variance and additive and dominance effects associated with permethrin survival QTL in 

An. gambiae.  
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4.5 Discussion 

Insecticide resistance is a complex trait and factors involved vary 

depending on species, insecticide and population. In Southern Benin 

microarray analysis identified a number of candidates for permethrin 

resistance aside from the target-site mutations widely described, with 

genes encoding the two pyrethroid metabolising enzymes CYP6P3 and 

CYP6M2 being up-regulated (Djouaka et al. 2008). This study sought to 

identify the genomic loci responsible for this resistance. 

Raising isofemale families from single egg batches was facilitated by the 

method developed by John Morgan (Morgan et al. 2010). This is an easy 

and reliable method of retrieving eggs from field caught females. The 

stress exerted on parental females through forced egg laying may have 

induced epigenetic changes affecting gene expression in the offspring 

(Jaenisch 2003). No loss of permethrin resistance, however, was 

observed in the family offspring, indicating that this is not the case. Yet this 

kind of stress exerted through experimental conditions on a population 

needs to be considered when designing similar experiments. 

The number of progeny of those families reared to F2 were rather small 

and only a very limited F2 sample size was available for the QTL mapping. 

This and a restricted number of informative markers are the main 

limitations of the study.  

Insecticide resistance is a quantitative trait and should, as such, be 

measured quantitatively. However, after exposure to insecticides only two 

outcomes, alive or dead, were scored. Hence the quantitative trait was 

scored as a binary trait. A more powerful alternative would be using the 

extreme phenotyping procedure, whereby the survivors of a longer 

exposure time and the non-survivors of a short exposure time only are 

used and insects showing an intermediate phenotype are discarded. 

However, as in this method only a subset of the phenotyped mosquitoes is 

used for genotyping, the availability of a large number of samples is 

required. In this study it was not possible to generate sufficiently large 

numbers of F2 generation to do this. 
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Another alternative to the binary scoring (dead or alive) for phenotyping 

the mapping population has been used to map pyrethroid resistance in Ae. 

aegypti (Saavedra-Rodriguez et al. 2008). The phenotyping for the 

described study is slightly more complex and classes mosquitoes as 

knock-down resistant, recovered or dead. This may have helped to 

overcome the strong kdr resistance phenotype to affect the entire QTL 

mapping however, similarly to the extreme phenotyping this method would 

also require a larger sample size, which was not available.   

Bioassays conducted on adults raised from larvae collected in the same 

area showed an intermediate level of permethrin resistance (52.4% 

mortality after 1 hour exposure to 0.75% permethrin) (Chapter 3). Initial 

phenotyping of F2 individuals of the four isofemale families however, 

showed very low mortality with this insecticide concentration (0% mortality 

in families 15, 20 and 25 after 60 minute exposure and <20% mortality in 

family 17). Hence for families 15, 20 and 25 a higher insecticide 

concentration (2%) was used. Observing higher resistance in the F2 family 

progeny for some families (15, 20 and 25) than in the Akron field samples 

was surprising. This effect has been observed before (Ranson et al. 2004) 

and could be due to larger sized mosquitoes caused by optimised larval 

rearing conditions in the lab. Single family progeny were raised in cleaner 

conditions (availability of dd H2O) and at lower densities than the field 

caught larvae. Furthermore, the observed 1014F kdr frequency in the sum 

of all collected gravid females was very high with f(R)=0.92 and in the four 

phenotyped families f(R)=0.94. Families 15, 20 and 25 were homozygous 

for the 1014F, whereas the parental male for family 17 was heterozygous 

for kdr, partly explaining the differences in resistance observed. 

In this study female mosquitoes were more likely to survive insecticide 

exposure than males. This sex bias has been reported previously (Ranson 

et al. 2004) and may be due to the larger size of Anopheles females. The 

possible role of sex associated factors in permethrin resistance in the 

RSP-ST strain from Kenya was investigated by reciprocal backcross 

experiments of F1 males from a R x S or S x R cross with the susceptible 

strain followed by phenotyping. Phenotyping and QTL analysis of these 
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crosses showed no major differences between the sexes and an absence 

of linkage in the four X-linked markers (Ranson et al. 2004). The Benin 

microarray study did not identify candidates on the X chromosome. The 

data above and the absence of informative markers on the X chromosome 

was the reason to focus on the two autosomes for genetic analysis. 

Prior to genotyping of the F2 progeny, one single M/S-hybrid sample of F1 

was identified in family 17. If the F1 generation had been the result of a 

cross between an M-form parental female (confirmed) and an S-form 

parental male mosquito the entire F1 generation would be M/S-hybrids, 

and similarly, if the parental male had been a hybrid the expected ratio of 

M:M/S in generation one would have been 3:1. The conclusion therefore is 

that the M/S specimen was found in the F1 generation is a contaminant. 

This hypothesis is supported by microsatellite analysis of those F1 samples 

as the contaminating DNA sample carries foreign alleles, which are not 

present in any other sample, at a number of loci. M/S typing and 

microsatellite analysis were performed to identify “contaminated” F2 

progeny. Altogether 29 samples were removed from the F2 sample set of 

family 17, 54% of the dead samples 16% of the alive samples. Around half 

of all were detected using M/S-genotyping the other half using the 

microsatellite approach which is expected, as the same number of 

contaminating S- (detected by M/S-typing) and M- alleles (only detectable 

through microsatellite check) must be present in the F2 generation. The 

significantly higher percentage of offspring from the contaminating sample 

in the group of non-survivors suggests that the contaminating mosquito 

was of susceptible phenotype.  

The ratios of dead to alive as well as female to male samples used in the 

QTL study should ideally be equal to avoid bias. With limitations in sample 

sizes mentioned above, this was only possible for family 15. In family 25 

there was a bias towards more females in the dead progeny. And with an 

already very limited sample size, conditions for family 17 had to be even 

less stringent. A low mortality rate in F2 and a further reduction of the non-

survivors due to the “clean-up” shifted the ratio of dead: alive to a final 

ratio of 16:47.  
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For chromosome 2 some single markers showed an association between 

number of alleles inherited from the resistant parent and mortality, but 

there was no uniform trend between adjacent markers or across families. 

In families 15 and 25 the two markers closest to the kdr locus (namely 637 

and 787) both show genotype-phenotype association as well as significant 

χ2 values (Table 4.5). For chromosome 3 groups of adjacent markers 

show a similar trend within families, but not across families. In families 15 

and 17 the microsatellite markers close to the detected QTL (812, 249, 

30C1 and 6M19) are associated with the phenotype, but no such trend 

was observed in family 25. 

With kdr being informative in family 17 a QTL on chromosome 2L 

attributable to kdr was expected. This was not observed. In family 25 a 

QTL on 2L was observed albeit only by IM. Coherent with this is the 

significant association of marker 787 near kdr with the resistance 

phenotype (Figure 4.3 and Table 4.5).  

For the combined data sets, a QTL on chromosome 2L is observed, 

between markers 117 (on 2R) and 787 (on 2L). This is most likely attribute 

to kdr but the kdr marker itself was not informative in the combined family 

analysis and the boundaries of the QTL on chromosome 2 are very large. 

This imprecision in the location of the QTL could be caused by limited 

genetic resolution in this area due to little recombination around the 

centromere and the 2La inversion polymorphy. This is additionally 

influenced by the availability of a low number of informative markers near 

the kdr locus. 

The locus attributed to kdr on chromosome 2L explains a larger part of the 

genetic variance (7.4%) than the locus on 3R (5.8%) in the data set of all 

families. Similarly for the data set of families 15 and 17 MIM estimates two 

QTLs with the locus on 2L explaining 14 % of genetic variance of and the 

locus on 3R explaining 9.1%. This is similar to the previous QTL study of 

permethrin resistance in the RSP-ST strain which found the two main 

QTLs (equally on 2L and 3R) to explain roughly equal amounts of the 

genetic variance in one of the families. 
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Due to the limited genetic resolution it is not impossible that the QTL on 

chromosome 2 is the result of two separate QTLs that could not be 

resolved and kdr is therefore estimated to contribute a higher percentage 

of genetic variation in this analysis than it actually does.  

Genetic maps for chromosome arm 2L were difficult to establish due to a 

paracentric chromosomal inversion in An. gambiae on the left arm 

designated 2La. This inversion is highly polymorphic and widespread in 

An. gambiae s.s. (Sharakhov et al. 2006). Molecular karyotyping of the 

2La inversion through PCR showed that all families are polymorphic for 

the two arrangements (Table 4.2). Four of the five informative 

microsatellite markers identified on 2L are located within this inversion 

(637, 787, 772, and 603) with 603 very close to its distal breakpoint. The 

kdr locus is located close to the inversion. 

Only a limited number of microsatellite markers on chromosome 2L were 

found to be informative. This may be due to selective sweeps adjacent to 

the kdr locus resulting in reduced polymorphism on this chromosome arm. 

In addition the presence of the inversion would have suppressed 

recombination in this region and hence may have masked any linkage 

effect attributable to the kdr mutation. Previous genetic mapping studies 

on permethrin resistance in An. gambiae used a laboratory strain (RSP-

ST) fixed for the 2L standard chromosomal arrangement to overcome this 

problem. In this earlier study, a QTL linked to the kdr locus was identified 

(Ranson et al. 2004). 

The most convincing QTL identified in this study is on chromosome 3R, 

spanning chromosomal division 30A-D which encompasses a P450 cluster 

as well as the cuticular candidate genes cplcg3 and cplcg4. This QTL was 

identified by both CIM and IM methods and found in the single family 

analysis of family 15 and the combined analysis of family 15 and 17. This 

QTL is in a similar position to the rtp2 QTL identified in the RSP-ST strain 

of An. gambiae originally from Kenya (Ranson et al. 2004). 

The boundaries of the QTL identified on 3R are ~15 cM with the flanking 

markers 812 and 6M19 spanning a genome region of ~6.9 Mb including 
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438 annotated genes (vectorbase biomart 03/2012). Enrichment analysis 

(DAVID) (Huang et al. 2009a) shows that serine proteases (1.6% of the 

genes in the QTL) with a fold enrichment of 27.2 as well as P450s (4.1% 

of the genes within the QTL boundaries) with a fold enrichment of 4.8 

(DAVID enrichment analysis, IPR001128 Cytochrome P450) (Appendix 

9.4) are over-represented in this region. Serine proteases can hydrolyse 

ester bonds and so could conceivably be involved in insecticide 

metabolism (Hedstrom 2002). Alternatively, elevated protease activity may 

be a result of metabolic stress induced by insecticide exposure. 

Chromosome 3R is densely clustered with detoxification genes and 18 

P450 genes are located within the boundaries of the QTL. A cluster of 14 

CYP6 genes (Appendix 9.4) is in division 30A (Ranson et al. 2002b) and 

smaller clusters of CYP4 and CYP12 P450s are on neighbouring divisions, 

but outside the QTL boundaries (Figure 4.7). The CYP6 cluster includes 

cyp6m2, identified as a candidate resistance gene in microarray 

experiments (Djouaka et al. 2008; Müller et al. 2008b) and cyp6z1 and 

cyp6z2, which have been found associated with pyrethroid resistance in 

other populations (David et al. 2005; Müller et al. 2007; Nikou et al. 2003).  

 

 

Figure 4.7: P450s and candidate cplcs on polytene chromosome arm 3R. 

Arrows from top roughly indicate locations of P450 genes and the two cplcg candidates in 

the An. gambiae s.s. genome. The black arrows from below indicate locations of the four 

markers that define the QTL position (adapted from Ranson, unpublished).  
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In addition 12 of the 27 cplcg genes (cuticular proteins with low-sequence 

complexity) in An. gambiae are members of a sequence cluster (Group A) 

and the entire set is found in a 195kb array on chromosome 3R (Willis 

2010) division 30D. Over-expression of cuticular proteins causing reduced 

cuticular penetration of insecticides has been implicated in insecticide 

resistance (Puinean et al. 2010). Two members of this cplc cluster, cplcg3 

and cplcg4, were identified as candidates for permethrin resistance in 

Anopheles in earlier microarray experiments (Djouaka et al. 2008; Vontas 

et al. 2007). 

The current study, using families raised directly from field collected mated 

females, identified the same QTL as identified in previous laboratory 

experiments (Ranson et al. 2004). This is despite the much stronger 

resistance phenotype in the Benin population than in the laboratory RSP-

ST colony that originated from Kenya and is a significant result, 

suggesting that there is a conserved ‘resistance factor’ other than kdr, 

which is found in both East and West African populations of An. gambiae. 

Further fine scale mapping on the laboratory populations using advanced 

intercross lines failed to identify a candidate locus for this QTL (Ranson, 

unpublished data). Furthermore, sequencing of candidate genes within 

this QTL from wild caught individuals (Chapter 3) did not identify a marker 

linked to the resistance phenotype. Therefore the nature of this QTL 

remains unresolved. 

Mapping experiments on outbred populations have two main difficulties 

outlined in a review (Slate 2005): firstly, if the parent is not heterozygous 

at both marker locus and QTL, these families will be un-informative with 

respect to QTL detection, and secondly, the phase between marker and 

QTL is not necessarily consistent across families, hence marker effects 

must be considered independently within each family. And considering, 

that a population is heterogenous and the genes underlying the phenotype 

of interest or their contribution to the latter do differ between individuals, 

i.e. between families, then combining the data of different sibships is not 

valid. Looking at the example of this study, combining data of families 15 

and 25 shows no effect (results not shown) whereas the power increases 
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when combining the data of chromosome 3 for the other two families only 

(15 and 17). The latter two families are likely to have a very similar genetic 

makeup for chromosome 3 and the QTL on 3R becomes more 

pronounced when the two data sets are combined. The availability of data 

from more than three families would have possibly further supported these 

findings.  

Fine scale mapping to reduce the boundaries of the identified QTL on 3R 

would be the next step to take but the resolution will likely be restricted by 

the number of phenotyped progeny available. Further study in this area 

would require the generation of advanced intercross lines or association 

mapping approaches on large numbers of phenotyped field samples. 
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Chapter 5. Mapping a QTL conferring permethrin resi stance 

in the African malaria vector An. arabiensis 

5.1 Introduction 

Anopheles arabiensis is a member of the Anopheles gambiae species 

complex and, although it can share the same breeding habitats with An. 

gambiae s.s. it generally prefers drier locations with a sahelian climate 

(grassland and savannah). Anopheles arabiensis is the second most 

important malaria vector in the An. gambiae complex in Africa and in some 

parts of Africa it is the sole malaria vector and a big threat to human health.  

It is the main malaria vector in Chad, a country in which 95% of the 

population is at risk of malaria (Kerah-Hinzoumbe et al. 2009). Figure 5.1 

shows the species distribution of An. gambiae s.s. and An. arabiensis in 

Chad illustrating the dominance of An. arabiensis.  

 

 

Figure 5.1: Putative species range of Anopheles gambiae s.s. and An. arabiensis in 

Chad. 

Maps of Chad showing the predicted geographic extent of (A) An. gambiae s.s. and (B) An. 

arabiensis (2010 Malaria Atlas Project) as well as (C) relative proportions of the two species 

(An. arabiensis in blue) south of Ndjamena found in a recent study (Kerah-Hinzoumbe et al. 

2008). 
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The mechanisms responsible for insecticide resistance in An. arabiensis are 

less understood than for its sibling species An. gambiae s.s.. The presence 

of target site alleles in An. arabiensis populations has been detected in 

various African countries. The 1014F allele producing the kdr pyrethroid 

resistant phenotype was reported for the first time in An. arabiensis in 2004, 

being found at low frequencies in samples from Burkina Faso, West Africa 

(Diabate et al. 2004a). In 2006 Kulkarni and co-authors reported this 1014F 

kdr allele in An. arabiensis samples from Tanzania, East Africa (Kulkarni et 

al. 2006). The 1014S kdr allele was first reported in a single specimen (one 

out of 572) of natural populations of An. arabiensis from Kenya (Stump et al. 

2004) and subsequently both kdr alleles were detected in the same four 

individuals in its neighbour country Uganda (Verhaeghen et al. 2006). In 

West Africa the 1014S kdr allele was first reported in An. arabiensis in Benin 

(Djegbe et al. 2011) and has also reached high frequencies in some urban 

areas in Burkina Faso (Jones, unpublished). Both alleles now have a wide 

distribution across Africa (Lynd et al. 2010; Ranson et al. 2011).  

The pattern of emergence of kdr mutations in An. arabiensis suggests that 

this mutation is a recent event and its spread is ongoing. A polymorphism 

upstream of the 1014 kdr locus differentiates An. arabiensis from An. 

gambiae s.s. and this has been used to determine that the kdr mutation in 

An. arabiensis is a de novo event rather than the result of introgression from 

An. gambiae s.s. (Diabate et al. 2004b).  

Most of the above studies are not supported by accompanying bioassay 

data. A more recent study reports the highest kdr allele frequency observed 

in An. arabiensis to date (Yewhalaw et al. 2010) with >98%, in a DDT and 

permethrin resistant population from Ethiopia. In Sudan resistance in An. 

arabiensis to DDT, permethrin and malathion as well as high frequencies of 

1014F have been reported (Abdalla et al. 2008).  

In short, across Africa resistance in An. arabiensis to permethrin and DDT 

has been reported, as well as the presence of both the L1014F and L1014S 

mutation in the sodium channel. 
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In 2008 reduced susceptibility to DDT and permethrin in An. arabiensis 

populations from Cameroon were reported in conjunction with total absence 

of the kdr allele (Chouaïbou et al. 2008). Furthermore, a study on South 

African An. arabiensis populations found permethrin resistance associated 

with elevated levels of detoxifying enzymes, supported by synergist 

bioassays again combined with absence of kdr (Mouatcho et al. 2009).  

Similarly in Chad high resistance to permethrin was found in An. gambiae 

and An. arabiensis (Kerah-Hinzoumbe et al. 2008). But, whereas in the An. 

gambiae survivors the kdr resistance allele was present at a high frequency, 

all An. arabiensis survivors carried the susceptible allele at position 1014. 

These results suggest that alternative resistance mechanisms such as 

metabolic mechanisms play a role in insecticide resistance in An. arabiensis.  

In 2008 Müller used the An. gambiae detox chip for a microarray study on 

pyrethroid resistance in An. arabiensis from Northern Cameroon (Müller et al. 

2008a). A number of genes, including P450s, superoxide dismutases and 

GSTs, were identified as up-regulated in the resistant populations. 

 

5.2 Aims of the chapter 

Chad was chosen as a study site due to the high level of insecticide 

resistance in absence of any known target-site mutations, suggesting 

presence of metabolic resistance mechanisms (Chapter 2.1.2). 

In this chapter QTL mapping was used to identify the major loci conferring 

pyrethroid resistance in a population of An. arabiensis from Ndjamena, Chad. 

Crosses were established between susceptible and resistance strains 

maintained in the laboratory at LSTM. 

The specific objective of this work is to identify the major loci conferring 

permethrin resistance in the Ndja population. 

 



CHAPTER 5 MATERIALS & METHODS 118 

 

 

5.3 Methods 

5.3.1 Field collections, establishment and characte rization of 

mosquito colonies 

General mosquito maintenance techniques and details about field collected 

An. arabiensis mosquitoes, establishment of colonies and genetic crosses as 

well as phenotypic and genotypic characterization of mosquitoes are 

described in Chapter 2.1.2. 

5.3.2 Selection of informative markers and genotypi ng of 

mapping families 

Informative markers were selected on the basis of the genotypes of the 

parental female F0 and F1 individuals. Details of microsatellite and SNP 

markers and PCR protocols are contained in Chapter 2.4.1 and 2.4.2.  

5.3.3 Linkage mapping and QTL analysis 

Linkage mapping and QTL analysis were performed as described previously 

in Chapter 2.4.3. 
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5.4 Results 

5.4.1 Insecticide susceptibility profile of field c ollected strains 

and the genetic crosses 

Mosquito samples for this study were provided by Dr. Charles Wondji, LSTM. 

Results for insecticide susceptibility assays for the parental strains, and the 

lines resulting from the genetic crosses, are given in Chapter 2.1.2. 

5.4.2 Genotyping of experimental populations  

5.4.2.1 Informative markers and genotyping of mappi ng families 

The F2 progeny of two families, one from each of the resulting reciprocal 

crosses were selected for genetic mapping. For each family 48 female 

mosquitoes were genotyped; no male mosquitoes were used. F0 and four F1 

specimens per family were confirmed to be An. arabiensis of the wildtype 

2Rb karyotype.  

Details for all microsatellite markers and SNP markers chosen for genotyping 

of F2 progeny of the An. arabiensis families for QTL mapping are shown in 

Table 2.7 in Chapter 2.4.2. 

Each marker was tested for Hardy-Weinberg equilibrium (dead and alive 

separate as well as combined) and the results are shown in Appendices 9.5 

and 9.6. Single marker analysis was performed for each family to test for 

association between genotype and resistance phenotype (haploview 4.2). 

Chi2 and p-values are listed in Table 5.1 below.   
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family 2 marker 
location ¥ 

[Mb] 
χ

2
 p-value sig df 

X
 c

h
ro

m
o

so
m

e
 cyp4h24 1.4 0.70 0.40 2 

53 3.6 0.42 0.52 2 

80 7.0 1.11 0.29 2 

H7 11.2 2.00 0.16 1 

678 19.2 0.18 0.68 1 

C
h

ro
m

o
so

m
e

 2
 

2R 803 1.9 0.46 0.50 1 

199 3.5 3.22 0.07 * 1 

24 3.5 3.22 0.07 * 1 

757 14.7 2.53 0.11 1 

799 24.9 0.82 0.37 1 

2R_si_5 24.6 0.55 0.46 1 

cyp6p3 28.5 0.19 0.66 1 

590 28.9 4.62 0.03 ** 2 

cyp304c1 32.0 2.65 0.10 * 1 

720 33.2 0.20 0.65 1 

770 $ 40.4 0.18 0.67 1 

786 42.7 0.10 0.75 1 

2L ex27 24.3 0.45 0.50 1 

787 26.8 0.03 0.87 2 

603 $ 42.0 0.41 0.52 2 

675 46.9 0.01 0.91 1 

C
h

ro
m

o
so

m
e

 3
 

3R 776 2.5 0.21 0.65 2 

59 4.2 0.03 0.86 2 

812 6.2 0.27 0.60 2 

249 8.8 0.06 0.81 2 

30C1 9.6 0.14 0.71 2 

6M19 13.1 0.30 0.59 2 

119 14.8 0.10 0.75 2 

3L 811 14.8 0.04 0.85 2 

577 19.8 0.55 0.46 1 

46C3 40.4 0.81 0.37 2 

46C2 41.4 0.03 0.86 2 
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Table continued  
  

family 3 marker 
location ¥ 

[Mb] 
χ

2
 p-value sig df 

X
 c

h
ro

m
o

so
m

e
 cyp4h24 1.4 1.05 0.30 1 

53 3.6 0.09 0.77 1 

80 7.0 0.98 0.32 2 

H7 11.2 2.98 0.08 * 1 

678 19.2 1.08 0.30 1 

C
h

ro
m

o
so

m
e

 2
 

2R 803 1.9 11.92 0.00 *** 2 

199 3.5 8.94 0.00 *** 2 

24 3.5 8.51 0.00 *** 2 

757 14.7 9.08 0.00 *** 2 

799 $ 24.9 0.88 0.35 1 

26 $ 24.6 8.36 0.00 *** 1 

cyp6p3 $ 28.5 4.04 0.04 ** 1 

590 28.9 11.26 0.00 *** 2 

cyp304c1 32.0 0.18 0.67 1 

117 40.4 4.94 0.03 ** 1 

786 42.7 0.00 1.00 2 

2L 787 26.8 0.17 0.68 2 

772 42.0 4.84 0.03 ** 1 

603 42.0 1.86 0.17 1 

675 46.9 0.00 0.99 2 

C
h

ro
m

o
so

m
e

 3
 

3R 776 2.5 0.00 1.00 2 

59 4.2 0.05 0.83 2 

812 6.2 0.68 0.41 2 

249 8.8 0.62 0.43 2 

30C1 9.6 0.02 0.88 1 

6M19 13.1 2.40 0.12 2 

119 14.8 0.17 0.68 2 

chymotrypsin 43.9 0.20 0.65 1 

3L 811 14.8 0.11 0.74 1 

46C3 40.4 0.21 0.64 2 

46C2 41.4 1.62 0.20 2 

  
  

 Significance *:0.1  **:0.05  ***:0.01   

 $ those markers were not implemented in the genetic maps 

 ¥ According to vector base (08/2010) 

 df: Degrees of freedom; df(1) semi-informative and df(2) fully informative marker 

 

Table 5.1: A list of χ2 and p-values for microsatellite and SNP markers.  

Markers were tested for significant association with phenotype. The markers are shown in 

physical order. 
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5.4.3 Linkage mapping 

A summary of the linkage maps for each of the three chromosomes is shown 

in Table 5.2 and the maps themselves are shown in Figure 5.2. Genetic 

maps generated from the combined data set from both families are shown in 

Figure 5.3. Where alternative marker orders were proposed by the linkage 

software, maps were generated to reflect the optimal physical maps, i.e. to 

reflect the marker order along the chromosomes according to their physical 

location (based on the An. gambiae genome on vectorbase).  

The marker order on the generated maps is very similar for maps generated 

for the single families and the combined data. The map for chromosome 2 for 

family 2 correlates with the optimal physical map, and for family 3 it deviates 

only in the position of markers 772 and 787 on 2L which are expected to be 

the other way around. The marker order on the combined map for 

chromosome 2 correlates to the optimal physical order of markers, with the 

exception of markers 590 and cyp6p3 on 2R which are expected to be the 

other way around.  

There are minor differences when comparing the marker orders of 

chromosome 3 for the single families and the combined data maps. For 

family 3 the generated map is identical to the optimal physical map and for 

family 2 and the combined map, there are some variations in the positions of 

neighbouring markers (776, 59 and 812 on 3R, and 577, 46C3 and 46C2 on 

chromosome 3L). 

 
X Chromosome Chromosome 2 Chromosome 3 all  

 

map 

[cM] 

no of 

markers 

map 

[cM] 

no of 

markers 

map 

[cM] 

no of 

markers 

average 

resolution¥ 

family 2 70.3 5 85.8 14 55.7 11 7.1 

family 3 54.1 5 31.5 11 57.0 11 5.3 

both 

combined 
62.0 5 81.7 14 54.4 12 6.4 

¥ Average resolution in cM per marker 

 
 

Table 5.2: Summary of map sizes and resolution.  

The values for single families and the combined data are based on map size in centi Morgan 

and the number of markers. 



CHAPTER 5 RESULTS 123 

 

 

 

Figure 5.2: Summary of the genetic linkage maps for  the separate families. 

Chromosomes X, 2 and 3 for families (A) 2 and (B) 3 when analysed separately. A scale of 

genetic distance in centimorgan is shown. 

 

 
Figure 5.3: Genetic linkage maps using the combined  data. 

Linkage maps of chromosomes 2 and 3 are shown, as optimal physical map, the map for the 

X chromosome corresponds to the optimal genetic map. A scale of genetic distance in 

centimorgans is shown.   
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Plotting mortality rate as a function of the number of alleles inherited from the 

resistant parent (the mother in family 2 and the father in family 3) is a 

simplified means of assessing the association between a given genotype and 

the resistance phenotype. Figure 5.4 shows plots of the fully informative 

markers on chromosome arm 2R for both families. Markers 757 and 590 

show a very strong association between genotype (i.e. number of a certain 

allele) and phenotype (here visualized as mortality). Markers 199, 24 and 26 

show a similar association to 757 and 590 but are not shown, as they were 

fully informative in family 3 only. Marker 786 does not show association with 

mortality rates around 50% irrespective of the number of alleles from 

resistant parent.  

Both markers (757 and 590) associated with resistance on the 2R 

chromosome have an additive effect in both families, with individuals 

homozygous for the resistant allele having a greater chance of surviving 

exposure to permethrin than heterozygotes. 

 

 

 

 

Figure 5.4: Genotype-phenotype association. 

Plot of mortality rate as a function of alleles inherited from the resistant parent  for the fully 

informative markers on chromosome 2R for each family. 
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5.4.4 QTL analysis 

The software Windows QTL cartographer version 2.5 (Wang et al. 2005) was 

applied to test for linkage between resistance phenotype and genotype. Both 

Interval Mapping and Composite Interval Mapping were performed and the 

results compared. The results from the two families were analysed for QTLs 

separately first and then a QTL analysis based on the combined data and 

maps was performed. IM and CIM are largely in agreement for family 3 (with 

the exception of the X chromosome) as well as for the combined data. 

Interval mapping and CIM diverge considerably on chromosome X and 2R 

for family 2. In subsequent discussions, QTL are only considered significant 

if the LOD score exceeds the value 2.5 and the position of the QTL is 

supported by both IM and CIM likewise. 

No QTL were identified in family 2 (Figure 5.6). However, significant LOD 

scores were observed on chromosome 2R in family 3 (Figure 5.7) and this 

QTL was further strengthened in the combined family analysis (Figure 5.8). 

Figure 5.5 shows the LOD values for CIM for the combined data set including 

the linkage maps to indicate QTL position.  

 

 

Figure 5.5: Plots of LOD scores estimated by CIM fo r the combined data. 

The linkage maps are included to orientate the QTL positions. The dotted line along the top 

of each graph represents the threshold value for LOD, set at 2.5.   
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Figure 5.6: Plots of LOD scores associated with per methrin resistance. 

Shown are the three chromosomes for An. arabiensis for family 2. Solid lines represent LOD 

estimated by composite interval mapping and dashed lines represent LOD estimated by 

interval mapping. The straight line along the top of each graph represents the threshold 

value for LOD, set at 2.5. 
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Figure 5.7: Plots of LOD scores associated with per methrin resistance. 

Shown are the three chromosomes for An. arabiensis for family 3. Solid lines represent LOD 

estimated by composite interval mapping and dashed lines represent LOD estimated by 

interval mapping. The straight line along the top of each graph represents the threshold 

value for LOD, set at 2.5. 
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Figure 5.8: Plots of LOD scores associated with per methrin resistance. 

Shown are the three chromosomes for An. arabiensis for the combined data of both families. 

Solid lines represent LOD estimated by composite interval mapping and dashed lines 

represent LOD estimated by interval mapping. The straight line along the top of each graph 

represents the threshold value for LOD, set at 2.5.   
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Multiple Interval Mapping (MIM) confirms the presence of a single QTL on 

chromosome 2R in both families and estimates its genetic variance (δg
2) as 

14.4 % and 18.9 % of the phenotypic variance (δp
2) of permethrin resistance 

for family 2 and family 3 respectively (Table 5.3). For the combined data this 

QTL explains 24.4 % of the phenotypic variance (resulting from 0.5% for 

additive and 23.9% for dominance effect). No additional QTLs were detected 

using MIM.  

 

 δg
2
 [%] 

nearest 

marker 
¥ 

genetic distance 

[cM] 

effect 

in %δg
2
 

family 2       

 14.4 590 2R 50.0  A: -4.8 

      D: 19.2 

family 3       

 18.9 590/ 117 2R 8.5  A: 22.9 

      D:-4.0 

combined        

 24.4 26 2R 16.7  A: 0.5 

      D: 23.9 

δg
2
 [%] genetic variance in % of overall estimated phenotypic variance;  

¥ chromosome and location in genetic distance for nearest marker;  

A for additive effect; D for dominant effect 

 

Table 5.3 : Multiple Interval Mapping estimates of QTL position and associated genetic and 

phenotypic variance and additive and dominance effects associated with survival QTL in An. 

arabiensis. 
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5.5 Discussion 

Preliminary analysis, the results of which are presented in Chapter 2.1.2.1, 

did not identify any known kdr alleles in the pyrethroid resistant Ndja 

population. The objective of this chapter was to identify the loci responsible 

for the resistance phenotype. At the same time, absence of target-site 

resistance in the sodium channel could be confirmed. 

This is the first QTL mapping experiment to investigate the trait insecticide 

resistance in An. arabiensis. A QTL mapping approach was applied to the F2 

progeny and a single QTL on chromosome arm 2R was identified. The QTL 

on chromosome 2R spans chromosomal division 10C-13C.  

The QTL on chromosome 2R is very pronounced in family 3, but in family 2 

this QTL is only detectable by IM, not CIM. After combining the family data 

the QTL becomes more pronounced, suggesting that this region is involved 

in resistance in family 2 as well. A possible explanation is that many of the 

markers in the vicinity of the QTL are only semi informative for family 2, 

hence reducing the genetic information available. (Table 5.1 degrees of 

freedom). 

Multiple Interval Mapping confirmed the single QTL on 2R in both families 

and in the combined data set estimating its genetic variance at between 

14.4-24.4%. No additional QTLs were identified using MIM. In the combined 

data set the majority of the genetic variance is due to dominance effect at 

this locus. A similarly strong dominance effect is estimated for family 2 

whereas in family 3 the additive effect is much stronger (Table 5.3). The 

single marker analysis however suggests that the effect of marker 590 in this 

locus is additive in both families (Figure 5.4). For a locus of metabolic 

resistance due to enzymatic up-regulation an additive genetic effect would be 

expected. The genetic variance of this QTL is estimated to account for 

around a quarter of the overall phenotypic variance, much less than the 

>60% genetic variance estimated for a previously identified QTL in An. 

funestus (Wondji et al. 2007). It is probable that there are other minor QTL 

present which could not be detected by the experimental design. 
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The observed discrepancies in the genetic maps of family 2 and 3 could be 

due to the presence of different inversions in these families. An. arabiensis is 

fixed for the 2La inversion mentioned in Chapter 4. But inversions are highly 

concentrated on the right arm of chromosome 2 (2R) in An. gambiae s.s. and 

An. arabiensis (Coluzzi et al. 2002; Coluzzi et al. 1979). In a population 

where both inversion karyotypes are present, inversions make linkage 

mapping very difficult as no recombination is possible and markers within the 

inversion will appear as if in linkage disequilibrium with others when they are 

not. In case the parental strains, that were crossed to yield the F2 mapping 

population, were not fixed for the same chromosomal arrangement, this will 

undoubtedly have distorted the recombination events on 2R. 

Three of the 2R inversions have been molecularly characterized in An. 

gambiae s.l. and the karyotype of these can be determined via a PCR based 

assay: 2Rj only in An. gambiae s.s. (Coulibaly et al. 2007), 2Rb (Lobo et al. 

2010) and 2Rd (Mathiopoulos et al. 1998). The boundaries of the identified 

QTL are very large (~14Mb) and inversion 2Rb may possibly be overlapping 

with it. Molecular karyotyping however, showed, that all tested individuals 

(parental females and four F1 individuals for each family) were fixed for the 

ancestral 2Rb arrangement.  

An interesting result from this mapping experiment is the absence of a QTL 

corresponding to the sodium channel located on chromosome 2L in An. 

gambiae s.l.. One single QTL was identified on 2R but is unlinked to kdr in 

the sodium channel. Previous studies of genetic mapping of resistance have 

identified kdr as a major QTL in populations possessing target-site and 

metabolic resistance (Ranson et al. 2004; Saavedra-Rodriguez et al. 2008). 

It is possible that minor QTLs are present and have remained undetected in 

the Njda population, but this is very unlikely for kdr. These results suggest 

that target-site resistance is not involved in conferring the resistance 

phenotype; a conclusion supported by the absence of any known kdr 

mutations in this An. arabiensis strain.  
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At least 47 cytochrome P450 genes are encoded on chromosome 2R 

(Ranson et al. 2002a) with the majority of these located in three clusters 

(gene families cyp4, cyp325 and cyp6) (see figure 5.9) (Ranson et al. 

2002b). The boundaries of the identified QTL are ~10cM with the flanking 

markers 757 and 590 spanning a genome region of ~14 Mb including 910 

annotated genes (vectorbase biomart 03/2012). This region includes the 

three mentioned P450 gene clusters and 25 cytochrome P450s in total (3.2% 

of the genes within the QTL boundaries) with a fold enrichment of 4.2 

(DAVID enrichment analysis, IPR001128 Cytochrome P450) (Appendix 9.7). 

This affirms the QTL is in a region enriched in P450 genes.   

 

Figure 5.9: P450s and gstz1 on polytene chromosome arm 2R. 

Arrows from top roughly indicate locations of P450 genes in the An. gambiae s.s. genome. 

The black arrows from below indicate locations of the four markers that define the QTL 

position (adapted from Ranson, unpublished).  

 

The involvement of P450s in the observed pyrethroid resistance in the Ndja 

strain is supported by the PBO synergist assay in which mortality of 100% 

was restored by exposing the Ndja strain to 4% PBO prior to 0.75% 

permethrin (Chapter 2.1.2.1). Biochemical assays also showed increased 

levels of monooxygenases in the Ndja strain compared to the Moz strain 

(Charles Wondji and Matthew Parry, unpublished data).  

One of the few microarray studies on insecticide resistance in An. arabiensis 

has found four cytochrome P450s overexpressed in the resistant population 

(Müller et al. 2008a). Interestingly three out of the four are located on 
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chromosome 2R, cyp6p3, cyp325c1 and cyp6ag1. Previous studies in 

mosquito vectors have found a number of P450s located on chromosome 2R 

to be involved in insecticide resistance. The gene cyp6p3 has been shown to 

be overexpressed in a pyrethroid resistant field population of An. gambiae 

s.s. (Müller et al. 2008b) and the authors have also shown the enzyme 

CYP6P3 has the ability to metabolise the insecticide permethrin. A QTL 

mapping study on crosses of two An. funestus lab strains identified a QTL on 

chromosome 2R (Wondji et al. 2007), with the two most closely linked 

markers in a cluster of genes of the cyp6 family. This first mapping approach 

was done on the F2 progeny and the QTL on 2R was consistently identified 

in the majority of the families and both reciprocal crosses. The boundaries of 

the QTL were reduced by fine scale mapping on F6/F8 progeny of the original 

crosses and this confirmed the previous QTL as well as reducing its 

boundaries resulting to implicate two candidate genes cyp6p4 and cyp6p9 

(Wondji et al. 2009). Cyp6p9 is the putative ortholog of cyp6p3 in An. 

gambiae, lending further support for the role of this P450 in pyrethroid 

resistance. 

A number of genes encoding GSTs involved in DDT resistance in An. 

gambiae s.s. (Ranson et al. 2001) are found on 2R, but these are located in 

divisions 18 and 19 outside the identified QTL. One GST lies within the QTL, 

gstz1, located in division 13C (Ding et al. 2003). The gstz1 belongs to the 

non-insect-specific zeta class of cytosolic GSTs. Zeta-class GSTs have 

recently been implicated in permethrin resistance in lepidopterans 

(Yamamoto et al. 2009) but there has been no link established between 

Zeta-class GSTs and insecticide metabolism in other insects.  

The QTL detected on chromosome 2R spans a region of approx. 10 cM/ 14 

Mb. The presence of three clusters of P450 genes within the boundaries of 

this QTL is interesting. Using F2 generations for mapping limits the resolution 

that can be obtained in the QTL analysis. Unfortunately, as in the previous 

chapter, the absence of advanced intercross lines in this study limited the 

resolution that could be obtained by QTL mapping. 
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Chapter 6. Microarray analysis of permethrin resist ant An. 

arabiensis from Chad 

6.1 Introduction 

In this study a microarray chip based on the An. gambiae s.s. sequence will 

be used for hybridisation with An. arabiensis samples. The two species are 

very closely related sibling species, but sequence polymorphisms between 

the An. arabiensis and the probe sequences on the microarray are expected 

to reduce hybridisation. Cross species arrays have been successfully 

performed before using the detox-chip (Müller et al. 2008a; Vontas et al. 

2007) and a number of candidate genes have been identified in An. 

arabiensis and An. stephensi. This study will be the first use of the whole 

genome array, which was designed based on An. gambiae sequence data 

(Mitchell et al. 2012) for An. arabiensis.  

The previous chapter used QTL mapping to identify a major locus associated 

with pyrethroid resistance in An. arabiensis from Chad (Ndja strain). Here we 

employ microarray in an attempt to identify candidate genes that may be 

responsible for the resistance trait. 

Finding sympatric insecticide susceptible Anopheles mosquitoes in Africa is 

becoming increasingly difficult as pyrethroid resistance is spreading rapidly. 

As no susceptible strain from the study area was available, a susceptible 

strain from Mozambique (Moz) was chosen for comparison with Ndja. This 

strain was expected to have a different genetic background due to the 

geographical distance. To overcome this, a backcross generation was 

generated by crossing the F1 population back to the resistant parental Ndja 

strain. This backcross generation would be enriched in resistance alleles 

from Ndja, yet share a common genetic background with the susceptible Moz 

strain. Microarray experiments compared the expression in the backcross 

population to the susceptible strain from Mozambique. 
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6.2 Materials and Methods 

6.2.1 Microarray experimental procedure 

6.2.1.1 Experimental and microarray design 

The genetic crosses between the Ndja and Moz strains of An. arabiensis 

were established by Dr. Charles Wondji, LSTM, and Matthew Parry as 

described in Chapter 2.1.2.2. 

The microarray experiment compared RNA pools of exposed (survivors of 

the backcross (1 h to 0.75% permethrin according to WHO standards)) to 

non-exposed (susceptible Moz strain) comprising three independent dye 

swaps, resulting in six arrays in total. The experiment was performed on 

the Agilent 8x15K’AGAM_15K’-chip (8 arrays per slide) and scanned on 

an Agilent two-colour scanner following an experimental protocol 

developed by Dr. Sara Mitchell. The Agilent chip was custom made to the 

design of Dr. Sara Mitchell and Dr. Pie Müller (LSTM) based on the An. 

gambiae genome (Mitchell 2011).  

The Agilent 8x15K microarray enables high coverage across the whole 

genome and at the same time reduced costs and increased though-put, 

with eight arrays on a single slide. The entire coding transcriptome from 

the latest version of the An. gambiae s.s. genome (Ensembl AgamP3.5, 

2009) was employed for probe design, with additional probe coverage for 

the detoxification gene families previously implicated in insecticide 

resistance (David et al. 2005; Ranson et al. 2002a). The design process 

was performed via the Agilent on-line design package eArray 

(https://earray.chem.agilent.com/earray/). Further details of the array 

design are contained in (Mitchell 2011). 

6.2.1.2 Sample preparation and labelling 

RNA extractions, cDNA synthesis and labelling reactions were performed 

independently for each biological replicate. Total RNA was extracted from 

pools of 10 mosquitoes (3-day-old unmated females) using a PicoPure™ 

RNA isolation kit (Arcturus Technologies, USA) according to the 
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manufacturer's instructions. Total RNA quantity was assessed using the 

Nanodrop spectrophotometer (NanoDropTM (Thermo Scientific)) before 

further use. As potential degradation of RNA is not detectable via 

NanoDrop readings the quality of the RNA was assessed using a 2100 

Bioanalyzer (Agilent Technologies, UK) and RNA 600 Nano Kit (Agilent 

Technologies, UK) according to the manufacturer’s guidelines. RNA pools 

which had been determined to be of good quality were selected for 

microarray labelling. The concentration of each pool was re-measured 

using the NanoDropTM (Thermo Fisher Scientific, USA) on the day of 

labelling and 100ng in a maximum volume of 1.5μl were taken from each 

pool for labelling. 

Samples were labelled with both cyanine dyes, Cy3 and Cy5, using the 

Low Input Quick Amp Labelling Kit, two-color (Agilent Technologies, UK) 

with the inclusion of Spike-in controls. All sample incubation steps were 

performed in a thermal cycler (Dyad, Biorad/ MJ Research). Purification of 

amplified and labelled cRNA was performed using Qiagen RNeasy mini 

spin columns (Qiagen) and eluted in 30μl of RNase-free water (Invitrogen). 

Amplification and dye incorporation of samples were assessed using the 

NanoDropTM (Thermo Fisher Scientific, USA).  

Before hybridization the quality of each labelled cRNA sample was 

checked using the Agilent 2100 Bioanalyzer. 

6.2.1.3 Microarray hybridization 

For cRNA fragmentation and hybridisation the Gene Expression 

Hybridization kit (Agilent Technologies, UK) was used following the 

manufacturer’s protocols. Labelled cRNA samples to be compared on a 

single array were combined and fragmented for 30 minutes at 60°C. The 

reaction was stopped by adding 55μl of 2x GEx Hybridization Buffer Hi-

RPM (Agilent Technologies, UK) to the samples. Each tube was spun 

down briefly and kept on ice until hybridisation.  

A clean 8x15k gasket slide was placed into a SureHyb chamber base 

(Agilent Hybridization Chamber Kit) and 100μl of each hybridisation 

sample was dispensed into the centre of each gasket. A 8x15k array slide 
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was lowered onto the gaskets and the chamber fully assembled. The array 

sandwich was then put into the hybridization oven (Agilent Technologies, 

UK) and rotated at 10 rpm for 17 hours at 65°C. 

After hybridisation, the sandwich was disassembled and arrays were 

washed in GE wash buffers 1 and 2 (Agilent) according to manufacturer’s 

instructions. To protect the arrays against ozone-induced degradation of 

cyanine dyes and to reduce the background noise, they were additionally 

treated with acetonitrile (Sigma-Aldrich, UK) followed by a Stabilization 

and Drying Solution (Agilent Technologies, UK). Arrays were stored in 

protective boxes (Corning) until scanned.  

6.2.1.4 Microarray scanning and feature extraction 

Arrays were scanned using G2505C/G2539A Series Microarray Scanner 

utilising the default profile and settings according to the Agilent Microarray 

Scanner System User Manual (v.7.0). High (100% photo-multiplier 

tube(PMT) and low (10% PMT)) extended dynamic range (XDR) scan 

images were combined and extracted using Feature Extraction (FE) 

software GE2_10.5_Dec08 (Agilent Technologies, UK) and the custom 

array grid template (022094_D_F_20081124.XML). QC reports were 

consulted to give an indication of array quality. A QC score of 12/12 

indicates the twelve main array parameters were passed. QC parameters 

include signals from spike-in controls, spatial distribution of outliers and 

signals from non-control spots. In addition “.tif” scan images were 

visualized in the FE software under the ‘LOG scale’ view to check for 

artefacts on the array which may have affected spot signal intensities.  

6.2.2 Microarray data analysis 

The GeneSpring GX version 11.0 software (Agilent Technologies, 

Cheshire, UK) was used for statistical analysis of the microarray data. 

Mean expression ratios were submitted to a t-test against Zero with a 

multiple testing correction (Benjamini-Hochberg false discovery rate). 

Genes showing both t-test p-values ≤0.01 and a fold change value ≥2-fold 

were considered significantly differentially expressed between the two 

samples. 
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6.2.2.1 Enrichment analysis 

Entities considered significantly differentially expressed served as input file 

for DAVID Gene Functional Classification software v.6.7 to perform an 

enrichment analysis (Huang et al. 2009a, b) with a list of all genes 

targeted by the probes present on the Agilent chip submitted as 

background.  

The analysis was run using the DAVID default settings and Chromosome 

as additional general annotation option. Both sets of down-regulated as 

well as up-regulated genes were compared to the background (genes 

probed on microchip).  

6.2.3 Quantitative RT-PCR on candidate genes 

One transcript, cyp4h24 (AGAP013490), was selected from the genes that 

were significantly differentially expressed in the microarray analysis for 

qPCR validation.  

Materials and methods for the quantitative PCR were as described in 

Chapter 2.3. Primers for the cyp4h24 RT-PCR were designed against the 

An. arabiensis consensus from sequence results from eight samples. 

Absolute quantification using standard curves generated with plasmid 

DNA was performed. Normalization with data from two control genes, cpr 

(AGAP000500) and s7 (AGAP010592), was carried out. The RNA 

samples used for the microarray experiment (i.e. backcross survivors and 

samples belonging to the Moz strain) were used in the qPCR but an 

additional three biological replicates of pools of 10 females (3-day-old, 

unmated) from the Ndja strain were also included.  
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6.3 Results 

6.3.1 Microarray 

All other arrays passed with an overall QC value of 12 out of 12. After data 

cleaning, 7961 entities were retained out of an initial 14999. Of these, 281 

entities were significantly differentially expressed satisfying a corrected p-

value (FDR p) cut-off of ≤0.01 and fold change cut-off ≥2.0. The numbers of 

down-regulated and up-regulated entities in the backcross samples are 

shown in Table 6.1. Tables listing the top 50 up- and top 50 down-regulated 

gene probes can be found in Appendices 9.8 and 9.9.  

Two strategies were employed for data analysis: an enrichment analysis and 

a candidate gene approach.  

 

 

Data analysis parameters Experiment: permethrin 

 corrected p-value cut-off: 0.01 

 Selected Test : T Test Against Zero 

 p-value computation: Asymptotic 

 Multiple Testing Correction: Benjamini-Hochberg 

 
  

Differentially expressed 
281 entities out of 7961 satisfied the corrected p-value 

cut-off of 0.01 and fold change cut-off ≤2 

 up-regulated  144  

 down-regulated  137  

 Fc¥ >10    12  

 detox-probes§    17  

 
  

¥ fold change of backcross samples compared to moz control samples 
§ probes targeting genes implicated in metabolic resistance. 
 

Table 6.1: Summary of statistical test parameters a nd results for the microarray.  
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6.3.1.1 Functional analysis / Enrichment analysis 

Enrichment or cluster analysis is an approach to discover enriched biological 

themes like a metabolic pathway, or functional-related gene groups. We 

used the Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) bioinformatics tool online. The full list of significantly differentially 

expressed entities (fc≥2 and FDR p-value ≤0.01) was used as an input file 

for DAVID software to perform an enrichment analysis for functional 

clustering of potential hits. A full list of genes represented on the Agilent chip 

served as background.  

The top cluster in the functional annotation cluster for up-regulated entities 

includes 23 entities with the GoTerms ‘peptidase activity’ for molecular 

function and ‘proteolysis’ for biological process. This annotation cluster has 

an enrichment score of 3.34 and corrected p-values (Benjamini Hochberg) 

1.3E-5. The second cluster with the enrichment score 2.53 and max p-value 

of 0.006 clusters entities with protein domains (IPR) ‘proteinase inhibitor’ 

(Figure 6.1 and Appendix 9.10). Cytochrome P450 associated genes and 

protein domains are listed as the third annotation cluster but are not 

significantly associated.  

For the down-regulated entities the annotation cluster 1 includes terms of the 

ontology ‘Secondary metabolites biosynthesis, transport, and catabolism’ 

such as Cytochrome P450 terms and protein domains and the GoTerms for 

molecular functions associated with P450 metabolism. The enrichment score 

for this cluster is 2.84 with p-values between 0.01 and 0.03 (Figure 6.1 and 

Appendix 9.11). There are no other significant enrichment clusters. 
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Figure 6.1: Results from the enrichment analysis performed with DAVID software. The figure represents term categories found significantly enriched 

compared to the reference set (all transcripts present on the microarray) after Benjamini and Hochberg multiple testing correction (pval≤0.05). The test set 

indicates percentage of differentially regulated genes in a certain term category compared to all differentially regulated genes, while the reference set 

indicates the percentage of a particular term category compared to all genes on the microarray 

percentage [%]
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6.3.1.2 Candidate gene approach 

6.3.1.2.1 Detox genes  

A total of 30 probes targeting detox genes were significantly differentially 

expressed, 11 were up-regulated and 19 down-regulated. These belong to 

16 P450s and one GST, listed in Table 6.2. A small set of four P450s is up-

regulated and a larger number of 12 different P450s is down-regulated. The 

probes found in the top 50 hits of each set are indicated.  

For each detox gene, there are four probes on the 8 x15K array (some 

exceptions § in Table 6.2). Cyp4h24 is the gene with the highest fold change 

(average 7.5-fold), but only two probes were significantly over-expressed. 

For genes cyp9j5, all four entities were significantly differentially expressed 

with an average 5.1-fold up-regulation. Similarly three of the probes targeting 

gste5 are over-expressed with an average transcript increase of 2.3-fold. 

Additional up-regulated detox genes cyp6m1 and cyp4g16 are listed in Table 

6.2. Note that, although in some cases, not all four probes reached 

significance, each probe for the genes in this list was up-regulated. 

The most strongly down-regulated detox-genes are cyp6m2 and cyp6p4 with 

fold changes of 5.3 and 5.0 respectively. Further down-regulated detox 

genes are cyp302a1 and cyp6ag2 (fold-change 2.9 and 2.1 respectively). For 

all of these down regulated genes multiple probes showed similar patterns of 

reduced expression adding confidence to the results. For another eight P450 

transcripts only one probe is significantly down-regulated, but again, the 

additional non-significant probes showed the same trend. 
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description probe Name FDR p
$
 FC

¥
 

FC
¥
 

mean 

accession 

number 
location 

over-expressed in permethrin resistant 

cyp4h24 DETOX_386 4.75E-03 8.2 7.5 AGAP013490 X 

DETOX_387 4.73E-03 6.8 

cyp9j5  DETOX_502 6.85E-03 5.1 5.4 AGAP012296 3L 

DETOX_503 8.70E-03 5.2 

DETOX_504 6.83E-03 5.1 

CUST_10851 4.66E-04 5.4 

cyp6m1 DETOX_438 7.49E-03 3.0 3.0 AGAP008209 3R 

cyp4g16  DETOX_362 7.49E-03 2.3 2.3 AGAP001076 X 

gste5  DETOX_625* 3.68E-03 2.2 2.3 AGAP009192 3R 

DETOX_626 5.66E-03 2.3 

DETOX_627 9.13E-03 2.4 

under-expressed in permethrin resistant 

cyp6m2 DETOX_439 6.79E-03 5.2 5.3 AGAP008212 3R 

DETOX_440 6.83E-03 5.3 

DETOX_441 6.07E-03 5.6 

CUST_11496 3.15E-04 5.3 

cyp6p4  DETOX_463* 5.21E-03 5.1 5.0 AGAP002867 2R 

DETOX_464 7.61E-03 4.8 

CUST_4819 4.07E-04 5.2 

cyp302a1 DETOX_234 6.05E-03 3.0 2.9 AGAP005992 2L 

CUST_1471 2.86E-04 2.7 

cyp6ag2 DETOX_424 5.40E-03 2.1 2.1 AY745224 2R 

DETOX_425 6.37E-03 2.1 

cyp325f1 CUST_3883 6.88E-03 5.0 AGAP002195 2R 

P450 § CUST_3915* 3.71E-03 4.9 AGAP002204 2R 

cyp9m1 CUST_12597* 3.68E-03 3.8 AGAP009374 3R 

P450 § CUST_12586 7.67E-03 3.6 AGAP009363 3R 

cyp304b1 CUST_5130* 3.97E-03 2.7 AGAP003066 2R 

cyp9k1 CUST_8035 5.89E-03 2.3 AGAP000818 x 

cyp325a2 CUST_3897* 4.75E-03 2.2 AGAP002209 2R 

cyp4aa1 CUST_5838 8.80E-03 2.1 
 

AGAP003608 2R 

§ genes targeted by only one probe each 

* probe present in top 50 list, ranked according to p value 

$ false discovery corrected p-value (Benjamini Hochberg) 

¥ fold change 

Table 6.2: Microarray results of significantly (FDP  p≤0.01) differentially expressed 

detoxification genes in the exposed backcross sampl es compared to the susceptible 

Moz strain.  

Values for significantly differentially expressed probes are listed separately and mean values 

are given where applicable.  
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6.3.2 Candidate gene validation  

6.3.2.1 cyp4h24 Real-time quantitative PCR 

The partial cDNA sequence of cyp4h24 in An. gambiae (from vectorbase 

AGAP013490) and An. arabiensis sequence (consensus sequence data from 

Ndja and Moz used in genetic crosses) are aligned in Figure 6.2. For the An. 

arabiensis consensus sequence data from eight specimens was obtained 

and aligned (the two parental females from the genetic crosses (one Ndja 

and one Moz female) plus three F1 progeny from each cross)). Also shown 

are the binding sites for the microarray probes and the fragment amplified by 

qPCR. The qPCR primers for cyp4h24 were designed against this An. 

arabiensis consensus sequence. There are a number of SNPs in the binding 

sites of the microarray probes. The two sequences show 96.14% sequence 

similarity (Identities = 846/880 (96%), Gaps = 1/880 (0%)). 

The qPCR compared expression in samples from the Moz and Ndja strain 

(unexposed to insecticides) and samples from the B1 backcross generation 

(surviving permethrin exposure, preserved in RNA later® 24 hours after 

exposure) (Figure 6.3 A). Normalized values for transcript levels of cyp4h24 

are given in Table 6.3. No significant difference was observed between the 

three populations with either control gene. The absolute transcript levels of 

the control genes were also compared (Figure 6.3 B), to check for consistent 

expression of control gene transcripts across strains. No significant 

difference in expression was observed. 

Thus the results from the qPCR do not confirm the microarray data for 

cyp4h24. This may be a limitation of the power of the experiment as, with 

both control genes, the transcript level was higher in the backcross 

population relative to the susceptible strain, but the difference did not reach 

significance.  
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Figure 6.2: Sequence alignment of An. gambiae s.s. and An. arabiensis cyp4h24 
(A) Schematic of cyp4h24 alignment with binding sites for microarray probes and qPCR 
target fragment. Red stars indicate SNPs within these sites. (B) ClustalW alignment of An. 
gambiae (vectorbase AGAP013490) and An. arabiensis sequences (consensus for eight 
individuals from families 2 and 3) (96.14% similarity) for part of cyp4h24 with binding sites 
for microarray probes underlined in blue (DETOX_387), red (DETOX_386) or green 
(DETOX_385 and CUST_7895), qPCR target fragment in brown with primer sites 
underlined. SNPs within binding sites are marked red. Base ambiguity code: R = A or G; Y = 
C or T; W = A or T.  

microarray probes qPCRtarget

gambiae

arabiensis

A

*      *        *  * **

gambiae CAGTACGTGCGGGACGTGAAGCGGATGAGCGAGCTGATACTGCTGCGCATTTTCCATGTG 60
arabiensis ------------------CAGCGGATGAGCGAGCTGATACTGCTGCGGATTTTCCATGTG 42

.**************************** ************
gambiae CTGTCGTCCTTTCCGCGCACCTACTGGTACACGATGCCGAACGCGTGGGAGCAGAGGAAA 120
arabiensis CTGTCGTCCTTTCCGCGCACCTACTGGTACACGATGCCGAACGCGTGGGAGCAGCGGAAG 102

******************************************************.****.
gambiae CTTATCCGACGGCTGCATGCGTTCACGGACACCGTGATCCACAAACGCCGGGAACAGCTG 240
arabiensis CTGATCCGACGRCTGCATGCGTTCACGGACACCGTGATCCACAAACGYCGGGAACAGCTG 162

** ******** *********************************** ************
gambiae TTGGAAAGGAGCTCGCAAGTGTCTAACGAGCAGGAGTGTCTGGATGAGGAACATCTTTAC 300
arabiensis TTGGAAAGGAGCTCGGAAGTGTYTCACGAGCAGGAGTGCCTGGATGAGGAACATCTTTAC 222

*************** ****** *.************* *********************
gambiae ACAAAGCGTAGGGAAACGTTCTTGGATCTGCTGCTGAACGTTAGGGTGGATGGCAATTCA 360
arabiensis ACAAAGCGTAGGGAWACGTTCTTGGATCTGCTGCTGAACGTTAGGGTGGATGGCAATTCA 282

************** *********************************************
gambiae CTCAGTGATCTTGATATTCGGGAGGAGGTGGATACCTTCATGTTCGAGGGTCATGATACG 420
arabiensis CTCAGTGATCTTGATATACGGGAGGAGGTTGATACYTTYATGTTCGAGGGTCATGATACG 342

*****************:*********** ***** ** *********************
gambiae ACCACTTCGGGCATTGCGTTCACGTTCTATCAACTCGCTAAGCATCCTGAAATACAGGAG 480
arabiensis ACCACTTCCGGCATTGCGTTCACCTTCTATCAACTTGCTAAGCATCCTGAAATACAGGAG 402

******** ************** *********** ************************
gambiae AAGCTTTATCGGGAGATCCAAGATGTGCTCGGCGGCGAATACCGCCATGTGCCGCTAACC 540
arabiensis AAGCTTTATCGGGAGATCCAAGATGTGCTCGGCGTCGATTACCGCCATGTGCCGCTCACC 462

********************************** ***:*****************.***
gambiae TACAACACGCTCCAGAACTTCCCGTACCTGGACATGGTAGTGAAGGAGTCGCTGCGACTT 600
arabiensis TACAACACGCTCCAGAACTTCCCGTACCTCGACATGGTAGTGAAGGAGTCGCTGCGACTG 522

***************************** ***************************** 
gambiae CTACCACCCGTTTCGTTCATCGGACGTCGGCTAGCAGATGACATCGAGATGAACGGTGTA 660
arabiensis CTGCCACCCGTTTCGTTTATCGGCCGTCGGCTAGCGGATGACATCGAGATGAACGGTGTA 582

**.************** *****.***********.************************
gambiae ACTATTCCAGCCGGCACTGACTTTACCATCCCCATCTACGTCATCCACCGCAATCCCGTT 720
arabiensis ACTATTCCAGCCGGCACTGACTTTACCATCCCCATCTACGTCATCCACCGCAATCCCGTT 642

************************************************************
gambiae GTGTATCCCGACCCGGAACGATTCGATCCGGAGCGCTTCTCGGACGGCAATACGCAACGG 780
arabiensis GTGTATCCCGACCCRGARCGATTCGATCCGGAGCGCTTCTCGGACGGAAATACGCAACGG 702

************** ** *****************************.************
gambiae CGCGGCCCGTACGACTACATCCCGTTCAGTATCGGCTCGCGGAACTGTATCGGGCAGCGC 840
arabiensis CGCGGCCCGTACGACTACATCCCGTTCAGTATCGGCACGCGGAACTGTATCGGGCAGCGG 762

************************************:********************** 
gambiae TATGCGCTGCTGGAGATGAAGGTCGCTATCGTACGTATGGTTTCCTTTTATAGGATATTG 900
arabiensis TATGCGCTGCTGGAGATGAAGGTCGCTATCGTACGTATGATTTCCTTTTATAGGATATTG 822

***************************************.********************
gambiae CCCGGTGATACGATGCACGAGATTCGTCTCAAAACGG-ATCTGGTGCTACGTCCGGACAA 960
arabiensis CCCGGTGATACGATGCACGAGATTCGTCTCAAAACGGAATCTGGTGCTACGTCCGGACA- 881

************************************* ********************* 

B
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Table 6.3: Transcript levels of cyp4h24 (AGAP013490) and ratios of transcript levels 

when normalized against the control genes cpr and s7 (mean±sdev). 

 

 
Figure 6.3: (A) Summary of the qPCR (absolute quant ification) results on cyp4h24  

using both available control genes, s7 (left column) and cpr (right column) for normalisation 

(mean±4se). (B) Absolute transcript level of the control genes s7 (left) and cpr (right) 

expressed as absolute transcript number. Data are presented as mean ± standard error of 

three biological replicates.  
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transcripts δ /s7 δ /cpr δ 

backcross 146305 16032 0.3929 0.0639 2.253 0.714 

Ndja 111177 14086 0.3655 0.0255 1.637 0.172 

Moz 91248 21991 0.2937 0.0440 1.484 0.120 

 
δ  standard deviation 
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6.4 Discussion 

Enrichment analysis is a valuable tool to screen microarray data sets for 

terms that are associated with either the up-regulated or down-regulated 

subset of genes. It helps highlight signatures of co-regulation within the data 

set. By examining networks of genes which are interacting to produce a 

phenotype it facilitates the transition from data collection to biological 

meaning. For the current data set, the only terms significantly enriched in the 

up-regulated set were proteases and peptidases. These enzymes are 

involved in a multitude of physiological functions and essential in many 

cellular processes. Although proteases have been found up-regulated in 

insecticide resistant populations previously (Pedra et al. 2004; Vontas J 

2005), their role, if any, in resistance is unclear. Serine proteases can 

hydrolyse ester bonds and so could conceivably be involved in insecticide 

metabolism (Hedstrom 2002). Alternatively, elevated protease activity may 

be a result of metabolic stress induced by insecticide exposure.  

The terms significantly enriched in the down-regulated set were cytochrome 

P450s. This was unexpected. A small number of P450s are up-regulated in 

the backcross population relative to the susceptible strain and to understand 

the significance of these findings, more needs to be known about the role of 

individual P450s in insecticide metabolism.  

The candidate gene approach complements the enrichment analysis. If the 

expression of a single gene has a major contribution to the resistance 

phenotype, the enrichment analysis will not show it. The full lists of 144 

significantly up- and 137 significantly down-regulated entities were screened 

for probes detecting members of the gene families cytochrome P450 

monooxygenases, GSTs and carboxylesterases. These are the major 

enzyme groups responsible for metabolically based resistance to the four 

classes of insecticides used in public health.  
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description location  reference 

over-expressed   

cyp4h24 X 

↑ 

↓ 

↑ 

Up in permethrin resistant An. gambiae (Müller et al. 2008a) 

Down in permethrin resistant An. arabiensis (Müller et al. 2007) 

midgut: female (Baker et al. 2011) 

cyp9j5 3L 

↓ 

↑ 

↓ 

Down in permethrin resistant An. gambiae (David et al. 2005) 

Up following blood mean in An. gambiae s.s. (Marinotti et al. 2005) 

ovaries: female; ↑midgut: male (Baker et al. 2011) 

cyp6m1 3R 
↓ 

↓ 

Down in permethrin resistant An. gambiae (Müller et al. 2007) 

ovaries: female; ↑midgut: male (Baker et al. 2011) 

cyp4g16 X 
↑ 

↓ 

Up in permethrin resistant An. arabiensis (Müller et al. 2008a) 

midgut: female; ↑Carcass: male (Baker et al. 2011) 

gste5 3R ↑ malpighian tubules: male; ↓ head: male (Baker et al. 2011) 

  

under-expressed   

cyp6m2 3R 

↑ 

 

↑ 

↓ 

Up in permethrin resistant An. gambiae s.s. (Djouaka et al. 2008; Müller 

et al. 2007; Stevenson et al. 2011) and  

Up in An. arabiensis (Munhenga & Koekemoer 2011) 

ovaries: female; ↑malpighian tubules: male; (Baker et al. 2011) 

cyp6p4  2R ↑ midgut: male; ↓testes: male (Baker et al. 2011) 

cyp302a1  2L ↑ Male accessory gland: ↓ male; head: male (Baker et al. 2011) 

cyp6ag2 2R 
↑ 

↓ 

Up in permethrin resistant An. gambiae (Müller et al. 2007) 

ovaries: female; ↑midgut: male (Baker et al. 2011) 

cyp325f1 2R ↑ Up in permethrin resistant An. gambiae (Müller et al. 2008b) 

AGAP002204 2R ↑ Male: head (Baker et al. 2011) 

cyp9m1 3R ↓ Down as response to thermal stress in 2La (Cassone et al. 2011) 

AGAP009363 3R   

cyp304b1 2R ↓ Down in pyrethroid resistant An. funestus (Christian et al. 2011) 

cyp9k1 x ↓ ovaries: female; ↑ malpighian tubules: male (Baker et al. 2011) 

cyp325a2 
2R 

↓ Down in permethrin resistant An. gambiae and An. arabiensis (Müller et 

al. 2008a; Müller et al. 2007)  

cyp4aa1 2R ↓ Down in permethrin resistant An. gambiae (Müller et al. 2008a) 

 
  

 
 

Table 6.4: Significantly (FDR p ≤0.01; fold change ≥2.0) differentially expressed 

detoxification genes with references to previous mi croarray experiments  in An. 

gambiae s.l. and An. funestus. Significance thresholds in referenced studies vary (fold-

change ≥2.0, except (David et al. 2005) with fold-change >1.5; FDR p ≤0.001, except (Baker 

et al. 2011) with FDR p < 0.05). 
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Four cytochrome P450s and one GST were up-regulated and 12 P450s 

down-regulated. The expression levels of some of these genes have been 

associated with insecticide resistance in previous studies (cyp4h24, 

cyp6g16, cyp6ag2 and cyp6m2) while others (cyp9j5 and cyp6m1) have 

been negatively correlated with resistance (see Table 6.4) (David et al. 2005; 

Müller et al. 2007). Of particular note is cyp6m2, which, in the current study, 

is expressed at lower levels in the resistant population in contrast to several 

previous studies which had implicated this P450 in permethrin resistance 

(Djouaka et al. 2008; Mitchell et al. 2012; Müller et al. 2008b; Stevenson et 

al. 2011).  

The candidate gene cyp4h24 was found up-regulated in permethrin resistant 

field populations of An. gambiae s.s. from Ghana (Müller et al. 2008a) but 

expressed at lower levels in an An. arabiensis population after insecticide 

exposure had occurred compared to before insecticide exposure (Müller et 

al. 2008a). It was found up-regulated in permethrin survivors from this 

microarray study, although this result could not be confirmed by qPCR. The 

summary in Table 6.4 shows that the observed profile of detox gene 

expression in this study does not match other previous studies. Follow up is 

needed to confirm their role in resistance. 

In this study relatively few detox genes were found in the top 50 lists of 

significantly differentially expressed probes (ranked by p-value), only gste5 in 

the top 50 up-regulated entities, and three P450s in the top 50 of down-

regulated entities (highlighted by * in Table 6.3). Surprisingly a higher density 

of probes targeting detox genes was found in the list of down-regulated 

probes than in the list of up-regulated entities. This agrees with the results of 

the enrichment analysis but is difficult to explain in the context of permethrin 

resistance. 

Four serine proteases are found in the top 50 list of up-regulated genes 

(AGAP001198, AGAP004900, AGAP008861, AGAP012946) with the 

transcript for gene AGAP008861 showing the highest fold change with 31.89 

(valid for the full set of significantly up-regulated transcripts). Another 

potentially interesting hit is AGAP002052 on chromosome 2R (fold change 

4.4), a transcript coding for a cuticular protein. Thickening of the insect 
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cuticule may reduce insecticide penetration and some cuticular proteins have 

been linked to insecticide resistance (Djouaka et al. 2008; Puinean et al. 

2010; Vontas et al. 2007). As support for these potential novel candidates 

from previous studies on insecticide resistance is lacking, they will have to be 

validated independently. A functional approach via e.g. RNA interference to 

assess their role in permethrin resistance would be useful.  

The microarray platform used in this study was designed on the An. gambiae 

s.s. genome sequence (Mitchell 2011). Although the two species An. 

arabiensis and An. gambiae are very closely related, there will inevitably be 

sequence polymorphisms between the species that may lead to non-specific 

binding or to samples not hybridising to probes. Comparing sequences of 

cyp4h24 from An. gambiae and from An. arabiensis a high sequence 

similarity > 96% is observed but between one and three SNPs are found 

within the binding site of the microarray and these polymorphisms may 

potentially affect the hybridisation dynamics.  

This is an inherent problem with cross-species microarray studies which 

cannot easily be overcome by processing more biological replicates or by 

performing a different experimental design.  

With some An. arabiensis sequence data available (Hittinger et al. 2010) and 

a draft genome sequence expected later this year 

(http://www.broadinstitute.org/annotation/genome/anopheles) designing a 

species specific microarray chip for An. arabiensis may be a better 

alternative. 

The intention behind the experimental design of the microarray was to gain 

maximum information whilst performing a minimum of arrays with the 

available mosquito resources. The backcross design was intended to reduce 

false positives that may have resulted from comparing two strains from very 

different geographical regions. This backcross design has not been reported 

before in microarray experiments of mosquito species, it is however more 

common in plants (Kirst et al. 2004). With issues such as the cross-species 

hybridisation mentioned above it is hard to judge if this is an ideal 

comparison. Adding another comparison of un-exposed Ndja samples to the 
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Moz strain should provide additional information about what genes may be 

constitutively up-regulated in the resistant strain.   
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Chapter 7. Conclusions 

7.1 Key findings of the current study  

Successful application and resistance management of insecticides for vector 

control relies on efficient use of the available compounds. There are two 

essential prerequisites for this: potent insecticides and data on presence, 

level and type of resistance present in the target organism. There are a 

limited number of insecticides currently available for the use in public health, 

with no new classes being licensed for adult mosquito control for over 30 

years. Furthermore, resistance to the available insecticides is increasing in 

range and intensity (Djegbe et al. 2011; Ranson et al. 2009; Santolamazza et 

al. 2008a). This emphasises the importance of monitoring of resistance and 

understanding underlying mechanisms. 

Target-site resistance is one type of resistance mechanism that is 

reasonably well understood. Once resistance alleles have been 

characterised, a wide range of molecular detection tools can be applied to 

enable these alleles to be monitored in population screening programs 

(Chanda et al. 2011; Yewhalaw et al. 2011). But the recent discoveries of 

N1575Y in the sodium channel of An. gambiae s.s. (Jones et al. 2012b) and 

F1534C in Ae. aegypti (Harris et al. 2010) show that researchers cannot rely 

solely on the present diagnostics and highlight the importance of continuing 

to screen for new target-site resistance mutations.  

Metabolic resistance is more complex at the molecular level. There are no 

molecular markers for metabolic resistance in mosquitoes. This is partly 

because there are multiple genes putatively involved in metabolic resistance 

but also a result of the multitude of different molecular mechanisms by which 

metabolic resistance could occur. Mutations within the structural genes 

encoding detoxification enzymes may play a role in enhancing insecticide 

metabolism if they increase the affinity or specificity of the enzyme for the 

insecticide and/or increase the rate of turnover. This has been observed in 

An. gambiae glutathione-S-transferases (Mitchell 2011; Wang et al. 2008) 

and in D. melanogaster cyp6a2 (Amichot et al. 2004) but appears less 
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common in cytochrome P450s. Such allelic variation in resistant genotypes 

would be easy to monitor by molecular assays once the responsible mutation 

had been established. Although extensive amino acid substitutions are 

present in mosquito cytochrome P450 primary sequences, to date these 

polymorphisms have not been associated with resistance (Feyereisen 1999; 

Li et al. 2007; Müller et al. 2008b; Stevenson et al. 2011). More commonly 

metabolic resistance is associated with elevated expression levels of 

detoxification genes (Amenya et al. 2008; David et al. 2005; Djouaka et al. 

2008; Müller et al. 2008b; Nikou et al. 2003; Wondji et al. 2009). 

Increased expression may be a result of mutations in the promoter region, 

other cis-regulatory elements or in trans-acting regulators. For example the 

presence of an accord transposon upstream of cyp6g1 in D. melanogaster is 

correlated with up-regulation (Chung et al. 2007) and a transposable element 

upstream of cyp9m10 implicated in larval permethrin resistance in Cx. 

quinquefasciatus acts as a marker for the regulatory motif (Wilding et al. 

unpublished). 

At the start of this study, the objective was to confirm the role of the 

candidate genes that had been implicated in pyrethroid resistance in An. 

gambiae in Benin by earlier microarray studies (Djouaka et al. 2008) and 

identify the causal mutations. Unfortunately, the increased expression of the 

four candidate genes (cyp6p3, cyp6m2 and cplcg3/4) was not detected in a 

resistant laboratory strain, isolated from the same area as the mosquitoes 

used in the original microarray. However, field collected mosquitoes that had 

been collected from the same site as the original Akron colony and survived 

permethrin exposure, did show elevated activity of candidates cyp6p3 and 

cyp6m2. Hence, the putative metabolic resistance mechanisms were not 

maintained in the laboratory population. Selection of this laboratory colony 

with permethrin did result in an increase in the resistance frequency but this 

may have been as a result of increased kdr frequencies rather than selection 

of metabolic resistance. 

Furthermore, sequencing of the candidate genes, and their upstream 

regions, failed to identify any sequence polymorphisms associated with 
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survival to pyrethroids although it must be noted that the sample size used 

here was very limited. 

A genetic mapping approach to identify the major loci associated with 

permethrin resistance in this Benin population was therefore initiated. The 

suspected decrease of metabolic resistance levels in the lab strain, and its 

presence in the field samples is the reason why field collected, non 

laboratory reared mosquito samples were used for the QTL mapping of this 

trait in the Akron mosquito population. 

Two QTLs for permethrin resistance were identified through genetic mapping 

of isofemale lines of An. gambiae s.s. from Benin. The locus observed on 

chromosome 2 in An. gambiae s.s. from Akron confirms kdr as the major 

QTL accounting for over half of the genetic variance (between 56 and 64%). 

Another smaller QTL is located on chromosome 3R in the region of a cluster 

of P450 genes including cyp6m2 as well as the cuticular candidates from the 

microarray study although the boundaries of this QTL are too large to enable 

identification of a single gene. The locus observed on chromosome 2 in An. 

gambiae s.s. from Akron confirms kdr as the major QTL possibly masking 

other minor loci on the same chromosome as well as loci on other 

chromosomes. 

Overall the novel approach of QTL mapping on isofemale families raised 

directly from field caught females was successful; however, a larger number 

of families as well as larger progeny number is desirable for future 

experiments. With the availability of larger sample sets for genetic mapping 

extreme resistance phenotyping or phenotyping into more classes than dead 

and alive as shown by Saavedra-Rodriguez and colleagues (Saavedra-

Rodriguez et al. 2008) is a possibility.  

For dissecting the genetics of metabolic resistance, a resistant population 

lacking any target-site resistance is ideal. Therefore the next step was to 

examine populations of An. arabiensis from Chad which were resistant to 

pyrethroids but contained no known kdr mutations. The more common 

approach of mapping in F2 progeny derived from a genetic cross was 

adopted for this study. The parental populations were recently colonised field 
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samples, and therefore potentially contain fewer genetic changes resulting 

from adaptation to prolonged maintenance in colony. The identification of a 

single QTL on chromosome 2R associated with pyrethroid resistance in An. 

arabiensis is a key result of the current study. The result confirms the 

absence of kdr (the sodium channel gene is located on chromosome 2L) in 

this population. As to be expected from F2 mapping populations the 

resolution of the resulting maps is limited and the nature of the QTL could not 

be resolved sufficiently to identify candidate genes. However it is interesting 

to note that this QTL encompasses a large cluster of P450 genes. 

Upon completion of the QTL mapping a microarray experiment was initiated 

in the hope that this would help identify genes differentially expressed in the 

resistant Ndja strain relative to the susceptible Moz strain, potentially 

including genes located within the boundaries of the QTL. Several candidate 

genes were identified but no strong candidates for metabolic resistance were 

identified within the QTL boundaries. Two transcripts that are present in the 

top-50 list of significantly up-regulated probes are located within the 

boundaries of the QTL on chromosome 2R. These belong a novel gene, 

AGAP001616, and to AGAP001881, a zinc metalloprotease. Another 

potentially interesting hit is AGAP002052 on chromosome 2R (14.6 Mb) a 

transcript coding for a cuticular protein.  

The possibility that these genes are involved in uncharacterised resistance 

mechanisms warrants further investigation. 

7.2 Alternative approaches and suggestions for furt her work 

Quantitative traits are complex traits and if possible different approaches 

should be combined in order to obtain robust results and avoid 

misinterpretation of results or missing out on important aspects.  

QTL mapping is an excellent first approach for screening the entire genome 

but its power is limited. Advanced intercross lines (AIL) enable fine-scale 

mapping of prior identified QTLs (Darvasi & Soller 1995). AILs are produced 

from an F2 population by random intercrossing by which many recombination 

events are accumulated that provide higher genetic resolution that cannot be 

reached by increasing marker density only. Once the confidence interval of 
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the QTL is sufficiently small, underlying genes can be identified by positional 

cloning (Wondji et al. 2009).  

The availability of whole genome sequence data for an increasing number of 

vectors has enabled the design of powerful tools such as whole genome 

SNP arrays (Neafsey et al. 2010; Weetman et al. 2012) and microarrays 

(Mitchell 2011). These allow genome and transcriptome wide comparison 

between samples. High density SNP analysis has the power to detect and 

monitor selective sweeps and genetic differentiation in wild populations. A 

whole genome SNP scan led to the identification of a gene variant potentially 

increasing Plasmodium resistance in An. gambiae s.s. (White et al. 2011b). 

Genome wide association mapping of permethrin resistance has confirmed 

kdr as the major effect variant but failed to detect SNPs associated with 

metabolic variants possibly due to low linkage disequilibrium (Weetman et al. 

2010).  

Next generation sequencing (NGS) enables transcription levels and genetic 

variation to be analysed simultaneously. Next generation sequencing offers 

huge potential to uncover the genetics of a certain trait. Questions such as 

whether the adaption is the result of many loci of small effects or a few loci of 

large effect, or the nature of the underlying genetic change (e.g. point 

mutation, gene duplication etc.) can potentially be addressed by this 

technology. In addition the de novo sequencing approach is ideal for any non 

model species regardless of availability of sequence or marker data, 

provided a reference sequence from a suitably similar species exists. This 

technology has only recently become affordable and to date, the full potential 

of NGS to study traits in mosquitoes has not been explored.  

Whole genome transcriptional profiling has the potential to provide 

information about networks of genes and biological pathways involved in a 

phenotype. However, microarray approaches can only identify candidates. 

These need to be validated. Perhaps the best validation of candidates is via 

replication from independent studies. A meta-analysis of microarray data on 

insecticide resistance at LSTM is currently being conducted with the 

objective of identifying genes or pathways repeatedly associated with the 

resistance trait.  
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Insecticides remain a key component of malaria control programmes. With 

resistance threatening their efficacy in many malaria endemic countries, it is 

necessary to also consider alternative methods of vector control. Research 

describing novel methods for population reduction, such as sterile insect 

technique (Catteruccia et al. 2005; Harris et al. 2011) or means of 

engineering resistance of vector species to pathogens (White et al. 2011b) 

show promise. However, given that it will be many years before these new 

methods become operational, and no new insecticides are on the immediate 

horizon, it is essential that efforts to understand and manage insecticide 

resistance are maintained. 
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Chapter 9. Appendix 

all   alive   dead 

Family 15 aa ab bb    X2   aa ab bb    X2     aa ab bb    X2     

803 10 25 6.43 ** 6 12 2.00 4 13 4.76 ** 

197 2 25 11 8.05 ** 0 13 6 6.37 ** 2 12 5 2.26 

757 12 23 3.46 * 5 13 3.56 * 7 10 0.53 

2R_si_5 18 20 0.11 4 13 4.76 ** 10 7 0.53 

Cyp6P3 14 20 1.06 10 9 0.05 8 11 0.47 

637 
$
 23 15 1.68 15 4 6.37 ** 8 11 0.47 

675 7 20 11 0.95   0 12 7 6.47 ** 7 8 4 1.42   

776 21 9 4.80 ** 13 2 8.07 **** 8 7 0.07 

59 28 9 9.76 **** 14 5 4.26 ** 14 4 5.56 ** 

812 7 30 1 14.63 ***** 6 13   6.37 ** 1 17 1 11.84 **** 

249 7 20 10 0.73   5 11 2 1.89   2 9 8 3.84   

30C1 21 15 1.00 6 11 1.47 15 4 6.37 ** 

CPLCG3 22 15 1.32 7 12 1.32 15 3 8.00 **** 

6M19 21 16 0.68 6 12 2.00 15 4 6.37 ** 

119 6 18 12 2.00 3 10 5 0.67 3 8 7 2.00 

555 8 19 11 0.47 4 10 5 0.16 4 9 6 0.47 

6H1 5 22 11 2.84 2 11 6 2.16 3 11 5 0.89 

577 8 20 7 0.77   5 10 3 0.67   3 10 4 0.65   

Family 17 aa ab bb        aa ab bb    X2   aa ab bb X2   

803 15 28 16 0.19   13 21 10 0.50   2 7 6 2.20 

197 21 29 1.28   16 19 0.26   5 10 1.67 

757 
$
 31 25 0.64   19 22 0.22   12 3 5.40 ** 

cyp6p3 16 47 15.25 ******* 11 36 13.30 ****** 5 11 2.25 

2R_si_5 8 29 17 3.30   7 19 12 1.32   1 10 5 3.00 
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770 
$
 19 30 2.47   13 25 3.79 * 6 5 0.09 

117 17 46 13.35 ****** 12 35 11.26 ***** 5 11 2.25 

kdr 29 31 0.07   23 22 0.02   6 9 0.60 

787 
$
 47 16 15.25 ******* 33 14 7.68 *** 14 2 9.00 **** 

603 42 18   9.60 **** 34 10   13.09 ****** 8 8   0.00   

776 20 24 13 3.14   14 20 8 1.81   6 4 5 3.40 

59 15 39 10.67 **** 8 31 13.56   7 8 0.07 

812 19 26 11 2.57   14 18 8 2.20   5 8 3 0.50 

cyp6m2 22 41 5.73 ** 18 29 2.57   4 12 4.00 ** 

249 15 26 7 3.00   11 17 4 3.19   4 9 3 0.38 

30C1 20 33 6 7.47 ** 16 24 4 6.91 ** 4 9 2 1.13 

cplc3 20 43 8.40 **** 17 30 3.60 * 3 13 6.25 ** 

6M19 20 26 8 5.41 * 17 17 6 6.95 ** 3 9 2 1.29 

341 15 22 10 1.26   13 12 9 3.88   2 10 1 3.92 

6H1 16 30 10 1.57   13 18 9 1.20   3 12 1 4.50 

33C1 25 31 0.64   19 21 0.10   6 10 1.00 

6F5 35 21 3.50 * 23 17 0.90   12 4 4.00 ** 

30L17 $ 30 29 0.02   22 21 0.02   8 8 0.00 

SODI 21 36 3.95 ** 14 29 5.23 ** 7 7 0.00 

811 31 30 0.02   23 22 0.02   8 8 0.00 

577 39 19 6.90 *** 28 16 3.27 * 11 3 4.57 ** 

817 15 25 19 1.92   15 18 11 2.18   0 7 8 8.60 ** 

46C2 14 29 17 0.37   12 21 11 0.14   2 8 6 2.00 

53 $ 33 22 2.20   23 16 1.26   10 6 1.00 

80 $ 15 11 12 7.21 ** 7 7 9 3.87   8 4 3 6.60 ** 

Family 25 aa    ab bb     aa ab bb    a X2   aa ab bb    a X2   

46 
$
 12 8 22 20.86 ******* 6 3 12 14.14 ***** 6 5 10 7.29 ** 

757 15 27 3.43 * 6 14 3.20 * 9 13 0.73 

799 10 22 10 0.10   6 11 4 0.43   4 11 6 0.43 

2R_si_5 4 30 7 9.24 *** 1 15 5 5.38 * 3 15 2 5.10 * 
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Cyp6P3 19 24 0.58   8 13 1.19   11 11 0.00 

770 4 26 12 5.43 * 0 15 6 7.29 ** 4 11 6 0.43 

117 30 11 8.80 **** 13 8 1.19   17 3 9.80 **** 

787 1 23 15 11.31 **** 1 14 4 5.21 * 0 9 11 12.30 **** 

772 2 26 14 9.24 *** 0 16 5 8.14 ** 2 10 9 4.71 * 

675 4 23 15 6.14 ** 3 13 5 1.57   1 10 10 7.76 ** 

776 16 24 1.60   6 13 2.58   10 11 0.05 

59 11 18 13 1.05   3 10 7 1.60   8 8 6 2.00 

812 14 27 4.12 ** 7 13 1.80   7 14 2.33 

Cyp6M2 11 19 13 0.77   5 9 7 0.81   6 10 6 0.18 

249 18 23 0.61   9 11 0.20   9 12 0.43 

30C1 27 15 3.43 * 14 6 3.20 * 13 9 0.73 

CPLCG3 6 34 19.60 ******* 3 18 10.71 **** 3 16 8.89 **** 

6M19 12 20 10 0.29   4 11 5 0.30   8 9 5 1.55 

119 16 27 2.81 * 7 14 2.33   9 13 0.73 

158 32 9 12.90 ****** 15 5 5.00 ** 17 4 8.05 **** 

341 
$
 33 7 16.90 ******* 16 4 7.20 *** 17 3 9.80 **** 

6H1 12 18 12 0.86   6 8 7 1.29   6 10 5 0.14 

6F5 13 29 6.10 ** 7 13 1.80   6 16 4.55 ** 

88 11 18 12 0.66   7 8 5 1.20   4 10 7 0.90 

30L17 
$
 33 9 13.71 ****** 15 5 5.00 ** 18 4 8.91 **** 

811 
$
 11 19 12 0.43   7 10 3 1.60   4 9 9 3.00 

817 
$
 8 15 2.13   3 14 7.12 *** 5 1 2.67 

46C2 
$
 27 16   2.81 * 14 7   2.33   13 9   0.73   

significance levels:   *:0.1  **:0.05  ***:0.01  ****:0.005  *****:0.001  ******:0.0005  *******:0.0001 

$ those markers were not implemented in the genetic maps 

Appendix 9.1: All markers tested for conformity to Mendelian ratio (Hardy-Weinberg equilibrium) with a  χ2 goodness-of-fit analysis using the 

JoinMap single locus analysis module (JMSLA) proced ure. 
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marker χ
2
 p-value Sig df 

family 15 803 0.18 0.67  1 

197 0.50 0.48  2 

757 0.36 0.55  1 

2R_si_5 2.55 0.11  1 

cyp6p3 0.27 0.60  1 

2La 0.05 0.82   

637 4.07 0.04 ** 1 

675 5.32 0.02 ** 2 

776 3.27 0.07 * 1 

59 0.07 0.79  1 

812 1.94 0.16  2 

249 4.33 0.04 * 2 

30C1 5.18 0.02 ** 1 

cplcg3 6.18 0.01 *** 1 

6M19 5.67 0.02 ** 1 

119 0.23 0.63  2 

555 0.05 0.82  2 

6H1 0.22 0.64  2 

577 0.51 0.48  2 

family 17 803 2.51 0.11  2 

197 0.39 0.53  1 

757 3.59 0.06 * 1 

2R_si_5 0.33 0.57  2 

cyp6P3 0.16 0.69  1 

770 0.83 0.36  1 

117 0.08 0.77  1 

kdr 0.36 0.55  1 

2La 0.58 0.45   

787 1.61 0.20  1 

603 3.42 0.06 * 1 

776 0.13 0.72  2 

59 1.61 0.21  1 

812 0.02 0.90  2 

cyp6m2 0.48 0.49  1 

249 0.54 0.46  2 

30C1 0.46 0.50  2 

cplcg3 0.81 0.37  1 

6M19 0.90 0.34  2 

341 0.03 0.86  2 

6H1 0.01 0.90  2 

33C1 0.29 0.59  1 

6F5 1.15 0.28  1 

30L17 0.00 0.95  1 

SODI 0.74 0.39  1 

811 0.00 0.95  1 
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577 0.87 0.35  1 

817 8.76 0.00 ** 2 

46C2 1.75 0.19  2 

53 0.02 0.88  ? 

80 3.23 0.07  2 

family 25 46 0.20 0.65  2 

757 0.29 0.59  1 

799 0.76 0.38  2 

2R_si_5 1.19 0.28  2 

cyp6P3 0.38 0.54  1 

770 0.79 0.37  2 

117 2.35 0.13  1 

2La 1.32 0.25   

787 3.44 0.06 * 2 

772 0.21 0.65  2 

675 2.51 0.11  2 

776 0.61 0.43  1 

59 1.78 0.18  2 

812 0.01 0.94  1 

cyp6m2 0.20 0.66  2 

249 0.01 0.91  1 

30C1 0.43 0.51  1 

cplcg3 0.01 0.95  1 

6M19 0.73 0.39  2 

119 0.14 0.71  1 

158 0.19 0.67  1 

341 0.16 0.69  1 

6H1 0.19 0.66  2 

6F5 0.14 0.71  1 

88 1.21 0.27  2 

30L17 0.26 0.61  1 

811 3.83 0.05 * 2 

817 4.35 0.04 ** 1 

46C2 0.20 0.65  1 

significance levels: *:0.1  **:0.05  ***:0.01   

$ those markers were not implemented in the genetic maps 

Appendix 9.2: A list of χ
2and p-values for genotype-phenotype association in for all 

markers An. gambiae (haploview 4.2). 

 

degrees of 

freedom 

probability [p] 

0.9 0.5 0.3 0.2 0.1 0.05 0.01 0.001 

1 0.02 0.46 1.07 1.64 2.71 3.84 6.64 10.83 

2 0.21 1.39 2.41 3.22 4.6 5.99 9.21 13.82 

Appendix 9.3: Chi square distribution adapted from Fisher (Fisher& Yates 1949). 
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Functional enrichment  

Seine proteases (fold enrichment 4.6)  
 

AGAP008296 Trypsin-1  

AGAP008295 Trypsin-2  

AGAP008294 Trypsin-3  

AGAP008292 Trypsin-4  

AGAP008291 Trypsin-5  

AGAP008290 Trypsin-6  

AGAP008293 Trypsin-7  

AGAP008183 serine proteinase stubble 

  
cytochrome P450s (fold enrichment 6.2)   

AGAP008203 cyp6s2 

AGAP008204 cyp6s1 

AGAP008205 cyp6r1 

AGAP008206 cyp6n2 

AGAP008207 cyp6y2 

AGAP008208 cyp6y1 

AGAP008209 cyp6m1 

AGAP008210 cyp6n1 

AGAP008212 cyp6m2 

AGAP008213 cyp6m3 

AGAP008214 cyp6m4 

AGAP008217 cyp6z3 

AGAP008218 cyp6z2 

AGAP008219 cyp6z1 

AGAP008552 cyp4h27 

AGAP008553 cytochrome p450 

AGAP008356 cyp4h16 

AGAP008358 cyp4h17 

  

  

Appendix 9.4: List of serine proteases and cytochro me P450s enriched within the 

boundaries of the QTL identified on chromosome 3R i n An. gambiae. 
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all   alive   dead 

fam 2 aa ab bb X
2
   aa ab bb X

2 
    aa ab bb X

2
      

803 24 11 na 4.8 ** 12 4 na 4.0 ** 12 7 na 1.32 

199 29 19 na 2.1   18 6 na 6.0 ** 11 13 na 0.17 

24 29 19 na 2.1   18 6 na 6.0 ** 11 13 na 0.17 

757 19 19 na 0.0   6 12 na 2.0   13 7 na 1.8 

799 21 20 na 0.0   9 12 na 0.4   12 8 na 0.8 

2R_si_5 27 21 na 0.8   15 9 na 1.5   12 12 na 0 

cyp6p3 18 30 na 3.0 * 10 14 na 0.7   8 16 na 2.67 

590 22 24 na 0.1   6 16 na 4.6 ** 16 8 na 2.67 

cyp304c1 23 25 na 0.1   8 16 na 2.7   15 9 na 1.5 

720 20 28 na 1.3   11 13 na 0.2   9 15 na 1.5 

770 
$
 22 13 na 2.3   12 6 na 2.0   10 7 na 0.53 

786 19 28 na 1.7   9 15 na 1.5   10 13 na 0.39 

ex27 19 29 na 2.1   11 13 na 0.2   8 16 na 2.67 

787 7 21 12 1.4   3 12 6 1.3   4 9 6 0.47 

603 
$
 9 28 4 6.7 ** 7 11 3 1.6   2 17 1 9.9 *** 

675 23 18 na 0.6   12 9 na 0.4   11 9 na 0.2 

776 5 29 11 5.4 * 2 14 6 3.1   3 15 5 2.48 

59 14 18 3 6.9 ** 7 8 2 3.0   7 10 1 4.22 

812 28 15 3 32.7 ******* 13 10 1 12.7 **** 15 5 2 21.9 ******* 

249 19 21 2 13.8 **** 9 11 1 6.1 ** 10 10 1 7.76 ** 

30C1 1 32 12 13.4 **** 0 19 5 10.3 *** 1 13 7 4.62 * 

6M19 4 27 10 5.9 * 0 15 4 8.1 ** 4 12 6 0.55 

119 2 33 10 12.6 **** 0 19 5 10.3 *** 2 14 5 3.19 

811 1 28 8 12.4 **** 0 15 3 9.0 ** 1 13 5 4.26 

577 18 26 na 1.5   7 14 na 2.3   11 12 na 0.04 

46C3 3 20 8 4.2   2 12 3 3.0   1 8 5 2.57 

46C2 1 24 12 9.8 *** 0 13 5 6.3 ** 1 11 7 4.26 

cyp4h24 14 30 4 7.2 ** 6 15 3 2.3   8 15 1 5.58 * 
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53 12 27 5 4.5   5 14 3 2.0   7 13 2 3 

80 6 20 6 2.0   4 15 2 4.2   2 5 4 0.82 

H7 24 24 na 0.0   15 9 na 1.5   9 15 na 1.5 

678 19 27 na 1.4   9 15 na 1.5   10 12 na 0.18 

Appendix 9.5: All family 2 markers tested for confo rmity to Mendelian ratio (Hardy-Weinberg equilibriu m) with a χ2 goodness-of-fit analysis using 

the JoinMap single locus analysis module (JMSLA) pr ocedure. 

 

 

 

 

all   alive   dead 

fam 3 aa ab bb X
2
   aa ab bb X

2
     aa ab bb X

2
      

803 7 23 9 1.46   1 10 9 6.40 ** 6 13 0 6.37 ** 

199 7 29 9 3.93   0 13 8 7.29 ** 7 16 1 5.67 * 

24 7 29 11 3.26   0 14 9 8.13 ** 7 15 2 3.58 

757 9 20 11 0.20   1 10 8 5.21 * 8 10 3 2.43 

799 
$
 11 24 na 4.83 ** 7 10 na 0.53   4 14 na 5.56 ** 

26 
$
 23 23 na 0.00   5 17 na 6.55 ** 18 6 na 6.00 ** 

cyp6p3 
$
 25 21 na 0.35   16 6 na 4.55 ** 9 15 na 1.50 

590 8 27 13 1.79   1 12 11 8.33 ** 7 15 2 3.58 

cyp304c1 
$
 27 18 na 1.80   14 8 na 1.64   13 10 na 0.39 

117 27 17 na 2.27   9 12 na 0.43   18 5 na 7.35 *** 

786 8 24 8 1.60   4 12 4 0.80   4 12 4 0.80 

787 2 31 8 12.5 **** 1 15 5 5.38 * 1 16 3 7.60 ** 
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772 31 16 na 4.79 ** 12 12 na 0.00   19 4 na 9.78 **** 

603 22 15 na 1.32   8 9 na 0.06   14 6 na 3.20 * 

675 9 23 7 1.46   9 11 4 0.30   4 12 3 1.42 

776 16 24 4 6.91 ** 8 12 2 3.45   8 12 2 3.45 

59 20 19 7 8.74 ** 9 11 3 3.17   11 8 4 6.39 ** 

812 10 27 10 1.04   6 13 4 0.74   4 14 6 1.00 

249 6 22 5 3.73   3 12 4 1.42   3 10 1 3.14 

30C1 15 26 na 2.95 * 8 13 na 1.19   7 13 na 1.80 

6M19 16 20 4 7.20 ** 6 12 3 1.29   10 8 1 9.00 ** 

119 12 25 3 6.55 ** 7 12 2 2.81   5 13 1 4.26 

Chymotrypsin 41 7 na 24.1 ******* 20 4 na 10.7 **** 21 3 na 13.5 ****** 

811 13 30 na 6.72 *** 8 15 na 2.13   5 15 na 5.00 ** 

46C3 12 23 3 5.95 * 6 13 2 2.71   6 10 1 3.47 

46C2 13 18 4 4.66 * 4 10 2 1.50   9 8 2 5.63 * 

cyp4h24 17 31 na 4.08 ** 6 18 na 6.00 ** 11 13 na 0.17 

53 23 18 na 0.61   12 10 na 0.18   11 8 na 0.47 

80 3 12 11 5.08 * 1 8 3 2.00   2 4 8 7.71 ** 

H7 20 28 na 1.33   6 18 na 6.00 ** 14 10 na 0.67 

678 19 28 na 1.72   7 16 na 3.52 * 12 12 na 0.00 

significance levels:   *:0.1  **:0.05  ***:0.01  ****:0.005  *****:0.001  ******:0.0005  *******:0.0001 
 

$ those markers were not implemented in the genetic maps 

Appendix 9.6: All family 3 markers tested for confo rmity to Mendelian ratio (Hardy-Weinberg equilibriu m) with a χ2 goodness-of-fit analysis using 

the JoinMap single locus analysis module (JMSLA) pr ocedure.  
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Functional enrichment of genes within the boundaries of the An. arabiensis QTL on 2R 

25 cytochrome P450s (fold enrichment 4.2) 

AGAP002138 cyp325h1 

AGAP002195 cyp325f2  

AGAP002196 cyp325g1 

AGAP002197 cyp325f1 

AGAP002202 cyp325e1  

AGAP002203 cyp325d2 

AGAP002205 cyp325c2 

AGAP002207 cyp325c1 

AGAP002209 cyp325a2 

AGAP002210 cyp325b1 

AGAP002211 cyp325a1  

AGAP002416 cyp4k2 

AGAP002417 cyp4ar1 

AGAP002418 cyp4d16 

AGAP002419 cyp4d22 

AGAP002429 cyp315a1  

AGAP002555 cyp325k1 

AGAP002862 cyp6aa1 

AGAP002864 cyp6aa2  

AGAP002865 cyp6p3 

AGAP002866 cyp6p5 

AGAP002867 cyp6p4 

AGAP002868 cyp6p1 

AGAP002869 cyp6p2 

AGAP002870 cyp6ad1 

Appendix 9.7: List of cytochrome P450s enriched wit hin the boundaries of the QTL 

identified on chromosome 2R in An. arabiensis. 
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Description Accession number Probe name FDR p FC 

5 nucleotidase AGAP007140-RA CUST_2671_PI422575199 9.03E-04 4.65 

protease m1 zinc metalloprotease AGAP004860-RA CUST_214_PI422575199 1.74E-03 2.93 

chymotrypsin-like protein AGAP001198-RA CUST_3526_PI422575199 3.12E-03 6.33 

methionine-trna synthetase AGAP007891-RA CUST_11187_PI422575199 3.12E-03 10.66 

isoform a AGAP009224-RA CUST_12451_PI422575199 3.19E-03 3.89 

formyl-coenzyme a transferase AGAP010040-RA CUST_13266_PI422575199 3.59E-03 2.27 

tyrosine aminotransferase AGAP000327-RA CUST_8699_PI422575199 3.61E-03 2.58 

AGAP001226-PA [Anopheles gambiae str. PEST] AGAP001226-RA CUST_3743_PI422575199 3.61E-03 2.75 

protease m1 zinc metalloprotease AGAP001881-RA CUST_3452_PI422575199 3.61E-03 2.81 

26s proteasome non-atpase regulatory subunit 8 AGAP002606-RA CUST_4439_PI422575199 3.61E-03 3.43 

secretory carrier-associated membrane protein AGAP002922-RA CUST_4928_PI422575199 3.61E-03 3.28 

26s protease regulatory subunit 4 AGAP003216-RA CUST_5314_PI422575199 3.61E-03 5.49 

prefoldin subunit 5 AGAP003416-RA CUST_5573_PI422575199 3.61E-03 2.09 

electron transfer flavoprotein subunit mitochondrial AGAP004031-RA CUST_6389_PI422575199 3.61E-03 18.63 

protease m1 zinc metalloprotease AGAP004809-RA CUST_157_PI422575199 3.61E-03 2.40 

rna exonuclease 4 AGAP005050-RA CUST_423_PI422575199 3.61E-03 5.97 

bax inhibitor AGAP005775-RA CUST_1242_PI422575199 3.61E-03 2.65 

atp-binding cassette sub-family a member AGAP006380-RA CUST_1856_PI422575199 3.61E-03 6.09 

ichit AGAP006432-RA CUST_1913_PI422575199 3.61E-03 9.46 

cg30152-like protein AGAP007363-RA CUST_2916_PI422575199 3.61E-03 4.40 

signal recognition particle 14 kda protein AGAP008339-RA CUST_11616_PI422575199 3.61E-03 2.38 

isoform b AGAP009156-RA CUST_12385_PI422575199 3.61E-03 4.96 

microfibril-associated glycoprotein 4 AGAP009556-RA CUST_12776_PI422575199 3.61E-03 8.40 

ctp synthase AGAP009624-RA CUST_12846_PI422575199 3.61E-03 3.95 

larval cuticle protein lcp-30 AGAP009874-RA CUST_13099_PI422575199 3.61E-03 2.28 

zinc metalloproteinase nas-12 AGAP010764-RA CUST_9407_PI422575199 3.61E-03 3.55 
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AGAP011627-PA [Anopheles gambiae str. PEST] AGAP011627-RA CUST_10210_PI422575199 3.61E-03 5.43 

ornithine decarboxylase AGAP011808-RA CUST_10385_PI422575199 3.61E-03 3.29 

protein takeout AGAP012703-RA CUST_13822_PI422575199 3.61E-03 3.88 

AGAP013115-PA [Anopheles gambiae str. PEST] AGAP013115-RA CUST_4843_PI422575199 3.61E-03 2.23 

glucose dehydrogenase AGAP003785-RA CUST_6118_PI422575199 3.68E-03 4.80 

ribose-phosphate pyrophosphokinase AGAP004890-RA CUST_248_PI422575199 3.68E-03 5.30 

serine protease AGAP004900-RA CUST_259_PI422575199 3.68E-03 6.70 

kazal domain-containing peptide AGAP007906-RA CUST_11202_PI422575199 3.68E-03 4.18 

notch 2 AGAP008065-RA CUST_11358_PI422575199 3.68E-03 6.12 

dipeptidyl peptidase 4 AGAP008176-RA CUST_11463_PI422575199 3.68E-03 4.07 

inactive dipeptidyl AGAP008764-RA CUST_12005_PI422575199 3.68E-03 4.34 

GSTE5 - Glutathion S-transferase AGAP009192-RA DETOX_625_PI422610884 3.68E-03 2.20 

organic cation transporter AGAP012383-RA CUST_10939_PI422575199 3.68E-03 2.09 

serine protease AGAP012946-RA CUST_5873_PI422575199 3.68E-03 2.12 

AGAP013147-PA [Anopheles gambiae str. PEST] AGAP013147-RA CUST_7999_PI422575199 3.68E-03 3.91 

trehalose-6-phosphate synthase 1 AGAP008227-RA CUST_11510_PI422575199 3.77E-03 2.75 

trypsin AGAP008861-RA CUST_12093_PI422575199 3.78E-03 31.89 

glucose dehydrogenase AGAP003785-RC CUST_6121_PI422575199 3.95E-03 4.07 

anopheles gambiae pest agap012679-pa AGAP009909-RA CUST_13132_PI422575199 3.97E-03 2.37 

agcp14332 AGAP001616-RA CUST_7438_PI422575199 3.97E-03 2.11 

kynurenine formamidase AGAP009433-RA CUST_12655_PI422575199 3.97E-03 4.90 

cuticular protein analogous to peritrophins 1-i AGAP002052-RA CUST_3665_PI422575199 3.98E-03 4.36 

apolipoprotein d AGAP002594-RA CUST_4421_PI422575199 3.98E-03 2.50 

ctlma3 protein AGAP007412-RA CUST_2497_PI422575199 4.26E-03 2.61 

 

Appendix 9.8: Microarray top-table showing top 50 ( ranked by false discovery rate adjusted p-value) up -regulated genes. FDR=adjusted p-value; FC=fold cha nge. 

 



CHAPTER 9  APPENDIX       188 

 

 

Description Accession number ProbeName FDR p FC 

maltase 1 AGAP008962-RA CUST_12197_PI422575199 3.61E-03 2.72 

folylpolyglutamate mitochondrial AGAP004679-RA CUST_5_PI422575199 3.61E-03 2.10 

viral a-type inclusion protein repeat containing protein AGAP013358-RA CUST_5926_PI422575199 3.61E-03 2.02 

AGAP002771-RA AGAP002771-RA CUST_4690_PI422575199 3.61E-03 3.31 

facilitated trehalose transporter tret1-like AGAP001236-RA CUST_3918_PI422575199 3.61E-03 2.37 

AGAP009535-PA [Anopheles gambiae str. PEST] AGAP009535-RA CUST_12755_PI422575199 3.61E-03 2.88 

AGAP009817-PA [Anopheles gambiae str. PEST] AGAP009817-RA CUST_13047_PI422575199 3.61E-03 2.02 

sterol desaturase AGAP002769-RA CUST_4692_PI422575199 3.61E-03 2.51 

endomembrane protein emp70 AGAP004882-RA CUST_239_PI422575199 3.61E-03 2.01 

hypothetical conserved protein AGAP004410-RA CUST_7021_PI422575199 3.61E-03 4.37 

AGAP011104-PA [Anopheles gambiae str. PEST] AGAP011104-RA CUST_9719_PI422575199 3.61E-03 2.21 

sodium solute symporter AGAP008359-RA CUST_11634_PI422575199 3.61E-03 2.60 

isoform b AGAP005005-RA CUST_371_PI422575199 3.68E-03 2.18 

cklf-like marvel transmembrane domain-containing protein 4 AGAP009132-RA CUST_12363_PI422575199 3.68E-03 6.71 

cytochrome p450 AGAP009374-RA CUST_12597_PI422575199 3.68E-03 3.84 

adenosine deaminase AGAP006906-RA CUST_2427_PI422575199 3.68E-03 2.79 

anopheles gambiae pest agap012543-pa AGAP012543-RA CUST_13685_PI422575199 3.68E-03 3.62 

folylpolyglutamate mitochondrial AGAP004679-RB CUST_4_PI422575199 3.68E-03 2.21 

pupal cuticle AGAP010122-RA CUST_13347_PI422575199 3.68E-03 2.39 

sterol desaturase AGAP002769-RB CUST_4691_PI422575199 3.68E-03 2.61 

cytochrome p450 AGAP002204-RA CUST_3915_PI422575199 3.71E-03 4.91 

elongation of very long chain fatty acids protein aael008004-like AGAP008780-RA CUST_12021_PI422575199 3.77E-03 3.16 

glutathione transferase gst1-6 AGAP004380-RA CUST_6991_PI422575199 3.77E-03 2.23 

gaba-a receptor interacting factor- AGAP008801-RA CUST_12034_PI422575199 3.77E-03 3.60 

zinc finger protein 43 AGAP011256-RA CUST_9866_PI422575199 3.77E-03 3.00 
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isoform a AGAP012127-RA CUST_10686_PI422575199 3.77E-03 3.42 

cytochrome p450 AGAP003066-RA CUST_5130_PI422575199 3.97E-03 2.67 

phosphatidylinositol-binding clathrin assembly protein AGAP010087-RA CUST_13313_PI422575199 3.97E-03 2.63 

venom allergen AGAP000356-RA CUST_8716_PI422575199 3.97E-03 5.79 

isoform b AGAP004179-RC CUST_6654_PI422575199 4.17E-03 2.36 

matrix metalloproteinase AGAP006904-RA CUST_2423_PI422575199 4.26E-03 5.20 

matrix metalloproteinase AGAP006904-RC CUST_2425_PI422575199 4.26E-03 5.16 

short-chain dehydrogenase AGAP011852-RA CUST_10429_PI422575199 4.26E-03 4.21 

isoform b AGAP011702-RA CUST_10284_PI422575199 4.39E-03 5.07 

matrix metalloproteinase AGAP006904-RB CUST_2424_PI422575199 4.42E-03 5.17 

AGAP005614-RA AGAP005614-RA CUST_1068_PI422575199 4.52E-03 6.51 

uncharacterized protein kiaa1797 AGAP005343-RA CUST_775_PI422575199 4.52E-03 3.26 

3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase AGAP005645-RA CUST_1104_PI422575199 4.52E-03 4.24 

isoform a AGAP004553-RA CUST_7147_PI422575199 4.52E-03 2.07 

odorant binding protein (agap012321-pa) AGAP012321-RA CUST_10876_PI422575199 4.74E-03 3.56 

lethal malignant brain tumor AGAP003268-RA CUST_5384_PI422575199 4.75E-03 2.69 

cytochrome p450 AGAP002209-RA CUST_3897_PI422575199 4.75E-03 2.15 

high-affinity cgmp-specific -cyclic phosphodiesterase AGAP002927-RB CUST_7632_PI422575199 4.91E-03 3.08 

AGAP005610-PA [Anopheles gambiae str. PEST] AGAP005610-RA CUST_1063_PI422575199 4.97E-03 3.47 

membrane glycoprotein lig-1 AGAP007037-RA CUST_2563_PI422575199 5.10E-03 4.67 

itg-containing peptide AGAP008993-RA CUST_12228_PI422575199 5.14E-03 2.61 

chromatin assembly factor p180- AGAP001568-RA CUST_7398_PI422575199 5.21E-03 6.44 

isoform b AGAP007503-RB CUST_3049_PI422575199 5.21E-03 3.40 

atp-dependent rna helicase vasa AGAP008578-RA CUST_11837_PI422575199 5.21E-03 7.08 

CYP6P4 - Cytochrome P450 monooxygenase AGAP002867-RA DETOX_463_PI422610884 5.21E-03 5.12 

Appendix 9.9: Microarray top-table showing top 50 ( ranked by false discovery rate adjusted p-value) do wn-regulated genes. FDR=adjusted p-value; FC=fold 

change. 
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Annotation Cluster 1 Enrichment Score: 3.4 

Category Term Count % PValue 

Fold 

Enrichment Benjamini FDR 

GOTERM_MF_FAT 

GO:0070011~peptidase activity, acting on L-amino acid 

peptides 23 17.8 1.1E-07 3.50 1.34E-05 1.28E-04 

GOTERM_MF_FAT GO:0008233~peptidase activity 23 17.8 2.7E-07 3.33 1.63E-05 3.09E-04 

GOTERM_BP_FAT GO:0006508~proteolysis 23 17.8 1.2E-06 2.98 1.67E-04 0.001 

GOTERM_MF_FAT GO:0008236~serine-type peptidase activity 14 10.9 9.1E-05 3.55 3.65E-03 0.104 

GOTERM_MF_FAT GO:0017171~serine hydrolase activity 14 10.9 9.1E-05 3.55 3.65E-03 0.104 

SMART SM00020:Tryp_SPc 10 7.8 3.7E-04 4.12 1.01E-02 0.310 

INTERPRO IPR001314:Peptidase S1A, chymotrypsin 10 7.8 4.8E-04 4.28 4.28E-02 0.594 

INTERPRO IPR018114:Peptidase S1/S6, chymotrypsin/Hap, active site 9 7.0 8.4E-04 4.46 4.92E-02 1.026 

INTERPRO IPR001254:Peptidase S1 and S6, chymotrypsin/Hap 10 7.8 2.5E-03 3.39 1.06E-01 3.019 

GOTERM_MF_FAT GO:0004252~serine-type endopeptidase activity 10 7.8 8.9E-03 2.73 1.44E-01 9.803 

SP_PIR_KEYWORDS Protease 8 6.2 1.1E-02 3.24 3.85E-01 10.00 

GOTERM_MF_FAT GO:0004175~endopeptidase activity 11 8.5 2.9E-02 2.12 3.00E-01 28.73 

SP_PIR_KEYWORDS Serine protease 4 3.1 1.4E-01 3.05 7.30E-01 75.74 

SP_PIR_KEYWORDS hydrolase 6 4.7 4.2E-01 1.39 9.29E-01 99.42 

Annotation Cluster 2 Enrichment Score: 2.5 

Category Term Count % PValue 

Fold 

Enrichment Benjamini FDR 

INTERPRO 

IPR003146:Proteinase inhibitor, carboxypeptidase 

propeptide 4 3.1 7.4E-05 44.09 1.32E-02 0.09 

GOTERM_MF_FAT GO:0004180~carboxypeptidase activity 5 3.9 2.0E-04 16.28 6.02E-03 0.23 

GOTERM_MF_FAT GO:0008237~metallopeptidase activity 8 6.2 4.5E-04 5.60 1.09E-02 0.52 

GOTERM_MF_FAT GO:0008238~exopeptidase activity 5 3.9 3.7E-03 7.64 7.20E-02 4.17 

SMART SM00631:Zn_pept 3 2.3 1.1E-02 17.85 1.41E-01 8.90 
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INTERPRO IPR000834:Peptidase M14, carboxypeptidase A 3 2.3 1.7E-02 14.70 4.03E-01 19.02 

GOTERM_MF_FAT GO:0004181~metallocarboxypeptidase activity 3 2.3 2.0E-02 13.22 2.68E-01 21.08 

GOTERM_MF_FAT GO:0008235~metalloexopeptidase activity 3 2.3 5.5E-02 7.75 4.63E-01 47.84 

Annotation Cluster 3 Enrichment Score: 0.9 

Category Term Count % PValue 

Fold 

Enrichment Benjamini FDR 

GOTERM_MF_FAT GO:0009055~electron carrier activity 7 5.4 2.4E-02 3.07 2.78E-01 24.32 

SP_PIR_KEYWORDS metal-binding 10 7.8 5.0E-02 2.07 6.66E-01 37.79 

INTERPRO IPR017972:Cytochrome P450, conserved site 4 3.1 5.7E-02 4.52 7.81E-01 51.51 

INTERPRO IPR017973:Cytochrome P450, C-terminal region 4 3.1 5.9E-02 4.46 7.46E-01 52.63 

INTERPRO IPR001128:Cytochrome P450 4 3.1 7.8E-02 3.96 8.05E-01 63.29 

SP_PIR_KEYWORDS heme 4 3.1 8.5E-02 3.83 7.19E-01 56.14 

SP_PIR_KEYWORDS iron 4 3.1 1.5E-01 2.97 6.85E-01 77.71 

SP_PIR_KEYWORDS oxidoreductase 5 3.9 1.5E-01 2.40 6.39E-01 78.60 

COG_ONTOLOGY 

Secondary metabolites biosynthesis, transport, and 

catabolism 4 3.1 1.7E-01 2.62 5.64E-01 65.41 

GOTERM_BP_FAT GO:0055114~oxidation reduction 7 5.4 1.8E-01 1.81 1.00E+00 89.73 

INTERPRO IPR002401:Cytochrome P450, E-class, group I 3 2.3 1.9E-01 3.67 9.80E-01 92.93 

SP_PIR_KEYWORDS Monooxygenase 3 2.3 2.0E-01 3.61 6.96E-01 87.28 

GOTERM_MF_FAT GO:0020037~heme binding 4 3.1 2.4E-01 2.32 9.07E-01 95.74 

GOTERM_MF_FAT GO:0046906~tetrapyrrole binding 4 3.1 2.4E-01 2.32 9.07E-01 95.74 

GOTERM_MF_FAT GO:0005506~iron ion binding 5 3.9 2.5E-01 1.93 9.02E-01 96.37 

Appendix 9.10: Results list from DAVID functional c lustering analysis for the 144 significantly up-reg ulated entities.  
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Annotation Cluster 1 Enrichment Score: 2.9 

Category Term Count % PValue 

Fold 

Enrichment Benjamini FDR 

GOTERM_MF_FAT GO:0020037~heme binding 9 7.89 1.78E-05 7.44 1.97E-03 2.01E-02 

GOTERM_MF_FAT GO:0046906~tetrapyrrole binding 9 7.89 1.78E-05 7.44 1.97E-03 2.01E-02 

INTERPRO IPR001128:Cytochrome P450 8 7.02 2.51E-05 9.04 4.33E-03 3.07E-02 

GOTERM_MF_FAT GO:0005506~iron ion binding 10 8.77 5.60E-05 5.43 3.11E-03 6.34E-02 

INTERPRO IPR002401:Cytochrome P450, E-class, group I 7 6.14 6.47E-05 9.94 5.58E-03 7.91E-02 

SP_PIR_KEYWORDS Monooxygenase 6 5.26 5.04E-04 9.02 2.05E-02 4.63E-01 

INTERPRO IPR017972:Cytochrome P450, conserved site 6 5.26 8.90E-04 7.91 5.00E-02 1.08 

GOTERM_MF_FAT GO:0009055~electron carrier activity 8 7.02 9.00E-04 4.92 3.28E-02 1.01 

INTERPRO IPR017973:Cytochrome P450, C-terminal region 6 5.26 9.39E-04 7.82 3.98E-02 1.14 

COG_ONTOLOGY 

Secondary metabolites biosynthesis, transport, and 

catabolism 8 7.02 1.05E-03 4.32 0.01 0.60 

SP_PIR_KEYWORDS heme 6 5.26 1.45E-03 7.14 0.03 1.33 

SP_PIR_KEYWORDS oxidoreductase 8 7.02 1.45E-03 4.71 0.02 1.33 

GOTERM_BP_FAT GO:0055114~oxidation reduction 9 7.89 3.75E-03 3.33 0.61 4.77 

SP_PIR_KEYWORDS iron 6 5.26 4.49E-03 5.51 0.05 4.06 

SP_PIR_KEYWORDS metal-binding 9 7.89 5.22E-02 2.18 0.36 38.92 

GOTERM_MF_FAT GO:0043169~cation binding 19 16.67 5.34E-02 1.48 0.78 46.25 

GOTERM_MF_FAT GO:0043167~ion binding 19 16.67 5.34E-02 1.48 0.78 46.25 

GOTERM_MF_FAT GO:0046914~transition metal ion binding 15 13.16 9.07E-02 1.50 0.78 65.91 

GOTERM_MF_FAT GO:0046872~metal ion binding 17 14.91 1.22E-01 1.38 0.84 77.10 

Appendix 9.11: Results list from DAVID functional c lustering analysis for the 137 significantly down-r egulated entities.  

 


