
Hom
y Skein TheoryofReversed String Satellites
Thesis submitted in a

ordan
ewith the requirements of theUniversity of Liverpoolfor the degree ofDo
tor in PhilosophybyRi
hard John HadjiDe
ember 2003



Ri
hard John HadjiHom
y Skein Theory of Reversed String SatellitesAbstra
tThis thesis aims to use Hom
y skein theory to give a geometri
 interpre-tation of useful and interesting algebrai
 obje
ts. We 
onsider tangles andthe skein of the annulus. Previous work has generally been restri
ted to 
on-sidering strings in tangles or around the annulus travelling in one dire
tion.Our extension allows strings travelling in both dire
tions. We extend manyof the existing results into this arena, at the same time as developing somenew ideas.
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Introdu
tionIn this work we aim to extend the understanding of Hom
y skein theory, inparti
ular when trying to give a geometri
 interpretation of useful and inter-esting algebrai
 obje
ts. Mu
h work that pre
edes this thesis has 
onsideredthe skein theoreti
 view of algebrai
 obje
ts su
h as the He
ke algebra, in-
luding [Jon87, MT90, Mor93, Ais96, AM98, Luk01℄ and many more besides.Our extension begins with an algebra Hn;p in whi
h strings in the ge-ometri
 viewpoint 
an be 
onsidered in both dire
tions. We now o�er thehighlights from ea
h 
hapter.The overall aim of this work is to develop some new 
on
epts at thesame time as bringing together mu
h re
ent work that has previously onlyappeared spread a
ross the literature.|The �rst 
hapter gives the ne
essary ingredients for the remainder ofthe work. The 
on
ept of Hom
y skein theory is introdu
ed. The Hom
ypolynomial is �rst de�ned and is then used to give a general de�nition of aHom
y skein.Before giving spe
i�
 examples of Hom
y skeins, a des
ription of someuseful skein maps is given, followed by a slight diversion into de�ning the
on
epts and terminology asso
iated with Young diagrams.Finally four Hom
y skeins are de�ned. Firstly the skein of a re
tanglewith n input and n output points. This is known to be isomorphi
 to theHe
ke algebra Hn.An extension of this is then reintrodu
ed from a geometri
 viewpoint(initially given by [MW, Had℄). This algebra is denoted Hn;p and 
omes from
onsidering the skein of a re
tangle as with Hn, but this time it should haven input and p output points on one side and n output and p input points onthe opposite side. 1



We then give two di�erent skeins of the annulus. The �rst is denoted Cand is broken down into subspa
es whi
h are de�ned by wiring the previoustwo skeins, Hn and Hn;p, into the annulus.The se
ond is a lesser known skein, denoted A. It arises from 
onsideringthe annulus with an input point spe
i�ed on the inner boundary 
omponentand an output point spe
i�ed on the outer boundary 
omponent. It is iso-morphi
 to a skein used by Kawagoe [Kaw98℄ with the input and output pointon the same boundary 
omponent. It has been adapted more re
ently as itlends itself well to providing elegant proofs through its unexpe
ted algebrai
properties. Although it is linearly isomorphi
 to the skein of Kawagoe, it isthis more re
ent adaptation that has meant it 
ould be 
onsidered as an al-gebra. It is the 
ommutative algebrai
 properties that make the 
al
ulationswe rely upon later in Chapter 4 possible. As we shall see, elements of theskein are used in determinants, see also in [Mor02b, Luk01℄.Chapter 2 de�nes the Murphy operators. The original 
ontext for su
hobje
ts was the group algebra C [Sn ℄ of the symmetri
 group and is de�nedin terms of sums of transpositions. This 
on
ept was extended to the He
kealgebra Hn by Dipper and James [DJ87℄. We o�er a survey of some resultsinvolving these elements and the 
entre of Hn, mainly by Ram and Morton.This in
ludes a ni
e skein theoreti
 representation of the Murphy operatorsand some interesting 
onne
tions between these elements, the 
entre of Hnand the symmetri
 fun
tions (see [Ma
79℄ for a 
omplete survey of symmetri
fun
tions).This 
hapter ends with an introdu
tion of a potential set of Murphyoperators for the algebra Hn;p. We also attempt to 
onne
t these to 
entralelements of Hn;p. Following the pre
edent of the Hn 
ase, we �nd thereis a path from these elements to a 
ertain type of symmetri
 fun
tion, theso-
alled supersymmetri
 fun
tions.The third 
hapter des
ribes the results of work by the author with Morton.These results have now been published in [MH02℄. The work of Chapter 2is used to give an understanding of two natural linear maps de�ned on theskein of the annulus C en
ir
ling it with a loop on
e.This work has arisen as a result of a paper by T.-H. Chan [Cha00℄. ThereChan dis
usses the Hom
y polynomial of reverse string parallels of the Hopflink. In this 
hapter we see that the 
al
ulations made by Chan 
an be madevery readily using our te
hniques. An essential ingredient to our te
hniquesis showing that these linear maps have a set of distin
t eigenvalues, answeringa question raised by Chan.We end this 
hapter by using our results to 
al
ulate the Hom
y poly-2



nomials of some spe
i�
 reverse string satellites of the Hopf link. We alsoobserve that this approa
h is still in
omplete due to a minimal knowledge ofthe elements Q�;� 2 C.The intention of Chapter 4 is to �ll a gap in the knowledge as noted inChapter 3. This gap is the minimal knowledge of the elements Q�;� in thefull skein C. The �nal goal is to give an expli
it formula for Q�;� in terms ofthe determinant of simpler skein elements.In trying to a
hieve this goal we are required to take a diversion throughthe skein A whilst introdu
ing a new type of matrix whose entries follow aspe
i�
 pattern and 
an be manipulated in a very pres
ribed way.After mu
h work on these matri
es we draw together the te
hniqueslearned and results dis
overed to give the derivation of a matrix whose de-terminant will yield an expli
it formula for the Q�;�.The �nal 
hapter, Chapter 5, aims to �nish this work by giving a briefsurvey of some work of other authors that relates to the general themes dis-
ussed here. Although the overlap between our work and that to be dis
ussedin this 
hapter has not been fully explored, it is felt by the author that su
han exploration has potential for further study.It is hoped by the author that these avenues may be given some thoughtand their potential explored.

3



Chapter 1Skein TheoryThe purpose of this 
hapter is to introdu
e the basi
 
onstru
tions that willbe 
entral to the majority of the work to follow.1.1 The Hom
y polynomialThe Hom
y polynomial is a two-variable isotopy invariant of oriented linksand, sin
e its dis
overy, has been the subje
t of mu
h study. It was �rstdes
ribed by several groups; [FYH+85, PT87℄. Its dis
overy followed the
onstru
tion of a simpler polynomial invariant V , the so-
alled Jones poly-nomial [Jon85℄, found using von Neumann algebras and braid groups.Various versions of the Hom
y polynomial appear in the literature. Theframed version to the fore in this work, denoted for a link L, P (L), is deter-mined by the Hom
y polynomial skein relations:P (L+)� P (L�) = (s� s�1)P (L0)and P (T+) = v�1P (T0);where L+, L� and L0 are oriented links whi
h di�er only in a dis
 as shownin Figure 1.1; and T+ and T0 di�er only in a dis
 as shown in Figure 1.2.The se
ond of the skein relations given above allows one to take a

ountof the writhe of the link.We normalize the Hom
y polynomial by setting P (;), where ; is theempty link, equal to 1. Also, a dire
t 
onsequen
e of the skein relations isthat P (L t
) = v�1 � vs� s�1 P (L)where Lt
 is the link L with a disjointly embedded null-homotopi
 orientedloop. 4



PSfrag repla
ements L+ L� L0Figure 1.1: L+, L� and L0 di�er only as shown.
PSfrag repla
ements T+ T0Figure 1.2: T+ and T0 di�er only as shown.Remark. (i) The Hom
y polynomial of the oriented m-
omponent unlink,Um = tmi=1
, is P (Um) = Æm, where Æ = v�1�vs�s�1 .Remark. (ii) If L� is the re
e
tion of a link L, thenP (L�)(s; v) = P (L)(s�1; v�1):1.2 Hom
y skein theorySkein theory was �rst introdu
ed by J.H. Conway, a Liverpool born math-emati
ian, [Con70℄. Skein theory 
an be 
onsidered from many viewpoints;here we are interested in the skein theory asso
iated to the Hom
y polyno-mial.Following the des
ription of the Hom
y polynomial given above, the Hom-
y skein relations are � = (s� s�1)and = v�1 :5



Now let F be a planar surfa
e with a �xed (possibly empty) set of inputand output points on the boundary. We allow the surfa
e to have holes. We
onsider diagrams in F whi
h 
onsist of oriented ar
s joining input pointsto output points and oriented 
losed 
urves, up to Reidemeister moves RIIand RIII [Rei32℄ (reminders of all three Reidemeister moves are shown inFigure 1.3).
R

R

R

I

II

IIIFigure 1.3: Reidemeister moves RI , RII and RIIIWithin a diagram in F , the strands at a 
rossing point are distinguishedin the 
onventional way as an over
rossing and an under
rossing. Clearly,if the surfa
e F is to have input and output points there must be an equalnumber of ea
h.Similarly to the Hom
y polynomial skein relations, it is a 
onsequen
ethat for a diagram D, D t
 = v�1�vs�s�1D.The Hom
y skein, S(F ), of a surfa
e F is then de�ned to be �-linear
ombinations of diagrams in F , modulo the Hom
y skein relations givenabove, for a suitable 
oeÆ
ient ring �.The 
oeÆ
ient ring 
an be taken as � = Z[v�1; s�1℄ with monomials infsk � s�k : k � 0g admitted as denominators.We noti
e the empty diagram is only admitted when F has no boundary6



points spe
i�ed. The relation whi
h is given above as a 
onsequen
e of theHom
y skein relations allows the removal of an oriented nul-homotopi
 
losed
urve without 
rossings, at the expense of multipli
ation by the s
alar Æ =v�1�vs�s�1 . This relation is a 
onsequen
e of the main relations ex
ept where theremoval of the 
urve leaves the empty diagram.1.3 Skein maps1.3.1 Wiring mapsWe 
an map the skein of a surfa
e, F , into the skein of another, F 0 say. Wedo this through a 
onstru
tion 
alled a wiring. A wiring w of F into F 0 isa 
hoi
e of in
lusion of F into F 0 and a 
hoi
e of a �xed diagram of 
urvesand ar
s in F 0nF . The boundary of this �xed diagram is the union of thedistinguished set of F and F 0. Examples of wiring will be essential in someof the work to follow.1.3.2 A mirror mapWe de�ne a mirror map, � : S(F )! S(F 0)indu
ed by swit
hing all 
rossings in the diagram, 
oupled with inverting vand s in �.1.3.3 180Æ rotationThis skein map is indu
ed by a 180Æ rotation of diagrams in F about thehorizontal axis A, as shown in Figure 1.4. This is denoted � : S(F )! S(F ).There is no e�e
t on s and v in �.PSfrag repla
ements FAFigure 1.4: The involution � rotates F about the axis A.
7



1.3.4 An evaluation mapThere is also an evaluation map,h i : S(F )! �:This is obtained by wiring F into the plane by some pres
ribed wiring map,in parti
ular, if F has no boundary points then just \forget" its boundary.Then for an element X 2 S(F ), hXi is just the framed Hom
y polynomialof X after wiring into the plane.1.3.5 A 
losure mapGiven a surfa
e F with a non-empty set of boundary points, we 
an wireelementsX 2 S(F ) into the skein of another surfa
e F 0 without any boundarypoints using a 
losure map. Su
h a map would have ar
s in F 0nF joining, insome pres
ribed way, the input points to the output points of F .1.4 Young diagramsWe now take a temporary diversion from skein theory to dis
uss the wellstudied topi
 of Young diagrams. Only a brief des
ription will be given herebut a fuller a

ount appears in a great many texts su
h as [Wey46, FH91,Jon90℄. Here we shall 
on
entrate only on the details essential to our studies.A Young diagram des
ribes both a partition and a graphi
al represen-tation of the partition. Let � be a Young diagram representing the integern. Our � is then an array of square 
ells (ea
h of equal size) with l rows.We denote the partition � = (�1; �2; : : : ; �i; : : : ; �l) su
h that there are �i
ells in the ith row enumerated from top to bottom, with Pli=1 �i = n and�1 � �2 � � � � � �i � �l.For n = 0 the Young diagram (0) is the empty diagram ;.The number of 
ells in a Young diagram � is denoted by j�j and the lengthl(�) = l is the number of non-zero rows. The 
onjugate of � is denoted �_and is the transposition of � su
h that the rows of � are the 
olumns of �_.In other word, this is equivalent to re
e
ting in the leading diagonal. Wehave (�_)_ = � for any Young diagram �.We also assign a 
o-ordinate system to ea
h Young diagram. The jth 
ellin the ith row reading from left-to-right, top-to-bottom, is denoted (i; j) 2 �,and the 
ontent 
n(
) of the 
ell 
 = (i; j) 2 � is de�ned to be j � i. Wehave that the hook length of a 
ell (i; j) 2 � is de�ned to be hl(i; j) =�i � i + �_j � j + 1. 8



The number of partitions of a natural number n (equivalently, the num-ber of Young diagrams with n 
ells) shall be denoted �(n). (The standardnotation used for the number �(n) is p(n); our alternative notation has been
hosen to avoid a 
lash with notation required later in this work.) Finally,the standard tableau T (�) is a Young diagram for � with the numbers 1 to nassigned to ea
h 
ell, su
h that the numbers in
rease from left-to-right andfrom top to bottom.1.5 The He
ke algebraThe He
ke algebra, Hn of type An�1 is a deformed version of the group alge-bra of the symmetri
 group Sn. It has been well studied from many di�erentviewpoints, and hen
e has many di�erent but equivalent in
arnations. It willbe most 
onveniently thought of in this 
ontext as having expli
it presenta-tionHn = *�i : i = 1; : : : ; n� 1 ������ �i�j = �j�i : ji� jj > 1;�i�i+1�i = �i+1�i�i+1 : 1 � i < n� 1;�i � ��1i = s� s�1: + :We dis
uss how to translate from this variant into some of its isomorphi
variants at the end of this se
tion.Now 
onsider the following geometri
 s
enario. Consider a surfa
e I�I, are
tangle, with n input points spe
i�ed a
ross the bottom and n output pointsa
ross the top. Denote this surfa
e F = Rnn, as shown diagrammati
ally inFigure 1.5.
PSfrag repla
ements nFigure 1.5: The surfa
e Rnn.Diagrams in F then 
onsist of oriented ar
s joining the inputs to the9



outputs and oriented 
losed 
urves, up to Reidemeister moves II and III.Su
h diagrams in Rnn are known as n-tangles.Now 
onsider the skein S(Rnn), �-linear 
ombinations of n-tangles in Rnn,modulo the Hom
y skein relations.Composition of diagrams D1 and D2 in Rnn is a
hieved by sta
king D2above D1. This 
omposition indu
es a produ
t whi
h makes S(Rnn) intoan algebra. It has a linear basis of n! elements and its generators are theelementary braids �i =where the 
rossing o

urs between the ith and i+1th string, for i = 1; : : : ; n�1.It is shown in [MT90℄ that the skein theoreti
 algebra S(Rnn) with 
oeÆ-
ient ring extended to in
lude v�1, is isomorphi
 to the He
ke algebra, Hn, oftype An�1. We noti
e that the variable v does not appear in the presentationof the abstra
t algebra Hn. It is present when following a geometri
 routeto allow one to redu
e general tangles to linear 
ombinations of braids, bymeans of the Hom
y skein relations. The variable v 
omes into play in deal-ing with 
urls using the se
ond Hom
y skein relation and in handling disjoint
losed 
urves. In other words it is required to keep tra
k of the framing ofthe diagrams.From this point we shall, perhaps rather lazily, 
onsider S(Rnn) and Hnsynonymously. The juxtaposition of putting tangles S 2 Hn to the left ofT 2 Hm is denoted S 
 T and is an element of Hn 
Hm ,! Hn+m.In the spe
ial 
ase s� s�1 = 0, the He
ke algebra redu
es to C [Sn ℄ with�i be
oming the transposition (i i+ 1 ). In this 
ase there is no possibilityof any 
urls being present hen
e the v is not required in the presentation.As said previously, there are di�erent isomorphi
 variants of the He
kealgebra. We will now des
ribe two others and show how to translate betweenour standard de�nition and these variants.One variant in
ludes an extra variable x whose fun
tion it to keep tra
kof the writhe of a diagram. We denote this variant Hn(x; z) and obtain Hnfrom it by setting x = 1 and z = s� s�1. The quadrati
 relation for Hn(x; z)in terms of generators �i is then x�1�i � x��1i = z.A further variant is seen in many algebrai
 texts. We shall denote thisvariant Hn(q) as it is usually seen to in
lude the indeterminate q. Thequadrati
 relation is usually given with roots q and �1. With generators�i the quadrati
 relation is � 2i = (q � 1)�i + q.The three variants of the He
ke algebra given here are all isomorphi
,10



related by the isomorphisms given below:Hn �= Hn(x; z) �= Hn(q)�i 7! x�1�i�i 7! s�1x�i;where q, z and s are related by z = s� s�1 and q = s2.1.5.1 Quasi-idempotent elements in HnThe group algebra C [Sn ℄ has idempotent elements whi
h are des
ribed bythe 
lassi
al Young symmetrizers. For a Young diagram � its Young sym-metrizer is the produ
t of the sum of permutations whi
h preserve the rowsof the standard tableau T (�) and the alternating sum of permutations whi
hpreserve the 
olumns.It is then reasonable to suppose that 
orresponding elements exist in Hnrepla
ing permutations by suitably weighted positive permutation braids.Jones [Jon87℄ des
ribes the two idempotents whi
h 
orrespond to the singlerow and single 
olumn Young diagrams, with other authors giving des
rip-tions for general �, in
luding Gyoja [Gyo86℄.Given the Gyoja 
onstru
tion as a starting point, a pleasing skein pi
turebased on the Young diagram � was given by Aiston and Morton [Ais96,AM98℄. With this it was possible to see many pleasing properties for theseidempotent elements.For Hn, we denote these idempotent elements e� with j�j = n. Before we
ontinue we brie
y des
ribe the basi
 pro
ess followed in 
onstru
ting su
helements. However, for a full a

ount of this the interested reader shouldstill refer to [AM98℄ or [Ais96℄. We deliberately avoid any te
hni
alities hereto avoid repetition later when we 
onstru
t single row and single 
olumnidempotents in Se
tion 2.3. Instead we shall 
on
entrate on the rather elegantpi
torial view of the e� and some of the basi
 properties.Re
all that the quadrati
 relation for the presentation of the He
ke algebrais �i � ��1i = s� s�1:This 
an be fa
torised to (�i� a)(�i� b) = 0 with a = �s�1 and b = s. Nowde�ne an = X�2Sn(�a)�l(�)w� and bn = X�2Sn(�b)�l(�)w�;where l(�) = wr(w�), the writhe of the braid w�.Now for ea
h � = (�1; �2; : : : ; �k) we want to de�ne elements e�. Firstwe give a three-dimensional pi
ture of the elements, referring to it now as11



E�. Imagine the strings of the tangle lined up to pass through the 
entresof templates of the Young diagram � at its top and bottom. At its inputpoints, the strings are grouped together with linear 
ombinations aj of braidswhere the rows have j 
ells. At the output points, the strings are groupedwith linear 
ombinations of bj of braids where the 
olumns have j 
ells.To make this explanation 
lear we now use an expli
it example. Considerthe Young diagram � = (4; 3; 1; 1). We then have that E� is the tangle shownin Figure 1.6.
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Figure 1.6: The 3-dimensional representation of E� with � = (4; 3; 1; 1).Now how do we translate from this three-dimensional pi
ture to our usual
at interpretation of tangles? From this three-dimensional pi
ture we 
attenit out into two dimensions, ensuring that the resulting 
rossings that aremade are all positive.A main feature of these elements is 
aptured in the following theorem.Theorem 1.1 (Aiston-Morton [AM98℄). Let � and � be Young diagramswith n 
ells. Then e�e� = 0 for � 6= �;e2� = ��e� for some s
alar ��:Thus distin
t Young diagrams determine orthogonal elements, while ea
h e�is a quasi-idempotent element of Hn.12



More information on these interesting elements will emerge during the
ourse of this work. As a taster, we will be parti
ularly interested in thee�e
t of 
entral elements of Hn on the e�. Given elements 
 2 Z(Hn), wewill want to �nd the values of 
� where 
e� = 
�e�.There are 
learly �(n) of these elements in Hn as they 
oin
ide with thenumber of partitions of n.1.6 Hn;p | A generalized He
ke algebra?We now 
onsider a family of extended variants of the He
ke algebras dis
ussedpreviously.Let us 
onsider a surfa
e I � I, a re
tangle, with n input and p outputpoints spe
i�ed a
ross the top, and mat
hing n output and p input pointsa
ross the bottom. Denote the surfa
e F = Rn;pn;p, as shown in Figure 1.7.
PSfrag repla
ements n pFigure 1.7: The surfa
e Rn;pn;p.As before, diagrams in F 
onsist of oriented ar
s joining the inputs tothe outputs and oriented 
losed 
urves, up to Reidemeister moves II and III.Su
h diagrams in Rn;pn;p are to be known as (n; p)-tangles.Write Hn;p for the skein S(Rn;pn;p). There is a natural algebra stru
tureon Hn;p indu
ed by pla
ing one (n; p)-tangle above the other. When we setn = 0 (or p = 0), we noti
e that the resulting algebra is isomorphi
 to theHe
ke algebra Hp (or Hn respe
tively).The algebra Hn;p has been studied by Kosuda and Murakami, [KM93℄, inthe 
ontext of sl(N)q endomorphisms of the module V 
n 
 �V 
p, where V isthe fundamental N -dimensional module.The author of this work has also studied this algebra previously [Had℄.This in
luded des
ribing the algebra geometri
ally as above and �nding anexpli
it skein-theoreti
 basis for it. We brie
y dis
uss some of the details13



from [Had℄, with further details about Hn;p being revealed in subsequent
hapters of this work as they are required.Firstly, one should observe that there is a linear isomorphism of Hn;pwith H(n+p), however this is not in general an algebra isomorphism. Thislinear isomorphism is a wiring whi
h does nothing to the p positively orientedstrings and turns the n negatively oriented strings around into positivelyoriented strings. Clearly there is an element of 
hoi
e in this wiring.The algebraHn;p is generated by the elements �i, for �(n�1) � i � p�1,where the skein theoreti
 representation of the elements f�i : �(n�1) � i <0g, �0 and f�i : 0 < i � p � 1g are shown in Figure 1.8 (a), (b) and (
)respe
tively. Also, Hn;p has a linear basis of (n + p)! elements.
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Figure 1.8: (a)f�i : �(n� 1) � i < 0g; (b)�0; (
)f�i : 0 < i � p� 1g.
1.6.1 New elements from oldUsing elements of Hn we 
an immediately �nd elements of Hn;p. Consider�rst the image ofHn under the involution �. Clearly then �(Hn)
Hp ,! Hn;p.Given the Gyoja-Aiston-Morton elements e� 2 Hn des
ribed above, we
an �nd an obvious set of idempotent elements in Hn;p. These elements are14



to be denoted e0(�;�) := e(�)� 
 e(+)� formed by the juxtaposition of e� ande� with appropriate orientations and j�j = n and j�j = p. There are the�(n)� �(p) of these.1.7 Two skeins of the annulusIn this se
tion we de�ne two skeins of the annulus. The �rst is very well-known and has re
eived mu
h attention from several authors. The se
ondhowever has only re
ently begun to re
eive the attention it deserves.1.7.1 The skein CLet F be the annulus, F = S1 � I. Then S(S1 � I) is the Hom
y skein ofthe annulus. We denote this by C. This skein is dis
ussed in some detail in[Mor93℄ and originally in 1988 in the preprint of [Tur97℄.We shall represent an element X 2 C diagrammati
ally as in Figure 1.9.PSfrag repla
ements XFigure 1.9: An element X 2 C.The skein C has a produ
t indu
ed by pla
ing one annulus outside another.This de�nes a bilinear produ
t under whi
h C be
omes an algebra. Thisalgebra is 
learly 
ommutative (lift the inner annulus up and stret
h it sothe outer one will �t inside it).Turaev [Tur97℄ showed that C is freely generated as an algebra by theelements fAm; m 2 Zgwhere Am is represented by the skein theoreti
 elementshown in Figure 1.10. The sign of the indexm indi
ates the orientation of the
urve. A positive m denotes 
ounter
lo
kwise orientation and a negative ma 
lo
kwise orientation. The element A0 is the identity element, representedby the empty diagram.Subspa
es of CThe algebra C 
an be thought of as the produ
t of subalgebras C+ and C�whi
h are generated by fAm : m 2 Z; m � 0g and fAm : m 2 Z; m � 0grespe
tively. 15
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Figure 1.10: An element Am 2 C, for m 2 Z.We now take the surfa
e F = Rnn and wire it into the annulus, F 0 = S1�Ias shown in Figure 1.11.
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Figure 1.11: Rnn wired into S1 � I.The resulting skein is a linear subspa
e of C+ whi
h we shall 
all C(n).This subspa
e 
an be thought of as the image of Hn under the 
losure map^ : Hn ! C(n). For an n-tangle T 2 Hn, we denote its image under this
losure map into C(n) as ^(T ) or T̂ .The subspa
e C(n) is then spanned by monomials in fAmg, with m 2 Z+,of total weight n, where wt(Am) = m. It is 
lear that this spanning set
onsists of �(n) elements, the number of partitions of n. C+ is then gradedas an algebra C+ = 1Mn=0 C(n):16



We 
an now extend our view of the skein of the annulus to in
lude stringsoriented in both dire
tions. We do this through 
onsidering the 
losure oforiented (n; p)-tangles in the annulus. Equivalently, this is a
hieved throughwiring the surfa
e Rn;pn;p into the annulus S1� I, analagous to the way shownin Figure 1.11.We denote the algebra formed through 
onsidering the image of Hn;punder the 
losure map by C(n;p) � C.Unlike the 
ase for C(n) where C(n) \ C(n�1) = ;, we have thatC(n;p) � C(n�1;p�1) � C(n�2;p�2) � � � � � � C(n�p;0) if min(n; p) = p,C(0;p�n) if min(n; p) = n,however, it should be noted that for ea
h C(i;j) in the sequen
e above, thedi�eren
e i� j remains 
onstant throughout. AlsoC(m;0) �= C(m)(�)and C(0;m) �= C(m)(+) ;where the (�) or (+) subs
ripts indi
ate the dire
tion of the strings aroundthe 
entre of the annulus. However, we do have that C(n1;p1) \ C(n2;p2) = ; ifn1 � p1 6= n2 � p2.We �nd that C(n;p) is spanned by suitably weighted monomials infA�n; : : : ; A�1; A0; A1; : : : ; Apg:We 
an see that C(n;p) = �C(n)(�) � C(p)(+)� + C(n�1;p�1):The spanning set of C(n;p) then 
onsists of �(n; p) elements where�(n; p) := kXj=0 �(n� j)�(p� j)(= �(n)�(p) + � � �+ �(n� k)�(p� k));where k = min(n; p).Similar to the grading of C+ with the C(n) we 
an think of the full skeinC in terms of the C(n;p)C = 1Mk=�1 [n;p�0�C(n;p) : n� p = k	! :All that is left for us to do now is to use an example to illustrate whatwe meant by C(n;p) being spanned by \suitably weighted" monomials in therange fAi : �n � i � pg. 17



Example. Consider when n = 4 and p = 2. The spanning set of C(4;2)
onsists of 15 (= 5 � 2 + 3 � 1 + 2 � 1) elements, sin
eC(4;2) = �C(4)(�) � C(2)(+)� + �C(3)(�) � C(1)(+)� + �C(2)(�) � C(0)(+)� :The spanning set is therefore�A�4A2; A�4A21; A�3A�1A2; A�3A�1A21; A2�2A2; A2�2A21; A�2A2�1A2;A�2A2�1A21; A4�1A2; A4�1A21; A�3A1; A�2A�1A1; A3�1A1; A�2; A2�1	where, for example, the element A�3A1 is obtained from 
losing an elementin H4;2 as shown in Figure 1.12.
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Figure 1.12: The generator A�3A1.1.7.2 The skein AConsider again the annulus S1� I. Let the outer boundary 
urve be C1 andthe inner boundary 
urve C2. Now pi
k points 
1 2 C1 and 
2 2 C2 su
hthat 
1 is an output point and 
2 is an input point, and denote these by 
out1and 
in2 respe
tively.Let F be the surfa
e S1 � I with an asso
iated set of boundary pointsf
out1 ; 
in2 g as des
ribed above. Then S(F ) = S(S1 � I; f
out1 ; 
in2 g) is the18



Hom
y skein of the surfa
e represented diagramati
ally in Figure 1.13. Weshall denote this skein by A.
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Figure 1.13: The annulus with two boundary points.Similar to C, the skein A be
omes an algebra under the produ
t indu
edby pla
ing one annulus outside another. The identity element this time
annot be the empty diagram due to the points spe
i�ed on the boundary.It is the element e 2 A represented by the diagram shown in Figure 1.14,obtained by joining the two boundary points by a single straight ar
.
Figure 1.14: e 2 A.A further element of A, also with no 
rossings, we shall 
all a 2 A andrepresent it by the diagram shown in Figure 1.15. From this, powers, amfor m 2 Z, 
an be 
onstru
ted, giving for example the elements shown inFigure 1.16.Another property that A has in 
ommon with C isTheorem 1.2 (Morton). As an algebra, A is 
ommutative.However, unlike the 
ase of C this is not immediately obvious. After theintrodu
tion of a bit more te
hnology, we o�er a proof from [Mor02b℄.Remark. A skein whi
h is isomorphi
 to A is used by Kawagoe [Kaw98℄ andother authors. Their version is based on the annulus with input and output19



Figure 1.15: a 2 A.
Figure 1.16: a�1 and a2 2 A.points both on the same boundary 
omponent. More re
ently its use hasbeen adopted by the author as its unexpe
ted algebrai
 properties allow forsome satisfyingly 
lean proofs. For more work on this interesting skein fromthis viewpoint, see also [Mor02b℄, and work by Luka
 [Luk01℄.We also have two bilinear produ
ts whi
h involve the skein A. These arel : C�A ! A and r : A�C ! A and are indu
ed by pla
ing an element of Crespe
tively under or over an element of A. For example, re
all that A1 2 Cis represented by a single 
ounter
lo
kwise loop, so this givesl(A1; e) = and r(e; A1) = :We now give the proof whi
h was promised above.Proof of Theorem 1.2 [Mor02b℄. Using standard skein theory te
hniques we
an represent any element of A as a linear 
ombination of tangles 
onsistingof a totally des
ending ar
 lying over a number of 
losed 
urves. This isa
hieved through ensuring that on traversing an ar
, ea
h time one en
ir
lesthe 
entre of the annulus it is passing below the part already traversed, andif not the skein relations 
an be used to 
hange 
rossings as required. Ea
h20



su
h tangle represents l(
m; am) = l(
m; e)am for some m and some 
m 2 C.The general element of A 
an then be written as a Laurent polynomialXm2Zl(
m; e)amin a, with 
oeÆ
ients in the 
ommutative subalgebra l(C; e) � A. Sin
e a
ommutes with l(C; e) it follows that any two elements of A 
ommute. �The subalgebras l(C; e) and r(e; C) are both isomorphi
, but they are notequal. We 
an use their di�eren
e to de�ne a sort of 
ommutator map[ ; e℄ : C ! Awhere for 
 2 C, [
; e℄ = l(
; e)� r(e; 
).Finally let us de�ne a type of 
losure map parti
ular to this skein A. Ourmap will take an element of A and make it an element of C by joining thetwo boundary points over the top of the annulus. We have� : A ! C
A 7! A :As we alluded to above, we shall not study the skeinA here independently,rather use it as a tool, 
apitalizing on its unexpe
ted algebrai
 properties.
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Chapter 2Murphy OperatorsHistori
ally, the Murphy operators have appeared in various arenas. Initiallythey were de�ned independently in the works of Ju
ys [Ju
71℄ and Murphy[Mur81℄ as 
ertain sums of transpositions giving elements of the group algebraC [Sn ℄ of the symmetri
 group.Remark. The �rst referen
e [Ju
71℄ appears in a then little known Lithuanianjournal of theoreti
al physi
s. As a result of this it was some time before its
ontent was generally known, hen
e [Mur81℄ was published independentlyby Murphy. As an a
knowledgement of this situation we will refer to thealgebrai
 obje
ts of interest as Ju
ys-Murphy elements.Let the Ju
ys-Murphy elements be de�ned by m(1) = 0 and:m(j) = j�1Xi=1 (i j) 2 C [Sn ℄; for j = 2; : : : ; n: (2.1)These elements have two well-known properties; �rstly they all 
ommutewith one-another, and also every symmetri
 polynomial in them 
an be shownto lie in the 
entre of the algebra, Z(C [Sn ℄).For example, m(3) = (1 3) + (2 3), m(4) = (1 4) + (2 4) + (3 4), andm(3)m(4) = (1 3)(1 4) + (1 3)(2 4) + (1 3)(3 4)+(2 3)(1 4) + (2 3)(2 4) + (2 3)(3 4)= (3 4)(1 3) + (2 4)(1 3) + (1 4)(1 3)+(1 4)(2 3) + (3 4)(2 3) + (2 4)(2 3)= m(4)m(3):
22



2.1 Murphy operators in the He
ke algebrasNow given that the He
ke algebra, Hn of type An�1 is a deformation of thegroup algebra C [Sn ℄ of the symmetri
 group, it would be a natural questionto ask if there exists a deformed analogue of the Ju
ys-Murphy elementsde�ned in (2.1).Su
h a de�nition is given by Dipper and James in [DJ87℄ using a simpledeformation of the transpositions. This deformation of the transpositions
orresponds geometri
ally to the positive permutation braid !(i j) 2 Hn fori < j shown in Figure 2.1, where positive permutation braids have all 
ross-ings positive.
PSfrag repla
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Figure 2.1: The positive transposition braid !(i j) 2 Hn.Remark. Positive permutation braids are �rst de�ned by Elrifai and Mortonin [EM94℄. They subsequently appear in many pla
es su
h as [Ais96, AM98,Mor02b℄.Before we de�ne these elements expli
itly, we make the following obser-vations. Again, these elements, denoted M(j) , all 
ommute, and also everysymmetri
 polynomial in them lie in the 
entre of Hn. Moreover, Dipper andJames showed that for generi
 values of the deformation parameter these a
-
ount for the whole of the 
entre. This was then extended by Mathas [Mat99℄to in
lude the previously omitted non-semisimple 
ase.Furthermore, Katriel, Abdessalam and Chakrabarti [KAC95℄ observedthe stronger result that in fa
t any 
entral element 
an be expressed as apolynomial in just the sum M =Pnj=1M(j) of the Murphy operators.Before moving on, we observe that Ram [Ram97℄ o�ers generalizationsof the Ju
ys-Murphy elements in other settings. He 
onsiders the arbitraryWeyl groups and He
ke algebras of types An, Bn, Dn and G2. He alsoobserves that the He
ke algebras of types F4, E6 and E7 are also within easyrea
h of the te
hniques he uses. 23



Now using the skein model forHn we �nd that there are elegant geometri
representations of the Murphy operators. The observations that follow inthis se
tion are due to the work of Ram [Ram97℄ and Morton [Mor02b℄. Thisskein theoreti
 viewpoint immediately fa
ilitates the proofs of the propertiesstated above.De�nition 1. The Murphy operator M(j) 2 Hn, j = 1; : : : ; n is de�ned byM(1) = 0 and M(j) = j�1Xi=1 !(i j): (2.2)These elements 
learly proje
t to the Ju
ys-Murphy elements m(j) 2C [Sn ℄, therefore (2.2) is the deformed analogue of (2.1).Proving that these elements possess the properties des
ribed above re-quire a bit of algebrai
 work. As noted above Ram [Ram97℄ and Morton[Mor02b℄ found geometri
 representations of the Murphy operators whi
hare easier to manipulate and indeed make 
ertain properties obvious withno work required. We observe that the sum of the Murphy operators, M ,de�ned above, 
an be written as:M = nXj=1 M(j) =Xi<j !(i j):Theorem 2.1 (Ram). The Murphy operator M(j) 
an be represented by asingle braid T (j), up to linear 
ombination with the identity.Theorem 2.2 (Morton). The sum M of the Murphy operators 
an be rep-resented in Hn by a single tangle T (n) , again up to linear 
ombination withthe identity.Before embarking on our journey through these elegant proofs, we requireone pie
e of new notation. Let the identity braid on l strings be denoted byIl for l � n and given a tangle T on n� l strings then we write T 
 Il 2 Hnfor the juxtaposition of T and the identity.Proof (of Theorem 2.1 [Ram97℄). Let T (j) be the element of Hn representedby the braid shown in Figure 2.2.Using the framed Hom
y skein relation� = (s� s�1) ;24
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Figure 2.2: T (j) 2 Hn.on the 
rossing indi
ated we see thatT (j) == (s� s�1) += : : : (repeated appli
ations of the skein relations) : : := (s� s�1)0� + � � �+ 1A+= (s� s�1) j�1Xi=1 !(i j) + In= (s� s�1)M(j) + In:Therefore, M(j) = T (j)� Ins� s�1 : �Remark. Theorem 2.1 enables us to 
onsider the geometri
ally more appeal-ing elements T (j) in pla
e of the M(j), provided s � s�1 6= 0, or in otherwords we are away from C [Sn ℄.In fa
t, these elements are not only geometri
ally more appealing, it isalso the 
ase that algebrai
ally they are mu
h easier to work with. Mathas[Mat99℄ remarks that the original de�nitions for Murphy operators are quitehard to work with and de�nes L-Murphy operators whi
h have the sameproperties as the elements T (j), in parti
ular Theorem 2.1. Results are thenproved for the L-Murphy operators.Remark. It is pi
torially 
lear that the elements T (j) all 
ommute.25



Remark. The produ
t of the T (j) is the full 
url (often denoted in braidtheory by �2), 
learly a 
entral element. However, it is not immediatelyobvious that their sum is 
entral.Proof (of Theorem 2.2 [Mor02b℄). Let T (n) be the element of Hn representedby the tangle T (n), as shown in Figure 2.3.
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Figure 2.3: T (n) 2 Hn.Applying the skein relation to the 
rossing indi
ated we haveT (n) == (s� s�1) += : : : (repeated appli
ations of the skein relations) : : := (s� s�1)0� + � � �+ 1A += (s� s�1)v�1 nXj=1 T (j) + T (0) 
 In:Now sin
e the term T (0)
In is simply a disjoint trivial loop alongside theidentity braid, we 
an remove the loop at the expense of the s
alar Æ = v�1�vs�s�1 .
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Therefore, using the result of Theorem 2.1, we haveT (n) = (s� s�1)v�1 nXj=1 T (j) + v�1 � vs� s�1 In= (s� s�1)v�1 nXj=1 �(s� s�1)M(j) + In�+ v�1 � vs� s�1 In= (s� s�1)2v�1M + �(s� s�1)v�1n+ v�1 � vs� s�1� In: �Pi
torially it is very 
lear that the element T (n) is 
entral inHn, therefore,it is an immediate 
orollary of Theorem 2.2 that the element M is 
entral.2.2 The Murphy operators and idempotentsof the He
ke algebraRe
all the set of idempotent elements inHn de�ned in Se
tion 1.5.1. They aredenoted e�, one for ea
h partition � of n, with ; being the unique partitionof 0. We now 
onsider the e�e
t of these idempotents on the element T (n).Using skein theoreti
 te
hniques it is easy to prove the following 
orollary ofTheorem 19 in [AM98℄ (see also [Mor02b℄),Corollary (of Theorem 19, [AM98℄). T (n)e� = t�e� wheret� = (s� s�1)v�1 X
; 
ellsin � s2
n(
) + Æ:Moreover, the s
alars t� are di�erent for ea
h partition �.If we were then to reverse the orientation of the en
ir
ling string in T (n)we obtain another 
entral element in Hn. We shall 
all this element �T (n).Then, using similar te
hniques, one 
an showLemma 2.3 ([MH02℄). �T (n)e� = �t�e� where�t� = �(s� s�1)v X
; 
ellsin � s�2
n(
) + Æ:Moreover, the s
alars �t� are di�erent for ea
h partition �.27



Remark. An alternative proof to this lemma 
ould be made through 
onsid-ering these elements wired into the skein of the annulus 
ombined with thee�e
t of the mirror map. Then it 
an be shown that the e� are invariantunder the mirror map and 
learly �(T (n)) = �T (n). We also re
all that themirror map inverts the s
alars v and s in the 
oeÆ
ient ring. Applying thesefa
ts to the pre
eding 
orollary, the result follows immediately.We remarked above that the produ
t of the Murphy operators is the full
url, �2. This too is a well-known 
entral element. It would therefore beinteresting to ask the e�e
t of the idempotent elements e� on �2.For our purposes we 
hoose not to adopt the notation �2, but insteaduse Fn 2 Hn for the full 
url on n strings. We have in terms of the Murphyoperators the indu
tive de�nitionFn = vT (n)(Fn�1 
 I1);whi
h gives Fn = vnQnj=1 T (j). We then haveTheorem 2.4 (Aiston-Morton). Let � be a Young diagram with j�j = n.Then Fne� = f�e�, where f� = v�j�jsn�and n� = X(i;j)2� 2(j � i):2.3 Symmetri
 fun
tions and the skein of theannulusThe theory of symmetri
 polynomials has been well studied and there aremany texts giving a good des
ription with the well-known authority being[Ma
79℄. In this se
tion we 
onsider elements in the He
ke algebra and their
losure in C within this 
ontext of symmetri
 fun
tions.Again re
all the set of idempotent elements in Hn as des
ribed in Se
-tion 1.5.1. Here we 
onsider the two simplest, those whi
h 
orrespond to thesingle row and single 
olumn Young diagrams.Let w� be the positive permutation braid ([EM94℄) 
orresponding to � 2Sn. De�ne two quasi-idempotents byan = X�2Sn sl(�)w� and bn = X�2Sn(�s)�l(�)w�;where l(�) = wr(w�), the writhe of the braid w�. We re
all that the writheof the braid (also known as the algebrai
 
rossing number) is the sum of thesigns of the 
rossings. 28



Lemma 2.5. an = an�1gn;where gn = 1 + s�n�1 + s2�n�1�n�2 + : : :+ sn�1�n�1 � : : : � �1.In the above lemma the �i 
orrespond to the usual braid group generators,for the braid group Bn.We have gn+1 = 1 + s�ngn, and also the immediate skein relation
n+1g = gn + snfor tangles on n+ 1 strings.Lemma 2.6. For any braid � 2 Bn we have an� = �s(�)an = �an, where�s(�) = swr(�).Analogous results for bn hold, repla
ing s with s�1 throughout.We 
an then see that the element an satis�esa2n = �s(an)an = �s(an�1)�s(gn)an:Now sin
e �s(gn) = 1+ s2 + : : :+ s2n�2 = sn�1[n℄ with [k℄ = sk�s�ks�s�1 , we haveimmediatelyCorollary. We 
an write sn�1[n℄hn = hn�1gn;where hn = an=�s(an) is the true idempotent.The element hn 
onstru
ted above is the idempotent whi
h 
orrespondsto the single row Young diagram with n 
ells. The single 
olumn idempotent,denoted en, is 
onstru
ted in an analogous way from bn. It 
an be obtainedfrom hn by using �s�1 in pla
e of s.With a slight abuse of the notation we write hn; en 2 C for the 
losures^(hn), ^(en) in C.The skein C+ when 
onsidered as an algebra is spanned by the monomialsin fhm : m � 0g.Remark. These elements have already been studied by Aiston in [Ais96℄,however, there the notations Q
n and Qdn are used in pla
e of en and hn.Morton adopts this more suggestive notation in [Mor02b℄ to make it 
lear thatit is the 
ombination of these elements and symmetri
 fun
tion te
hniquesthat is being exploited. 29



Write H(t) = 1 + 1Xn=1 hntnand E(t) = 1 + 1Xn=1 entnfor the generating fun
tion of the elements fhng and feng respe
tively, when
onsidered as formal power series with 
oeÆ
ients in C.Theorem 2.7 (Aiston). E(�t)H(t) = 1as a power series in C.We shall regard the elements hn and en formally as respe
tively the nth
omplete and elementary symmetri
 fun
tions in a suitably large number Nof variables x1; : : : ; xN , settingH(t) = NYi=1 11� xit ;and E(t) = NYi=1(1 + xit):Now 
onsider the wiring indu
ed from 
onsidering the diagramD = :with n strings running around the annulus. Su
h a wiring is a linear mapWn : Rn+1n+1 ! A. It is easy to see from the drawing of some simple pi
turesthat given a tangle T 2 Hn whi
h is in
luded in Hn+1 as the element T 
 I1has the property Wn(T 
 I1) = Wn�1(T )a:This is 
lear be
ause the �nal string leaving the top right-hand 
orner of Tpasses around the annulus one �nal time before going to the output point ofthe annulus, it is this that 
ontributes the a. Also, Wn(In) = an.30



Theorem 2.8 (Morton). The elements Wn(hn+1), Wn(I1
hn) and l(hn; e)in A satisfy the linear relation[n + 1℄Wn(hn+1) = s�1[n℄Wn(I1
 hn) + l(hn; e):Proof. [Mor02b℄ Re
all the relation given above,
n+1g = gn + sn :This immediately gives Wn(hngn+1) = Wn(gnhn) + snWn(hn�n � � ��1). Nowusing the now familiar style of manipulation using the skein relations we
an also show that gnhn = sn�1[n℄hn and Wn(hn�n � � ��1) = l(hn; e). This
ombined with a previous result that sn[n+1℄hn+1 = hngn+1 the result followsimmediately. �Let Yn = [n + 1℄Wn(hn+1) and use this to de�ne another formal powerseries Y (t) = 1Xn=0 Yntn:We then obtain the following 
orollaryCorollary. As power series with 
oeÆ
ients in A we havel(H(t); e) = (e� s�1at)Y (t): (2.3)Proof. We know that Wn(hn) = Wn�1(hn)a or equivalently sin
e A is 
om-mutative Wn(hn) = aWn�1(hn). We 
an therefore rewrite the expression forYn as Yn = s�1aYn�1 + l(hn; e):Therefore, Y (t) = s�1atY (t) + l(H(t); e):The result now follows immediately. �Following appropriate use of the mirror map on the skein A the followingresult is an immediate 
onsequen
e of the previous 
orollaryProposition 2.9. As power series with 
oeÆ
ients in A we haver(e;H(t)) = (e� sat)Y (t): (2.4)31



Combining these results gives[H(t); e℄ = (s� s�1)atY (t):This result also appears in the same 
ontext in [Luk01℄.We �nally o�er one further result whi
h will be essential in 
ertain sub-sequent results. The element of C to appear here is the formal power sum ofthe variables xi, Pm =PNi=1 xmi .Theorem 2.10. For m � 1 we have [Pm; e℄ = (sm � s�m)am.Proof. First re
all the Newton power series equation1Xm=1 Pmm tm = lnH(t):Now, taking logarithms of equations 2.3 and 2.4, then subtra
ting, we haveln(e� s�1at)� ln(e� sat) = ln(l(H(t); e))� ln(r(e;H(t)))= l(ln(H(t)); e)� r(e; ln(H(t)))= 1Xm=1 �Pmm tm; e� :Now ln(e� s�1at) = �P1m=1 s�mamtmm . Finally, 
omparing 
oeÆ
ients of tm,the result follows. �2.4 Symmetri
 fun
tions of the Murphy op-eratorsThe work that appears in this se
tion is intended to summarise the resultsof Morton in [Mor02b℄ with a view to extending them later �a la [Mor02a℄.Morton introdu
es a new relation between the He
ke algebras and theskein of the annulus. This relation is a very natural homomorphism  n fromC to the 
entre of ea
h algebra Hn.First take D to be the diagramD = :
32



D then determines a map  n : C ! Hn whi
h is indu
ed by pla
ing X 2 Caround the en
ir
ling loop in D and the identity In 2 Hn on the ar
. Wetherefore have:  n : C ! Hn
X

7!
X
2 Hn:Clearly  n(XY ) =

Y
X

= X

Y

=  n(X) n(Y ):Therefore,  n de�nes an algebra homomorphism. Also, it is obvious that theelements  n(X) lies in the 
entre of Hn for all X 2 C.We shall say that the element T (n) is \almost equal" to the sumPnj=1 T (j).Denote this by T (n) � nXj=1 T (j):By this we mean that T (n) is equal to a s
alar multiple of Pnj=1 T (j) up toa linear 
ombination with the identity as in Theorem 2.2. Also we observethat T (n) =  n(X1) for X1 = A1 2 C. Morton then enquires whether thereis an element X2 su
h that  n(X2) �Pnj=1 T (j)2, or indeed more generally,whether there are Xm su
h that  n(Xm) �Pnj=1 T (j)m for any value m.The surprising part of this result is not that there exist su
h elements inC, but that there exist elements whi
h are independent of n whi
h have thisproperty.Theorem 2.11. For any n we have n(Pm)�  0(Pm) = (sm � s�m)v�m nXj=1 T (j)m:33



Figure 2.4: The diagram D whi
h indu
es the wiring Vn.Proof. First de�ne the wiring Vn : A! Hn indu
ed by the diagram D shownin Figure 2.4.It is 
lear that for any X 2 C, we haveVn(l(X; e)) =  n(X)and Vn(r(e;X)) =  n�1(X)
 I1:We also observe that Vn(a) = v�1T (n) and hen
e indu
tively we have Vn(am) =v�mT (n)m.Therefore  n(Pm) �  n�1(Pm) 
 I1 = (sm � s�m)v�mT (n)m, and by in-du
tion on n we have n(Pm)�  0(Pm)
 In = (sm � s�m)v�m nXj=1 T (j)m;whi
h we abbreviate using the standard in
lusion of Hn�1 � Hn to obtainthe result. �In [Ais96℄, Aiston shows that [m℄Pm is the sum[m℄Pm = + � � �+ + � � �+ :The proof she gives requires signi�
ant knowledge of results about sl(N)qrepresentations. Morton o�ers another proof later in [Mor02a℄ whi
h is purelyskein theoreti
.We end this se
tion with one �nal result.Theorem 2.12. The image of  n is the whole 
entre of Hn.34



Proof. It is shown by Dipper, James and Mathas [DJ87, Mat99℄ that sym-metri
 polynomials in the Murphy operators a

ount for the whole of the
entre of Hn. The power sums Pm are a generating set for the symmetri
polynomials. Now by Theorem 2.11 the result follows. �2.5 A set of Murphy operators in Hn;pSin
e the family of algebras Hn;p 
an be thought of as a generalization ofthe He
ke algebra, an immediate question is whether one 
an �nd a set ofelements with similar properties in this more general setting.For some of the results in this se
tion we shall adopt the approa
h usedby Morton in [Mor02b℄ and [Mor02a℄ as they have been exhibited above.We follow an analogous pro
edure in Hn;p as in Hn. Firstly let us 
onsiderthe elements of Hn;p represented by the tangles T (n;p) and �T (n;p) whi
h are
onstru
ted in a similar way to T (n) and �T (n) respe
tively. We show T (n;p)diagramati
ally in Figure 2.5.
PSfrag repla
ements n pFigure 2.5: The (n; p)-tangle T (n;p).De�nition 2. (see [MW℄,[Had℄) Let H(i)n;p denote the sub-algebra of Hn;pspanned by elements with \at least" i pairs of strings turning ba
k.Remark. An (n; p)-tangle is said to have \at least" l pairs of strings whi
hturn ba
k if it 
an be written as a produ
t T1T2 of an f(n; p); (n� l; p� l)g-tangle T1 and an f(n� l; p� l); (n; p)g-tangle T2 as illustrated in Figure 2.6.Remark. The H(i)n;p are two-sided ideals and there is a �ltration:Hn;p �= H(0)n;p �H(1)n;p � � � ��H(k)n;p;where k = min(n; p).We use a similar notation of Il;m 2 Hn;p for the identity on l strings downand m strings up, with l � n and m � p.35



PSfrag repla
ements
n

n

p

pT1n�l p�lT2
Figure 2.6: A tangle with at least l pairs of strings whi
h turn ba
k.Lemma 2.13. T (n;p) = T (n;p)0 + w;�T (n;p) = �T (n;p)0 + �w;where T (n;p)0 = T (n)(�) 
 I(+)p + I(�)n 
 T (p)(+) � Æ In;p;�T (n;p)0 = �T (n)(�) 
 I(p)(+)+ I(n)(�)
 �T (p)(+) � Æ I(n)(�)
 I(p)(+);and w; �w 2 H(1)n;p.Proof. We prove the result for T (n;p), with the result for �T (n;p) following inexa
tly the same way. Throughout this proof, we use a standard notationsetting s� s�1 = z.We �rst de�ne some elements in Hn;p represented by tangles as shown inFigure 2.7.Now applying the skein relation on
e to T (n;p) we obtain:= + z= T (n;p�1) 
 I(+)1 + zv�1A(p):
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PSfrag repla
ements
1 j p 1 j p� � � � � �� � � � � � A(j) :=T (j) :=

Figure 2.7: The elements T (j) and A(j) for 1 � j � p.Repeated appli
ation of the skein relation in this way will 
learly yield:T (n;p) = T (n;0) 
 I(+)p + zv�1 pXj=1 A(j)= T (n)(�) 
 I(+)p + zv�1 pXj=1 A(j): (2.5)Now observe, similar to a result in [Mor02b℄, we 
an �nd:= Æ + zv�1 pXj=1 T (j): (2.6)Combining equations 2.5 and 2.6, we see that we are only left to showthat: zv�1 pXj=1 A(j) = zv�1 pXj=1 T (j) + w;for w 2 H(1)n;p.Let w =Ppj=1 w(j). We must now show that for ea
h j, with 1 � j � p,there exists a w(j) su
h that:zv�1A(j) = zv�1T (j) + w(j):
37



Now,zv�1A(j) = zv�1( � z )
= zv�1( � z � z )= � � � (repeating appli
ation of the skein relation)= zv�1T (j) + z2v�1(� � � � � � )= zv�1T (j) + w(j):with w(j) 2 H(1)n;p.The result follows. �We therefore suggest a potential set of Murphy operators in Hn;p. Theseare then the elements T (j) de�ned for the �rst n strings (as with the Hn
ase in Figure 2.2 ex
ept the strings are obviously oriented in the oppositedire
tion and we then take its inverse). In addition to this set of n elements,we add the A(j) de�ned in Figure 2.7, de�ned for the last p strings. Theseelements are shown in Figure 2.8.PSfrag repla
ements

n
p

11 jj p� � �� � �� � �� � � A(j) :=T (j) :=
Figure 2.8: The elements T (j) for 1 � i � n and A(j) for 1 � j � p.We �nd, similar to Theorem 2.2 thatTheorem 2.14. The sum of these Murphy operators is almost equal toT (n;p).Proof. It is not diÆ
ult to show using the skein relations thatT (n;p) = (s� s�1) �v nXj=1 T (j) + v�1 pXj=1 A(j)!+ v�1 � vs� s�1 In;p:38



This is a
hieved through an analogous method to the one used previouslyto show that T (n) = (s � s�1)v�1Pnj=1 T (j) + T (0) 
 In in the standardHe
ke algebra 
ase, ex
ept this time one must pay parti
ular attention tothe orietation of the strings. By the de�nition of almost equal the resultfollows immediately. �2.6 The Murphy operators and idempotentsof Hn;pWe 
an then use earlier information, 
ombined with Lemma 2.13 to prove thefollowing proposition 
on
erning the elements e0(�;�) = e(�)� 
e(+)� as dis
ussedabove.Proposition 2.15. T (n;p)e0�;� = t�;�e0�;� + we0�;�and �T (n;p)e0�;� = �t�;�e0�;� + �we0�;�;where, t�;� = (s� s�1)0B��vX
ellsin � s�2(
ontent) + v�1X
ellsin � s2(
ontent)1CA+ Æand�t�;� = (s� s�1)0B�v�1X
ellsin � s2(
ontent) � vX
ellsin � s�2(
ontent)1CA+ Æ:Here we had �xed j�j and j�j with values n and p respe
tively. In fa
t,we �nd that t�;� and �t�;� have the following property:Lemma 2.16. As � and � vary over all 
hoi
es of Young diagram, the valuesof t�;� are all distin
t; as are the values of �t�;�.Remark. An equivalent way of stating Lemma 2.16 is that if t�;� = t�0;�0 then� = �0 and � = �0 (similarly for the �t�;�).Proof. (of Lemma 2.16) We prove the �rst part of the lemma and note thatthe se
ond part follows immediately due to the observation that �t�;� = t�;�.Given f(s; v) = t�;� we now show how to re
over the Young diagrams �and �. 39



From the formula for t�;� in Lemma 2.15 we see that f(s; v) � Æ is aLaurent polynomial in s and v, and must be of the form:(s� s�1)(�vP (s) + v�1Q(s)):Now 
onsider P (s) and Q(s) individually. It is 
lear that these are alsoLaurent polynomials, this time only in the variable s. We haveP (s) = X ais�2iand Q(s) = X bjs2j;where ai is the number of 
ells in � with 
ontent i, and similarly, bj is thenumber of 
ells in � with 
ontent j. Hen
e we 
an uniquely 
onstru
t � and�. �Extending the notion of the full 
url into the Hn;p setting, we use thenotation Fn;p 2 Hn;p. Again, Fn;p is 
entral in Hn;p. In terms of our set ofMurphy operators we haveFn;p = vn+p nYj=1 T (j)�1 pYj=1A(j):We now o�er without proof a lemma 
omparable to Lemma 2.13.Lemma 2.17. Fn;p = Fn;0 
 F0;p + uwhere u 2 H(1)n;p.Continuing with this theme we have the following proposition, 
ombiningthe result of Theorem 2.4 and the te
hniques of Proposition 2.15.Proposition 2.18. Fn;pe0(�;�) = f(�;�)e0(�;�) + ue0(�;�)where f(�;�) = vj�j�j�js�n�+n�, and n� =P(i;j)2� 2(j�i) and n� =P(i;j)2� 2(j�i).
40



2.7 Supersymmetri
 polynomials in the Mur-phy operatorsWhy should we have 
hosen this de
omposition of T (n;p) to give a set ofMurphy operators in Hn;p? Is there a symmetri
 fun
tion type result in thissetting? Well, �rst we prove the following, a generalization of Theorem 2.11.First we introdu
e a natural generalisation of the map  n into the Hn;p arenaand 
all it  n;p. Similarly, this de�nes an algebra homomorphism on Hn;p,and all elements  n;p lie in the 
entre of Hn;p.Theorem 2.19. The 
entral elements  n;p(Pm) of Hn;p 
an be written, up toa linear 
ombination with the identity, as the power sum di�eren
e�vm nXj=1 T (j)m + v�m pXj=1 A(j)m:Proof. Using the te
hniques displayed in Theorem 2.11 and 
hanging thewiring appropriately for the left n strings we �nd n;p(Pm)� 0;0(Pm)
In;p = (sm�s�m) �vm nXj=1 T (j)m + v�m pXj=1 A(j)m! :�Now this does not quite resemble the power sum found in the Hn set-ting for the standard symmetri
 fun
tions, however, Stembridge dis
ussessupersymmetri
 polynomials in [Ste84℄. Su
h polynomials appear in termsof two sets of 
ommuting variables fxig and fyig say. For a polynomial inthese variables to be 
alled supersymmetri
 they must satisfy the followingproperties:1. the polynomial is invariant under permutations of the variables fxig;2. the polynomial is invariant under permutations of the variables fyig;3. when the substitution x1 = y1 = t is made, the resulting polynomial isindependent of t.Stembridge then 
ontinues to prove that the set of supersymmetri
 polyno-mials is in fa
t generated by the power sum di�eren
ePxmi �P ymi , provinga 
onje
ture of S
heunert [S
h84℄We then see that the 
entral elements  n;p(X) 
an be written as su
ha supersymmetri
 polynomial in two sets of 
ommuting elements, up to alinear 
ombination with the identity.41



Remark. There is an element of 
hoi
e asso
iated with this set of Murphyoperators given here. For example, 
onjugating all of them by a �xed elementwill not alter their supersymmetri
 polynomials.We end this se
tion, and indeed 
hapter, with a 
urrently unproved, butmorally reasonable 
onje
ture.Conje
ture (Morton). The image of  n;p is the whole 
entre of Hn;p.Remark. Morton remarks that although it is possible to prove this for theHn 
ase (see Theorem 2.12), there does not at present exist an immediateskein theory proof for either the Hn and 
ertainly not the more general Hn;p
ase. The information that 
urrently seems to be la
king is an upper boundon the dimension of the 
entre in the generi
 
ase n; p > 0.
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Chapter 3The Hom
y Polynomial OfGeneralized Hopf LinksIn this 
hapter we see how to use some of the results of the previous 
hapterto 
al
ulate the Hom
y polynomial of a 
lass of links we shall 
all generalizedHopf links. This work will follow that des
ribed in [MH02℄ by Morton andthe author. Although this 
hapter 
an be 
onsidered as self-
ontained, it a
tsvery well to whet one's appetite for what is to follow.3.1 Initial motivationIn [Cha00℄, T.-H. Chan dis
usses the Hom
y polynomial of reverse stringparallelsH(k1; k2;n1; n2) of the Hopf link. Using results des
ribed previously,we �nd that the 
omputations whi
h were more labour intensive in [Cha00℄be
ome simpli�ed. A further generalization is then readily available to allowus to 
al
ulate the Hom
y polynomial of satellites of the Hopf link whi
h
onsists of a reverse string parallel around one 
omponent 
ombined with a
ompletely general reverse string de
oration on the other.3.2 Satellites of Hopf linksThe Hopf link is the simplest non-trivial link involving just two unknotslinked together. When giving this link orientation, two distin
t links areformed. We shall 
all these H+ and H�, as shown in Figure 3.1.The Hom
y polynomial of these links 
an easily be 
al
ulated with the
43



PSfrag repla
ements H+ H�Figure 3.1: The links H+ and H�.Hom
y polynomial skein relations. We have that:P (H+) = �v�1 � vs� s�1�2 + v�2 � 1;and P (H�) = �v�1 � vs� s�1�2 + v2 � 1:We now use H+ and H� as starting points for the 
onstru
tion of satellitelinks. We do this by 
onsidering the two 
omponents of the Hopf links andde
orating them. For example, take P1 and P2 as diagrams in the annulus.Now starting with H+, we de
orate its two 
omponents with P1 and P2respe
tively, obtaining a new link in the plane whi
h we shall 
allH+(P1; P2),as shown in Figure 3.2. Now 
learlyH+(P1; P2) andH+(P2; P1) are equivalent
PSfrag repla
ementsP1 P2Figure 3.2: The link H+(P1; P2).links. An analogous 
onstru
tion is now possible for H�.With su
h a 
onstru
tion, it is possible to realise a variety of links. Inparti
ular, the generalized Hopf links whi
h are the topi
 of [Cha00℄ 
an be
onstru
ted. For example, if we take P1 and P2 as shown in Figure 3.3, thenH+(P1; P2) is the link Chan refers to as H(k1; k2;n1; n2). This link is shownin Figure 3.4, somewhat rearranged from how it appears in [Cha00℄. This
hange of view will be seen to be bene�
ial in our approa
h.44



PSfrag repla
ements n2 n1 k2 k1
Figure 3.3: The diagrams P1 and P2.With su
h links in mind, we make the following observation, using thenotation that the image of a link H under the involution �, des
ribed inSe
tion 1.3, shall be denoted H�Observation. The linksH(k1; k2;n1; n2); H(n1; n2; k1; k2); H(k2; k1;n2; n1); H(n2; n1; k2; k1);andH�(k2; k1;n1; n2); H�(n1; n2; k2; k1); H�(k1; k2;n2; n1); H�(n2; n1; k1; k2);are all equivalent links. For example it is trivial to see that reordering thefour groups of strings H(k1; k2;n1; n2) will give H(k2; k1;n2; n1).3.3 Maps on the skein of the annulus, CWe now de�ne two natural linear maps, ' and �', on the skein of the annulusin the following way; take an element X 2 C and en
ir
le it on
e with a singleoriented loop. The orientations are opposite for ' and �'. We de�ne thesemaps pi
torially as follows: ' : C ! C

X

7!
X

;and �' : C ! C
X

7!
X

:Now re
onsider the satellites of Hopf links dis
ussed earlier in this 
hapter,but this time as elements of the skein of the annulus C. We 
an then use45



PSfrag repla
ements
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Figure 3.4: The generalized Hopf link H(k1; k2;n1; n2).
ompositions of the maps ' and �' to 
onstru
t a subset of su
h links. Inparti
ular, for the element A = An11 An2�1 2 C, we haveH(k1; k2;n1; n2) = 'k1 � �'k2(A)� :It therefore seems a reasonable proposition that to aid our investigation ofthe links H(k1; k2;n1; n2) and their Hom
y polynomial, we should look more
losely at the maps ' and �', in parti
ular at their eigenvalues. We shalla
hieve this during the remainder of this 
hapter through 
onsidering 
ertainalready familiar subspa
es of C and the restri
tions of the maps ' and �' tothese subspa
es.
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3.4 Eigenve
tors and eigenvalues of the maps' and �'We begin with the Hn 
ase. Take an element S 2 Hn with Ŝ 2 C(n) and
ompose it with T (n). Then ^(ST (n)) = '(Ŝ). Similarly ^(S �T (n)) = �'(Ŝ).The restri
tions 'jC(n) and �'jC(n) 
learly 
arry C(n) to itself.Theorem 3.1 ([Mor02b℄). The eigenvalues of 'jC(n) are all distin
t as arethe eigenvalues of �'jC(n).Proof. We prove the �rst statement with the se
ond following in exa
tly thesame way.Set Q� = ê� 2 C(n). Then the 
losure of T (n)e� is '(Q�). However,T (n)e� = t�e�, hen
e '(Q�) = t�Q�. The element Q� is then an eigenve
-tor of ' with eigenvalue t�. There are �(n) of these eigenve
tors, and theeigenvalues are all distin
t by [AM98℄. Sin
e C(n) is spanned by �(n) ele-ments we 
an dedu
e that the elements Q� form a basis for C(n) and that theeigenspa
es are all 1-dimensional. �This proof is quite instru
tive as it establishes that the Q� with j�j = nare a basis for C(n). Hen
e any element in C(n) 
an be written as a linear
ombination of the Q� with j�j = n. It also follows that any element of C(n)whi
h is an eigenve
tor of ' (and similarly �') must be a multiple of someQ�. Finally, we noti
e that the eigenvalues of the ' and �' are the t� and �t�we found earlier in Chapter 2.We now extend our view to the Hn;p 
ase. First re
all the s
alars t(�;�)and �t(�;�) dis
ussed in Chapter 2. We go straight into some important resultsabout these values.Theorem 3.2. The t�;� and �t�;� are eigenvalues of 'jC(n;p) and �'jC(n;p) re-spe
tively. Moreover, they o

ur with multipli
ity 1.Proof. We prove the result for the t�;� with an identi
al argument provingthe result for the �t�;�.Fix an integer k su
h that k = p� n and k � 0 (in other words p � n |the 
ase for p < n is identi
al). Write C(n;p) as C(n;k+n) and do indu
tion onn. For n = 0 we have that C(0;k) �= C(k). Now for j�j = 0 and j�j = k wehave that t�;� = t�. Moreover, in the proof of Theorem 3.1 we saw that thet� with j�j = k are eigenvalues of 'jC(k). Now sin
e C(k) �= C(0;k) � C(n;k+n)for all n, the t� are also eigenvalues of 'jC(n;k+n).Now assume that for j�j < n and j�j < k + n the t�;� are eigenvalues of'jC(j�j;j�j). Sin
e C(j�j;j�j) � C(n;k+n) the t�;� are also eigenvalues of 'jC(n;k+n).47



Consider the t�;� with j�j = n and j�j = k+n. By the indu
tive hypothesisthese t�;� are not eigenvalues of 'jC(n�1;k+n�1) sin
e we have �(n�1; k+n�1)eigenvalues and C(n�1;k+n�1) is spanned by �(n� 1; k + n� 1) elements andby Lemma 2.16 we have that if t�;� = t�0;�0 then � = �0 and � = �0.De�ne elements Q0�;� := Q(�)� � Q(+)� (= ^(e0�;�)) with j�j = n and j�j =k + n. Clearly Q0�;� 2 C(n;k+n).Now by Lemma 2.15,'jC(n;k+n)(Q0�;�) = t�;�Q0�;� + w0where w0 2 C(n�1;k+n�1).We 
an �nd a v 2 C(n�1;k+n�1) su
h that ('jC(n;k+n) � t�;�I)(v) = w0.Now 
onsider Q0�;� � v. This is 
learly non-zero. We �nd:'jC(n;k+n)(Q0�;� � v) = 'jC(n;k+n)(Q0�;�)� 'jC(n;k+n)(v) + t�;�v � t�;�v= 'jC(n;k+n)(Q0�;�)� w0 � t�;�v= t�;�Q0�;� + w0 � w0 � t�;�v= t�;�(Q0�;� � v):Hen
e su
h t�;� are eigenvalues of 'jC(n;k+n).Hen
e by indu
tion, we have that the t�;�, with j�j � n, j�j � p andj�j � j�j = n� p, are eigenvalues of 'jC(n;p).Moreover, we have found at least �(n; p) eigenvalues for 'jC(n;p). ButC(n;p) is known to be spanned by �(n; p) elements, so 'jC(n;p) has at most�(n; p) di�erent eigenvalues. Hen
e it has exa
tly �(n; p) eigenvalues ea
hwith multipli
ity one. �We now state two useful 
orollaries.Corollary. There is a basis of C(n;p) given by:fQ�;� : j�j � n; j�j � p; j�j � j�j = n� pgsu
h that: '(Q�;�) = t�;�Q�;� and �'(Q�;�) = �t�;�Q�;�:Corollary. Every eigenve
tor of ' and �' is a multiple of one su
h basiselement.Remark. The eigenvalues t�;� and �t�;� 
orrespond to the eigenvalues of thematrix M in equation (1.1) of [Cha00℄, found there only for 1 � k1 + k2 � 5and k2 � k1. Chan uses the Hom
y polynomial based on parameters l andm,48



whi
h are variants of v and z. The numbers pm2 � 4 in Chan's eigenvalues�i and ��i 
orrespond to the parameter s here with z = s�s�1, whi
h featuresstrongly in our eigenvalues t�;� and �t�;�. Our use of s is the feature whi
hallows us to give simple formulae for the Gyoja-Aiston elements Q� and toextend in prin
iple to Q�;�.Unlike the Gyoja-Aiston elements Q� whi
h are known and have beenwell-studied, their generalisations the Q�;� des
ribed in the above Corollaryare not well-understood. We shall show in the following se
tion how they
an be found expli
itly.3.5 The Hom
y polynomials of some gener-alized Hopf linksHere we apply the te
hniques des
ribed above to show how 
omputation ofthe Hom
y polynomial ofF some generalized Hopf links is possible.3.5.1 The Hom
y polynomial of H(k1; k2;n; 0)Consider H(k1; k2;n; 0) in the skein of the annulus. Then we haveH(k1; k2;n; 0) = 'k1( �'k2(An1 )):Now sin
e the maps ' and �' are linear maps, we know that for the Q�,'k1( �'k2(Q�)) = tk1� �t k2� Q�:Also, sin
e the Q� are a basis or the skein C(n), we haveAn1 = Xj�j=n d�Q�for 
onstants d�. The d� 
an be 
al
ulated by several means, for example by
ounting the number of standard tableaux of shape �. Consider the Youngdiagram � = (2; 2), there are two possible standard tableau. The �rst hasthe top two 
ells enumerated 1 and 2 and the bottom two 
ells 3 and 4, these
ond has the top two 
ells enumerated 1 and 3 and the bottom two 
ells 2and 4.Therefore, H(k1; k2;n; 0) = Xj�j=nd�'k1( �'k2(Q�))= Xj�j=nd�tk1� �tk2� Q�:49



So evaluating in the plane (using the work of [AM98℄), we �ndP (H(k1; k2;n; 0)) = Xj�j=n d�tk1� �tk2� 0� Y(i;j)2� v�1sj�i � vsi�jshl(i;j) � s�hl(i;j)1A ;where hl(i; j) is the hook-length of the 
ell (i; j), in row i and 
olumn j.3.5.2 The Hom
y polynomial of H(k1; k2;n1; n2)Consider, in a similar way to above, H(k1; k2;n1; n2) as an element of theskein C. Then we haveH(k1; k2;n1; n2) = 'k1( �'k2(An11 An2�1)):Similar to the restri
ted 
ase above, we have'k1( �'k2(Q�;�)) = tk1�;��t k2�;�Q�;�and An11 An2�1 = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�Q�;�for 
onstants d�;�. These 
onstants 
an be 
al
ulated in terms of appropriated� and d� (see previous se
tion).Theorem 3.3 ([Ste87℄). The numbers d�;� 
an be found from the followingformula: d�;� = m!�n2m��n1m�d�d�;where j�j � n2, j�j � n1 and m = n2 � j�j = n1 � j�j.Therefore,H(k1; k2;n1; n2) = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�'k1( �'k2(Q�;�))= Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�tk1�;��t k2�;�Q�;�:At present, we do not have a general 
losed formula for P (H(k1; k2;n1; n2))due to la
k of information about the elements Q�;�.We 
an, however, make expli
it 
al
ulations in individual 
ases as illus-trated by the following example. 50
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Figure 3.5: The link H(k1; k2; 1; 2) in C.Example. Consider H(k1; k2; 1; 2) 2 C(2;1), as shown in Figure 3.5.Then H(k1; k2; 1; 2) = 'k1( �'k2(A1A2�1));where, by Theorem 3.3,A1A2�1 = Q , + 2Q ,; +Q , : (3.1)However, we 
an also �nd, by using powers of trivial Gyoja-Aiston elementsQ , with appropriate orientation, that sin
e A1 = Q(+) and A�1 = Q(�) wehave A1A2�1 = (Q(�))2Q(+):Moreover, these elements are known to satisfy the Littlewood-Ri
hardsonrule for multipli
ation of Young diagrams ([Ais96℄), soA1A2�1 = (Q(�) +Q(�))Q(+)= Q(�)Q(+) +Q(�)Q(+)= Q0 , +Q0 , : (3.2)51



Now 
ombining equations 3.1 and 3.2 with the observation thatQ ,; = Q0 ,; = Q(�)Q(+);and assuming symmetry under 
onjugation of Young diagrams, we haveQ , = Q0 , �Q0 ,;;and Q , = Q0 , �Q0 ,;:Hen
e, evaluating in the plane, we �nd,P (H(k1; k2; 1; 2)) = P ('k1( �'k2(A1A2�1)))= tk1 , �tk2 , P (Q , )+2tk1,;�tk2,;P (Q ,;) + tk1, �tk2, P (Q , )= tk1 , �tk2 , (P (Q0 , )� P (Q0 ,;))+2tk1,;�tk2,;P (Q0 ,;) + tk1, �tk2, (P (Q0 , � P (Q0 ,;))= tk1 , �tk2 , P (Q0 , )+(2tk1,;�tk2,; � tk1 , �tk2, � tk1, �tk2, )P (Q0 ,;) (3.3)+tk1, �tk2, P (Q0 , )From the de�nition of the Q0�;�, we 
an now use the results in [AM98℄ to �ndP (Q0 ,;), P (Q0 , ) and P (Q0 , ). We have:P (Q0 ,;) = v�1 � vs� s�1 ;P (Q0 , ) = � v�1 � vs2 � s�2��v�1s� vs�1s� s�1 ��v�1 � vs� s�1� ;and P (Q0 , ) = � v�1 � vs2 � s�2��v�1s�1 � vss� s�1 ��v�1 � vs� s�1� :Then using Proposition 2.15 we �nd:t ,; = �v(s� s�1) + Æ;t , = (s� s�1)(�v(1 + s�2) + v�1) + Æ;t , = (s� s�1)(�v(1 + s2) + v�1) + Æ;52



and �t ,; = v�1(s� s�1) + Æ;�t , = (s� s�1)(v�1(1 + s2)� v) + Æ;�t , = (s� s�1)(v�1(1 + s�2)� v) + Æ:Substitution of these values into equation 3.3 then gives P (H(k1; k2; 1; 2))immediately.3.6 Some �nal remarksWe 
an in prin
iple write any given element of the skein X 2 C as a linear
ombination of the basis elements Q�;�. Therefore, one 
an �nd '(X) and�'(X),and hen
e readily evaluate the Hom
y polynomial of H(k1; k2;X) :=H+(X;Ak11 Ak2�1). The spe
ial 
ase X = An11 An2�1 gives H(k1; k2;n1; n2).In order to be able to write any element of the skein as a linear 
ombina-tion of the basis elements Q�;� we must deepen our understanding of theseelements. We aim to begin this quest in the next 
hapter.Before we embark of this journey we look at some other work related tothe �ndings of the 
urrent 
hapter.3.6.1 The Hom
y polynomial of the de
orated HopflinkMorton and Luka
 [Luk01, ML03℄ show how to 
al
ulate the Hom
y polyno-mial of any satellite of the Hopf link, when the de
orations are 
hosen fromthe more restri
ted setting of C+.This is a
hieved sin
e the de
orations are spanned in the Hom
y skeinof the annulus by the well-known elements Q�. The paper shows that theHom
y polynomial of the Hopf link de
orated by Q� on one 
omponent andQ� on the other, denoted < �; � >, depends on the S
hur symmetri
 fun
tions� of an expli
it power series depending on �.3.6.2 Kau�man polynomials of generalized Hopf linksThe te
hniques developed and used to produ
e the results of this 
hapterhave been adopted by Zhong and Lu in [ZL02℄ to investigate the Kau�manpolynomials of generalized Hopf links.They 
onsidered the Kau�man skein module of the solid torus whi
h isde�ned and 
onstru
ted in an analogous way to the Hom
y skein of the53



annulus, obviously using the unoriented Kau�man skein relations in pla
e ofthe Hom
y skein relations.Following [MH02℄, Zhong and Lu de�ne a map ' on the Kau�man skeinmodule and then 
al
ulate eigenvalues 
�. These are then also shown to bedistin
t for di�erent �.
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Chapter 4A Basis For The Skein Of TheAnnulus, CIn the previous 
hapter we introdu
ed a basis for the full Hom
y skein ofthe annulus. We referred to these skein elements as Q�;� where � and � areYoung diagrams. These basis elements were identi�ed as being eigenve
torsof the natural linear skein maps ' and �' whi
h see the addition of a meridianloop of the annulus.In this 
hapter we aim to 
onstru
t a matrix of simple skein elementswhose determinant gives an expli
it expression for Q�;�. Before we 
an hopeto get to that stage we must do some ba
kground work. As a taster, we o�ersome initial observations to the behaviour of the Q�;� at a very basi
 level.4.1 Basi
 behaviour of the Q�;�It is known that the Q�;� 2 C are indexed by pairs of Young diagrams. In thisse
tion we ask how these elements behave under multipli
ation. Sin
e we stillhave limited knowledge of these elements, we limit ourselves to 
onsideringthe multipli
ation by trivial elements, or, in other wordsQ�;� �Q ,; and Q�;� �Q;, :For Young diagrams, su
h multipli
ation is illustrated by the Brattelli di-agram. For pairs of Young diagrams we 
an o�er an analogue to the Brattellidiagram, it is adapted from a 
onstru
tion o�ered by Kosuda and Murakamiin [KM93℄. To illustrate our 
onstru
tion we now build a Brattelli type dia-gram for the set of Young diagrams relevant to the subspa
e of C with n = 255



and p = 1, C(2;1). Our diagram is as follows(;; ;)( ; ;)( ; ;) ( ; ;)( ; ) ( ; ;) ( ; )We noti
e that to move from one level to the next, we are either multiplyingthe pre
eding pairs of Young diagrams by ( ; ;) (the �rst two steps) or by(;; ) (the �nal step). When multiplying a pair of Young diagrams by ( ; ;)the resulting pairs will either have and extra 
ell on the left Young diagram,or one less 
ell on the right Young diagram. Conversely, when multiplyinga pair of Young diagrams by (;; ) the resulting pairs will either have andextra 
ell on the right Young diagram, or one less 
ell on the left Youngdiagram.Remark. Due to the 
ommutativity in C we 
an build up this diagram withidenti
al results even if we were to 
hange the order of the steps.We use these observations to give the following two rules:Q�;� �Q ,;(= Q ,; �Q�;�) = Xf(�0;�):j�0j=j�j+1;���0gQ�0;� + Xf(�;�0):j�0j=j�j�1;�0��gQ�;�0 ;Q�;� �Q;, (= Q;, �Q�;�) = Xf(�0;�):j�0j=j�j�1;�0��gQ�0;� + Xf(�;�0):j�0j=j�j+1;���0gQ�;�0 :As a �nal observation, the number of di�erent paths to a pair of Youngdiagrams (�; �) from top-to-bottom 
orresponds to the integer d�;� given byan expli
it formula by Stembridge in Theorem 3.3.4.2 A spanning set for CRe
all from Chapter 2 the elements of Hn denoted hn and en whi
h 
orre-spond respe
tively to the single row and single 
olumn Young diagrams with56



n 
ells. We now 
onsider these elements wired into the annulus, and witha slight abuse of notation we write hn; en 2 C for the 
losures ^(hn);^(en)in C. It 
an be demonstrated using a symmetri
 fun
tion approa
h that theskein C+, when 
onsidered as an algebra, is spanned by monomials in thefhm : m � 0g.Now 
onsider the image of these elements under the involution �. Wehave �(hn) := h�n and �(en) := e�n. Similarly, the skein C� is spanned bymonomials in the fh�l : l � 0g.Combining these sets, the whole skein C is spanned by monomials infh�l ; hm : l; m � 0g.4.3 Some elements of ANow, if we keep the elements we have just de�ned in mind, and re
all themaps l : C�A ! A and r : A�C ! A, we 
an de�ne the following elementsof A. Let ln := l(hn; e) = hn

and rn := r(e; hn) = hn :Now given these two elements of A we de�neyn := [n + 1℄ � hn+1whi
h satis�es the relationyn = s�1ayn�1 + ln: (4.1)Applying the mirror map, � to these elements of A we noti
e�yn = yn; �a = a; �ln = rn; s 7! s�1;57



so (4.1) be
omes yn = sayn�1 + rn: (4.2)We de�ne further elements of A. We havel�n = r(e; h�n) = nh* ;
r�n = l(h�n; e) = nh*

and y�n = [n + 1℄ � hn+1
* :Similarly we obtain the relationy�n = s�1a�1y�n�1 + l�n (4.3)and under the mirror map this be
omesy�n = sa�1y�n�1 + r�n: (4.4)We re-write relations (4.4) and (4.3) in order that they are similar in styleto (4.1) and (4.2) respe
tively. We gety�n�1 = s�1ay�n + 
�n�1 (4.5)and y�n�1 = say�n + ��n�1: (4.6)with 
�n�1 = �s�1ar�n and ��n�1 = �sal�n.Now solving pairs of equations (4.1,4.2) and (4.5,4.6) we obtain(s� s�1)yn = sln � s�1rn (4.7)and (s� s�1)y�n�1 = s
�n�1 � s�1��n�1: (4.8)Finally let us re
all the 
losure map we de�ned on A. We have� : A ! C

A 7! A :58



4.4 Some matrix resultsIn this se
tion we introdu
e a system of abbreviations for matri
es in orderto fa
ilitate the path to our goal. Then using these abbreviations we givesome results for determinants of 
ertain matri
es of skein elements.4.4.1 Fixed indexing matri
esHere we des
ribe the idea of a �xed indexing matrix (FIM), ea
h of whi
hhaving asso
iated to it an indexing ve
tor (IV). One main feature of thematri
es to be 
onsidered here is that rows will either 
ontain elements forwhi
h all are starred or all are non-starred.The IV will 
ontain the indi
es of the elements in the �rst 
olumn of theFIM, the remaining indi
es then being determined su
h that the indi
es ofelements in starred rows de
rease sequentially and the indi
es of elements innon-starred rows in
rease sequentially.We shall think of the FIM and the IV as a pair whi
h de�nes a matrix.We write M = (A; V ) for the matrix M represented by the FIM A and theIV V .Further simpli�
ation of notation is possible due to the spe
i�
 format ofthe matri
es we are interested in. In ea
h FIM we shall only give one rowto represent ea
h of the starred and non-starred rows. This will be possiblesin
e the elements in any 
olumn will be of a similar type, di�ering onlyin the indi
es of its elements. Furthermore, there will be a similarity inelements along rows, with 
hanges o

uring in the jth 
olumn, for a �xed j.An example will help to 
larify this des
ription.Example. Let A be the 8� 8 FIMA = �a� � � � b� b� 
� � � �a � � � b b 
 � � ��and V be the IV
V = 0BBBBBBBBBB�

34351231
1CCCCCCCCCCA ;
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then taking j = 4, we have the matrix M represented by A and V is
M = (A; V ) =

0BBBBBBBBBBB�
j=4#a�3 a�2 a�1 b�0 b��1 
��2 
��3 
��4a�4 a�3 a�2 b�1 b�0 
��1 
��2 
��3a�3 a�2 a�1 b�0 b��1 
��2 
��3 
��4a�5 a�4 a�3 b�2 b�1 
�0 
��1 
��2a1 a2 a3 b4 b5 
6 
7 
8a2 a3 a4 b5 b6 
7 
8 
9a3 a4 a5 b6 b7 
8 
9 
10a1 a2 a3 b4 b5 
6 
7 
8

1CCCCCCCCCCCA:In the forth
oming se
tions, the matri
es we will use will all be of size(k� + k) � (k� + k) with the top k� rows being starred and the bottom knon-starred. Furthermore, there will be only two di�erent indexing ve
torsrequired. We de�ne them now.De�nition 3. Let V1 and V2 be the (k� + k)-row IV's
V1 :=

0BBBBBBBBBBB�
i1 � 1i2 � 1...ik� � 1ik�+1ik�+2...ik�+k

1CCCCCCCCCCCA and V2 := V1 +
0BBBBBBBBBBB�
11...100...0
1CCCCCCCCCCCA =

0BBBBBBBBBBB�
i1i2...ik�ik�+1ik�+2...ik�+k
1CCCCCCCCCCCA :

4.4.2 Matri
es of skein elementsRe
all the various skein elements 
onstru
ted and de�ned in Se
tion 4.3 andthe relations between them. We shall now use the notation developed aboveto state and prove some results for elements of the skein A whi
h are deter-minants of matri
es of these simple skein elements.
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Lemma 4.1. For all j � 1 we havedet  j#
� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#
� � � � y� y� �� � � �l � � � y y r � � � !; V1!:Proof. Apply 
olumn operation
j+1 7! sa
j + 
j+1using (4.6) on starred rows and (4.2) on non-starred rows. �Corollary. For all j � 1 we havedet  j#
� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#
� � � � y� � � �l � � � y � � � !; V1!: (4.9)Lemma 4.2. For all j � 1 we havedet  j#
� � � � y� y� 
� � � �l � � � y y l � � � !; V1! =det  j#
� � � � y� 
� � � �l � � � y l � � � !; V1!:Proof. Apply 
olumn operation
j+1 7! �s�1a
j + 
j+1using (4.5) on starred rows and (4.1) on non-starred rows. �61



Corollary. For all j � 1 we havedet  j#
� � � � y� � � �l � � � y � � � !; V1! =det  j#
� � � � y� 
� � � �l � � � y l � � � !; V1!: (4.10)Lemma 4.3. For all j � 1 we havedet  j#
� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#
� � � � y� 
� � � �l � � � y l � � � !; V1!:Proof. Combine determinantal equations 4.9 and 4.10. �De�nition 4.(a) �k�+k := det��
� � � �l � � �� ; V1� 2 A;(b) �0 := det���� � � �r � � �� ; V1� 2 A;(
) In general, for j � 0,�j := det � j#
� � � � 
� �� � � �l � � � l r � � � �; V1! 2 A:Lemma 4.4. For all j � 1 we have(s� s�1) det � j#
� � � � y� �� � � �l � � � y r � � � �; V1! = s�j � s�1�j�1:62



Proof.(s� s�1) det  j#
� � � � y� �� � � �l � � � y r � � � !; V1!= det  j#
� � � � (s� s�1)y� �� � � �l � � � (s� s�1)y r � � � !; V1!= det  j#
� � � � s
� � s�1�� �� � � �l � � � sl � s�1r r � � � !; V1!(using equations (4.7) and (4.8))= det  j#
� � � � s
� �� � � �l � � � sl r � � � !; V1!� det  j#
� � � � s�1�� �� � � �l � � � s�1r r � � � !; V1!= s�j � s�1�j�1 �Furthermore,Lemma 4.5.(s� s�1) k�+kXj=1 s2j�1 det  j#
� � � � y� �� � � �l � � � y r � � � !; V1! =s2(k�+k)�k�+k ��0:
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Proof.(s� s�1) k�+kXj=1 s2j�1 det  j#
� � � � y� �� � � �l � � � y r � � � !; V1!= k�+kXj=1 s2j�1(s� s�1) det  j#
� � � � y� �� � � �l � � � y r � � � !; V1!= k�+kXj=1 s2j�1(s�j � s�1�j�1)= s2(k�+k)�k�+k ��0: �4.5 The �nal pushIn this se
tion we 
ombine all the results of the pre
eding se
tions to takeus to our �nal goal, expli
itly identifying a basis for the Hom
y skein of theannulus C.Firstly we are required to de�ne some further matri
es.De�nition 5.(a) �0k�+k := det��r� � � �l � � �� ; V2� 2 A;(b) �00 := det��l� � � �r � � �� ; V2� 2 A;Now relating these matri
es to those de�ned in De�nition 4 we �ndProposition 4.6. The following relations hold:(i) �0k�+k = (�sa�1)k��k�+k;(ii) �00 = (�s�1a�1)k��0:Proof. To the left hand side of the relations apply the fa
ts that r�i =�sa�1
�i�1 and l�i = �s�1a�1��i�1 respe
tively to the top k� rows. We alsoallow for the shift in indi
es on the top k� rows with the 
hange in indexingve
tor. The relations follow immediately. �64



The following lemma uses all the results of the previous se
tion to give arelation for elements in C through appli
ation of the 
losure map � : A ! C.Lemma 4.7.s2k�(s2k � (�0k�+k)� �(�00)) =k�+kXj=1 s2j Æ det��h� � � �h � � �� ; V2�� det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2!!Proof. We begin with the left hand side of the equation:s2k�(s2k � (�0k�+k)� �(�00))= �(s2k�(s2k�0k�+k)��00)(sin
e � is a linear map)= �(s2k�(s2k(�sa�1)k��k�+k � (�s�1a�1)k��0))(by Proposition 4.6)= �((�a�1s)k�(s2(k�+k)�k�+k ��0))= � (�a�1s)k�(s� s�1) k�+kXj=1 s2j�1 det � j#
� � � � y� �� � � �l � � � y r � � � �; V1!!(by Lemma 4.5)= � (�a�1s)k�(s� s�1) k�+kXj=1 s2j�1 det � j#
� � � � y� 
� � � �l � � � y l � � � �; V1!!(by Lemma 4.3)= � k�+kXj=1 (�a�1s)k�s2j�1 det � j#
� � � � s
� � s�1�� 
� � � �l � � � sl � s�1r l � � � �; V1!!(after multiplying 
olumn j by (s� s�1) and using relations (4.7,4.8))
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= � k�+kXj=1 (�a�1s)k�s2j det��
� � � �l � � �� ; V1�!� � k�+kXj=1 (�a�1s)k�s2(j�1) det � j#
� � � � �� 
� � � �l � � � r l � � � �; V1!!(by splitting the matri
es with the entries in the jth 
olumn)= k�+kXj=1 s2j � det��r� � � �l � � �� ; V2�!� k�+kXj=1 s2j � det � j#r� � � � l� r� � � �l � � � s�2r l � � � �; V2!!We now apply the 
losure map to the determinants and re
alling the skeinmap �' we see the result follows. �We now 
al
ulate the values of �'(h�n) and �'(hn).Proposition 4.8. �'(h�n) = (v�1(s2n�1 � s�1) + Æ)h�nand �'(hn) = (v(s�2n+1 � s) + Æ)hn:Proof. We are 
onsidering the idempotent 
losures h�n and hn, therefore weare interested in the single row Young diagram with n 
ells. We apply theresults for the values of t� and �t� given in Chapter 2 (see also [MH02℄), where� = (n) with the 
ontent of the 
ells being (from left-to-right) 0, 1, 2,: : :,n� 1. After some 
an
ellation, the results follow. �Corollary (of Lemma 4.7 and Proposition 4.8).s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =det  j#h� � � � (v�1s2ir+1 + s2j(Æ � s�1v�1))h�ir�j+1 h� � � �h � � � (vs1�2ir + s2j(s�2Æ � vs�1))hir+j�1 h � � � !; V2!where ir is the value in the rth row of the indexing ve
tor V2.66



Proof. The result is immediate after �nding the index for the jth 
olumnfrom the indexing ve
tor. �We noti
e the following about the se
ond summand of the s
alars multi-plying the h�ir�j+1 and the hir+j�1 in the previous matrix.Proposition 4.9. Æ � s�1v�1 = s�2Æ � s�1v:Proof. Sin
e Æ = v�1�vs�s�1 , we haveÆ(s� s�1) = v�1 � v) sÆ � v�1 = s�1Æ � v) Æ � s�1v�1 = s�2Æ � s�1v: �From this point we shall de�neA�;� := det��h� � � �h � � �� ; V2� ;and let ��ij := ��i + �j;and �ij := �i + �j;where ��i := v�1s2ir+1;�i := vs1�2ir ;and �j := s2j(Æ � s�1v�1):As explained, the entries in V2 determine the values of the subs
ripts ofthe entries in A�;�. Here, the entries of V2 will be asso
iated with the numberof 
ells in the Young diagrams � and �, although we shall not indi
ate herehow this asso
iation is made.Therefore we haves2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =det  j#h� � � � ��ijh� h� � � �h � � � �ijh h � � � !; V2!67



Lemma 4.10.k�+kXj=1 s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =(��11 + � � �+ ��k�k� + �k�+1;k�+1 + � � �+ �k�+k;k�+k)A�;�:Proof. We 
ombine the previous statements noting thatk�+kXj=1 s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =k�+kXj=1 s2j det � j#h� � � � ��i h� h� � � �h � � � �ih h � � � �; V2!+ (�1 + � � �+ �k�+k)A�;�:Now apply a general formula noted by Luka
 in [Luk01℄ (see also [Luk℄) forvariables wij and �i,rXj=1 det0B�w11 � � � w1 j�1 �1w1j w1 j+1 � � � w1r... ... ... ... ...wr1 � � � wr j�1 �rw1j wr j+1 � � � wrr1CA = p det0B�w11 � � � w1r... ...wr1 � � � wrr1CAwhere p = �1 + � � �+ �r. The result follows. �In the following theorem we shall gain a glimpse of the eigenve
tors Q�;�,as required.Theorem 4.11. A�;� is a s
alar multiple of Q�;�.Proof. Re
all the statement of Lemma 4.7. The left-hand-side, on 
al
ulatingthe e�e
t of the 
losure map, iss2k�(s2k � (�0k�+k)� �(�00)) = s2(k�+k)ÆA�;� � s2k� �'(A�;�):The right-hand-side, through the pre
eding manipulation, isk�+kXj=1 s2j Æ det��h� � � �h � � �� ; V2�� det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2!!=   k�+kXj=1 s2j! Æ � k�Xj=1 ��jj + k�+kXj=k�+1 �jj!!A�;�:68



Combining these two statements yields, on re-arrangings2k� �'(A�;�) =   s2(k�+k) � k�+kXj=1 s2j! Æ + k�Xj=1 ��jj + k�+kXj=k�+1 �jj!A�;�:Now, in Chapter 3 we had a result that stated that every eigenve
tor of �' isa multiple of one su
h Q�;�. We have seen that A�;� is an eigenve
tor of �', oris zero. We 
an 
on�rm that it is non-zero by 
omparing the spe
ialisation of< A�;� > (the evaluation of A�;� in the plane), when v = sN with a suitable< Q� >, for large enough N . Hen
e the result follows. �On
e we have identi�ed the eigenvalue of A�;� as t�;�, we then knowthat A�;� is a multiple of Q�;� and 
an hen
e identify the indexing ve
torappropriate for pairs of Young diagrams (�; �).
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Chapter 5A Survey Of Related WorkWe end this work with a brief 
hapter to dis
uss some re
ent work of otherauthors. The work to be dis
ussed here takes a very di�erent approa
h tothe subje
t with a larger emphasis on algebra and lesser so on the geomet-ri
 interpretation. It is still however a 
lose relative of what we have beendis
ussing here in the pre
eding 
hapters.5.1 Centralizer algebras of mixed tensor rep-resentationsVarious parties have dis
ussed a 
onstru
tion similar to the generalized He
kealgebra Hn;p dis
ussed here. Its 
onstru
tion however is di�erent from thegeometri
 approa
h we adopted.Firstly we 
onsider a one variable algebra. For this algebra, the variableq 
an be 
onsidered in the same 
ontext as the variable for the He
ke algebravariant des
ribed previously and denotedHn(q). A

ording to Jimbo [Jim86℄,the He
ke algebra Hn(q) is the 
entralizer of the a
tion of the spe
ial lineargroup Hq(slr) on 
nVq where Vq is the natural r-dimensional representationof Uq(slr). This is also sometimes 
alled the ve
tor representation.This is then extended to an algebra denoted Hn;p(q). This is then de�nedto be the 
entralizer of the a
tion of the general linear group Uq(glr) on(
nV �q )
 (
pVq) where Vq is again the natural r- dimensional representationof Uq(slr) and V �q its dual.Su
h an algebra is 
onsidered by Kosuda and Murakami [KM92, KM93℄and also by Halverson [Hal96℄. The 
onne
tion is made by these authorsbetween this algebra and the Hom
y polynomial of 
losed (n; p)-tangles.Perhaps more �tting for our approa
h, Ledu
 introdu
es a two variablealgebra in a similar way [Led94℄, denoted An;p(z; q) where the q appears as70



it does above, and the z 
orresponds to the v we see in the 
oeÆ
ient ringfor Hn;p and is present to deal with any 
urls within the tangles. The Æ weuse is the equivalent to the x used by Ledu
.Ledu
 o�ers a 
onvenient way to see how these algebras, shortened nowto An;p, display the natural embedding des
ribed earlier. We know thatAk;l � An;p for 0 � k � n and 0 � l � p. We then see that the algebras An;p
an be arranged in the form of Pas
al's triangle.A0;0A1;0 A0;1A2;0 A1;1 A0;2A3;0 A2;1 A1;2 A0;3... ... ...In this triangle we may say that an algebra Ak;l is a subalgebra of An;p ifand only if there is a path from Ak;l to An;p pro
eeding from top-to-bottomobeying the dire
tions of the arrows. We also noti
e that the outer points ofthe triangle are isomorphi
 to the He
ke algebra, and the sum i+ j for ea
hAi;j is 
onstant at ea
h level.Remark. Ledu
 gives a presentation of An;p in terms of generators and rela-tions (De�nition 2.2, [Led94℄). The presentation given is isomorphi
 to thepresentation given by the author in the main theorem of [Had℄ where it isproved to be a presentation for the skein theoreti
 algebra.In all these pie
es of work, the idea of indexing by pairs of Young dia-grams is present, however unlike the approa
h taken in Chapter 4, they usea 
on
ept they des
ribe as stair
ases.Ledu
 ends his thesis [Led94℄ with a des
ription of the potential 
onne
-tion between this algebra and 
al
ulating the Hom
y polynomial for 
losuresof tangles.Bar
elo and Ram o�er a survey to some of this work and more besidesin [BR99℄. Their survey is primarily from the point of view of 
ombinatorial71



representation theory and hen
e they in
lude mu
h that is beyond the s
opeof this thesis. They do in
lude a 
omprehensive list of referen
es.Remark. In other related work by Kosuda [Kos99℄, irredu
ible representationsof the He
ke 
ategory H are shown to de�ne isotopy invariants of orientedtangles. The set of oriented tangles (up to isotopy) forms a 
ategory denotedOT A. Following Turaev [Tur90℄, the He
ke 
ategory H is de�ned as OT Afa
tored by the Hom
y skein relations. This method is then used to 
omputethe Hom
y polynomial in [Kos97℄.5.2 The Hom
y skein module of S1 � S2Gilmer and Zhong dis
uss the Hom
y skein module of S1 � S2 in [GZ℄.This skein S(S1 � S2) is des
ribed as a 
ertain quotient of S(S1 � D2),denoted in the pre
eeding 
hapters by C. In order to dis
uss this quotient,the authors �rst give a basis for the skein S(S1�D2) in terms of 
losures of theAiston-Morton idempotents of the He
ke algebra. They o�er the followingproposition, re-written here using our terminology.Proposition 5.1. C has a 
ountable in�nite basis given by Q0�;� where � and� vary over all Young diagrams.The spa
e S1�S2 is then 
onsidered to be obtained by adding a 2-handleand a 3-handle to the solid torus. The skein of this spa
e is studied via
onsidering another skein, S(S1�D2; A; B), the skein of the solid torus withan input point A and an output point B.Two bases are then given for S(S1�D2; A; B). The �rst is given in termsof the basis of S(S1 � D2) given by Turaev and denoted here, using ourterminology, by the set fAm : m 2 Zg:The se
ond basis is related to the basis of C des
ribed above as Q0�;�, the
losures of two suitably oriented Aiston-Morton idempotent elements.5.3 Con
luding remarksThe author hopes that through this work some interesting questions havebeen answered. On the one hand it is hoped that the answering of thesequestions goes a small way in improving our understanding of this area ofskein theory; on the other, one hopes that more questions are raised as aresult. 72
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