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Abstract

This thesis aims to use Homfly skein theory to give a geometric interpre-
tation of useful and interesting algebraic objects. We consider tangles and
the skein of the annulus. Previous work has generally been restricted to con-
sidering strings in tangles or around the annulus travelling in one direction.
Our extension allows strings travelling in both directions. We extend many
of the existing results into this arena, at the same time as developing some
new ideas.
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Introduction

In this work we aim to extend the understanding of Homfly skein theory, in
particular when trying to give a geometric interpretation of useful and inter-
esting algebraic objects. Much work that precedes this thesis has considered
the skein theoretic view of algebraic objects such as the Hecke algebra, in-
cluding [Jon87, MT90, Mor93, Ais96, AM98, Luk01] and many more besides.

Our extension begins with an algebra H, , in which strings in the ge-
ometric viewpoint can be considered in both directions. We now offer the
highlights from each chapter.

The overall aim of this work is to develop some new concepts at the
same time as bringing together much recent work that has previously only
appeared spread across the literature.

The first chapter gives the necessary ingredients for the remainder of
the work. The concept of Homfly skein theory is introduced. The Homfly
polynomial is first defined and is then used to give a general definition of a
Homfly skein.

Before giving specific examples of Homfly skeins, a description of some
useful skein maps is given, followed by a slight diversion into defining the
concepts and terminology associated with Young diagrams.

Finally four Homfly skeins are defined. Firstly the skein of a rectangle
with n input and n output points. This is known to be isomorphic to the
Hecke algebra H,,.

An extension of this is then reintroduced from a geometric viewpoint
(initially given by [MW, Had]). This algebra is denoted H, , and comes from
considering the skein of a rectangle as with H,,, but this time it should have
n input and p output points on one side and n output and p input points on
the opposite side.



We then give two different skeins of the annulus. The first is denoted C
and is broken down into subspaces which are defined by wiring the previous
two skeins, H, and H,, ,, into the annulus.

The second is a lesser known skein, denoted A. It arises from considering
the annulus with an input point specified on the inner boundary component
and an output point specified on the outer boundary component. It is iso-
morphic to a skein used by Kawagoe [Kaw98] with the input and output point
on the same boundary component. It has been adapted more recently as it
lends itself well to providing elegant proofs through its unexpected algebraic
properties. Although it is linearly isomorphic to the skein of Kawagoe, it is
this more recent adaptation that has meant it could be considered as an al-
gebra. It is the commutative algebraic properties that make the calculations
we rely upon later in Chapter 4 possible. As we shall see, elements of the
skein are used in determinants, see also in [Mor02b, Luk01].

Chapter 2 defines the Murphy operators. The original context for such
objects was the group algebra C[S,,] of the symmetric group and is defined
in terms of sums of transpositions. This concept was extended to the Hecke
algebra H, by Dipper and James [DJ87]. We offer a survey of some results
involving these elements and the centre of H,,, mainly by Ram and Morton.
This includes a nice skein theoretic representation of the Murphy operators
and some interesting connections between these elements, the centre of H,
and the symmetric functions (see [Mac79] for a complete survey of symmetric
functions).

This chapter ends with an introduction of a potential set of Murphy
operators for the algebra H,,,. We also attempt to connect these to central
elements of H, ,. Following the precedent of the H, case, we find there
is a path from these elements to a certain type of symmetric function, the
so-called supersymmetric functions.

The third chapter describes the results of work by the author with Morton.
These results have now been published in [MH02]. The work of Chapter 2
is used to give an understanding of two natural linear maps defined on the
skein of the annulus C encircling it with a loop once.

This work has arisen as a result of a paper by T.-H. Chan [Cha00]. There
Chan discusses the Homfly polynomial of reverse string parallels of the Hopf
link. In this chapter we see that the calculations made by Chan can be made
very readily using our techniques. An essential ingredient to our techniques
is showing that these linear maps have a set of distinct eigenvalues, answering
a question raised by Chan.

We end this chapter by using our results to calculate the Homfly poly-



nomials of some specific reverse string satellites of the Hopf link. We also
observe that this approach is still incomplete due to a minimal knowledge of
the elements @), , € C.

The intention of Chapter 4 is to fill a gap in the knowledge as noted in
Chapter 3. This gap is the minimal knowledge of the elements )y, in the
full skein C. The final goal is to give an explicit formula for @, , in terms of
the determinant of simpler skein elements.

In trying to achieve this goal we are required to take a diversion through
the skein A whilst introducing a new type of matrix whose entries follow a
specific pattern and can be manipulated in a very prescribed way.

After much work on these matrices we draw together the techniques
learned and results discovered to give the derivation of a matrix whose de-
terminant will yield an explicit formula for the @) ,.

The final chapter, Chapter 5, aims to finish this work by giving a brief
survey of some work of other authors that relates to the general themes dis-
cussed here. Although the overlap between our work and that to be discussed
in this chapter has not been fully explored, it is felt by the author that such
an exploration has potential for further study.

It is hoped by the author that these avenues may be given some thought
and their potential explored.



Chapter 1
Skein Theory

The purpose of this chapter is to introduce the basic constructions that will
be central to the majority of the work to follow.

1.1 The Homfly polynomial

The Homfly polynomial is a two-variable isotopy invariant of oriented links
and, since its discovery, has been the subject of much study. It was first
described by several groups; [FYH'85, PT87]. Its discovery followed the
construction of a simpler polynomial invariant V', the so-called Jones poly-
nomial [Jon85], found using von Neumann algebras and braid groups.

Various versions of the Homfly polynomial appear in the literature. The
framed version to the fore in this work, denoted for a link L, P(L), is deter-
mined by the Homfly polynomial skein relations:

P(Ly)—P(L) = (s—s5 YYP(L)
and P(T,) = v 'P(Ty),

where L, L and L, are oriented links which differ only in a disc as shown
in Figure 1.1; and 7'y and T} differ only in a disc as shown in Figure 1.2.
The second of the skein relations given above allows one to take account
of the writhe of the link.
We normalize the Homfly polynomial by setting P(()), where ) is the
empty link, equal to 1. Also, a direct consequence of the skein relations is

that
e

-1

P(LUQ) =

where LU() is the link L with a disjointly embedded null-homotopic oriented
loop.

P(L)

§— S



A XK

L, L_ Lo

Figure 1.1: L, L and L, differ only as shown.

T, T,

Figure 1.2: T, and Ty differ only as shown.

Remark. (i) The Homfly polynomial of the oriented m-component unlink,
U™ =1, O, is P(U™) = 6™, where § = =0

s—s—1°

Remark. (ii) If L* is the reflection of a link L, then

P(L*)(s,v) = P(L)(s™",v™").

1.2 Homfly skein theory

Skein theory was first introduced by J.H. Conway, a Liverpool born math-
ematician, [Con70]. Skein theory can be considered from many viewpoints;
here we are interested in the skein theory associated to the Homfly polyno-

mial.
Following the description of the Homfly polynomial given above, the Hom-
fly skein relations are

X e
and d\ —




Now let F be a planar surface with a fixed (possibly empty) set of input
and output points on the boundary. We allow the surface to have holes. We
consider diagrams in F' which consist of oriented arcs joining input points
to output points and oriented closed curves, up to Reidemeister moves Ry
and Ry [Rei32] (reminders of all three Reidemeister moves are shown in

o i K
/OIS
PEDIE

Y X
" />\H/<<

Figure 1.3: Reidemeister moves Ry, Ry and Ry

Within a diagram in F', the strands at a crossing point are distinguished
in the conventional way as an overcrossing and an undercrossing. Clearly,
if the surface F' is to have input and output points there must be an equal
number of each.

Similarly to the Homfly polynomial skein relations, it is a consequence
that for a diagram D, D L1 () = =0

1
The Homfly skein, S(F), of; ;urface F' is then defined to be A-linear
combinations of diagrams in F', modulo the Homfly skein relations given
above, for a suitable coefficient ring A.
The coefficient ring can be taken as A = Z[v*!, s*!] with monomials in
{s¥ —s7% : k > 0} admitted as denominators.

We notice the empty diagram is only admitted when F' has no boundary




points specified. The relation which is given above as a consequence of the
Homfly skein relations allows the removal of an oriented nul-homotopic closed
curve without crossings, at the expense of multiplication by the scalar § =
’s’:lsif. This relation is a consequence of the main relations except where the
removal of the curve leaves the empty diagram.

1.3 Skein maps

1.3.1 Wiring maps

We can map the skein of a surface, F', into the skein of another, F” say. We
do this through a construction called a wiring. A wiring w of F into F”’ is
a choice of inclusion of F into F” and a choice of a fixed diagram of curves
and arcs in F'\F. The boundary of this fixed diagram is the union of the
distinguished set of F' and F’. Examples of wiring will be essential in some
of the work to follow.

1.3.2 A mirror map
We define a mirror map,
“:S(F) = S(F")

induced by switching all crossings in the diagram, coupled with inverting v
and s in A.

1.3.3 180° rotation

This skein map is induced by a 180° rotation of diagrams in F' about the
horizontal axis A, as shown in Figure 1.4. This is denoted * : S(F') — S(F).
There is no effect on s and v in A.

A— F -

Figure 1.4: The involution * rotates F' about the axis A.



1.3.4 An evaluation map

There is also an evaluation map,
():S(F) = A.

This is obtained by wiring F' into the plane by some prescribed wiring map,
in particular, if F' has no boundary points then just “forget” its boundary.
Then for an element X € S(F'), (X) is just the framed Homfly polynomial
of X after wiring into the plane.

1.3.5 A closure map

Given a surface F' with a non-empty set of boundary points, we can wire
elements X € S(F) into the skein of another surface F’ without any boundary
points using a closure map. Such a map would have arcs in F'\ F" joining, in
some prescribed way, the input points to the output points of F'.

1.4 Young diagrams

We now take a temporary diversion from skein theory to discuss the well
studied topic of Young diagrams. Only a brief description will be given here
but a fuller account appears in a great many texts such as [Wey46, FHO1,
Jon90]. Here we shall concentrate only on the details essential to our studies.

A Young diagram describes both a partition and a graphical represen-
tation of the partition. Let A be a Young diagram representing the integer
n. Our A is then an array of square cells (each of equal size) with [ rows.
We denote the partition A = (A, Aa, ..., A, ..., \) such that there are ),
cells in the 7" row enumerated from top to bottom, with 22:1 A = n and
M>A 2> >N >N

For n = 0 the Young diagram (0) is the empty diagram {).

The number of cells in a Young diagram A is denoted by |A| and the length
[(\) = [ is the number of non-zero rows. The conjugate of A is denoted \Y
and is the transposition of A such that the rows of )\ are the columns of \V.
In other word, this is equivalent to reflecting in the leading diagonal. We
have (AY)Y = X for any Young diagram .

We also assign a co-ordinate system to each Young diagram. The j** cell
in the 7' row reading from left-to-right, top-to-bottom, is denoted (4, j) € A,
and the content cn(c) of the cell ¢ = (i,5) € A is defined to be j —i. We
have that the hook length of a cell (i,j) € A is defined to be hl(i,j) =
Ai—i+ A —j+ 1



The number of partitions of a natural number n (equivalently, the num-
ber of Young diagrams with n cells) shall be denoted m(n). (The standard
notation used for the number 7(n) is p(n); our alternative notation has been
chosen to avoid a clash with notation required later in this work.) Finally,
the standard tableau T'(\) is a Young diagram for A with the numbers 1 to n
assigned to each cell, such that the numbers increase from left-to-right and
from top to bottom.

1.5 The Hecke algebra

The Hecke algebra, H, of type A,_; is a deformed version of the group alge-
bra of the symmetric group S,,. It has been well studied from many different
viewpoints, and hence has many different but equivalent incarnations. It will
be most conveniently thought of in this context as having explicit presenta-
tion

0i0; = 0;0; li — 7] > 1;
H,=(o0;:1= 1,...,n—1 0i0;4+10; = 0j410;0;41 - 1<i<n—1; .
o;—o0;  =5—s5"1

We discuss how to translate from this variant into some of its isomorphic
variants at the end of this section.

Now consider the following geometric scenario. Consider a surface I x I, a
rectangle, with n input points specified across the bottom and n output points
across the top. Denote this surface F' = R]!, as shown diagrammatically in
Figure 1.5.

1
Figure 1.5: The surface R}..

Diagrams in F' then consist of oriented arcs joining the inputs to the



outputs and oriented closed curves, up to Reidemeister moves Il and III.
Such diagrams in R are known as n-tangles.

Now consider the skein S(R]), A-linear combinations of n-tangles in R,
modulo the Homfly skein relations.

Composition of diagrams D; and D, in R} is achieved by stacking Ds
above D;. This composition induces a product which makes S(R]!) into
an algebra. It has a linear basis of n! elements and its generators are the

elementary braids
A 13K
AN

where the crossing occurs between the i'" and i+1'" string, fori = 1,...,n—1.

It is shown in [MT90] that the skein theoretic algebra S(R)) with coeffi-
cient ring extended to include v*', is isomorphic to the Hecke algebra, H,,, of
type A,_1. We notice that the variable v does not appear in the presentation
of the abstract algebra H,. It is present when following a geometric route
to allow one to reduce general tangles to linear combinations of braids, by
means of the Homfly skein relations. The variable v comes into play in deal-
ing with curls using the second Homfly skein relation and in handling disjoint
closed curves. In other words it is required to keep track of the framing of
the diagrams.

From this point we shall, perhaps rather lazily, consider S(R!) and H,
synonymously. The juxtaposition of putting tangles S € H, to the left of
T € H,, is denoted S ® T and is an element of H, ® H,,, — H, .

In the special case s — s~! = 0, the Hecke algebra reduces to C[S,]| with
o; becoming the transposition (i i+ 1). In this case there is no possibility
of any curls being present hence the v is not required in the presentation.

As said previously, there are different isomorphic variants of the Hecke
algebra. We will now describe two others and show how to translate between
our standard definition and these variants.

One variant includes an extra variable x whose function it to keep track
of the writhe of a diagram. We denote this variant H,(x, z) and obtain H,
from it by setting z = 1 and z = s — s~ !. The quadratic relation for H,(z, z)
in terms of generators p; is then 7 1p; — xpz-_l =z.

A further variant is seen in many algebraic texts. We shall denote this
variant H,(q) as it is usually seen to include the indeterminate gq. The
quadratic relation is usually given with roots ¢ and —1. With generators
7; the quadratic relation is 72 = (¢ — 1)7; + ¢.

The three variants of the Hecke algebra given here are all isomorphic,

10



related by the isomorphisms given below:

= Hy(z,2) = Ha(q)
o; > Iilpi
pi s,

1

where ¢, z and s are related by z = s — 57! and ¢ = s°.

1.5.1 Quasi-idempotent elements in H,

The group algebra C[S,] has idempotent elements which are described by
the classical Young symmetrizers. For a Young diagram A its Young sym-
metrizer is the product of the sum of permutations which preserve the rows
of the standard tableau T'(\) and the alternating sum of permutations which
preserve the columns.

It is then reasonable to suppose that corresponding elements exist in H,
replacing permutations by suitably weighted positive permutation braids.
Jones [Jon87] describes the two idempotents which correspond to the single
row and single column Young diagrams, with other authors giving descrip-
tions for general A, including Gyoja [Gyo86].

Given the Gyoja construction as a starting point, a pleasing skein picture
based on the Young diagram A\ was given by Aiston and Morton [Ais96,
AM98]. With this it was possible to see many pleasing properties for these
idempotent elements.

For H,, we denote these idempotent elements e, with |A\| = n. Before we
continue we briefly describe the basic process followed in constructing such
elements. However, for a full account of this the interested reader should
still refer to [AM98] or [Ais96]. We deliberately avoid any technicalities here
to avoid repetition later when we construct single row and single column
idempotents in Section 2.3. Instead we shall concentrate on the rather elegant
pictorial view of the ey and some of the basic properties.

Recall that the quadratic relation for the presentation of the Hecke algebra
is

Ji—ai_lzs—s_l.

This can be factorised to (0; —a)(o; —b) = 0 with a = —s~! and b = s. Now

define
ap = Z (_a)il(ﬂ)ww and bn - Z (_b)il(ﬂ)wm

TESh TESh

where [(m) = wr(w,), the writhe of the braid w;,.
Now for each A = (A1, Ag, ..., Ar) we want to define elements e,. First
we give a three-dimensional picture of the elements, referring to it now as

11



E\. Imagine the strings of the tangle lined up to pass through the centres
of templates of the Young diagram A at its top and bottom. At its input
points, the strings are grouped together with linear combinations a; of braids
where the rows have j cells. At the output points, the strings are grouped
with linear combinations of b; of braids where the columns have j cells.

To make this explanation clear we now use an explicit example. Consider
the Young diagram v = (4, 3,1,1). We then have that E, is the tangle shown
in Figure 1.6.

a4%/li /.i /.i / i /

C@,% /:I / | / | /

CLI% |
ale

bs

Figure 1.6: The 3-dimensional representation of F, with v = (4,3,1,1).

Now how do we translate from this three-dimensional picture to our usual
flat interpretation of tangles? From this three-dimensional picture we flatten
it out into two dimensions, ensuring that the resulting crossings that are
made are all positive.

A main feature of these elements is captured in the following theorem.

Theorem 1.1 (Aiston-Morton [AM98]). Let A and p be Young diagrams
with n cells. Then

exe, = 0 for X\ # u,

ei = ayen for some scalar a.

Thus distinct Young diagrams determine orthogonal elements, while each ey
s a quasi-idempotent element of H,,.

12



More information on these interesting elements will emerge during the
course of this work. As a taster, we will be particularly interested in the
effect of central elements of H, on the e,. Given elements ¢ € Z(H,), we
will want to find the values of ¢, where cey, = cye,.

There are clearly 7(n) of these elements in H,, as they coincide with the
number of partitions of n.

1.6 H,, — A generalized Hecke algebra?

We now consider a family of extended variants of the Hecke algebras discussed
previously.

Let us consider a surface I x I, a rectangle, with n input and p output
points specified across the top, and matching n output and p input points

across the bottom. Denote the surface F' = R}'P, as shown in Figure 1.7.

Vitiy Arria

Vitry Ao
np

Figure 1.7: The surface R 7.

As before, diagrams in F' consist of oriented arcs joining the inputs to
the outputs and oriented closed curves, up to Reidemeister moves II and III.
Such diagrams in R}’ are to be known as (n, p)-tangles.

Write Hy, for the skein S(R;’?). There is a natural algebra structure
on H,, induced by placing one (n, p)-tangle above the other. When we set
n =0 (or p = 0), we notice that the resulting algebra is isomorphic to the
Hecke algebra H, (or H,, respectively).

The algebra H,,, has been studied by Kosuda and Murakami, [KM93], in
the context of sl(N), endomorphisms of the module V®" @ V& where V is
the fundamental N-dimensional module.

The author of this work has also studied this algebra previously [Had].
This included describing the algebra geometrically as above and finding an
explicit skein-theoretic basis for it. We briefly discuss some of the details

13



from [Had], with further details about H,, being revealed in subsequent
chapters of this work as they are required.

Firstly, one should observe that there is a linear isomorphism of H, ,
with H(,,,), however this is not in general an algebra isomorphism. This
linear isomorphism is a wiring which does nothing to the p positively oriented
strings and turns the n negatively oriented strings around into positively
oriented strings. Clearly there is an element of choice in this wiring.

The algebra H, , is generated by the elements o, for —(n—1) <7 < p—1,
where the skein theoretic representation of the elements {0; : —(n—1) <i <
0}, o9 and {o; : 0 < i < p — 1} are shown in Figure 1.8 (a), (b) and (c)
respectively. Also, H,, has a linear basis of (n + p)! elements.

(@) | \/ X X
\

N
Gl !
2

© | y X
\

Figure 1.8: (a){o; : —(n — 1) < i < 0}; (b)oy; (c){o; : 0 < i <p—1}.

1.6.1 New elements from old

Using elements of H, we can immediately find elements of H,, ,. Consider
first the image of H,, under the involution . Clearly then *(H,)®H, — H, .

Given the Gyoja-Aiston-Morton elements ey € H,, described above, we
can find an obvious set of idempotent elements in H,, ,. These elements are

14



to be denoted e’(/\’u) = eg\f) ® e,(f) formed by the juxtaposition of e, and
e, with appropriate orientations and |A| = n and |u| = p. There are the
m(n) x m(p) of these.

1.7 Two skeins of the annulus

In this section we define two skeins of the annulus. The first is very well-
known and has received much attention from several authors. The second
however has only recently begun to receive the attention it deserves.

1.7.1 The skein C

Let F' be the annulus, F = S! x I. Then S(S* x I) is the Homfly skein of
the annulus. We denote this by C. This skein is discussed in some detail in
[Mor93| and originally in 1988 in the preprint of [Tur97].

We shall represent an element X € C diagrammatically as in Figure 1.9.

X

Figure 1.9: An element X € C.

The skein C has a product induced by placing one annulus outside another.
This defines a bilinear product under which C becomes an algebra. This
algebra is clearly commutative (lift the inner annulus up and stretch it so
the outer one will fit inside it).

Turaev [Tur97] showed that C is freely generated as an algebra by the
elements { A,,, m € Z} where A,, is represented by the skein theoretic element
shown in Figure 1.10. The sign of the index m indicates the orientation of the
curve. A positive m denotes counterclockwise orientation and a negative m
a clockwise orientation. The element Ajg is the identity element, represented
by the empty diagram.

Subspaces of C

The algebra C can be thought of as the product of subalgebras C* and C~
which are generated by {A4,, : m € Z,m > 0} and {A,, : m € Z,m < 0}
respectively.

15



Figure 1.10: An element A, € C, for m € Z.

We now take the surface F' = R" and wire it into the annulus, F' = S'x T
as shown in Figure 1.11.

Figure 1.11: R? wired into S* x I.

The resulting skein is a linear subspace of C* which we shall call (™.
This subspace can be thought of as the image of H,, under the closure map
A : H, — C™. For an n-tangle T € H,, we denote its image under this
closure map into C™ as A(T) or T'.

The subspace C™ is then spanned by monomials in {4,,}, with m € Z™,
of total weight n, where wt(A,,) = m. It is clear that this spanning set
consists of m(n) elements, the number of partitions of n. C* is then graded

as an algebra
ct=c.
n=0
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We can now extend our view of the skein of the annulus to include strings
oriented in both directions. We do this through considering the closure of
oriented (n, p)-tangles in the annulus. Equivalently, this is achieved through
wiring the surface R}P into the annulus S x I, analagous to the way shown
in Figure 1.11.

We denote the algebra formed through considering the image of H,,
under the closure map by C"?) c C.

Unlike the case for C™ where C N C™~Y = (), we have that

C(=P0) if min(n, p) = p,

(nap) (nflapfl) (77.72,])72) “ e
¢ o C oC = = { C(OP=m) if min(n, p) = n,

however, it should be noted that for each C7) in the sequence above, the
difference i — j remains constant throughout. Also

cmo =~ ¢
and CO™ = "™

(m)
(=)
(m)
()

Y

where the (—) or (+) subscripts indicate the direction of the strings around
the centre of the annulus. However, we do have that C("tP0) 0 C(2:2) = () if

—p1 # N2 — pa.
We find that C(™P) is spanned by suitably weighted monomials in

{A_w,.. . ALy, Ag, A, ALY

We can see that
cnp) — (C(@) % C((i))) 4 on=1p=1),

The spanning set of C™P) then consists of 7(n,p) elements where

= 2 (=i -J)
(= 7(mm(p) +--+7(n—k)x(p - k),

where & = min(n, p).
Similar to the grading of C* with the C™ we can think of the full skein
C in terms of the C(™P)

= é (U {C(”’p):n—p:k}>.

All that is left for us to do now is to use an example to illustrate what
we meant by C"P) being spanned by “suitably weighted” monomials in the
range {4; : —n < i < p}.
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Example. Consider when n = 4 and p = 2. The spanning set of C(*?
consists of 15 (=5-2+43-142-1) elements, since

42) _ (@ (2) (3) 1) (2) (0)
c2) — (CH X CH)) ¥ (CH X CH)) ¥ (CH X c(ﬂ) .
The spanning set is therefore

{A74A27 A74A%7 A73A71A2; A,3A,1A%, A%2A27 AgQA%7 A72A2,1A27
A72A2_1A%7 AilAQ; AilA%; A*?)Al; A*ZAflAla A?ilAl; A*?; A2_1}

where, for example, the element A_3A; is obtained from closing an element

in H, 5 as shown in Figure 1.12.
: | 9

Figure 1.12: The generator A_3A;.

1.7.2 The skein A

Consider again the annulus S* x I. Let the outer boundary curve be C; and
the inner boundary curve C5. Now pick points 7, € C; and v € C5 such
that v, is an output point and v, is an input point, and denote these by ~{"*
and i respectively.

Let F be the surface S' x I with an associated set of boundary points
{~0ut 4} as described above. Then S(F) = S(S' x I, {79, ~i"}) is the
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Homfly skein of the surface represented diagramatically in Figure 1.13. We
shall denote this skein by A.

@72 il

Figure 1.13: The annulus with two boundary points.

Similar to C, the skein A becomes an algebra under the product induced
by placing one annulus outside another. The identity element this time
cannot be the empty diagram due to the points specified on the boundary.
It is the element e € A represented by the diagram shown in Figure 1.14,
obtained by joining the two boundary points by a single straight arc.

Figure 1.14: e € A.

A further element of A, also with no crossings, we shall call a € A and
represent it by the diagram shown in Figure 1.15. From this, powers, a™
for m € Z, can be constructed, giving for example the elements shown in
Figure 1.16.

Another property that A has in common with C is

Theorem 1.2 (Morton). As an algebra, A is commutative.

However, unlike the case of C this is not immediately obvious. After the
introduction of a bit more technology, we offer a proof from [Mor02b)].

Remark. A skein which is isomorphic to A is used by Kawagoe [Kaw98] and
other authors. Their version is based on the annulus with input and output
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Figure 1.15: a € A.

© ©

Figure 1.16: a ! and a? € A.

points both on the same boundary component. More recently its use has
been adopted by the author as its unexpected algebraic properties allow for
some satisfyingly clean proofs. For more work on this interesting skein from
this viewpoint, see also [Mor02b], and work by Lukac [LukO01].

We also have two bilinear products which involve the skein A. These are
[:CxA— Aand r: AxC — A and are induced by placing an element of C
respectively under or over an element of A. For example, recall that A; € C
is represented by a single counterclockwise loop, so this gives

[(Ay,e) = and r(e, Ay) = @

We now give the proof which was promised above.

Proof of Theorem 1.2 [Mor02b]. Using standard skein theory techniques we
can represent any element of A as a linear combination of tangles consisting
of a totally descending arc lying over a number of closed curves. This is
achieved through ensuring that on traversing an arc, each time one encircles
the centre of the annulus it is passing below the part already traversed, and
if not the skein relations can be used to change crossings as required. Each
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such tangle represents [(c,, a™) = l(¢p, e)a™ for some m and some ¢, € C.
The general element of A can then be written as a Laurent polynomial

Z l(em,e)a™

meEZ

in a, with coefficients in the commutative subalgebra [(C,e) C A. Since a
commutes with [(C, e) it follows that any two elements of A commute.  #

The subalgebras [(C, ) and r(e,C) are both isomorphic, but they are not
equal. We can use their difference to define a sort of commutator map

[,e]:C— A

where for ¢ € C, [c,e] =1(c,e) — r(e,c).

Finally let us define a type of closure map particular to this skein A. Our
map will take an element of A and make it an element of C by joining the
two boundary points over the top of the annulus. We have

o: A — C

As we alluded to above, we shall not study the skein A here independently,
rather use it as a tool, capitalizing on its unexpected algebraic properties.
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Chapter 2

Murphy Operators

Historically, the Murphy operators have appeared in various arenas. Initially
they were defined independently in the works of Jucys [Juc71] and Murphy
[Mur81] as certain sums of transpositions giving elements of the group algebra
C[S,] of the symmetric group.

Remark. The first reference [Juc71] appears in a then little known Lithuanian
journal of theoretical physics. As a result of this it was some time before its
content was generally known, hence [Mur81] was published independently
by Murphy. As an acknowledgement of this situation we will refer to the
algebraic objects of interest as Jucys-Murphy elements.

Let the Jucys-Murphy elements be defined by m(1) = 0 and:
-1

m(j) =) (ij) € C[S,], forj=2,... n. (2.1)

S,

i

These elements have two well-known properties; firstly they all commute
with one-another, and also every symmetric polynomial in them can be shown
to lie in the centre of the algebra, Z(C[S,]).

For example, m(3) = (13) + (23), m(4) = (14) + (24) + (34), and

m(3)m(4) = (13)(14)+(13)(24)+ (13)(34)
+(23)(14)+(23)(24) + (23)(34)
= (34)(13)+(24)(13)+ (14)(13)
+(14)(23)+(34)(23) + (24)(23)
= m(4)m(3).
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2.1 Murphy operators in the Hecke algebras

Now given that the Hecke algebra, H,, of type A, 1 is a deformation of the
group algebra C[S,,| of the symmetric group, it would be a natural question
to ask if there exists a deformed analogue of the Jucys-Murphy elements
defined in (2.1).

Such a definition is given by Dipper and James in [DJ87] using a simple
deformation of the transpositions. This deformation of the transpositions
corresponds geometrically to the positive permutation braid w;; € H, for
1 < 7 shown in Figure 2.1, where positive permutation braids have all cross-
ings positive.

Figure 2.1: The positive transposition braid w; ;) € Hp.

Remark. Positive permutation braids are first defined by Elrifai and Morton
in [EM94]. They subsequently appear in many places such as [Ais96, AM98,
Mor02b).

Before we define these elements explicitly, we make the following obser-
vations. Again, these elements, denoted M(j) , all commute, and also every
symmetric polynomial in them lie in the centre of H,,. Moreover, Dipper and
James showed that for generic values of the deformation parameter these ac-
count for the whole of the centre. This was then extended by Mathas [Mat99]
to include the previously omitted non-semisimple case.

Furthermore, Katriel, Abdessalam and Chakrabarti [KAC95] observed
the stronger result that in fact any central element can be expressed as a
polynomial in just the sum M = Z?Zl M (j) of the Murphy operators.

Before moving on, we observe that Ram [Ram97| offers generalizations
of the Jucys-Murphy elements in other settings. He considers the arbitrary
Weyl groups and Hecke algebras of types A,, B,, D, and G,. He also
observes that the Hecke algebras of types F}y, Fs and E; are also within easy
reach of the techniques he uses.
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Now using the skein model for H,, we find that there are elegant geometric
representations of the Murphy operators. The observations that follow in
this section are due to the work of Ram [Ram97] and Morton [Mor02b]. This
skein theoretic viewpoint immediately facilitates the proofs of the properties
stated above.

Definition 1. The Murphy operator M(j) € H,, j =1,...,n is defined by
M(1) =0 and

M(j) = Zw(ij)- (2.2)

These elements clearly project to the Jucys-Murphy elements m(j) €
C[S,], therefore (2.2) is the deformed analogue of (2.1).

Proving that these elements possess the properties described above re-
quire a bit of algebraic work. As noted above Ram [Ram97] and Morton
[Mor02b] found geometric representations of the Murphy operators which
are easier to manipulate and indeed make certain properties obvious with
no work required. We observe that the sum of the Murphy operators, M,
defined above, can be written as:

M = ZMU) = Wi

1<j

Theorem 2.1 (Ram). The Murphy operator M(j) can be represented by a
single braid T'(j), up to linear combination with the identity.

Theorem 2.2 (Morton). The sum M of the Murphy operators can be rep-
resented in H, by a single tangle T™ | again up to linear combination with
the identity.

Before embarking on our journey through these elegant proofs, we require
one piece of new notation. Let the identity braid on [ strings be denoted by
I, for [ < n and given a tangle T" on n — [ strings then we write T ® I, € H,
for the juxtaposition of T" and the identity.

Proof (of Theorem 2.1 [Ram97]). Let T(j) be the element of H,, represented
by the braid shown in Figure 2.2.
Using the framed Homfly skein relation

X e
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1 J n
I
Figure 2.2: T'(j) € H,.

on the crossing indicated we see that

-]

]

e L

= ...(repeated applications of the skein relations). ..

I

M "
= (s—s 1 N\j :: I X

= (s—s 1 Zw(ij) +1,

1=

= (s—s HM(5) +1,.

_|_

Therefore,
= —
M(j) T
®

Remark. Theorem 2.1 enables us to consider the geometrically more appeal-
ing elements T'(j) in place of the M(j), provided s — s™' # 0, or in other
words we are away from C[S,,].

In fact, these elements are not only geometrically more appealing, it is
also the case that algebraically they are much easier to work with. Mathas
[Mat99] remarks that the original definitions for Murphy operators are quite
hard to work with and defines £-Murphy operators which have the same
properties as the elements 7'(j), in particular Theorem 2.1. Results are then
proved for the £-Murphy operators.

Remark. 1t is pictorially clear that the elements 7'(j) all commute.
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Remark. The product of the T'(j) is the full curl (often denoted in braid
theory by A?), clearly a central element. However, it is not immediately
obvious that their sum is central.

Proof (of Theorem 2.2 [Mor02b]). Let T™ be the element of H,, represented
by the tangle 7™, as shown in Figure 2.3.

Figure 2.3: T™ ¢ H,.

Applying the skein relation to the crossing indicated we have

T (lTﬁ
= @slﬂﬁ}ﬁ%+ClT%

= ...(repeated applications of the skein relations). ..

— (s—s7) TT?+.”+O$ O |

Ny
n
= (s—s vt ZT(j) +TO T,
j=1
Now since the term T ®1,, is simply a disjoint trivial loop alongside the
identity braid, we can remove the loop at the expense of the scalar § = v v

s—s—1°*
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Therefore, using the result of Theorem 2.1, we have

TM (g () + 1,
(s—s Z + I
n —1
= (s—s oY ((s — s YM() + 1) + —— 1,
(s —s v 2 (s —s M) +1,) + —
( 71)2 0 4 ( 71) -1 +Ufl_v I
= (s—s5 "% s—s v 'n n-
s— st

Pictorially it is very clear that the element 7™ is central in H,,, therefore,
it is an immediate corollary of Theorem 2.2 that the element M is central.

2.2 The Murphy operators and idempotents
of the Hecke algebra

Recall the set of idempotent elements in H,, defined in Section 1.5.1. They are
denoted ey, one for each partition A of n, with () being the unique partition
of 0. We now consider the effect of these idempotents on the element 7).
Using skein theoretic techniques it is easy to prove the following corollary of
Theorem 19 in [AM98] (see also [Mor02b]),

Corollary (of Theorem 19, [AM98]). T™ey = tye, where

thy=(s—s o' Z s2en(©) 6.
¢, cells
mn A

Moreover, the scalars ty are different for each partition \.

If we were then to reverse the orientation of the encircling string in 7
we obtain another central element in H,. We shall call this element 7.
Then, using similar techniques, one can show

Lemma 2.3 ([MHO02]). TMe, = tye\ where

th=—(s— s~ E g—2enle)

c, cells
in A

Moreover, the scalars ty are different for each partition \.
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Remark. An alternative proof to this lemma could be made through consid-
ering these elements wired into the skein of the annulus combined with the
effect of the mirror map. Then it can be shown that the e, are invariant
under the mirror map and clearly ~(T™) = T(®. We also recall that the
mirror map inverts the scalars v and s in the coefficient ring. Applying these
facts to the preceding corollary, the result follows immediately.

We remarked above that the product of the Murphy operators is the full
curl, A%2. This too is a well-known central element. It would therefore be
interesting to ask the effect of the idempotent elements e, on AZ.

For our purposes we choose not to adopt the notation A?, but instead
use F,, € H, for the full curl on n strings. We have in terms of the Murphy
operators the inductive definition

Fn = ’UT(TL)(Fn_l X ]11),
which gives F;, = v" [T_, T(j). We then have

Theorem 2.4 (Aiston-Morton). Let \ be a Young diagram with |\| = n.
Then Fhey = frex, where

and — ny, = Z 2(5 — ).
(4,5)EX

2.3 Symmetric functions and the skein of the
annulus

The theory of symmetric polynomials has been well studied and there are
many texts giving a good description with the well-known authority being
[Mac79]. In this section we consider elements in the Hecke algebra and their
closure in C within this context of symmetric functions.

Again recall the set of idempotent elements in H,, as described in Sec-
tion 1.5.1. Here we consider the two simplest, those which correspond to the
single row and single column Young diagrams.

Let w, be the positive permutation braid ([EM94]) corresponding to 7 €
S,. Define two quasi-idempotents by

a, = Z sy and b, = Z (—s)_l(”)wm
TESy TESy

where [(7) = wr(w,), the writhe of the braid w,. We recall that the writhe
of the braid (also known as the algebraic crossing number) is the sum of the
signs of the crossings.
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Lemma 2.5.
ap = Ap—19n,
where g, =1+ s0,_1 + 8%04_10p_2+ ...+ 8" top_1+... 01.
In the above lemma the o; correspond to the usual braid group generators,

for the braid group B,,.
We have g, 11 = 1+ s0,9,, and also the immediate skein relation

for tangles on n + 1 strings.

Lemma 2.6. For any braid f € B,, we have a,3 = ¢s(5)a, = Ba,, where
bs(B) = swr(B)

Analogous results for b, hold, replacing s with s~! throughout.
We can then see that the element a,, satisfies

a’%l, = ¢5(an)a’ﬂ - ¢S(anfl)¢s(gn)an-

Now since ¢s(g,) = 14 5%+ ...+ 5?2 = 5" ![n] with [k] = £=%+, we have
immediately

Corollary. We can write
Snil[n]hn — hnflgna
where hy, = a,/ps(ay) is the true idempotent.

The element h,, constructed above is the idempotent which corresponds
to the single row Young diagram with n cells. The single column idempotent,
denoted e, is constructed in an analogous way from b,. It can be obtained
from h,, by using —s~! in place of s.

With a slight abuse of the notation we write h,,, e, € C for the closures
A(hy), A(ey) in C.

The skein C* when considered as an algebra is spanned by the monomials

in {hy, : m >0},
Remark. These elements have already been studied by Aiston in [Ais96],
however, there the notations ()., and )4, are used in place of e, and h,.
Morton adopts this more suggestive notation in [Mor02b] to make it clear that
it is the combination of these elements and symmetric function techniques
that is being exploited.
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Write
H(t) = 1+ hot"
n=1
o
and  E(t) = 14 ept"
n=1
for the generating function of the elements {h,} and {e,} respectively, when

considered as formal power series with coefficients in C.

Theorem 2.7 (Aiston).
E(-t)H(t) =1

as a power series in C.

We shall regard the elements h, and e, formally as respectively the n'"
complete and elementary symmetric functions in a suitably large number N
of variables 1, ..., xy, setting

1—(L‘it,

and  E(t) = [J(1+at).

i=1

Now consider the wiring induced from considering the diagram

with n strings running around the annulus. Such a wiring is a linear map
W, : Rﬁﬂ — A. It is easy to see from the drawing of some simple pictures
that given a tangle T' € H,, which is included in H,; as the element T'® I,
has the property

Wn(T (59 ]Il) = Wn_l(T)a.

This is clear because the final string leaving the top right-hand corner of T
passes around the annulus one final time before going to the output point of
the annulus, it is this that contributes the a. Also, W, (L,) = a”.
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Theorem 2.8 (Morton). The elements Wy, (hypy1), Wo(Li®hy,) and l(hy, e)
in A satisfy the linear relation

[0+ UWa(hnir) = s [n]Wo (I @ hy) + U(hy, ).

Proof. [Mor02b] Recall the relation given above,

This immediately gives W, (hngni1) = Wa(gnhn) + 8"Wh(hnoy -+ - 01). Now
using the now familiar style of manipulation using the skein relations we
can also show that g,h, = s""'[n]h, and W, (h,0,---01) = [(hy,e). This
combined with a previous result that s”[n+1|h,.1 = h,gn41 the result follows
immediately. 3

Let Y, = [n + 1]W,,(hy11) and use this to define another formal power
series

Y(t) =) Yut"
n=0
We then obtain the following corollary

Corollary. As power series with coefficients in A we have
I(H(t),e) = (e — s tat)Y (). (2.3)

Proof. We know that W, (h,) = W,,_1(hy,)a or equivalently since A is com-
mutative W,,(h,) = aW,,_1(h,). We can therefore rewrite the expression for
Y, as

Y, = s 'aY,_i + 1(hy,e).

Therefore,
Y(t) = s tatY (t) + 1(H(t), e).

The result now follows immediately. [ )

Following appropriate use of the mirror map on the skein A the following
result is an immediate consequence of the previous corollary

Proposition 2.9. As power series with coefficients in A we have

r(e, H(t)) = (e — sat)Y (¢). (2.4)
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Combining these results gives
[H(t),e] = (s — s ")atY (1).

This result also appears in the same context in [Luk01].
We finally offer one further result which will be essential in certain sub-

sequent results. The element of C to appear here is the formal power sum of
the variables z;, P, = . 2.

Theorem 2.10. For m > 1 we have [Py, e] = (s™ — s~ ™)a™.

Proof. First recall the Newton power series equation

> P,
> ™ =InH(t).
m=1 m

Now, taking logarithms of equations 2.3 and 2.4, then subtracting, we have
In(e — s~ 'at) —In(e — sat) = In(I(H(t),e)) — In(r(e, H(t)))
= I(In(H(t)),e) — (e, In(H(1)))

-SR]

m=1

Now In(e — s™'at) = — > o’ | ="~ Finally, comparing coefficients of ¢™,

the result follows. 3

2.4 Symmetric functions of the Murphy op-
erators

The work that appears in this section is intended to summarise the results
of Morton in [Mor02b] with a view to extending them later @ la [Mor02a).
Morton introduces a new relation between the Hecke algebras and the
skein of the annulus. This relation is a very natural homomorphism ), from
C to the centre of each algebra H,,.
First take D to be the diagram

-
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D then determines a map ¢, : C — H,, which is induced by placing X € C
around the encircling loop in D and the identity I, € H, on the arc. We
therefore have:

Y, :C — H,

Clearly
Un(XY) = T J
7]
EN
= = (X)) (Y).

Y

Therefore, v,, defines an algebra homomorphism. Also, it is obvious that the
elements 1, (X) lies in the centre of H,, for all X € C.

We shall say that the element 7™ is “almost equal” to the sum > T()-
Denote this by

T %~ " T(j).
7=1

By this we mean that 7 is equal to a scalar multiple of 22:1 T(j) up to
a linear combination with the identity as in Theorem 2.2. Also we observe
that 7 = 4, (X;) for X; = A, € C. Morton then enquires whether there
is an element X, such that 1,(X2) = Y7_, T(j)?, or indeed more generally,
whether there are X, such that ¢, (X,,) = Y7, T(j)™ for any value m.
The surprising part of this result is not that there exist such elements in
C, but that there exist elements which are independent of n which have this

property.

Theorem 2.11. For any n we have

Un(Pr) = Yo(P) = (" = 7)o" 3 T()™
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<ok
T

Figure 2.4: The diagram D which induces the wiring V/,.

Proof. First define the wiring V,, : A — H,, induced by the diagram D shown
in Figure 2.4.
It is clear that for any X € C, we have

Vn(l(Xve)) = ’QZ}n(X)
and  Vy(r(e, X)) = ¢p1(X)®1L4.

We also observe that V,,(a) = v~'T(n) and hence inductively we have V,,(a™) =
v ™ (n)™.

Therefore ¢, (Py) — Yn_1(Pp) @ I} = (s™ — s ™)v™T(n)™, and by in-
duction on n we have

Un(Po) = to(Pr) @ Iy = (s™ — ™™™ > T(j)™,
j=1
which we abbreviate using the standard inclusion of H,, ; C H, to obtain

the result. 3

In [Ais96], Aiston shows that [m]P,, is the sum

T

The proof she gives requires significant knowledge of results about si(N),
representations. Morton offers another proof later in [Mor02a] which is purely
skein theoretic.

We end this section with one final result.

Theorem 2.12. The image of v, is the whole centre of H,,.
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Proof. Tt is shown by Dipper, James and Mathas [DJ87, Mat99] that sym-
metric polynomials in the Murphy operators account for the whole of the
centre of H,,. The power sums P,, are a generating set for the symmetric
polynomials. Now by Theorem 2.11 the result follows. [ )

2.5 A set of Murphy operators in H,,

Since the family of algebras H,, can be thought of as a generalization of
the Hecke algebra, an immediate question is whether one can find a set of
elements with similar properties in this more general setting.

For some of the results in this section we shall adopt the approach used
by Morton in [Mor02b] and [Mor02a] as they have been exhibited above.

We follow an analogous procedure in H, , as in H,,. Firstly let us consider
the elements of H, , represented by the tangles T®») and T™P) which are
constructed in a similar way to 7™ and T™ respectively. We show T?)
diagramatically in Figure 2.5.

<miap

Figure 2.5: The (n, p)-tangle T(P),

Definition 2. (see [MW],[Had]) Let HL) denote the sub-algebra of H,,
spanned by elements with “at least” ¢ pairs of strings turning back.

Remark. An (n,p)-tangle is said to have “at least” [ pairs of strings which
turn back if it can be written as a product 71T, of an {(n,p), (n —1,p —1)}-
tangle 77 and an {(n —[,p — 1), (n, p) }-tangle T, as illustrated in Figure 2.6.

Remark. The H,(f%, are two-sided ideals and there is a filtration:

Hoy  HY > H{ o -5

where & = min(n, p).

We use a similar notation of I, ,,, € H,,, for the identity on [ strings down
and m strings up, with [ <n and m < p.
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Sy

15
Voo
n P
Figure 2.6: A tangle with at least [ pairs of strings which turn back.

Lemma 2.13.

where
(np) (n) (+) (—) () _
Tnp) T(_) ® ]Ip +I,7'® T(+) 0 I p,
S(np)  _ p(n) (p) (n) o lp) ¢ p(n) ()
T = T(_) ®]I(+)+]I(_)®T(+) 5]1(_)®]I(+),

and w,w € H,(ﬁ;),.
Proof. We prove the result for T7("?) with the result for T?) following in
exactly the same way. Throughout this proof, we use a standard notation
setting s — s ! = 2.

We first define some elements in H,, , represented by tangles as shown in
Figure 2.7.

Now applying the skein relation once to T(™P) we obtain:

RS - e ~defep
Trr1 @ 11 4+ 20 A(p).
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Figure 2.7: The elements 7'(j) and A(j) for 1 < j <p.

Repeated application of the skein relation in this way will clearly yield:
p
Tmp) — 700) g ]I](J+) + vt ZA(j)
j=1
(n) -
= TO QI +207" > A(). (2.5)
j=1
Now observe, similar to a result in [Mor02b], we can find:

b - 4

Combining equations 2.5 and 2.6, we see that we are only left to show
that:

+ 207! ZT(]‘). (2.6)

Y CAG) =207ty T(5) + w,

j=1 7j=1
for w € HT(L;),.

Let w = 37", w(j). We must now show that for each j, with 1 < j <p,
there exists a w(j) such that:

2T A() = 207 T(j) + w(j).
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Now,

wlA(f) = Z“l{ Hl%" ﬁH} i
- = (e =
= --- (repeating application of the skein relation)

R B o Y e

= 20 'T(j) + w(j).

with w(j) € HSY.
The result follows. [

We therefore suggest a potential set of Murphy operators in H,, ,. These
are then the elements T'(j) defined for the first n strings (as with the H,
case in Figure 2.2 except the strings are obviously oriented in the opposite
direction and we then take its inverse). In addition to this set of n elements,
we add the A(j) defined in Figure 2.7, defined for the last p strings. These
elements are shown in Figure 2.8.

N J N N N N N
T(j):= T | | | | A(j):( || || | |

1w j -om 1o e p
Figure 2.8: The elements 7'(j) for 1 <i < n and A(j) for 1 < j <p.

We find, similar to Theorem 2.2 that

Theorem 2.14. The sum of these Murphy operators is almost equal to
T(n.p)

Proof. 1t is not difficult to show using the skein relations that

—1

TP = (s — 571 (—UZT ZA ) Sff]l
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This is achieved through an analogous method to the one used previously
to show that T = (s — s o ' Y7 T(j) + T ® L, in the standard
Hecke algebra case, except this time one must pay particular attention to
the orietation of the strings. By the definition of almost equal the result
follows immediately. [ )

2.6 The Murphy operators and idempotents
of H,,

We can then use earlier information, combined with Lemma 2.13 to prove the
following proposition concerning the elements e’(A W = eg\*) ®e&+) as discussed

above.

Proposition 2.15.

(np) ) _ ' '
T 6)\’# — tA,Me/\’# + we/\’#

Fp)et  — oe'
and  T"Pe, = tyue,, +we, ,

where,

t/\u — (S - S—l) —v ZS—Q(content) + vt Z SQ(content) +6

cells cells
in A in
and
Z)\,p, = (S — 871) Ufl E SZ(Content) — Z S*?(Content) + 4.
cells cells
in A in L

Here we had fixed |A| and || with values n and p respectively. In fact,
we find that ¢, , and ¢, , have the following property:

Lemma 2.16. As \ and p vary over all choices of Young diagram, the values
of tr, are all distinct; as are the values of t .

Remark. An equivalent way of stating Lemma 2.16 is that if 5, =ty then
A =X and p =y (similarly for the ¢, ,).

Proof. (of Lemma 2.16) We prove the first part of the lemma and note that
the second part follows immediately due to the observation that ¢y, = t, .

Given f(s,v) = ty, we now show how to recover the Young diagrams A
and .
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From the formula for ¢, in Lemma 2.15 we see that f(s,v) —J is a
Laurent polynomial in s and v, and must be of the form:

(s — s (—vP(s) +v7'Q(s)).

Now consider P(s) and Q(s) individually. It is clear that these are also
Laurent polynomials, this time only in the variable s. We have

P(s) = Zais_%
and  Q(s) = ij82j,

where a; is the number of cells in A\ with content ¢, and similarly, b; is the
number of cells in p with content j. Hence we can uniquely construct A and

pe )

Extending the notion of the full curl into the H, , setting, we use the
notation F, , € H, ,. Again, F), is central in H, ,. In terms of our set of
Murphy operators we have

Fop = v [[T() ™ T AG)-
7=1 7=1
We now offer without proof a lemma comparable to Lemma 2.13.

Lemma 2.17.
Fn,p = Fn,U X FU,p + u

where u € H,gl,),

Continuing with this theme we have the following proposition, combining
the result of Theorem 2.4 and the techniques of Proposition 2.15.

Proposition 2.18.
Fop€inm = Foum€im T et

where fow = oWl andny =37 50y 200—1) andny = 30 )¢, 20—

i).
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2.7 Supersymmetric polynomials in the Mur-
phy operators

Why should we have chosen this decomposition of T""P) to give a set of
Murphy operators in H,,? Is there a symmetric function type result in this
setting? Well, first we prove the following, a generalization of Theorem 2.11.
First we introduce a natural generalisation of the map 1, into the H,, , arena
and call it v, ,. Similarly, this defines an algebra homomorphism on H,, ,,
and all elements v, , lie in the centre of H, ,.

Theorem 2.19. The central elements ¢y, ,(P,,) of Hy, can be written, up to
a linear combination with the identity, as the power sum difference

n p
0™ TG 0T AG)™
7=1 7=1
Proof. Using the techniques displayed in Theorem 2.11 and changing the
wiring appropriately for the left n strings we find

Vg (P) = o0 (P @y = (7 =57 (—vm STG ey A<j>m) .

Now this does not quite resemble the power sum found in the H,, set-
ting for the standard symmetric functions, however, Stembridge discusses
supersymmetric polynomials in [Ste84]. Such polynomials appear in terms
of two sets of commuting variables {z;} and {y;} say. For a polynomial in
these variables to be called supersymmetric they must satisfy the following
properties:

1. the polynomial is invariant under permutations of the variables {z;};
2. the polynomial is invariant under permutations of the variables {y;};

3. when the substitution z; = y; = ¢ is made, the resulting polynomial is
independent of ¢.

Stembridge then continues to prove that the set of supersymmetric polyno-
mials is in fact generated by the power sum difference > 2" — > y™, proving
a conjecture of Scheunert [Sch84]

We then see that the central elements v, ,(X) can be written as such
a supersymmetric polynomial in two sets of commuting elements, up to a
linear combination with the identity.
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Remark. There is an element of choice associated with this set of Murphy
operators given here. For example, conjugating all of them by a fixed element
will not alter their supersymmetric polynomials.

We end this section, and indeed chapter, with a currently unproved, but
morally reasonable conjecture.

Conjecture (Morton). The image of 1y, is the whole centre of Hy .

Remark. Morton remarks that although it is possible to prove this for the
H, case (see Theorem 2.12), there does not at present exist an immediate
skein theory proof for either the H,, and certainly not the more general H,,
case. The information that currently seems to be lacking is an upper bound
on the dimension of the centre in the generic case n,p > 0.
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Chapter 3

The Homfly Polynomial Of
Generalized Hopf Links

In this chapter we see how to use some of the results of the previous chapter
to calculate the Homfly polynomial of a class of links we shall call generalized
Hopf links. This work will follow that described in [MH02] by Morton and
the author. Although this chapter can be considered as self-contained, it acts
very well to whet one’s appetite for what is to follow.

3.1 Initial motivation

In [Cha00], T.-H. Chan discusses the Homfly polynomial of reverse string
parallels H(ky, ka;n1, ny) of the Hopf link. Using results described previously,
we find that the computations which were more labour intensive in [Cha00)]
become simplified. A further generalization is then readily available to allow
us to calculate the Homfly polynomial of satellites of the Hopf link which
consists of a reverse string parallel around one component combined with a
completely general reverse string decoration on the other.

3.2 Satellites of Hopf links

The Hopf link is the simplest non-trivial link involving just two unknots
linked together. When giving this link orientation, two distinct links are
formed. We shall call these H, and H_, as shown in Figure 3.1.

The Homfly polynomial of these links can easily be calculated with the
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Lo

Figure 3.1: The links H, and H_.

Homfly polynomial skein relations. We have that:

-1 _ 2
P(H,) = <” ”) +ou -1

s—s1

-1 _ 2
and P(H_) = (v U) +v? — 1.

s — s~ 1

We now use H, and H_ as starting points for the construction of satellite
links. We do this by considering the two components of the Hopf links and
decorating them. For example, take P, and P, as diagrams in the annulus.
Now starting with H,, we decorate its two components with P, and P,
respectively, obtaining a new link in the plane which we shall call H, (P, P;),
as shown in Figure 3.2. Now clearly H (P, P») and H, (P,, P,) are equivalent

P1 PZ

Figure 3.2: The link H, (P, P).

links. An analogous construction is now possible for H_.

With such a construction, it is possible to realise a variety of links. In
particular, the generalized Hopf links which are the topic of [Cha00] can be
constructed. For example, if we take P, and P, as shown in Figure 3.3, then
H., (P, P,) is the link Chan refers to as H(ky, k2; n1,n2). This link is shown
in Figure 3.4, somewhat rearranged from how it appears in [Cha00]. This
change of view will be seen to be beneficial in our approach.
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Figure 3.3: The diagrams P, and P,.

With such links in mind, we make the following observation, using the
notation that the image of a link H under the involution *, described in
Section 1.3, shall be denoted H*

Observation. The links
H (k1, ko;ny,ma), H(ny, ng; by, k2), H (K2, ks ng, na), H(ng, na; ko, ki),
and
H*(ky, ky;na,mg), HY (1, nos ko, k), H (Ky, ko ng, na), H (ng, nas Ky, ka),

are all equivalent links. For example it is trivial to see that reordering the
four groups of strings H (ky, ko; ny,ny) will give H (ko, k1;n9,n1).

3.3 Maps on the skein of the annulus, C

We now define two natural [snear maps, ¢ and ¢, on the skein of the annulus
in the following way; take an element X € C and encircle it once with a single
oriented loop. The orientations are opposite for ¢ and @. We define these
maps pictorially as follows:

(s
X A
VNS

&
=
o,
Ay
o

N
—

Now reconsider the satellites of Hopf links discussed earlier in this chapter,
but this time as elements of the skein of the annulus C. We can then use
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Figure 3.4: The generalized Hopf link H (ky, ko; nq,n2).

compositions of the maps ¢ and ¢ to construct a subset of such links. In
particular, for the element A = AT A"} € C, we have

H (ky, kg; iy, mg) = @Ft (@k2 (A)) .

It therefore seems a reasonable proposition that to aid our investigation of
the links H (ky, ko; n1,mn2) and their Homfly polynomial, we should look more
closely at the maps ¢ and @, in particular at their eigenvalues. We shall
achieve this during the remainder of this chapter through considering certain
already familiar subspaces of C and the restrictions of the maps ¢ and ¢ to
these subspaces.
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3.4 Eigenvectors and eigenvalues of the maps
v and @

We begin with the H, case. Take an element S € H, With_S cc ‘and
compose it with 7™, Then A(ST™) = (S). Similarly A(ST™) = 5(S).
The restrictions ¢|ew) and @|qw) clearly carry C™ to itself.

Theorem 3.1 ([Mor02b]). The eigenvalues of ¢|cm) are all distinct as are
the eigenvalues of @|eowm) -

Proof. We prove the first statement with the second following in exactly the
same way.

Set @y = éx € C™. Then the closure of T™e, is ¢(Q,). However,
T™Mey = tyey, hence ©(Qy) = tx@Qx. The element @, is then an eigenvec-
tor of ¢ with eigenvalue t,. There are 7(n) of these eigenvectors, and the
cigenvalues are all distinct by [AM98]. Since C™ is spanned by 7(n) ele-
ments we can deduce that the elements @, form a basis for C™ and that the
eigenspaces are all 1-dimensional. 3

This proof is quite instructive as it establishes that the @, with |A| =n
are a basis for C(™). Hence any element in C™ can be written as a linear
combination of the @y with |[A\| = n. It also follows that any element of C™
which is an eigenvector of ¢ (and similarly @) must be a multiple of some
@». Finally, we notice that the eigenvalues of the ¢ and @ are the ty and ¢,
we found earlier in Chapter 2.

We now extend our view to the H,, case. First recall the scalars #(, ,)
and ty , discussed in Chapter 2. We go straight into some important results
about these values.

Theorem 3.2. The ty, and ty, are eigenvalues of ©|cmpy and @lemy re-
spectively. Moreover, they occur with multiplicity 1.

Proof. We prove the result for the ¢, , with an identical argument proving
the result for the ) ,.

Fix an integer k such that k = p —n and k£ > 0 (in other words p > n —
the case for p < n is identical). Write C™P) as C(™¥+™) and do induction on
n.

For n = 0 we have that C(®%) = ¢} Now for |\| = 0 and |p| = k we
have that t, , = t,. Moreover, in the proof of Theorem 3.1 we saw that the
t, with |u| = k are eigenvalues of ¢|cu). Now since CK) = C(0F) c C(nk+n)
for all n, the ¢, are also eigenvalues of ¢|oe.k+n).

Now assume that for |A\| < n and || < k + n the t) , are eigenvalues of
©leanniun. Since CIALIED © c(mk+n) the tr,u are also eigenvalues of ©|oenkin).
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Consider the ¢, , with [A\| = n and || = k+n. By the inductive hypothesis
these ty , are not eigenvalues of ¢|om-1,k4n-1) since we have 7(n—1,k+n—1)
eigenvalues and C"~LF+7-1) ig spanned by w(n—1,k+n —1) elements and
by Lemma 2.16 we have that if ¢, , =ty ,» then A =\ and p = p/'.

Define elements @ , := Q(A_) : QE;F)(: A€y ,)) with |A[ = n and |u| =
k+n. Clearly @) , € C(nktn),

Now by Lemma 2.15,

Olemmtn (Q&,M) = tk,uQi\,u + '

where w' € C(n=Lk+n=1),
We can find a v € C=H447=1 such that (¢|ewmisn — ta, ) (v) = w'.
Now consider ) , —v. This is clearly non-zero. We find:

Pleerim (@ —v) = @leeaiin (@A) = Pleeiem (V) + 6,0 — 0
= Pleerin(Qy,) — w' — 1ty v
= @), ' —w —t v
= t/\,u(Ql)\,u - ).

Hence such ¢, are eigenvalues of ¢ ktn).

Hence by induction, we have that the ¢, ,, with [A] < n, |¢| < p and
Al = |u| = n — p, are eigenvalues of ©|em.p).

Moreover, we have found at least 7(n,p) eigenvalues for ¢|smp. But
C™P) is known to be spanned by m(n,p) elements, so @|cwms has at most
m(n,p) different eigenvalues. Hence it has exactly 7(n,p) eigenvalues each
with multiplicity one. 3

We now state two useful corollaries.
Corollary. There is a basis of C™P) given by:
{Q)\,u : |)‘| S n, |:U’| S b, |)‘| - |M| =n _p}

such that:

SO(Q/\,M) = tau@rp and @(Qk,u) = t_/\,uQA,u-

Corollary. FEvery eigenvector of ¢ and @ is a multiple of one such basis
element.

Remark. The eigenvalues t) , and ¢, , correspond to the eigenvalues of the
matrix M in equation (1.1) of [Cha00], found there only for 1 < &y + &y <5
and ky < k. Chan uses the Homfly polynomial based on parameters [ and m,
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which are variants of v and z. The numbers v/m? — 4 in Chan’s eigenvalues
p; and p correspond to the parameter s here with 2 = s—s~!, which features
strongly in our eigenvalues ¢, , and ¢, ,. Our use of s is the feature which
allows us to give simple formulae for the Gyoja-Aiston elements ), and to
extend in principle to Q.

Unlike the Gyoja-Aiston elements (), which are known and have been
well-studied, their generalisations the @), , described in the above Corollary
are not well-understood. We shall show in the following section how they
can be found explicitly.

3.5 The Homfly polynomials of some gener-
alized Hopf links

Here we apply the techniques described above to show how computation of
the Homfly polynomial ofF some generalized Hopf links is possible.

3.5.1 The Homfly polynomial of H(ky, ka;n,0)
Consider H(ky, k2;n,0) in the skein of the annulus. Then we have
H(ky, ka3 m, 0) = " (0" (A7)).
Now since the maps ¢ and ¢ are linear maps, we know that for the @y,
P (8 (Qn) = 1117 Q.
Also, since the QQ, are a basis or the skein C™), we have
AP =) daQa
A=n

for constants dy. The d, can be calculated by several means, for example by
counting the number of standard tableaux of shape A. Consider the Young
diagram \ = (2,2), there are two possible standard tableau. The first has
the top two cells enumerated 1 and 2 and the bottom two cells 3 and 4, the
second has the top two cells enumerated 1 and 3 and the bottom two cells 2
and 4.

Therefore,

H(ky, k2in,0) = Y dag™ (#(Qn))

Al=n

= ) QL.

Al=n
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So evaluating in the plane (using the work of [AM98]), we find

—1gj—i _ gy gi—j
) o k1 7o (] vS
P(H(kla ki, 0)) - |>\§ , d/\tA 5\ ( |)| . ghl(i,7) — g=hl(ij) |’
=n 2,7)€E

where hl(7, j) is the hook-length of the cell (7, 7), in row i and column j.

3.5.2 The Homfly polynomial of H(k, ko;nqi,n2)

Consider, in a similar way to above, H (ki,ko;n1,n2) as an element of the
skein C. Then we have

H (ky, kas ny,mg) = @™ (@™ (A7 A™)).
Similar to the restricted case above, we have
ki (, =k ki 7k
" (@ 2(Q>\,u)) = tAfutA,qu/\,u
and
A?IAE% - Z d/\,HQ/\:#
|A[<naz
|| <na
IAl=lp|=n2—n1
for constants d) ,. These constants can be calculated in terms of appropriate
dy and d, (see previous section).

Theorem 3.3 ([Ste87]). The numbers dy, can be found from the following

formula:
N2\ (N1
dk:ﬂ = m’ <m> (m)d)\dl“

where || <ng, [u| <niand m=mny — [A| = ny — |pl.

Therefore,
H(kla k?) ni, 77/2) — Z d)\,u@kl (@kz (Q/\,;L))
[A|<no2
|u|<na

A= |u|=n2—n1

= D DO
[A|<nez
lu|<ny
[Al=lpl=n2—n1
At present, we do not have a general closed formula for P(H (ky, k2;nq,n2))
due to lack of information about the elements @)y ,.
We can, however, make explicit calculations in individual cases as illus-

trated by the following example.
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Figure 3.5: The link H (ky, ko;1,2) in C.

Example. Consider H(ki,ky;1,2) € C?Y as shown in Figure 3.5.
Then
H(ky, ka; 1,2) = oM (0 (41 42)),

where, by Theorem 3.3,
AA% | = QE,D + ZQD,V) + QH,D' (3.1)

However, we can also find, by using powers of trivial Gyoja-Aiston elements
(., with appropriate orientation, that since A; = Q(D“ and A_; = Q(D’) we
have

AA% = Q)R

O O
Moreover, these elements are known to satisfy the Littlewood-Richardson
rule for multiplication of Young diagrams ([Ais96]), so

Adl = QP +eey

= QUM+ QY
= QO (3.2)
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Now combining equations 3.1 and 3.2 with the observation that
Quy=Q 0 = Q" Q
and assuming symmetry under conjugation of Young diagrams, we have

Qm,m - QID],D_QID,(Z)’
and QH,D = QIH,D - le,@
Hence, evaluating in the plane, we find,
P(H(ki, k2 1,2)) = P(o"(¢™(A414%))))
= 1 PQap)
+2tk1 " P(Q_ )+t’él t’éz P(Qy )

P
~ o ra) - P@Q,)
P

b (P
w2 P PQ )+ (PQ, — P(@,)

= tﬁé,gtﬁig (@)
(2t e —t'éé,gt'éi,m B OPQ,)  (33)
ool P (@)

From the definition of the @) ,, we can now use the results in [AM98] to find
/ / / .
P(Qm,@)’ P(QE,D) and P(QH,D)' We have:

PQ. ) = —

0,0 s— s

, vl —ov\ (vls—ws7h vl —w
P(QED,D) B <32—32> ( s—s1 ) <s—31> ’
vl =\ (vlsT —ws) (v —w
and P(QHa ) = <32—52> ( s—s1 ) <s—31>'

Then using Proposition 2.15 we find:

thy = —v(s — 571 +6,
t o= (s—s (vl +s?)+v")+4
thn = (s=s )(=vl+s7)+0v7) +94,
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and

= v s—s1)+4,

0,0
I = (—s ) 1+ —v)+5
EH o= (s=sTHT A+ —v) + 0

Substitution of these values into equation 3.3 then gives P(H (ky, ko3 1,2))
immediately.

3.6 Some final remarks

We can in principle write any given element of the skein X € C as a linear
combination of the basis elements (), ,. Therefore, one can find ¢(X) and
¢(X),and hence readily evaluate the Homfly polynomial of H (ki ko; X) :=
H, (X, A% AF). The special case X = A A™ gives H(ky, ky;ny,ny).

In order to be able to write any element of the skein as a linear combina-
tion of the basis elements (), we must deepen our understanding of these
elements. We aim to begin this quest in the next chapter.

Before we embark of this journey we look at some other work related to
the findings of the current chapter.

3.6.1 The Homfly polynomial of the decorated Hopf
link

Morton and Lukac [Luk01, MLO3] show how to calculate the Homfly polyno-
mial of any satellite of the Hopf link, when the decorations are chosen from
the more restricted setting of C*.

This is achieved since the decorations are spanned in the Homfly skein
of the annulus by the well-known elements (),. The paper shows that the
Homfly polynomial of the Hopf link decorated by ()5 on one component and
(), on the other, denoted < A, ;1 >, depends on the Schur symmetric function
s, of an explicit power series depending on A.

3.6.2 Kauffman polynomials of generalized Hopf links

The techniques developed and used to produce the results of this chapter
have been adopted by Zhong and Lu in [ZL02] to investigate the Kauffman
polynomials of generalized Hopf links.

They considered the Kauffman skein module of the solid torus which is
defined and constructed in an analogous way to the Homfly skein of the
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annulus, obviously using the unoriented Kauffman skein relations in place of
the Homfly skein relations.

Following [MHO02], Zhong and Lu define a map ¢ on the Kauffman skein
module and then calculate eigenvalues cy. These are then also shown to be
distinct for different .
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Chapter 4

A Basis For The Skein Of The
Annulus, C

In the previous chapter we introduced a basis for the full Homfly skein of
the annulus. We referred to these skein elements as 0y, where A and p are
Young diagrams. These basis elements were identified as being eigenvectors
of the natural linear skein maps ¢ and ¢ which see the addition of a meridian
loop of the annulus.

In this chapter we aim to construct a matrix of simple skein elements
whose determinant gives an explicit expression for @, ,. Before we can hope
to get to that stage we must do some background work. As a taster, we offer
some initial observations to the behaviour of the @, , at a very basic level.

4.1 Basic behaviour of the @), ,

It is known that the @), € C are indexed by pairs of Young diagrams. In this
section we ask how these elements behave under multiplication. Since we still
have limited knowledge of these elements, we limit ourselves to considering
the multiplication by trivial elements, or, in other words

Q- Quy  and  Quu-Qy .

For Young diagrams, such multiplication is illustrated by the Brattelli di-
agram. For pairs of Young diagrams we can offer an analogue to the Brattelli
diagram, it is adapted from a construction offered by Kosuda and Murakami
in [KM93]. To illustrate our construction we now build a Brattelli type dia-
gram for the set of Young diagrams relevant to the subspace of C with n = 2
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and p =1, C®Y. Our diagram is as follows

(0,0)

1
/\
/\/\

We notice that to move from one level to the next, we are either multiplying
the preceding pairs of Young diagrams by (0, () (the first two steps) or by
(0,0) (the final step). When multiplying a pair of Young diagrams by (O, ()
the resulting pairs will either have and extra cell on the left Young diagram,
or one less cell on the right Young diagram. Conversely, when multiplying
a pair of Young diagrams by ((),0) the resulting pairs will either have and
extra cell on the right Young diagram, or one less cell on the left Young
diagram.

Remark. Due to the commutativity in C we can build up this diagram with
identical results even if we were to change the order of the steps.

We use these observations to give the following two rules:

Qg QD,@(: QD,@ ‘) = Z @y + Z e
{V ) N =IA+LACN} {Oun" )l [=lpl =10 Cpu}t

Qi Qyo(=Qyp @Qrn) = > Quyi + > Qu-
{Vp): [ N |=IA[ -1, M CA} { Qo ):lw! |=lpl+1,nCp}

As a final observation, the number of different paths to a pair of Young
diagrams (A, p) from top-to-bottom corresponds to the integer dy , given by
an explicit formula by Stembridge in Theorem 3.3.

4.2 A spanning set for C

Recall from Chapter 2 the elements of H, denoted h, and e, which corre-
spond respectively to the single row and single column Young diagrams with
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n cells. We now consider these elements wired into the annulus, and with
a slight abuse of notation we write hy,, e, € C for the closures A(h,), A(ey,)
in C. It can be demonstrated using a symmetric function approach that the
skein C*, when considered as an algebra, is spanned by monomials in the
{hm :m > 0}.

Now consider the image of these elements under the involution x. We
have x(h,) := h’ and x(e,) := e}. Similarly, the skein C~ is spanned by
monomials in the {h} : [ > 0}.

Combining these sets, the whole skein C is spanned by monomials in
{h}, hpm - l,m > 0}.

4.3 Some elements of A

Now, if we keep the elements we have just defined in mind, and recall the
maps[:Cx A — Aandr: AxC — A, we can define the following elements
of A. Let

which satisfies the relation
U = S 'ayn_1 + . (4.1)
Applying the mirror map, ~ to these elements of A we notice
3 1

Un = Yn, @ =a; ln:rn; S s 7,
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so (4.1) becomes
Yp = SAYp—_1 + Tn. (4.2)
We define further elements of .A. We have

l: = r(ehy)= @ ,

Similarly we obtain the relation
yn=s"laTyn o+ 1 (4.3)
and under the mirror map this becomes
Yn = sa” Yp_y + 17 (4.4)

We re-write relations (4.4) and (4.3) in order that they are similar in style
to (4.1) and (4.2) respectively. We get

Uni = 5 layn + Yy (4.5)
and  y, = say, + P,y (4.6)
with v* |, = —s'ar’ and p | = —sal’.
Now solving pairs of equations (4.1,4.2) and (4.5,4.6) we obtain
(s—s Yy, = sl,—s'r, (4.7)
and  (s—s"yn_y = s =5 phoy (4.8

Finally let us recall the closure map we defined on A. We have

o: A — C
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4.4 Some matrix results

In this section we introduce a system of abbreviations for matrices in order
to facilitate the path to our goal. Then using these abbreviations we give
some results for determinants of certain matrices of skein elements.

4.4.1 Fixed indexing matrices

Here we describe the idea of a fized indexing matriz (FIM), each of which
having associated to it an indexing vector (IV). One main feature of the
matrices to be considered here is that rows will either contain elements for
which all are starred or all are non-starred.

The IV will contain the indices of the elements in the first column of the
FIM, the remaining indices then being determined such that the indices of
elements in starred rows decrease sequentially and the indices of elements in
non-starred rows increase sequentially.

We shall think of the FIM and the IV as a pair which defines a matrix.
We write M = (A, V) for the matrix M represented by the FIM A and the
vV Vv.

Further simplification of notation is possible due to the specific format of
the matrices we are interested in. In each FIM we shall only give one row
to represent each of the starred and non-starred rows. This will be possible
since the elements in any column will be of a similar type, differing only
in the indices of its elements. Furthermore, there will be a similarity in
elements along rows, with changes occuring in the j'" column, for a fixed j.
An example will help to clarify this description.

Example. Let A be the 8 x 8 FIM

/a* e b0 bt
\a -« b b ¢

A=

L

and V be the IV

— W N Ot W oW
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then taking j = 4, we have the matrix M represented by A and V is
Jj=4
1
* * * k k k k
ay ay ai by b, ¢, 5 'y
k %
ay ay ay by by oty oy iy
* * * k k k k
az ay ay by bl Ly Ly Ly

a3 as as bg b7 Cs Cy C10

In the forthcoming sections, the matrices we will use will all be of size
(k* + k) x (k* + k) with the top k* rows being starred and the bottom k
non-starred. Furthermore, there will be only two different indexing vectors
required. We define them now.

Definition 3. Let V; and V5 be the (k* + k)-row IV’s

11 —1 1 1

19 — 1 1 l9
Vi = : and Vo=V, + = |-

U 41 0 L1

Uj* 42 0 L2

Tk*+k 0 Uk*+k

4.4.2 Matrices of skein elements

Recall the various skein elements constructed and defined in Section 4.3 and
the relations between them. We shall now use the notation developed above
to state and prove some results for elements of the skein A which are deter-
minants of matrices of these simple skein elements.
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Lemma 4.1. For all 7 > 1 we have

det (v* e Yyt opt e V) =
\l R
det (v* eyt oyt pt e LV
\l ) y y 7" )

Proof. Apply column operation

Cj+1 > SAC; + Cj+1
using (4.6) on starred rows and (4.2) on non-starred rows. [ )

Corollary. For all j > 1 we have

det( (7* ey "'),V}). (4.9)

Lemma 4.2. For all 7 > 1 we have

det (7* e Yty e LV =
\l oy oy L -

Proof. Apply column operation
Cjt1 > —s_lacj + Cj+1

using (4.5) on starred rows and (4.1) on non-starred rows. [ )
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Corollary. For all j > 1 we have

det, (7* eyt
\l I

Lemma 4.3. For all 7 > 1 we have
J

det (v* e Y opt e LV =
\l R
1

),%) (4.10)

det ( v Yt
(s
Proof. Combine determinantal equations 4.9 and 4.10.

Definition 4.

(a) Ak*+k = det (%) ,Vi) € A,
W s () ) e

(c) In general, for j >0,

S

~2

: :::)JVI)-

( ]
INY det<\l ST ) “_>,V1>e,4.

Lemma 4.4. For all 7 > 1 we have

J
1

Y r

(s—s_l)det< ('Yl* yrp :::),Vl>:sAj—s_lAj_1.
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Furthermore,

Lemma 4.5.

k:-i—k

(s —s E %771 det
7=1

J
1
y 7" s e s
J
1
et (2 sy
\ ! (s—s Ny
!
= det ( v* sy —s p*
\ { sl — s Ir

(

(7 p
(\l sl T
i
—det(( s tp* p*
\ 71’/“ r
SAJ SlAjl
j
1
(7* vy opt - V| =
NS ) )
G2(k"+k
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Proof.

J
k*+k . ( !
(S _ 871) 82]71 det ry* [N y* p* .« .. ,‘/'1
2 e
J
k*+k ‘ ( ‘
:ZSQJ_I(S—S_I)det< vyt pt "'>,V1)
— Ty

k*+k

= Z SQj_l(SA]' — S_lAj_l)
j=1

— PEEIALL A

4.5 The final push

In this section we combine all the results of the preceding sections to take
us to our final goal, explicitly identifying a basis for the Homfly skein of the
annulus C.

Firstly we are required to define some further matrices.

Definition 5.

*

r

(a) A@%:da<<l::,%>eA;

(b) Al :=det (M v2> € A;

Now relating these matrices to those defined in Definition 4 we find

Proposition 4.6. The following relations hold:

(i) Dprp = (=sa 1) Ay,
(ii) Ay = (—sa )" A,.

Proof. To the left hand side of the relations apply the facts that r; =

—sa'yi_; and I} = —s ta 'p;_, respectively to the top k* rows. We also
allow for the shift in indices on the top £* rows with the change in indexing
vector. The relations follow immediately. [
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The following lemma uses all the results of the previous section to give a
relation for elements in C through application of the closure map ¢ : A — C.

Lemma 4.7.

s (™ 0 (A yr) — o(A))) =

k* -k -

9i R
E SJ<(Sdet<<hH,‘/2>
Jj=1

Cqet| LB @(Zﬂ n
dt(\h s 250k

Proof. We begin with the left hand side of the equation:

s (5™ 0 (A ) — 0(A)))
= o(s™ (™ Ak 1) — AY)
(since ¢ is a linear map)
= o(s™ (s (—sa™ ) Apep — (=507 AY))
(by Proposition 4.6)
= o((—a ') (SPFHPAL 1 — A))

)

J
k*+k ( ‘
= (s —s s~ det ol Yy
(GRS Ea—
(by Lemma 4.5)
J
k*+k ( ‘
= — st 2j-1 ol Y
< (s —s7) Z s det( 7 !
7=1
(by Lemma 4.3)
J
k k ‘ )
N s2-1 Jet (v oo syt —slp
1 \l - sl—sr

after multiplying column j by (s — s™') and using relations (4
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J
k*+k ¢
_O(Z(—a LR g2 1det< /v ;;a* vl*

j=1

(by splitting the matrices with the entries in the ;"

(1 ((2) )

k*+k

E s% o

Rk ( !
_232]0<det< \Tl 8127“ Tl ),‘6))
]:

)9)

column)

We now apply the closure map to the determinants and recalling the skein

map ¢ we see the result follows.

P(hn).

We now calculate the values of @(h) and

Proposition 4.8.

(U—I(SZn—l — s

(U(Sf2n+1 -

") +d)hy,
s) + 0)hy,.

and

Proof. We are considering the idempotent closures A and h,,

)

therefore we

are interested in the single row Young diagram with n cells. We apply the
results for the values of ¢, and ¢, given in Chapter 2 (see also [MHO02]), where
A = (n) with the content of the cells being (from left-to-right) 0, 1, 2,...,

n — 1. After some cancellation, the results follow.

Corollary (of Lemma 4.7 and Proposition 4.8).

J
1

(v1s?r 4 627 (§ — 5_1 _1))h:‘ it

(h*) R
“o(h) h

h*

32jdet< (iZ = ?
(

)

h

d“( i

where i, is the value in the r*

(05T 5§ 5705 %5 — 05 Ny 1yt

row of the indexing vector Vs.
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Proof. The result is immediate after finding the index for the j* column
from the indexing vector. 3

We notice the following about the second summand of the scalars multi-
plying the A7 .., and the h; i ; ; in the previous matrix.

Proposition 4.9.
§—s ol =526 — s,

. —1_
Proof. Since 6 = *—=7, we have
S(s—s") = vl-w
= séd—uv ! st6—w
= f—s vl = s -5l

From this point we shall define

A)\7M = det, (M ,‘/Q> s

and let
* L * )
Bij = 0 + v,
and 51] = 92 + Vj,
where
o1 2ip+1
0 = v st
o 1-2i
0, = wvs ',
25 -1, -1
and  v; = sT(0—sTvT).

As explained, the entries in V5 determine the values of the subscripts of
the entries in Ay ,. Here, the entries of V, will be associated with the number
of cells in the Young diagrams A and p, although we shall not indicate here
how this association is made.

Therefore we have

27 de {h* @) k- _
dt(\h - s 2p(h) h )’VQ




Lemma 4.10.

J
k*+k ‘(;z \h
2 e * * . o
Zsadet< SER s B )v>_
(Bi1+ -+ + Biepe + Bt g1 + -+ B b o) A -

Proof. We combine the previous statements noting that

J
k* 4k (h (;z) .
ZS e(\h - s52p(h) h )’ 2)

7
J
< [ n Glh h
2j * 7* * *

+ (1/1 + -4 l/k*+k)A)\,;L'

Now apply a general formula noted by Lukac in [Luk01] (see also [Luk]) for
variables w;; and T;,

T wypr v Wirj—1 MWy Wij4r -+ Wiy wir v Wiy
E det : : : : : = pdet
7=l Wry =0 Wpj—1 TrW15 Wrjg1r - Wy Wry = Wer
where p = m; 4+ - - - + m,.. The result follows. 3

In the following theorem we shall gain a glimpse of the eigenvectors Qy ,,
as required.

Theorem 4.11. A, , is a scalar multiple of Q-

Proof. Recall the statement of Lemma 4.7. The left-hand-side, on calculating
the effect of the closure map, is

S (% o (A i) — o(A)) = sPFHOAL, — s B( Ay ).
The right-hand-side, through the preceding manipulation, is

J
1

() g
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Combining these two statements yields, on re-arranging

k* -k k*+k
k B(Ay,) = (( 2k*+k) Z 23) 54_25” + Z B]]>A>\7M

j=1 j=k*+1

Now, in Chapter 3 we had a result that stated that every eigenvector of ¢ is
a multiple of one such @), ,. We have seen that A, , is an eigenvector of ¢, or
is zero. We can confirm that it is non-zero by comparing the specialisation of
< Ay, > (the evaluation of A, , in the plane), when v = s with a suitable
< Q, >, for large enough N. Hence the result follows. [

Once we have identified the eigenvalue of Ay, as t),, we then know
that A, , is a multiple of @), and can hence identify the indexing vector
appropriate for pairs of Young diagrams (A, p).
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Chapter 5
A Survey Of Related Work

We end this work with a brief chapter to discuss some recent work of other
authors. The work to be discussed here takes a very different approach to
the subject with a larger emphasis on algebra and lesser so on the geomet-
ric interpretation. It is still however a close relative of what we have been
discussing here in the preceding chapters.

5.1 Centralizer algebras of mixed tensor rep-
resentations

Various parties have discussed a construction similar to the generalized Hecke
algebra H,, , discussed here. Its construction however is different from the
geometric approach we adopted.

Firstly we consider a one variable algebra. For this algebra, the variable
¢ can be considered in the same context as the variable for the Hecke algebra
variant described previously and denoted H,,(q). According to Jimbo [Jim86],
the Hecke algebra H,(q) is the centralizer of the action of the special linear
group Hy(sl,) on ®"V, where V, is the natural r-dimensional representation
of U,(sl,). This is also sometimes called the vector representation.

This is then extended to an algebra denoted H, ,(q). This is then defined
to be the centralizer of the action of the general linear group U,(gl,) on
(®@"V;) ® (®PV,) where V is again the natural r- dimensional representation
of Uy(sl,) and V* its dual.

Such an algebra is considered by Kosuda and Murakami [KM92, KM93]
and also by Halverson [Hal96]. The connection is made by these authors
between this algebra and the Homfly polynomial of closed (n, p)-tangles.

Perhaps more fitting for our approach, Leduc introduces a two variable
algebra in a similar way [Led94], denoted A, ,(z,q) where the g appears as
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it does above, and the z corresponds to the v we see in the coefficient ring
for H,, and is present to deal with any curls within the tangles. The § we
use is the equivalent to the x used by Leduc.

Leduc offers a convenient way to see how these algebras, shortened now
to A,,, display the natural embedding described earlier. We know that
Ay C Ay, for 0 <k <nand 0 <! <p. Wethen see that the algebras 4, ,
can be arranged in the form of Pascal’s triangle.

/\
/\/\
/\/\/\

In this triangle we may say that an algebra A, is a subalgebra of A, , if
and only if there is a path from A, to A, , proceeding from top-to-bottom
obeying the directions of the arrows. We also notice that the outer points of
the triangle are isomorphic to the Hecke algebra, and the sum 7 + j for each
A; ; is constant at each level.

Remark. Leduc gives a presentation of A, , in terms of generators and rela-
tions (Definition 2.2, [Led94]). The presentation given is isomorphic to the
presentation given by the author in the main theorem of [Had] where it is
proved to be a presentation for the skein theoretic algebra.

In all these pieces of work, the idea of indexing by pairs of Young dia-
grams is present, however unlike the approach taken in Chapter 4, they use
a concept they describe as staircases.

Leduc ends his thesis [Led94] with a description of the potential connec-
tion between this algebra and calculating the Homfly polynomial for closures
of tangles.

Barcelo and Ram offer a survey to some of this work and more besides
in [BR99]. Their survey is primarily from the point of view of combinatorial
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representation theory and hence they include much that is beyond the scope
of this thesis. They do include a comprehensive list of references.

Remark. In other related work by Kosuda [Ko0s99], irreducible representations
of the Hecke category H are shown to define isotopy invariants of oriented
tangles. The set of oriented tangles (up to isotopy) forms a category denoted
OT A. Following Turaev [Tur90], the Hecke category H is defined as OT A
factored by the Homfly skein relations. This method is then used to compute
the Homfly polynomial in [K0s97].

5.2 The Homfly skein module of S! x S?

Gilmer and Zhong discuss the Homfly skein module of S' x S? in [GZ].
This skein S(S' x S?) is described as a certain quotient of S(S' x D?),
denoted in the preceeding chapters by C. In order to discuss this quotient,
the authors first give a basis for the skein S(S' x D?) in terms of closures of the
Aiston-Morton idempotents of the Hecke algebra. They offer the following
proposition, re-written here using our terminology.

Proposition 5.1. C has a countable infinite basis given by Q) , where A and
wu vary over all Young diagrams.

The space S x S? is then considered to be obtained by adding a 2-handle
and a 3-handle to the solid torus. The skein of this space is studied via
considering another skein, S(S! x D? A, B), the skein of the solid torus with
an input point A and an output point B.

Two bases are then given for S(S! x D?, A, B). The first is given in terms
of the basis of S(S' x D?) given by Turaev and denoted here, using our
terminology, by the set

{4, :m e Z}.

The second basis is related to the basis of C described above as Q’A’ﬂ, the
closures of two suitably oriented Aiston-Morton idempotent elements.

5.3 Concluding remarks

The author hopes that through this work some interesting questions have
been answered. On the one hand it is hoped that the answering of these
questions goes a small way in improving our understanding of this area of
skein theory; on the other, one hopes that more questions are raised as a
result.
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