Generalized Exchangeable Braids

Thesis submitted in accordance
with the requirements of the
University of Liverpool
for the degree of
Doctor in Philosophy

by
John Owen Salkeld

January 1997



Abstract

An exchangeable braid is a link with two unknotted components such that
each component lies as a closed braid relative to the other as axis. Any such link
is constructable from the closure of a certain type of braid known as a Stallings
braid, although not all Stallings braids are exchangeable.

In this thesis I study conditions under which a Stallings braid yields an ex-
changeable braid, including a complete analysis of Stallings braids up to 5 strings.
Part of the study involves the consideration of the Alexander polynomial of more
general 2-component links, the Alexander polynomial of their cyclic branched
covers, and the use of groupoid ideas to then study geometric features of the
link.

The setting is then extended to deal with a generalised exchangeable braid,
where the link may have more than two components, each being a fibered knot.
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Chapter 1

Introduction

In this introductory chapter I will give a brief summary of the ideas and results
contained within this thesis, and list the notation used throughout the thesis.
The first section of this chapter will be the section on ideas and results used in
the thesis, and the second section will be a summary of notation used within this
thesis.

1.1 A brief summary of results and ideas.

Traditionally exchangeable braids were defined in the terms of links of two com-
ponents, each of which are unknotted, and each component having the other
component as closed braid relative to it as an axis. A braid, 3, is then called ex-
changeable if its closure together with axis, B UA, form such a link. The essential
feature of such a braid is that the closure of the braid, B, is unknotted and that
the axis for the braid A is itself a closed braid relative to B as axis.

A Stallings braid on n strings is defined by Morton in [9] to be the product
of n — 1 elementary braids or their inverses which close to a single component,
where an elementary braid o, ; € B, for 1 <7 < j < n is the braid interchanging
the " and j% strings with a single positive crossing, in front of any intermediate
strings, and leaving the others alone. Such braids were introduced by Stalling as
examples of braids whose closure is the unknot. A spanning surface for the closure
of a Stallings braid can be obtained by placing n discs on the braid strings and
connecting them by half twisted bands corresponding to the elementary braids in
the above product, where a positive half twisted band connecting the i-th and j-
th discs corresponds to the elementary braid o; ; and a negative half twisted band
connecting the i’-th and j’-th discs corresponds to the inverse of the elementary
Such a disc intersects the axis in only n points, this form of

braid i.e. ;%
i

spanning disc for a Stallings braid is known as a Stallings disc.



It is shown in [9] that every exchangeable braid is conjugate in the braid group
to a Stallings braid, but that some Stallings braids are not exchangeable.

Morton’s paper on exchangeable braids then goes on to describe two ways
in which a Stallings braid decomposes into simpler Stallings braids, and then
proves that the original braid is exchangeable if and only if its decomposition
constituents are exchangeable.

The first of these two ways of decomposition is a form of generalized plumbing,
called in [9] the Murasugi sum of two Stallings braids. The Murasugi sum is a
form of plumbing extended to apply to the pairs consisting of the Stallings disc
and the axis of the Stallings braid.

Given a Stallings braid g € B, the braid group on n strings, with Stallings
disc D and axis A, following Morton’s definition I shall say that the pair (D, A)
is the Murasugi sum of (Dy, Ay) and (D, Ay) if

(i) D; and D, are subdiscs of D each lying in half of S?, and meeting only
in a disc Dy = Dy N D, lying on the sphere, S?, which separates S® into the two
halves.

(ii) The axis A meets the separating sphere S? in only two points, d € Dy and
c ¢ Dy.

(iii) The disc D; forms a Stallings disc with axis A; where A; consists of the
part of L in the half of S? containing D; completed by an unknotted arc cd in
the other half of S®, and similarly for the pair (D,, A,).

Now that the Murasugi sum of two Stallings braids is defined I will call the
decomposition components of the Murasugi sum the Murasugi summands, i.e.
the Murasugi summands of = 0D are 5, = 0D, and 3y = 0D,.

The other possible decomposition of a Stallings braid can be described in
terms of the construction of satellite knots and links. In general, to construct a
satellite of a link L = L; U... U L, we need another link C' = C, U ... U}, in
which one unknotted component, C} say, is selected. Then one component L
say, of the link L is chosen. We then replace a solid torus neighbourhood V' of L,
by the solid torus W = S® — C},, the complementary torus to the neighbourhood
of C',. This replacement is by a faithful homeomorphism A : W — V i.e. one
which carries a longitude of W to a longitude of V. The satellite link thus formed
consists of A(Cy)U ... Uh(Cy_1) U Ly U...UL,, and contains a splitting torus,
T =0V = h(0W).

For the case of Stallings braids we have » = k£ = 2 and both C; U C; and
L, U Ly consist of closed braid union axis, where C';, and L, are the respective
axes. It then follows that hA(C})U Ly is a closed braid with axis L, on mn strings



when the constituent braids have m and n strings respectively. In the following
text I will write the satellite as (L, x C}) U Ly to indicate that the component L,
has been decorated by the pattern C.

For the two preceding decompositions of Stallings braids Morton has proved
the following theorems.

Murasugi Sum Theorem Given that the pair of Stallings braid and axis
BU A is the Murasugi sum of 31 U A; and By U Ay , then the Stallings braid 3 is
exchangeable if and only if its Murasugi summands (3, and (35 are exchangeable.

—

Satellite Theorem Let the satellite link 3, * By U A consist of a closed braid
B = [ * By with axis A. Then § = [, * By is exchangeable if and only if 3, and

By are exchangeable.

Morton also points out that a gap exists between necessary and sufficient
geometric conditions for a Stallings braid to be exchangeable.

In Chapter 2 I give a brief survey of Free Differential Calculus results, as a
description of why the free calculus can be used to find the Alexander module,
and thus the Alexander polynomial.

In Chapter 3 I will investigate the spread in a single variable of the multivari-
able Alexander polynomial in terms of the genus of the component relating to
the variable and the geometric intersection number of the surface and the rest of
the link. I will also generalize the k-fold cover theorem on the Alexander polyno-
mial of braids to a similar theorem on tangles. Also I point out that the spread
theorem is true in any integer homology three sphere.

In Chapter 4 I will consider the case of exchangeable Stallings braids, as a
form of tangle, that is I will investigate the ”exchange” of a Stallings braid, and
related tangles.

In Chapter 5 I propose to generalize the notion of exchangeable braids to in-
clude braids with generalized axis in homology 3-spheres, and using some knowl-
edge of multilinks [3] generalize the Satellite Theorem to a splice decomposition
theory of exchangeable braids. In Chapter 5 I will also prove a necessary and
sufficient condition on which Stallings braids are exchangeable.

In chapter 6 I will show that the Murasugi sum Theorem may be general-
ized, that is the Murasugi sum of two generalized braids with generalized axis is
exchangeable if and only if the two Murasugi summands are exchangeable. The
major part of Chapter 6 will be a discussion of necessary and sufficient conditions
on the exchangeability of generalized exchangeable braids, in terms of fibrations



of related knots and links. This Chapter contains necessary and sufficient geo-
metric conditions on which Stallings braids are exchangeable. That is a Stallings
braid f is Exchangeable if and only if 3% is fibered.

The following thesis is dedicated, with many thanks, to my family and friends,
and Hugh Morton. I would also like to thank S.E.R.C. for their support.

1.2 Notation used in this thesis.

In this thesis, the space ¥ will be a smooth, path connected, orientable 3-
manifold,
A path in ¥ from s; to s, is a continuous mapping from the interval, I, into
)y
p:I—X

with p(0) = s; and p(1) = s,.

Write G(X,S) for the category whose objects are points in S and whose
morphisms are paths in 3 with endpoints in S, where S is a non-empty subset
of ¥, and write G(X, S)(s1, s2) for the set of all morphisms (paths ) from s; to
sy in G(X, S).

The inverse of p € G(3,S)(sy, ) is the path p~* € G(Z, S)(sy, s1) defined
by p~(t) = p(1 - 1).

Write p; ~ po, when py, py € G(E,S5)(sy,,) are homotopic, fixing their
endpoints. Thus we have p, ™' o p; ~ id,, and p, o p; ™' ~ id,,. Let us define the
homotopy class of p, denoted by [p] € G(X,S)(sy,s2) as the subset < p' : such
that p’ € G(X%, S)(s1, $2), and p' ~p >.

Write 71(3, S) for the category whose objects are points in S and whose
morphisms are homotopy classes of paths with endpoints in S. This is called the
fundamental groupoid of ¥ over S.

[ shall say that the triple (3, F, A) is the Murasugi sum of the two triples
(1, Fr, Ay) and (5, Fy, Ay) if

1. The homology 3-sphere ¥ = ¥ #4235

2. Fi and F; are subsurfaces of F' meeting only in a disc Dy = F; N F; lying
on the sphere, S?, which separates ¥ into ¥; and ¥, such that F} is in ¥,
and F = FI#DQFQ'

3. The generalized axis A meets the separating sphere S? in only two points,
d € DO and ¢ ¢ D[). Thus A factors into Al n El and A2 in 22, A = AI#AZ



Let ¥ be a smooth, connected orientable, three manifold, and let the link,
L(X,S, U...USy), a union of disjoint oriented simple closed curves in ¥ (All
links in this thesis will be assumed oriented). If N(S;) denotes a neighbourhood
of S; in ¥ then let ¥y = ext(X) = X — (N(S;) U...UN(S,)) be the exterior of
the link, 7 : ZTO — Yo be the projection from the universal abelian cover to the
link exterior, and p = 7~'(p) be a typical fiber of this map.

Write G = 71(3g) be the fundamental group of ¥y. The group of covering
transformations of X is Hy(X).

The trivialiser, ¢, of Z(G) is defined by

t(Xkigi) = (Xki)e

where k; € Z for all 7 and g; € G with e the identity element of G.
A derivation, D, on the group ring Z(G) is a map from Z(G) to itself which
satisfies

D(u+v) = D(u)+ D(v) (1.1)
D(u.v) = D(u).t(v) 4+ u.D(v) (1.2)

where u,v € Z(G).
The free group on n generators, z,...,x, is denoted F,,. There is a set of n

endomorphisms of Z[F},] called the free derivatives. They are determined by

N u+v)  Ou  Ov
o(uv)  Ou v
" Ou
u—tu) = Y =—(z;—1) VYueZ(F,) (1.6)
=1 0x;
" Ow
w—1 = Za—(xj—l) Ywe F, (1.7)
j=1 97



Chapter 2

The Free Differential Calculus.

The purpose of this chapter is to give a description of derivations, in particular
the free differential calculus, and to show how to obtain the Alexander module
from a finite presentation of the fundamental group.

2.1 The Free Calculus As A Derivation.

When studying the knot group a useful tool is the Free Differential Calculus of
Fox in [ 4]. It is useful in that it converts the study of a non-abelian group into
the study of a related abelian group which still retains enough structure to be
interesting. To introduce the free calculus it is first necessary to consider the
group ring, Z(G), where an element Xk;g; € Z(G) is the finite sum of integer
multiples of group elements, where k; € Z for all ¢+ and all but a finite number of
the k; are zero. Next it is useful to consider the trivialiser ¢ of the group ring.
The trivialiser ¢ of Z(G) — Z(G) is defined by

t(Xkigi) = (Xk;)e

where k; € Z for all 7 and g;,e € G with e the identity element.
A derivation on the group ring Z(G) is a map D from Z(G) to itself which
satisfies

D(u+v) = D(u)+ D(v) (2.1)
D(u.w) = D(u).t(v) + u.D(v) (2.2)

where u,v € Z(G).
Next we consider derivations on the free group. Write F,, for the free group
on n generators, zi,...,x, and Z[F,| for its integer group ring. As above write
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t : Z[F,| — Z[F,] for the trivialiser, defined by t(3 a;w;) = (X a;)e, where
w; € F,, and e is the identity element of F),. Let the derivation D be D = id —t,
where id is the identity mapping on the group ring and ¢ is as before. Thus
we have D(Xk;g;) = Yk;g; — Skiep, = X(kig; — kier,) = Xk;D(g;), note that
t(D(g)) = 0. If w = Xk;g; € Z(F,) has t(w) = 0 then w = w — t(w) = D(w).
Now it can be shown that the Z(F},) module defined by (w € Z(F,,) | D(w) = 0)

is a free module with generators (z; — 1),...,(z, — 1). Then,
" Ou
u—tu) = Y =—(z;—1) VYueZ(F,) (2.3)
j=1 ax]’

and in particular

"0
w-1 = Y 22 (z;—1) VYweFE, (2.4)
j=1 aﬂ?]
This set of n endomorphisms 3%31’ e % of Z[F,] is called the free differ-
ential calculus because they obey "
0(z;)
or, bij (2.5)
o(u +v) ou  Ov
O(uv) ou v

but (2.6) and (2.7) are the rules to be satisfied for a map to be a derivation.

2.2 Free differential calculus and the Alexander
module.

In this section I will present a method for obtaining a presentation of the Alexan-
der module, from a presentation of the fundamental group of the exterior of the
link, and thus a method for finding the Alexander polynomial, where it is properly
defined. For more complete treatment see the papers of Fox [4, 5, 6].
Let ¥ be a smooth, connected orientable, 3-manifold, and let the link L(X%, S;U
..USy) in X be a proper embedding of simple oriented closed curves, S;U...USy,
into 2.



Since the aim of this section is to find a presentation of the Alexander module
in terms of the exterior of the link, we must first define the exterior of a link in
Y. Let us denote by N(S;) a neighbourhood of S; in X.

Then the exterior, ¥, of the link L in ¥ is ¥y =X — (N(S;) U... UN(S,)).

Let XTO be the universal abelian cover of ¥, with associated projection 7 :
>, — Y, from the universal abelian cover to the link exterior, with p = 7 (p)
a typical fiber of this map, and let G = (%) be the fundamental group of ¥,.
The group of covering transformations of ¥, is H 1(X0)-

The aim of this section is to show that a presentation for Hl(io, p) as a
ZH,(X;) module can be obtained from a presentation of G = 7 (%), the funda-
mental group of ¥, because Hl(io,p) presented as a ZH,(X,) module is called
the Alexander module.

Let P be a presentation of the group G, given by
P=(x,...;%, :T1,...,Tp).

This can be considered to be part of a cell decomposition of ¥;, where the base
point p of the fundamental group is the O-cell, the n 1-cells are the generators of
the presentation

Ti1yenwey Ly,

and are thus loops in the fundamental group, and the m 2-cells are the discs
D,,...,D,,,

with the attaching map of D; being r;.

Now let H be some quotient of GG, and ZTO — Yo the regular covering with
group of covering transformations isomorphic to H. The cell structure for ¥ lifts
to a cell structure for %y, as follows.

Let ¢ € p be a specific element of the fiber, then choose x; for the unique
lift of x; which starts at ¢, and 52 for the unique lift of D; such that 652- is the
lift 7; of r; which starts at ¢. Then the cell decomposition of the covering space,
Co(Z0), C1(Zy), Co(Zp) are free Z(H) modules.

Now when H = H,(3,) we have the boundary map 0, : C’Q(XTO) — Cl(i])
is an almost complete description of H;(Zy,p) as a Z(H;(X)) module. (And
since H 1(50, p) can be described solely in terms of the group G the result will be
independent of the presentation P.)

The next step is to let w be any word in the x;’s, regarded as a representative
loop in the homotopy class based at p. Then w lifts to a unique path w based at

q.

10



Proposition 2.2.1 If w is any word in the x;’s then the lift w s the following
1-chain in X,

ow

where T is the derivation of the word w with respect to the generator x; in the

free differential calculus.

Proof The proof will be by induction on the word length. When the word length
of w is one w = ;7! or w = x;. Firstly we need to see that the end point of w
based at ¢ is ad(w)g, and that w! = ag(w ') x —(®). The illustration below
shows this to be true.

ap(w)q

— w

ag (w)q

If w = z; we have
n
W=7 =) 6%,
Jj=1
and if w = ;7! we have

W=x; L= —ap(z; )T =Y —600(x; )T -
j=1

Now we assume that any word of length less than or equal to [ has a lift w as
required. So we now consider a word, x; w, of length [ + 1.

Now as above the end point of z;¢ beginning at ¢ is a¢(z;¢)q, so z;fw =
;¢ + ag(z;¢)w thus

N R " Qw
T = 3 a5 )T + a(e) Y ad(5)a

j=1 J j=1 J

11



Thus by the inductive hypothesis w is as described. 4

In particular, with respect to the Z(H;(Z,)) bases of Cy(Zg) = (D; : 1 < i <
m) and C’I(XTO) = (z;: 1 < j < n), we have 0, : CQ(XTO) — C’I(XTO) given by the
m X m matrix

87'7;

M=a¢(8xj) :

The other boundary map 0, : Cl(fo) — C’O(XTO) is given by the following

01(&) = (ad(e;) — g

Thus we have the above matrix M as a presentation of Hl(io, p), which leads to
a presentation of HI(XTO) because Hl(g),ﬁ) =I® HI(XTO), where [ is the Z(H)
module generated by (a¢(x;) — 1), for every j.

The module, H;(Z,), presented as a Z(Hy(Zo)) module is the Alexander mod-
ule, and the Alexander polynomial can be retrieved from the determinants of the
(n — 1) x (n — 1) submatrices of M.

12



Chapter 3

The Alexander polynomial

In this chapter I will show a number of results on the Alexander polynomial,
including an upper bound for the spread of each variable in the multivariable
Alexander polynomial of a link.

3.1 Spread of the Alexander polynomial

At first we consider the spread in a variable of the multivariable Alexander poly-
nomial in the three sphere.

3.1.1 A bound on a variable in the multi-variable Alexan-
der polynomial.

There is a well-known bound for the degree of the Alexander polynomial A ()
of a knot K in terms of the genus of a spanning surface for K.

In this chapter we find similar geometric bounds for the Laurent degree of
each variable in the multi-variable Alexander polynomial of a link. We consider
a link I with k£ components L,,..., L;. The Alexander polynomial, for & > 2, is
a Laurent polynomial Ay (¢y,...,%;) in k variables ¢,,. .., corresponding to the
meridians of Ly, ..., L, respectively. Write Ay (¢,...,t;) in terms of ¢; as

M
AL(tla' .. 7tk) = Z tZ-F)] )
Jj=m

where P; is a Laurent polynomial in the remaining variables with P, # 0, Py; # 0,
and we define the spread, or Laurent degree, of the variable t; in Ap(t,...,t;) to
be Spr;.(Ar) = M —m. Select one component K = L; of L, and put L' = L — K,
and write tx = t; for the corresponding variable. Choose a Seifert surface Sk
for K, in other words any compact orientable surface whose boundary is K, and

13



arrange that L' intersects Sx transversely. Write I(Sg, L') for the total number
of transverse intersections of L' with Sg. We now give an upper bound for the
spread, Spry, (Ay), of the variable t; in Ay, in terms of I(Sk, L') and the genus
g(Sk) of the surface Sg.

Theorem 3.1.1 In the multi-variable Alezander polynomial Ayp(ty,...,t;) we
have

Spri(Ar) < 29(Sk) +I(Sk, L") — 1.
Corollary 3.1.1 Let Ap(ty,...,t;) be as above. Then
Spri (Ar) < min(2g(Si) + (Sy, L) — 1)
Proof Obvious. O
Corollary 3.1.2 Let L be a link with an unknotted component U. Then
Spry, <I1(Dy,L") — 1.

Proof The disk Dy has genus 0. a

Remark In the case of the closed braid with axis we have a specialisation of
Corollary 3.1.2 above. This follows because the Alexander polynomial of an [-
braid and axis can be realised as the characteristic polynomial, det(zI — B(t)),
of an (I — 1) x (I — 1) invertible matrix, known as the reduced Burau matrix
of the braid, with x representing the meridian of the unknotted axis U. Then
Spry = Spry(det(zI — B(t))) = (I — 1), while a disk Dy spanning the axis meets
the closed braid in at least [ points.

3.1.2 Free calculus.

In the proof of theorem 3.1.1. we will make use of Fox’s free differential calculus
in calculating the multi-variable Alexander polynomial, A, from a presentation
of the group 7 (S® — L). The following is a brief reprise of chapter 2, for a more
complete treatment see [4, 5, 6].

Write F), for the free group on n generators, x4, ..., z, and Z[F,] for its integer
group ring. Write ¢ : Z[F,| — Z for the trivialiser, defined by t(3 a;w;) = Y- a;,
where w; € F,. The free differential calculus defines a set n endomorphisms

aixl’ e % of Z[F,,] with the following properties:

14



= 1
5 = b (3.1)
o(u +v) _ 8u v (3.2)
0x; axj axj
O(uv) ou v
= —¢ -
o o, (v) + uaxj (3.3)
Then,
u—t(u Z —-1) YueZ(F,) (3.4)
and in particular
" Ow
w—1 = Z (z; —1) VYweF, (3.5)
8%
Given a group G with a finite presentation G = < @y, ..., 2T, | ri,...,7m >
on n generators xy,...,x,, write F;, as before for the free group with generators

Zy,...,x, and ¢ : F,, — G for the homomorphism defined by ¢(z;) = z;. Then
R = ker ¢ is the normal subgroup of F, generated (as a normal subgroup) by

1. Tm € F,. We may define an m x n “Jacobian” matrix M = (g;’) with
j
entries in Z[F,|. This has the property that

under the natural convention for multiplying matrices with non-commuting en-
" Or;

tries, since » a—xz(x] —1)=r; —1 by (3.5).
=1 “Yj

There is a homomorphism « : G — G/G’, called the abelianiser, from G to
the abelian group G/G’, we will also write the group G/G’ multiplicatively.
The map a¢ : F, — G/G" induces a ring homomorphism «¢ : Z[F,| —
Z|G/G'] to the commutative ring Z[|G/G"].
Write y; = a¢(z;); the matrix M gives a matrix apM with entries in Z[G'/G'],
which satisfies

(y1 —1) 0
apM : =1 : , since ¢(r;) =1 € G.
(yn - 1) 0



Now let G = 7,(S® — L), and choose a finite presentation of G. The abelian-
isation G/G' = H (S® — L) is a free abelian group of rank &, and we can choose
generators t,...,t;, which are represented by oriented meridians of the com-
ponents Li,...,L,. The group ring Z[G/G'] is then the ring Z[ti', ..., '] of
Laurent polynomials in ¢q,..., 1.

Using the presentation of G on n generators find the matrix a¢M, called the
Alexander matrix of the presentation. The Alexander polynomial Ap(ty,...,t;) €
Z[t', ... 7] is defined, up to a unit in this ring, as

Ap(ty,...,tg) =ged( (n —1) x (n — 1)subdet apM ).
It is shown by Fox in [5] that Ay depends only on G and not on the choice of
presentation. We now give the proof of Theorem 3.1.1.

3.1.3 Proof of theorem.

Proof of Theorem 3.1.1 We will use Van Kampen’s theorem to find a suitable
presentation of G = m;(S® — L), based on a decomposition of S — L as U UV,
where U, V are open and U NV is path-connected.

Let K be the chosen component of L, as above, and L' = L — K. Choose a
meridian m for K and a solid torus V;,, centred on m, such that (V,, N L") = 0.
The spanning surface Sx meets L' transversely in [ = I(Sk, L') points. Write
Sk = (Sk — (Sxk N L')) for Si with these points removed. Then we may choose
our U and V as follows

U=(S*— L - Sk),

V =int((Skx X (—¢,2)) U V,,).
Then we have

UuV =(S*-1L),

UNV =int((Sk x (—¢,0)) U (Sk x (0,e)) U (V,, — (V;u N S'K)))-
So by Van Kampen’s Theorem,;
11(S? — L) = m(U) *m (V)] < (i) () = (iv)«(2) | V2 € 1 (UNV) >

where (ir), and (iy), are the homomorphisms at the level of homotopy induced
from the inclusions iy : (UNV) — U and iy : (UNV) = V.
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The fundamental group of any oriented surface with one boundary component
and [ punctures is a free group on 2¢g + [ generators, where g is the genus of the
surface.

Now int(Sk x (—¢,¢)) Nint(V,,) = D? where D? is an open ball, which is
simply-connected. So we have 7 (V') = m(Sk) * 7 (V;,) =< h',; A | >, where the
orientation of the meridian A for the component K is chosen so tx = ap(M).

Similarly for U NV we have two copies of the punctured Seifert surface joined
together by V,, — (V;, N S%), which gives

m(UNV)=<h"X"| >

with (iy),(h") =1, and (iy ). (k") = Ah'A™!

Now we build a presentation for 7y (U) which is compatible with the generators
of m (UNV), in other words we start with generators of 7 (U') which exactly match
the generators of 7, (U NV, and then complete the generating set. This gives a
presentation of the form

m({U)=<hkg|r > .
Van Kampen’s theorem then gives the presentation
m(S® — L) =<h',h kg, A [ v/, (ip).(h") = (ir).(h"), (i) (k") = (ir).(K") > .
Now (iv).(h") = b, (ir).(K") = k, giving
m(S* —L)=<h',hk,g A |r',h=h" k= h\"' > .

which gives
m(S* —L)=<h,k, g, \|r' k= hA1>

The Alexander matrix of this presentation can be found by doing free calculus
on the relations, r; = k;Ah;~"'A™!, and rj. We have

Or;
" Ok;

Or;
oh;

aTi_O arz_k
ijaag_aaA_i T3
!

and since the relations r' depend only on h, k and g we have —ar—)f =0 for all ;.
Now the Alexander matrix of the group is found by applying «¢ to the Jaco-

bian matrix M, which can be written in block form as

o' o' o' or

Oor JOr OJr Or
M(@F Jk Og 87)
oh 0k Og JX
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The calculations above give

(3.6)

apM = ( Lyg 1 —a¢()\)f29+z 0 04¢(/€i)—1)

or' or' or'
R Ry 0
As all the generators of this presentation, except A, are homotopic to paths
in U we have that the linking numbers of the other generators and K is zero.
This implies that the only appearances of tx = a@()\) are the 2g + [ entries in

the (1,2)-block of the matrix.
Now we need the following two lemmas;

Lemma 3.1.1 Let A be a unique factorisation domain, let M be a n X (n+ 1)
matriz with entries in A, let M; be M with the jth column deleted, and let D; =
det M;, and suppose that

aq 0
M : : ;
ap41 0

where a; € A and ged(ay, ..., a,41) =1. Then
(Dl, e 7Dn+1) = p(al, . ,Gn+1) fOT'p = ng(Dl, . 7Dn+1) € A

Proof Adjoin a row of zeros to M to give

;o M
w={o M)
with det(M') = 0.

Then, adj(M")M' =0 x I,,;; = M'adj(M").

Now
0 0 D
adj(M') = P
0 0 Dn+1
which gives

D, 0
M : =| :
Dn+1 0

Either D; = 0 for all j or there exists a k such that Dy # 0. If D; = 0 for all j
then (0,...,0) =0(ay,...,a,41). Now if Dy # 0 we have
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arDy — Dyay

: 0
M ap Dy, — Dyay, =1 :
: 0

aan-i-l - Dkan—l—l

which gives

Clle — Dkal 0
M;, : = | :
aan—l—l - Dkan-i-l ke 0

where (vy,...,v,)} is a vector with its kth entry deleted. But as Dy, = det M;, # 0
we have

ale — Dkal 0

ap Dy — Diapyy 0

Now let ged(ay, Dy) = d and put a;,/d = q and Dy /d = p. Then there exists p, q
such that ged(p,q) =1 and

D, 3]

Dn+1 Ap41

This gives ¢D; = pa; for all j. Any prime divisor of ¢ must then divide a;
for all j, but ged(ay,...,a,,1) = 1, so ¢ has no prime divisors and thus is a
unit. Then the vector (Dy,..., D, 1) = p(ay,...,0,41) withged(Dy, ..., D,y 1) =
p x ged(aq, ..., a,41) =p € A, as required.

Let I be an indexing set defined by I = (iy,...,i,) (1 <i; <...<i, <7).
Let M be an 7 x (n 4 1) matrix with 7 > n then define M; as before to be M
with the jth column deleted. Also define M]I to be the n x n submatrix of M,
with the rows determined by I.

O

Lemma 3.1.2 Let A ,I and ay,...,a,,, be as above and let M be an r x (n+1)
matrix for r > n which satisfies



with ged(aq, ..., an41) = 1. Let My, and M} be as above then, writing dj =
ged(M}), we have
I

(diyeoeydpr) = Alag, - -+, Gpgr)
with A given by A = ged(d;) = ged(det(M])).
J Lj

Proof . Write DJI- = det MJI and set

A = ged(D)) = ged(ged(D;)) -
J

I7j

By Lemma 3.1.1 applied to the n x (n + 1) matrix M’ we have
Dy = a;, x ged(D]) , for all k.
J

Hence
ged(Dy) = dy, = Aay
I

and thus (dy,...,d,41) = Alay, ..., a,4,) with d = ged(Dj). O
I

Corollary 3.1.3 Let A, M, M;, MJ-I, and dy, be as in Lemma 3.1.2,and suppose
that

b 0
bri1 0

where b; € A for all j, and ged(by, ..., by1) = 0. Then
b(dl, PN 7dn+1) = A(bl, PN 7bn+1) where A = ng(dl, C 7dn+1) € A.

Proof Apply Lemma 3.1.2 to (ay,...,a,41) = (by/b,...,b,1/b). O

Remark In the case where M is the Alexander matrix of a knot rather than
a link of two or more components, the Corollary of Lemma 5.3.2 applies with
(b, ybpi1) = (@d((gr — 1),...,@d(gnyr — 1)) = (¢t — 1). Now since b =
ged(by, ...y byyr) = (= 1) we have (t — 1)Ag(t) = (¢t — 1)d,41. This implies
that the limit on the spread is bound by the spread in d,; rather than this
spread minus one, and this spread is bound by 2¢g.

Proof of theorem 3.1.1 continued Now apply Lemma 3.1.2 to the Alexander
matrix (3.6) of L with
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ay ap(h—1)
_ | @o(k—1)
ap(g—1)

Unt1 ap(A—1)

This may be done since ged(ay, ..., a,.1) = 1. Then we may apply Lemma 3.1.2
toget (dy,...,dpy1) = Aay, ..., 0,41) where A = Ap(ty,...,t;) is the Alexander
polynomial of L. So if we find the Alexander polynomial by deleting the (n-+1)st
column, which corresponds to A, we have A =d,,/a,,1 as a,.; =txg — 1 # 0.
Thus we have

Ap(ty,... t) = ged(det(apM])) = gid(det(a¢M,€+1))/(tK - 1),

I7j

where

Mo = Ly —trlyyy O
e Ny Ny N3

and Ny, Ny, and N; are matrices that do not involve tx. Now it is obvious that in
the above matrix the maximum power that {5 can attain is 2¢g +[. Since tx — 1
divides each of the n x n subdeterminants of the above matrix, we then must
have the following;

Spry, <2g+1—1.

But g = genus(Sk) , and [ = I(Sk, L"), which gives us the required result. O

Remark This bound is realised in the following example. Let K be a fibered
knot of genus g, and let AU 3 be a closed I-braid with axis A. Now if the braid
is chosen so that its closure is a single component then the link L = K#4A U B
has I(Sk, L) =1 = 1k(B, A) = Ik(3, K). A result of Fox gives, for this link,

(L BE) _ 1)

Ap(ty, 1) = T =1

AK(tK)a

so it follows that

(L FBE) — 1)
(tx — 1)

Now Spr Ap(tx,t2) < 2gx +1—1 by the theorem above, so we have

SthKAL(tKatZ) Z SthKAL(tKa ].) = SthK AK(tK) = 2g[( + l —1.

SthKAL(tK,tQ) = 2g[( + [—1.
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Example The link L shown in the following figure has Alexander polynomial
Ap(a,b) = (1 =b)(1 —a)(1 + a?), giving SpryA;, =1 and Spr,A;, = 3. Now by
observation there exists a disc spanning the component of L corresponding to b
which the other component intersects with only twice. This implies that L may
be drawn as a, closed, 2-tangle with b as axis, but if a is chosen as the axis for a
tangle representing L then we have by Corollary 3.1.2 that this tangle is at least
a 4-tangle. From the picture below a disc spanning a can be seen which meets b
in 4 points, so b can indeed be presented as a closed 4-tangle (which it is shown
to be again by observation of L).

I = 9

This shows that the geometric winding number of two components is not
symmetrical, and that in general tangles are not exchangeable as I stated in
section 1 of chapter 4. This leads to the idea that a sort of error term exists in
the linking number of two components.

This error term is the following

6TT(K17 KZ) = minSKl (2(9(51(1) - gK1) + I(SK17 KZ) - lk(Kla KZ))

Notice that this is not necessarily symmetric in K; and K.

3.2 The Alexander polynomial of the k-fold cyclic
cover

The work in this section is motivated by the relationship between the Alexander
polynomial of a braid, and the Alexander polynomial of the k-fold cyclic cover
of the braid branched over the axis. We shall suppose that L U A C S? is a link
with a distinguished component A. We may then construct the k-fold cover X of
S3 branched over A, with the projection pj : ¥ — S3.

Write A' = p;, }(A) for the inverse image of the branch set and LF/A =
pe '(L) for the inverse image of the rest of the link. Let y be a meridian of A’
in ¥, and A a meridian of A in S®. Then p;, | L*/A — L is a k-fold cover and
pr | A” — A is a homeomorphism.
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Let the induced map from H, (X —p;'(LUA)) — H,(S*— (LU A) be denoted
by Hi(py).
In this section we shall take A to be unknotted, so that ¥ = S* and A’ is

again unknotted; our results in this case are extended in the next section to the
case when X is an integer homology 3-sphere.

The aim of this section is to describe the Alexander polynomial of the link
p '(LUA) = (L*¥/B)U A’ in terms of the Alexander polynomial of L U A.

Using the definition of the Alexander polynomial given in the previous section
of this chapter, we have the following theorem.

Theorem 3.2.1 Let L U A be a link in S®, with A unknotted. Let p; be the
projection as before, with A' = p, Y(A), L*/A = p, Y(L), and the Alezander
polynomial as above, then

k
Hl(pk)(A(Lk/A)UA(yla - Yty yA')) = H ALUA('Tla <oy Ly CZl‘A)

=1

where ¢ is a k-th primitive root of unity, ya corresponds to the meridian p, and
x4 to the meridian .

Remark. This result is easily proved when L U A consists of a closed braid
L= B together with its axis A. Then the cover p, !(L) is simply the closure of
the braid %, with A’ as its axis. It is known in this case, [9], that the Alexander
polynomial Az, is the characteristic polynomial det(B(t) — zI) of the reduced
Burau matrix B(t) for the braid £.

Since the reduced Burau matrix determines a representation of the braid group
into a matrix group, it follows that the reduced Burau matrix of 5* is (B(t))F,
and thus the Alexander polynomial of the cover p™* (LU A) = p~'(L)U A’ can be
written as

Ap-rnyoar(t, z) = det((B(t))* — 21) ,

where z represents a meridian of A'.
Now if we put 2* = z we have
k i '
(B(t)* —=I) = [[(B(t) - ¢'=1)

=1

where ( is a k-th primitive root of unity.
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Thus

det((B(t))" — 2I) H det(B(t) — ('xI)
and so, since H,(p;)(z) = x*, we have

Hl(pk)A YL )UA’ t Z HALUA t Cl‘)

with ¢, x and z as above.

The proof of Theorem 3.2.1 will show that the same formula holds in the
general case where L is not a closed braid relative to the axis A, and gives a
natural extension to the case where L has m components.

We are thus able to give the multivariable Alexander polynomial of p, ~*(LUA)
in terms of the Alexander polynomial of LU A, at least when p,~'(L) and L have
the same number of components. Even in the case that p, '(L) and L do not
have the same number of components we can retrieve some information on the
Alexander polynomial of p, ' (L) U A’

The final result in this section expresses the Alexander polynomial of p, (L)
in terms of the Alexander polynomials of (L U A) and L.

The following construction is required before the proof of the theorem.

Let L be an embedding of the closed curves into S® — A, where S? is the
three sphere and A is an unknot. Define V, to be solid torus centred on m,
with V4 N L = 0, where m is a meridian of A. Following the construction of the
fundamental group in section 1 of this chapter we now choose a surface spanning
A, F(A) say, but as A is an unknot we may choose F(A) = D(A) to be a disc
spanning A.

Let L*¥/A = p,*(L) be the k-fold cyclic cover of L, as before, in the k-fold
cyclic cover of S branched over A.

Let Apua(zr, .., 25,24), and Apkjagar (Y1, -+ -, Ys, Yar) be the Alexander poly-
nomials of LU A and (LF/A) U A respectively, with 4 representing the meridian
A of A and y 4 represented by the meridian p of A', while ,...,z, and y;,...,y;
are represented by meridians of the components of L and p, '(L) respectively.

Proof of theorem 3.2.1. Firstly I will construct the fundamental groups for
S3 — (LU A) and S® — ((L*¥/A) U A), using the same method as in section 1 of
this chapter. The cover map p; sends meridians of p, ~'(L) homeomorphically to
meridians of L, while the meridian y is a k-fold cover of the meridian A\. Then

Hy (pp)(y;) = Tj
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for some x; and
Hy(p)(yar) = 24" .
Thus we have S* — (LU A) = U UV, where U = (S® — L — int(D(A))),
V = (int(D(A) — (D(A) x (—e,e) N L)UVy), and U NV is path connected. By
Van Kampen’s Theorem

m(S* — (LUA)) =m(U) + (V)] < (i)(@) = (iv)u(2) | Vo e m(UNTV) >

where (iy7), and (iy), are the homomorphisms induced from the inclusions
ip:(UNV)—=Uandiy:(UNV)—V.
Now
m(V)=<h',\]| >

and
mUNV)=<h"X"| >,

where (iy)(h") =h' and (iy)(k"”) = Ah'A L

Again as in section 1 we build a presentation for m;(U) which is compatible
with the generators of 71 (UNV'), that is h, and k, as generators, where (i;/)(h") =
h and (i) (k") = k, together with generators g, to complete a set of generators.
Now as U ~ (D x I — L) the extra generators g represent local minima of L in
D x I, and there is a relation set r, one r; for each local maximum. The final
set of relations in 7 (U) is obtained, as k = w(h,g), here w is a word in the
generators h, and g. Thus

m(U)=<hkg|r,k=w(h,g) >,
and so,
71'1(53 —LUA) =
<h' hk,g,A|h'=hk=Ah\ ' r k=w,g) >,

which is
T (S*—LUA)=<h,g,A|w,g) = h\""r> .
Let J = (g—%) be the Jacobian matrix of the presentation of < G | R >=
m(S* — AUT), we have J = (M — 24N | v), where

( Ow(h,g) Ow(h,g) )
oh ,

g
or or
oh g

_ (% 0
(o)

25

M =



and v is a vector given by v’ = (ap(1 —hy) ...ap(1 —h,) 0 ... 0), with 6;; the
Kronecker delta, and the two matrices M and N having same sized block form.
But by section 1 of this chapter, this implies

ALUA(xla s 7xsaxA) = (ajA - 1)71 det(M - xAN) :

We now produce a presentation for m(S® — ((L¥/A)U A")), and by chapter 2
section 2, we derive a presentation for H;(S® — ((L7f7A) U A’),p). This leads, by
section 2.2, to the Alexander module, and thus to the Alexander polynomial.

The fundamental group is given by the fundamental group of the exterior of
Tk, and (V,,U(Dy— (DyNL))), so we need the following lemma.

Lemma 3.2.1 With (L*/A) as above
(D x I —(Dx (0)U((LF/A)U A"))) =
<h® g | (h® gh) = hitD) O >
fori=(1,...,(k—1)).
Proof. The proof is by induction on k. When k£ = 1 we have
m(DxI—(Dx(0)U(LUA))) =

<h,g|w(h,g)=hr>,

as required.
Let us assume that the lemma is true for £ = n, and then consider the case
k=n+1,

(D x I — (D x (0)U (L™ /A) U AY))) =
T (DxI—(Dx (0)J((L*/A)UA")))sy (DxI—(Dx (0)U(LUA')))/ < w(h®, gk)) = hk+D) >
which gives
(D x I —(Dx (0)U((LF/A)u A"))) =

< b 0D g® Gt |y p® gB) — D (R0 g0y — pletD) L0t L) o

fori = (1,...,(k — 1)) as required. O
From the above we thus have, using Van Kamppens theorem

m(S® — (LF/A)UA)) =< G |R >
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< 0@ g® | w(h®, g®) = yh@® =" w(h® gy = i w0 5

Let the link L in S* — A be considered to be some closed tangle Tk. Let J =

(g—%) be the Jacobian matrix of the presentation of < G | R = m(S* — AU 7/:’“),

and let M) be the matrix M with g; replaced with gz(j ) and h; replaced with th )
instead of g we have anp. It is, of course, not necessary to replace N by N as
all entries in N are 0 or 1.

Then we can write at)(.J) in block form as

MO N | 0
2 _
atb(]) = 0 M N ... | 0
: 0 ... M&EY N | 0
—yaN 0 ... 0o M® | v

where v7 = (anp(1 — BY) aw(1—hE) 0 ... 0).
But by section 1 of this chapter, we have Alexander polynomial given as the

following
MO N
_ 2 _
Acprsayoa Wiy Y yar) = (yar—1)"" det 0 M N
: 0o ... MG®YH N
—yuaN 0 ... 0 M)

Now H,(py)at(9¥") = ad(g;), Hy(p)aw(h”) = ag(h,), and H, (py)atb(u) =
ad(\F) which leads to the matrix

M  —N | 0
Hipav()=| 0 M =N 0
: 0 M —N | 0

—z N0 0 M | Hipe)(v)

We thus have
Hl(pk)(A(Lk/A)UA(yla e Y yA’)) =

M -N
((IA)k . 1)—1 det, 0 M —-N ... 7
5 0O ... M —-N
—z,N 0 ... 0 M

from which, using the following lemma, we can deduce our result.
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Lemma 3.2.2 Let M and N be n x n matrices, and J be the k x k matrix

0 1 ... 0
o0

R |

e 00

Then det(M @ I, — N ® J) = [T, det(M — ('AN), where ¢ is a primitive k-th
root of unity.

Proof. The matrix J has eigenvalues (), for i = 1,...,%, and so can be
diagonalized whenever A # 0. So there exists a k x k matrix P such that PJP~! =
D(¢'N), the diagonal matrix with entries ¢*A. Thus we have

(IeP) (MaI-NoJ)IoP)=(MeI—-No D).

The matrix (M ® I — N @ D(C*))) is a direct sum of M — *AN for i =1,... k.
Now (det(I ® P))~! =det(I @ P71), so

k
det(M ®I—N®J)=det(M @I — N ® D(C'\)) =[] det(M — (*AN) ,
i=1
as required. O
Proof of theorem 3.2.1 continued. As Ay = (ya — 1)  det(arpJ) we
apply the above lemma with A = x4, so we have

H,(pe)(Agipa) = (24" = 1)7 ] det(M — ('z4N),

=1

giving

k
Hl(pk))(ATkUA(yla - Ut ?JA’)) = H ATUz‘l(xla sy gy Clek) :
i=1

This completes the proof of theorem 3.2.1 O

In Chapter 5 section 3 I give an account of Fisenbud and Neumann’s result
on the Alexander invariant, this invariant is a modified version of the Alexander
polynomial which behaves well with respect to satellite, and splicing operations.
Given L = (X,S; U...US,), then the Alexander invariant A,(L;ty,...,t,) is
given by

_ ALty t) forn > 1

AclLitiy-ootn) = { (t — 1) 'Ap(ty) forn =1
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where A(L;ty,...,t,) is the normal Alexander polynomial.

The Fox Torres formula derives the Alexander polynomial of any sublink L
from that of L”, under certain linking conditions. Eisenbud and Neumann use
the Alexander invariant in the context of splice decomposition to give a uniform
extension to the Fox-Torres formula.

Let L" = (£,S,US;U...US,) ,and L = (3,5, U...US,) with L’ = (53, A),
where A is an unknot in S3, then L is the splice of L' and L”, and

("t = DALty . ty) = AL 1,1, .., ty),

where ll = ”{?(50, Sl) n X.
With p, as above the following proposition gives the Alexander invariant of
pe '(L) in terms of the Alexander invariants of L and L U A.
Proposition 3.2.1 Let TUA be a link formed as the closure of a tangle T' union
an unknotted axis A. Then we have the following
—~ o~ k_l o~ .
A (TF;ty, .o t,) = Au(Tsty, .o t) T AG((AUT); ¢ty t),

1=1

Proof In this proof we have two cases; either the linking number of each com-

ponent of the tangle with the axis is zero, or at least one is non-zero.
CASE 11If there exists a j such that [; # 0 then we have the following. With A,
as above, and Hy(p) from above, then

Gt = DAUTF . t) = AJ(AUTF) 1L, .. t,)
k

= J[Aa.(4u T); ¢ty ty).

Thus

(Bt — 1)A(Tsty, .. HA (AUT);C oty ),

which gives finally

AdTE by, . ) = ATt .. HA (AUT); ¢ty .. t).
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CASE 2 Now if [; = lk(S;, A) = 0 for all i the above method fails, but it can
be adapted to cope as follows. Let B be an unknot in S® — T U A such that
lk(A, B) = 1k(S;, B) = 1 and 1k(S;, B) = 0 for i greater than 1. Let TUB = T"
then if we do the above result on the k-fold cover of Zﬁ, we have

k—1

ATty ot tge) = (T by, ot ) [T A (AUTY; ¢y, b, ts).
=1

Then as 1k((S;)*, B¥) = k in the cover space, and with A set equal to (' we
have
(" = D)A(TF:ty, ... t,) =

k—1
(tr = DAL(T; 6y, ..o t,) [T(Ct = DAL(AUT); e L),

=1

which gives

—_—~ o~ kil o~ .
Au(TF;ty, .o t) = Au(Tsty, .o tn) [T AL((AUT); ¢ty ty),
=1
as claimed. O

3.3 The Alexander polynomial in integer homol-
ogy three spheres.

The two results below have seemingly been restricted to the case of links in S3,
(which is why A was unknotted in the second result.)

Theorem 3.1.1 1 In the multi-variable Alexander polynomial Ap(ty,...,t) we
have

SthK(AL) S QQ(SK) + [(SK,LI) — 1.
Where the notation in the following is that of the previous section.

Theorem 3.2.1 1 Let LU A be a link in S®, with A unknotted. Let p,, be the
projection as before, with A' = p, Y(A), L¥/A = p, Y (L), and the Alezander
polynomial as above, then

k
Hl(pk)(A((Lk/A)UA)(yla - Yty yA')) = H A(LUA) (Ila ceey Tgy Cle)

=1

where ¢ is a k-th primitive root of unity, ya corresponds to the meridian p, and
T4 to the meridian .
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These theorems are equally valid whenever the links considered lie in an in-
teger homology three sphere. That is

Theorem 3.3.1 In the multi-variable Alezander polynomial, A, (L;ty, ... ty),
for a link of two or more components L = (X, L, U...U L) we have

SpT'tK(A*(L;tl, Ce 7tk) S QQ(SK) + [(SK,LI) -1
with K = L; for some i and tx = t;.

This is true as none of the results require more that > being an integer homol-
ogy three sphere, rather than S®. Thus we split ©—L = (X —L—F(K))U((F(K)—
(F(K)N(L—K))) x (—&,e) UVk), where F(K) is a surface spanning K, as in
section 3.1. Now the Alexander invariant equals the Alexander polynomial for a
link of 2 or more components, (see section 5.3), and the Alexander polynomial is
still found via the Jacobian, (see section 2.2). But by section 2.2 the Alexander
polynomial can be retrieved from the determinants of the (n — 1) x (n — 1) sub
matrices of the Alexander matrix when ¥ is an integer homology three sphere,
so the result holds.

In the case of the k-fold cover we require both ¥ and X¥ to be integer homology
three spheres. But I conjecture that , even here, it is only necessary for ¥ to be an
integer homology three sphere, because under the projection H;(p) the Jacobian
of m (¥ — A*¥/B — B) becomes a module over H,(X — A — B), and thus I believe
that the same formula holds here also.
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Chapter 4

Exchangeable Stallings Braids

In this chapter we consider Stallings braids, and exchangeability, which we now
define. Traditionally exchangeable braids were defined as links of two compo-
nents, each of which is unknotted, and each component has the other component
as closed braid relative to it as an axis. A braid 3 is then called exchangeable if
its closure together with axis, B U A, form such a link. The essential feature of
such a braid is that the closure of the braid, B, is unknotted and that the axis
for the braid, A, is itself a closed braid relative to 3 as axis.

A Stallings braid on n strings is defined by Morton in [9] to be the product
of n — 1 elementary braids or their inverses which close to a single component,
where an elementary braid o, ; € B, for 1 <7 < j < n is the braid interchanging
the " and j% strings with a single positive crossing, in front of any intermediate
strings, and leaving the others alone. Such braids were introduced by Stallings as
examples of braids whose closure is the unknot. A spanning surface for the closure
of a Stallings braid can be obtained by placing n discs on the braid strings and
connecting them by half-twisted bands corresponding to the elementary braids in
the above product, where a positive half-twisted band connecting the ¢-th and j-
th discs corresponds to the elementary braid o; ; and a negative half-twisted band
connecting the i’-th and j’-th discs corresponds to the inverse of the elementary
braid i.e. Jﬁ-,. Such a disc intersects the axis in only n points, this form of
spanning disc for a Stallings braid is known as a Stallings disc. It is shown in
[9] that every exchangeable braid is conjugate in the braid group to a Stallings

braid, but that some Stallings braids are not exchangeable.
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4.1 Exchangeable braidlike tangles.

In this section we approach the idea of exchangeable braids from the idea of
tangles with properties related to those possessed by exchangeable braids. To
do this it is necessary to define tangles, both open and closed, and under what
conditions an open tangle is closable. Let (D x I) be the empty open-tangle, and
let p: D x I — S3 be given by

p(aj, O) = p(h(l"), 1)

for all x € D, where h : D — D is a homeomorphism fixing 0D.

p(y,t) = p(y,0)

for all y € 9D and for all t in I, and no other relations. Let p(0D,0) = A then
(8% — A) = p(int(D) x I) is the empty closed-tangle with axis. In this chapter,
we will restrict h to be the identity homotopy h(D) = id,(D), the identity map.

Define a tangle be a proper embedding of closed curves and arcs, 7', into
(int(D) x I), that is p(9(T)) € int(D) x O(I), p(int(T)) € int(D) x int(I), and
p(z) = p(y) implies x = y. Thus the tangle T is a proper embedding of arcs and
circles into the cylinder.

The next definition deals with breaking the set of all open-tangles into man-
ageable sub-sets, i.e. the set of (n,m)-tangles, T, and leads naturally onto
closeability.

Let T = ((D x I,id;),p(C)) is an open-tangle in (D x [I,id,), let I,(T) =
I(Dy, p(C)) be the intersection number of the disc D; with the union of curves
and arcs p(C'), and let n(T) = Iy(T) and m(T) = I,(T), then T € T} it n(T) = n
and m(T) = m.

In the above definition we have a set of arcs and circles in D x I in general
position, but with a known number of points in the two ends of the cylinder. For
such a system to close to S* — (AU L) where A is the axis mentioned above, and
L is some link in the complement of A, we need n = m and the positions of the
end points must be such that there are no loose ends in the closure.

Let Sy =(zx € D x (0) st. 2 € T),and let S} = (z € D x (1) st. x € T'), then
a tangle T is closable if n = m and S, = S;. If a tangle T is closable let T be its
closure in S3 — A.

The following is an example of a (4,2)-tangle.
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The above set of definitions defines open tangles, so what are closed tangles?
A closed tangle is a link in S® — A. Let L be a link in S® — A, and D4 some disc
spanning A and transverse to p(C), let T = (((S®* — A) — D4, L — (LN D,)),1id,),
then S* — (AUL) = S* — (AUT).

In all of the above the question of orientability was left out, so below is the

set of (n,n)-tangles which are already oriented, and can be closed to an oriented
link in S® — A.

Definition.

Let the set of oriented (n,n)-tangles OT,, be T € T, with orientation consistent
with closure. That is the closure of a tangle in OT;, can be oriented consistently,
as in the figure below. The figure shows two oriented 2-tangles, one of which is

J %
/ /

Closeable oriented 2-Tangle Non-Closeable oriented 2_Tangle

closeable the other not.

Write T for the closure of T € OT,, this link is an oriented link. Let us write
OT = |JOT, then there is an equivalence relation ~ defined on OT by T} ~ T,
if and Only if T1 U Al >~ TQ U AQ.

Remark. In the case of braids this equivalence relation ~ is known to be con-
jugacy, by [10], i.e. if B, ~ (3, then ; and [, are both n-braids and so /3 is
conjugate to s, in the braid group B,.

We now consider oriented tangles that have unknotted closure, UT,, C OT,
where the set UT,, = {T : T € T, : Tis unknotted.}, any such tangles we
say belong to the set of unknotted n-tangles. We aim to define exchangeability
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for the tangles in this set. The example in section 5.3 shows that the natural
exchange of a tangle in UT, can be a tangle in UT},. If we then define the set of
unknotted tangles to be UT = J(UT,,) over all n and use the above equivalence
relation on the subset of UT € OT T, ~ T, if and only if ﬁ UA, ~ T; U A, by
component. It is the possible to define the exchange of such a tangle in UT as
follows Exch([T]) = [T"] where T'U A’ ~ AU T by component.

Define the tangle number of [T] to be the smallest n such that [T'] = [T] and
TeUT,

If a tangle T in the above set were to be an exchangeable braid then it is
clear that the tangle number of both [T] and Exch([T]) are equal to the linking
number of the closure of the tangle and its axis. I propose to call tangles whose
closures have linking number with their axis equal to the tangle number braidlike
tangles (partially closed braids) denoted BT,,. We can further define exchangeable
braidlike tangles ET,, to be tangles T" € BT, such that T is an unknot and
Exzch([T)) € BT,.

It is easy to see that if T € ET,, there exist a pair of discs Dy and Dz such
that I(Dy,T) = I(Dz, A) = lk(T, A).

At this point a re-cap of the construction of satellite links is desirable. To
construct a satellite of a link L = L; U... U L, with the pattern link C' =
Ci U...UC(}, in which one unknotted component, C} say, is selected. Then
one component of the link L is chosen, L; say, we then replace a solid torus
neighbourhood V' of L; by the solid torus W = S® — C}, the complementary
torus to the neighbourhood of C}.

In the case of unknotted tangles UT we have r = k = 2 and both T U A and
T' U A’ consist of the closure of an unknotted tangle union axis. It then follows
that h(T) U A’ is a the closure of an unknotted tangle. T will write the satellite
as follows 7"« T U A’ to indicate that the component T' has been decorated by
the pattern T.

Proposition 4.1.1 In the general case of tangle exchange above Exch([Ty *
Ty]) = Exch([Ty]) * Exch([T}]).

Proof Firstly we have L; = TZ UA; and L, = ﬁ U A,. We then decorate
the tangle component of L; with the tangle in L, this is equivalent to decorating
the axis of A} U Exch([T}]) with T;. This link is thus T} « T, U A; ~ A} « T, U

— —

Exch([T}]) ~ Ty U Ay % Exch([T}]) ~ Ay U Exch([Ty]) * Exch([T}]). O

Proposition 4.1.2 IfT|,T, are braidlike tangles in UT, then T =T, x T, is an
exchangeable tangle if and only if both T, and T, are exchangeable tangles.
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Proof Let T) € BT, and T, € BT, so we have T" € BT,,,. Firstly we have
Exch([T,*T,)) = Exch([T]) « Exch([T}]) so if Ty, T, are exchangeable tangles the
tangle number of Exch([T} * Ty]) = the tangle number of Exzch([T}]) times the
tangle number of Exzch([T;]) = nm so T is exchangeable. Now if either of T}, T}
are not exchangeable then the tangle number of its exchange is greater than its
own tangle number which give the tangle number of Exch([T]) greater than that
of T', this imply that if T" exchangeable then so are T} and T. O

It will be useful to understand the way these exchangeable tangles look as
disc pairs, but to understand how they look as pairs it is necessary to find out
what simple transverse intersections of two surfaces look like. In [2] the simple
transverse intersections are shown to be of the following form

(=

Circle Intersection. Clasp Intersection. Ribbon Intersection.

were the bold lines are the actual intersections.

Proposition 4.1.3 If the tangle T' € ET,, then there exist a pair of discs Dy and
Dy such that D; N Dy is n clasps with the same orientation, but no ribbons or
circles and 0D, U 0Dy ~T U A.

Proof First consider the two discs Dy and Dz, and consider their intersec-
tions, DN Dz. These intersections have the properties D4NI(Dz) = DyNT =n
points, and d(D4) N Dz = AN D5 = n points, and these intersections have the
same orientation. Firstly we must take local isotopies of the discs to these to
get rid of any non-transverse intersections, then take isotopies to remove any
non-simple intersections. This may be done without affecting the intersections
of disc and boundary. Then as the orientation of the n points of intersection,
D4N9(Dz), are consistent, D 4N Dz consists of n clasps, no ribbons plus a num-
ber of circles. If the number of circles is zero then we are done, thus the proof is
reduced to showing that all circle intersections can be removed.

The proof is by induction on the number of circles. If there is only one circle
intersection, then it spans a subdisc of both main discs. Swap the two sub-discs
and isotope to remove the non transverse circle intersection.

36



| IR
D(A) D(B)

( @) > P®)
R R
DA ° D(A) / o \ D(A)/ v \

Plan of theintesection The two subdiscs swapped Removal of non-transverse
inter section

Next look at the case with m + 1 discs when it is known that those with m
or less discs can have the discs removed. Choose a circle which spans a sub disc
in one of the discs that contains no other circle intersections, call this sub disc
D' and then recall that it must also span a subdisc of the other disc, which we
call D". The figure below shows a plan of the two discs, with the intersections
shown, and the two subdiscs indicated.

The Sub-disc D’ The sub-disc D’
inthedisc D(A). in the disc D(B).

Remove this circle intersection by swapping the subdiscs over and removing
the non transverse intersection thus formed.

The intersection of the two discs is thus n arcs plus one less circle, some of
the intersections thus formed may be self intersections of the disc, and as the
boundary of the disc is here is an unknot rather than a slice knot, all the self
intersections on this sub-disc can be isotoped away, which leads to the follow-
ing. A self intersection can be removed by the same method of swapping discs
when it is realised that any other self intersections remain self intersections and
intersections of the two discs remain intersections of the two discs and thus any
self intersections can be removed without increasing the number of intersections
between the two discs. Thus we have a pair of discs with less than or equal to
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m disc intersections and the induction implies that we may continue this process
until all the circles are removed. O

Thus exchangeable tangles are just pairs of discs that intersect in n consis-
tently oriented arcs only. An alternative view of these discs is that we have n
discs connected by n — 1 twisted possibly knotted bands together with a flat disc
spanning the axis. Where if the n discs are treated as vertices and the bands
as edges the resulting embedded graph is a tree. This view lends itself to the
idea of a Murusugi sum of two exchangeable tangles, that is the plumbing of two
exchangeable tangles with plumbing disc one of the discs above. The embedded
tree has the property that if the plumbing disc is the mth disc then no edge
connects from below m to above m, and no edge below m links an edge above m.

4.2 On the Alexander Polynomial of Exchange-
able Tangles.

In this section I will be obtaining the Alexander polynomial of an exchangeable
braidlike tangle pair, (see previous section ). As these are two component links
I use a method for finding the Alexander polynomial of two component links
developed in [2]. The reason for using this method rather than another is that
when either of two components of the link are unknotted the method simplifies.
And when, as is the case for exchangeable braidlike tangles, both components are
unknotted the form of the method simplifies still further.

The method of Cooper in [2] for obtaining the Alexander polynomial of a
two-component link uses the union of a pair of spanning surfaces for the two-
components, with isotopy until the intersections are simple and transverse. Then
the intersections of the two surfaces are in the form of clasps, ribbons, and circles.
A clasp and a ribbon are intersections that have boundary, while a circle inter-
section is a closed loop in both surfaces. The clasp has one point of boundary on
the boundary of each surface, while a clasp has both ends in one component of
the link. These intersections are shown below.

Circle Intersection. Clasp Intersection. Ribbon Intersection.

were the bold lines are the actual intersections.
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In [2] Cooper calls any pair S = S(A) U S(B) a C-complex if the only inter-
sections allowed are clasps. Let ¢(S) be the singularity of S S(A) N S(B). Then
to use his method the first step is to define two bilinear forms

a,(: H(S)x Hi(S)— Z

as follows. Firstly a 1-cycle u € S is called a loop if whenever u meets £(.5),it
does so at an end point of some component of £(S), i.e. the 1-cycle includes the
whole of that connected component of the intersection. Any element of the first
homology group may be represented by such a loop so given a pair of such loops
we may define

afful, [v]) = Tk(u™",v)
Alul, [o]) = h(u™",0)

where u~ " is the cycle in S® obtained by lifting off the union in the negative
normal direction from D; and in the positive direction from D,. The definition
of u~~ is similar i.e. in the negative direction from both.

Now we set about choosing a basis for H;(S). Firstly a basis (h4,...,h,) of
the surface H,(S(A)), and then a basis (hyi1, ..., hyqx) of the surface H,(S(B)).
Use these two sets of basis elements to start to define a basis for H(S). Identify
the generators of the surfaces by inclusion into the generating set of H;(S), then
extend this set of basis elements into a basis (hy,...,hyigy) of Hi(S). Let A
and B be the integral matrices of v and [ using this basis.

Then for the Alexander polynomial of this two component link we have

Az,y) = (y — 1) 9(x — 1) *det(vyA + AT — 2B — yBT).

This is Cooper’s method for finding the Alexander polynomial from a complex
of two surfaces, and it is noticeable that if ¢ and k are equal to zero the Alexander
polynomial is easier to find. But this is the case when S(A) and S(B) are discs.

As we wish to use the above in the case where S is the union of two discs,
with the only intersection types being clasps, the method of choosing a basis for
the homology of each surface then extending to a basis for the homology of the
union yields the n — 1 loops formed by the union only. so we have

Oé,ﬂ : HI(DI U D2) X HI(DI UDQ) — 7

as follows. let S = D(A)U D(B). Let u € S be a loop as before i.e. the 1-cycle
u includes the whole of each connected component, of the intersection of the two
discs, that it meets.
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Now as previously defined let A and B be the integer matrices of a and
respectively. Using (hy,...,h;) as the basis for H;(S) added for either D(A) or
D(B).

Then for the Alexander polynomial of this two component link we have

A(z,y) = det(vyA + AT — 2B — yBT).

Now we are in a position to use this to investigate the Alexander polynomial
of exchangeable braidlike tangles.

Let the tangle T' € ET, and define two single variable polynomials to be
qr(y) = det(yA — B) and pp(x) = det(rA — BT), which are the polynomials
Maz,(y) and Max,(z) respectively.

Lemma 4.2.1 IfT is an exchangeable Stallings braid then both pr(x) and qr(y)
are equal to units, that is pr(x) = 2", and qr(y) = y™ up to sign.

Proof. This result follows because as shown in [1] the Alexander polynomial
of a braid can be obtained as the characteristic polynomial of an invertible matrix
in the coefficient of the braid i.e. det(B(z) — yI) where the matrix B(z) is the
reduced Burau matrix of the braid, and thus the coefficient of the highest order
terms in y corresponding to the axis is a unit. As the braid is exchangeable the
highest coefficient in x is also a unit. a

Thus given an exchangeable tangle pair if either one of the polynomials is not
a unit then the pair is not an exchangeable braid pair.

The following is a construction of the C-complex S = D(A)U D(B) for an ex-
changeable tangle pair. Suppose that the exchangeable tangle pair are n-tangles,
then with A the axis and B the tangle, the C-complex S is the union of D(A),
for the surface to span A, n discs for each of the n tangle arcs, and n — 1 twisted
bands, to form the rest of D(B). The bands can be treated as the edges of an
embedded tree, and the n discs can be treated as vertices.

Given an exchangeable tangle T' € ET,,, with D7 and axis A, following Mor-
ton’s definition I shall say that the pair (Dz, A) is the Murasugi sum of (Dr,, A;)
and (Drp,, Ay) if

(i) Dy, and Dyp, are subdiscs of D each lying in half of S, and meeting only
in a disc Dy = Dy, N Dy, lying on the sphere, S? which separates S* into the
two halves.

(i) The axis A meets the separating sphere S? in only two points, d € D, and
c ¢ D,.

(iii) The disc Dy, forms a disc which the axis A; intersects in n; points,
where A; consists of the part of L in the half of S* containing D; completed by
an unknotted arc cd in the other half of S, and similarly for the pair (D, A,).
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Lemma 4.2.2 If T is the Murasugi sum of T\ and Ty then we have pr(x) =
pry () X pr, ().

Proof. Let the tangles T; have matrices A; and B; then T has matrices
(A0
1= 1)

_ [ Bi Mg
B = ( 0 B, )
for some M, and Mp, but
pr(z) = det(zA — BT) = det(zA, — BY) x det(zA; — BY) = pp,(x) x pp,(2).

O

Now as the Alexander polynomial of the satellite of two 2-component links C;U

Cy, and Ly UL, is known to be Ap ir, (2™, y) X Ac,uc, (2,9") = A weryues (2, 1),

where m = lk(Cy,Cy), and n = lk(Ly, Ly). We therefore have, for exchangeable

tangles, that the leading term in the Alexander polynomial pr, .z, (z) = pr, (™) X
pr,(z) where ny is the tangle number of T5.

4.3 Exchangeability of Stallings braids of small
index.

In this section I give a survey of Stallings braids of low braid index, and investigate
which are exchangeably braided. A Stallings braid on n strings is defined by
Morton in [9] to be the product of n — 1 elementary braids or their inverses
which close to a single component, where an elementary braid o, ; € B,, for
1 <1 < 7 < nis the braid interchanging the i-th and j-th strings with a single
positive crossing, in front of any intermediate strings, and leaving the others
alone. Such braids were introduced by Stalling as examples of braids whose
closure is the unknot. A spanning surface for the closure of a Stallings braid
can be obtained by placing n discs on the braid strings and connecting them by
half-twisted bands corresponding to the elementary braids in the above product,
where a positive half-twisted band connecting the i-th and j-th discs corresponds
to the elementary braid o;; and a negative half-twisted band connecting the '
th and j'-th discs corresponds to the inverse of the elementary braid i.e. O'Z-_,j-,.
Such a disc intersects the axis in only n points, this form of spanning disc for a
Stallings braid is known as a Stallings disc.
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Below we have a nice representation of braids which are presented in the form
of a collection of elementary braids.

1. The fences represent a braid in the following way, if the number of vertical
lines is n then the fence represents an n-string braid and that if a horizontal
line connects vertical line 7 to 7 with sign € then in the braid expansion we
have the elementary braid o;;°. I shall call a braid expansion in terms of
elementary braid an elementary braid expansion. A spanning surface for
the braid can be obtained by placing a disc on each of the braid strings,
and for each of the elementary braids a half-twisted band, and the sign on
a band determines whether it is a positive or negative half-twisted band.
For example,

- [n

then this braid has three vertical discs and two negative half-twisted bands
on its spanning disc, and is thus the Stallings disc of the Stallings braid
013019. In the disc and twisted band view of the fence of a Stallings braid
we have an embedded tree, as follows for each vertical line in a fence, (that
is a subdisc of the Stallings disc) we have a vertex of the tree. And each
horizontal line of the fence connecting the ¢-th and j-th strings gives an
edge of the embedded tree, connecting the i-th and j-th vertices. That
is the tree has n vertices and for each o;;° the tree has an edge between
the vertices ¢ and j. This embedded tree is not a unique feature, that is
the same braid may give many different embedded trees depending on the
specific elementary braid expansion. This would seem to limit the use of
the embedded tree, but this is not so, as a repeated braid in a survey of
stallings braids does not affect the result.

2. The pattern of the Stallings braid represents a ‘birds-eye view’ of the em-
bedded tree described above, that is it shows a ring of vertices with the
edges between them. So if the pattern was
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then the following 3-string braid has this pattern embedded into its Stallings
disc.

[h

The pattern is of use when deciding whether or not a Stallings braid is a
Murasugi sum.

For example, any Stallings braid with the above pattern (embedded tree)
will be a Murasugi sum of two smaller Stallings braids, where the dotted
line indicates the position of a splitting sphere.

The fences follow braid relation properties, the positively signed horizontal bars
satisfy the following relations,

R

and the negative bars the equivalent properties,

e

43



We are thus able to view Stallings braids as fences and use the above relations
to determine whether or not a given Stallings braid is a Murasugi sum.

We now survey Stallings braids of small index.

The only one string braid with axis is the Hopf link, and as it has unit Alexan-
der polynomial it follows that p(z) = 1.

There are only two 2-string Stallings braids o, and o;'. These are both
exchangeable and have p(z) equal to a unit.

All 3-string Stallings braids are the Murasugi sum of two 2-string Stallings
braids, so all are exchangeable and all have p(x) equal to a unit, by lemma 2.2.2.

Proposition 4.3.1 If a 4-string Stallings braid is exchangeable then its either
a Murasugi sum of two Stallings braids or a satellite of two Stallings braids.
Furthermore, if a 4-string Stallings braid is not exchangeable then p(x) is not a
unit.

Proof The two parts of the proposition can be shown if all Stallings braids with
4-strings that have p(x) a unit can be shown to be composite, and thus either a
Murasugi sum or a satellite of Stallings braids that must be exchangeable. How-
ever with 4-string Stallings braids we come for the first time to non-exchangeable
Stallings braids, so must be careful. All embedded trees except

%

must produce Stallings braids that are the Murasugi sum of a 3-string Stallings
braid and a 2-string one, and so are exchangeable with p(z) equal to a unit.
For the above pattern the Stallings braids are equivalent to the following fence

where the minus sign is required otherwise the braid is equivalent to a Murasugi
sum (using the negative bar relations above), and thus equivalent to one treated
already. It is worth noting that ¢; = a(u;,u;) is —1 for a positive band and 0
for a negative one, and that 5(u;, v;) = a(u;,u;) + 1, and that both a(u;, u;) and
B(u;, ;) remain unchanged whatever sign the bars take when 7 # j.

Using Cooper’s method described in section 4.2 to find the Alexander poly-
nomial of a Stallings braid with axis gives

€1 0 0
A= -1 E9 0
-1 -1 £3
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e1+1 0 0
B = 0 €9+ 1 0
—1 0 53"—1

Thus using p(z) = det(zA — BT) we have the following cases.

(61,62,63) = (1,-1,1)
(1emms) = (-1,0,-1)  p(z) = =
(61762763) - (1,—1,—1)
(617 €2, 83) — (_]., 0, 0) p(a‘,‘) = r — :L-Q
(01,09,03) = (—1,-1,1)
(51752753) = (0,0,—1) p(aj) = 237—],'2
(61,65,65) = (=1,—1,-1)

= (0,0,0) p(z) = 14z —2a°

All the cases where p(z) are non-unit are not exchangeable, by lemma 4.2.1.
The remaining case was shown in [9] to be the satellite oy * o' which is ex-
changeable as it decomposes into two exchangeable braids and has p(x) equal to
a unit. This shows that the only 4-string Stallings braids having p(z) equal to
a unit are the 4-string Stallings braids that are exchangeable, and that the only
4-string exchangeable Stallings braid which is not a Murasugi sum is a satellite.

O

Proposition 4.3.2 If a 5-string Stallings braid is exchangeable then its a Mura-
sugi sum of two Stallings braids. Furthermore, if a 5-string Stallings braid is not
exchangeable then p(x) is not a unit.

Proof As in proposition 4.3.1 the two parts of the proposition can be shown if all
Stallings braids with 5-strings that have p(x) a unit can be shown to be composite,
and thus a Murasugi sum of Stallings braids that must be exchangeable. All 5-
string Stallings braids except those with the following patterns

PN

V&G
>
&

are the Murasugi sum of smaller Stallings braids, and these have been treated
already, it follows that any 5-string Stallings braid that is a Murasugi sum is
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exchangeable if and only if p(x) is equal to a unit. This is so because we have
shown that for four, three, and two strings a Stallings braid is exchangeable if and
only if p(z) is equal to a unit, and thus that the Murasugi sum of two braids to
form a five string braid must have p(z) equal to a unit. We must show then that
if p(x) is a unit for a Stallings braid, then that Stallings braid is exchangeable.
The above patterns lead to the following braids shown in the form of fences.

4 le3454 ‘
17 1)

3

)

=
(63

(BN

@ ®
=

s

In this proof we use Cooper’s method, described in section 4.2, to find the
Alexander polynomial of a Stallings braid with axis. As in proposition 4.3.1 it is
worth noting that e; = a(u;, u;) is —1 for a positive band and 0 for a negative one,
and that 3(u;,u;) = a(u;,uw;) + 1, and that both «(u;,u;) and B(u;, u;) remain
unchanged whatever sign the bars take when i # j.

In the above fences some of the signs are forced because otherwise the braids
are equivalent to Murasugi sums, the other horizontal lines can at first take either

sign.
ee 0 0 O
i -1 E9 0 0
=1y g3 0
-1 -1 0 Eyq
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e1+1 0 0 0

B - -1 e +1 0 0
= -1 —1 e+1 0
-1 0 1 e4+1
For the above matrix if the fourth band is negative i.e. 6, = —1 and ¢, = 0

then the second band must be negative and the third band positive or in either
case the braid is equivalent to a Murasugi sum. Also if the third band is negative
then the first band must also be negative.

Thus using p(z) = det(zA — B”) we have

(61762763764) = (]-7 1717 1)

(81762763764) = (_1707 170) p(']“) = 41._‘%.2_2
(617627637 4) = (_17_1717_1)

(51752753754) = (0707_170) p(a?) = 3£U2—£U3—LU
(617627637 4) = (_1717_171)

(61762763784) = (07_1707_1) p(l‘) = 41'2—21'—1'3
(617627637 4) = (_17_17_171)

(81762763764) = (070707_1) p(']“) = 31’2—1'3—1'
(617627637 4) = (1717171)

(51752753754) = (_17_17_17_1) p(a?) = $3+$2—1
(617627637 4) = (17_17171)

(81762763764) = (_1707_17_1) p(l‘) = 1‘(1’2—2I—|—2)
(617627637 4) = (_1717171)

(e1,€9,63,64) = (0,—1,—1,-1) p(r) = x(x? +2x —2)
(61762763764) - (_17_17171)

(51752753754) = (0707_17_1) p(x) = 37(337—272—1)

thus if a braid has the form of the first fence shown above it is either a Murasugi
sum or not exchangeable.
For the second fence we have

ee 0 0 O
i -1 E9 0 0
=1 g5 0
0 -1 -1 Eq

g1 +1 0 0

0
—1 41 0 0
—1 0 e41 0
-1 -1 0 e+

B2:

so the third and fourth bands are negative giving
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(61762763764) = (17 ) 17_1)

(81762763764) = ( ) 17070) p(.’L’) = ']“2_1‘3_'_1‘
(617627637 4) = (]-7 ]-7 17_1)

(e1,69,63,64) = (—1,0,0,0) p(r) = 3—-2z
(617627637 4) = ( 717_17_1)

(e1,89,63,64) = (0,-1,0,0) p(r) = 3z —22°
(51,52,5&54) = ( L,-1,-1 _1)

(€1,€9,€3,64) = (0,0,0,0) p(r) = 23 —42?+32+1

as none of these are units we have that Stallings braids with the second fence are
not exchangeable if they are not Murasugi sums.
For the third fence we have

eg 0 0 0
| 0 s 0 0
A= 4 g3 0
—1 0 —1 Eq
e+1 0 0 0
_ —-1 e+1 0 0
By = -1 1 e4+1 0
-1 1 0 e+1

with second band positive and the fourth band negative giving

(61762763764) - (17 17 17 _1)

(617527537‘54) (_17_17_170) p(a?) = LU—2£U2
(61762763764) (]-7]-7_]-7_1)

(61762763764) (_]-7_]-7070) p(']“) = 51‘_2_2‘%2
(617627637 4) (_]-7]-7]-7_1)

(61762763754) = (07_17_170) p(x) = x?

(617627637 4) - (_1717_17_1)

(617527537‘54) = (07_17070) p(a?) = 2372_373

The third value of p(z) is a unit, but it is easy to show that this braid is equivalent
to the Murasugi sum of simpler braids. It can be seen below using the fence
relations that the second band may slide over the first and then be transferred
to the bottom. It then may slide over the band that was fourth. Then both of
these bands slide over the band that was third and the result is a Murasugi sum.

- - [E - e

| “1.
I | I H\ [
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Thus in the case of the third fence, for the Stallings braids to be exchangeable
they must be Murasugi sums.

g 0 0 0
. -1 E9 0 O
Ay = 0 0 e 0
-1 0 0 Eyq
e+1 0 0 0
B -1 s+1 0 0
By = 0 1 e4+1 0
0 0 1 e,+1

The fourth fence has the third and fourth bands positive, which leads to the
following determinants

(61,09,05,64) = (1,1,1,1)

(€1,€2,€3,54) (-1,-1,-1-1) »p) = 2*+2*—x
(61762763764) (17_17171)

(617527537‘54) (_1707_17_1) p(LU) = 2‘773_1
(61762763764) (_]_7]_7]_7]_)

(81,82,83,84) (0,—1,—1,—1) p(.’L’) = 21‘3—1
(61,09, 03, 04) (—1,-1,1,1)

(517527537‘54) = (0707_17_1) p(LU) = £U3—|—£U2—LU

So none of these braids are exchangeable.

g5 0 0 0
i -1 E9 0 0
A5 o —1 0 53 0
0 0 1 ¢
s +1 0 0 0
B — -1 s+1 0 0
5 0 0 e+1 0
0 1 0 eg4+1

The fifth fence has the third and fourth bands both negative and positive so
that it cannot avoid being a Murasugi sum. So every case here, exchangeable or
not, has been treated before.

e 0 0 O

I =
Ado=1| 4 g5 0
0 —1 0 g
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g1 +1 0 0 0
B -1 e+1 0 0
B = -1 1 e+1 0
0 0 -1 eg+1
Here the second and fourth bands must be positive.
(61762763764) = (1717171)
(e1,9,63,64) = (=1,-1,-1,—-1) p(z) = 2?42z -2
(617627637 4) = (1717 171)
(e1,62,€3,84) = (=1,-1,0,-1) p(z) = 2*(3x —2)
(617627637 4) = ( ]-7 7]-7]-)
(61762763764) = (07 7_]-7 _1) p(l‘) = .'L'(2.'L'2 - ]')
(617627637 4) = ( 1717_171)
(e1,69,63,284) = (0,—1,0,—1) p(r) = x(2z-1)
So none of these are exchangeable.
ege. 0 0 O
_ 0 e 0 0
=10 e 0
-1 1 1 g
g1 +1 0 0 0
B _ -1 e+1 0 0
T 0 0 e+4+1 0
-1 1 0 g4 +1

(61,09,03,64) = (1,1,—1,1)

(e1,69,83,84) = (—1,-1,0,—-1) »p(z) = 22-1
(51,52,53, ) = (1,1,—1,—1)

(e1,69,83,24) = (—1,—1,0,0) pr) = 3a*—a2%-1
(61,09,03,64) = (—1,1,-1,1)

(e1,69,83,284) = (0,—1,0,—1) p(z) = z
(51,52,53, 4) = (—1,1, 1,—1)

(e1,€9,83,64) = (0,-1,0,0) plz) = 2—x

The third value of p(z) above is equal to a unit, so the associated Stallings
braid may be exchangeable. Using the fence relations on the third fence, we see
that the third band can pass under the second, then these two bands slide over
the first, thus the braid is equivalent to a Murasugi sum, shown below.
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Thus if a braid with this fence is exchangeable it is a Murasugi sum.

5 0 0 0
i -1 E9 0 0
Ay = 0 —1 e 0
0 0 -1 ¢
s.+1 0 0 0
B -1 g+1 0 0
By = -1 -1 eg+1 0
0 -1 0 eg4+1

(61762763764) = (1717_17_1)

(61,89,€3,64) = (—1,—1,0,-1) pir) = 2*—x—2°
(61,09,03,04) = (1,—1,-1,-1)

(e1,29,€3,84) = (—1,0,0,0) p(r) = 2z-—2°
(61,09,65,04) = (—=1,1,—1,—1)

(e1,69,83,64) = (0,—-1,0,0) p(r) = 3z — 227
(61,09,65,04) = (=1,-1,—1,-1)

(e1,29,€3,4) = (0,0,0,0) p(r) = 20+1-2?

So none of these fences represents an exchangeable braid.

g 0 0 0
|l 0 & 0 0
Ad=1 _ g5 0
-1 -1 -1 ¢
s+1 0 0 0
_ 1 e+1 0 0
By = 0 -1 e+1 0
0 -1 0 eg,+1

In the ninth fence the first band is positive and the third and fourth negative.
(61762763764) = (1717_17_1)
(81762763764) = ( ]-7 17070) p(.'L') = l‘(41‘ - xQ - 2)
(617627637 4) = (17_17_17_1)
(e1,89,€3,64) = (—1,0,0,0) p(r) = z(8zx—2*-1)
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Thus neither of these fences represents an exchangeable braid.

ee 0 0 O
0 e 0 0
Ao = 1 =1 & 0
-1 -1 0 Eq
e +1 0 0 0
B 1 g9 +1 0 0
- 0 -1 e+1 0
0 -1 1 eq4+1
Here the first third and fourth bands are positive.
(61762763764) = (1717171)
(51,52,53, 4) = ( 1 1, 1 1) p(l’) = 273—274—1
(61762763764) = (]- ]-7]-7]-)
(81762763764) = ( 170 ]-7 ]-) p(.’L’) = ']“2_1‘4_1
Thus neither of these fences represents an exchangeable braid.
ee 0 0 O
i -1 E9 0 0
An=1 4 ez 0
-1 0 -1 &y
e1+1 0 0 0
_ 0 g9+1 0 0
Bu = 1 1 e+1 0
0 1 —1 £y + 1
Here we must have the first band positive and the second band negative.
(61,62,63,64) — (1 1 1 1)
(61,89,63,64) = (-1 1 ,—1)  plx) = 22° —x
(617627637 4) (17 1)
(81,82,63,84) ( ].,0 , ) p(.’L’) = 3.%'—1'2—]_
(617627637 4) (]-7 ]- 7 )
(81762763764) ( ]' 0 1) p(.’L’) = 3‘T2 - .'L'3 -7
(61762763764) - (17 1 _1)
(e1,62,63,64) = (=1, 0 0,0) px) = 2z-—2a’

So none of these fences represent an exchangeable braid.

The above shows that up to 5-strings a Stallings braid is exchangeable if and
only if the polynomial p(x) is equal to a unit, and that if it is not a Murasugi
sum then it is a satellite. O

This leads to the following two conjectures.
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Guess 1 Given the above definition of p(x) a Stallings braid is exchangeable if
and only if p(x) is equal to a unit.

Guess 2 A Stallings braid is exchangeable if and only if it is the Murasugi sum
or satellite of two smaller exchangeable braids.

In Corollary 6.3.2 I show that a Stallings braid is exchangeable if and only if
its double cover is fibered as a pluming of hopf band on a disc. This implies that
an exchaneable Stallings braid is a Murasugi sum of two exchangeable tangles in
the sence of the previous sections of this chapter. The above question is thus are
there any exchangeable braids whose splittings into exchangeable tangles contain
no exchangeable braid pairs, and are also not satellites.
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Chapter 5

Exchangeable braids as fibered
multilinks

In this chapter we look at exchangeable braids in the framework of Eisenbud and
Neumann’s multilinks.

5.1 Splicing Spaces.

Before I begin describing the splice of two spaces, it would be useful to have some
definitions. The following definitions will be used, and adapted throughout this
section. Let Y be an integer homology 3-sphere, and S, and S’ be closed curves
embedded within ¥. Define N(S) to be a solid torus neighbourhood of S within
¥, and let O(IN(S)) be the boundary torus of N(S). Now we can define [k(S, S")
to be the homology class of S" in ¥ — S.

In (N (S)) we have two distinguished curves, m and [. Define m to be an

essential curve which spans a disc in N (), and take [ to lie in the same homology
class as S in N(S), with lk(l,S) = 0.
Remark. This definition of [ is of use only when X is an integer homology 3-
sphere. I believe that [ can be defined in terms of F'(S) N A(N(S)), where F(5)
is an oriented spanning surface for S when ¥ is a smooth, connected, orientable
3-manifold.

The work in this section applies to integer homology 3-spheres, so I will restrict
the following to a discussion of these spaces only.

In the days of sailing ships a splice was an operation performed to join two,
possibly different, ropes together, with the side effect of reducing the number of
end points of the rope. Although this is not quite the mathematical operation of
splicing, it does give an idea of why the name splice was chosen. The following
gives a definition of the splice of two spaces over closed curves within them.
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Let ¥, and X" be a pair of integer homology 3-spheres, with S’y, and S”
closed curves embedded in ¥', and X" respectively. Following the previous ideas
we have N(Sy), and N(S”;) are neighbourhoods of S’y, and S”y in ¥/, and X"
respectively, with m', m” as meridians of S’, and S”, and I’, [” be the longitudes.

Definition. Then the splice of ¥/, and ¥", over S’y, and S”; is the space
(X' = N(S")) U (X" — N(S"y)), with the identification m' =" and m” =1".
If we call this space ¥ we thus say that ¥ is the splice of ¥', and X", over S’,
and S”(, denoted by ¥ = ¥/ Y. It follows that ¥ is a smooth,
S/ S//
connected, orientable 3-manifold.

Thus we cannot simply say that a space is the splice of two other spaces, but
must refer to an embedding of closed curves in spaces, but this is exactly what a
knot is. In the above definition of the splice it should be noted that if either, or
both of the knots were part of a link, the other link components are now part of
a link in ¥. That is to say if S’ is a component of a link S'yUS; U...US, in ¥’
and S” is a component of the link S"y U S, ; U...US, in X" then this induces
alink S;U...US,US,1U...US, in X.

The following definitions show how the splice of two manifolds can lead to the
splice of two links.

Let X', and X" be, as before, integer homology 3-spheres, with S'qUS;U...US,
a proper embedding of closed curves in ¥’ and S”; U Sy,; U...U S, a proper
embedding of closed curves in ¥". Let the link L' be the pair L' = (¥, 5y U
SpU...US}) denoting the embedding of the the closed curves in the space and
similarly let L"” = (X", 8" U Sy, U...US,).

Definition. Let X be the splice of ¥, and X" over S’y and S”j, then the link
L=(3,5U...US,US,1U...US,)

is called the splice of the link L' and L” over S’y and S”.

Now although above we have a definition for the link embedding in the spliced
manifolds, we do not yet have a definition on the link exteriors. The following
gives a definition of the link exterior, and, following Eisenbud and Neumann [3],
a definition for the exterior of the splice of two link exteriors.

Definition.

e As before the link L = (X, K) = (X,5;U...US,) is an embedding of the
closed curves K =S, U...US, in X.

e The neighbourhood N(K) of K in ¥ is the union of the neighbourhoods of
the components of K, that is N(K) = N(S;)U...UN(S,)
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e The link exterior is defined as ¥ —int(N(K)), where N(K) = N(S;)U...U
N(S,,) is a neighbourhood of K.

e The meridian and longitude of S; denoted m; and [; are given by the rela-
tions m; ~ 0, [; ~ S; in H{(N(S;)) and (k(m;, S;) = 1, and 1k(l;, S;) = 0.

e Then given the pair of links L, and L’ the splice of the two links, following
FEisenbud and Neumann [3], is the following link (X, (K'—S")U(K" —S")),
where ¥ = (X' — intN(S")) U (" — intN(S")), and M' = L", M" = L'.
This is denoted as before L L

S S’

In the next section these links are considered together with an integer multiplicity
associated by component, this form of link is called a multilink.

5.2 Multilinks

In this section I will give a definition of multilinks, following Eisenbud and Neu-
mann, and then discuss when a multilink is defined on the splice of two links. It
should be clear that the splice of two links over S’ and S” can always be taken,
but for a splice of multilinks it is not so. That is if a splice of two links has been
taken, and we place a multilink over it, this leads to a multilink on each of the
splice components. But it is not true the other way round, that is given a splice
and a pair of multilinks over the splice components, there may not be a splice
multilink of the splice of the two component links that corresponds to the pair of
multilinks.

Definition. Given the link L = (X3, K) with m components, by a multilink
L(ny,...,n,) we mean the link together with an integer multiplicity n; associated
with each component S;. We adopt the convention that S; with multiplicity n;
means the same as —S; with —n; (where —S; is the component given the opposite
orientation).

Then write (X,n,5; U...Un,,S,,) for the multilink L(n,,...n,,).

Given a splice L of two links L' and L”, the multilink splice can only be
defined between the two multilinks L'(n') and L"”(n”) when

o' (L") =n", and 0/(L") =7’

where n(S) = lk(nyS1 + ... + n,Sn,S), and L', L" are the longitudes of S’
and S" respectively (by Eisenbud and Neumann). That is given the splice of
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the underlying links we may put a multilink on the splice components so that it
extends to a multilink on the splice only if

n' (L") =n", and 0" (L") =n'.

Associated with a multilink L(n) we have a group homomorphism h(n) :
() — Co with h(n)(z;) = t™ in the infinite cyclic group C,..

A Seifert surface for a multilink is an oriented spanning surface of the link
which has intersection with N(S;) consisting of |m;| leaves or if m; = 0 it has, on
that component, consistently oriented transverse intersection.

A fibered multilink is then a link which has a fibration of the link exterior to
the circle, ¥, — S!, all of whose fibers are Seifert surfaces of the multilink. A
Seifert surface has the following characterising properties;

(1) F is an oriented surface, properly embedded in ¥y = ¥ — int(L) (that is
FNoY, = 0F transversally).

(2) F NON(S;) = d;S;(pi,q;), a d;(p;,q;)-cable on S;, where d;, p;, q; are
determined by:ged(p;, ¢;) = 1, dip; = 0y, diq; = — X4 01k (S}, S — ).

The idea of a generalized exchangeable braid can now be formalised as a
link which is a fibered multilink for the following sets of integer multiplicities
d; = (01453044, ..,06m;) for i from 1 to m, where 6;; is the usual Kronecker
delta.

The following theorem is from Eisenbud and Neumann (3],

Theorem 5.2.1 Eisenbud and Neumann The multilink L(m) is fibered if
and only if it is irreducible and each of its multilink splice components are fibered.

A corollary to this is the following

Corollary 5.2.1 A link is a generalized exchangeable braid if and only if its
splice components are also generalized exchangeable braids.

Proof If we are given two generalized exchangeable braids
L'=(SyUS U...uUS),
and,
L' =" 8"y USp 1 U...USky),

the multilink L'(1,0,...,0) fibered multilink implying that L'(n,0,...,0) is also
a fibered multilink, for any n.

Which together with the link L” being a fibered multilink for the following
integer multiplicities (0, O(x+1)(ktj)» - - - » Oty (k+5))> With j fixed, gives the splice
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L — Ll LII
So S0

fibered as a multilink with (0,...,0, 8k11)(ktj)» - - - » Oy (k+s)) integer multiplicity.
The other half of the required fibrations come by allowing the variation in the
integer multiplicities of the first link and noting that the second link is also a
(n,0,...,0) fibered multilink. Thus if L' and L"” are exchangeable then so is the
splice

L=L L.
So So

If the splice, L, of L' and L"” is a generalized exchangeable braid then L is a
d; = (615, -5 0iis - - -, O(ge41)i) fibered multilink for i from 1 to k41, where 6;; is the
usual Kronecker delta. Recall that if the splice of two links is a fibered multilink
then the two splice components are fibered multilinks with the same values on
each link component of the splice and two related values on the components along
which the splice took place, this is because of the separating torus in the splice
intersecting the fiber surfaces, see Eisenbud and Neumann for more details.

The splice components of L, L’ and L"” are fibered multilinks for the following
sets of integers (ng, 61;, ... ,0k) and (g, Oks1yis - - > Okt1yi)-

Recall that n(S) = lk(nyS1+. ..+ n,Sm, S), and n/(L') = n", and n"(L") = n'
where L', and L” are the longitudes of S" and S” respectively. Thus

&I(L,) = lk(élisll + ...+ 5ki5'k, LI) = TLOH

and
(L") = k(0415 k1 + -+ -+ Ohs)iS kg, L) = g

So we have that if 1 < ¢ < k then n'y = 0and if k+1 < i < k + [ then
n"y = 0. We have by (2) above F(L") N IN(Sy) = dySy(po, ), dogdo = 0 so as
ged(pg, ¢o) = 1 we have py = 1 and there are d, parallel copies of the surface but
this fibration can be unified to give a (1,0,...,0) fibration, for F'(L").

To complete this part of the proof recall that the link L’ was fibered with
integer multiplicity (ng, 6y, ..., 0;) for each i, but with ng = 0. Now the process
is symmetric in splice components so as well as L’ being a (0,...,6,,,...,0)
fibered multilink, and L" a (1,0,...,0) fibered multilink, L' is also a (1,0,...,0)
fibered multilink and thus exchangeable. Equally L" is a (n"o, d(k41)is - - - » Oty
fibered multilink for each i with ng = 0, and so is also exchangeable. 4
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The following uses the ideas of multi-fibration to good effect in the form of
satellites. I will first give the construction of satellite knots and links.

In general, to construct a satellite of a link L = L; U...U L, we need another
link C' = C, U...UC}, in which one unknotted component, C}, say, is selected.
Then one component, L say, of the link L is chosen. We then replace a solid torus
neighbourhood V' of L, by the solid torus W = S — C},, the complementary torus
to the neighbourhood of C}. This replacement is by a faithful homeomorphism
h : W — V ie. one which carries a longitude of W to a longitude of V. The
satellite link thus formed consists of A(C;) U ... Uh(Cy_;) ULy U...UL,, and
contains a splitting torus, T = 0V = h(OW).

Corollary 5.2.2 Given a knot K in S* and an exchangeable tangle T', then K +T
is fibered if and only if K is fibered and exch(T) is a braid (thus a Stallings braid),

in particular, if T is a Stallings braid, T is exchangeable, if and only if K * T is
fibered.

Proof First we assume K7 is a (1)-fibered multilink, and we put n = (Ik(T, A)).
Thus K is an n-fibered multilink and 77U A is a (1,0) fibered multilink. The
second of these two shows us that the axis is braided with respect to the closure
of the tangle. The first together with (2) above shows that K’s fibration has the
following property Fy(K)NON(K) = dK(p, q) where ged(p,q) = 1, dp = lk(f, A)
and dqg = 0. So we have the multifiber surface of K is lk(T, A) parallel surfaces
for each # and thus K is fibered with lk(f, A) parallel copies of its fiber surface
at each level of the multifibration Fj(K) = U Fp; and so the surfaces Fp, form
a fibration for K and so K is fibered. Conversely if K is fibered and exch(T) is
braided with respect to the closure of T', we have K is a (1)-fibered multilink,
and TUA is a (1, 0)-fibered multilink. Now with n as above, K is also a n-fibered
multilink, so the splice can be extended to a multilink, that is K «7T is a 1-fibered
multilink.

For the case that T is a Stallings braid, we have exch(T) is a braid if and only
if K =T is fibered, but T is braided, so T is exchangeable if and only if K « T is
fibered. O

Thus if the tangle had been a Stallings braid and the knot a known fibered
knot we would have that a Stallings braid is exchangeable if and only if the
satellite around a fibered knot is fibered.

5.3 The Alexander polynomial of splices.

In this section I discuss Eisenbud and Neumann’s work on the Alexander polyno-
mial of the splice, and show that it can be used to give the Alexander polynomial
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of the satellite, and that it can induce the result of Fox and Torres on the link
with a component excised.

Firstly I will introduce Eisenbud and Neumann’s notation for the Alexander
invariant. For a link L = (2,5, U...US,), they define

AclLitiy-ootn) = { (th— 1) TA(L ) ifm=1
where A(L;ty,...,t,) is the normal Alexander polynomial.

We then have the following

Theorem 5.3.1 Eisenbud and Neumann. LetL = (X,S,U...US,) be the
result of splicing
L'=(X,S/uUS U...uS),

and,
L' = (X" S"US, 1 U...US,)

along Sy', So" with 0 < k < n. Let b; = lk(Sy',S;) fori =1,....k and a; =
k(Sy",S;) forj=k+1,...,n. Then, unless k=a; =... =a, =0,

A*(La tla s 7tn) = A*(Lla T[Jla tla s 7tk)'A*(L”; TU”7 tk+17 s 7tn)7

with
Ty =t ™ty
and
TOH = tlbl . tkbk.
Ifk =a = ... =a, =0, then A, (L) = A, (L"), where Ly" = L" with Sy"
deleted.

This theorem leads to the corollary

Corollary 5.3.1 Let L" = (X,SoU S U...US,) , and L = (£,S,U...US,)
with L' = (S3, A), where A is an unknot in S*. Then

(ot = DA (Lity, .. 1) = AL 1,1, ... 1),
where l; = 1k(Sy, S;) in X.

Proof. If each of these linking numbers are zero then we have 0 = 0 for the
above equation, any other case is just a rewriting of the above theorem. O
This is the result of Fox and Torres mentioned at the start of this section.
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Chapter 6

Cyclic covers of fibered links

In this chapter I consider cyclic covers of spaces. We shall suppose that AUB C X
is a link with a distinguished component B. We may then construct the k-fold
cover ¥/B of ¥ branched over A, with the projection ¢y : (X*/B) — X.

Write B' = ¢, '(B) for the inverse image of the branch set and A¥/B =
¢r ' (A) for the inverse image of the rest of the link. Then ¢ | A¥/B — L is a
k-fold cover and ¢, | B' — B is a homeomorphism.

The following proposition shows that the cyclic cover of an axis A over a
closed braid B, A*/B is fibered. The question the rest of the chapter deals with
is, does the k-fold cyclic cover A*/B fibered imply B is a braid with axis A.

Proposition 6.0.1 Let B U A be a closed braid with azis A in S3, let ¥ be the
k-fold cover of S® branched over (3, and K the k-fold cover of A branched over
3. Then K is fibered in 3.

Proof Let D, be a fibration of S* — A. Let p be the projection map from ¥ — K
to S® — A, then p !(D,) is a fibration of ¥ — K. O

Here we have a tool that can show that the link AU B in S? is not equivalent
to B U A in S3, that is if the k-fold cyclic cover of an unknot branched over a
knot is not fibered, then it is not a closed braid with axis. However this tool is
not easy to use as it is not always easy to tell when a knot is fibered.

6.1 Some elements of groupoid theory.

In the k-fold cover of a space the lift of a loop may be a path with end points
not equal, thus the fundamental group is of limited use. In this section I will
use some elementary groupoid theory to replace the function of the fundamental
group with the fundamental groupoid. The idea is to find a groupoid in the cover
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space which maps onto the fundamental group of the original space, and thus
information on the cover space can be transferred to the original.

Let ¥ be a path connected smooth oriented 3-manifold. A path in ¥ from s;
to sy is a continuous mapping from the interval, I, into X

p:l—X

with p(0) = s; and p(1) = s,.

Write G(X,S) for the category whose objects are points in S and whose
morphisms are paths in ¥ with endpoints in S, where S is a non-empty subset
of ¥, and write G(X, S)(s1, s2) for the set of all morphisms (paths ) from s; to
sy in G(X, S).

The inverse of p € G(X,S)(sy,s,) is the path p~! € G(Z, S)(s,, s1) defined
by p~(t) = p(1 - 1).

Write p; ~ po, when py, pp € G(E,S5)(s1,s2) are homotopic, fixing their
endpoints. Thus we have p; ™' o p; ~ id,, and p; o p; ™' ~ id,,. Let us define the
homotopy class of p, denoted by [p] € G(X,S)(s1,s,) as the subset < p' : such
that p’ € G(X, S)(s1, $2), and p' ~p >.

Write (X, S) for the category whose objects are points in S and whose
morphisms are homotopy classes of paths with endpoints in S. This is called the
fundamental groupoid of ¥ over S.

Conjunction of paths when defined, is defined as usual by splitting the interval
into two parts giving

[ pu(2) for ¢ € [0,0.5]
paopi(t) = { po(2t — 1) for t € [0.5,1]

Proposition 6.1.1 Let ¥ be a path connected space. If S contains finitely many
points and w(X) is finitely generated, then m (X, S) is finitely generated.

Proof Firstly number the points in S by sq,...,s,. As ¥ is path connected it is

possible to define a set of paths py, ..., p,, where p; € G(3, S)(s1, s;) for each i.

Consider a path p € G(X, S)(s;, s7), now p ~ (p;jp; p(pipi™") ~ p;(p; 'pPi)pi ",

but pj’lppi is a loop in (X, 1), so the generating set of the groupoid is the gen-
erating set of the group plus the set of paths above and is thus finitely generated.
O

The above result will be useful as the inverse image of a single point in a
k-fold cyclic cover is either a single point or k points.

Let ¢ : ¥ — ¥ be a continuous onto projection with the additional property
that any path in ¥ has a path as a lift in ¥'. Let S be a subset of ¥ as before,
and let T be a subset of ¥/ defined by T =< t:t € ¥’ ¢(t) € S >. Then we have
the following result.
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Proposition 6.1.2 With¥', 3, S, T and ¢ as above the map m(¢) : m (X', T) —
(%, S) is onto.

Proof Let [p| € m(2, S) be the homotopy class of p. By the path lifting property
of ¢, there exists a lift ¢ in . The end points of p are in S thus by definition
of T the end points of ¢ are in T. So ¢ € G(¥',T), and thus [¢] € 7 (X', T) and

m1([q]) = [p]. 0

6.2 Cyclic covers.

In this section I consider the question of k-fold cyclic covers and fibration. Recall
that X is a smooth path connected 3-manifold. We shall suppose that AUB C X
is a link with a distinguished component B. We may then construct the k-fold
cover M of ¥ branched over A, with the projection ¢, : M — X.

Let ¥¥/B = M be our notation for the k-fold cover of ¥ branched over B.

Write B, = ¢, '(B) for the inverse image of the branch set and A¥/B =
¢~ "(A) for the inverse image of the rest of the link. Then ¢, | A*/B — L is a
k-fold cover and ¢, | B, — B is a homoeomorphism.

Let (X2, A) denote the embedding of the knot A into the space ¥. Let us
denote by (2, A)*/B = (3*/B, A¥/B), the k-fold cover of the pair.

Lemma 6.2.1 With the above notation,
(S, A)¥2/B = (Sh /B, A" |B)"/B,, .

Proof Let k = kk,, choose a spanning surface for B, F(B) along which ¥ is
cut in the construction of X¥/B then

kle k2 kl
(3, 4% /B — F(Byi,) = U ((2,4) - F(B),= U U((Z,4) - F(B)),
7=1 i=1j5=1
which gives the required result when F(By,y,) is replaced. O

The following notation is concerned with the infinite cyclic covers over the
knot A in ¥ and A*/B in ¥%/B.
Notation. Recall that X is a smooth path connected 3-manifold, with AUB C X

a link. We may construct the infinite cover (¥ — A) of ¥ branched over A,
with the projection 7o, : (¥ —A) — (¥ — A). We have the induced group
homomorphism A : m,(3,) — Cy with h(z,) = ¢ in the infinite cyclic group Cy.

Write B = 74~ '(B) for the inverse image of the link component B in the

infinite cover set.
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Let (X — B), A) = (X — B) — A be the infinite cyclic cover (X — A) — B.

Let 7 be the projection of (X, 4) on to (X, A)

Proposition 6.2.1 With the above notation,

(5F/B,AF/B) = (%, A) /B.

Proof Let F(B) be a spanning surface for B in (X, A), and F(A) a spanning
surface for A. Now as ¢, '((2, A) — F(B) equals k disjoint copies of ((X,A) —
F(B)), and ((X — F(B)),A) — 7 '(F(A)) equals an infinite number of disjoint
copies of ((X — F(B)),A) — F(A). The process of obtaining the infinite cyclic
cover (X*/B, A¥/B) is thus a gluing of

k )

U U (E-F(B)),A) - F(4))

i=1j=—o00

which equals

(E-F(B).4) = EA4) - (F(B)),

1 =1

-

7

and so the proposition follows. O

Proposition 6.2.2 With the notation above, if A*/B is fibered in ¥*/B then A
15 fibered in 3.

Proof Let S = (s;) be a single point subset of (X, A), and let T = ¢;,~'(s1). We
thus have, using the groupoid result proposition 6.1.2, that

m(9) : m((2, AF/B),T) — m((Z, 4), )
is an onto morphism, and since A*/B is fibered in ©*/B we know
m(((%, A)*/B))
is finitely generated, and 7' is a finite set of points. So by prop 6.1.1
(S, A)F/B),T)

is finitely generated as a groupoid. Then 7((3, A), S) is finitely generated and
thus A is fibered in 3. O

Proposition 6.2.3 With the notation above, if B is braided in the fibration of
A¥/B in X*/B then B is braided in the fibration of A in X.

64



Proof Let S = (s;) be a single point subset of (¥ — B, A), and let T = ¢, " (s1).
We thus have, using the groupoid result proposition 6.1.2,

71 (0) : m(((X — B,A)*/B), T) — m((Xp,A),9)

is an onto morphism. Since B is braided relative to the fiberation of A*/Bs inside
¥* /B we know that

m((X = B, A)*/B))

is finitely generated. Now 7' is a finite set of points, so by prop 6.1.1

m(((X = B, A)*/B),T)

is finitely generated as a groupoid. Then 7, ((¥ — B, A),S) is finitely generated
and thus B is braided relative to the fibration of A inside X. 4

We are now ready to begin to prove the main result of this section, the fol-
lowing.

Theorem 6.2.1 If F(A*/B) covers F(A) with both A¥/B and A fibered then B
is braided with respect to A¥/B and thus to A.

The proof will consist of the rest of this section, but first I must define a
generalized tangle, with respect to a fibration. Let (F' x I) be the empty open-
tangle, and let p: F' x I — X be given by

p(l‘, 0) = p(h(l‘), 1)

for all x € F, where h : F' — F' is a homeomorphism fixing OF.

p(y,t) = p(y,0)

for all y € OF and for all t in I, and no other relations. Let p(OF,0) = A then
(X — A) = p(int(F) x I) is the empty closed-tangle with axis. Define a tangle
be a proper embedding of closed curves and arcs, T, into (int(F) x I), that is
p(O(T)) € int(F) x O(I), p(int(T)) € int(F) x int(I), and p(x) = p(y) implies
x = y. For such a system to close to ¥ — (AU L) where A is the axis mentioned
above, and L is some link in the complement of A, we need n = m and the
positions of the end points must be such that there are no loose ends in the
closure.

Let Sy =(x € F x (0) st. z € T),and let S; = (x € F x (1) st. x € T'), then
a tangle 7' is closable if n = m and h(Sy) = S;. If a tangle T'(F, h) is closable let

—

T(F,h) be its closure in S* — A.
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Lemma 6.2.2 Given a fibered link A to act as generalised axis to the link Z//’:‘
then the link Ty is a closed braid with respect to A if and only if there exists a
fiber surface F(A) such that the open tangle Ty is an open braid.

—

Proof If T(F,h) is a closed braid then the multilink definition any (1,0)-fiber
surface has the required property. Conversely if T'(F,h) is an open braid there
exists a fibration for which I(F;(A),T4) = n for i € [0,1]. Use h to glue the fibra-
tion together to form a closed braid, since the boundary surfaces are unmoved.
O

It is now useful to consider a theorem of Meeks and Scott [7]

Theorem (Meeks and Scott) 1 If F is a compact surface not S* or P* and
if G is a finite group acting smoothly on F' X I so as to preserve F' x 01, then the
action of G is conjugate to an action which preserves the product structure.

We are now in a position to prove theorem 6.2.1.

Proof of theorem 6.2.1 The link A*/B U B is a closed braid with axis in the
manifold M if and only if B is an open braid in M — F(A*/B). Now in this space
we have a finite group action G =< t : t* = 1 > but the surface has boundaries so
it is necessary to adjoin some disc cross the interval to the boundary components.
So the group action G on F' x I extends to an action on F' x I U D; x I where
the action on the D, is defined by the action on the boundary components of
F. Then by the Meeks and Scott theorem above the action G is conjugate to an
action preserving the product structure, i.e. ¢pt¢p~! = 7 xid. Now by the nature of
surfaces there exists a map s which can restore the discs to there original position
i.e. sTs7H(D;) = id(D;) so (s x id)p(s™! x id) is an isotopy of (F'U D;) x I fixing
D; x I. So now we have s X id¢ is an isotopy of F' x I which takes the fixed
point set of the G action to points cross the interval, this is the condition for a
set of curves to form an open braid in the fibration, but the fixed point set of the
action is just B. And so B is braided with respect to the fibration of A*/B, and
thus to the fibration of A. O

6.3 How this affects Stallings braids.

In this section I will show that if the k-fold cover of a Stallings braid is fibered,
then it is an exchangeable braid.

Lemma 6.3.1 If the k-fold cover of a Stallings braid is fibered and ky is a prime
divisor of k, then the k,-fold cover of the Stallings braid is fibered.
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Proof Firstly we have (5%)*/A = S, and so (5%, B)kJA = (83, BF)k/k1 /A so by
prop 6.2.2 we have *1 is fibered. O
The following is a result from number theory.

Lemma 6.3.2 Let p(x) € Zz], p(1) # 0, let ky be a prime number, and ¢ a
ky-th primitive root of unity. Then if p(C') = 0 for any i then k, divides p(1).

Proof If p(¢') = 0, then p(¢?) = 0 for j = 1...(k; — 1) and thus p(z) =
(14 ...+ 2F7"1)g(z) for some ¢(x) € Z(z), and so p(1) = k1q(1). O

Corollary 6.3.1 A Stallings braid, 0 € B,, is exchangeable if and only if the
closure of its k-th power, 5%, is fibered for any k > 2.

Proof By theorem 6.2.1 if @f is fibered, and if the fiber surface F(BT“) =
gzﬁ_l(F(B)), then the axis A is braided with respect to 5. So by lemma 6.3.1,
it is enough to consider the case when £ is prime. Now the Alexander polynomial
of B?“ U A is given by the following,

k
Agia@, ) =1 Ag (@, C'0)

=1

where ( is a k-th primitive root of unity. Torres shows in [13] that

AﬂAkuA(x, )=(z"-1)/(z — I)A@(x)

when B?“ is a knot, and

A= (x,1)= (2" = 1)A 4 (2)

gkuA Bk

whenever @f is a link of two or more components. Now the spread of z in
AEuA(x, t) = par(t)z™ +.. .+pm(t)xm is equal tQ n—1 so if spread in AEuA(x, C't)
is less than n — 1, one of py(¢*) = 0 or p,,(¢*) = 0. By the lemma 6.3.2 this
means one of py(1) or p,,(1) would not be equal to plus or minus one. But we
know that both py,(1) = £1 and p,,(1) = £1, since A5 |, (z,1) =1+ ...+ 2.

BuA

Now
k1

A8 2) = Au(Br) [T A((AUB); ),
i=1
by Proposition 3.2.1. Let A(z,y) = pp(y)2™ + ...+ py(y)z™, with lemma 6.2.3
applied to p,, and py,.
Then in the case when (% is a knot and by the spread in x in the Alexander
polynomial is (k —1)(n —1). As A, (B;2) = (2" —1)/(x — 1)7', and A, (8% 2) =
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(z—1)"'A 5 (x). So the rank of the first homology group of the fiber surface of
BF is (k—1)(n —1). Now we have rk(H,(D¥/A)) = (k—1)(n — 1) so D¥/A is a
minimal genus surface, and thus a fiber surface of 9(D*/A) .

When 57“ is a link of two or more components, we have A*(B; z) = (2" —
1)/(z — 1)~ and A*(@“;x) = A@c(x) So the spread in x in the Alexander
polynomial is (n —1)(k —1) — 1 and thus in a link of two or more components we
have the rank of the first homology group of the fiber surface of 3 is (k—1)(n—1).
But we know that the rank of the first homology group of D*/A is (k—1)(n—1),
and since the link is fibered this is a fiber surface.

Thus if @“ is fibered then Bﬁ is fibered where k' is a prime divisor of k. Hence
by theorem 6.2.1 if 57“ is fibered then B U A are an exchangeable braid pair. O

Remark. Let B U A, and /ﬁ\’ U A be a pair of links and axes, and let B differ
from /ﬁ\’ by the addition of a string, and a band 0,1, a positive Markov move.
Using the above notation let K = A2/, and K' = A2/f. In [8] Morton and
Montesinos show that the double cover of the axis branched over two braids that
differ only by a positive Markov move, adding a band differ by the plumbing of
a Hopf band. That is K’ is K with a Hopf band plumbed on.

In particular we have

Corollary 6.3.2 A Stallings braid, 3, is exchangeable if and only ifﬁ\z is fibered
as the plumbing of Hopf bands on a disc.

Proof. The last corollary shows us that BE is fibered if and only if 3 is
exchangeable, but if 3 is exchangeable then 32 ~ A?/Exch(3) implies that (32 is
a plumbing of Hopf bands on a disc. O

6.4 Generalized Murasugi sum.

A generalized Murasugi sum is a form of plumbing applied to triples, (X, F, A).
Definition. I shall say that the triple (X, F, A) is the Murasugi sum of the
two triples (Ela F17 Al) and (EQ, FQ,AQ) if

1. The homology 3-sphere Y decomposes as > = ;#5233

2. F; and F) are subsurfaces of F' meeting only in a disc Dy, = F} N F, lying on
the separating sphere, S?, of ¥, such that Fj is in ;, and F = Fi#p, F}.

3. The generalized axis A meets the separating sphere S? in only two points,
d € Dy and ¢ ¢ Dy. Thus A factors as A = A #A,, with A; in ¥; and A,

in 22.

68



For the above definition to be the Murasugi sum of braids, we have the further
property that O(F;) is braided relative to A; in %;.
Theorem 4.1.1 has the following corollary,

Corollary 6.4.1 The Murasugi sum of two generalized braids with generalized
axes is a generalized exchangeable braid if and only if the Murasugi summands
are exchangeable.

Proof If each of the Murasugi summands are exchangeable then the k-fold
cover of the Murasugi sum is the plumbing of the k-fold covers of the summands
and thus is fibered, this surface covers the surface of the Murasugi sum and thus
is exchangeable. Conversely if the Murasugi sum is exchangeable then the k-fold
cover of the braid is fibered. Now this braid is a Murasugi sum, and so the k-fold
cover is a plumbing of the k-fold covers of the summands and these are therefore
fibered. These k-fold cover fiber surfaces are the inverse images of the Murasugi
summand surfaces. O
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