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AbstractAn exchangeable braid is a link with two unknotted components such thateach component lies as a closed braid relative to the other as axis. Any such linkis constructable from the closure of a certain type of braid known as a Stallingsbraid, although not all Stallings braids are exchangeable.In this thesis I study conditions under which a Stallings braid yields an ex-changeable braid, including a complete analysis of Stallings braids up to 5 strings.Part of the study involves the consideration of the Alexander polynomial of moregeneral 2-component links, the Alexander polynomial of their cyclic branchedcovers, and the use of groupoid ideas to then study geometric features of thelink.The setting is then extended to deal with a generalised exchangeable braid,where the link may have more than two components, each being a �bered knot.
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Chapter 1IntroductionIn this introductory chapter I will give a brief summary of the ideas and resultscontained within this thesis, and list the notation used throughout the thesis.The �rst section of this chapter will be the section on ideas and results used inthe thesis, and the second section will be a summary of notation used within thisthesis.1.1 A brief summary of results and ideas.Traditionally exchangeable braids were de�ned in the terms of links of two com-ponents, each of which are unknotted, and each component having the othercomponent as closed braid relative to it as an axis. A braid, �, is then called ex-changeable if its closure together with axis, b�[A, form such a link. The essentialfeature of such a braid is that the closure of the braid, b�, is unknotted and thatthe axis for the braid A is itself a closed braid relative to b� as axis.A Stallings braid on n strings is de�ned by Morton in [9] to be the productof n � 1 elementary braids or their inverses which close to a single component,where an elementary braid �i;j 2 Bn, for 1 � i < j � n is the braid interchangingthe ith and jth strings with a single positive crossing, in front of any intermediatestrings, and leaving the others alone. Such braids were introduced by Stalling asexamples of braids whose closure is the unknot. A spanning surface for the closureof a Stallings braid can be obtained by placing n discs on the braid strings andconnecting them by half twisted bands corresponding to the elementary braids inthe above product, where a positive half twisted band connecting the i-th and j-th discs corresponds to the elementary braid �i;j and a negative half twisted bandconnecting the i0-th and j 0-th discs corresponds to the inverse of the elementarybraid i.e. ��1i0;j0. Such a disc intersects the axis in only n points, this form ofspanning disc for a Stallings braid is known as a Stallings disc.3



It is shown in [9] that every exchangeable braid is conjugate in the braid groupto a Stallings braid, but that some Stallings braids are not exchangeable.Morton's paper on exchangeable braids then goes on to describe two waysin which a Stallings braid decomposes into simpler Stallings braids, and thenproves that the original braid is exchangeable if and only if its decompositionconstituents are exchangeable.The �rst of these two ways of decomposition is a form of generalized plumbing,called in [9] the Murasugi sum of two Stallings braids. The Murasugi sum is aform of plumbing extended to apply to the pairs consisting of the Stallings discand the axis of the Stallings braid.Given a Stallings braid � 2 Bn, the braid group on n strings, with Stallingsdisc D and axis A, following Morton's de�nition I shall say that the pair (D;A)is the Murasugi sum of (D1; A1) and (D2; A2) if(i) D1 and D2 are subdiscs of D each lying in half of S3, and meeting onlyin a disc D0 = D1 \D2 lying on the sphere, S2, which separates S3 into the twohalves.(ii) The axis A meets the separating sphere S2 in only two points, d 2 D0 andc =2 D0.(iii) The disc D1 forms a Stallings disc with axis A1 where A1 consists of thepart of L in the half of S3 containing D1 completed by an unknotted arc cd inthe other half of S3, and similarly for the pair (D2; A2).Now that the Murasugi sum of two Stallings braids is de�ned I will call thedecomposition components of the Murasugi sum the Murasugi summands, i.e.the Murasugi summands of � = @D are �1 = @D1 and �2 = @D2.The other possible decomposition of a Stallings braid can be described interms of the construction of satellite knots and links. In general, to construct asatellite of a link L = L1 [ : : : [ Lr we need another link C = C1 [ : : : [ Ck, inwhich one unknotted component, Ck say, is selected. Then one component L1say, of the link L is chosen. We then replace a solid torus neighbourhood V of L1by the solid torus W = S3 �Ck, the complementary torus to the neighbourhoodof Ck. This replacement is by a faithful homeomorphism h : W ! V i.e. onewhich carries a longitude ofW to a longitude of V . The satellite link thus formedconsists of h(C1) [ : : : [ h(Ck�1) [ L2 [ : : : [ Lr, and contains a splitting torus,T = @V = h(@W ).For the case of Stallings braids we have r = k = 2 and both C1 [ C2 andL1 [ L2 consist of closed braid union axis, where C2 and L2 are the respectiveaxes. It then follows that h(C1)[L2 is a closed braid with axis L2 on mn strings4



when the constituent braids have m and n strings respectively. In the followingtext I will write the satellite as (L1 �C1)[L2 to indicate that the component L1has been decorated by the pattern C1.For the two preceding decompositions of Stallings braids Morton has provedthe following theorems.Murasugi Sum Theorem Given that the pair of Stallings braid and axisb� [A is the Murasugi sum of c�1 [A1 and c�2 [A2 , then the Stallings braid � isexchangeable if and only if its Murasugi summands �1 and �2 are exchangeable.Satellite Theorem Let the satellite link d�1 � �2 [A consist of a closed braidb� = d�1 � �2 with axis A. Then � = �1 � �2 is exchangeable if and only if �1 and�2 are exchangeable.Morton also points out that a gap exists between necessary and su�cientgeometric conditions for a Stallings braid to be exchangeable.In Chapter 2 I give a brief survey of Free Di�erential Calculus results, as adescription of why the free calculus can be used to �nd the Alexander module,and thus the Alexander polynomial.In Chapter 3 I will investigate the spread in a single variable of the multivari-able Alexander polynomial in terms of the genus of the component relating tothe variable and the geometric intersection number of the surface and the rest ofthe link. I will also generalize the k-fold cover theorem on the Alexander polyno-mial of braids to a similar theorem on tangles. Also I point out that the spreadtheorem is true in any integer homology three sphere.In Chapter 4 I will consider the case of exchangeable Stallings braids, as aform of tangle, that is I will investigate the "exchange" of a Stallings braid, andrelated tangles.In Chapter 5 I propose to generalize the notion of exchangeable braids to in-clude braids with generalized axis in homology 3-spheres, and using some knowl-edge of multilinks [3] generalize the Satellite Theorem to a splice decompositiontheory of exchangeable braids. In Chapter 5 I will also prove a necessary andsu�cient condition on which Stallings braids are exchangeable.In chapter 6 I will show that the Murasugi sum Theorem may be general-ized, that is the Murasugi sum of two generalized braids with generalized axis isexchangeable if and only if the two Murasugi summands are exchangeable. Themajor part of Chapter 6 will be a discussion of necessary and su�cient conditionson the exchangeability of generalized exchangeable braids, in terms of �brations5



of related knots and links. This Chapter contains necessary and su�cient geo-metric conditions on which Stallings braids are exchangeable. That is a Stallingsbraid � is Exchangeable if and only if c�k is �bered.The following thesis is dedicated, with many thanks, to my family and friends,and Hugh Morton. I would also like to thank S.E.R.C. for their support.1.2 Notation used in this thesis.In this thesis, the space � will be a smooth, path connected, orientable 3-manifold,A path in � from s1 to s2 is a continuous mapping from the interval, I, into� p : I ! �with p(0) = s1 and p(1) = s2.Write G(�; S) for the category whose objects are points in S and whosemorphisms are paths in � with endpoints in S, where S is a non-empty subsetof �, and write G(�; S)(s1; s2) for the set of all morphisms (paths ) from s1 tos2 in G(�; S).The inverse of p 2 G(�; S)(s1; s2) is the path p�1 2 G(�; S)(s2; s1) de�nedby p�1(t) = p(1� t).Write p1 � p2, when p1, p2 2 G(�; S)(s1; s2) are homotopic, �xing theirendpoints. Thus we have p1�1 � p1 � ids1 and p1 � p1�1 � ids2 . Let us de�ne thehomotopy class of p, denoted by [p] 2 G(�; S)(s1; s2) as the subset < p0 : suchthat p0 2 G(�; S)(s1; s2), and p0 � p >.Write �1(�; S) for the category whose objects are points in S and whosemorphisms are homotopy classes of paths with endpoints in S. This is called thefundamental groupoid of � over S.I shall say that the triple (�; F;A) is the Murasugi sum of the two triples(�1; F1; A1) and (�2; F2; A2) if1. The homology 3-sphere � = �1#S2�22. F1 and F2 are subsurfaces of F meeting only in a disc D0 = F1 \ F2 lyingon the sphere, S2, which separates � into �1 and �2, such that Fi is in �i,and F = F1#D0F2.3. The generalized axis A meets the separating sphere S2 in only two points,d 2 D0 and c =2 D0. Thus A factors into A1 in �1 and A2 in �2, A = A1#A26



Let � be a smooth, connected orientable, three manifold, and let the link,L(�; S1 [ : : : [ SN), a union of disjoint oriented simple closed curves in � (Alllinks in this thesis will be assumed oriented). If N(Si) denotes a neighbourhoodof Si in � then let �0 = ext(�) = � � (N(S1) [ : : : [N(Sn)) be the exterior ofthe link, � : f�0 ! �0 be the projection from the universal abelian cover to thelink exterior, and ~p = ��1(p) be a typical �ber of this map.Write G = �1(�0) be the fundamental group of �0. The group of coveringtransformations of �0 is H1(�0).The trivialiser, t, of Z(G) is de�ned byt(�kigi) = (�ki)ewhere ki 2 Z for all i and gi 2 G with e the identity element of G.A derivation, D, on the group ring Z(G) is a map from Z(G) to itself whichsatis�es D(u+ v) = D(u) +D(v) (1.1)D(u:v) = D(u):t(v) + u:D(v) (1.2)where u; v 2 Z(G):The free group on n generators, x1; : : : ; xn is denoted Fn. There is a set of nendomorphisms of Z[Fn] called the free derivatives. They are determined by@(xi)@xj = �ij (1.3)@(u+ v)@xj = @u@xj + @v@xj (1.4)@(uv)@xj = @u@xj t(v) + u @v@xj (1.5)u� t(u) = nXj=1 @u@xj (xj � 1) 8u 2 Z(Fn) (1.6)w � 1 = nXj=1 @w@xj (xj � 1) 8w 2 Fn (1.7)
7



Chapter 2The Free Di�erential Calculus.The purpose of this chapter is to give a description of derivations, in particularthe free di�erential calculus, and to show how to obtain the Alexander modulefrom a �nite presentation of the fundamental group.2.1 The Free Calculus As A Derivation.When studying the knot group a useful tool is the Free Di�erential Calculus ofFox in [ 4]. It is useful in that it converts the study of a non-abelian group intothe study of a related abelian group which still retains enough structure to beinteresting. To introduce the free calculus it is �rst necessary to consider thegroup ring, Z(G), where an element �kigi 2 Z(G) is the �nite sum of integermultiples of group elements, where ki 2 Z for all i and all but a �nite number ofthe ki are zero. Next it is useful to consider the trivialiser t of the group ring.The trivialiser t of Z(G)! Z(G) is de�ned byt(�kigi) = (�ki)ewhere ki 2 Z for all i and gi; e 2 G with e the identity element.A derivation on the group ring Z(G) is a map D from Z(G) to itself whichsatis�es D(u+ v) = D(u) +D(v) (2.1)D(u:v) = D(u):t(v) + u:D(v) (2.2)where u; v 2 Z(G):Next we consider derivations on the free group. Write Fn for the free groupon n generators, x1; : : : ; xn and Z[Fn] for its integer group ring. As above write8



t : Z[Fn] ! Z[Fn] for the trivialiser, de�ned by t(P aiwi) = (P ai)e, wherewi 2 Fn and e is the identity element of Fn. Let the derivation D be D = id� t,where id is the identity mapping on the group ring and t is as before. Thuswe have D(�kigi) = �kigi � �kieFn = �(kigi � kieFn) = �kiD(gi), note thatt(D(g)) = 0. If w = �kigi 2 Z(Fn) has t(w) = 0 then w = w � t(w) = D(w).Now it can be shown that the Z(Fn) module de�ned by (w 2 Z(Fn) j D(w) = 0)is a free module with generators (x1 � 1); : : : ; (xn � 1). Then,u� t(u) = nXj=1 @u@xj (xj � 1) 8u 2 Z(Fn) (2.3)and in particular w � 1 = nXj=1 @w@xj (xj � 1) 8w 2 Fn: (2.4)This set of n endomorphisms @@x1 ; : : : ; @@xn of Z[Fn] is called the free di�er-ential calculus because they obey@(xi)@xj = �ij (2.5)@(u+ v)@xj = @u@xj + @v@xj (2.6)@(uv)@xj = @u@xj t(v) + u @v@xj (2.7)but (2:6) and (2:7) are the rules to be satis�ed for a map to be a derivation.2.2 Free di�erential calculus and the Alexandermodule.In this section I will present a method for obtaining a presentation of the Alexan-der module, from a presentation of the fundamental group of the exterior of thelink, and thus a method for �nding the Alexander polynomial, where it is properlyde�ned. For more complete treatment see the papers of Fox [4, 5, 6].Let � be a smooth, connected orientable, 3-manifold, and let the link L(�; S1[: : :[SN) in � be a proper embedding of simple oriented closed curves, S1[: : :[SN ,into �. 9



Since the aim of this section is to �nd a presentation of the Alexander modulein terms of the exterior of the link, we must �rst de�ne the exterior of a link in�. Let us denote by N(Si) a neighbourhood of Si in �.Then the exterior, �0, of the link L in � is �0 = �� (N(S1) [ : : : [N(Sn)).Let f�0 be the universal abelian cover of �0, with associated projection � :f�0 ! �0 from the universal abelian cover to the link exterior, with ~p = ��1(p)a typical �ber of this map, and let G = �1(�0) be the fundamental group of �0.The group of covering transformations of f�0 is H1(�0).The aim of this section is to show that a presentation for H1(e�0; p) as aZH1(�0) module can be obtained from a presentation of G = �1(�0), the funda-mental group of �0, because H1(e�0; p) presented as a ZH1(�0) module is calledthe Alexander module.Let P be a presentation of the group G, given byP = (x1; : : : ; xn : r1; : : : ; rm):This can be considered to be part of a cell decomposition of �0, where the basepoint p of the fundamental group is the 0-cell, the n 1-cells are the generators ofthe presentation x1; : : : ; xn;and are thus loops in the fundamental group, and the m 2-cells are the discsD1; : : : ;Dm;with the attaching map of Di being ri.Now let H be some quotient of G, and f�0 ! �0 the regular covering withgroup of covering transformations isomorphic to H. The cell structure for �0 liftsto a cell structure for f�0, as follows.Let q 2 ~p be a speci�c element of the �ber, then choose fxi for the uniquelift of xi which starts at q, and fDi for the unique lift of Di such that @fDi is thelift eri of ri which starts at q. Then the cell decomposition of the covering space,C0(f�0), C1(f�0), C2(f�0) are free Z(H) modules.Now when H = H1(�0) we have the boundary map @2 : C2(f�0) ! C1(f�0)is an almost complete description of H1(f�0; ~p) as a Z(H1(�0)) module. (Andsince H1(f�0; ~p) can be described solely in terms of the group G the result will beindependent of the presentation P .)The next step is to let w be any word in the xj's, regarded as a representativeloop in the homotopy class based at p. Then w lifts to a unique path ~w based atq. 10



Proposition 2.2.1 If w is any word in the xi's then the lift ~w is the following1-chain in f�0, ~w = nXj=1��( @w@xj )fxjwhere @w@xj is the derivation of the word w with respect to the generator xj in thefree di�erential calculus.Proof The proof will be by induction on the word length. When the word lengthof w is one w = xi�1 or w = xi. Firstly we need to see that the end point of ~wbased at q is ��(w)q, and that gw�1 = ��(w�1) � �( ~w). The illustration belowshows this to be true.
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αφ (w -1 )qIf w = xi we have ~w = fxi = nXj=1 �ijfxj ;and if w = xi�1 we have~w = gxi�1 = ���(xi�1)fxi = nXj=1��ij��(xj�1)fxj :Now we assume that any word of length less than or equal to l has a lift ~w asrequired. So we now consider a word, xi�w, of length l + 1.Now as above the end point of fxi� beginning at q is ��(xi�)q, so gxi�w =fxi� + ��(xi�) ~w thusgxi�w = nXj=1��(@xi�@xj )gxj� + ��(xi�) nXj=1��( @w@xj )gxj� :11



Thus by the inductive hypothesis ~w is as described. 2In particular, with respect to the Z(H1(f�0)) bases of C2(f�0) = (fDi : 1 � i �m) and C1(f�0) = (fxj : 1 � j � n), we have @2 : C2(f�0) ! C1(f�0) given by them� n matrix M = ��( @ri@xj ) :The other boundary map @1 : C1(f�0)! C0(f�0) is given by the following@1(fxj) = (��(xj)� 1)q :Thus we have the above matrix M as a presentation of H1(f�0; ~p), which leads toa presentation of H1(f�0) because H1(f�0; ~p) = I �H1(f�0), where I is the Z(H)module generated by (��(xj)� 1), for every j.The module, H1(f�0), presented as a Z(H0(�0)) module is the Alexander mod-ule, and the Alexander polynomial can be retrieved from the determinants of the(n� 1)� (n� 1) submatrices of M .
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Chapter 3The Alexander polynomialIn this chapter I will show a number of results on the Alexander polynomial,including an upper bound for the spread of each variable in the multivariableAlexander polynomial of a link.3.1 Spread of the Alexander polynomialAt �rst we consider the spread in a variable of the multivariable Alexander poly-nomial in the three sphere.3.1.1 A bound on a variable in the multi-variable Alexan-der polynomial.There is a well-known bound for the degree of the Alexander polynomial �K(t)of a knot K in terms of the genus of a spanning surface for K.In this chapter we �nd similar geometric bounds for the Laurent degree ofeach variable in the multi-variable Alexander polynomial of a link. We considera link L with k components L1; : : : ; Lk. The Alexander polynomial, for k � 2, isa Laurent polynomial �L(t1; : : : ; tk) in k variables t1; : : : ; tk corresponding to themeridians of L1; : : : ; Lk respectively. Write �L(t1; : : : ; tk) in terms of ti as�L(t1; : : : ; tk) = MXj=m tjiPj ;where Pj is a Laurent polynomial in the remaining variables with Pm 6= 0; PM 6= 0,and we de�ne the spread, or Laurent degree, of the variable ti in �L(t1; : : : ; tk) tobe Sprti(�L) =M �m. Select one component K = Li of L, and put L0 = L�K,and write tK = ti for the corresponding variable. Choose a Seifert surface SKfor K, in other words any compact orientable surface whose boundary is K, and13



arrange that L0 intersects SK transversely. Write I(SK; L0) for the total numberof transverse intersections of L0 with SK. We now give an upper bound for thespread, SprtK (�L), of the variable tK in �L, in terms of I(SK ; L0) and the genusg(SK) of the surface SK.Theorem 3.1.1 In the multi-variable Alexander polynomial �L(t1; : : : ; tk) wehave SprtK (�L) � 2g(SK) + I(SK; L0)� 1:Corollary 3.1.1 Let �L(t1; : : : ; tk) be as above. ThenSprtK (�L) � minSK (2g(SK) + I(SK; L0)� 1):Proof Obvious. 2Corollary 3.1.2 Let L be a link with an unknotted component U . ThenSprtU � I(DU ; L0)� 1:Proof The disk DU has genus 0. 2Remark In the case of the closed braid with axis we have a specialisation ofCorollary 3.1.2 above. This follows because the Alexander polynomial of an l-braid and axis can be realised as the characteristic polynomial, det(xI � B(t)),of an (l � 1) � (l � 1) invertible matrix, known as the reduced Burau matrixof the braid, with x representing the meridian of the unknotted axis U . ThenSprU = Sprx(det(xI �B(t))) = (l� 1), while a disk DU spanning the axis meetsthe closed braid in at least l points.3.1.2 Free calculus.In the proof of theorem 3.1.1. we will make use of Fox's free di�erential calculusin calculating the multi-variable Alexander polynomial, �L, from a presentationof the group �1(S3 � L). The following is a brief reprise of chapter 2, for a morecomplete treatment see [4, 5, 6].Write Fn for the free group on n generators, x1; : : : ; xn and Z[Fn] for its integergroup ring. Write t : Z[Fn] ! Z for the trivialiser, de�ned by t(P aiwi) = P ai,where wi 2 Fn. The free di�erential calculus de�nes a set n endomorphisms@@x1 ; : : : ; @@xn of Z[Fn] with the following properties:
14



@(xi)@xj = �ij (3.1)@(u+ v)@xj = @u@xj + @v@xj (3.2)@(uv)@xj = @u@xj t(v) + u @v@xj (3.3)Then, u� t(u) = nXj=1 @u@xj (xj � 1) 8u 2 Z(Fn) (3.4)and in particular w � 1 = nXj=1 @w@xj (xj � 1) 8w 2 Fn (3.5)Given a group G with a �nite presentation G = < x1; : : : ; xn j r1; : : : ; rm >on n generators x1; : : : ; xn, write Fn as before for the free group with generatorsx1; : : : ; xn and � : Fn ! G for the homomorphism de�ned by �(xi) = xi. ThenR = ker� is the normal subgroup of Fn generated (as a normal subgroup) byr1; : : : ; rm 2 Fn. We may de�ne an m � n \Jacobian" matrix M = ( @ri@xj ) withentries in Z[Fn]. This has the property thatM 0BB@ x1 � 1...xn � 1 1CCA = 0BB@ r1 � 1...rm � 1 1CCA ;under the natural convention for multiplying matrices with non-commuting en-tries, since nXj=1 @ri@xj (xj � 1) = ri � 1 by (3:5).There is a homomorphism � : G ! G=G0, called the abelianiser, from G tothe abelian group G=G0, we will also write the group G=G0 multiplicatively.The map �� : Fn ! G=G0 induces a ring homomorphism �� : Z[Fn] !Z[G=G0] to the commutative ring Z[G=G0].Write yj = ��(xj); the matrixM gives a matrix ��M with entries in Z[G=G0],which satis�es��M 0BB@ (y1 � 1)...(yn � 1) 1CCA = 0BB@ 0...0 1CCA ; since �(ri) = 1 2 G:15



Now let G = �1(S3 � L), and choose a �nite presentation of G. The abelian-isation G=G0 �= H1(S3 � L) is a free abelian group of rank k, and we can choosegenerators t1; : : : ; tk which are represented by oriented meridians of the com-ponents L1; : : : ; Lk. The group ring Z[G=G0] is then the ring Z[t�11 ; : : : ; t�1k ] ofLaurent polynomials in t1; : : : ; tk.Using the presentation of G on n generators �nd the matrix ��M , called theAlexander matrix of the presentation. The Alexander polynomial �L(t1; : : : ; tk) 2Z[t�11 ; : : : ; t�1k ] is de�ned, up to a unit in this ring, as�L(t1; : : : ; tk) = gcd( (n� 1)� (n� 1) subdet ��M ):It is shown by Fox in [5] that �L depends only on G and not on the choice ofpresentation. We now give the proof of Theorem 3.1.1.3.1.3 Proof of theorem.Proof of Theorem 3.1.1 We will use Van Kampen's theorem to �nd a suitablepresentation of G = �1(S3 � L), based on a decomposition of S3 � L as U [ V ,where U; V are open and U \ V is path-connected.Let K be the chosen component of L, as above, and L0 = L �K. Choose ameridian m for K and a solid torus Vm centred on m, such that (Vm \ L0) = ;.The spanning surface SK meets L0 transversely in l = I(SK; L0) points. WriteS 0K = (SK � (SK \ L0)) for SK with these points removed. Then we may chooseour U and V as follows U = (S3 � L0 � SK);V = int((S 0K � (�"; ")) [ Vm):Then we have U [ V = (S3 � L);U \ V = int((S 0K � (�"; 0)) [ (S 0K � (0; ")) [ (Vm � (Vm \ S 0K))):So by Van Kampen's Theorem;�1(S3 � L) = �1(U) � �1(V )= < (iU)�(x) = (iV )�(x) j 8x 2 �1(U \ V ) >where (iU)� and (iV )� are the homomorphisms at the level of homotopy inducedfrom the inclusions iU : (U \ V )! U and iV : (U \ V )! V .16



The fundamental group of any oriented surface with one boundary componentand l punctures is a free group on 2g + l generators, where g is the genus of thesurface.Now int(S 0K � (�"; ")) \ int(Vm) = D2, where D2 is an open ball, which issimply-connected. So we have �1(V ) = �1(S 0K) � �1(Vm) =< h0; � j >, where theorientation of the meridian � for the component K is chosen so tK = ��(�).Similarly for U \V we have two copies of the punctured Seifert surface joinedtogether by Vm � (Vm \ S 0K), which gives�1(U \ V ) =< h00;k00 j >with (iV )�(h00) = h0, and (iV )�(k00) = �h0��1Now we build a presentation for �1(U) which is compatible with the generatorsof �1(U\V ), in other words we start with generators of �1(U) which exactly matchthe generators of �1(U \ V ), and then complete the generating set. This gives apresentation of the form �1(U) =< h;k;g j r0 > :Van Kampen's theorem then gives the presentation�1(S3 � L) =< h0;h;k;g; � j r0; (iU )�(h00) = (iV )�(h00); (iU)�(k00) = (iV )�(k00) > :Now (iU)�(h00) = h , (iU)�(k00) = k, giving�1(S3 � L) =< h0;h;k;g; � j r0;h = h0;k = �h��1 > :which gives �1(S3 � L) =< h;k;g; � j r0;k = �h��1 >The Alexander matrix of this presentation can be found by doing free calculuson the relations, ri = ki�hi�1��1, and r0j. We have@ri@hj = ��ij(ki�hi�1) = ��ijri�; @ri@kj = �ij; @ri@g = 0; @ri@� = ki � riand since the relations r0 depend only on h, k and g we have @r0j@� = 0 for all j.Now the Alexander matrix of the group is found by applying �� to the Jaco-bian matrix M , which can be written in block form asM = 0B@ @r@h @r@k @r@g @r@�@r0@h @r0@k @r0@g @r0@� 1CA :17



The calculations above give��M = 0@ I2g+l ���(�)I2g+l 0 ��(ki)� 1��@r0@h ��@r0@k ��@r0@g 0 1A (3.6)As all the generators of this presentation, except �, are homotopic to pathsin U we have that the linking numbers of the other generators and K is zero.This implies that the only appearances of tK = ��(�) are the 2g + l entries inthe (1,2)-block of the matrix.Now we need the following two lemmas;Lemma 3.1.1 Let � be a unique factorisation domain, let M be a n � (n + 1)matrix with entries in �, let Mj be M with the jth column deleted, and let Dj =detMj, and suppose that M 0BB@ a1...an+1 1CCA = 0BB@ 0...0 1CCA ;where aj 2 � and gcd(a1; : : : ; an+1) = 1. Then(D1; : : : ;Dn+1) = p(a1; : : : ; an+1) for p = gcd(D1; : : : ;Dn+1) 2 �.Proof Adjoin a row of zeros to M to giveM 0 =  M0 : : : 0 ! ;with det(M 0) = 0.Then, adj(M 0)M 0 = 0� In+1 =M 0adj(M 0).Now adj(M 0) = 0BB@ 0 : : : 0 D1... . . . ... ...0 : : : 0 Dn+1 1CCAwhich gives M 0BB@ D1...Dn+1 1CCA = 0BB@ 0...0 1CCA :Either Dj = 0 for all j or there exists a k such that Dk 6= 0. If Dj = 0 for all jthen (0; : : : ; 0) = 0(a1; : : : ; an+1). Now if Dk 6= 0 we have18



M 0BBBBBBB@ akD1 �Dka1...akDk �Dkak...akDn+1 �Dkan+1
1CCCCCCCA = 0BB@ 0...0 1CCAwhich gives Mk 0BB@ akD1 �Dka1...akDn+1 �Dkan+1 1CCAk = 0BB@ 0...0 1CCAwhere (v1; : : : ; vm)Tk is a vector with its kth entry deleted. But asDk = detMk 6= 0we have 0BB@ akD1 �Dka1...akDn+1 �Dkan+1 1CCA = 0BB@ 0...0 1CCANow let gcd(ak;Dk) = d and put ak=d = q and Dk=d = p. Then there exists p; qsuch that gcd(p; q) = 1 andq0BB@ D1...Dn+1 1CCA = p0BB@ a1...an+1 1CCAThis gives qDj = paj for all j. Any prime divisor of q must then divide ajfor all j, but gcd(a1; : : : ; an+1) = 1, so q has no prime divisors and thus is aunit. Then the vector (D1; : : : ;Dn+1) = p(a1; : : : ; an+1) with gcd(D1; : : : ;Dn+1) =p� gcd(a1; : : : ; an+1) = p 2 �, as required. 2Let I be an indexing set de�ned by I = (i1; : : : ; in) (1 � i1 < : : : < in � r).Let M be an r � (n + 1) matrix with r � n then de�ne Mj as before to be Mwith the jth column deleted. Also de�ne M Ij to be the n � n submatrix of Mjwith the rows determined by I.Lemma 3.1.2 Let � ,I and a1; : : : ; an+1 be as above and let M be an r� (n+1)matrix for r � n which satis�esM 0BB@ a1...an+1 1CCA = 0BB@ 0...0 1CCA19



with gcd(a1; : : : ; an+1) = 1. Let Mj, and M Ij be as above then, writing dk =gcdI (M Ik ), we have (d1; : : : ; dn+1) = �(a1; : : : ; an+1)with � given by � = gcdj (dj) = gcdI;j (det(M Ij )).Proof . Write DIj = detM Ij and set� = gcdI;j (DIj ) = gcdI (gcdj (DIj )) :By Lemma 3.1.1 applied to the n� (n+ 1) matrix M I we haveDIk = ak � gcdj (DIj ) ; for all k:Hence gcdI (DIk) = dk = �akand thus (d1; : : : ; dn+1) = �(a1; : : : ; an+1) with dk = gcdI (DIk). 2Corollary 3.1.3 Let �, M , Mj, M Ij , and dk be as in Lemma 3.1.2,and supposethat M 0BB@ b1...bn+1 1CCA = 0BB@ 0...0 1CCA ;where bj 2 � for all j, and gcd(b1; : : : ; bn+1) = b. Thenb(d1; : : : ; dn+1) = �(b1; : : : ; bn+1) where � = gcd(d1; : : : ; dn+1) 2 �.Proof Apply Lemma 3.1.2 to (a1; : : : ; an+1) = (b1=b; : : : ; bn+1=b): 2Remark In the case where M is the Alexander matrix of a knot rather thana link of two or more components, the Corollary of Lemma 5.3.2 applies with(b1; : : : ; bn+1) = (��((g1 � 1); : : : ; ��(gn+1 � 1)) = (t � 1). Now since b =gcd(b1; : : : ; bn+1) = (t � 1) we have (t � 1)�K(t) = (t � 1)dn+1. This impliesthat the limit on the spread is bound by the spread in dn+1 rather than thisspread minus one, and this spread is bound by 2gK.Proof of theorem 3.1.1 continued Now apply Lemma 3.1.2 to the Alexandermatrix (3.6) of L with 20



0BB@ a1...an+1 1CCA = 0BBB@ ��(h� 1)��(k� 1)��(g � 1)��(�� 1) 1CCCA :This may be done since gcd(a1; : : : ; an+1) = 1. Then we may apply Lemma 3.1.2to get (d1; : : : ; dn+1) = �(a1; : : : ; an+1) where � = �L(t1; : : : ; tk) is the Alexanderpolynomial of L. So if we �nd the Alexander polynomial by deleting the (n+1)stcolumn, which corresponds to �, we have � = dn+1=an+1 as an+1 = tK � 1 6= 0.Thus we have�L(t1; : : : ; tk) = gcdI;j (det(��M Ij )) = gcdI (det(��M In+1))=(tK � 1);where Mn+1 =  I2g+l �tKI2g+l 0N1 N2 N3 !and N1, N2, and N3 are matrices that do not involve tK . Now it is obvious that inthe above matrix the maximum power that tK can attain is 2g + l. Since tK � 1divides each of the n � n subdeterminants of the above matrix, we then musthave the following; SprtK � 2g + l � 1:But g = genus(SK) , and l = I(SK; L0), which gives us the required result. 2Remark This bound is realised in the following example. Let K be a �beredknot of genus g, and let A [ �̂ be a closed l-braid with axis A. Now if the braidis chosen so that its closure is a single component then the link L = K#AA [ �̂has I(SK; L0) = l = lk(�̂; A) = lk(�̂;K). A result of Fox gives, for this link,�L(tK ; 1) = (tKlk(�̂;K) � 1)(tK � 1) �K(tK);so it follows thatSprtK�L(tK; t2) � SprtK�L(tK; 1) = SprtK (tKlk(�̂;K) � 1)(tK � 1) �K(tK) = 2gK + l � 1:Now SprtK�L(tK; t2) � 2gK + l � 1 by the theorem above, so we haveSprtK�L(tK; t2) = 2gK + l � 1:21



Example The link L shown in the following �gure has Alexander polynomial�L(a; b) = (1 � b)(1 � a)(1 + a2), giving Sprb�L = 1 and Spra�L = 3. Now byobservation there exists a disc spanning the component of L corresponding to bwhich the other component intersects with only twice. This implies that L maybe drawn as a, closed, 2-tangle with b as axis, but if a is chosen as the axis for atangle representing L then we have by Corollary 3.1.2 that this tangle is at leasta 4-tangle. From the picture below a disc spanning a can be seen which meets bin 4 points, so b can indeed be presented as a closed 4-tangle (which it is shownto be again by observation of L).
This shows that the geometric winding number of two components is notsymmetrical, and that in general tangles are not exchangeable as I stated insection 1 of chapter 4. This leads to the idea that a sort of error term exists inthe linking number of two components.This error term is the followingerr(K1;K2) = minSK1 (2(g(SK1)� gK1) + I(SK1;K2)� lk(K1;K2)):Notice that this is not necessarily symmetric in K1 and K2.3.2 The Alexander polynomial of the k-fold cycliccoverThe work in this section is motivated by the relationship between the Alexanderpolynomial of a braid, and the Alexander polynomial of the k-fold cyclic coverof the braid branched over the axis. We shall suppose that L [ A � S3 is a linkwith a distinguished component A. We may then construct the k-fold cover � ofS3 branched over A, with the projection pk : �! S3.Write A0 = pk�1(A) for the inverse image of the branch set and Lk=A =pk�1(L) for the inverse image of the rest of the link. Let � be a meridian of A0in �, and � a meridian of A in S3. Then pk j Lk=A ! L is a k-fold cover andpk j A0 ! A is a homeomorphism. 22



Let the induced map from H1(��p�1k (L[A))! H1(S3� (L[A) be denotedby H1(pk).In this section we shall take A to be unknotted, so that � = S3 and A0 isagain unknotted; our results in this case are extended in the next section to thecase when � is an integer homology 3-sphere.The aim of this section is to describe the Alexander polynomial of the linkpk�1(L [ A) = (Lk=B) [ A0 in terms of the Alexander polynomial of L [A.Using the de�nition of the Alexander polynomial given in the previous sectionof this chapter, we have the following theorem.Theorem 3.2.1 Let L [ A be a link in S3, with A unknotted. Let pk be theprojection as before, with A0 = pk�1(A), Lk=A = pk�1(L), and the Alexanderpolynomial as above, thenH1(pk)(�(Lk=A)[A(y1; : : : ; yt; yA0)) = kYi=1�L[A(x1; : : : ; xs; � ixA)where � is a k-th primitive root of unity, yA0 corresponds to the meridian �, andxA to the meridian �.Remark. This result is easily proved when L [ A consists of a closed braidL = b� together with its axis A. Then the cover pk�1(L) is simply the closure ofthe braid �k, with A0 as its axis. It is known in this case, [9], that the Alexanderpolynomial �b�[A is the characteristic polynomial det(B(t) � xI) of the reducedBurau matrix B(t) for the braid �.Since the reduced Burau matrix determines a representation of the braid groupinto a matrix group, it follows that the reduced Burau matrix of �k is (B(t))k,and thus the Alexander polynomial of the cover p�1(L[A) = p�1(L)[A0 can bewritten as �p�1(L)[A0(t; z) = det((B(t))k � zI) ;where z represents a meridian of A0.Now if we put xk = z we have((B(t))k � zI) = kYi=1(B(t)� � ixI)where � is a k-th primitive root of unity.23



Thus det((B(t))k � zI) = kYi=1 det(B(t)� � ixI)and so, since H1(pk)(z) = xk, we haveH1(pk)�p�1(L)[A0(t; z) = kYi=1�L[A(t; � ix)with �, x and z as above.The proof of Theorem 3.2.1 will show that the same formula holds in thegeneral case where L is not a closed braid relative to the axis A, and gives anatural extension to the case where L has m components.We are thus able to give the multivariable Alexander polynomial of pk�1(L[A)in terms of the Alexander polynomial of L[A, at least when pk�1(L) and L havethe same number of components. Even in the case that pk�1(L) and L do nothave the same number of components we can retrieve some information on theAlexander polynomial of pk�1(L) [ A0.The �nal result in this section expresses the Alexander polynomial of pk�1(L)in terms of the Alexander polynomials of (L [ A) and L.The following construction is required before the proof of the theorem.Let L be an embedding of the closed curves into S3 � A, where S3 is thethree sphere and A is an unknot. De�ne VA to be solid torus centred on m,with VA \ L = 0, where m is a meridian of A. Following the construction of thefundamental group in section 1 of this chapter we now choose a surface spanningA, F (A) say, but as A is an unknot we may choose F (A) = D(A) to be a discspanning A.Let Lk=A = p�1k (L) be the k-fold cyclic cover of L, as before, in the k-foldcyclic cover of S3 branched over A.Let �L[A(x1; : : : ; xs; xA), and �Lk=A[A0(y1; : : : ; yt; yA0) be the Alexander poly-nomials of L[A and (Lk=A)[A respectively, with xA representing the meridian� of A and yA0 represented by the meridian � of A0, while x1; : : : ; xs and y1; : : : ; ytare represented by meridians of the components of L and pk�1(L) respectively.Proof of theorem 3.2.1. Firstly I will construct the fundamental groups forS3 � (L [ A) and S3 � ((Lk=A) [ A), using the same method as in section 1 ofthis chapter. The cover map pk sends meridians of pk�1(L) homeomorphically tomeridians of L, while the meridian � is a k-fold cover of the meridian �. ThenH1(pk)(yi) = xj24



for some xj and H1(pk)(yA0) = xAk :Thus we have S3 � (L [ A) = U [ V , where U = (S3 � L � int(D(A))),V = (int(D(A) � (D(A) � (��; �) \ L) [ VA), and U \ V is path connected. ByVan Kampen's Theorem�1(S3 � (L [ A)) = �1(U) � �1(V )= < (iU)�(x) = (iV )�(x) j 8x 2 �1(U \ V ) >where (iU)� and (iV )� are the homomorphisms induced from the inclusionsiU : (U \ V )! U and iV : (U \ V )! V .Now �1(V ) =< h0; � j >and �1(U \ V ) =< h00;k00 j > ;where (iV )(h00) = h0 and (iV )(k00) = �h0��1.Again as in section 1 we build a presentation for �1(U) which is compatiblewith the generators of �1(U\V ), that is h, and k, as generators, where (iU )(h00) =h and (iU)(k00) = k, together with generators g, to complete a set of generators.Now as U � (D � I � L) the extra generators g represent local minima of L inD � I, and there is a relation set r, one ri for each local maximum. The �nalset of relations in �1(U) is obtained, as k = w(h;g), here w is a word in thegenerators h, and g. Thus�1(U) =< h;k;g j r;k = w(h;g) > ;and so, �1(S3 � L [ A) =< h0;h;k;g; � j h0 = h;k = �h��1; r;k = w(h;g) > ;which is �1(S3 � L [ A) =< h;g; � j w(h;g) = �h��1; r > :Let J = (@R@G) be the Jacobian matrix of the presentation of < G j R >=�1(S3 �A [ bT ), we have J = (M � xAN j v), whereM = 0B@ @w(h;g)@h @w(h;g)@g@r@h @r@g 1CA ;N =  �ij 00 0 ! ;25



and v is a vector given by vT = (� (1�h1) : : : � (1�hn) 0 : : : 0), with �ij theKronecker delta, and the two matrices M and N having same sized block form.But by section 1 of this chapter, this implies�L[A(x1; : : : ; xs; xA) = (xA � 1)�1 det(M � xAN) :We now produce a presentation for �1(S3 � ((Lk=A)[A0)), and by chapter 2section 2, we derive a presentation for H1( gS3 � ((Lk=A) [ A0); ~p). This leads, bysection 2.2, to the Alexander module, and thus to the Alexander polynomial.The fundamental group is given by the fundamental group of the exterior ofcT k, and (Vm [ (DA � (DA \ L))), so we need the following lemma.Lemma 3.2.1 With (Lk=A) as above�1(D � I � (D � (0) [ ((Lk=A) [ A0))) =< h(i);g(i) j w(h(i);g(i)) = h(i+1); r(i) >for i = (1; : : : ; (k � 1)).Proof. The proof is by induction on k. When k = 1 we have�1(D � I � (D � (0) [ (L [ A))) =< h;g j w(h;g) = h; r > ;as required.Let us assume that the lemma is true for k = n, and then consider the casek = n+ 1, �1(D � I � (D � (0) [ ((Ln+1=A) [A0))) =�1(D�I�(D�(0)[((Lk=A)[A0)))��1(D�I�(D�(0)[(L[A0)))= < w(h(k);g(k)) = h(k+1) >which gives �1(D � I � (D � (0) [ ((Lk=A) [ A0))) =< h(i);h(k+1);g(i);g(k+1) j w(h(i);g(i)) = h(i+1); w(h(k);g(k)) = h(k+1); r(k+1); r(i) > ;for i = (1; : : : ; (k � 1)) as required. 2From the above we thus have, using Van Kamppens theorem�1(S3 � ((Lk=A) [A0)) =< G j R >26



< h(i);g(i); � j w(h(k);g(k)) = �h(1)��1; w(h(i);g(i)) = h(i+1); r(i) > :Let the link L in S3 �A be considered to be some closed tangle cT k. Let J =(@R@G) be the Jacobian matrix of the presentation of < G j R = �1(S3�A[ cT k),and letM (j) be the matrixM with gi replaced with g(j)i and hi replaced with h(j)iinstead of �� we have � . It is, of course, not necessary to replace N by N (j) asall entries in N are 0 or 1.Then we can write � (J) in block form as� (J) = 0BBBBBB@ M (1) �N : : : ... j 00 M (2) �N : : : ... j 0... 0 : : : M (k�1) �N j 0�yA0N 0 : : : 0 M (k) j v
1CCCCCCAwhere vT = (� (1� h(1)1 ) : : : � (1� h(1)n ) 0 : : : 0).But by section 1 of this chapter, we have Alexander polynomial given as thefollowing�(Lk=A)[A0(y1; : : : ; yt; yA0) = (yA0�1)�1 det0BBBBBB@ M (1) �N : : : ...0 M (2) �N : : : ...... 0 : : : M (k�1) �N�yA0N 0 : : : 0 M (k)

1CCCCCCA :Now H1(pk)� (g(j)i ) = ��(gi), H1(pk)� (h(j)i ) = ��(hi), and H1(pk)� (�) =��(�k) which leads to the matrixH1(pk)� (J) = 0BBBBBB@ M �N : : : ... j 00 M �N : : : ... j 0... 0 : : : M �N j 0�xAkN 0 : : : 0 M j H1(pk)(v)
1CCCCCCA :We thus have H1(pk)(�(Lk=A)[A(y1; : : : ; yt; yA0)) =((xA)k � 1)�1 det0BBBBBB@ M �N : : : ...0 M �N : : : ...... 0 : : : M �N�xAkN 0 : : : 0 M

1CCCCCCA ;from which, using the following lemma, we can deduce our result.27



Lemma 3.2.2 Let M and N be n� n matrices, and J be the k � k matrixJ = 0BBBBB@ 0 1 : : : 00 0 ...... : : : : : : 1�k : : : : : : 0
1CCCCCA :Then det(M 
 Ik � N 
 J) = Qki=1 det(M � � i�N), where � is a primitive k-throot of unity.Proof. The matrix J has eigenvalues � i�, for i = 1; : : : ; k, and so can bediagonalized whenever � 6= 0. So there exists a k�k matrix P such that PJP�1 =D(� i�), the diagonal matrix with entries � i�. Thus we have((I 
 P )(M 
 I �N 
 J)(I 
 P�1)) = (M 
 I �N 
D(� i�)) :The matrix (M 
 I �N 
D(� i�)) is a direct sum of M � � i�N for i = 1; : : : ; k.Now (det(I 
 P ))�1 = det(I 
 P�1), sodet(M 
 I �N 
 J) = det(M 
 I �N 
D(� i�)) = kYi=1det(M � � i�N) ;as required. 2Proof of theorem 3.2.1 continued. As �T k[A = (yA0 � 1)�1 det(� J) weapply the above lemma with � = xA, so we haveH1(pk)(�T k[A) = (xAk � 1)�1 kYi=1det(M � � ixAN);giving H1(pk)(�T k[A(y1; : : : ; yt; yA0)) = kYi=1�T[A(x1; : : : ; xs; � ixAk) :This completes the proof of theorem 3.2.1 2In Chapter 5 section 3 I give an account of Eisenbud and Neumann's resulton the Alexander invariant, this invariant is a modi�ed version of the Alexanderpolynomial which behaves well with respect to satellite, and splicing operations.Given L = (�; S1 [ : : : [ Sn), then the Alexander invariant ��(L; t1; : : : ; tn) isgiven by ��(L; t1; : : : ; tn) = ( �L(t1; : : : ; tn) for n > 1(t1 � 1)�1�L(t1) for n = 128



where �(L; t1; : : : ; tn) is the normal Alexander polynomial.The Fox Torres formula derives the Alexander polynomial of any sublink Lfrom that of L00, under certain linking conditions. Eisenbud and Neumann usethe Alexander invariant in the context of splice decomposition to give a uniformextension to the Fox-Torres formula.Let L00 = (�; S0 [S1 [ : : :[Sn) , and L = (�; S1 [ : : :[Sn) with L0 = (S3; A),where A is an unknot in S3, then L is the splice of L0 and L00, and(t1l1 : : : tnln � 1)��(L; t1; : : : ; tn) = ��(L00; 1; t1; : : : ; tn);where li = lk(S0; Si) in �.With pk as above the following proposition gives the Alexander invariant ofpk�1(L) in terms of the Alexander invariants of L and L [A.Proposition 3.2.1 Let bT [A be a link formed as the closure of a tangle T unionan unknotted axis A. Then we have the following��(cT k; t1; : : : ; tn) = ��( bT ; t1; : : : ; tn) k�1Yi=1 ��((A [ bT ); � i; t1; : : : ; tn);Proof In this proof we have two cases; either the linking number of each com-ponent of the tangle with the axis is zero, or at least one is non-zero.CASE 1 If there exists a j such that lj 6= 0 then we have the following. With ��,as above, and H1(p) from above, then(t1l1 : : : tnln � 1)��(cT k; t1; : : : ; tn) = ��((A [ cT k); 1; t1; : : : ; tn)= kYi=1��((A [ bT ); � i; t1; : : : ; tn):Thus (t1l1 : : : tnln � 1)��(cT k; t1; : : : ; tn) =(t1l1 : : : tnln � 1)��( bT ; t1; : : : ; tn) k�1Yi=1 ��((A [ bT ); � i; t1; : : : ; tn);which gives �nally��(cT k; t1; : : : ; tn) = ��( bT ; t1; : : : ; tn) k�1Yi=1 ��((A [ bT ); � i; t1; : : : ; tn):29



CASE 2 Now if li = lk(Si; A) = 0 for all i the above method fails, but it canbe adapted to cope as follows. Let B be an unknot in S3 � bT [ A such thatlk(A;B) = lk(S1; B) = 1 and lk(Si; B) = 0 for i greater than 1. Let bT [B = cT 0then if we do the above result on the k-fold cover of cT 0, we have��(dT 0k; t1; : : : ; tn; tBk) = ��(cT 0; t1; : : : ; tn; tB) k�1Yi=1 ��((A [ cT 0); � i; t1; : : : ; tn; tB):Then as lk((S1)k; Bk) = k in the cover space, and with A set equal to � i wehave (t1k � 1)��(cT k; t1; : : : ; tn) =(t1 � 1)��( bT ; t1; : : : ; tn) k�1Yi=1(� it1 � 1)��((A [ bT ); � i; t1; : : : ; tn);which gives��(cT k; t1; : : : ; tn) = ��( bT ; t1; : : : ; tn) k�1Yi=1 ��((A [ bT ); � i; t1; : : : ; tn);as claimed. 23.3 The Alexander polynomial in integer homol-ogy three spheres.The two results below have seemingly been restricted to the case of links in S3,(which is why A was unknotted in the second result.)Theorem 3.1.1 1 In the multi-variable Alexander polynomial �L(t1; : : : ; tk) wehave SprtK (�L) � 2g(SK) + I(SK; L0)� 1:Where the notation in the following is that of the previous section.Theorem 3.2.1 1 Let L [ A be a link in S3, with A unknotted. Let pk be theprojection as before, with A0 = pk�1(A), Lk=A = pk�1(L), and the Alexanderpolynomial as above, thenH1(pk)(�((Lk=A)[A)(y1; : : : ; yt; yA0)) = kYi=1�(L[A)(x1; : : : ; xs; � ixA)where � is a k-th primitive root of unity, yA0 corresponds to the meridian �, andxA to the meridian �. 30



These theorems are equally valid whenever the links considered lie in an in-teger homology three sphere. That isTheorem 3.3.1 In the multi-variable Alexander polynomial, ��(L; t1; : : : ; tk),for a link of two or more components L = (�; L1 [ : : : [ Lk) we haveSprtK (��(L; t1; : : : ; tk) � 2g(SK) + I(SK; L0)� 1with K = Li for some i and tK = ti.This is true as none of the results require more that � being an integer homol-ogy three sphere, rather than S3. Thus we split ��L = (��L�F (K))[((F (K)�(F (K) \ (L �K))) � (�"; ") [ VK), where F (K) is a surface spanning K, as insection 3.1. Now the Alexander invariant equals the Alexander polynomial for alink of 2 or more components, (see section 5.3), and the Alexander polynomial isstill found via the Jacobian, (see section 2.2). But by section 2.2 the Alexanderpolynomial can be retrieved from the determinants of the (n � 1) � (n � 1) submatrices of the Alexander matrix when � is an integer homology three sphere,so the result holds.In the case of the k-fold cover we require both � and �k to be integer homologythree spheres. But I conjecture that , even here, it is only necessary for � to be aninteger homology three sphere, because under the projection H1(p) the Jacobianof �1(�k �Ak=B�B) becomes a module over H1(��A�B), and thus I believethat the same formula holds here also.
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Chapter 4Exchangeable Stallings BraidsIn this chapter we consider Stallings braids, and exchangeability, which we nowde�ne. Traditionally exchangeable braids were de�ned as links of two compo-nents, each of which is unknotted, and each component has the other componentas closed braid relative to it as an axis. A braid � is then called exchangeable ifits closure together with axis, b� [ A, form such a link. The essential feature ofsuch a braid is that the closure of the braid, b�, is unknotted and that the axisfor the braid, A, is itself a closed braid relative to b� as axis.A Stallings braid on n strings is de�ned by Morton in [9] to be the productof n � 1 elementary braids or their inverses which close to a single component,where an elementary braid �i;j 2 Bn, for 1 � i < j � n is the braid interchangingthe ith and jth strings with a single positive crossing, in front of any intermediatestrings, and leaving the others alone. Such braids were introduced by Stallings asexamples of braids whose closure is the unknot. A spanning surface for the closureof a Stallings braid can be obtained by placing n discs on the braid strings andconnecting them by half-twisted bands corresponding to the elementary braids inthe above product, where a positive half-twisted band connecting the i-th and j-th discs corresponds to the elementary braid �i;j and a negative half-twisted bandconnecting the i0-th and j 0-th discs corresponds to the inverse of the elementarybraid i.e. ��1i0;j0. Such a disc intersects the axis in only n points, this form ofspanning disc for a Stallings braid is known as a Stallings disc. It is shown in[9] that every exchangeable braid is conjugate in the braid group to a Stallingsbraid, but that some Stallings braids are not exchangeable.
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4.1 Exchangeable braidlike tangles.In this section we approach the idea of exchangeable braids from the idea oftangles with properties related to those possessed by exchangeable braids. Todo this it is necessary to de�ne tangles, both open and closed, and under whatconditions an open tangle is closable. Let (D� I) be the empty open-tangle, andlet p : D � I ! S3 be given byp(x; 0) = p(h(x); 1)for all x 2 D, where h : D ! D is a homeomorphism �xing @D.p(y; t) = p(y; 0)for all y 2 @D and for all t in I, and no other relations. Let p(@D; 0) = A then(S3 � A) = p(int(D) � I) is the empty closed-tangle with axis. In this chapter,we will restrict h to be the identity homotopy h(D) = idt(D), the identity map.De�ne a tangle be a proper embedding of closed curves and arcs, T , into(int(D) � I), that is p(@(T )) 2 int(D) � @(I), p(int(T )) 2 int(D) � int(I), andp(x) = p(y) implies x = y. Thus the tangle T is a proper embedding of arcs andcircles into the cylinder.The next de�nition deals with breaking the set of all open-tangles into man-ageable sub-sets, i.e. the set of (n,m)-tangles, T nm, and leads naturally ontocloseability.Let T = ((D � I; idt); p(C)) is an open-tangle in (D � I; idt), let It(T ) =I(Dt; p(C)) be the intersection number of the disc Dt with the union of curvesand arcs p(C), and let n(T ) = I0(T ) and m(T ) = I1(T ), then T 2 T nm if n(T ) = nand m(T ) = m.In the above de�nition we have a set of arcs and circles in D � I in generalposition, but with a known number of points in the two ends of the cylinder. Forsuch a system to close to S3� (A[L) where A is the axis mentioned above, andL is some link in the complement of A, we need n = m and the positions of theend points must be such that there are no loose ends in the closure.Let S0 = (x 2 D � (0) st: x 2 T ), and let S1 = (x 2 D � (1) st: x 2 T ), thena tangle T is closable if n = m and S0 = S1. If a tangle T is closable let bT be itsclosure in S3 � A.The following is an example of a (4,2)-tangle.
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The above set of de�nitions de�nes open tangles, so what are closed tangles?A closed tangle is a link in S3 �A. Let L be a link in S3 �A, and DA some discspanning A and transverse to p(C), let T = (((S3�A)�DA; L� (L\DA)); idt),then S3 � (A [ L) = S3 � (A [ bT ).In all of the above the question of orientability was left out, so below is theset of (n,n)-tangles which are already oriented, and can be closed to an orientedlink in S3 � A.De�nition.Let the set of oriented (n,n)-tanglesOTn be T 2 T nn with orientation consistentwith closure. That is the closure of a tangle in OTn can be oriented consistently,as in the �gure below. The �gure shows two oriented 2-tangles, one of which iscloseable the other not.
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

Closeable oriented 2-Tangle Non-Closeable oriented 2_TangleWrite bT for the closure of T 2 OTn, this link is an oriented link. Let us writeOT = SOTn then there is an equivalence relation � de�ned on OT by T1 � T2if and only if cT1 [ A1 ' cT2 [A2.Remark. In the case of braids this equivalence relation � is known to be con-jugacy, by [10], i.e. if �1 � �2 then �1 and �2 are both n-braids and so �1 isconjugate to �2, in the braid group Bn.We now consider oriented tangles that have unknotted closure, UTn � OTnwhere the set UTn = fT : T 2 Tn : bT is unknotted.g, any such tangles wesay belong to the set of unknotted n-tangles. We aim to de�ne exchangeability34



for the tangles in this set. The example in section 5.3 shows that the naturalexchange of a tangle in UT2 can be a tangle in UT4. If we then de�ne the set ofunknotted tangles to be UT = S(UTn) over all n and use the above equivalencerelation on the subset of UT 2 OT T1 � T2 if and only if cT1 [ A1 ' cT2 [ A2 bycomponent. It is the possible to de�ne the exchange of such a tangle in UT asfollows Exch([T ]) = [T 0] where cT 0 [ A0 ' A [ bT by component.De�ne the tangle number of [T ] to be the smallest n such that [T 0] = [T ] andT 0 2 UTnIf a tangle T in the above set were to be an exchangeable braid then it isclear that the tangle number of both [T ] and Exch([T ]) are equal to the linkingnumber of the closure of the tangle and its axis. I propose to call tangles whoseclosures have linking number with their axis equal to the tangle number braidliketangles (partially closed braids) denoted BTn. We can further de�ne exchangeablebraidlike tangles ETn to be tangles T 2 BTn such that bT is an unknot andExch([T ]) 2 BTn.It is easy to see that if T 2 ETn there exist a pair of discs DA and DbT suchthat I(DA; bT ) = I(DbT ; A) = lk( bT ;A).At this point a re-cap of the construction of satellite links is desirable. Toconstruct a satellite of a link L = L1 [ : : : [ Lr with the pattern link C =C1 [ : : : [ Ck, in which one unknotted component, Ck say, is selected. Thenone component of the link L is chosen, L1 say, we then replace a solid torusneighbourhood V of L1 by the solid torus W = S3 � Ck, the complementarytorus to the neighbourhood of Ck.In the case of unknotted tangles UT we have r = k = 2 and both bT [ A andcT 0 [ A0 consist of the closure of an unknotted tangle union axis. It then followsthat h( bT ) [ A0 is a the closure of an unknotted tangle. I will write the satelliteas follows dT 0 � T [ A0 to indicate that the component cT 0 has been decorated bythe pattern bT .Proposition 4.1.1 In the general case of tangle exchange above Exch([T1 �T2]) = Exch([T2]) �Exch([T1]).Proof Firstly we have L1 = cT1 [ A1 and L2 = cT2 [ A2. We then decoratethe tangle component of L1 with the tangle in L2 this is equivalent to decoratingthe axis of A01 [ dExch([T1]) with cT1. This link is thus cT1 � cT2 [ A1 ' A01 � cT2 [dExch([T1]) ' cT2 [A2 � dExch([T1]) ' A02 [ dExch([T2]) � Exch([T1]). 2Proposition 4.1.2 If T1; T2 are braidlike tangles in UT , then T = T1 � T2 is anexchangeable tangle if and only if both T1 and T2 are exchangeable tangles.35



Proof Let T1 2 BTn and T2 2 BTm so we have T 2 BTnm. Firstly we haveExch([T1�T2]) = Exch([T2])�Exch([T1]) so if T1; T2 are exchangeable tangles thetangle number of Exch([T1 � T2]) = the tangle number of Exch([T1]) times thetangle number of Exch([T2]) = nm so T is exchangeable. Now if either of T1; T2are not exchangeable then the tangle number of its exchange is greater than itsown tangle number which give the tangle number of Exch([T ]) greater than thatof T , this imply that if T exchangeable then so are T1 and T2. 2It will be useful to understand the way these exchangeable tangles look asdisc pairs, but to understand how they look as pairs it is necessary to �nd outwhat simple transverse intersections of two surfaces look like. In [2] the simpletransverse intersections are shown to be of the following form
Circle Intersection. Clasp Intersection. Ribbon Intersection.were the bold lines are the actual intersections.Proposition 4.1.3 If the tangle T 2 ETn then there exist a pair of discs D1 andD2 such that D1 \ D2 is n clasps with the same orientation, but no ribbons orcircles and @D1 [ @D2 ' bT [ A.Proof First consider the two discs DA and DbT , and consider their intersec-tions, DA\DbT . These intersections have the propertiesDA\@(DbT ) = DA\ bT = npoints, and @(DA) \DbT = A \DbT = n points, and these intersections have thesame orientation. Firstly we must take local isotopies of the discs to these toget rid of any non-transverse intersections, then take isotopies to remove anynon-simple intersections. This may be done without a�ecting the intersectionsof disc and boundary. Then as the orientation of the n points of intersection,DA\@(DbT ), are consistent, DA\DbT consists of n clasps, no ribbons plus a num-ber of circles. If the number of circles is zero then we are done, thus the proof isreduced to showing that all circle intersections can be removed.The proof is by induction on the number of circles. If there is only one circleintersection, then it spans a subdisc of both main discs. Swap the two sub-discsand isotope to remove the non transverse circle intersection.
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Plan of the intesection The two subdiscs swapped Removal of non-transverse
intersection
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Next look at the case with m + 1 discs when it is known that those with mor less discs can have the discs removed. Choose a circle which spans a sub discin one of the discs that contains no other circle intersections, call this sub discD0,and then recall that it must also span a subdisc of the other disc, which wecall D00. The �gure below shows a plan of the two discs, with the intersectionsshown, and the two subdiscs indicated.
D’

D’’

D(B)D(A)

The Sub-disc D’’ The sub-disc D’
in the disc D(B).in the disc D(A).Remove this circle intersection by swapping the subdiscs over and removingthe non transverse intersection thus formed.The intersection of the two discs is thus n arcs plus one less circle, some ofthe intersections thus formed may be self intersections of the disc, and as theboundary of the disc is here is an unknot rather than a slice knot, all the selfintersections on this sub-disc can be isotoped away, which leads to the follow-ing. A self intersection can be removed by the same method of swapping discswhen it is realised that any other self intersections remain self intersections andintersections of the two discs remain intersections of the two discs and thus anyself intersections can be removed without increasing the number of intersectionsbetween the two discs. Thus we have a pair of discs with less than or equal to37



m disc intersections and the induction implies that we may continue this processuntil all the circles are removed. 2Thus exchangeable tangles are just pairs of discs that intersect in n consis-tently oriented arcs only. An alternative view of these discs is that we have ndiscs connected by n� 1 twisted possibly knotted bands together with a at discspanning the axis. Where if the n discs are treated as vertices and the bandsas edges the resulting embedded graph is a tree. This view lends itself to theidea of a Murusugi sum of two exchangeable tangles, that is the plumbing of twoexchangeable tangles with plumbing disc one of the discs above. The embeddedtree has the property that if the plumbing disc is the mth disc then no edgeconnects from below m to above m, and no edge below m links an edge above m.4.2 On the Alexander Polynomial of Exchange-able Tangles.In this section I will be obtaining the Alexander polynomial of an exchangeablebraidlike tangle pair, (see previous section ). As these are two component linksI use a method for �nding the Alexander polynomial of two component linksdeveloped in [2]. The reason for using this method rather than another is thatwhen either of two components of the link are unknotted the method simpli�es.And when, as is the case for exchangeable braidlike tangles, both components areunknotted the form of the method simpli�es still further.The method of Cooper in [2] for obtaining the Alexander polynomial of atwo-component link uses the union of a pair of spanning surfaces for the two-components, with isotopy until the intersections are simple and transverse. Thenthe intersections of the two surfaces are in the form of clasps, ribbons, and circles.A clasp and a ribbon are intersections that have boundary, while a circle inter-section is a closed loop in both surfaces. The clasp has one point of boundary onthe boundary of each surface, while a clasp has both ends in one component ofthe link. These intersections are shown below.
Circle Intersection. Clasp Intersection. Ribbon Intersection.were the bold lines are the actual intersections.38



In [2] Cooper calls any pair S = S(A) [ S(B) a C-complex if the only inter-sections allowed are clasps. Let "(S) be the singularity of S S(A) \ S(B). Thento use his method the �rst step is to de�ne two bilinear forms�; � : H1(S)�H1(S)! Zas follows. Firstly a 1-cycle u 2 S is called a loop if whenever u meets "(S),itdoes so at an end point of some component of "(S), i.e. the 1-cycle includes thewhole of that connected component of the intersection. Any element of the �rsthomology group may be represented by such a loop so given a pair of such loopswe may de�ne �([u]; [v]) = lk(u��; v)�([u]; [v]) = lk(u�+; v)where u�+ is the cycle in S3 obtained by lifting o� the union in the negativenormal direction from D1 and in the positive direction from D2. The de�nitionof u�� is similar i.e. in the negative direction from both.Now we set about choosing a basis for H1(S). Firstly a basis (h1; : : : ; hg) ofthe surface H1(S(A)), and then a basis (hg+1; : : : ; hg+k) of the surface H1(S(B)).Use these two sets of basis elements to start to de�ne a basis for H(S). Identifythe generators of the surfaces by inclusion into the generating set of H1(S), thenextend this set of basis elements into a basis (h1; : : : ; hg+k+l) of H1(S). Let Aand B be the integral matrices of � and � using this basis.Then for the Alexander polynomial of this two component link we have�(x; y) = (y � 1)�g(x� 1)�k det(xyA+ AT � xB � yBT ):This is Cooper's method for �nding the Alexander polynomial from a complexof two surfaces, and it is noticeable that if g and k are equal to zero the Alexanderpolynomial is easier to �nd. But this is the case when S(A) and S(B) are discs.As we wish to use the above in the case where S is the union of two discs,with the only intersection types being clasps, the method of choosing a basis forthe homology of each surface then extending to a basis for the homology of theunion yields the n� 1 loops formed by the union only. so we have�; � : H1(D1 [D2)�H1(D1 [D2)! Zas follows. let S = D(A) [D(B). Let u 2 S be a loop as before i.e. the 1-cycleu includes the whole of each connected component, of the intersection of the twodiscs, that it meets. 39



Now as previously de�ned let A and B be the integer matrices of � and �respectively. Using (h1; : : : ; hl) as the basis for H1(S) added for either D(A) orD(B).Then for the Alexander polynomial of this two component link we have�(x; y) = det(xyA+ AT � xB � yBT ):Now we are in a position to use this to investigate the Alexander polynomialof exchangeable braidlike tangles.Let the tangle T 2 ETn and de�ne two single variable polynomials to beqT (y) = det(yA � B) and pT (x) = det(xA � BT ), which are the polynomialsMaxx(y) and Maxy(x) respectively.Lemma 4.2.1 If T is an exchangeable Stallings braid then both pT (x) and qT (y)are equal to units, that is pT (x) = xn, and qT (y) = ym up to sign.Proof. This result follows because as shown in [1] the Alexander polynomialof a braid can be obtained as the characteristic polynomial of an invertible matrixin the coe�cient of the braid i.e. det(B(x) � yI) where the matrix B(x) is thereduced Burau matrix of the braid, and thus the coe�cient of the highest orderterms in y corresponding to the axis is a unit. As the braid is exchangeable thehighest coe�cient in x is also a unit. 2Thus given an exchangeable tangle pair if either one of the polynomials is nota unit then the pair is not an exchangeable braid pair.The following is a construction of the C-complex S = D(A)[D(B) for an ex-changeable tangle pair. Suppose that the exchangeable tangle pair are n-tangles,then with A the axis and B the tangle, the C-complex S is the union of D(A),for the surface to span A, n discs for each of the n tangle arcs, and n� 1 twistedbands, to form the rest of D(B). The bands can be treated as the edges of anembedded tree, and the n discs can be treated as vertices.Given an exchangeable tangle T 2 ETn, with DT and axis A, following Mor-ton's de�nition I shall say that the pair (DT ; A) is the Murasugi sum of (DT1 ; A1)and (DT2; A2) if(i) DT1 and DT2 are subdiscs of D each lying in half of S3, and meeting onlyin a disc D0 = DT1 \ DT2 lying on the sphere, S2, which separates S3 into thetwo halves.(ii) The axis A meets the separating sphere S2 in only two points, d 2 D0 andc =2 D0.(iii) The disc DT1 forms a disc which the axis A1 intersects in n1 points,where A1 consists of the part of L in the half of S3 containing D1 completed byan unknotted arc cd in the other half of S3, and similarly for the pair (D2; A2).40



Lemma 4.2.2 If T is the Murasugi sum of T1 and T2 then we have pT (x) =pT1(x)� pT2(x).Proof. Let the tangles Ti have matrices Ai and Bi then T has matricesA =  A1 0MA A2 !B =  B1 MB0 B2 !for some MA and MB, butpT (x) = det(xA�BT ) = det(xA1 �BT1 )� det(xA2 �BT2 ) = pT1(x)� pT2(x):2Now as the Alexander polynomial of the satellite of two 2-component linksC1[C2, and L1[L2 is known to be �L1[L2(xm; y)��C1[C2(x; yn) = �(L1�C1)[C2(x; y),where m = lk(C1; C2), and n = lk(L1; L2). We therefore have, for exchangeabletangles, that the leading term in the Alexander polynomial pT1�T2(x) = pT1(xn2)�pT2(x) where n2 is the tangle number of T2.4.3 Exchangeability of Stallings braids of smallindex.In this section I give a survey of Stallings braids of low braid index, and investigatewhich are exchangeably braided. A Stallings braid on n strings is de�ned byMorton in [9] to be the product of n � 1 elementary braids or their inverseswhich close to a single component, where an elementary braid �i;j 2 Bn, for1 � i < j � n is the braid interchanging the i-th and j-th strings with a singlepositive crossing, in front of any intermediate strings, and leaving the othersalone. Such braids were introduced by Stalling as examples of braids whoseclosure is the unknot. A spanning surface for the closure of a Stallings braidcan be obtained by placing n discs on the braid strings and connecting them byhalf-twisted bands corresponding to the elementary braids in the above product,where a positive half-twisted band connecting the i-th and j-th discs correspondsto the elementary braid �i;j and a negative half-twisted band connecting the i0-th and j 0-th discs corresponds to the inverse of the elementary braid i.e. ��1i0;j0.Such a disc intersects the axis in only n points, this form of spanning disc for aStallings braid is known as a Stallings disc.41



Below we have a nice representation of braids which are presented in the formof a collection of elementary braids.1. The fences represent a braid in the following way, if the number of verticallines is n then the fence represents an n-string braid and that if a horizontalline connects vertical line i to j with sign " then in the braid expansion wehave the elementary braid �i;j". I shall call a braid expansion in terms ofelementary braid an elementary braid expansion. A spanning surface forthe braid can be obtained by placing a disc on each of the braid strings,and for each of the elementary braids a half-twisted band, and the sign ona band determines whether it is a positive or negative half-twisted band.For example,
-

-
=

then this braid has three vertical discs and two negative half-twisted bandson its spanning disc, and is thus the Stallings disc of the Stallings braid�1;3�1;2. In the disc and twisted band view of the fence of a Stallings braidwe have an embedded tree, as follows for each vertical line in a fence, (thatis a subdisc of the Stallings disc) we have a vertex of the tree. And eachhorizontal line of the fence connecting the i-th and j-th strings gives anedge of the embedded tree, connecting the i-th and j-th vertices. Thatis the tree has n vertices and for each �i;j" the tree has an edge betweenthe vertices i and j. This embedded tree is not a unique feature, that isthe same braid may give many di�erent embedded trees depending on thespeci�c elementary braid expansion. This would seem to limit the use ofthe embedded tree, but this is not so, as a repeated braid in a survey ofstallings braids does not a�ect the result.2. The pattern of the Stallings braid represents a `birds-eye view' of the em-bedded tree described above, that is it shows a ring of vertices with theedges between them. So if the pattern was
42



1

2

3then the following 3-string braid has this pattern embedded into its Stallingsdisc.
The pattern is of use when deciding whether or not a Stallings braid is aMurasugi sum.
For example, any Stallings braid with the above pattern (embedded tree)will be a Murasugi sum of two smaller Stallings braids, where the dottedline indicates the position of a splitting sphere.The fences follow braid relation properties, the positively signed horizontal barssatisfy the following relations,

+
+=

+
+= +

+
=and the negative bars the equivalent properties,
== =

-
-

-
- -

- .43



We are thus able to view Stallings braids as fences and use the above relationsto determine whether or not a given Stallings braid is a Murasugi sum.We now survey Stallings braids of small index.The only one string braid with axis is the Hopf link, and as it has unit Alexan-der polynomial it follows that p(x) = 1.There are only two 2-string Stallings braids �1 and ��11 . These are bothexchangeable and have p(x) equal to a unit.All 3-string Stallings braids are the Murasugi sum of two 2-string Stallingsbraids, so all are exchangeable and all have p(x) equal to a unit, by lemma 2.2.2.Proposition 4.3.1 If a 4-string Stallings braid is exchangeable then its eithera Murasugi sum of two Stallings braids or a satellite of two Stallings braids.Furthermore, if a 4-string Stallings braid is not exchangeable then p(x) is not aunit.Proof The two parts of the proposition can be shown if all Stallings braids with4-strings that have p(x) a unit can be shown to be composite, and thus either aMurasugi sum or a satellite of Stallings braids that must be exchangeable. How-ever with 4-string Stallings braids we come for the �rst time to non-exchangeableStallings braids, so must be careful. All embedded trees except
must produce Stallings braids that are the Murasugi sum of a 3-string Stallingsbraid and a 2-string one, and so are exchangeable with p(x) equal to a unit.For the above pattern the Stallings braids are equivalent to the following fence

-where the minus sign is required otherwise the braid is equivalent to a Murasugisum (using the negative bar relations above), and thus equivalent to one treatedalready. It is worth noting that "i = �(ui; ui) is �1 for a positive band and 0for a negative one, and that �(ui; ui) = �(ui; ui)+ 1, and that both �(ui; uj) and�(ui; uj) remain unchanged whatever sign the bars take when i 6= j.Using Cooper's method described in section 4.2 to �nd the Alexander poly-nomial of a Stallings braid with axis givesA = 0B@ "1 0 0�1 "2 0�1 �1 "3 1CA44



B = 0B@ "1 + 1 0 00 "2 + 1 0�1 0 "3 + 1 1CAThus using p(x) = det(xA�BT ) we have the following cases.(�1; �2; �3) = (1;�1; 1)("1; "2; "3) = (�1; 0;�1) p(x) = x(�1; �2; �3) = (1;�1;�1)("1; "2; "3) = (�1; 0; 0) p(x) = 2x� x2(�1; �2; �3) = (�1;�1; 1)("1; "2; "3) = (0; 0;�1) p(x) = 2x� x2(�1; �2; �3) = (�1;�1;�1)= (0; 0; 0) p(x) = 1 + x � x2All the cases where p(x) are non-unit are not exchangeable, by lemma 4.2.1.The remaining case was shown in [9] to be the satellite d�1 � �1�1 which is ex-changeable as it decomposes into two exchangeable braids and has p(x) equal toa unit. This shows that the only 4-string Stallings braids having p(x) equal toa unit are the 4-string Stallings braids that are exchangeable, and that the only4-string exchangeable Stallings braid which is not a Murasugi sum is a satellite.2Proposition 4.3.2 If a 5-string Stallings braid is exchangeable then its a Mura-sugi sum of two Stallings braids. Furthermore, if a 5-string Stallings braid is notexchangeable then p(x) is not a unit.Proof As in proposition 4.3.1 the two parts of the proposition can be shown if allStallings braids with 5-strings that have p(x) a unit can be shown to be composite,and thus a Murasugi sum of Stallings braids that must be exchangeable. All 5-string Stallings braids except those with the following patterns

are the Murasugi sum of smaller Stallings braids, and these have been treatedalready, it follows that any 5-string Stallings braid that is a Murasugi sum is45



exchangeable if and only if p(x) is equal to a unit. This is so because we haveshown that for four, three, and two strings a Stallings braid is exchangeable if andonly if p(x) is equal to a unit, and thus that the Murasugi sum of two braids toform a �ve string braid must have p(x) equal to a unit. We must show then thatif p(x) is a unit for a Stallings braid, then that Stallings braid is exchangeable.The above patterns lead to the following braids shown in the form of fences.
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-In this proof we use Cooper's method, described in section 4.2, to �nd theAlexander polynomial of a Stallings braid with axis. As in proposition 4.3.1 it isworth noting that "i = �(ui; ui) is �1 for a positive band and 0 for a negative one,and that �(ui; ui) = �(ui; ui) + 1, and that both �(ui; uj) and �(ui; uj) remainunchanged whatever sign the bars take when i 6= j.In the above fences some of the signs are forced because otherwise the braidsare equivalent to Murasugi sums, the other horizontal lines can at �rst take eithersign. A1 = 0BBB@ "1 0 0 0�1 "2 0 00 �1 "3 0�1 �1 0 "4 1CCCA
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B1 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 0�1 �1 "3 + 1 0�1 0 1 "4 + 1 1CCCAFor the above matrix if the fourth band is negative i.e. �4 = �1 and "4 = 0then the second band must be negative and the third band positive or in eithercase the braid is equivalent to a Murasugi sum. Also if the third band is negativethen the �rst band must also be negative.Thus using p(x) = det(xA�BT ) we have(�1; �2; �3; �4) = (1;�1; 1;�1)("1; "2; "3; "4) = (�1; 0;�1; 0) p(x) = 4x� x2 � 2(�1; �2; �3; �4) = (�1;�1; 1;�1)("1; "2; "3; "4) = (0; 0;�1; 0) p(x) = 3x2 � x3 � x(�1; �2; �3; �4) = (�1; 1;�1; 1)("1; "2; "3; "4) = (0;�1; 0;�1) p(x) = 4x2 � 2x� x3(�1; �2; �3; �4) = (�1;�1;�1; 1)("1; "2; "3; "4) = (0; 0; 0;�1) p(x) = 3x2 � x3 � x(�1; �2; �3; �4) = (1; 1; 1; 1)("1; "2; "3; "4) = (�1;�1;�1;�1) p(x) = x3 + x2 � 1(�1; �2; �3; �4) = (1;�1; 1; 1)("1; "2; "3; "4) = (�1; 0;�1;�1) p(x) = x(x2 � 2x+ 2)(�1; �2; �3; �4) = (�1; 1; 1; 1)("1; "2; "3; "4) = (0;�1;�1;�1) p(x) = x(x2 + 2x� 2)(�1; �2; �3; �4) = (�1;�1; 1; 1)("1; "2; "3; "4) = (0; 0;�1;�1) p(x) = x(3x� x2 � 1)thus if a braid has the form of the �rst fence shown above it is either a Murasugisum or not exchangeable.For the second fence we haveA2 = 0BBB@ "1 0 0 0�1 "2 0 0�1 �1 "3 00 �1 �1 "4 1CCCAB2 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 0�1 0 "3 + 1 0�1 �1 0 "4 + 1 1CCCAso the third and fourth bands are negative giving47



(�1; �2; �3; �4) = (1; 1;�1;�1)("1; "2; "3; "4) = (�1;�1; 0; 0) p(x) = x2 � x3 + x(�1; �2; �3; �4) = (1;�1;�1;�1)("1; "2; "3; "4) = (�1; 0; 0; 0) p(x) = 3� 2x(�1; �2; �3; �4) = (�1; 1;�1;�1)("1; "2; "3; "4) = (0;�1; 0; 0) p(x) = 3x� 2x2(�1; �2; �3; �4) = (�1;�1;�1;�1)("1; "2; "3; "4) = (0; 0; 0; 0) p(x) = x3 � 4x2 + 3x+ 1as none of these are units we have that Stallings braids with the second fence arenot exchangeable if they are not Murasugi sums.For the third fence we haveA3 = 0BBB@ "1 0 0 00 "2 0 0�1 1 "3 0�1 0 �1 "4 1CCCAB3 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 0�1 1 "3 + 1 0�1 1 0 "4 + 1 1CCCAwith second band positive and the fourth band negative giving(�1; �2; �3; �4) = (1; 1; 1;�1)("1; "2; "3; "4) = (�1;�1;�1; 0) p(x) = x� 2x2(�1; �2; �3; �4) = (1; 1;�1;�1)("1; "2; "3; "4) = (�1;�1; 0; 0) p(x) = 5x� 2� 2x2(�1; �2; �3; �4) = (�1; 1; 1;�1)("1; "2; "3; "4) = (0;�1;�1; 0) p(x) = x2(�1; �2; �3; �4) = (�1; 1;�1;�1)("1; "2; "3; "4) = (0;�1; 0; 0) p(x) = 2x2 � x3The third value of p(x) is a unit, but it is easy to show that this braid is equivalentto the Murasugi sum of simpler braids. It can be seen below using the fencerelations that the second band may slide over the �rst and then be transferredto the bottom. It then may slide over the band that was fourth. Then both ofthese bands slide over the band that was third and the result is a Murasugi sum.
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Thus in the case of the third fence, for the Stallings braids to be exchangeablethey must be Murasugi sums.A4 = 0BBB@ "1 0 0 0�1 "2 0 00 0 "3 0�1 0 0 "4 1CCCAB4 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 00 1 "3 + 1 00 0 �1 "4 + 1 1CCCAThe fourth fence has the third and fourth bands positive, which leads to thefollowing determinants(�1; �2; �3; �4) = (1; 1; 1; 1)("1; "2; "3; "4) = (�1;�1;�1� 1) p(x) = x3 + x2 � x(�1; �2; �3; �4) = (1;�1; 1; 1)("1; "2; "3; "4) = (�1; 0;�1;�1) p(x) = 2x3 � 1(�1; �2; �3; �4) = (�1; 1; 1; 1)("1; "2; "3; "4) = (0;�1;�1;�1) p(x) = 2x3 � 1(�1; �2; �3; �4) = (�1;�1; 1; 1)("1; "2; "3; "4) = (0; 0;�1;�1) p(x) = x3 + x2 � xSo none of these braids are exchangeable.A5 = 0BBB@ "1 0 0 0�1 "2 0 0�1 0 "3 00 0 1 "4 1CCCAB5 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 00 0 "3 + 1 00 1 0 "4 + 1 1CCCAThe �fth fence has the third and fourth bands both negative and positive sothat it cannot avoid being a Murasugi sum. So every case here, exchangeable ornot, has been treated before.A6 = 0BBB@ "1 0 0 00 "2 0 0�1 1 "3 00 �1 0 "4 1CCCA49



B6 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 0�1 1 "3 + 1 00 0 �1 "4 + 1 1CCCAHere the second and fourth bands must be positive.(�1; �2; �3; �4) = (1; 1; 1; 1)("1; "2; "3; "4) = (�1;�1;�1;�1) p(x) = x2 + 2x� 2(�1; �2; �3; �4) = (1; 1;�1; 1)("1; "2; "3; "4) = (�1;�1; 0;�1) p(x) = x2(3x� 2)(�1; �2; �3; �4) = (�1; 1; 1; 1)("1; "2; "3; "4) = (0;�1;�1;�1) p(x) = x(2x2 � 1)(�1; �2; �3; �4) = (�1; 1;�1; 1)("1; "2; "3; "4) = (0;�1; 0;�1) p(x) = x(2x � 1)So none of these are exchangeable.A7 = 0BBB@ "1 0 0 00 "2 0 00 �1 "3 0�1 1 1 "4 1CCCAB7 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 00 0 "3 + 1 0�1 1 0 "4 + 1 1CCCAHere the second is positive and the third negative.(�1; �2; �3; �4) = (1; 1;�1; 1)("1; "2; "3; "4) = (�1;�1; 0;�1) p(x) = 2x� 1(�1; �2; �3; �4) = (1; 1;�1;�1)("1; "2; "3; "4) = (�1;�1; 0; 0) p(x) = 3x2 � x3 � 1(�1; �2; �3; �4) = (�1; 1;�1; 1)("1; "2; "3; "4) = (0;�1; 0;�1) p(x) = x(�1; �2; �3; �4) = (�1; 1;�1;�1)("1; "2; "3; "4) = (0;�1; 0; 0) p(x) = 2� xThe third value of p(x) above is equal to a unit, so the associated Stallingsbraid may be exchangeable. Using the fence relations on the third fence, we seethat the third band can pass under the second, then these two bands slide overthe �rst, thus the braid is equivalent to a Murasugi sum, shown below.50
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+Thus if a braid with this fence is exchangeable it is a Murasugi sum.A8 = 0BBB@ "1 0 0 0�1 "2 0 00 �1 "3 00 0 �1 "4 1CCCAB8 = 0BBB@ "1 + 1 0 0 0�1 "2 + 1 0 0�1 �1 "3 + 1 00 �1 0 "4 + 1 1CCCAHere the third and fourth bands are negative.(�1; �2; �3; �4) = (1; 1;�1;�1)("1; "2; "3; "4) = (�1;�1; 0;�1) p(x) = x2 � x � x3(�1; �2; �3; �4) = (1;�1;�1;�1)("1; "2; "3; "4) = (�1; 0; 0; 0) p(x) = 2x� x3(�1; �2; �3; �4) = (�1; 1;�1;�1)("1; "2; "3; "4) = (0;�1; 0; 0) p(x) = 3x� 2x2(�1; �2; �3; �4) = (�1;�1;�1;�1)("1; "2; "3; "4) = (0; 0; 0; 0) p(x) = 2x+ 1� x2So none of these fences represents an exchangeable braid.A9 = 0BBB@ "1 0 0 00 "2 0 0�1 �1 "3 0�1 �1 �1 "4 1CCCAB9 = 0BBB@ "1 + 1 0 0 01 "2 + 1 0 00 �1 "3 + 1 00 �1 0 "4 + 1 1CCCAIn the ninth fence the �rst band is positive and the third and fourth negative.(�1; �2; �3; �4) = (1; 1;�1;�1)("1; "2; "3; "4) = (�1;�1; 0; 0) p(x) = x(4x� x2 � 2)(�1; �2; �3; �4) = (1;�1;�1;�1)("1; "2; "3; "4) = (�1; 0; 0; 0) p(x) = x(3x� x2 � 1)51



Thus neither of these fences represents an exchangeable braid.A10 = 0BBB@ "1 0 0 00 "2 0 0�1 �1 "3 0�1 �1 0 "4 1CCCAB10 = 0BBB@ "1 + 1 0 0 01 "2 + 1 0 00 �1 "3 + 1 00 �1 1 "4 + 1 1CCCAHere the �rst third and fourth bands are positive.(�1; �2; �3; �4) = (1; 1; 1; 1)("1; "2; "3; "4) = (�1;�1;�1;�1) p(x) = x3 � x+ 1(�1; �2; �3; �4) = (1;�1; 1; 1)("1; "2; "3; "4) = (�1; 0;�1;�1) p(x) = x2 � x+ 1Thus neither of these fences represents an exchangeable braid.A11 = 0BBB@ "1 0 0 0�1 "2 0 00 1 "3 0�1 0 �1 "4 1CCCAB11 = 0BBB@ "1 + 1 0 0 00 "2 + 1 0 01 1 "3 + 1 00 1 �1 "4 + 1 1CCCAHere we must have the �rst band positive and the second band negative.(�1; �2; �3; �4) = (1;�1; 1; 1)("1; "2; "3; "4) = (�1; 0;�1;�1) p(x) = 2x2 � x(�1; �2; �3; �4) = (1;�1; 1;�1)("1; "2; "3; "4) = (�1; 0;�1; 0) p(x) = 3x� x2 � 1(�1; �2; �3; �4) = (1;�1;�1; 1)("1; "2; "3; "4) = (�1; 0; 0;�1) p(x) = 3x2 � x3 � x(�1; �2; �3; �4) = (1;�1;�1;�1)("1; "2; "3; "4) = (�1; 0; 0; 0) p(x) = 2x� x2So none of these fences represent an exchangeable braid.The above shows that up to 5-strings a Stallings braid is exchangeable if andonly if the polynomial p(x) is equal to a unit, and that if it is not a Murasugisum then it is a satellite. 2This leads to the following two conjectures.52



Guess 1 Given the above de�nition of p(x) a Stallings braid is exchangeable ifand only if p(x) is equal to a unit.Guess 2 A Stallings braid is exchangeable if and only if it is the Murasugi sumor satellite of two smaller exchangeable braids.In Corollary 6.3.2 I show that a Stallings braid is exchangeable if and only ifits double cover is �bered as a pluming of hopf band on a disc. This implies thatan exchaneable Stallings braid is a Murasugi sum of two exchangeable tangles inthe sence of the previous sections of this chapter. The above question is thus arethere any exchangeable braids whose splittings into exchangeable tangles containno exchangeable braid pairs, and are also not satellites.
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Chapter 5Exchangeable braids as �beredmultilinksIn this chapter we look at exchangeable braids in the framework of Eisenbud andNeumann's multilinks.5.1 Splicing Spaces.Before I begin describing the splice of two spaces, it would be useful to have somede�nitions. The following de�nitions will be used, and adapted throughout thissection. Let � be an integer homology 3-sphere, and S, and S 0 be closed curvesembedded within �. De�ne N(S) to be a solid torus neighbourhood of S within�, and let @(N(S)) be the boundary torus of N(S). Now we can de�ne lk(S; S 0)to be the homology class of S 0 in �� S.In @(N(S)) we have two distinguished curves, m and l. De�ne m to be anessential curve which spans a disc in N(S), and take l to lie in the same homologyclass as S in N(S), with lk(l; S) = 0.Remark. This de�nition of l is of use only when � is an integer homology 3-sphere. I believe that l can be de�ned in terms of F (S) \ @(N(S)), where F (S)is an oriented spanning surface for S when � is a smooth, connected, orientable3-manifold.The work in this section applies to integer homology 3-spheres, so I will restrictthe following to a discussion of these spaces only.In the days of sailing ships a splice was an operation performed to join two,possibly di�erent, ropes together, with the side e�ect of reducing the number ofend points of the rope. Although this is not quite the mathematical operation ofsplicing, it does give an idea of why the name splice was chosen. The followinggives a de�nition of the splice of two spaces over closed curves within them.54



Let �0, and �00 be a pair of integer homology 3-spheres, with S 00, and S 000closed curves embedded in �0, and �00 respectively. Following the previous ideaswe have N(S 00), and N(S 000) are neighbourhoods of S 00, and S 000 in �0, and �00respectively, withm0, m00 as meridians of S 00, and S 000, and l0, l00 be the longitudes.De�nition. Then the splice of �0, and �00, over S 00, and S 000 is the space(�0 �N(S 00)) [ (�00 �N(S 000)), with the identi�cation m0 = l00 and m00 = l0.If we call this space � we thus say that � is the splice of �0, and �00, over S 00,and S 000, denoted by � = �0 S 0 S 00 �00. It follows that � is a smooth,connected, orientable 3-manifold.Thus we cannot simply say that a space is the splice of two other spaces, butmust refer to an embedding of closed curves in spaces, but this is exactly what aknot is. In the above de�nition of the splice it should be noted that if either, orboth of the knots were part of a link, the other link components are now part ofa link in �. That is to say if S 00 is a component of a link S 00 [S1 [ : : :[Sk in �0and S 000 is a component of the link S 000 [ Sk+1 [ : : : [ Sn in �00 then this inducesa link S1 [ : : : [ Sk [ Sk+1 [ : : : [ Sn in �.The following de�nitions show how the splice of two manifolds can lead to thesplice of two links.Let �0, and �00 be, as before, integer homology 3-spheres, with S 00[S1[: : :[Ska proper embedding of closed curves in �0, and S 000 [ Sk+1 [ : : : [ Sn a properembedding of closed curves in �00. Let the link L0 be the pair L0 = (�0; S 00 [S1 [ : : : [ Sk) denoting the embedding of the the closed curves in the space andsimilarly let L00 = (�00; S 000 [ Sk+1 [ : : : [ Sn).De�nition. Let � be the splice of �0, and �00 over S 00 and S 000, then the linkL = (�; S1 [ : : : [ Sk [ Sk+1 [ : : : [ Sn)is called the splice of the link L0 and L00 over S 00 and S 000.Now although above we have a de�nition for the link embedding in the splicedmanifolds, we do not yet have a de�nition on the link exteriors. The followinggives a de�nition of the link exterior, and, following Eisenbud and Neumann [3],a de�nition for the exterior of the splice of two link exteriors.De�nition.� As before the link L = (�;K) = (�; S1 [ : : : [ Sn) is an embedding of theclosed curves K = S1 [ : : : [ Sn in �.� The neighbourhood N(K) of K in � is the union of the neighbourhoods ofthe components of K, that is N(K) = N(S1) [ : : : [N(Sn)55



� The link exterior is de�ned as �� int(N(K)), where N(K) = N(S1)[ : : :[N(Sm) is a neighbourhood of K.� The meridian and longitude of Si denoted mi and li are given by the rela-tions mi � 0, li � Si in H1(N(Si)) and lk(mi; Si) = 1, and lk(li; Si) = 0.� Then given the pair of links L, and L0 the splice of the two links, followingEisenbud and Neumann [3], is the following link (�; (K 0�S 0)[ (K 00�S 00)),where � = (�0 � intN(S 0)) [ (�00 � intN(S 00)), and M 0 = L00, M 00 = L0.This is denoted as before L S S 0 L0In the next section these links are considered together with an integer multiplicityassociated by component, this form of link is called a multilink.5.2 MultilinksIn this section I will give a de�nition of multilinks, following Eisenbud and Neu-mann, and then discuss when a multilink is de�ned on the splice of two links. Itshould be clear that the splice of two links over S 0 and S 00 can always be taken,but for a splice of multilinks it is not so. That is if a splice of two links has beentaken, and we place a multilink over it, this leads to a multilink on each of thesplice components. But it is not true the other way round, that is given a spliceand a pair of multilinks over the splice components, there may not be a splicemultilink of the splice of the two component links that corresponds to the pair ofmultilinks.De�nition. Given the link L = (�;K) with m components, by a multilinkL(n1; : : : ; nm) we mean the link together with an integer multiplicity ni associatedwith each component Si. We adopt the convention that Si with multiplicity nimeans the same as �Si with �ni (where �Si is the component given the oppositeorientation).Then write (�; n1S1 [ : : : [ nmSm) for the multilink L(n1; : : : nm).Given a splice L of two links L0 and L00, the multilink splice can only bede�ned between the two multilinks L0(n0) and L00(n00) whenn0(L0) = n00; and n00(L00) = n0where n(S) = lk(n1S1 + : : : + nmSm; S), and L0, L00 are the longitudes of S 0and S 00 respectively (by Eisenbud and Neumann). That is given the splice of56



the underlying links we may put a multilink on the splice components so that itextends to a multilink on the splice only ifn0(L0) = n00; and n00(L00) = n0 :Associated with a multilink L(n) we have a group homomorphism h(n) :�1(�0)! C1 with h(n)(xi) = tni in the in�nite cyclic group C1.A Seifert surface for a multilink is an oriented spanning surface of the linkwhich has intersection with N(Si) consisting of jmij leaves or if mi = 0 it has, onthat component, consistently oriented transverse intersection.A �bered multilink is then a link which has a �bration of the link exterior tothe circle, �0 ! S1, all of whose �bers are Seifert surfaces of the multilink. ASeifert surface has the following characterising properties;(1) F is an oriented surface, properly embedded in �0 = � � int(L) (that isF \ @�0 = @F transversally).(2) F \ @N(Si) = diSi(pi; qi), a di(pi; qi)-cable on Si, where di, pi, qi aredetermined by:gcd(pi; qi) = 1, dipi = ni, diqi = �Pj 6=i njlk(Sj; S � i).The idea of a generalized exchangeable braid can now be formalised as alink which is a �bered multilink for the following sets of integer multiplicitiesdi = (�1i; : : : ; �ii; : : : ; �mi) for i from 1 to m, where �ij is the usual Kroneckerdelta.The following theorem is from Eisenbud and Neumann [3],Theorem 5.2.1 Eisenbud and Neumann The multilink L(m) is �bered ifand only if it is irreducible and each of its multilink splice components are �bered.A corollary to this is the followingCorollary 5.2.1 A link is a generalized exchangeable braid if and only if itssplice components are also generalized exchangeable braids.Proof If we are given two generalized exchangeable braidsL0 = (�0; S 00 [ S1 [ : : : [ Sk);and, L00 = (�00; S 000 [ Sk+1 [ : : : [ Sk+l);the multilink L0(1; 0; : : : ; 0) �bered multilink implying that L0(n; 0; : : : ; 0) is alsoa �bered multilink, for any n.Which together with the link L00 being a �bered multilink for the followinginteger multiplicities (0; �(k+1)(k+j); : : : ; �(k+l)(k+j)), with j �xed, gives the splice57



L = L0 S0 S 00 L00�bered as a multilink with (0; : : : ; 0; �(k+1)(k+j); : : : ; �(k+l)(k+j)) integer multiplicity.The other half of the required �brations come by allowing the variation in theinteger multiplicities of the �rst link and noting that the second link is also a(n; 0; : : : ; 0) �bered multilink. Thus if L0 and L00 are exchangeable then so is thesplice L = L0 S0 S 00 L00:If the splice, L, of L0 and L00 is a generalized exchangeable braid then L is adi = (�1i; : : : ; �ii; : : : ; �(k+l)i) �bered multilink for i from 1 to k+ l, where �ij is theusual Kronecker delta. Recall that if the splice of two links is a �bered multilinkthen the two splice components are �bered multilinks with the same values oneach link component of the splice and two related values on the components alongwhich the splice took place, this is because of the separating torus in the spliceintersecting the �ber surfaces, see Eisenbud and Neumann for more details.The splice components of L, L0 and L00 are �bered multilinks for the followingsets of integers (n00; �1i; : : : ; �ki) and (n000; �(k+1)i; : : : ; �(k+l)i).Recall that n(S) = lk(n1S1+: : :+nmSm; S), and n0(L0) = n00, and n00(L00) = n0where L0, and L00 are the longitudes of S 0 and S 00 respectively. Thusn0(L0) = lk(�1iS 01 + : : : + �kiS 0k; L0) = n000and n00(L00) = lk(�(k+1)iS 00k+1 + : : : + �(k+l)iS 00k+l; L0) = n00:So we have that if 1 � i � k then n00 = 0 and if k + 1 � i � k + l thenn000 = 0. We have by (2) above F (L00) \ @N(S0) = d0S0(p0; q0), d0q0 = 0 so asgcd(p0; q0) = 1 we have p0 = 1 and there are d0 parallel copies of the surface butthis �bration can be uni�ed to give a (1; 0; : : : ; 0) �bration, for F (L00).To complete this part of the proof recall that the link L0 was �bered withinteger multiplicity (n00; �1i; : : : ; �ki) for each i, but with n00 = 0. Now the processis symmetric in splice components so as well as L0 being a (0; : : : ; �mi; : : : ; 0)�bered multilink, and L00 a (1; 0; : : : ; 0) �bered multilink, L0 is also a (1; 0; : : : ; 0)�bered multilink and thus exchangeable. Equally L00 is a (n000; �(k+1)i; : : : ; �(k+l)i)�bered multilink for each i with n000 = 0, and so is also exchangeable. 258



The following uses the ideas of multi-�bration to good e�ect in the form ofsatellites. I will �rst give the construction of satellite knots and links.In general, to construct a satellite of a link L = L1 [ : : :[Lr we need anotherlink C = C1 [ : : : [ Ck, in which one unknotted component, Ck say, is selected.Then one component, L1 say, of the link L is chosen. We then replace a solid torusneighbourhood V of L1 by the solid torusW = S3�Ck, the complementary torusto the neighbourhood of Ck. This replacement is by a faithful homeomorphismh : W ! V i.e. one which carries a longitude of W to a longitude of V . Thesatellite link thus formed consists of h(C1) [ : : : [ h(Ck�1) [ L2 [ : : : [ Lr, andcontains a splitting torus, T = @V = h(@W ).Corollary 5.2.2 Given a knot K in S3 and an exchangeable tangle T , then K�Tis �bered if and only if K is �bered and exch(T ) is a braid (thus a Stallings braid),in particular, if T is a Stallings braid, T is exchangeable, if and only if K � T is�bered.Proof First we assumeK�T is a (1)-�bered multilink, and we put n = (lk( bT ;A)).Thus K is an n-�bered multilink and T [ A is a (1; 0) �bered multilink. Thesecond of these two shows us that the axis is braided with respect to the closureof the tangle. The �rst together with (2) above shows that K's �bration has thefollowing property F�(K)\@N(K) = dK(p; q) where gcd(p; q) = 1, dp = lk( bT ;A)and dq = 0. So we have the multi�ber surface of K is lk( bT ;A) parallel surfacesfor each � and thus K is �bered with lk( bT ;A) parallel copies of its �ber surfaceat each level of the multi�bration F�(K) = SF�;i and so the surfaces F�;i forma �bration for K and so K is �bered. Conversely if K is �bered and exch(T ) isbraided with respect to the closure of T , we have K is a (1)-�bered multilink,and T [A is a (1; 0)-�bered multilink. Now with n as above, K is also a n-�beredmultilink, so the splice can be extended to a multilink, that is K �T is a 1-�beredmultilink.For the case that T is a Stallings braid, we have exch(T ) is a braid if and onlyif K � T is �bered, but T is braided, so T is exchangeable if and only if K � T is�bered. 2Thus if the tangle had been a Stallings braid and the knot a known �beredknot we would have that a Stallings braid is exchangeable if and only if thesatellite around a �bered knot is �bered.5.3 The Alexander polynomial of splices.In this section I discuss Eisenbud and Neumann's work on the Alexander polyno-mial of the splice, and show that it can be used to give the Alexander polynomial59



of the satellite, and that it can induce the result of Fox and Torres on the linkwith a component excised.Firstly I will introduce Eisenbud and Neumann's notation for the Alexanderinvariant. For a link L = (�; S1 [ : : : [ Sn), they de�ne��(L; t1; : : : ; tn) = ( �(L; t1; : : : ; tn) if m > 1(t1 � 1)�1�(L; t1) if m = 1where �(L; t1; : : : ; tn) is the normal Alexander polynomial.We then have the followingTheorem 5.3.1 Eisenbud and Neumann. Let L = (�; S1 [ : : : [ Sn) be theresult of splicing L0 = (�0; S00 [ S1 [ : : : [ Sk);and, L00 = (�00; S000 [ Sk+1 [ : : : [ Sn)along S00, S000 with 0 � k < n. Let bi = lk(S00; Si) for i = 1; : : : ; k and aj =lk(S000; Sj) for j = k + 1; : : : ; n. Then, unless k = a1 = : : : = an = 0,��(L; t1; : : : ; tn) = ��(L0;T00; t1; : : : ; tk):��(L00;T000; tk+1; : : : ; tn);with T00 = tk+1ak+1 : : : tnan ;and T000 = t1b1 : : : tkbk :If k = a1 = : : : = an = 0, then ��(L) = ��(L000), where L000 = L00 with S000deleted.This theorem leads to the corollaryCorollary 5.3.1 Let L00 = (�; S0 [ S1 [ : : : [ Sn) , and L = (�; S1 [ : : : [ Sn)with L0 = (S3; A), where A is an unknot in S3. Then(t1l1 : : : tnln � 1)��(L; t1; : : : ; tn) = ��(L00; 1; t1; : : : ; tn);where li = lk(S0; Si) in �.Proof. If each of these linking numbers are zero then we have 0 = 0 for theabove equation, any other case is just a rewriting of the above theorem. 2This is the result of Fox and Torres mentioned at the start of this section.60



Chapter 6Cyclic covers of �bered linksIn this chapter I consider cyclic covers of spaces. We shall suppose that A[B � �is a link with a distinguished component B. We may then construct the k-foldcover �k=B of � branched over A, with the projection �k : (�k=B)! �.Write B0 = �k�1(B) for the inverse image of the branch set and Ak=B =�k�1(A) for the inverse image of the rest of the link. Then �k j Ak=B ! L is ak-fold cover and �k j B0 ! B is a homeomorphism.The following proposition shows that the cyclic cover of an axis A over aclosed braid B, Ak=B is �bered. The question the rest of the chapter deals withis, does the k-fold cyclic cover Ak=B �bered imply B is a braid with axis A.Proposition 6.0.1 Let b� [ A be a closed braid with axis A in S3, let � be thek-fold cover of S3 branched over b�, and K the k-fold cover of A branched overb�. Then K is �bered in �.Proof Let Dt be a �bration of S3�A. Let p be the projection map from ��Kto S3 � A, then p�1(Dt) is a �bration of ��K. 2Here we have a tool that can show that the link A[B in S3 is not equivalentto b� [ A in S3, that is if the k-fold cyclic cover of an unknot branched over aknot is not �bered, then it is not a closed braid with axis. However this tool isnot easy to use as it is not always easy to tell when a knot is �bered.6.1 Some elements of groupoid theory.In the k-fold cover of a space the lift of a loop may be a path with end pointsnot equal, thus the fundamental group is of limited use. In this section I willuse some elementary groupoid theory to replace the function of the fundamentalgroup with the fundamental groupoid. The idea is to �nd a groupoid in the cover61



space which maps onto the fundamental group of the original space, and thusinformation on the cover space can be transferred to the original.Let � be a path connected smooth oriented 3-manifold. A path in � from s1to s2 is a continuous mapping from the interval, I, into �p : I ! �with p(0) = s1 and p(1) = s2.Write G(�; S) for the category whose objects are points in S and whosemorphisms are paths in � with endpoints in S, where S is a non-empty subsetof �, and write G(�; S)(s1; s2) for the set of all morphisms (paths ) from s1 tos2 in G(�; S).The inverse of p 2 G(�; S)(s1; s2) is the path p�1 2 G(�; S)(s2; s1) de�nedby p�1(t) = p(1� t).Write p1 � p2, when p1, p2 2 G(�; S)(s1; s2) are homotopic, �xing theirendpoints. Thus we have p1�1 � p1 � ids1 and p1 � p1�1 � ids2 . Let us de�ne thehomotopy class of p, denoted by [p] 2 G(�; S)(s1; s2) as the subset < p0 : suchthat p0 2 G(�; S)(s1; s2), and p0 � p >.Write �1(�; S) for the category whose objects are points in S and whosemorphisms are homotopy classes of paths with endpoints in S. This is called thefundamental groupoid of � over S.Conjunction of paths when de�ned, is de�ned as usual by splitting the intervalinto two parts givingp2 � p1(t) = ( p1(2t) for t 2 [0; 0:5]p2(2t� 1) for t 2 [0:5; 1]Proposition 6.1.1 Let � be a path connected space. If S contains �nitely manypoints and �1(�) is �nitely generated, then �1(�; S) is �nitely generated.Proof Firstly number the points in S by s1; : : : ; sn. As � is path connected it ispossible to de�ne a set of paths p2; : : : ; pn, where pi 2 G(�; S)(s1; si) for each i.Consider a path p 2 G(�; S)(si; sj), now p � (pjpj�1)p(pipi�1) � pj(pj�1ppi)pi�1,but pj�1ppi is a loop in �1(�; s1), so the generating set of the groupoid is the gen-erating set of the group plus the set of paths above and is thus �nitely generated.2 The above result will be useful as the inverse image of a single point in ak-fold cyclic cover is either a single point or k points.Let � : �0 ! � be a continuous onto projection with the additional propertythat any path in � has a path as a lift in �0. Let S be a subset of � as before,and let T be a subset of �0 de�ned by T =< t : t 2 �0 �(t) 2 S >. Then we havethe following result. 62



Proposition 6.1.2 With �0, �, S, T and � as above the map �1(�) : �1(�0; T )!�1(�; S) is onto.Proof Let [p] 2 �1(�; S) be the homotopy class of p. By the path lifting propertyof �, there exists a lift q in �. The end points of p are in S thus by de�nitionof T the end points of q are in T . So q 2 G(�0; T ), and thus [q] 2 �1(�0; T ) and�1([q]) = [p]. 26.2 Cyclic covers.In this section I consider the question of k-fold cyclic covers and �bration. Recallthat � is a smooth path connected 3-manifold. We shall suppose that A[B � �is a link with a distinguished component B. We may then construct the k-foldcover M of � branched over A, with the projection �k :M ! �.Let �k=B =M be our notation for the k-fold cover of � branched over B.Write Bk = �k�1(B) for the inverse image of the branch set and Ak=B =�k�1(A) for the inverse image of the rest of the link. Then �k j Ak=B ! L is ak-fold cover and �k j Bk ! B is a homoeomorphism.Let (�; A) denote the embedding of the knot A into the space �. Let usdenote by (�; A)k=B = (�k=B;Ak=B), the k-fold cover of the pair.Lemma 6.2.1 With the above notation,(�; A)k1k2=B = (�k1=B;Ak1=B)k2=Bk1 :Proof Let k = k1k2, choose a spanning surface for B, F (B) along which � iscut in the construction of �k=B then(�; A)k1k2=B � F (Bk1k2) = k1k2[j=1((�; A)� F (B));= k2[i=1 k1[j=1((�; A)� F (B));which gives the required result when F (Bk1k2) is replaced. 2The following notation is concerned with the in�nite cyclic covers over theknot A in � and Ak=B in �k=B.Notation. Recall that � is a smooth path connected 3-manifold, with A[B � �a link. We may construct the in�nite cover (�� A) of � branched over A,with the projection �1 : (�� A) ! (� � A). We have the induced grouphomomorphism h : �1(�0)! C1 with h(xA) = t in the in�nite cyclic group C1.Write ~B = �1�1(B) for the inverse image of the link component B in thein�nite cover set. 63



Let ((��B); A) = (��B)�A be the in�nite cyclic cover (�� A)� ~B.Let � be the projection of (�; A) on to (�; A)Proposition 6.2.1 With the above notation,(�k=B;Ak=B) = (�; A)k= ~B:Proof Let F (B) be a spanning surface for B in (�; A), and F (A) a spanningsurface for A. Now as �k�1((�; A) � F (B) equals k disjoint copies of ((�; A) �F (B)), and ((�� F (B)); A) � ��1(F (A)) equals an in�nite number of disjointcopies of ((� � F (B)); A) � F (A). The process of obtaining the in�nite cycliccover (�k=B;Ak=B) is thus a gluing ofk[i=1 1[j=�1(((�� F (B)); A)� F (A))which equals k[i=1 ((�� F (B)); A) = k[i=1 (�; A) � ��11 (F (B));and so the proposition follows. 2Proposition 6.2.2 With the notation above, if Ak=B is �bered in �k=B then Ais �bered in �.Proof Let S = (s1) be a single point subset of (�; A), and let T = �k�1(s1). Wethus have, using the groupoid result proposition 6.1.2, that�1(�) : �1(((�; A)k=B); T )! �1((�; A); S)is an onto morphism, and since Ak=B is �bered in �k=B we know�1(((�; A)k=B))is �nitely generated, and T is a �nite set of points. So by prop 6.1.1�1(((�; A)k=B); T )is �nitely generated as a groupoid. Then �1((�; A); S) is �nitely generated andthus A is �bered in �. 2Proposition 6.2.3 With the notation above, if B is braided in the �bration ofAk=B in �k=B then B is braided in the �bration of A in �.64



Proof Let S = (s1) be a single point subset of (��B;A), and let T = �k�1(s1).We thus have, using the groupoid result proposition 6.1.2,�1(�) : �1(((��B;A)k=B); T )! �1((�B; A); S)is an onto morphism. Since B is braided relative to the �beration of Ak=Bs inside�k=B we know that �1(((��B;A)k=B))is �nitely generated. Now T is a �nite set of points, so by prop 6.1.1�1(((��B;A)k=B); T )is �nitely generated as a groupoid. Then �1((��B;A); S) is �nitely generatedand thus B is braided relative to the �bration of A inside �. 2We are now ready to begin to prove the main result of this section, the fol-lowing.Theorem 6.2.1 If F (Ak=B) covers F (A) with both Ak=B and A �bered then Bis braided with respect to Ak=B and thus to A.The proof will consist of the rest of this section, but �rst I must de�ne ageneralized tangle, with respect to a �bration. Let (F � I) be the empty open-tangle, and let p : F � I ! � be given byp(x; 0) = p(h(x); 1)for all x 2 F , where h : F ! F is a homeomorphism �xing @F .p(y; t) = p(y; 0)for all y 2 @F and for all t in I, and no other relations. Let p(@F; 0) = A then(� � A) = p(int(F ) � I) is the empty closed-tangle with axis. De�ne a tanglebe a proper embedding of closed curves and arcs, T , into (int(F ) � I), that isp(@(T )) 2 int(F ) � @(I), p(int(T )) 2 int(F ) � int(I), and p(x) = p(y) impliesx = y. For such a system to close to �� (A [ L) where A is the axis mentionedabove, and L is some link in the complement of A, we need n = m and thepositions of the end points must be such that there are no loose ends in theclosure.Let S0 = (x 2 F � (0) st: x 2 T ), and let S1 = (x 2 F � (1) st: x 2 T ), thena tangle T is closable if n = m and h(S0) = S1. If a tangle T (F; h) is closable letdT (F; h) be its closure in S3 �A. 65



Lemma 6.2.2 Given a �bered link A to act as generalised axis to the link cTAthen the link cTA is a closed braid with respect to A if and only if there exists a�ber surface F (A) such that the open tangle TA is an open braid.Proof If dT (F; h) is a closed braid then the multilink de�nition any (1; 0)-�bersurface has the required property. Conversely if T (F; h) is an open braid thereexists a �bration for which I(Fi(A); TA) = n for i 2 [0; 1]. Use h to glue the �bra-tion together to form a closed braid, since the boundary surfaces are unmoved.2 It is now useful to consider a theorem of Meeks and Scott [7]Theorem (Meeks and Scott) 1 If F is a compact surface not S2 or P 2 andif G is a �nite group acting smoothly on F � I so as to preserve F �@I, then theaction of G is conjugate to an action which preserves the product structure.We are now in a position to prove theorem 6.2.1.Proof of theorem 6.2.1 The link Ak=B [ B is a closed braid with axis in themanifoldM if and only if B is an open braid inM�F (Ak=B). Now in this spacewe have a �nite group action G =< t : tk = 1 > but the surface has boundaries soit is necessary to adjoin some disc cross the interval to the boundary components.So the group action G on F � I extends to an action on F � I [Di � I wherethe action on the Di is de�ned by the action on the boundary components ofF . Then by the Meeks and Scott theorem above the action G is conjugate to anaction preserving the product structure, i.e. �t��1 = ��id. Now by the nature ofsurfaces there exists a map s which can restore the discs to there original positioni.e. s�s�1(Di) = id(Di) so (s� id)�(s�1� id) is an isotopy of (F [Di)� I �xingDi � I. So now we have s � id� is an isotopy of F � I which takes the �xedpoint set of the G action to points cross the interval, this is the condition for aset of curves to form an open braid in the �bration, but the �xed point set of theaction is just B. And so B is braided with respect to the �bration of Ak=B, andthus to the �bration of A. 26.3 How this a�ects Stallings braids.In this section I will show that if the k-fold cover of a Stallings braid is �bered,then it is an exchangeable braid.Lemma 6.3.1 If the k-fold cover of a Stallings braid is �bered and k1 is a primedivisor of k, then the k1-fold cover of the Stallings braid is �bered.66



Proof Firstly we have (S3)k=A = S3, and so (S3; b�)k=A = (S3;d�k1)k=k1=A, so byprop 6.2.2 we have d�k1 is �bered. 2The following is a result from number theory.Lemma 6.3.2 Let p(x) 2 Z[x], p(1) 6= 0, let k1 be a prime number, and � ak1-th primitive root of unity. Then if p(� i) = 0 for any i then k1 divides p(1).Proof If p(� i) = 0, then p(�j) = 0 for j = 1 : : : (k1 � 1) and thus p(x) =(1 + : : :+ xk1�1)q(x) for some q(x) 2 Z(x), and so p(1) = k1q(1). 2Corollary 6.3.1 A Stallings braid, � 2 Bn, is exchangeable if and only if theclosure of its k-th power, c�k, is �bered for any k � 2.Proof By theorem 6.2.1 if c�k is �bered, and if the �ber surface F (c�k) =��1(F ( b�)), then the axis A is braided with respect to b�. So by lemma 6.3.1,it is enough to consider the case when k is prime. Now the Alexander polynomialof c�k [ A is given by the following,� b�k[A(x; tk) = kYi=1�b�[A(x; � it)where � is a k-th primitive root of unity. Torres shows in [13] that� b�k[A(x; 1) = (xn � 1)=(x� 1)� b�k(x)when c�k is a knot, and � b�k[A(x; 1) = (xn � 1)� b�k(x)whenever c�k is a link of two or more components. Now the spread of x in�b�[A(x; t) = pM(t)xM+ : : :+pm(t)xm is equal to n�1 so if spread in �b�[A(x; � it)is less than n � 1, one of pM(� i) = 0 or pm(� i) = 0. By the lemma 6.3.2 thismeans one of pM(1) or pm(1) would not be equal to plus or minus one. But weknow that both pM(1) = �1 and pm(1) = �1, since �b�[A(x; 1) = 1 + : : : + xk.Now ��(c�k;x) = ��( b�;x) k�1Yi=1 ��((A [ b�); � i; x);by Proposition 3.2.1. Let �(x; y) = pm(y)xm+ : : :+ pM(y)xM , with lemma 6.2.3applied to pm and pM .Then in the case when c�k is a knot and by the spread in x in the Alexanderpolynomial is (k � 1)(n� 1). As ��( b�;x) = (xn � 1)=(x� 1)�1, and ��(c�k;x) =67



(x � 1)�1� b�k(x). So the rank of the �rst homology group of the �ber surface ofc�k is (k � 1)(n� 1). Now we have rk(H1(Dk=A)) = (k � 1)(n� 1) so Dk=A is aminimal genus surface, and thus a �ber surface of @(Dk=A) .When c�k is a link of two or more components, we have ��( b�;x) = (xn �1)=(x � 1)�1, and ��(c�k;x) = � b�k(x). So the spread in x in the Alexanderpolynomial is (n� 1)(k� 1)� 1 and thus in a link of two or more components wehave the rank of the �rst homology group of the �ber surface of c�k is (k�1)(n�1).But we know that the rank of the �rst homology group of Dk=A is (k�1)(n�1),and since the link is �bered this is a �ber surface.Thus if c�k is �bered then d�k0 is �bered where k0 is a prime divisor of k. Henceby theorem 6.2.1 if c�k is �bered then b� [ A are an exchangeable braid pair. 2Remark. Let b� [ A, and c� 0 [ A be a pair of links and axes, and let b� di�erfrom c� 0 by the addition of a string, and a band �i(n+1), a positive Markov move.Using the above notation let K = A2= b�, and K 0 = A2=c� 0. In [8] Morton andMontesinos show that the double cover of the axis branched over two braids thatdi�er only by a positive Markov move, adding a band di�er by the plumbing ofa Hopf band. That is K 0 is K with a Hopf band plumbed on.In particular we haveCorollary 6.3.2 A Stallings braid, �, is exchangeable if and only if c�2 is �beredas the plumbing of Hopf bands on a disc.Proof. The last corollary shows us that c�2 is �bered if and only if � isexchangeable, but if � is exchangeable then c�2 ' A2=Exch(�) implies that c�2 isa plumbing of Hopf bands on a disc. 26.4 Generalized Murasugi sum.A generalized Murasugi sum is a form of plumbing applied to triples, (�; F;A).De�nition. I shall say that the triple (�; F;A) is the Murasugi sum of thetwo triples (�1; F1; A1) and (�2; F2; A2) if1. The homology 3-sphere � decomposes as � = �1#S2�22. F1 and F2 are subsurfaces of F meeting only in a disc D0 = F1\F2 lying onthe separating sphere, S2, of �, such that Fi is in �i, and F = F1#D0F2.3. The generalized axis A meets the separating sphere S2 in only two points,d 2 D0 and c =2 D0. Thus A factors as A = A1#A2, with A1 in �1 and A2in �2. 68



For the above de�nition to be the Murasugi sum of braids, we have the furtherproperty that @(Fi) is braided relative to Ai in �i.Theorem 4.1.1 has the following corollary,Corollary 6.4.1 The Murasugi sum of two generalized braids with generalizedaxes is a generalized exchangeable braid if and only if the Murasugi summandsare exchangeable.Proof If each of the Murasugi summands are exchangeable then the k-foldcover of the Murasugi sum is the plumbing of the k-fold covers of the summandsand thus is �bered, this surface covers the surface of the Murasugi sum and thusis exchangeable. Conversely if the Murasugi sum is exchangeable then the k-foldcover of the braid is �bered. Now this braid is a Murasugi sum, and so the k-foldcover is a plumbing of the k-fold covers of the summands and these are therefore�bered. These k-fold cover �ber surfaces are the inverse images of the Murasugisummand surfaces. 2
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