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Abstract  

The lattice Boltzmann method (LBM) proposed about decades ago has been developed 

and applied to simulate various complex fluids. It has become an alternative powerful 

method for computational fluid dynamics (CFD). Although most research on the LBM 

focuses on the Navier-Stokes equations, the method has also been developed to solve 

other flow equations such as the shallow water equations. In this thesis, the lattice 

Boltzmann models for the shallow water equations and solute transport equation have 

been improved and applied to different flows and environmental problems, including 

solute transport and morphological evolution.  In this work, both the single-relaxation-

time and multiple-relaxation-time models are used for shallow water equations (named 

LABSWE and LABSWE
MRT

, respectively), and the large eddy simulation is incorporated 

into the LABSWE (named LABSWE
TM

) for turbulent flow.  

 

The capability of the LABSWE
TM 

was firstly tested by applying it to simulate free surface 

flows in rectangular basins with different length -width ratios, in which the characteristics 

of the asymmetrical flows were studied in details.  The LABSWE
MRT

 was then used to 

simulate the one- and two-dimensional shallow water flows over discontinuous beds.  The 

weighted centred scheme for force term, together with the bed height for a bed slope, was 

incorporated into the model to improve the simulation of water flows over a 

discontinuous bed. The resistance stress was also included to investigate the effect of the 

local head loss caused by flows over a step.  Thirdly, the LABSWE
MRT 

was extended to 

simulate a moving body in shallow water.  In order to deal with the moving boundaries, 

three different schemes with second-order accuracy were tested and compared for treating 

curved boundaries.  An additional momentum term was added to reflect the interaction 

between the following fluid and the solid, and a refilled method was proposed to treat the 

wetted nodes moving out from the solid nodes. Fourthly, both LABSWE and 

LABSWE
MRT

 were used to investigate solute transport in shallow water. The flows are 

solved using LABSWE and LABSWE
MRT

, and the advection-diffusion equation for 

solute transport was solved with a LBM-BGK model based on the D2Q5 lattice. Three 

cases: open channel flow with a side discharge, shallow recirculation flow and flow in a 

harbour, were simulated to verify the methods. In addition, the performance of 

LABSWE
MRT

 and LABSWE were compared, and the results showed that the LABSW
MRT
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has better stability and can be used for flow with high Reynolds number. Finally, the 

lattice Boltzmann method was used with the Euler-WENO scheme to simulate 

morphological evolution in shallow water. The flow fields were solved by the 

LABSWE
MRT

 with the improved scheme for the force term, and the fifth order Euler-

WENO scheme was used to solve the morphological equation to predict the 

morphological evolution caused by the bed-load transport.  
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Chapter 1: Introduction 

 

 

1.1 Research Background  

The shallow water equations have been applied widely in ocean, rivers and coasts [1-5]. 

For example, it can be used to describe the tidal flows, tsunami, hydraulic jump, and open 

channel flows. Furthermore, coupled with the solute transport equation, the shallow water 

equations can be used to predict the solute transport such as distribution of pollution 

concentration and transport of suspended sediments [6-11]. Prediction of the flows and 

related transport is important in environmental engineering. 

 

Moreover, another important application of the shallow water equations is to study the 

bed-load sediment transport, which plays a key role in the morphological evolution 

occurring in coastal areas, rivers, and estuaries, where the water flow is dominated 

horizontally and can be described by the shallow water equations [12-15]. Studies on 

morphological changes have attracted increasing interest in the fields of water resource 

exploitation and environment protection [16-18] .   

     

1.2 Traditional Method for Shallow Water Equations    

 Many different numerical methods have been developed and applied to solve shallow 

water equations in the past years. They include the finite difference methods (FDM), 

finite element methods (FEM) and finite volume methods (FVM). Each method has its 

own features.  For example, as indicated by Chen [19], compared with FEM, FDM has 

two advantages: the first one is that it is generally faster than the FEM for a similar case, 

which is more obvious for three-dimensional calculations [20]; the second one is that it 

generally does not suffer from the local mass conservation problem, which is often 

observed in a finite element model. On the other hand, The FEM adopts the unstructured 

grids which can fit complex and irregular geometries more easily than the FDM. 

Therefore, the FEM can reduce the number of grids significantly with the similar 

accuracy for flows in complicated geometries. 

 



2 
 

Casulli and Cheng [21] presented a semi-implicit finite difference method for two- and 

three-dimensional shallow water flows with hydrostatic pressure assumption. Casulli and 

Cattani [22] also studied the stability, accuracy and efficiency of a semi-implicit FDM 

method for the three-dimensional water flows. In recent years, the Weighted Essentially 

Non-Oscillatory scheme (WENO) has been used to solve the shallow water equations for 

solution with higher order accuracy by a finite difference method [22, 23]. For example, 

Lu and Li [23] studied a series of multilevel high order time discretization procedures for 

WENO scheme to solve the one-dimensional and two-dimensional shallow water 

equations with a source term and indicated that it performs better than the WENO scheme 

with Runge-Kutta time discretization in term of accuracy and cost. Stelling and Zijlema 

[24] developed an accurate and efficient finite difference algorithm for static free-surface 

flow with non-hydrostatics assumption and applied it to predict wave propagation.    

    

On the other hand, Sheu and Fang [25] presented the Taylor-Galerkin finite-element 

model to simulate the shallow water equations for wave propagation  in two dimensions. 

Dawson and Proft [26] coupled  the continuous and discontinuous Galerkin methods  to 

solve the two-dimensional shallow water equations. The software TELEMAC is used to 

simulate the shallow water flows, which is developed by the finite element method and 

has been used widely [27]. Since then, Comblen [28] et al. developed a  finite element 

method for solving the shallow water equations on the sphere. Liang et al. [29] used the 

least-squares finite-element method to solve the shallow-water equations. 

 

The FVM is also popular for solving the shallow water equations. The application of 

FVM to solve the shallow water equations can be divided into three categories according 

to the type of flows [30] as follows:  

 

The first kind of model is used to simulate the discontinuities supercritical flows such as 

dam-break flow [31-35]. In these models, the upwind schemes which include flux 

splitting, approximate Riemann solvers, Godunov schemes and flux limiters are adopted. 

The second kind of model is similar to the previous models except that they can also 

simulate wind waves, wave setup, and low frequency waves [36-38]. In [36] breakers  

were used to represent as abrupt discontinuities in the shallow water equations. In [37, 38], 

an upwind FVM was adopted with an approximate Riemann solver. Wei et al. [38] 

presented a model based on a Godunov-type scheme with Riemann solver to simulate 



3 
 

shock waves and solitary waves. The third model is applied to tidal flow and wind-

induced current in river and estuaries [39-43]. The SIMPLE algorithm is used to couple 

the water elevation and velocity component in these models [37].  

 

1.3 Lattice Boltzmann Method for Shallow Water Flows 

On the other hand, developed from lattice gas automata, the lattice Boltzmann method 

(LBM) has become a very successful alternative numerical method for computational 

fluid dynamics.  

 

Unlike traditional computational fluid dynamics (CFD), the LBM is a microscopic 

method. The fundamental idea behind LBM is to establish a simplified kinetic model to 

obey the corresponding macroscopic equations, i.e. N-S equations or shallow water 

equations. By Chapman-Enskog expansion, the lattice Boltzmann equation can recover 

the corresponding macroscopic equations. The LBM is based on statistical physics and 

can be regards as a kind of kinetic method.  

 

Born about twenty years ago, the LBM has been applied successfully to simulate complex 

flow, especially for flows which involve complex boundary conditions and interfaces 

between different fluids [44, 45]. For example, Zhang’ research group [46-50] applied 

successfully the LBM to non-equilibrium gas dynamics and microfluid. Their study 

demonstrated the advantage of LBM in simulating multi-scale and multi-physical flows. 

The development and application of LBM during the last two decades has been well 

reviewed [44, 45]. As a relative new method of simulating the fluid, the LBM is still 

under development and it has many attractive properties. The main characteristics of the 

LBM have been summarised and reviewed by several researchers [3, 44, 45, 51, 52].  

Firstly, its algorithm is simple and efficient as only one single variable needs to be 

calculated. This distinguishes it from the conventional numerical methods like the finite 

difference and finite volume methods, which solve the nonlinear partial differential 

equations with the aid of a special treatment for either pressure or advection terms. 

Secondly, the LBM has an inherent feature for parallel computation with little extra 

coding, which is ideal and necessary to simulate a large-scale real life flow problems. 

Thirdly, it is easy to implement different boundary conditions, resulting in a very efficient 
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model for flows in complex geometries with variation in boundary such as porous media, 

which still challenge the conventional numerical method.  

 

The lattice Boltzmann method has been developed and used to solve the shallow water 

equations successfully [3, 53-60]. Salmon [53] developed a lattice Boltzmann model for 

ocean circulation. Zhou [3] derived the lattice Boltzmann method for shallow waters and 

discussed the force term representation in which a centred scheme is proposed, and 

proposed  the elastic collision scheme for irregular boundary condition. Furthermore, he 

[3] developed the lattice Boltzmann model including the turbulence. Liu et al. developed 

a second order boundary for curved boundary [56] and a multi-block scheme for LBM for 

shallow water flows [61]. Li and Huang [55] studied the advection and anisotropic 

dispersion problem  using LBM for shallow water flows. Tubbs [62] proposed a lattice 

Boltzmann method for multilayer shallow water equations by parallel computation.      

 

1.4 Lattice Gas Automata  

Lattice gas automaton (LGA) is a special kind of cellular automata. It is a simple model 

with discrete space, time, and particle velocities in which fictitious particles reside on a 

regular lattice.   

 

The first discrete model for fluid on a square lattice (HPP model) was proposed by Hardy 

et al. [63] in 1976 which is the most simple LGA model for two-dimensional flows. 

However, the N-S equations cannot be recovered from the HPP because of insufficient 

symmetry of lattice [64]. In 1986, the correct lattice gas automaton (FHP model) was 

proposed firstly by Frisch et al. [65] which can recover the N-S equations.     

 

The LGA consists of two sequential steps: streaming and collision. In streaming, each 

particle moves to the nearest node along the direction of its velocity; then, collision 

happens when particles arriving at one node and change their velocity directions 

according to the assumed rules. If the exclusion principle: (i.e. no more than one particle 

being allowed at a given time and node with a given velocity) is adopted for memory 

efficiency and it will result in a Fermi-Dirac local equilibrium distribution [66]. The LGA 

equation is  

                               ,          ,              (1.1) 
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where    is a Boolean variable that is used as an indication of the presence or absence of  

a particle, t is the time,   is the local constant particle velocity,    is the collision 

operator, and K is the number of directions of the particle velocities at each node.  

 

The physical variables, density and velocities are defined by  

        
   ,       (1.2)                            

 

 
        

 
   ,              (1.3)  

in which      denotes the ensemble average of    in statistical physics.  

 

The LGA has two main disadvantages: the first is statistical noise like any particle 

method, and the second one is computational complexity which is serious for three-

dimensional cases. In order to overcome these disadvantages, the lattice Boltzmann 

method has been developed [51].   

 

1.5 Lattice Boltzmann Method 

1.5.1 Lattice Boltzmann Equation  

As stated before, the lattice Boltzmann method originated from the lattice gas automaton 

(LGA) to overcome its shortcoming. The main difference between LBM and LGA is to 

replace the Boolean variable with single-particle distribution functions, i.e.         

      in LBM. Meanwhile, individual particle motion and particle-particle correlations 

in the kinetic equations are neglected. Equation (1.1) can be rewritten as the following 

lattice Boltzmann equation [67], 

                               ,              .          (1.4) 

This procedure eliminates the statistical noise in a LGA and retains all the advantages of 

locality in the LGA which is essential for parallel computing [44]. 

 

The lattice Boltzmann method was introduced first as an independent numerical method 

by McNamara and Zanetti [67] in 1988. Higuera and Jiménez [68] made an important 

simplification for the collision operator and they linearized the collision term by assuming 

the distribution is close to its local equilibrium state. A particular simple linearized form 

for the collision operator is to use a single time relaxation towards the local equilibrium, 

which is known as Bhatngar-Gross-Krook [69] collision operator, is proposed by some 

researchers [70, 71]. This scheme makes the LBM become a very efficient method for 
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simulating fluid flows. Up to now, the lattice Boltzmann equation with the BGK collision 

operator is still the most popular lattice Boltzmann method. Over the past years, the 

lattice Boltzmann methods for fluid flows has attracted much attention and been 

improved and extended greatly [44, 45]. The development of LBM will be reviewed 

briefly in the following sections.   

 

1.5.2 Entropic Lattice Boltzmann Method  

It is found that when the LBM with BGK is applied to high Reynolds number flows, it 

will become unstable [45]. The study indicates that an multiple-relaxation-time (MRT) 

can improve it, but it cannot remove this problem and the fundamental reason of this is 

that for a given lattice, the velocity or its spatial gradient is too large which leads to the 

negative values of distribution function. As the BGK-LBM abandoned the H theorem, no 

constraint is imposed on the evolution of distribution functions to ensure their non-

negative behaviour at every grid point at all times. In order to overcome this shortcoming, 

Entropic LBM (ELBM) is proposed [72-76]. Normally, there are two kinds of ELBM and 

Keating et al. [77] reconciled them and showed some similarities. With Gauss-Hermite 

quadratures, the discrete form of the standard continuum H function can be written to   

            
  

  
  

   ,                                                (1.5) 

where    
 
     .  

In the ELBM, the collision term is determined in order to extreme H and to keep balance 

on a constant entropy surface,  

    
      

             .                                         (1.6) 

To make sure that H never reduces, extreme value of the functional     is given by (Here 

       and        are Lagrange multipliers) 

                             
   ,                        (1.7) 

where                   . 

Due to the requirement of the mass and momentum conservation, the   
  

is the 

exponential form. The Lagrange multipliers can be obtained according to the first and 

second moments,   and    . As shown in references [72-74, 78-80], for the D3Q27 

model the   
  

 can be expressed by  

  
             

      

    
 

    
    i=1,…, 27,                       (1.8) 
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with          
 , and the detail including weights    can be found in [45]. The 

expression for   
  

 in the above equation is also valid for lattice models D3Q15 and 

D3Q19 [77]. Furthermore, reducing the number of discrete velocities leads to minor 

difference as indicated by Keating et al. [77]. However, Luo et al. [81] compared LBM 

with multiple-relaxation-time (MRT-LBM), LBM with two-relaxation-time (TRT-LBM), 

LBM with single-relaxation-time (SRT-LBM), ELBE for the N-S equations. In his study, 

it is indicated that ELBE seems do not improve the numerical stability of SRT-LBM, and 

both of MRT-LBM and TRT-LBM are better than ELBE and SRT-LBM in terms of 

accuracy, stability, and computational efficiency. Therefore, it needs further study on the 

performance of the ELBE. 

 

1.5.3 Two-Relaxation-Time lattice Boltzmann Method  

As an improved model on the LBGK, the two-relaxation-time lattice Boltzmann model  is 

proposed by Ginzburg et al. [82] and applied to the advection and anisotropic-dispersion 

equations, demonstrating its advantage. When the two relaxation times take the same 

values, the TRT-LBM is reduced to SRT-LBM. On the other hand, TRT-LBM can be 

connected with the MRT-LBM with relaxation times which will be described in the next 

section. 

 

1.5.4 Multiple-Relaxation-Time Lattice Boltzmann Method  

The multiple-relaxation-time lattice Boltzmann equation is developed by d’Humieres [83], 

which overcomes the disadvantage of LBM with BGK (BGK-LBM) as indicated in [84]. 

Lallemand and Luo [85] studied the stability of MRT-LBM and showed that the MRT-

LBM is much more stable than BGK-LBM because of the use of different relaxation 

times which can be tuned for optimal stability. In recent years, the MRT-LBM becomes 

increasingly popular. The MRT-LBM is briefly introduced as follows: 

 

If the D2Q9 model is adopted, the evolution equation for the MRT-LBM without external 

force term is [83, 85]  

                            
                 

              (1.9) 
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where      ,     
    and S is the relaxation matrix, S=diag (s0, s1, s2, s3, s4, s5, s6, 

s7, s8), Tr is the transform matrix defined in [85],    is the distribution function of particle. 

The equilibrium values of moments     is  

      
              

    
         

    
                   

   
    

  

 
 
    

 
                                                          

(1.10) 

 

Using the Chapman-Engkog procedure, the N-S equations (2.5) and (2.6) can be 

recovered with the kinematic viscosity  

       
 

  
 

 

 
         

 

  
 

 

 
   .                           (1.11) 

The other relaxation parameters can be chosen freely in the range of 0~2 in order to 

achieve most stable LBM [85].  

 

1.5.5 Grid Refinement 

In the LBM, the Cartesian coordinate is employed which means that a regular grids have 

been used in computation. There are two challenges of using the uniform grids: the first 

one is  difficulty in providing the results with high resolution near the solid boundary; the 

other one is that it uses too much or less uniform grids in an unnecessary or necessary 

flow regions, which results in waste of calculation power or inaccurate solution [86]. One 

way to resolve the problems is to divide the computation domain into different blocks and 

use different grid sizes in each block such as that used in the conventional CFD. Although 

the rectangular lattice Boltzmann method proposed by Zhou [87, 88] and Lallemand et al. 

[89] can reduce computational effort for flows with dominant flow feature in one 

direction, the grid refinement is desirable for most cases and some progress has been 

made in recent years.  

 

The first grid refinement method for LBM is proposed by Filippova and Hanel [90] in 

1998, which is a second-order scheme. Lin and Lai [91] proposed a grid structure which 

consists of a coarse base grid and one or several fine grids. The coarse grids cover the 

whole computational domain but the fine grids are only placed at parts where local grid 

refinement is needed. The simulation is first carried out on the coarse grid level, so that 

large-scale flow features can be obtained. Later, fine grid variables are initiated. The 

information between two level grids can be exchanged on the grid interface.  
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Based on multiple nested lattices with increasing resolution, Kandhai  et al.[92] described 

a Finite-Difference Lattice Boltzmann method with BGK on nested grids. The calculation 

is carried out on each sub-lattice and interpolation is used to couple the sub-grids between 

the interfaces. On the other hand, in the method proposed by Yu et al. [86], the blocks 

with different grid sizes are not overlapped each other, and blocks are only connected 

through the interface. Liu applied the non-overlapped multi-block grid to LABSWE and 

improve its accuracy and efficiency [93]. Other progress on grid refinement can be found 

in reference [94].  

 

1.5.6 Parallel Computation 

For practical projects, a huge number of grids are needed and it requires high 

computational power. Therefore, parallel computation is desirable for all kinds of 

numerical methods. One of the most attractive features of the LBM is that it is easy to 

implement the parallel computation. In the LBM, the current value of the distribution 

function depends only on the previous conditions and the collision step is local.  

 

Parallel computation of the LBM can further be enhanced by using the CPU-based 

computing systems, which has attracted many researchers’ attention [95-97]. The parallel 

computation of LBM on CPU-based architectures can be achieved on both distributed and 

shared memory systems.  For example, Desplat et al. [98] presented a parallel LBM code 

named LUDWIG, in which implementing message passing interface (MPI) is used to 

achieve full portability and good efficiency on both massively parallel processors (MPP) 

and symmetric multiprocessing (SMP) systems. 

    

Recently, the LBM has been implemented on hardware accelerated systems using 

Graphics Processing Units (GPU) and has been accelerated on a single GPU                         

[99-101] or a GPU cluster [102] with MPI. Furthermore, the LBM for the two 

dimensional Navier-Stokes equations was carried out using the Compute Unified Device 

Architecture (CUDA
TM

) interface developed by NVIDIA
R
.   

  

The parallel computation of LBM for shallow water basing on CPU and GPU was studied 

by Tubbs [103] and showed attractive performance.    
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1.5.7 Moving Boundary 

The moving body boundary is a time dependent problem involves the solid-fluid 

interaction, moving solid and moving boundary. In order to solve this problem, two kinds 

of method have been proposed: the Lagrangian methods and Eulerian methods                 

[104]. 

 

In the Lagrangian methods, a mesh is moving as the moving solid in which the solid-fluid 

interface can be captured accurately. But, the mesh regeneration is needed at every time 

step in this method, which is time consuming, which reduces the efficiency.   

 

On the other hand, the Eulerian method use a fixed mesh in which the exact location of 

interface is unknown and this results in the difficulty in improving the accuracy when the 

solid shape is irregular .          

 

For the lattice Boltzmann method, because it is local for calculation and use the fixed 

Cartesian grid, it seem that it is easy to implement the moving boundary as shown in the 

later chapter. Based on the curved boundary conditions, the moving boundary for Navier-

Stokes equations using the lattice Boltzmann method has been studied by Lallemand and 

Luo [105] and Kao and Yang [106]. Lallemand and Luo [105] extended Bouzidi’s 

method [107] and studied the moving boundary systematically. Kao and Yang [106] 

summarized various approaches for a curved boundary and proposed a new method for 

curved boundary and moving boundaries with the interpolation-free treatment.  

 

1.6 Objectives 

Although developed quickly over the past two decades, the lattice Boltzmann method is 

still a relative new method compared to the traditional CFD methods. It has some 

drawbacks and needs further improvement. Furthermore, in spite of the fact that the 

lattice Boltzmann method for the shallow water equations has demonstrated its potential 

and attractive capabilities in simulating shallow water flows, it still needs to be improved 

and tested for more flow problems. Therefore, the applications and improvement on the 

LBM for shallow water flows is the current aim. The detailed objectives of this thesis can 

be summarized as follows: 
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1. To study and apply the LBM to the shallow water equations and solute transport 

equation in environmental problems. The multiple-relaxation-time and single-relaxation-

time are adopted in the LBM for shallow water equations and the large eddy simulation is 

incorporated into the LABSWE.  

 

2. To predict the asymmetric flows in rectangular basins by LABSWE
TM

 and test the 

feasibility and accuracy of LABSWE
TM

 for free surface flows.  

 

3. To investigate the performance of LABSWE with MRT (LABSWE
MRT

) and the LBM 

with SRT collision operator (LABSWE and LABSWE
TM

). The purpose of adopting the 

MRT is to improve the stability and accuracy of the simulations.  

 

4. To improve the LBM for simulating the two-dimensional shallow water flows over 

discontinuous beds. The flows are simulated by LABSWE
MRT

 in which the weighted 

centred scheme for force term together with the bed height for a bed slope was used to 

improve simulation of flows over discontinuous bed. Furthermore, the resistance stress is 

added to include the flow head loss caused by a step.   

 

5. To extend to LABSWE
MRT 

to simulate a moving body in shallow waters. In order to 

deal with the moving boundaries, three different schemes for a curved boundary condition 

at second order accuracy are used and compared. Furthermore, certain momentum is 

added to reflect interaction between the fluid and the solid and a refill method for new 

wetted nodes moving out from solid nodes has been proposed.  

 

6. To investigate the solute transport in shallow water flows by the LBM. The flows are 

solved using LABSWE and LABSWE
MRT

, and the advection-diffusion equation is also 

solved with a BGK-LBM on a D2Q5 lattice. Three cases: open channel flow with side 

discharge, shallow recirculation flow and flow in a harbour are simulated to verify the 

described methods.   

 

7. To develop a coupled model for simulation of the morphological evolution under 

shallow water flows. The flow fields are solved by LABSWE
MRT

 with the improved 
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scheme for the force term. The fifth order Euler-WENO scheme is used to solve the 

morphological equation for the bed evolution caused by bed-load sediment transport.   

 

1.7 Outline of the Thesis 

This thesis consists of nigh chapters. 

 

The chapter 1 introduces the research background and the history of the lattice Boltzmann 

method, reviews the development and application of LBM in recent years briefly and 

outlines the objectives of this thesis. 

 

Chapter 2 briefly describes the N-S equations and the shallow water equations without 

turbulence and with turbulence by Subgrid-Scale Stress (SGS) model, in which the 

shallow water equations are derived from the N-S equations in detail.  

 

Chapter 3 presents the lattice Boltzmann method for shallow water flows, including 

LABSWE, LABSWE
TM

, and LABSWE
MRT

. With these three kinds of lattice Boltzmann 

methods, the corresponding shallow water equations are recovered. A new form of force 

term is introduced in LABAWE
MRT

 which can improve the predicted results as shown in 

chapter 6.  

 

Chapter 4 discusses the initial and boundary conditions used in the lattice Boltzmann 

method. In this chapter, the no-slip, semi-slip and slip boundary conditions are presented. 

 

Chapter 5 applies LABSWE
TM

 to study free surface flows in rectangular shallow basins 

and simulates the flow over a discontinuous bed in which water head loss caused by a 

step has been considered.  

 

Chapter 6 studies the application of the LBM for solute transport in which the advection-

diffusion equation has been coupled with the shallow water equations. Furthermore, the 

performance of LABSWE and LABSWE
MRT

 are compared in detail.  
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Chapter 7 uses LABSWE
MRT

 to simulate a moving body and compares the predicted 

results with corresponding experimental results, in which three different kinds of curved 

boundary conditions have been investigated in detail.  

 

Chapter 8 applies the LABSWE
MRT

 to predict morphological evolution which is 

dominated by bed-load transport. 

 

Chapter 9 summarises the conclusions and recommends future work.  
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Chapter 2: Governing Equations for Shallow 

Water Flows  

 

 

2.1 Introduction 

In physics and engineering, the basic laws are conservation of mass, momentum and 

energy. But for isothermal flow, the law of energy is not included. In this chapter, the 

Navier-Stokes (N-S) equations which are the governing equations for the motion of fluid 

are introduced, followed by the introduction of its simplified version, the shallow water 

equations. Furthermore, the shallow water equations are derived in detail from the N-S 

equations and it can be used to describe the flow in which the horizontal scale is much 

larger than the vertical scale. Numerical methods for turbulent flow are described, in 

which the large eddy simulation is emphasized. Last, the shallow water equations 

including SGS model are presented.  

 

2.2 The Navier-Stokes Equations 

The governing equations for general incompressible flows are the three-dimensional 

continuity and Navier-Stokes (N-S) equations that are derived from Newton’s second law 

of motion and the mass conservation. If Cartesian coordinate is adopted, the N-S 

equations can be shown as follows: 

  

  
 

  

  
 

  

  
                                                          (2.1) 
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         (2.4) 

in which x, y, z are the Cartesian coordinate (see Fig. 2.1); u, v, and w are the 

corresponding velocity components, respectively;   ,   , and    are the body forces per 

unit mass in the corresponding direction;   is the kinematic viscosity;   is the pressure;    

is the fluid density; and t is the time. 
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The equations (2.1-2.4) can also be written in tensor form as  

   

   
                                                              (2.5) 

   

  
 

       

   
    

 

 

  

   
  

    

     
 ,                          (2.6)  

 

where the subscripts i and j are space direction indices;    is the body force per unit mass 

acting on fluid in the i direction; and the Einstein summation convention is used. 

 

Figure 2.1 Cartesian coordinate system.  

 

Physical interpretations can be given for all the terms in the N-S equations. The terms on 

the left-hand side of Eq. (2.6) is an inertia term in which the first and the second terms are 

called unsteady term and convective term respectively. The three terms on the right hand 

side of equation (2.6) are the body force term, the pressure term and the viscous term, 

respectively. Normally, there is no analytical solution to the N-S equations except for 

some simple situations. However, as computer power increases, it is feasible to obtain 

numerical solutions for the equations. Thus, numerical methods play an increasingly 

important role in solving flow problems in engineering.  
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2.3 The Shallow Water Equations 

The flows in rivers, estuaries, and coastal areas can be described by the shallow water 

equations because the water depth is much smaller than the horizontal scale, in which the 

assumption of the hydrostatic pressure is adopted and hence the vertical acceleration is 

ignored. Stansby and Zhou [108] shows that both 2D and 3D shallow water equations 

cannot predict the vertical velocity accurately. Furthermore, the 2D shallow water 

equation is more efficient than the 3D. Therefore, the 2D shallow water equations are 

used in this thesis. 

 

The shallow water equations are derived from depth-integrating the Navier–Stokes 

equations (2.1) - (2.4) with assumption implying that the vertical velocity of the fluid is 

small with hydrostatic pressure and constant velocities over the water depth [3]. The 

shallow water equations are thus derived in the following section.  

 

The body forces for the flows can be divided into two categories: gravity and Coriolis 

acceleration because of the earth’s rotation [109]. With the Cartesian coordinate system, 

the body force can be described by 

      ,        ,       ,                                (2.7) 

in which,  =9.81m/s
2
 is the gravitational acceleration;          is the Coriolis 

parameter with                   which is the earth’s rotation and   is the earth’s 

latitude at the corresponding  site. 

 

Firstly, the continuity equation for shallow water equations is derived by integrating Eq. 

(2.1) over depth,   

  
  

  
 

  

  
 

  

  
   

    

  
  ,                                  (2.8) 

which results in 

  

 
  

  
  

    

  
  

  

  
  

    

  
                        (2.9) 

 

where    and    are the vertical velocities at channel bottom and the free surface, 

respectively; and    is the bed elevation above a datum (see Fig. 2.2). 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Hydrostatic_pressure#Hydrostatic_pressure
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Figure 2.2 Shallow water flow sketch. 

 

The Leibnitz rule can be expressed [110], 

 

 
       

  
  

 

 
 

 

  
         

 

 
       

  

  
       

  

  
 ,               (2.10)   

 

The first and second terms on the left hand side of Eq. (2.9) can be written as 
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 ,                  (2.12) 

 

Substituting Eqs. (2.11) and (2.12) into (2.9) leading to  

      0
b b
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     (2.13) 

The kinematic conditions at the free surface and channel bottom are, 

   
 

  
         

 

  
         

 

  
       ,            (2.14) 

   
   

  
   

   

  
   

   

  
 .                                      (2.15) 

Substituting Eqs. (2.14) and (2.15) into Eq. (2.13) results in 

  

  
 

      

  
 

      

  
  ,                                    (2.16) 
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which is just the continuity equation for the shallow water equations and    and    are 

depth-averaged velocity components and defined as 

   
 

 
    

    

  
     (2.17),                              

 

 
    

    

  
.     (2.18) 

 

Next, the momentum equation for shallow water flow will be derived. Eq. (2.2) is 

integrated over water depth and the following expression can be obtained:  
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   (2.19) 

 

Once again, the Leibnitz rule (2.10) is used for the first three terms on the left-hand side 

of the Eq. (2.19) leads to   
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 .            (2.22) 

 

The last term on the left hand side of Eq. (2.19) can be integrated, leading to     

 
     

  
  

    

  
           .                                      (2.23) 

 

Combining it with Eqs. (2.20) - (2.23) and rewriting the results  yields the following 

equation  
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 (2.24) 

 

Refer to the kinematic conditions (2.14) and (2.15). Combined with the Eqs. (2.17) and 

(2.18), Eq. (2.24) can be rewritten as  

  
  

  
 

     

  
 

     

  
 

     

  
   

    

  
 

      

  
 

 

  
     

    

  
 

 

  
     

    

  
       (2.25) 

 

With the second mean value theorem for integrals[111], 
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 ,                                     (2.26) 

 

The second term on the right-hand side of Eq. (2.25) can be expressed as  

     
    

  
        

    

  
        ,                                    (2.27) 

 

And the last term on the right-hand side of Eq. (2.25) can be expressed as 

     
    

  
        

    

  
        ,                                 (2.28) 

 

Assuming          and          and substituting Eqs. (2.27) and (2.28) into Eq. (2.25) 

leads to 

  
  

  
 

     

  
 

     

  
 

     

  
   

    

  
 

      

  
 

          

  
 

          

  
 ,        (2.29) 

 

where   and    are momentum correction factors and are determined by Eqs. (2.27) and 

(2.28) as  

   
 

     
     

    

  
,    (2.30)                          

 

     
     

    

  
.    (2.31) 

 

Similarly, the following expression for the terms on the left hand side of equation (2.3) 

can be obtained. 

  
  

  
 

     

  
 

     

  
 

     

  
   

    

  
 

      

  
 

          

  
 

          

  
 ,       (2.32) 

 

in which, an additional momentum correction factor    is defined by 

   
 

    
     

    

  
 .                                          (2.33) 

 

The first term on the right hand side of Eq. (2.19) is integrated as 

      
    

  
       .                                          (2.34) 

 

Since the vertical acceleration can be ignored in comparison with the horizontal effect in 

shallow water flows, the momentum equation (2.6) in the z direction is reduced with 

    to  

  

  
    ,                                                   (2.35) 
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which is integrated and the following expression can be obtained 

           ,                                                (2.36) 

where    is an integration constant. 

 

The pressure at the free surface is the atmospheric pressure   , for example:      at 

      , in above equation,    can be calculated by  

               .                                          (2.37) 

 

Substituting Eq. (2.37) into Eq. (2.36) results in 

                .                                    (2.38) 

 

Normally,   is almost constant in the corresponding area and often assumed to be zero, 

i.e.     . Because the difference in atmospheric pressure at water surface is usually 

small in most shallow water flows [112], Eq. (2.38) reads  

              .                                       (2.39) 

 

The Equation (2.39) is often referred to as the hydrostatic pressure approximation in 

shallow water flows and differentiating it to x gives  

  

  
   

 

  
      .                                       (2.40) 

 

Because both of water depth h and the bed height   are functions of the horizontal 

coordinates x and y only, the following expression can be obtained: 

 
 

 

  

  
  

    

  
 

 

 

  

  
.                                          (2.41) 

 

Combining Eq. (2.40) with Eq. (2.41) can give       

 
 

 

  

  
  

    

  
   

 

  
      .                                  (2.42) 

The following approximations are given for the third and fourth terms on the right hand 

side of Eq. (2.19). 
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The last term on the right hand side of Eq. (2.19) is calculated as 

  
   

     
    

  
   

  

  
 

 
   

  

  
 

 
                            (2.45) 

 

Normally, the terms on the right hand side of Eq. (2.45) can be approximated with the 

surface wind shear stress and the bed shear stress in the x direction, respectively, 

  
  

  
 

 
 

   

 
 ,                                                (2.46) 

    
  

  
 

 
 

   

 
 .                                               (2.47) 

 

Therefore, Eq. (2.45) can be written as  

  
   

     
    

  
 

   

 
 

   

 
.                                         (2.48) 

 

 Combining Eqs. (2.29), (2.34), (2.42)-(2.44), and (2.48) with Eq. (2.19) leads to  
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.   (2.49) 

                                                       

The above equation is the momentum equation for shallow water flows in the x direction. 

The momentum equation in the y direction for shallow water flows can be derived 

similarly as  
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.   (2.50) 

 

Theoretically, if the velocity profiles for u and v are known, the momentum correction 

factors   ,    and    can be calculated from Eqs. (2.30), (2.31) and (2.33). However, 

normally it is not easy to calculate these momentum correction factors   ,    and    

because there are no universal velocity distribution which are valid for all flows. On the 

other hand,     ,        and      are used widely in numerical simulation for 

shallow water flows and these study shows that this assumption can give good results for 

most shallow water  flows [113-116]. 

 

Therefore, when     ,       and      are adopted, Eqs. (2.49) and (2.50) become 
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(2.51) 
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(2.52) 

After the overbars are dropped for convenience, the continuity equation (2.16) and the 

momentum equations (2.51) and (2.52) can be expressed in a tensor form concisely as  

  

  
 

      

   
  ,                                                            (2.53) 

      

  
 

        

   
   

 

   
 

  

 
   

       

      
    ,                            (2.54) 

in which, the force term    is defined as  

       
   

   
 

   

 
 

   

 
    ,                                           (2.55) 

where the Coriolis term     can be calculated by 

    
               
              

                                                      (2.56) 

The bed shear stress     in the i direction can be calculated by the depth-averaged 

velocities, 

              ,                                                  (2.57) 

where,    is the bed friction coefficient, estimated from       
  , where    is the 

Chezy coefficient calculated by either Manning equation (2.58), or the Colebrook-White 

equation (2.59) [117], 

    
 

     ,                                                         (2.58) 

in which,     is the Manning’s coefficient at the bed, 

              
  

     
 

        

      
 ,                                  (2.59) 

in which    is the Nikuradse equivalent sand roughness and measured by experiments.  

 

Furthermore, the wind shear stress can be obtained by 

                       ,                                           (2.60) 

in which,    is the density of air,      is the component of the relative wind velocity in 

the i direction, and     is the resistance coefficient of the water-air interface.  
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It should be pointed that the use of the second mean value theorem (2.26) implies that the 

horizontal velocities            and            do not change their directions along the 

water depth. It indicates that            0 or            0 from channel bed to free 

surface at location (x,y) and so is           . This is the reason why a model based on 

2D shallow water equations cannot predict flow separations in vertical direction 

accurately. In this section, the shallow water equations are derived briefly from the N-S 

equations and more details can be found in [3]. 

 

2.4 The Advection-diffusion Equation 

The water depth-averaged advection-diffusion equation can be expressed as: 

     

  
 

       

   
 

 

   
   

     

   
                                (2.61) 

where the subscripts i and j are space direction indices and the Einstein summation 

convention is used, t is time,  C is the depth-averaged concentration,    is the dispersion 

coefficient in direction i,    is the depth-averaged source term, h is water depth,    is 

velocity,    stands for either x or y in direction i or j. This equation is used for isotropic 

flow.  

 

2.5 Numerical Methods for Turbulent Flow 

Most fluid flows encountered in nature and engineering applications are turbulent. 

Numerical simulation of turbulent flows is important for researchers and engineers. Even 

though turbulent flow can be observed easily, it is difficult to describe it accurately. 

However, the following features are expected to exhibit for turbulent flows according to 

[118]: 

 

(a)  They are disorganized and chaotic. 

(b) There is nonrepeatability. 

(c) They have extremely large range of length and time scales but even the smallest scales 

are still large enough to satisfy the continuum hypothesis. 

(d)  It is three dimensional, time dependent and rotational. 

(e)  It is intermittent in both space and time. 
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In general, there are three kinds of numerical methods to simulate turbulent flow: Direct 

Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds-Averaged 

Navier–Stokes (RANS). McDonough [118] compared these three methods and 

summarized results as follows: 

 

Firstly, although the DNS requires modelling, it demands resolution at all scales. This 

leads to total arithmetic scaling at least as Re
3
 (Re is the Reynolds number), or worse. It is 

clear that it is unacceptable for engineering flows because the Re can be up to 10
4
 or 

larger in engineering flows. This requirement has beyond the power of present 

computation.   

 

For LES, the amount of required modelling is dependent on the amount of resolution, but 

it is unlikely that total arithmetic will scale worse than Re
2
. LES has been incorporated 

into CFD software for practical engineering applications. Furthermore, it has been shown 

that LES procedures generally converge to DNS as discretization step size and filter 

widths are refined. 

 

Finally, the RANS requires modelling of everything of all scales. As a consequence, total 

arithmetic is a weak function of Re at most. In which, the     model is most widely 

used. 

 

In the present study, the LES is used to describe turbulent flow. In LES, the oldest, but 

yet still used widely, the Smagorinsky model [119] is used in this thesis because of its 

simplicity and easy implementation in the lattice Boltzmann method.  

 

2.6 Subgrid-Scale Stress Model 

The governing flow equations with the LES for turbulent flows can be derived by 

including a space-filtered quantity in the continuity equation (2.5) and the momentum 

equation (2.6). The space-filtered governing equations can be expressed as 

 

    

   
                                                            (2.62) 

    

  
 

         

   
    

 

 

  

   
  

     

      
 

    

   
 ,                            (2.63) 



25 
 

in which      is the space-filtered velocity component in the i direction and is defined by 

                                                  
      

               (2.64) 

where G  is a spatial filter function.     is the subgrid-scale stress (SGS) that reflects the 

effect of the unresolved scales with the resolved scales and determined by  

                .                                                       (2.65) 

With the Bussinesq assumption for turbulent stresses, the subgrid-scale stress can be 

expressed using an SGS eddy viscosity    as 

        
    

   
 

    

   
 .                                                (2.66) 

Substituting Eq. (2.66) into Eq. (2.63) gives the momentum equation, 

    

  
 

         

   
    

 

 

  

   
       

     

      
.                                (2.67) 

If the standard Smagorinsky SGS model [119] is adopted and the eddy viscosity    can be 

expressed by 

         
         ,                                                   (2.68) 

 

where    is the characteristic length scale,    is Smagorinsky constant and    is the 

magnitude of the large scale strain-rate tensor and determined by 

    
 

 
 

    

   
 

    

   
  .                                               (2.69) 

The equations (2.62) and (2.67) are the modified continuity and N-S equations used as the 

LES for turbulent flows. The finer the grid size, the less the unresolved scale eddies.  

 

Similarly, the shallow water equations including the SGS model [3] can be derived as 

  

  
 

       

   
                                                          (2.70) 

       

  
 

          

   
   

 

   
 

  

 
        

        

      
   .                  (2.71) 

where     is the depth-averaged space-filtered velocity component,      is the depth-

averaged subgrid-scale stress with eddy viscosity and is expressed by 

        
       

   
 

       

   
  ,                                          (2.72) 

The eddy viscosity    takes the same form as Eq. (2.68), but the     is represented by  

    
 

  
 

       

   
 

       

   
  .                                             (2.73) 
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Chapter 3: Lattice Boltzmann Method 

 

 

3.1 Introduction 

Lattice Boltzmann method is a modern method evolving from the lattice gas cellular 

automata (LGCA) which was developed more than twenty years ago. It has become a 

popular method in various areas. The lattice Boltzmann method consists of two steps: 

collision and advection. It avoids the disadvantage of LGCA such as the lack of Galilean 

invariance (Galilean invariance means that the fundamental laws of physics are the same 

in all inertial frame), and statistical noise.  

3.2 Derivation of the Lattice Boltzmann Equation 

The lattice Boltzmann equation is not only evolved from the lattice gas automata, but can 

also be derived from the continuum Boltzmann equation [120, 121] as shown in  the 

following.  

 

The Boltzmann equation with BGK collision operator reads [69], 

  

  
       

 

 
                                             (3.1)   

in which,            is the single-particle distribution in continuum phase space, e is 

the particle velocity,   is a relaxation time,    
 

  
  

 

  
 is the gradient operator and     

is the Maxwell-Boltzmann equilibrium distribution function expressed as 

    
 

         
     

 

 
                                                  (3.2) 

where D is the spatial dimension, e is particle velocity and V is fluid velocity; e and V are 

normalised by       (R is the ideal gas constant and Tc is the temperature), which leads 

to a sound speed of         [44]. The fluid density and velocity are computed as 

follows:  

      ,                                                               (3.3) 
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If the fluid velocity V is relative small compared with the sound speed, the equilibrium 

distribution function defined by Eq. (3.2) can be expanded up to the second-order 

accuracy [122] as follows: 

    
 

              
 

 
             

 

 
       

 

 
                    (3.4) 

For the purpose of developing a discrete model, a limited number of particle velocities are 

adopted   (       ), and the distribution function including these velocities can be 

changed to  

                 ,    
                                                (3.5) 

which satisfies Eq. (3.1), 

   

  
         

 

 
      

                                            (3.6) 

In the limited discrete space and time, the left hand side of Eq. (3.6) is the Lagrangian 

time derivative and can be discretized as  

   

  
        

                  

  
    

                        

  
                     (3.7) 

                  

  
    

                        

  
  

 

 
      

  
                  (3.8) 

in which     can be defined by          . Combining the above equation with Eq. 

(3.6) produces the standard lattice Boltzmann equation, 

                         
 

 
      

   ,                                 (3.9) 

where       . In fact,   should be a single dimensionless relaxation time.  

 

3.3 Lattice Boltzmann Equation 

The governing equation which is generally valid for fluid flows including the shallow 

water flows [3] in LBM is as follows: 

 

                                   
  

    
          ,            (3.10) 

  is a constant and is determined by the lattice pattern as  

   
 

  
        .                                              (3.11)  

   is the collision operator which represents the rate of change of    during collision. 

Theoretically,    is a complex matrix and is determined by the microscopic dynamics. 

An idea to linearize the collision operator is given firstly by Higuera and Jimenez [68]. 

Based on this idea,    can be expanded about its equilibrium value [123] as follows: 
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 .              (3.12) 

 

The solution process of the lattice Boltzmann equation is characterized by      
  

, 

indicating          . Furthermore, if the higher-order terms in Eq. (3.12) are 

neglected, a linearized collision operator can be obtained,                                                                              

      
        

   
      

   .                                              (3.13) 

 

The Bhatnagar-Gross-Krook (BGK) scheme simplifies the lattice Boltzmann equation 

greatly and makes the LBM used widely in various sectors. If the local particle 

distribution is assumed to be relaxed to an equilibrium state at a single rate   [70, 71], 

        

   
  

 

 
   ,                                                          (3.14) 

in which     is the Kronecker delta function, 

     
      
      

                                                           (3.15)                                                                                                                                                                                                                                                   

Eq. (3.13) can be rearranged as  

       
 

 
         

   ,                                             (3.16) 

Leading to the lattice BGK collision operator [69], 

       
 

 
      

   ,                                             (3.17) 

in which   is named as the single relaxation time. Because the BGK simplifies the lattice 

Boltzmann equation extremely and increases efficiency; it is widely used in lattice 

Boltzmann model. Combing the equations (3.10) and (3.17), the following lattice 

Boltzmann equation can be obtained, 

                         
 

 
      

    
  

              ,    (3.18) 

The above equation becomes the most popular form of the lattice Boltzmann equation 

used today. 
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3.4 Lattice Pattern 

 

Figure 3.1 9-speed square lattice (D2Q9) in the horizontal plane. 

 

Figure 3.2 7-speed square lattice (D2Q7) in the horizontal plane. 

 

As in traditional methods, a lattice pattern is needed to represent the grid points and 

discrete computational domain. Furthermore, the lattice pattern has been used to 

determine particles’ motions in the LBM, in which a microscopic model for molecular 

dynamics has been defined. Besides, the constant    in Eq. (3.10) is decided by the 

lattice pattern.                                                              

 

Generally, there are two kinds of lattice patterns: square lattice and hexagonal lattice for 

2D cases which are shown in Figs. 3.1 and 3.2, respectively. The square lattice can have 

4-speed, 5-speed, 8-speed, or 9-speed, and the hexagonal lattice can have 6-speed and 7-

speed model according to the number of particle speed at lattice node. However, not all of 

these models can recover the correct flow equations and that requires sufficient lattice 

symmetry [65]. Studies show that both of 9-speed square lattice and 7-speed hexagonal 

lattice have such property and can give satisfactory performance in numerical simulations. 

Therefore, these two kinds of lattice patterns have been used widely in the LBM. 
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However, the studies indicate that the 9-speed square lattice usually can produce more 

accurate result than that from the hexagonal lattice [124]. Furthermore, the use of the 

square lattice leads to an easy way to implement different boundary conditions [125]. 

Consequently, the 9-speed square lattice is adopted in this thesis. 

 

For the 9-speed square lattice displayed in Fig. 3.1, each particle moves one lattice unit at 

its velocity along one of the eight links indicated with 1-8 and 0 indicates the rest particle 

with zero speed. The velocity vector of particles is given by 

 

   

 
 
 

 
                                         

     
      

 
    

      

 
                   

       
      

 
    

      

 
            

                              (3.19) 

 

It is not difficult to demonstrate that D2Q9 has the following features, 

                   ,                                                   (3.20) 

               ,                                                         (3.21) 

                                                 ,    (3.22) 

where        
                 
                         

 ,  

 

Substituting the Eq. (3.19) into the Eq. (3.11) and the following equation can be obtained:  

   
 

  
         

 

  
          .                            (3.23) 

 

Combining the equation (3.23) with the equation (3.18), the following equation can be 

obtained:  

                        
 

 
      

    
  

             ,      (3.24) 

The equation (3.24) is the most common form of a lattice Boltzmann model with D2Q9. 

 

3.5 Local Equilibrium Distribution Function 

Deciding a suitable local equilibrium function plays an important role in the lattice 

Boltzmann method as it decides what flow equations could be solved. In order to apply 
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the equation (3.24) to solve the 2D shallow water equations (2.53) and (2.54), a suitable 

local equilibrium function   
  

 must be derived. 

 

According to the lattice gas automata, an equilibrium function is the Maxwell-Boltzmann 

equilibrium distribution function which is often expanded using a Taylor series in 

macroscopic velocity to its second order [44, 120]. The Navier-Stokes equations can be 

recovered by using such equilibrium function in the lattice Boltzmann equations [44]. 

However, the shallow water equations cannot be recovered with this kind of method. On 

the other hand, an alternative method is to assume that an equilibrium function can be 

expressed as a power series in macroscopic velocity [126] which has been used 

successfully in [127, 128] and show its accuracy and suitability [3], and thus it has been 

adopted here. The equilibrium function can be expressed as  

  
  

                               .                       (3.25) 

Because the equilibrium function has the same symmetry as the lattice shown in Figure 

3.1, there are 

               ,                                (3.26) 

and the similar expressions for   ,   , and   are used. Therefore, Eq. (3.25) can be 

rewritten as, 

  
  

  

                                                                  

                                           

                                            

                    (3.27) 

The coefficients such as   ,    and    can be determined by the constraints on the 

equilibrium distribution function, for example: mass and momentum conservations. For 

the shallow water equations, the constraints are the following three conditions: 

   
                                                             (3.28) 

      
  

                   ) ,                                     (3.29) 

         
         

 

 
                                .              (3.30) 

Basing on the calculated local equilibrium function (3.25) obtained under the above 

constraints, the 2D shallow water equations (2.53) and (2.54) can be recovered by the 

lattice Boltzmann equation (3.24) (The proof is shown in section 3.7). 

 

When Eq. (3.27) is substituted into Eq. (3.28), the following equation can be obtained: 
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                                                  .  (3.31) 

Combing the Eq. (3.19) and equating the coefficients of h and uiui, respectively, the 

following equations can be obtained: 

            ,                               (3.32) 

                        .                    (3.33) 

Similarly, substituting Eq. (3.27) into Eq. (3.29) results in  

                                                                       

                                                                      (3.34) 

Rearranged the above equation yields  

             .                                          (3.35) 

Inserting Eq. (3.27) to Eq. (3.30) leads to 

 

 

0 0

1,3,5,7

2

2,4,6,8

1
   

2

i i i i i j i j k k i j k l k l i j k k

i j i j k k i j k l k l i j k k ij i j

A B C

A

A e D e u u e e e e e u e e e e u u De e u u

e e e e e u eB C e e e u u e e u u gh hu uD

            



          









    

     




 (3.36) 

Combing Eq. (3.19), the above equation can be expressed by 

                                                                    

 

 
                                                                            (3.37) 

Basing on the above equation, the following four equations can be obtained, 

            
 

 
   ,                                                   (3.38) 

       ,                                                            (3.39) 

            ,                                                              (3.40) 

                    .                                    (3.41) 

Substituted the Equation (3.39) into the Eq. (3.40), we can get the following equation 

      .                                                             (3.42) 

Because of the symmetry of lattice and Eq. (3.42), the following relations can be assumed, 

       ,                                                          (3.43) 

                                                                  (3.44) 

      .                                                           (3.45) 

Combing the Eqs. (3.32), (3.33), (3.35) and (3.38)-(3.45) leads to  

     
    

    ,     
  

    ,                                   (3.46) 
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    ,    
 

    ,      
 

   ,      
 

                           (3.47) 

   
   

     ,     
 

     ,   
 

   ,    
 

                           (3.48) 

 Therefore, the local equilibrium function can be expressed by  

  
   

 
 
 

 
   

    

    
  

                                                                        

   

    
 

         
 

              
 

                        

   

    
 

 

    
      

 

   
           

 

    
                 

         (3.49) 

With this local equilibrium function, the shallow water equations (2.53) and (2.54) can be 

recovered correctly as shown in the later section. 

 

3.6 Macroscopic Properties 

The above sections have shown the lattice Boltzmann model for shallow water equations 

proposed by Zhou [129]. In order to recover the shallow water equation, the link between 

microdynamic variables and macroscopic the physical quantities (such as the water depth 

h and velocity ui) will be established in this section. The macroscopic properties of the 

lattice Boltzmann equation (3.24) has been examined by Zhou [3]. 

 

The sum of the zeroth moment of the distribution function in Eq. (3.24) is shown by 

                              
 

 
       

     
  

   
              (3.50) 

It is easy to demonstrate          ,  and Eq. (3.50) can be simplified as 

                             
 

 
       

    .             (3.51) 

The cumulative mass and momentum, are the corresponding summations of the 

microdynamic mass and momentum which are conserved in lattice Boltzmann method, 

should also meet the requirement of mass conservation. The continuity equation with 

microdynamic variables can be expressed by 

                                                                (3.52) 

Substituting the above equation into Eq. (3.51) results in  

             
                                                         (3.53) 

Combing Eq. (3.28) with the above expression, the water depth can be obtained as     

                                                                      (3.54) 

Next, the velocity will be defined. 

Similarly, the sum of the first moment of distribution function in Eq. (3.24) is taken      



34 
 

       2

1
, , ,

6

eq

i i i j i

t
e f x e t t t f x t e f f e e F x t

e
        

  


             (3.55)                                                        

Combing with Eq. (3.21), the above equation can be expressed  

                                    
 

 
           

                 (3.56) 

According to the Newton’s second law, the momentum equation with microdynamic 

variables requires   

                                                                (3.57) 

Substituting Eq. (3.57) into Eq. (3.56) leads to   

                   
        .                                         (3.58) 

Combing Eq. (3.29) with above equation, the velocity ui  can be defined as  

        
 

      
                                                         (3.59) 

It should be noted that the distribution function    relaxes to its local equilibrium function 

  
  

 by the lattice Boltzmann equation (3.24). Besides, the decided water depth and 

velocity will make sure that both Eqs. (3.53) and (3.58) keep true and the same is true for 

Eqs. (3.52) and (3.57). Therefore, the lattice Boltzmann method is conservative and 

accurate. 

 

3.7 Recovery of the Shallow Water Equations 

For the purpose of demonstrating that the depth and velocities obtained from Eqs. (3.54) 

and (3.59) are the solution to the shallow water equations, the lattice Boltzmann equation 

(3.24) will recover the shallow water equations [3], in which the Chapman-Enskog 

expansion and Taylor expansion are used. 

 

If Δt is assumed to be small and is equal to  , 

                                                                (3.60) 

The equation (3.24) can be expressed by 

                      
 

 
      

    
 

                          (3.61) 

A Taylor expansion is applied to the first term on the left-hand side of Eq. (3.61) in time 

and space around point (x, t) and results in 

  
 

  
    

 

   
    

 

 
   

 

  
    

 

   
 

 

          
 

 
      

   
  

 

         

(3.62) 
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in which   
   

   
    

 and     can be expanded around   
   

, 

     
   

    
   

     
   

                                                 (3.63) 

Inserting Eq. (3.63) into Eq. (3.62) and ignoring the high order term (higher than second 

order), the equations to order   and    can be obtained, respectively,  

 
 

  
    

 

   
   

   
  

 

 
  

   
 

 

        .                          (3.64) 

 
 

  
    

 

   
   

   
 

 

 
 

 

  
    

 

   
 

 

  
   

  
 

 
  

   
.                (3.65) 

Substituting  Eq. (3.64) into Eq. (3.65) and rearranging lead to  

   
 

  
  

 

  
    

 

   
   

   
  

 

 
  

   
 

 

 
 

 

  
    

 

   
  

 

   
             (3.66) 

From                   ) about  , the following equation can be derived: 

 

  
    

   
   

 

   
       

 
     

 

    

 

   
                      (3.67) 

If the force term with the first-order accuracy is applied, combining Eqs. (3.19) and (3.49) 

with above equation leads to  

  

  
 

      

   
                                                           (3.68) 

which is just the continuity equation (2.53) for shallow water flow. 

 

Taking                       about   can result in  

 

  
       

   
   

 

   
          

   
       

 

  
 

 

   
          

   
         

 
 

 
     

 

  
    

 

   
  

 

              (3.69) 

Similarly, if the force term with the first-order accuracy is used,  combining it with Eqs. 

(3.19) and (3.49), the above equation can be rearranged as: 

      

  
 

        

   
   

 

   
 

  

 
  

 

   
       ,                                 (3.70) 

in which 

    
 

  
               

   
 .                                         (3.71) 

Combining Eqs. (3.64), (3.19) and (3.49) and making some algebra, the following 

expression can be obtained:  

       
      

   
 

      

   
 .                                         (3.72) 

Substituting Eq. (3.72) into Eq. (3.70) results in   
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   ,                          (3.73) 

where the kinematic viscosity   is defined by 

  
    

 
                                                           (3.74) 

And the force term Fi by 

      
   

   
 

   

 
 

   

 
    .                                     (3.75) 

Equation (3.73) is the momentum equation  for the shallow flows. 

 

Zhou [3] has pointed out that the lattice Boltzmann equation (3.24) is only first-order 

accurate for the recovered shallow water equations as shown above. However, it has also 

been proved that Eq. (3.24) can become the second-order accurate if a suitable force term 

is used (the process will be shown in section 3.9) [3]. 

 

3.8 Stability Conditions 

The lattice Boltzmann equation can be interpreted as a Lagrangian finite difference 

method [130]. Therefore, it is not surprising that it may suffer from numerical instability. 

Sterling and Chen [130] carried out an analysis of the stability for the lattice Boltzmann 

method using perturbations method. In general, the stability conditions are not available 

for the method. However, Zhou [3] indicated the LABSWE is stable if some basic 

requirements are met:    

 

First is the fluid resistance. It indicates that the kinematic viscosity   should be positive 

[130]. With Eq. (3.74), the following expression can be obtained:  

  
    

 
        .                                       (3.76) 

Thus, the relaxation time needs to meet:  

  
 

 
.                                                          (3.77) 

 

Secondly, as indicated by Zhou [3] and Liu [93], the Courant number should be smaller 

than  unity. It implies that the magnitude of the resultant macro velocity is smaller than 

the lattice speed, 

    

    ,                                                         (3.78) 
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and the wave velocity also should be smaller than the lattice speed:  

  

    ,                                                         (3.79) 

Up to now, LABSWE is limited to subcritical shallow water flows, it means:  

    

  
  ,                                                          (3.80) 

Meanwhile, the Froude number should smaller than unit 

   
     

   
   ,                                                   (3.81) 

 

It should be noted that the first three conditions (3.77)-(3.79) can be easily satisfied by 

adjusting the relaxation time  , the lattice size    and time step   . It has been tested that 

the lattice Boltzmann method is stable normally, if these four stability conditions can be 

satisfied [3]. 

 

3.9 Force Terms 

3.9.1 Centred Scheme  

Practical flows always involve internal or external forces, such as a tidal flow, dam-

breaking flows, multiphase flows and multicomponent fluids. A suitable expression for 

force is critical to predict the real flows accurately. Many researchers have pursued this 

topic. Martys et al. [131] presented a force term with Hermite expansion and the scheme 

is complicated. Buick and Greated [132] proposed a composite scheme for the gravity. 

Guo et al. [133] improved the local equilibrium distribution function by including the 

force term. 

 

Zhou [125, 129] incorporated the force terms into the streaming step directly in the lattice 

Boltzmann method and obtained accurate results for many flows. After that, Zhou [3] 

improved the method with a second-order force scheme and showed satisfactory results. 

This scheme has been adopted in this thesis.  

 

For the centred scheme, the force term is determined at the mid-point between the lattice 

point and its neighbouring lattice point as 

        
 

 
       

 

 
                                   (3.82) 
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In order to be easy for parallel computation, the above equation can be expressed in semi-

implicit form: 

        
 

 
       ,                                       (3.83) 

Next, the Chapman-Enskog procedure is applied to lattice Boltzmann equation (3.24) to 

study the accuracy of this scheme. With the centred scheme for the force term, if    is 

assumed to be small and equal to  , the equation (3.24) can be written as  

        2

1 1 1
, , , , ,

6 2 2

eq

i if x e t f x t f x t f x t e F x e t
e

      


   



 
           

 
 (3.84) 

A Taylor expansion is applied to the first term on the left-hand side of the above equation 

in time and space around point (x, t) and the force term on the right-hand side, 

     
2

2 21
, ,

2
j j

j j

f x e t f x t e f e f O
t x t x

          
      

                   

 (3.85) 

     
 

 
                 

 

 
  

 

  
    

 

   
             .        (3.86) 

Substituting  Eqs. (3.85) and (3.86) into Eq. (3.84) results in 

  
 

  
    

 

   
    

 

 
   

 

  
    

 

   
 

 

    
 

 
      

   
  

 

         

  

     
 

  
    

 

   
            .                            (3.87) 

in which,   
   

   
  

 and expanding    to   
   

 gives, 

     
   

    
   

     
   

      ,                                    (3.88) 

Taking the equation (3.87) to order   and    leads to  

 
 

  
    

 

   
   

   
  

 

 
  

   
 

 

         ,                     (3.89) 

 
 

  
    

 

   
   

   
 

 

 
 

 

  
    

 

   
 

 

  
   

  
 

 
  

   
 

 

     
 

  
    

 

   
        (3.90) 

Substituting Eq. (3.89) into Eq. (3.90) leads to   

   
 

  
  

 

  
    

 

   
   

   
  

 

 
  

   
                         (3.91) 

From (                  ) about  , the following equation can be derived: 

 

  
    

   
   

 

   
       

   
    .                               (3.92) 

Combining Eqs. (3.19) and (3.49) with the above equation gives the second-order 

accurate continuity equation (2.53). It can be noted that the assumption of first-order 

accuracy for the force term is not necessary as that in Equation (3.67). 
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Taking (                     ) about   results in 

 

  
       

   
   

 

   
          

   
       

 

  
 

 

   
          

   
     .    (3.93) 

 

Again combining Eqs. (3.19) and (3.49), the above equation can be written as  

      

  
 

        

   
   

 

   
 

  

 
  

 

   
      ,                     (3.94)  

in which 

    
 

  
               

   
 .                              (3.95) 

Combining Eqs. (3.89), (3.19) and (3.49) and making some algebra, the following 

expression can be obtained:  

     
   

 
       

      

   
 

      

   
 .                         (3.96) 

Substituting Eq. (3.96) into Eq. (3.94) gives the momentum equation (2.54) at second-

order accurate. 

 

Similarly, it can be proved that the use of the second-order scheme (3.83) for the force 

term in Eq. (3.24) also results in second-order accurate macroscopic equations in space. 

However, using the basic scheme gives only first-order accurate macroscopic equations in 

time and space as shown in section 3.7. 

 

3.9.2 Improved Force Term treatment method and New Treatment of Bed 

Slope 

In the above method for the force term, it includes the calculation of the first order 

derivative related to the bed slope, which can be accurately determined by the centred 

scheme.  To improve the efficiency and remove the calculation of the derivatives, Zhou 

[134] introduced the bed level into the lattice Boltzmann equation. In this new scheme, 

the lattice Boltzmann equation (3.24) can be rewritten as 

         2 2

1
, ,

6 6

eq

b b j j

gh t
f x e t t t f x t f f z x e t z x e F

e e
      




            (3.97)                                       

 in which                           .  

In addition, the calculation of the force term can also be improved for more accurate 

results. The last force term in Eq. (3.24) can be defined by      where    
     

   
 in [3]. 
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In order to include the effect of direction on the distribution function, the force term can 

be improved by 

        
     

  
                                                       (3.98)  

in which    are the weights defined as 

      

                         

                    

                     

                                                   (3.99) 

The force term in Eq. (3.24) can be calculated using Eq. (98) in which Fi  is calculated by 

the following equation 

     
                     

     
 

   

 
                                           (3.100) 

3.9.3 Discussion 

In section 3.9.1, the implicit form of the centred scheme (3.82) was used to show that the 

scheme is second-order accurate in space and time. Similarly, it can be proved that the 

semi-implicit form of centred scheme (3.83) is second-order accurate in space but only 

first-order accurate in time. In practice, a scheme with first-order accuracy in time can 

still provide accurate solution for most flow problems. In fact, this has been confirmed in 

the numerical computations. Therefore, Eqs. (3.83), (3.98)-(3.100) are adopted in this 

thesis. 

 

3.10 Turbulence Modelling 

3.10.1 LABSWETM  

In order to simulate flows with relatively higher Reynolds number, LABSWE is extended 

to the shallow water equations with turbulence modelling (LABSWE
TM

) which is 

proposed by Zhou [3] in this section. Comparing the turbulent shallow water equations 

(2.70) and (2.71) with the equations (2.53) and (2.54) without flow turbulence, it can be 

noted that the only difference is the viscosity term. LABSWE
TM

 includes the eddy 

viscosity term which is not present in the LABSWE. Because the kinematic viscosity   is 

determined only by the relaxation time via Eq. (3.74) with constant time step and space 

step, this means that a new relaxation time     can be defined by  

       ,                                                        (3.101) 

which yields a total viscosity   , 

       ,                                                         (3.102) 
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and the Equation (3.24) can be rewritten as  

                         
 

  
      

    
  

        ,            (3.103) 

 

which can produce the solution to the shallow water equations (2.70) and (2.71). This is 

consistent with the idea of the lattice Boltzmann model with subgrid-scale stress designed 

by Hou et al. [135]. Therefore, the flow turbulence can be predicted easily by the standard 

lattice Boltzmann equation (3.103) with the total relaxation time   . 

 

For the purpose of determining the total relaxation time   , the strain-rate tensor Sij needs 

to be calculated. As Sij defined by Eq. (2.73) involves calculation of derivatives, it is not 

suitable or efficient to use in practice. To keep consistent with the lattice gas dynamics, Sij 

is expected to be expressed in terms of the distribution function. Using the Chapman-

Enskog expansion, it can be seen that the strain-rate tensor Sij is related to the non-

equilibrium momentum flux tensor (see section 3.10.2 for detail) and Sij can be calculated 

by 

     
 

        
             

    .                                (3.104) 

Assuming    and    satisfy the relation (3.74), the following expression can be obtained:   

   
 

 
 

   

    
.                                                         (3.105) 

Substituting Eqs. (3.101) and (3.102) into the above equation results in  

     
 

 
 

       

    
.                                                    (3.106) 

Combined with Eq. (3.74) yields  

   
 

    
  .                                                           (3.107) 

Substituting Eq. (2.68) into the above equation provides  

   
 

    
      

        .                                               (3.108) 

Combining Eq. (3.104) with the above equation gives  

   
 

    
      

  

        
                                                  (3.109) 

in which  

                 
    .                                              (3.110) 

With Eq. (3.101), if       is adopted, Eq. (3.109) can be rewritten as  

   
 

 

  
 

                .                                                (3.111) 
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Solving the above equation gives:  

   
           

              

 
,                                         (3.112) 

With Eq. (3.101), the total relaxation time    can be by  

   
          

              

 
.                                         (3.113) 

 

3.10.2 Recovery of LABSWETM 

With a similar procedure described in section 3.7, the shallow water equations (2.70) and 

(2.71) can be recovered from the lattice Boltzmann equation (3.103) by the Chapman-

Enskog expansion.  

Assuming    is small and is equal to  , 

    .                                                                (3.114) 

The equation (3.103) can be written as  

                       
 

  
      

    
 

   
     .               (3.115) 

If a Taylor expansion is applied to the first term on the left-hand side of the above 

equation in time and space around point (x, t), the following equation can be obtained:  

  
 

  
    

 

   
    

 

 
   

 

  
    

 

   
 

 

          
 

  
      

   
  

 

         

(3.116) 

where   
   

   
  

,    can be expanded around   
   

,  

     
   

    
   

     
   

      ,                             (3.117) 

Substituting Eq. (3.117) into Eq. (3.116), we have the following expressions to order   

and    ,   

 
 

  
    

 

   
   

   
  

 

  
  

   
 

 

        .                        (3.118) 

 
 

  
    

 

   
   

   
 

 

 
 

 

  
    

 

   
 

 

  
   

  
 

  
  

   
.            (3.119) 

Substituting Eq. (3.118) into Eq. (3.119) results in  

   
 

   
  

 

  
    

 

   
   

   
  

 

  
  

   
 

 

 
 

 

  
    

 

   
  

 

         .    (3.120) 

From                      about  , the following equation can be derived:   

 

  
    

   
   

 

   
       

   
     

 

    

 

   
            .          (3.121) 
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If the force term with the first-order accuracy is applied, combining Eqs. (3.19) and (3.49) 

with the above equation leads to the continuity equaton (2.70).  

 

Taking                         about  , the following equation can be obtained   

 

  
       

   
   

 

   
          

   
       

 

   
 

 

   
          

   
         

 
 

 
     

 

  
    

 

   
  

 

          .              (3.122) 

Similarly, using the force term with the first-order accuracy and referring to Eqs. (3.19) 

and (3.49), the above equation can be written as  

      

  
 

        

   
   

 

   
 

  

 
  

 

   
      ,                     (3.123) 

in which  

    
 

   
                

   
 .                             (3.124) 

Combining Eqs. (3.19), (3.49) and (3.118) with the above equation, one can get 

     
 

 
          

      

   
 

      

   
 .                        (3.125) 

Substituting Eq. (3.125) into Eq. (3.123) leads to a momentum equation, 

      

  
 

        

   
   

 

   
 

  

 
    

       

      
   ,                 (3.126) 

in which, the total viscosity    is defined by  

   
    

 
       .                                            (3.127) 

Combining Eqs. (3.74), (3.101), (3.102) and (3.107) with the above equation, the total 

viscosity can be expressed by   

       ,                                                     (3.128) 

and so Eq. (3.126) is just the momentum equation (2.71). 

 

If the force term with the centred scheme described in section 3.9 is used, the shallow 

water equations with turbulence at second-order accuracy in time and space can be 

recovered.  

 

The calculation of the strain-rate tensor Sij can be derived from Eqs. (3.124) and (3.125), 

Combining the Eqs. (3.124) and (3.125) can lead to  

 

  
 
      

   
 

      

   
   

 

      
         

   
 .                       (3.129) 
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With Eq. (3.117), the following can be obtained: 

  
   

 
      

   
 

 
      

      
   

 

 
.                                  (3.130) 

Considering   
   

   
  

,      and Eq. (2.73), substituting Eq. (3.130) into Eq. (3.129) 

gives Eq. (3.104) which is used to calculate the strain-rate tensor Sij.  

 

3.11 Multiple-Relaxation Time 

Compared with the BGK scheme, the multiple-relaxation-time is less used in the lattice 

Boltzmann model for shallow water flows. In order to improve the stability of the method, 

the collision operator of multiple-relaxation-time is incorporated into the LABSWE 

(named LABSWE
MRT

) in this section. This model will be used in the latter chapter and 

show its ability. Together with the new force term introduced in section 3.9.2, the shallow 

water equations are recovered correctly in this section, which is the first derivation to 

writer’s knowledge.  

 

3.11.1 LABSWEMRT 

As described in section 1.5.4, the multiple-relaxation-time can improve the stability of 

computation. It is incorporated into the LABSWE in this thesis (named LABSWEMRT) 

and the shallow water equations will be recovered by Chapman-Enskog analysis in the 

next section. If the D2Q9 model is adopted, the lattice Boltzmann equations with the 

MRT for shallow water equations are as follows:  

                            
                 

              (3.131) 

where      ,     
    and S is the relaxation matrix, S=diag (s0, s1, s2, s3, s4, s5, s6, 

s7, s8), Tr is the transform matrix defined in [85], 

     

 
 
 
 
 
 
 
 
 

          
        
        

              
           
             

    
     
       

           
         
             

        
       
         

    
    
      

              
            
              

       
         
      

     
      
     

 
 
 
 
 
 
 
 

         (3.132) 

The relaxation parameters s7 and s8 is chosen according to fluid viscosity 

determined by Equation (1.11), and the other parameters can be chosen freely 
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during the range of 0~2 for maximum stability. In practical application, these free 

parameters are a little larger than 1 according to [85]. 

 

The equilibrium values of moments     is  

 
     2 2 2 2 2 22 2

(1 9) 2 2 2 2 2 2

3 33 9
( , 4 ,4 , , , , , , )

2

eq T
h u v h u v h u vgh gh hu hu hv hv huv
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         (3.133) 

 

3.11.2 Recovery of the LABSWEMRT 

The Chapman-Enskog analysis is used to recover the shallow water equations from the 

proposed MRT- LBM model with improved force term. Assuming    is small and     , 

equation (3.131) can be expressed as: 

                          
                 

                   (3.134) 

Take a Taylor expansion to the first term on the left hand side of the above equation in 

time and space around point (x, t) leads to 

               
  

 
          

              
            

                    

(3.135)                      

According to the Chapman-Enskog  expansion,    can be written in a series of   

     
   

    
   

     
   

      ,                                (3.136) 

which can be expressed in a vector form, 

                         ,                                 (3.137) 

The above equation can be easily converted into an expression in moment space by being 

multiplied with T,  

                         ,                           (3.138) 

If the centered scheme[3] is used, the expression for    can be obtained 

        
 

 
      

 

 
   ,                                       (3.82) 

Making a Taylor expansion to the above yields 

     
 

 
      

 

 
           

 

 
                       ,        (3.139) 

Combining Eqs. (3.138), (3.139) and Eq. (3.134), the equations to orders    ,   and    are 

  
   

   
    

,                                                       (3.140) 

             
   

     
        

   
   .                              (3.141) 
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            .     (3.142) 

 Eqs. (3.140-3.142) can be written with matrices and vectors, 

          ,                                           (3.143) 

         
           

         ,                                 (3.144) 

         
       

 

 
            

          
        

 

 
        ,   (3.145) 

    where   is the identity matrix;   is a diagonal matrix as 

                                                                      (3.146) 

                    ，  
   

， ，  
   

，   
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  ;        (3.147) 
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，   
   

  ;        (3.148) 

and  

  

      
     

      
     

       
     

      
     

      
     

      
     

      
     

      
     

    .  

 (3.149) 

Substituting Eq. (3.144) into Eq.(3.145) leads to 

         
     

 

 
          

       .                       (3.150) 

Multiplying Eqs. (3.144) and (3.150) by    gives 

          
                   .                        (3.151) 

          
      

 

 
             .                     (3.152) 

Writing out Eq. (3.151) for    , 1, 3, 5, 7, and 8 yields: 

                                                                     (3.153) 
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                        (3.157) 

   
   

 
  

 

 
       

 

 
             

   
                               (3.158) 

Writing out Eq. (3.152) for the conserved moments,     and   results in the follow 

equations: 

   
 

 
   

  

 
      

 

 
   

  

 
    

   
        

  

 
    

   
                 (3.159) 
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                 (3.160) 

Combining the zeroth-order equations (3.155) and (3.156) with the first-order equations 

(3.159) and (3.160) respectively, we have  
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                                 (3.162) 

 Ignoring the higher order terms, the following expressions from Eqs. (3.154), (3.157) and 

(3.158) can be obtained 

                                                                      (3.163) 

   
   

  
 

   
                                                      (3.164) 

   
   

  
 

   
                                                       (3.165) 

 Substituting Eqs. (3.163)-(3.165) into Eq. (3.161) gives 

          
   

 
                  

  

 
 

 

  
 

 

 
                   

  
  

 
 

 

  
 

 

 
                                                  (3.166) 

If setting           , in which   is the single relaxation time, and defining the 

kinematic viscosity    
  

 
       the equation (3.166) can be reduced to  

          
   

 
                     

        
                 (3.167) 

 Similarly the following equation can be obtained from Eq. (3.162)  

          
   

 
                     

        
                  (3.168) 

Eqs. (3.153) (3.167) and (3.168) are just the shallow water equations. It may be noted that 

when           , the lattice Boltzmann method with a single relaxation   time is 

recovered. Now, the shallow water equations are recovered from LABSWE
MRT

 with 

improved calculation for a force term and its performance will be tested in chapter 5.  
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3.12 Solute Transport Equation 

3.12.1 Lattice Boltzmann Model for Solute Transport Equation                        

Several lattice Boltzmann models for solute transport have been developed [46, 55, 136, 

137]. Ginzburg [82] developed a lattice Boltzmann model with two-relaxation-time (TRT) 

collision operator for anisotropic advection dispersion equation. Zhang et al. [46] 

presented a lattice Boltzmann model for the advection-dispersion equation with BGK 

collision on rectangular lattice, and discuss its boundary conditions [138]. In this thesis, a 

D2Q5 lattice Boltzmann model for advection-diffusion developed by Zhou [136] equation 

is adopted. The most important difference between this model and the others [46, 55, 137] 

is that the dispersion coefficient is not dependent on the relaxation time, and hence the 

relaxation time can be chosen freely for better accuracy and stability. However, in the 

other models, the dispersion coefficient is related to the relaxation time, and if the 

relaxation time calculated by the dispersion coefficient is very small, the computation will 

become unstable. Furthermore, the other models applied for solute transport by the lattice 

Boltzmann method are based on D2Q9, but the model adopted in this paper is based on 

D2Q5 (see Figure 3.3), which is simpler and saves computational effort. Another 

advantage of the model applied is that a rectangular lattice and different dispersion 

coefficients in the x and y directions can be used without modification [136] with a single 

relaxation time. The lattice Boltzmann equation based on BGK for the advection-

diffusion equation is  

                          
 

  
           

         
   

 
        (3.169) 

where,    is the distribution function of particles,   
   is the local equilibrium distribution 

function,    is the source term,    is single relaxation time and     is the velocity vector 

of a particle in link  , as follows: 

    

 
 

 
                                              

      
      

 
    

      

 
            

      
      

 
    

      

 
           

                          (3.170) 

in which,         ,         ,    and     are the lattice size in the x and y 

directions respectively.    is equal to    for simplicity in this paper.  
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Figure 3.3 5-speed square (D2Q5) lattice in horizontal plane. 

 

The equilibrium distribution function is defined as 

  
   

 
 
 

 
    

    
      

 

    
                  

 
 

 

  

  
   

     

   
              

 
 

 

  

  
   

     

   
              

                                (3.171) 

in which,    
   

      
 

 
     

 is non-dimensional, and     is dispersion coefficient in the ij 

direction. The concentration can be calculated by    

                                                                               (3.172) 

The advection-diffusion equation (2.61) can be recovered from Eq. (3.169) by using the 

Chapman-Enskog analysis [136]. In order to simplify the process, the source term is not 

included in the following derivation.  

 

3.12.2 Recovery of the Advection-diffusion Equation 

In order to recover the advection-diffusion equation, the following constraints are 

introduced: 

   
  

                                                               (3.173) 

      
  

                                                            (3.174) 

 

Substituting the Equation (3.173) into Equation (3.172) results in 

        
  

                                                           (3.175) 
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The Chapman-Enskog expansion is used recover the advection-diffusion equation (2.61) 

from Equation (3.169) as follows: 

  

With the purpose of this,    is assumed to be small and equal to    

                                                                             (3.176) 

Substituting Equation (3.176) into Equation (3.169) and ignoring the source term results 

in  

                       
 

  
      

  
                              (3.177) 

Applying a Taylor expansion to the left-hand side of Equation (3.177) in time and space 

around point (x, t), one can have 

  
 

  
    

 

   
    

 

 
   

 

  
    

 

   
 

 

          
 

  
      

             (3.178) 

Using the Chapman-Enskog expansion,   can be expressed as 

     
   

    
   

     
   

                                            (3.179) 

Taking the Equation (3.178) to order   ,  ,    and the following equations can be 

obtained:  

  
   

   
  

                                                    (3.180) 
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              (3.182) 

Substituting Equation (3.181) into Equation (3.182) leads to 

   
 

   
  

 

  
    

 

   
   

   
  

 

  
  

   
                                 (3.183) 

Taking [Equation (3.181) + Equation (3.183)× ], the following equation can be obtained 

 
 

  
    

 

   
   

   
     

 

   
  

 

  
    

 

   
   

   
  

 

  
   

   
    

   
     (3.184) 

Summing Equation (3.184) and rearranging it with the following equations. 

   
   

     
   

                                            (3.185) 

 

  
   

   
                                                (3.186) 

According to the conservation condition (3.175), the following equation can be given: 

 

  
   

   
  

 

   
      

   
      

 

   
 

 

   
      

   
                (3.187) 

Substituting Equation (3.181) into Equation (3.187) gives  
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      (3.188) 

 

According to [46] , comparing with the first term, the last term on the right-hand side of 

Equation (3.188) is smaller, so it can be ignored and treated as a truncation error. 

Combining Equations (3.171), (3.173), (3.174) and (3.180) with Equation (3.188) leads to  

   

  
 

       

   
 

 

   
        

 

 
     

   

   
                                  (3.189) 

with 

       
 

 
                                                    (3.190) 

Then Equation (3.189) is the advection-diffusion equation (2.61) without source term. 

Considering      in Equation (3.176), rewriting Equation (3.190) can give the 

expression of    as  

   
  

      
 

 
     

                                                      (3.191) 
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Chapter 4: Initial and Boundary Conditions 

 

 

 

4.1 Introduction  

In this chapter, various boundary conditions and inlet and outlet boundary conditions are 

described such as no-slip, semi-slip and slip. Study shows that the boundary condition 

play a critical role on the results of simulation and can affect the simulation’s accuracy, 

efficiency and stability [93]. Some typical work can be found in [123, 139-141]. 

Boundary conditions and initial conditions are still the fundamental problem of LBM and 

attract much attention [90, 107, 124, 142]. But this is beyond of this thesis, and we just 

briefly introduce the common boundary conditions and more detailed work can be 

referred to [106, 143, 144].   

 

4.2 Solid Boundary Condition 

4.2.1 No-slip Boundary Condition 

One of the most attractive advantages of LBM is its simple treatment of boundary 

conditions such as the bounce-back scheme. It can be implemented easily for flows in 

arbitrary complex geometries. The bounce-back and similar schemes for different 

boundary conditions, is very simple and efficient for no-slip, semi-slip and slip boundary 

conditions and is used widely for various flow problems. For example, in the bounce-

back scheme as shown in Figure 4.1, the part below AB is a wall and defined as solid; the 

part above is fluid. The unknown incoming distribution functions   ,    and    from the 

solid are simply equal to   ,    and   , respectively. Consequently, the specific location of 

solid points is not required and the programming is easy, making it the most efficient 

treatment for a no-slip boundary condition for flows in complex geometry [3, 44, 45, 145].  

 

 

 



53 
 

 

 

 

Figure 4.1 Layout of wall boundary and lattice nodes. 

 

4.2.2 Slip Boundary Condition 

If the boundary is smooth with little friction, the slip boundary should be used. As Figure 

4.1 shows, the unknown distribution functions   ,   , and   . 

     ,          ,           .                                           (4.1) 

It means that no momentum is changed in the direction normal to a wall and the velocity 

along the wall is kept.  

 

4.2.3 Semi-slip Boundary Condition 

In practical flows, a large velocity gradient exists near the boundary for turbulent flows 

due to the effect of wall friction. It cannot be described by slip or no-slip boundary 

conditions, and hence the semi-slip boundary is described to deal with this case. In order 

to construct the semi-slip boundary condition, the wall shear stress should be included. 

According to [3], the wall shear stress     can be expressed by  

                                                                      (4.2) 

in which,    is the friction factor at the wall and can be constant or determined by  

    
  

 

     with    is the Manning’s coefficient at the wall. By adding the wall shear 

stress to the force term, the semi-slip boundary condition is developed together with slip 

boundary. It should be noted that the distribution function is still dealt with by the slip 

boundary condition.     
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4.3 Inflow and Outflow Condition 

In order to obtain the correct results, the proper inlet and outlet boundary condition 

should be specified and it adds a constraint to flow for consistency with surrounding flow.  

As the LABSWE is only applicable to subcritical flow, the discharge and water depth are 

specified at inlet and outlet respectively normally. As Figure 4.2 shown, at inlet the 

distribution function   ,   ,    are unknown. If the water depth and velocity are known, 

these unknown distribution functions can be determined by the following equations as 

Zou and He [139], Zhou [3] proposed. According to mass and momentum conservation, 

with the relations (3.54) and (3.59), the following equations can be obtained: 

                                                           (4.3) 

                                                            (4.4) 

                                                          (4.5) 

If v=0 is assumed, based on the above equations,   ,   ,    can be expressed as   

      
   

  
 ,                                                               (4.6) 

   
  

  
    

     

 
,                                                     (4.7) 

   
  

  
    

     

 
.                                                     (4.8) 

Similarly, the unknown   ,   ,    at outflow boundary can be calculated by   

      
   

  
,                                                               (4.9) 

    
  

  
    

     

 
,                                                (4.10) 

    
  

  
    

     

 
,                                                 (4.11) 

But, normally the water depth and velocity are unknown at inlet and they can be assumed 

by the zero gradient method or exploration method.  
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Figure 4.2 Inlet and outlet boundary conditions. 

 

For zero-gradient method: 

             ,                                                    (4.12)  

             ,                                                    (4.13) 

             ,                                                    (4.14) 

or exploration: 

                       ,                                                (4.15) 

and assuming          according to equations (4.3) and (4.4), one has 

         
                    

      
                                                (4.16) 

The water depth and water velocity obtained by zero-gradient method or exploration 

cannot meet the requirement of constant discharge at inlet, and a revised step is 

needed as follows: 

  

Q0 is the specified discharge and Qin is the calculated discharge. The equation (4.4) can be 

revised by adding the (Q0-Qin)/b which is a revised unit discharge.   

                            
        

 
                       (4.17) 

So,   ,   ,    can be updated as:  
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 ,                                                      (4.18) 

   
             

  
    

     

 
 

  

  
,                                        (4.19) 

   
             

  
    

     

 
 

  

  
.                                        (4.20) 

For the outlet boundary, the water depth is fixed and velocity can be calculated by  

         
                    

  
                                          (4.21) 

                                                                          (4.22) 

So, the   ,   ,    at outlet can be calculated as : 

      
   

  
 ,                                                        (4.23) 

    
  

  
    

     

 
 

  

  
.                                   (4.24) 

    
  

  
    

     

 
 

  

  
,                                   (4.25) 

If the no-slip boundary condition is used for the wall boundary, the corner point at the 

inlet needs to be treated carefully. More details are given in [93].   

 

4.4 Periodic Boundary Condition 

A periodic boundary condition may be used for some specific cases [3]. For example, if a 

flow region consists of a tidal flow, a periodic boundary condition can be used. According 

to the flow feature, a periodic boundary condition in the x direction can be achieved by 

specifying the unknown    ,    and    at inflow boundary (see Figure 4.2 ) with streaming 

to the corresponding distributions at outflow boundary, 

                                                          (4.26) 

and the unknown   ,    and    at outflow to that at inflow boundary, 

                ,                                       (4.27) 

Similarly, a periodic boundary condition in the y direction can be achieved.  

 

4.5 Initial Condition 

Before computation, the initial condition for distribution function needs to be specified.  

Generally, there are two ways to specify the initial condition in the lattice Boltzmann 

method [3]. One is to specify a random value between 0 and 1 for the distribution 

function. The other is to assume a flow field with water depth and velocity firstly, then 

compute the local equilibrium distribution function   
  

 and use it as an initial condition 
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for   . Normally, it is easier to specify a macroscopic quantity than a microscopic. So, the 

second method is better in practical computation, which is used in the present models. It 

is obvious that there is no difference between results calculated with these two initial 

conditions for a steady flow problem. 

 

4.6 Solution Procedure 

The solution procedures for the LABSWE, LABSWE
TM

 and LABSWE
MRT

 are extremely 

simple. It involves only explicit calculations and consists of the following steps:  

 

For LABSWE or LABSWE
TM 

1. Assume initial water depth and velocity, 

2. Compute   
  

 from Eq. (3.49),  

3. Calculate the    from the lattice Boltzmann equation (3.24), or from the Equation 

(3.103) for turbulent flows together with the total relaxation time    calculated from 

Eq. (3.113).  

4. Renew the water depth h and the velocity u and v by Eqs. (3.54) and (3.59), 

5. Go back to step 2 and repeat the above procedure until a solution is obtained.  

 

For LABSWE
MRT

 

1. Assume initial water depth and velocity, 

2. Compute the equilibrium values of moments     from  Eq. (3.133) 

3. Calculate the    from the lattice Boltzmann equation (3.131), 

4. Renew the water depth h and the velocity u and v from Eqs. (3.54) and (3.59), 

5. Go back step 2 and repeat the above procedure until a solution is obtained.  
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Chapter 5: Applications of LABSWETM and 

LABSWEMRT for the Free Surface Flows  

 

 

5.1 The Flows in Rectangular Shallow Basins   

5.1.1 Introduction 

In order to verify the presented model LABSWE
TM

, its results are compared with 

corresponding experiments. Furthermore, the asymmetrical flows occurring in the 

rectangular basins with different ratios of length to width are simulated. The effects of the 

Froude number and bed friction on flow asymmetry and reattachment length are 

investigated. The aim is to test the feasibility and accuracy of the lattice Boltzmann 

method to study free surface flows in shallow rectangular basins. 

 

5.1.2 Background   

Shallow waters in open channels with sudden expansions are often observed in natural 

rivers and have received much attention. Additionally, the instabilities of flow in a 

symmetric expanded channel are well known [146-148]. Mullin et al. [147] examined the 

effect of variable ratios of the inlet to outlet channel widths within a 1:3 expansion 

experimentally and numerically and concluded that the length of the expanded section 

played a critical role in evaluating the effect of the ratio on flow instability, in which the 

flow is closed and limited to low Reynolds number (about 100). Graber [146] developed a 

mathematical stability criterion for subcritical flows in horizontal channels with 

rectangular expansions. Babarutsi et al. [149, 150] investigated shallow recirculation 

flows by experiments and numerical simulation. Both Babarutsi and Graber’s research 

focused on an expanded channel without contraction. The turbulent flows in shallow 

basins have also been studied for their important effects on aquaculture [151] and on 

sedimentation patterns [152, 153]. Dufresne et al. [154] investigated the symmetric and 

asymmetric flows in rectangular shallow reservoirs with different lateral expansion ratio 

and dimensionless length by numerical simulation. 
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Of particular note, Dewals et al. [148] analyzed the free surface turbulent flows in several 

shallow rectangular basins by experiments and numerical simulation using the k   

turbulence model and an algebraic turbulence model for high Reynolds number of 17500. 

They found that the flow pattern might become asymmetric even if the inflow and 

outflow boundary conditions and geometry of the basin were symmetric; the numerical 

simulations were found to reproduce the global experimental flow patterns.  

 

5.1.3 Boundary Conditions 

The boundary conditions include inlet, outlet and sidewalls. In the present study, semi-

slip boundary condition for sidewalls is used (as applied by Dewals et al. [148]), in which 

side wall friction coefficient Cwall=4Cb
 
and Cb

 
is bed-friction coefficient. The water depth 

is determined at inlet boundary, h(1,y)=h(2,y); and the velocity is calculated with 

u(1,y)=q(y)/h(1,y), in which the unit discharge q(y) is linear variation along the 

streamwise direction y following Dewals et al. [148]. Stochastic treatment is not adopted 

at inlet. For outlet, the water depth h0 is specified.  

 

5.1.4 Numerical Simulation  

It is known that open shallow flows in rectangular reservoirs can show a bifurcating 

behaviour under certain conditions [146, 148, 152]. This will be shown in this section. 

The same channel used by Dewals et al. [148] is adopted and shown in Figure 5.1. It 

consists of inlet channel with width b= 0.25m, expansion rectangular channel and outlet 

channel. The expansion rectangular channels with different length and width are 

considered, among which the channel with 6m long and 4m wide is studied in detail.  

 

The simulated flow vectors for different length and width have been compared with the 

experiments in Figures 5.2 and 5.3 which indicate that the simulations qualitatively agree 

with the experiments. Quantitative comparison will be discussed in the following sections. 

Meanwhile, different aspect ratios (L/B) and expansion ratios (B/b) have been studied for 

bifurcation phenomenon; here L and B are the length and width of the rectangle, 

respectively. The global moment N is used to quantify asymmetry of flow fields

0

1 L

N M dx
L

  , in which 
2

2 2

2 B

B
M uydy

UB 
   where U = Q/(Bh0) and Q = 0.007m3/s, 

with the water depth h0 at the outlet channel. Figure 5.4 shows that the flow bifurcates 
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when the aspect ratio exceeds 1.25 or expansion ratio exceeds 2.5, which is consistent 

with that reported by Dewals et al. [148] although there is small difference in the global 

moment N. This demonstrates that the model can predict bifurcating behaviour of free 

surface flow in shallow rectangular basins. 

 

In order to verify the method further, the numerical results are compared with those from 

the experiments and conventional numerical method with algebraic model for flow 

turbulence. The asymmetric flow pattern in this channel has been found by Dewals et al. 

[148] in experiments. According to Dewals’ work, non-uniform specific discharge profile 

at the entrance to the inlet channel can generate the similar disturbance to flows as those 

in the experiment. The present numerical simulations confirm that such an approach can 

successfully produce asymmetric flows; hence it is used in the numerical studies. 

 

In computation, uniform grids are used and t =0.01s. The single relaxation time is 

=0.53. The discharge is 0.007m
3
/s in all cases. For case 1, the rectangular basin is 6m 

long and 4m wide; the bed friction coefficient 
2 1 3

b bC gn h is 0.0017 according to the 

Manning equation and inlet flow
rF u gh is 0.1. In outlet channel, b1 is the same as 

b=0.25m.   

 

In order to obtain the grid independent prediction, four different grid spaces (Δx = 

0.0208m, 0.025m, 0.03125m and 0.042m) have been tested and the results are displayed 

in Figure 5.5. It indicates that the calculated results fluctuates slightly as grid spacing 

decreases and the Δx = 0.025m is small enough for present studies; therefore Δx = 0.025m 

is adopted in all the computations. In the test, the reattachment length has been selected 

here for assessing grid independence of the results. However, the grid spacing might turn 

out not to be fine enough if other parameter like threshold geometry is chosen for the 

assessment. Furthermore, the Smagorinsky constant Cs = 0.1, 0.2 and 0.3 were tested. The 

results showed that the reattachment length is little sensitive to these values and then Cs = 

0.3 has been used in the present computation.  
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Figure 5.1  Sketch of the channel. 

 

Figure 5.2 Experimental (left) and simulated (right) flow vectors in the basin of 4m wide 

and 4m long. 

 

Figure 5.3 Experimental (left) and simulated (right) flow vectors in the basin of 4m wide 

and 6m long. 

 

Figure 5.4 Bifurcation for different aspect ratio (L/B) and expansion ratio (B/b) 
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Figure 5.5 Relative error of Lr against grid size Δx. 

 

5.1.5 Comparisons of Results 

In this section, the computed results for case1 are compared with the experimental results. 

The asymmetric moment M is used to quantify the asymmetry of the flow fields. Figure 

5.6 displays the intensities of asymmetry obtained by the lattice Boltzmann model, the 

standard k   model and the algebraic model as well as the experiments by Dewals et al. 

[148]. 
exp

exp

comM M
E

M


   is used to evaluate the relative error between the predictions 

and experiments. In the figure for sections before x=1.8m, M is small and the differences 

among k   model, algebraic model and lattice Boltzmann model are negligible 

compared with that for the other sections; hence the relative error E  is calculated for 

cross sections with x > 1.8m: the maximum errors are 0.51, 0.44 and 0.33 for -k   model, 

algebraic model and lattice Boltzmann model, respectively. Their average relative errors 

are 0.29, 0.16 and 0.16, respectively. Thus, the lattice Boltzmann model seems to have 

equal ability of predicting flow fields to the algebraic model. Furthermore, computed u at 

four representative cross-sections are compared with the experimental data and the 

algebraic model results. Due to the large difference between the -k   model results and 

experimental data, the results by  -k   model are not considered in the subsequent 

comparisons. From Figure 5.7 it is clear that the lattice Boltzmann model and algebraic 

model produce very similar results. Overall, the lattice Boltzmann model is found to 

predict the general flow patterns well in the rectangular basins. 
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Figure 5.6 Comparisons of intensities of asymmetry. 

 

Figure 5.7 Comparisons of streamwise velocities at x =1.5m, 2m, 3m, and 4.5m.
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5.1.6 Sensitivity Analysis  

Four different Froude numbers, Fr=0.10, 0.15, 0.28 and 0.44, for Q =0.007m3/s with 

variable water depths (h0=0.2, 0.15, 0.1, and 0.075m) and velocity at the channel inlet are 

used to assess the influence of the intensity on flow asymmetry. Figure 5.8 illustrates the 

asymmetrical moment distribution under different Froude numbers. It is apparent that the 

global flow asymmetry reduces with increase of Froude number. This is confirmed by 

Dewals’ research [148]. Furthermore, Froude number has clearly more influence on flow 

asymmetry in the range x = 1m and x = 5m compared to that outside this range. 

 

According to Chen and Jirka [155], the parameter St=Cbb/(2h) has been chosen to 

quantify the stabilizing effect of the bed-friction, where Cb is bed-friction coefficient; b is 

the inlet channel width and h is water depth. As Froude number increases, the water depth 

reduces, and then St becomes larger; hence the flow becomes less asymmetric. However, 

the above conclusion is only valid for the range Fr = 0.1 to 0.44.  Outside this range, the 

flow regime may be different. 

Figure 5.8 Asymmetrical moment distribution with different Froude numbers. 

 

 

Figure 5.9 Reattachment length for different Froude numbers. 
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Figure 5.10 Normalized streamwise velocity u/umax profiles at x = 2m.

 

Figure 5.9 displays the relation between reattachment length (Lr/DB, in which DB=(B-

b)/2 is the expansion width) and the inlet Froude number. There is no doubt that 

reattachment length will increase with Froude number; and the recirculation zone will 

also become larger. However, this conclusion is a little different from those by Dufresne 

et al [152] for two reasons: firstly, the lateral expansion ratio is different (1.25 in 

Dufresne’s paper but 7.5 in the present study), as well as the dimensionless length (20 in 

Dufresne’s paper but 3.2 in present study); secondly, in Dufresne’s research, the Froude 

number changes with discharge for a constant water depth, while the water depth varies 

and the discharge is kept constant in the present study. 

 

The normalized streamwise velocity u/umax profiles at cross-section x=2m for different 

Froude numbers are displayed in Figure 5.10. If the flow is symmetrical, the non-

dimensional distribution of u component of the cross velocity should be symmetrical 

about the y axis, and vice versa. The farther the asymmetry axis deviates from the y axis, 

the more asymmetric the flow is. It can be seen from Figure 5.10 that the effect of the 

Froude number is different on both sides of the cross-section and is stronger in the vortex 

zone on the right hand side.  
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As mentioned above, three different values of parameter St=Cbb/(2h) (bed friction 

coefficients Cb=0.00084, 0.0017, and 0.0034 with constant water depth) are tested to 

quantify the stabilizing effect of bed friction. Figure 5.11 reveals the asymmetric moment 

with different bed frictions. It indicates that the asymmetry in the flow field becomes 

weaker as the bed friction increases. When the bed friction increases, flow velocity is 

slower and then the flow pattern becomes less asymmetric. However, the reattachment 

length becomes longer as the bed friction increases as Figure 5.12 shows. In addition, the 

effect of bed friction on asymmetry seems not to be strong at least in the range of Cb 

=0.00084~0.0034 investigated. The asymmetry of flow is disadvantageous in most of 

engineering applications. Consequently, it seems reasonable that bed roughness 

adjustment offers an opportunity to reduce such disadvantage associated with the similar 

structure in hydraulic engineering. 

 

 

Figure 5.11 Asymmetrical moment distribution for different parameter St (St = 

Cbb/(2h)). 

 

 

St 

Figure 5.12 Reattachment length for different parameter St. 
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5.1.7 Conclusions 

The lattice Boltzmann model has been applied to model the free surface flows in 

rectangular shallow basins and the following conclusions can be drawn:  

 

The results obtained by the LABSWE
TM

 have been compared to those by finite 

volume and algebraic turbulence models and laboratory experiments. The results 

show that the lattice Boltzmann model can predict asymmetrical shallow flows and 

capture the typical features efficiently at the same accuracy as the conventional 

methods.  

 

The effect of the Froude number and bed friction on flow stability and reattachment 

length has been studied. Research indicates that the asymmetry of flow becomes 

weaker but reattachment length becomes longer with the increase of the Froude 

number. Bed friction has a similar effect. However, these results may be valid only 

for the above range of inlet Froude numbers and bed friction values considered. Out 

of this range, the flow regimes may be different, which needs further research. 
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5.2 Shallow Water Flows over Discontinuous Beds 

 

5.2.1 Introduction 

In this chapter, numerical modelling of shallow water flows over discontinuous beds 

is presented. The flows are simulated by LABSWE
MRT

. The weighted centred scheme 

for force term together with the bed height for a bed slope described in section 3.9.2 is 

used to improve simulation of flows over discontinuous bed. Furthermore, the 

resistance stress is added to include the flow head loss caused by a step. Three test 

cases: 1D tidal and dam-break flows, and 2D shallow water flow over a square block, 

are considered to verify the present method.  

 

5.2.2 Background 

Shallow water equations have been widely used to simulate flows in rivers, channels, 

coastal seas, estuaries and harbours [3]. Although the assumption of continuous 

change in bed elevation is used in the shallow water equations, the equations have 

been applied successfully to simulating flows over discontinuous beds. Zhou et al. 

[156] extended the surface gradient method [157] to shallow water flow over 

discontinuous bed topography and obtained satisfactory results. Erduran et al. [158] 

introduced a new algorithm based on the finite volume method for a solution to the 

equations with a step in beds.   rnjari  -  ic et al. [159] applied the finite volume 

WENO and central WENO schemes to solve the one-dimensional shallow water 

equations with discontinuous riverbed and some errors in water depth have been 

found.  Bernetti et al. [160] presented the exact solution of the Riemann Problem for 

the shallow water equations with discontinuous bed topography. Rosatti and 

Begnudelli [161] investigated the Riemann Problem for one-dimensional shallow 

water equations involving a bed discontinuity. They further applied a finite-volume 

Godunov-type with predictor and corrector steps for an accurate solution. The method 

has been tested using a few flow cases and agreed well with the analytical solutions. 

Kesserwani and Liang [162] proposed a conservative high-order discontinuous 

Galerkin method for one-dimensional shallow water equations with arbitrary 

topography. Cozzolino et al. [163] discussed the shallow-water equations with 

discontinuous bed and proposed a first-order accurate numerical scheme to capture 
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contact discontinuities at channel bed with steps. The tests demonstrate the feasibility 

of the scheme for simulating flows over continuous and discontinuous beds.  However, 

most of the above schemes reported in literature are developed and tested only for 

one-dimensional flow problems. 

 

5.2.3 Numerical Case Studies 

5.2.3.1 Case1: A Tidal Flow over Steps 

The first case is a tidal flow over a step which has been tested by Goutal and Maurel 

[164]. The layout is shown in Fig. 5.14 and the step is 8m high. The bed profile is 

defined by 

         
               

    

 
  

    

 

                            

                                                    (5.1) 

The total length is 1500m. The initial and boundary condition are as follows: 

                                         , L=1500 m.                                                        (5.2) 

                                                                                 (5.3) 

                                                                              (5.4)   

                                                                                 (5.5) 

                         
  

     
 

 

 
                         (5.6) 

The asymptotic analytical solution is presented by Bermudez and V  zquez [165]  

                      
  

     
 

 

 
                                          (5.7) 

       
      

          
       

  

     
 

 

 
                                             (5.8) 

In computation, 200 grids are used and space step  x=7.5m, time step  t=0.1s, 

Cb=0.0, and s7=s8=1/0.8. The relaxation parameters from s0 to s6 are equal to 1. The 

calculated water velocity and water depth has been compared with the analytical 

solution in Figures 5.13 and 5.14 at time T=10800s. It can be seen that the agreement 

is excellent and this shows that the proposed method can predict the flow over a 

vertical step accurately. 
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Figure 5.13 Velocity at T=10800s. 

 

 

Figure 5.14 Water depth at T=10800s. 

 

5.2.3.2 Case2: Dam-break Flow 

The dam-break flow case tested by Rosatti and Begnudelli [161] is used to verify the 

proposed model. It flows on a wet bed with a step shown in Figure 5.16. The initial 

flow velocity is zero; the water depth on the left hand side of the step is 5m and on the 

right hand side is 0.9966m; and the step height is 1m. The flow is unsteady. 2000 

grids are used in the computation with  t = 0.01s,  x = 1m, s7=s8=1/0.51, s0 -s6=1 and 

Cb=0. The simulated water velocity and water surface elevation are shown in Figs. 

5.15 and 5.16, from which it can be seen that the LBM can capture the shock wave 

accurately although there is a little disagreement at the wave front. 
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Figure 5.15 Water velocity at T=8s. 

 

Figure 5.16 Water surface at T=8s. 

 

5.2.3.3 Case3: Flow over a Square Block 

A local head loss will happen when flow passes over a step and Zhou et al. [156] 

modified the shallow water equations by including the resistance stress. In the present 

study, this idea has been adopted for including the head loss caused by a step. The 

resistance stresses are defined by               , and                , in 

which, cx and cy are the empirical factor for the local head loss in x and y directions, 

respectively, and they are calculated from       
                 

      
 and    

   
                 

      
. In order to identify the effect of head loss, one-dimensional flow 

is calculated firstly. Figure 5.17 shows the difference between the results with and 
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without the head loss. It is clear that it is more reasonable to include the effect of head 

loss. 

 

Furthermore, the two-dimensional flow in a channel with a submerged square block is 

simulated. The block has height of 0.1m with horizontal dimensions of 0.7m×0.7m 

and is located in the center of the channel. The channel is 2m wide and 5m long, 

which is shown in Figure 5.18. In the computation, 50×20 grids are used;  t=0.01s 

and  x= y=0.1m; and s7=s8=1/0.8, s0-s6=1. For the boundary conditions, the constant 

discharge is specified at inlet and water depth h0 at outlet. First of all, a static flow is 

tested, and then a steady flow is simulated. Figures 5.19 and 5.20 show the calculated 

water profile and discharge at T=500s for static flow with outlet water depth of 

h0=0.2m with improved force term (As described in section 3.9.2 and it is represented 

by with weights in Figs. 5.19 and 5.20) and without improved force term (It is 

represented by without weights in Figs. 5.19 and 5.20). The results indicate that the 

proposed method in section 3.9.2 can produce accurate solution, satisfying the N-

property numerically [3]. Furthermore, the effect of weights has been studied. From 

Figs. 5.19 and 5.20, it can be seen that significant errors occurred if weights is not 

included in the force term. Therefore, including weights in the force term is crucial to 

obtain accurate results in this case. 

 

After the static test, the discharge Q0=0.04m
3
/s is specified at inlet and water depth 

h0=0.2m at outlet. Figure 5.21 shows the numerical discharge after the flow reaches 

steady state, indicating that the MRT-LBM model can retain the correct constant 

discharge for the steady flow over a two dimensional submerged block. Figure 5.22 

shows the water surface profiles simulated for the flow and the further comparison 

between 1D and 2D results have been plotted in Figure 5.23. It can be seen that the 

water depth difference between upstream and downstream in 2D is smaller than that 

in 1D due to the reason that the 2D flow will slightly be diverged by the submerged 

block from the channel centerline to sides. Overall, the proposed model produces 

good results for 1D and 2D cases.  
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Figure 5.17 Comparison of water surface profiles with and without head loss for 

1D case. 

 

Figure 5.18 Bottom profile for 2D case (side view). 

 

Figure 5.19 Water surface for static flow. 
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Figure 5.20 Discharge for static flow. 

 

 

Figure 5.21 Discharge for 2D steady flow. 

 

 

Figure 5.22 Predicted water surface by MRT-LBM. 
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Figure 5.23 Comparison of centerline water surface profiles between 1D and 2D. 

 

5.2.4 Conclusions 

The lattice Boltzmann method has been applied to simulate the shallow water 

equations with discontinuous beds. The flow equations are solved using the multiple-

relaxation-time lattice Boltzmann equation on D2Q9. Unlike other numerical method, 

no additional treatment is needed in the described method for flows over a bed with a 

vertical step. Three typical test cases including a two dimensional flow are predicted 

to verify the model. The results agree well with the analytical solutions. The 

conclusions can be drawn as follows: 

(a) The force term in the lattice Boltzmann model is improved by inluding the weights 

and it is demonstated that it is crucial to produce the correct results. 

 

(b) In order to include the head loss caused by a step, the resistance stress is added in 

the force term. The study shows that the calculated results with resistance stress are 

more practical. 

 

(c) The proposed method is verified by three cases and the study shows that it is 

simple and accurate. Therefore it can be used for shallow flows over a discontineous 

beds in hydraulic engineering.  
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Chapter 6: Application of LABSWEMRT for 

Simulating the Moving Body  

 

 

6.1 Introduction 

In this chapter, LABSWE
MRT

 is extended into simulating a moving body in shallow 

waters. Three different schemes for a curved boundary condition are used and 

compared in detail. In order to deal with the moving body boundary, certain 

momentum is added to reflect interaction between the fluid and the solid and a refill 

method for new wetted nodes moving out from solid nodes is proposed. The described 

method is applied to simulate static and moving cylinders in shallow water flows.  

 

6.2 Background   

Shallow water equations can be used to describe tidal flows, tsunami, and landslides 

into water, ship movement, and beach erosion. Some of these flows further involve a 

moving body and simulating such flows using a numerical method attracts researchers’ 

attention [166-168].   

 

In lattice Boltzmann method, the most popular treatment of boundary condition is the 

bounce-back scheme. Although it can be used for a curved boundary, it is only first-

order accurate except that the boundary is located at the middle of two grid lines, 

which is awkward for a curved boundary. In order for treating curved boundaries at 

higher-order accuracy, Bouzidi at al. [107] developed a scheme using bounce-back 

and spatial interpolations; Filippova and Hanel [90] proposed another second-order 

accurate boundary condition in which its stability was improved by Mei et al.  [169]; 

and Guo et al. [170] proposed a non-equilibrium extrapolation method for a curved 

boundary. Recently, Verschaeve and Muller [171] proposed a no-slip curved 

boundary condition that is based on a reconstruction of the populations from the 

density, velocity and the rate of strain. For shallow water, Liu et al. [56] proposed a 
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second-order boundary for no-slip, semi-slip and slip boundaries. As discussed in 

section 1.5.7, the moving boundary for Navier-Stokes equations using the lattice 

Boltzmann method has been studied by Lallemand and Luo [105] and Kao and Yang 

[106]. 

 

To the writer’s knowledge, very little study on moving body in shallow waters has 

been reported in the literature except for one paper by Causon et al. [168]. They 

applied a Godunov-type finite volume method with the cut cell technique for the 

moving body. The main drawback is that the scheme is complex and inefficient for a 

large-scale problem. Our ultimate goal is to develop a simple and efficient LBM for 

simulating practical shallow water flows involving moving body produced by 

landslides as indicated in the references [172-175]. The present study is the first step, 

which focuses on development of the model and its verification using both static and 

moving cylinders. Despite a simple shape, flows around static and especially moving 

cylinders contain all possible complex curved boundaries encountered in practice; 

hence they are the suitable test cases for the study. In the next step, the developed 

LBM will be applied to simulate the real life problems. Consequently, in this study as 

the first step, LABSWE
MRT

 for a moving boundary in shallow water flow is 

developed. The model is used to predict static and moving cylinders in shallow waters 

and the results are compared with the corresponding experimental measurements. 

 

6.3 Boundary Conditions 

 In the lattice Boltzmann method, the boundary conditions play an important role in 

the accuracy of the simulation. For steady flow, a constant discharge is defined at 

inflow boundaries, and a water depth is specified at outlet and slip boundaries are 

used for side walls [3]. 

 

At a curved boundary sketched in Figure 6.1, if fluid nodes and solid nodes are 

represented by respective hollow and solid dots, the following three different methods 

are considered in the study. According to Filippova and Hanel (FH’s scheme) [90]: 

the unknown distribution function streaming back from the solid can be presented as 

(*)

2

3
( , ) (1 ) ( , ) ( , ) 2 .f f b wf x t t f x t f x t h e u

e
                                           (6.1) 
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wu  is the velocity vector of a moving body;   is a weighting factor given by Eqs. 

(6.3) and (6.4); and 
(*) ( , )bf x t  is the fictitious equilibrium distribution function at 

solid node  xb , which can be calculated by  

(*)

2 2 4 2

3 ( , ) 3 9 3
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2 2 2

( , ), 1 8

b i i b i j i f j f i f i f

f

gh f t
f x t e u x t e e u x t u x t u x t u x t

e e e e

h x t

    



 
    

 



(6.2) 

in which, 

4 9, 0

1 9, 1,3,5,7

1 36, 2,4,6,8





 






 
 

; bibi utxu ),(  is the fictitious velocity component 

at solid node b in i direction shown in Figure 6.1 and calculated as 

bi fiu u   and (2 1) ( 1)      when 
1

2
                                          (6.3) 

 
( 1) fi wi

bi

Δ u u
u

Δ Δ


   and (2 1)     when 

1

2
                                     (6.4) 

In the above equations, ),( txuu fifi  ; 
f w

f b

x x

x x






 (see Figure 6.1); and wiu is the 

velocity component of the moving body in i direction. 

 

Figure 6.1 Layout of curved boundary and lattice nodes. 

Bouzidi et al. [107] proposed another second order method for curved boundary 

which combines the bounce-back scheme and spatial interpolations (MMP’s scheme).  

1
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( , ) (2 1) ( , ) 1

( , 1)
2 2 2

f x t f x t
f x t  





 


                               (6.6) 

Guo [170] proposed an extrapolation method for the curved boundary conditions 

(Guo’s scheme). The distribution function at boundary node is decomposed into 

equilibrium and non-equilibrium parts. The equilibrium part is approximated by a 

fictitious one and the non-equilibrium part is calculated by extrapolation from the 

neighbouring fluid nodes. 

( , ) ( , ) ( , )eq nef x t f x t f x t                                                                  (6.7) 

2 2 4 2

3 ( , ) 3 9 3
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2 2 2

( , ) 1 8

feq

b i i b i j i f j f i f i f

f

gh x t
f x t e u x t e e u x t u x t u x t u x t

e e e e

h x t

    



 
    

 



 

(6.8) 

( , ) ( , ) 0.75ne ne

b ff x t f x t                                                  (6.9) 

( , ) ( , ) (1 ) ( , ) 0.75ne ne ne

b f fff x t f x t f x t                                      (6.10) 

 

For a moving curved boundary, one further problem has to be resolved: some solid 

nodes may move outside the solid region and enter the fluid region; their distribution 

functions have to be constructed with an appropriate scheme. According to Lallemand  

and Luo [105] and Kao and Yang [106], there are different methods to refill these 

unknown distribution functions. For example, one can compute the unknown 

equilibrium distribution functions for the new fluid nodes which are solid nodes at the 

last time step by using moving boundary velocity (uwx, uwy) and the average water 

depth, and use these equilibrium distribution functions for the unknown distribution 

functions. In addition, the extrapolation method can be used to determine the 

unknown distribution functions. As all these methods produce similar results [105], 

the extrapolation method is used in the study. 

 

As seen from Figure 6.1, if assuming that the solid node b become a fluid node at the  

next time step, the velocity and water depth for node b at next time step will be 

calculated as follows: 

( 1) 2 ( ) ( )b f ffu t u t u t                                                    (6.11)      

  ( 1) 2 ( ) ( )b f ffv t v t v t                                                     (6.12) 
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1 2

1
( 1) ( ) ( ) ( )

3
b f f fh t h t h t h t                                             (6.13) 

 

The distribution functions for new fluid node b can be determined using the new u, v, 

and h from above. The status of the nodes occupied by a moving cylinder may 

become solid or fluid with time. 

 

In order to simulate the interaction between the fluid and solid, the certain momentum 

has to be added to a numerical method.  Following the idea of Yu et al. [176] for the 

Navier-Stokes equations, the force term, 
2

6 ( . )n n we u
e


  , can be used to represent 

such interaction, which is applied to the shallow water equations with the density 

replaced by the water depth,  
2

6 ( . )n n w

h
e u

e
  , here n stands for the outward normal 

direction. 

 

6.4 Simulation for Stationary Cylinder 

The laboratory experiments were performed at the State Key Laboratory of 

Hydraulics and Mountain River Engineering in Sichuan University, P. R. China. The 

channel is 0.39m wide and 2m long, made of plexiglass. The roughness coefficient nf  

is 0.008 and the bed slope i is 0.001. The layout of experiments is shown in Fig. 6.2. 

The cylinder with the diameter of 0.055m is placed in the centerline of the channel.  

The cylinder was fixed and the water depth at outlet is controlled by the tail gate.  

Three different discharges were tested in the experiments for this case. The hydraulic 

parameters in the experiments are listed in Table 6.1, in which L and B are the length 

and width of the channel, respectively. The water depth at the centerline of channel is 

measured by pulse sensors which have been calibrated before measurement and the 

measurement precision is 0.1%. In the experiments, the sensors are arranged along the 

longitudinal centre line of channel at a uniform interval space of 0.02m. To obtain the 

accurate results, the experiments are repeated several times and the results are plotted 

in Figures 6.4-6.6. 
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Figure 6.2 Layout of the channel and equipment in the experiments. 

 

Table 6.1. Hydraulic parameters in the experiments. 

Case 

No. 

Discharge 

Q (m
3
/s) 

Outlet 

water 

depth h0 

(m) 

Bed 

slope 

i 

L/B 

(m/m) 

Cylinder 

velocity 

Uw (m/s) 

Average 

flow 

velocity 

Froude 

number 

Reynolds 

number 

1 0.0099 0.0905 0.001 2.0/0.39 0 0.28 0.30 134 

2 0.0094 0.0625 0.001 2.0/0.39 0 0.39 0.50 186 

3 0.0061 0.0965 0.001 2.0/0.39 0 0.16 0.16 76 

4 0.00955 0.068 0.001 2.0/0.39 0.062 0.36 0.44 172 

5 0.00955 0.1 0.001 2.0/0.39 0.5 0.24 0.24 115 

 

Firstly, the order of convergence of the three schemes is studied. Different grid sizes 

are used to simulate Case 3 and the results are compared with the corresponding 

experimental data. The parameter 
0 0 0 0

0 0

( , ) ( , )
1

( , )

pr ex

ex

h x y h x y
E

h x y


  is adopted to evaluate 

the convergence of model, in which the 0 0( , )prh x y  is calculated water depth by LBM 

at point (x0, y0) which is the first point behind cylinder as indicated in Figure 6.6, and 

0 0( , )exh x y  is the experimental water depth at the same point. The results are shown in 

Figure 6.3 and it indicates that all three schemes are between first- and second-order 

accurate, among which the convergence rate of FH’s scheme is fastest.  
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Motor

Facade view Side view

0.39 m



82 
 

Table 6.2 The relative error Er for three schemes. 

Case No FH’s scheme Guo’s scheme MMP’s scheme 

1 0.000469 0.000461 0.000485 

2 0.000440 0.000452 0.000423 

3 0.000282 0.000277 0.000312 

4 0.000242 0.000317 0.000237 

5 0.000402 0.001207 0.000393 

 

In order to verify the proposed models, Cases 1-3 were further carried out. In 

computations, time step Δt=0.002s, Manning coefficient nb=0.008, spatial size 

Δx=Δy=0.007m, the relaxation parameters s7=s8=1/0.6, s0-s6=1, and 250×56 grids are 

used for Cases 1-3. Normally, the Reynolds number is known before numerical 

simulation, hence the kinematic viscosity can be calculated, and then the time step, 

space size, and relaxation parameter can be determined by Equation (1.11). 

 

The predicted water depths for these cases are compared with the experimental data in 

Figures 6.4-6.6 showing that all schemes produce similar results that agree with 

experimental results. In order to compare the three schemes quantitatively, the relative 

error 2

1

1
[( ) ]

N

r pr ex exE h h h
N

   is used to evaluate accuracy of schemes, in which 

hpr is water depth predicted by LBM model and hex is the experimental data, N is the 

number of experimental data. The relative errors Er are presented in Table 6.2. From it, 

for Cases1 and 3, the errors of MMP’s scheme are biggest, and for Case 2, it is 

smallest. Overall, these three schemes produce similar results for static cases although 

the water depths are underestimated slightly. As there are also errors in the 

experiments, such results are acceptable. 

 

Furthermore, the velocity vector for Case1 is displayed in Figure 6.7. It shows that the 

flow velocity around the cylinder is very small and this is due to the no-slip curved 

boundary conditions for cylinder. In the downstream of cylinder, a small low velocity 

region is formed, which is consistent with the experiments. In general, the proposed 

models can provide accurate results for flows around static cylinders. 
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Figure 6.3 Convergence of the three schemes. 
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Figure 6.4 Water depth along the centerline for Case 1. 

 

Figure 6.5 Water depth along the centerline for Case 2. 

 

Figure 6.6 Water depth along the centerline for Case 3. 
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Figure 6.7 Velocity vector for case 1 with FH’s scheme. 

 

6.5 Numerical Simulation for a Moving Cylinder 

The experiments for a moving cylinder were also carried out in the same laboratory 

flume (See Figure 6.2). In the experiments, when the flow becomes steady for the 

static cylinder, it is dragged by the motor and begins to move forward along the 

centerline of the channel uniformly. After its moving, the measurement is carried out. 

Two different velocities uw (For all cases, cylinder moves only along x direction, so 

uw=uwx) for the cylinder movement were considered. The first one was 0.062 m/s that 

was smaller than the average flow velocity in the channel, and the second was 0.5 m/s 

that was larger than the average flow velocity. It should be noted that the cylinder 

moves only along the x direction. The experiments were repeated several times for 

more accurate results.  

 

On the other hand, the numerical simulation has been carried out by LBM and the 

mesh layout is the same as the cases for the static cylinder. In addition, the other 

computation parameters are the same as the cases for the static cylinder except the 

velocity of moving cylinder. The performances of FH’s, MMP’s and Guo’s schemes 

are compared for the centerline water depths in Figures 6.8 and 6.9. All schemes 

provide reasonable results for Case 4. But for Case 5 it is clear that Guo’s scheme 
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produces an obviously bigger drop between upstream and downstream of the cylinder 

than other two schemes as shown in Figure 6.9, which is inconsistent with the 

experiments. In order to analyze quantitatively, the relative error Er is used to assess 

the schemes. Table 6.2 indicates that the errors of MMP’s scheme for Cases 4 and 5 

are smallest, indicating that MMP’s scheme is the best for simulating the moving 

boundary among the three schemes. Still, the difference between MMP’s and FH’s 

schemes is relatively small. However, the relative error Er for Guo’ scheme is bigger 

than other two schemes especially for Case 5 in which its errors is about three times 

of either MMP’s or FH’s errors. As a result, both of FH’s and MMP’s schemes are 

better than Guo’s schemes for moving boundary problems in shallow water flows. 

 

Figure 6.10 shows water depths at different times using FH’s scheme. As the cylinder 

moves at a smaller velocity of 0.062 m/s than the average flow velocity, the flow 

pattern is similar to that for a static cylinder and that is again consistent with the 

experiments. In order to study the effect of the moving cylinder, one more case is 

considered in which the flow parameters are the same as Case 5 except that the 

cylinder velocity moves at uw= 0.1 m/s. Fig. 6.11 shows the predicted water depths 

along the centerline for the moving cylinder at different velocities. It can be seen that 

the difference in water depths between the upstream and downstream of the cylinder 

reduces with uw=0.1m/s comparing with that at uw=0; inversely, it increases with uw= 

0.5m/s. This is again consistent with the experiments and also demonstrates that the 

interaction between the fluid and solid is correctly determined in the model. In 

addition, to the writer’s knowledge, few experimental data for shallow water flows 

involving a moving body are available in the literatures, and hence the present 

experimental measurements provide valuable data that may be used to verify other 

numerical methods.        

 

In all the simulation, it takes about 20000 iterations to obtain a steady flow for a 

typical case. The computational times for MMP’s, FH’s and Guo’s schemes are 1.27, 

1.8, and 2 hours, respectively on an ordinary desktop PC that is composed of Intel 

Core2 Duo CPU E8400 with 3.00GHz and 3.50GB RAM.  This suggests that MMP’s 

scheme is most efficient.     
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Figure 6.8 Water depths at t=12s for moving cylinder for case 4. 

 

 

Figure 6.9 Water depths at t=2s for moving cylinder for case 5. 
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Figure 6.10 Water depths at different time for case 4 with FH’s scheme (t=4s (a), 8s 

(b), and 12s (c)). 

 



89 
 

 

Figure 6.11 Water depths at centerline with uw= 0, 0.1 and 0.5 m/s with MMP’s 

scheme at same position. 

 

6.6 Conclusions 

In this chapter, a lattice Boltzmann method for moving boundary conditions is 

developed for shallow water flows and is verified by the corresponding experiments. 

The multiple-relaxation-time is adopted for better stability. The additional momentum 

for correct interaction between the fluid and solid has been added to the model and a 

refill method for new fluid nodes moving out from solid nodes has been proposed.  

Moreover, FH’s, MMP’s, and Guo’s schemes for curved boundary conditions at 

second-order accuracy have been compared in detail. The proposed model is applied 

to simulate the flow fields around static and moving cylinders. All three schemes 

produced similar results tha agree with the experimental data for the static cylinder. 

However, Guo’s scheme produced unreasonable results when it is used to simulate the 

cylinder moving faster than the average flow velocity in the channel. Satisfactory 

results are obtained using FH’s and MMP’s schemes for flows with both static and 

moving cylinders, in which, MMP’s scheme performs better than FH’s scheme. The 

proposed modelling approach is simple and efficient, and can be applied to simulate 

both static and moving bodies in shallow water flows.  
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Chapter 7 Application of LABSWE and 

LABSWEMRT to Environmental Flows  

 

 

7.1 Introduction 

In this chapter, the lattice Boltzmann method is used to investigate the solute transport 

in shallow water flows. Shallow water equations are solved using LABSWE and 

LABSWE
MRT

, and the advection-diffusion equation is also solved with a BGK-LBM 

on a D2Q5 lattice. Three cases: open channel flow with side discharge, shallow 

recirculation flow and flow in a harbour are simulated to verify the described methods. 

Furthermore, the performance of LABSWE and LABSWE
MRT

 for these three cases 

has been investigated.  

 

7.2 Background  

Prediction of solute transport in the shallow waters such as distribution of pollution 

concentration and transport of suspended sediments is important in environmental 

engineering  and attract much attention as indicated in chapter 1[6, 7, 9, 10, 177, 178]. 

 

7.3 Boundary Conditions 

In the following cases, constant discharge and specified water depth is used at inlet 

and outlet boundaries. Slip and semi-slip boundaries are used for side walls [3]. For 

solute transport, the bounce-back boundary in section 4.2.1 is adopted at the wall and 

zero-gradient boundary conditions in section 4.3 are imposed at the outlet. Constant 

concentration is specified at the inlet. 

 

7.4 Numerical Case Studies 

Case 1: Side Discharge   
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Side discharge has attracted great interest from environmental engineers as it is a 

common form of wastewater discharge into a river, and has been investigated by 

many researchers through numerical and experimental studies. Mikhail et al. [179] 

measured the width and length of the recirculation eddy for different ratios of jet 

velocity to main channel velocity from 1 to 22 and of jet width to main channel width 

from 0.01 to 0.1. Using these experimental conditions, McGuirk and Rodi [114] 

applied a finite volume shallow water model with     turbulence closure to 

simulate the flow and temperature of the side discharges into the open-channel flow. 

Wang and Cheng [180] simulated the three-dimensional side discharge into a cross 

channel flow using FLUENT 4.4 and proposed correlation formulas for recirculation 

length and width. FLOW-3D was also used to study the buoyant flow and mixing 

characteristics of hot water discharge from the surface and submerged side outfalls in 

shallow and deep water with a cross flow by Kim and Cho in [181]. 

 

From the present study, Figures 7.1 and 7.2 show part of the computed velocity fields 

and streamlines by LABSWE
MRT

 for Case 1 specified in Table 7.1. It is seen that 

downstream of the side discharge, a recirculation is formed because of the velocity in 

the main channel. The recirculation parameters (length L and height H in Figure 7.1) 

are governed mainly by the ratio of discharge momentum to main channel momentum, 

where momentum flux ratio M1 is defined by              [114]. 

 

In order to compare with the experiments of Mikhail et al. [179], the following 

hydraulic parameters are adopted (see Table 7.1), in which b is side discharge width, 

B is the main channel width, h0 is the water depth at outlet, L is the main channel 

length, U is the velocity in the main channel, V is the side discharge velocity. In 

computation for velocity fields, Δt=0.01s, Cb=0.01, Δx=Δy=0.016m, s7=s8=1.992032 

and 842×43 grids are used for Cases 1-5, while Δt=0.02s, Cb=0.001, s7=s8=1.953125, 

Δx=Δy=0.02m and 119×291 grids for Case 6. The relaxation parameters from s0 to s6 

are equal to 1 and the relaxation time    in Eq. (3.169) is also equal to 1 for all cases 

in Table 7.1. The slip boundary condition is applied to the wall boundary. 

Temperature fields are calculated for Case 6 and the same grid settings are employed 

for velocity fields. In addition,   =  =0.008,   =  =0.00008 m
2
/s, Δt=0.02s. The 
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temperature of the discharged hot water DT0=1 is specified at the side discharge inlet 

and the ambient temperature in the main channel flow is zero. 

 

Table 7.1 Channel and Flow Parameters for Side Discharge Flow. 

Case  U (m/s) V (m/s) b (m) B (m) L (m) h0 (m) M1 

1 0.01 0.010 0.064 0.608 13.472 0.051 0.105 

2 0.01 0.037 0.064 0.608 13.472 0.051 1.441 

3 0.01 0.058 0.064 0.608 13.472 0.051 3.517 

4 0.01 0.078 0.064 0.608 13.472 0.051 6.404 

5 0.01 0.100 0.064 0.608 13.472 0.051 10.526 

        6 0.01 0.0201 0.06 5.72 2.38 0.051 0.042 

 

 

 

Figure 7.1 Predicted streamlines for M1=0.105 by LABSWE
MRT

. 
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Figure 7.2 Predicted velocity vectors for M1=0.105 by LABSWE
MRT

. 

 

Figures 7.3-7.5 show that the calculated length (L) and height (H) of the recirculation 

zone. Both the height and length of recirculation increase with the momentum flux 

ratio M1. However, the ratio of height to length (H/L) is almost independent of the 

momentum flux ratio M1. Although predictions by LABSWE and LABSWE
MRT

 

overestimate the width of eddy slightly, the predicted recirculation length agrees well 

with the experiments. Recognising some uncertainties in the experiments, such 

agreement seems satisfactory. The results from the conventional numerical method 

with     closure by McGuirk and Rodi [114] are plotted in the figures, showing that 

the BGK-LBM and MRT-LBM offer some improvement. 

 

The performances of LABSWE and LABSWE
MRT

 have been compared for this case. 

The relative error    
         

    
 , in which, Rcom is the result from the computations 

and Rexp by experiments, is used to evaluate the errors between the LABSWE and 

LABSWE
MRT

. The average relative errors of L/B, H/B, and L/H for MRT-LBM are 

0.14, 0.13 and 0.15 respectively. As for LABSWE, these values are 0.17, 0.12 and 

0.21 from the Figures 7.3-7.5. Overall, LABSWE
MRT

 model seems marginally more 

accurate than LABSWE model. 

 

Furthermore, as M1 increases, the difference becomes more pronounced. For example: 

stable simulated results are obtained by LABSWE
MRT

 with s7=s8=1/τ and τ=0.502 for 

M1=10.526. Based on it, the calculated length of recirculation L/B is 6.952 which 

agrees well with experimental length 7.096. However, the computation becomes 
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unstable with  =0.502 for LABSWE, and a stable result can only be obtained with 

larger   =0.503, which gives L/B=5.933 that is noticeably different from the 

experimental data. As a result, LABSWE
MRT

 is more stable and generates more 

accurate results for flows with higher Reynolds number than the LABSWE. 

 

Figure 7.3 Recirculation eddy length. 

 

Figure 7.4 Recirculation eddy height. 

 

Figure 7.5 Recirculation shape factor. 
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Figure 7.6 shows the comparisons between predicted centerline trajectories of a warm 

jet from Carter’s experimental data  [114]. The jet trajectory is the locus of maximum 

temperature at different cross-sections. It is clear that MRT-LBM produce a better 

prediction than the     model by McGuirk and Rodi [114]. Although the figure 

shows that there are some differences between the experiments and the LABSWE
MRT

 

prediction, this may be caused by buoyancy in the experiment which leads to 

stratification. Consequently the measured temperature is not truly depth-averaged 

temperature and the agreement is considered reasonable. 

 

Figure 7.7 indicates the distribution of dimensionless excess temperature along the jet 

trajectory. DT is the maximum excess temperature over river temperature, and DT0 is 

discharge excess temperature over the initial ambient river temperature. Both 

LABSWE
MRT

 and     models show similar levels of prediction accuracy and the 

simulated results agree well with the experimental data. 

 

Figure 7.6 Jet centerline trajectory. 

 

Figure 7.7 Temperature dilution along the jet centreline. 

 

 

 

2 4 6 8 10 14 18 22 26

2

4

6

8

x / b

y 
/ 
b

 

 

MRT-LBM prediction

Experimental data

k-   model prediction

1 2 4 6 8 10 20 40
0.1

0.2

0.4

0.6

0.8
1

x / b

D
T

 /
 D

T
o

 

 

MRT-LBM prediction

Experimental data

k- model prediction



96 
 

Case 2: Flow in a Harbour 

The flow pattern in a simple idealised harbour is simulated and compared with the 

experiments by Yin et al. [182]. Figure 7.8 displays the layout of the channel 

including the harbour. The channel is 2.3m long and 3.8m wide. The water depth at 

outlet is 0.1725m, flow rate is 0.06593 m
3
/s, time step Δt is 0.01s, grid space Δx = Δy 

= 0.02m, s7=s8=1.960784, Cb=0.001. The relaxation parameters (from s0 to s6) in 

LABSWE
MRT

 and the relaxation time    in equation (3.169) are set to 1. 

 

The computational grids for concentration are the same as that for velocity fields. The 

other parameters is Δt=0.01s,   =  =0.026,   =  =0.00052 m
2
/s. According to the 

experiments, an initial uniform solute concentration of C0=1 was created inside the 

harbour, and the concentration is zero outside it.  

 

Streamlines and velocity vectors in the harbour are plotted in Figures 7.9 and 7.10, in 

which a near central clockwise vortex formed immediately. Consequently, outside the 

harbour, the velocity in the flow direction increases. This is consistent with the 

experimental results. Moreover, the time history of the relative average concentration 

in the harbour is shown in Figure 7.11 and the relative average concentration against 

time at the centre of the harbour is displayed in Figure 7.12. The two figures illustrate 

that similar predictions can be obtained by LBM and     models [182]. From 

Figure 7.12, the average relative errors of concentration for LABSWE
MRT

 and 

LABSWE are 0.18 and 0.31; for Figure 7.11, the corresponding errors are 0.17 and 

0.36. Thus, the LABSWE
MRT

 again produces more accuracy results than the BGK-

LBM. All models show some discrepancy during the initial period, because the water 

flow is unstable at the beginning of the experiments [182]. In view of this and the 

inevitable experimental errors, the agreements between predictions and experiments 

appear satisfactory. It should be noted that the concentration is only calculated 

directly by the BGK-LBM model (Eq.3.169) in this thesis and MRT-LBM prediction 

in Figures 7.11 and 7.12 means that concentration is calculated based on velocity 

fields by LABSWE
MRT

.  
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Figure 7.8 Plan view of harbour layout. 

 

           Figure 7.9 Streamlines in harbour           Figure 7.10 Velocity vectors in harbour  

                                   by MRT-LBM.                                           by MRT-LBM. 

 

Figure 7.11 Dimensionless average concentration C/C0 against time in harbour. 
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Figure 7.12 Dimensionless average concentration C/C0 against time at x=0, y=0.35m 

(Centre point of harbour). 

 

Case 3: Shallow Recirculation Flow 

Shallow recirculation flows are common occurrences in nature. Babarutsi [149] 

studied the influence of bed-friction on the recirculation zone and dye-concentration 

distribution in a shallow open channel by experiments. Nassiri simulated the dye-

concentration distribution by the Lagrangian second-moment method (SMM) [183]. A 

two-length-scale     turbulence model and two-dimensional Large Eddy 

Simulation was used to compute the dye-concentration distribution by Masoud    

[184]. 

 

Figure 7.13 shows the flow pattern and predicted streamlines by LABSWE
MRT

 in the 

shallow recirculation flow investigated here. A large recirculation is formed after the 

expansion in the channel. In the computation, a 360×60 lattice is used, inlet width 

d=0.3m, flow rate Q0=0.0009918m
3
/s, Δt=0.005s, Δx=Δy=0.01m, water depth at outlet 

h0=0.0135m; relaxation parameters s7=s8=1.923077. For wall boundary, a semi-slip 

condition is adopted [3]. Different friction coefficients are used for wall and bed. In 

this case, the bed friction coefficient    is 0.012015 and wall friction coefficient is 

0.180225. The relaxation parameters from s0 to s6 and the relaxation time    are equal 

to 1. For the calculation of concentration, time step Δt=0.005s, Δx=Δy=0.01m, 

  =  =0.01,   =  =0.0001m
2
/s. 
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The predicted reattachment length is 0.8284m and agrees well with the experimental 

length of 0.82m [185]. The location of the tracer injection is important in establishing 

the solute concentration distribution. In the simulation, the tracer is injected into the 

corner of the step (see Figure 7.13) with C0=0.93 to match that in the experiments. At 

steady state, the dye covered the entire recirculation area and formed a wake 

downstream as shown in Figure 7.14, and the normalized concentration distribution 

C/C0 at cross-sections in the spanwise direction at x = 0.5L, L, 1.5L and 2L is 

displayed in Figure 7.15. It is apparent that better prediction is obtained by MRT-

LBM than with the Lagrangian second-moment method (SMM). Except for the cross 

section at x = L (   = 0.38 for LABSWE
MRT

 and 0.25 for LABSWE), the average 

relative errors of concentration for LABSWE
MRT

 are smaller than those for LABSWE 

indicating that the LABSWE
MRT

 has a better prediction than LABSWE. Although 

there are some departures between experiment and LABSWE
MRT

 predictions, 

especially for third and fourth cross-sections, however, the agreement appears 

acceptable if the errors in the experiments are taken into account. 

 

 

Figure 7.13 Plot of flow pattern and predicted streamlines for shallow recirculating 

flow (plan view). 
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Figure 7.14 Concentration contours. 

 

Figure 7.15 Comparisons of normalized concentration profiles  

at different cross sections (x = 0.5L, L, 1.5L, 2L). 

 

7.5 Conclusions 

Both of LABSWE and LABSWE
MRT

 have been used to solve shallow water equations. 

The advection-diffusion equation is further solved by lattice Boltzmann equation. 

Three typical solute transport cases in shallow water are investigated to verify the 

models. The following conclusions are made as follows: 

 

(a) For side discharge flow, in accordance with the experiments, both the height and 

length of the recirculation zone increase with the momentum flux ratio M1. However, 
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flux ratio M1. In addition to good agreement between simulated velocity fields and 

those in experiments, the prediction of temperature dilution along the jet centreline 

and the jet centerline trajectory are acceptable.   

 

(b) In an idealised harbour, a clockwise vortex formed and the vortex centre is located 

close to the habour centre. Outside the harbour, the water flow velocity increases as a 

result. This is consistent with the experimental results. Again, the agreement between 

prediction and experiments for concentrations distributions in the harbour appears 

satisfactory. 

 

(c) The location of dye injection plays an important role in simulation of 

concentration distribution for shallow recirculation flows. The farther the location of 

dye injection is away from the inlet, the greater the concentration is. This is correctly 

predicted by the model. 

 

(d) Compared to LABSWE, the LABSWE
MRT

 formulation is found to have better 

stability and is capable of simulating flows with higher Reynolds number. Although it 

costs more computational time, it is beneficial to some flow problems. 

 

(e) For the first case study, both LABSWE
MRT

 and LABSWE generate better 

predictions than the     model; for the third case, better simulated results can be 

obtained by MRT-LBM than the Lagrangian second-moment method (SMM). 
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Chapter 8: Coupling LABSWEMRT and Euler-

WENO Scheme for Morphological Evolution  

 

 

8.1 Introduction 

Morphological evolution in shallow water flows is investigated in this chapter. The 

shallow water equations are solved by LABSWE
MRT

 with the improved scheme for 

the force term. The fifth order Euler-WENO scheme is coupled with the lattice 

Boltzmann method to solve the morphological equation for the bed evolution caused 

by bed-load sediment transport. Three typical test cases have been simulated by the 

coupled model and the numerical results have been compared with either the 

corresponding experimental data or the analytical solutions.  

 

8.2 Background  

Sediment transport plays a key role in the morphological evolution occurring in 

coastal areas, rivers, and estuaries, where the water flow is dominated by horizontal 

characteristics and can be described by the shallow water equations [12-15]. Studies 

on morphological changes have attracted increasing interest in the fields of water 

resource exploitation and environment protection [16]. In the literature, several 

numerical methods like the finite volume and finite difference methods have been 

adopted to simulate the morphological evolution due to sediment transport [17, 18]. 

There are relatively fewer studies on using the lattice Boltzmann method. The 

morphological evolution relates to change to the bed due to sediment transport, and it 

can be accounted for by direct inclusion of the empirical estimation of the bed load 

transport in the equation. In this chapter, we will use the lattice Boltzmann model with 

the MRT for solving the shallow water equations. As bed load sediment transport is 

proportional to the velocity cubed and the LBM is generally second order accurate, a 

higher order accuracy scheme for the morphological evolution becomes necessary and 

hence the fifth order Euler-WENO finite difference scheme has been adopted to 
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reduce the errors. Such a mixed model can offer the superior advantages of the LBM 

for the flow solver to the conventional numerical methods and remains the similar 

feature for solution of the morphological equation conventionally. The model has 

been validated by simulating three typical shallow water flows involving bed load 

transport, in which the results are compared with the experimental data or analytical 

solutions.      

 

8.3 Governing Equations 

The flows fields are solved by the LABSWE
MRT

 and the equation for morphological 

evolution can be expressed as: 

      
   

  
 

    

   
                                                          (8.1) 

where the subscripts i and j are the space direction indices and the Einstein summation 

convention is used; t is time,    stands for either x or y in directions i or j; po is the 

bed porosity and    is bed elevation; and     is bed-load transport rate in j directions, 

which will be determined using an empirical or semi-empirical expression according 

to a specific scenario.  

 

8.4 Solution of the Morphological Evolution Equation  

There are different methods to solve the morphological evolution equation such as 

Lax-Wendroff schemes [186], non-oscillating centred scheme (NOCS) [187] and 

Euler-WENO scheme [188]. Long et al. [188] compared the classical lower order 

Lax–Wendroff, modified Lax–Wendroff schemes and Euler-WENO scheme. They 

concluded that the fifth order Euler-WENO scheme has obvious advantages over the 

other schemes with artificial viscosity and filtering process. In general, the lattice 

Boltzmann method is second-order accurate and the morphological evolution is very 

sensitive to flow velocity and proportional to the velocity cubed. Consequently, the 

fifth order Euler-WENO scheme is preferred to be used for solution of the 

morphological equation for bed evolution by bed load transport.  

 

The WENO is evolved from on the Essentially Non-Oscillatory (ENO) scheme whose 

key idea is to use the smoothed stencil among several candidates to approximate the 

fluxes at the cell interfaces (i+1/2, j) and (i, j+1/2), respectively, to high order 



104 
 

accuracy without spurious oscillations in the physical variable near shocks at the same 

time. The WENO is further improved by taking a weighted average of the candidate 

stencils. The weights are adjusted to obtain local smooth change in flow parameters. 

The sediment transport rates    and     can be split into two parts associated with 

bedform propagation in the positive and negative directions, namely,    
 ,    

 ,    
 , 

and    
  and hence        

     
  and        

     
 

. More details can be found 

in Long et al. [188], Jiang and Shu [189], and Jiang et al. [190]. The terms,  
   

  
 and 

   

  
, can be calculated as 
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The left-biased-fluxes     
    

 

 
    and right-biased-fluxes     

    
 

 
    are 

calculated, respectively, by the following equations: 
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in which,      
 

 
    

 
    

  

      
   
  

  is the bed-form propagation phase speeds in the x 

direction and can be estimated numerically.    
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    are candidate stencils for estimating     

    
 

 
    with a third 
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order accuracy and     
   

   
 

 
   ,     

   
   

 

 
    and      

   
   

 

 
   are used to 

calculate      
    

 

 
   . These six candidate stencils can be calculated by  
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where,                            are the weights which need to be carefully chosen 

such that     
    

 

 
    and     

    
 

 
    given by equations (8.6) and (8.7) are the 

fifth order accurate approximations for       
 

 
   .  The weights are determined as 

follows: 
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 (8.16) 

     
    

              
   (8.17)           

    

              
  (8.18)            
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with         as a small number to avoid division by zero and the smoothness 

measurements    ,    ,and     are given by 
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in which 
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                  (8.32)                      (8.33)                        (8.34) 

                  (8.35)                  (8.36)                       (8.37)  

Similarly,     
      

 

 
  and     

      
 

 
  can be calculated.  

 

The computation procedure is summarised as follows: 

1. Solve the equations (3.131) (3.54), and (3.59) to obtain the steady velocity field u 

and v, and water depth h. 

2. Calculate the sediment transport rates     and     using the u, v, h from step 1. 

3. Compute the new bed height    by solving the morphological evaluation equation 

(8.1). 

4. Repeat steps 1-3 with the new    until a solution is obtained. 

  

In the first step above, the relative error 

     
   

    
     

   
     

   
                                               (8.38) 

is used to determine whether the flow reaches a steady state. For example, if the    is 

smaller than    , it can be said that the flow is steady, and vice versa, where      is a 

predefined tolerance. It should be noted that the time step for both flow and bed-load 

computations are the same although different time steps can be used in the 

simulations [188, 191, 192].   

 

8.5 Boundary Conditions 

For steady flow computations, a constant discharge and a water depth are specified at 

inlet and outlet boundaries, respectively, and slip boundaries are used for side walls    

[3]. For determination of bed-load transport, zero gradients for the sediment transport 

rates at inlet and outlet are adopted, which means that there is no change for bed 

profile at inlet and outlet.  

 

8.6 Numerical Results 

Three typical test cases are presented in this section to demonstrate the accuracy and 

applicability of the mixed model with simulations of the bed evolution of (a) 1D 

Gaussian dune, (b) 1D trapezoidal dune, and (c) 2D sand dune. 
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Test 1: Change of 1D Gaussian Dune 

In the first test, a Gaussian sand dune on a fixed channel bed is simulated, which was 

also used in [188, 191, 192] for validation of their numerical schemes. It is a one-

dimensional test, in which the discharge is constant with a rigid lid. An analytical 

solution is available for comparison. The parameters used in the test are    

       ,       ,      ,       . The initial shape of the Gaussian sand dune 

is defined by  

                            ,                                         (8.39)   

In the computation,      ,         , s7=s8=1 and s0-s6=1 are used. After the 

solution is obtained, the bed profiles at t = 600s, 2000s and 6000s are compared with 

the analytical solutions in Figure 8.1, revealing good agreements.  

 

Figure 8.1 Comparisons of profiles of the dune evolution between analytical solutions 

and predictions. 

 

Test 2: Bed Change of a 1D Trapezoidal Dune 

As the experiment for morphological evolution of a 1D trapezoid of dune was 

conducted in a rectangular flume in Hydraulic Engineering Laboratory at the National 

University of Singapore [193], it is a suitable test to verify the coupled model. The 

sketch of the experiment is shown in Figure 8.2.  
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Figure 8.2 Layout of the experiments and the sand dune (Side view) on channel floor. 

 

The flume is 15m long, 0.6m wide and 0.6m deep. In the experiment, the mean flow 

velocity and the water depth were kept constant as 0.32 m/s and 0.25 m, respectively.  

According to the experiments, the dune evolved downstream in the form of the bed-

load transported with the flow. The whole process of the experiment lasted two hours 

and the flow was slowed down with the bed evolution. The velocity and the bed 

elevation were measured every half an hour.   

 

The section in the numerical simulation is 6m long with 1m upstream and 2m 

downstream of the dune, respectively. The initial configuration of the dune is shown 

in Figure 8.2. The unit-width flow rate of 0.08 m2/s and the water depth of 0.25m are 

specified at the upstream and downstream boundaries, respectively. The Manning’s 

coefficient is 0.0145 [193]. The space step is Δx=Δy=0.1m; both the time steps for the 

flow and bed evolution are same and equal to 0.001s; s7=s8=1.6667; the relaxation 

parameters from s0 to s6 are equal to 1. For the sediment transport, the bed load 

transport rate    is calculated from the Meyer-Peter and Müller formula [194], 

             
 

           
                                                    (8.40) 

in which,   is the Shields parameter and calculated with   
  

          
 and     is 

critical Shields parameter that is calculated from the Shields curve according to Yalin 

[195];      is the median diameter of the sediment particles;            is the 

specific gravity of the particle;    is the sediment density;     is bed shear stress;    is 

the density of water. 

 

The profiles of the bed evolution from the simulated results at times t = 0.5, 1, 1.5 and 

2.0 hours are shown in Figure 8.3. 
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Figure 8.3 Comparisons of profiles of the dune evolution between experiments and 

predictions (t=0.5, 1.0, 1.5, 2.0 hours from top to bottom).  
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From Figure 8.3, it is clear that at the upstream of the dune, as the water depth 

reduced and velocity increased along the channel, the bed is eroded and bed-load 

sands move downstream. On the other hand, at the downstream of the dune, as the 

water recovered and velocity reduced, the bed-load sands began to deposit. Such 

process moved the sand dune downstream slowly with the flow and makes the dune 

become flatter and flatter. These findings have been confirmed by the experimental 

investigations. Some difference between the results obtained by LBM model and 

experiments can be found in the Figure 8.3, especially for the upstream of the dune. 

This may be due to the ignorance of the effect of slope in Equation (8.40) and this has 

been confirmed by Lin [193] using the finite difference method. Overall, the results 

by LBM model can be accepted with the consideration of errors existing in 

experiments.  

 

Test 3: Morphological Evolution of 2D Sand Dune 

In order to verify the proposed model further, a 2D sand dune is considered. This case 

has been tested numerically in [16, 191, 192, 196]. The channel is 1000m long and 

1000m wide with the initial bed topography given by 

           
     

        

   
      

        

   
                            

                                                                           

  

(8.41) 

                                                                (8.42) 

          
  

        
                                                       (8.43)  

The following equations are used for the bed-load sediment transport rates, 

                                                                (8.44) 

                                                                  (8.45) 

 in which A=0.001. For this case,       ,         , s7=s8=1/0.51, po = 0.4 and 

s0-s6=1 are used. The steady flow has been obtained in the simulation with initial 

condition (8.41)-(8.43) for the fixed bed before the module for morphological change 

is activated with the critical relative error     of 6×10
-8

. Figure 8.4 shows the 

numerical results for the steady flow used as an initial flow condition for the 

calculation using the coupled method for simulation of the flow and the bed evolution: 

(a) is the initial bed topography, (b) and (c) are the velocity components u and v, 

respectively, and (d) is the water surface of the steady flow over the fixed bed. This 
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steady flow provides good initial flow conditions to model the interaction between the 

flow and the morphological change.  

 

 

 

                                      (a)                                                                  (b) 

  

                                       (c)                                                                   (d) 

Figure 8.4 The initial bed configuration (a), steady velocity components u (b) and v 

(c), and water surface for flow over the fixed bed (d). 
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                                   (a)                                                                   (b) 

 

                                  (c)                                                                  (d) 

Figure 8.5 Snapshots of the bed evolution of 2D sand dune at t = 25 hours (a), 50 

hours (b), 75 hours (c), and 100 hours (d).  (The unit of bed elevation is meter.) 

 

After the simulation is completed, the predicted contours for the bed configuration at 

different times t = 25hours, 50hours, 75hours, 100 hours are depicted in Figure 8.5. 

According to the equations (8.44) and (8.45), the bed-load transport rate is 

proportional to the velocity cubed and the velocity component u is much bigger than v 

in this case, hence leading to sediment transport largely in the x direction. From t = 0 

to 100 hours, the apex of the sand dune has moved from x = 400m to about 570m. At 

the same time, the sand dune spread along y direction gradually and a star-shaped 

structure is well formed.  Figure 8.5(a) to (d) clearly shows this process. These 
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findings are consistent with those reported in [16, 191] and the morphological change 

agrees well with that by    [16, 191] qualitatively. This suggests that the described 

mixed model is stable for calculation of bed evolution over long time and is able to 

provide similar accurate results with much simpler programming in more efficient 

way compared to conventional numerical methods.  

 

8.7 Conclusions 

Coupling the LABSWE
MRT

 for flows with the fifth order Euler-WENO finite 

difference scheme for morphological equation has been developed to investigate the 

bed evolution in shallow water flows. The following conclusions can be drawn: 

 

(a) The proposed mixed model is able to predict morphological evolution of 1D sand 

dune and hump, and 2D sand dune in shallow water flows. The predicted results agree 

well with the corresponding analytical solutions or experimental data.  

 

(b) The Euler-WENO finite difference scheme is found to be stable and accurate for 

solution to the morphological evolution due to bed-load sediment transport. 

 

(c) The coupled model has great potential to investigate the bed change caused by 

sediment transport in shallow water flows. To apply the proposed method to more 

practical flow problems, the advection-diffusion equation need to be incorporated into 

the present model to consider the suspended load transport.  
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Chapter 9: Conclusions and Recommendations 

 

 

9.1 Preamble 

As a relative new method for simulating the flows, the lattice Boltzmann has been 

applied widely and improved greatly over the past twenty years. Like other 

conventional CFD methods, LBM has its shortcomings and advantages. For example, 

LBM is only second-order accurate in space and time; and unstructured grid is 

difficult to incorporate into the standard LBM. However, the LBM becomes more and 

more popular for simulating flows because its algorithm is simple and efficient, and 

easy for parallel computation. Furthermore, it is easy to implement different boundary 

condition for complex geometries. 

 

In this thesis, three kinds of the lattice Boltzmann method for shallow water, namely 

LABSWE, LABSWE
TM

, and LABSWE
MRT

 respectively, are derived and discussed in 

detail. They have been applied to simulating different complex flows such as free 

surface flows in rectangular open channels, shallow water flows over discontinuous 

beds, and then they have also been extended to simulating a moving body in shallow 

water flows, and finally the environmental flows including solute transport and 

sediment transport under shallow waters. The main findings and contributions of this 

thesis are summarised in this chapter and future work is recommended.  

 

9.2 Conclusions 

9.2.1 Multiple-Relaxation-Time Lattice Boltzmann Method with 

Improved Force  

The lattice Boltzmann method with multiple-relaxation-time is derived and discussed 

in detail. The shallow water equations are recovered correctly from LABSWE
MRT

 by 

using the Chapman-Enskog expansion for the first time. Compared to the LABSWE, 

the LABSWE
MRT

 formulation has better stability and is capable of simulating flows 

with higher Reynolds number. Although it costs more computational time (about 

15%), it is benefical for some flows.    
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9.2.2 Modelling the Flow over Discontinuous Beds Using 

LABSWEMRT 

The flow over discontinus beds has not been solved well by conventional methods. It 

has been studied by LABSWE
MRT 

in this thesis. Unlike other numerical methods, no 

additional treatment is needed in the described method for flows over a bed with a 

vertical step. In order to solve this problem, a new force term is proposed and it is 

demonstated that it is crucial to produce the correct results. In order to include the 

head loss caused by the step, the resistance stress is added in the force term. The study 

shows that the calculated results with resistance stress are more practical. It has been 

found that the LABSWE is able to capture the shock waves without any special 

treatment as indicated in [93] and now it shows another attractive feature. 

 

9.2.3 Moving Boundary in Shallow Water Flows 

A lattice Boltzmann method based on the LABSWE
MRT

 for moving boundary 

conditions is developed for shallow water flows and is verified by the corresponding 

experiments. The additional momentum for correct interaction between the fluid and 

solid has been added to the model and a refill method for new fluid nodes moving out 

from solid nodes has been proposed. Moreover, FH’s, MMP’s, and Guo’s schemes for 

curved boundary conditons at second-order accuracy have been compared in detail. 

The proposed model is applied to simulate the flows around static and moving 

cylinders in shallow waters. 

 

9.2.4 Solute Transport in Shallow Water Flows  

Both of the LABSWE and the LABSWE
MRT

 is used and couplied with the advection-

diffusion equation to study the solute transport. The equation is also solved by the 

lattice Boltzmann equation. Three typical solute transport cases in shallow waters are 

investigated to verify the models. The predicted results by LABSWE and 

LABSWE
MRT

 agree well with other corresponding results.  

 

9.2.5 Mixed Numerical Method for Bed Evolution  

Coupled the LABSWE
MRT

 with the fifth order Euler-WENO finite difference scheme, 

a mixed model for the morphological equation, has been developed to investigate the 

bed evolution in shallow water flows. The proposed mixed model is able to predict 
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morphological evolution of 1D sand dune and hump, and 2D sand dune in shallow 

water flows. The predicted results agree well with the corresponding analytical 

solutions or experimental data. The Euler-WENO finite difference scheme is found to 

be stable and accurate for solution to the morphological evolution equation caused by 

bed-load sediment transport over long time.  

 

9.2.6 Numerical simulation for free surface flows in rectangular 

shallow basins 

The LABSWE
TM

 is applied to model the free surface flows in rectangular shallow 

basins. The results obtained by the LABSWE
TM

 have been compared to those by the 

finite volume and algebraic turbulence models and laboratory experiments. The 

results show that the lattice Boltzmann model can predict asymmetrical shallow flows 

and capture the typical features efficiently at the same accuracy as the conventional 

methods. The study demonstrates that LABSWE
TM

 is accurate to simulate the free 

surface flows and can be extended for wider range of application.   

 

9.3 Recommendations 

9.3.1 Simulating the Moving Body with Variable Velocity 

In chapter 7, a moving body at constant velocity has been simulated by the lattice 

Boltzmann method. However, the moving velocity of a cylinder may not be constant 

in practice, such as landslides, the uprooted trees and damaged houses in flooding. As 

a result, the presented method needs to be extended into this case for more practical 

engineering.   

 

9.3.2 Incorporation of the Suspended Sediment Transport  

In chapter 8, the sediment transport is studied by the LABSWE
MRT

. However, only 

the bed-load component of sediment is included. In some cases, suspended sediment 

also plays an important role in the morphological evolution in rivers, and such 

movement can be simulated by the advection-diffusion equation, which has been used 

for predicting solute transport in chapter 7. This study is currently in progress and will 

be reported in the later publications. 
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9.3.3 Supercritical Flow Simulation 

Up to now, none of the LABSWE, LABSWE
TM

 and LABSWE-MRT has the ability 

of simulating the supercritical flow because of the stability limitation. Thang et al. 

[197] studied the stability of a D1Q3 LBM for shallow water flows and pointed out 

the limits of the LBM are the Courant condition and Fr<1. Besides, they claimed that 

they have modified the D1Q3 model which is stable for subcritical and supercritical 

flows although their results on supercritical flows have not been published. As the 

development of LBM, we believe this problem will be solved in the near future to 

make the LBM more powerful and practical for more real life problems.   

 

9.3.4 Parallel Computation for LBM  

In order to simulate the real life flows like flooding, a large number of grids are 

needed. Therefore, parallel computing is desirable for numerical simulation. 

Fortunately, one of most attractive advantages is the inherent feature of the parallel 

computation in the LBM. It is recommended that parallel computation of above three 

models can be implemented in the future studies.  
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