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Abstract 

Introduction and Aims 
Epilepsy is a neurological disorder and is a heterogeneous condition both in terms of cause 
and prognosis.  Prognostic factors identify patients at varying degrees of risk for specific 
outcomes which facilitates treatment choice and aids patient counselling. 
 
Few prognostic models based on prospective cohorts or randomised controlled trial data 
have been published in epilepsy.  Patients with epilepsy can be loosely categorised as 
having had a first seizure, being newly diagnosed with epilepsy, having established epilepsy 
or frequent unremitting seizures despite optimum treatment.  This thesis concerns 
modelling prognostic factors for these patient groups, for outcomes including seizure 
recurrence, seizure remission and treatment failure. 

Methods 
Methods for modelling prognostic factors are discussed and applied to several examples 
including eligibility to drive following a first seizure and following withdrawal of treatment 
after a period of remission from seizures.  Internal and external model validation 
techniques are reviewed.  The latter is investigated further in a simulation study, the results 
of which are demonstrated in a motivating example.  Mixture modelling is introduced and 
assessed to better predict whether a patient would achieve remission from seizures 
immediately, at a later time point, or whether they may never achieve remission. 

Results 
Multivariable models identified a number of significant factors.  Future risk of a seizure was 
therefore obtained for various patient subgroups.  The models identified that the chance of 
a second seizure was below the risk threshold for driving, set by the DVLA, after six months, 
and the risk of a seizure following treatment withdrawal after a period of remission from 
seizures was below the risk threshold after three months.  
 
Selected models were found to be internally valid and the simulation study indicated that 
concordance and a variety of imputation methods for handling covariates missing from the 
validation dataset were useful approaches for external validation of prognostic models.  
Assessing these methods for a selected model indicated that the model was valid in 
independent datasets.  Mixture modelling techniques begin to show an improved 
prognostic model for the frequently reported outcome time to 12-month remission.   

Conclusions 
The models described within this thesis can be used to predict outcome for patients with 
first seizures or epilepsy aiding individual patient risk stratification and the design and 
analysis of future epilepsy trials.  Prognostic models are not commonly externally validated.  
A method of external validation in the presence of a missing covariate has been proposed 
and may facilitate validation of prognostic models making the evidence base more 
transparent and reliable and instil confidence in any significant findings. 



iv 
 

Acknowledgements 

I would like to take the opportunity to thank those who have made this thesis possible.  

First and foremost I wish to thank Dr Catrin Tudur Smith and Prof Tony Marson for their 

assistance in the preparation of this thesis, and all their advice throughout my PhD.  I 

cannot thank my supervisors without thanking Prof Jane Hutton, University of Warwick, for 

all her help in the writing of Chapter 10.  She kindly offered theoretical advice and practical 

solutions to the complexities of mixture modelling. 

My appreciation also goes to other members of the Department of Statistics, especially Dr 

Andrea Jorgensen who has shared an office with me for the duration of my PhD and has 

therefore borne the brunt of all my questions, whinging and complaining!  Mrs Susie Dodd, 

a fellow PhD student in the department, also deserves a mention for not only providing a 

listening ear, but also allowing me to play teacher and therefore occasionally feel that I 

know what I am talking about!  Thanks must also go to Mrs Kath Forrest and Miss Karen 

Barnes for their administrative support and for providing sustenance in the form of biscuits 

and sweets! 

I would also like to thank the National Institute for Health Research for funding this work 

and Dr Pete Dixon for answering endless data queries. 

My personal thanks go to my parents for their constant support and encouragement, and 

for inspiring my passion for education and hard-work.  Special thanks go to my Mum for 

reading through this thesis in its entirety and providing feedback.   

Finally, I want to give my wholehearted thanks to Rob, my partner, for his compassion, 

understanding and calming influence, and for helping me keep everything in perspective. 

  



v 
 

Table of Contents 

Chapter 1: Introduction to Prognostic Factor Studies ....................................................... 1 

1.1 Introduction to Prognostic Factors for Epilepsy ......................................................1 

1.2 Introduction to Prognostic Factor Studies ...............................................................3 

1.3 Prognostic Factor Studies ........................................................................................3 

1.3.1 Approaches to Prognostic Factor Studies ........................................................5 

1.3.2 Improvements to Prognostic Factor Studies ................................................. 10 

1.4 Modelling Survival Data ........................................................................................ 11 

1.4.1 Introduction .................................................................................................. 11 

1.4.2 Parametric Methods ..................................................................................... 12 

1.4.2.1 Parametric Models .................................................................................... 13 

1.4.2.2 Accelerated Failure Time .......................................................................... 16 

1.4.2.3 Cox Proportional Hazards ......................................................................... 16 

1.4.3 Nonparametric Methods .............................................................................. 18 

1.4.3.1 Neural Networks ....................................................................................... 19 

1.4.3.2 Hierarchical Trees ..................................................................................... 20 

1.4.4 Comparison of Methods ............................................................................... 21 

1.5 Thesis Outline ........................................................................................................ 22 

1.5.1 Introduction to Epilepsy ................................................................................ 23 

1.5.2 Methods for Identifying Prognostic Factors for Epilepsy .............................. 23 

1.5.3 Identifying Prognostic Factors for Epilepsy ................................................... 24 

1.5.4 Implications for Drivers with a First Seizure ................................................. 24 

1.5.5 Implications for Drivers who withdraw AED Treatment ............................... 25 

1.5.6 Internal Validation of Prognostic Models ..................................................... 25 

1.5.7 Externally Validating Prognostic Models – Simulation Study ....................... 26 

1.5.8 Externally Validating Prognostic Models – Case Study ................................. 26 

1.5.9 Prognostic Models for Remission – Mixture Modelling ................................ 27 

1.5.10 Conclusions and Further Work...................................................................... 27 

 

Chapter 2: Introduction to Epilepsy ............................................................................... 29 

2.1 Introduction .......................................................................................................... 29 

2.2 Seizure Types ........................................................................................................ 30 



vi 
 

2.2.1 Focal Epilepsies ............................................................................................. 32 

2.2.1.1 Simple or Complex Partial Seizures ........................................................... 33 

2.2.1.2 Secondary Generalised Seizures ............................................................... 34 

2.2.2 Generalised Epilepsies .................................................................................. 34 

2.2.2.1 Absence Seizures ....................................................................................... 35 

2.2.2.2 Myoclonic Seizures .................................................................................... 35 

2.2.2.3 Tonic-Clonic Seizures ................................................................................ 35 

2.2.2.4 Tonic Seizures ............................................................................................ 36 

2.2.2.5 Atonic Seizures .......................................................................................... 36 

2.2.3 Status Epilepticus .......................................................................................... 37 

2.3 Investigations and Diagnosis ................................................................................. 37 

2.3.1 Electroencephalogram .................................................................................. 38 

2.3.2 Magnetic Resonance Imaging ....................................................................... 38 

2.4 Treatment ............................................................................................................. 39 

2.4.1 Non-Drug Treatments ................................................................................... 42 

2.4.1.1 Resective Surgery ...................................................................................... 42 

2.4.1.2 Vagus Nerve Stimulation ........................................................................... 42 

2.4.1.3 The Ketogenic Diet .................................................................................... 43 

2.5 Living with Epilepsy ............................................................................................... 43 

2.5.1 Epilepsy and Driving ...................................................................................... 44 

2.6 Prognostic Factor Studies in Epilepsy ................................................................... 44 

2.7 Clinical Motivation ................................................................................................ 47 

 

Chapter 3: Methods for Identifying Prognostic Factors for Epilepsy ............................... 49 

3.1 Introduction .......................................................................................................... 49 

3.2 Handling Continuous Predictors ........................................................................... 49 

3.2.1 Cutpoint Model ............................................................................................. 50 

3.2.2 Spline Functions ............................................................................................ 51 

3.2.3 Fractional Polynomials .................................................................................. 54 

3.2.3.1 Choice of Origin ......................................................................................... 55 

3.2.3.2 Function Selection Procedure ................................................................... 55 

3.2.3.3 Multivariable Fractional Polynomial ......................................................... 56 

3.2.3.4 Modelling Continuous Variables with a ‘Spike’ at Zero ............................ 57 

3.2.3.5 Hazard Ratios and Confidence Intervals ................................................... 59 



vii 
 

3.2.4 Comparison of Splines and Fractional Polynomials ...................................... 60 

3.3 Variable Centring .................................................................................................. 61 

3.3.1 Multicollinearity ............................................................................................ 61 

3.3.2 Interpretation ................................................................................................ 63 

3.3.3 Discussion ...................................................................................................... 63 

3.4 Model Building and Development ........................................................................ 65 

3.4.1 Treatment-Covariate Interactions Methods ................................................. 67 

3.4.1.1 Likelihood Ratio Test ................................................................................. 68 

3.4.1.2 Multivariable Fractional Polynomial Interactions ..................................... 69 

3.5 Testing the Proportional Hazards Assumption ..................................................... 71 

3.5.1 Log Cumulative Hazard Plots ........................................................................ 71 

3.5.2 Time-Dependent Covariate Effects ............................................................... 74 

3.5.3 Residuals for Cox regression model .............................................................. 74 

3.5.3.1 Schoenfeld Residuals ................................................................................ 75 

3.5.3.2 Martingale Residuals ................................................................................. 75 

3.5.3.3 Deviance Residuals .................................................................................... 76 

3.5.4 Comparison of Deviances .............................................................................. 77 

3.6 Competing Risks Methods .................................................................................... 77 

3.6.1 Cumulative Incidence Analysis ...................................................................... 78 

3.6.2 Fine and Gray ................................................................................................ 79 

3.7 Discussion .............................................................................................................. 80 

 

Chapter 4: Identifying Prognostic Factors for Epilepsy ................................................... 83 

4.1 Introduction .......................................................................................................... 83 

4.2 Methods ................................................................................................................ 84 

4.2.1 SANAD ........................................................................................................... 84 

4.2.2 Prognostic Modelling .................................................................................... 86 

4.3 Results ................................................................................................................... 89 

4.3.1 Time to overall Treatment Failure ................................................................ 91 

4.3.2 Time to Treatment Failure due to Competing Risks ..................................... 96 

4.3.2.1 Treatment Failure due to Inadequate Seizure Control ............................. 97 

4.3.2.2 Treatment Failure due to Unacceptable Adverse Events ......................... 98 

4.3.3 Time to 12 Month Remission ...................................................................... 101 

4.4 Discussion ............................................................................................................ 106 



viii 
 

Chapter 5: Implications for Drivers with a First Seizure ................................................ 111 

5.1 Introduction ........................................................................................................ 111 

5.2 Methods .............................................................................................................. 114 

5.2.1 Statistical analysis ....................................................................................... 118 

5.3 Results ................................................................................................................. 121 

5.4 Discussion ............................................................................................................ 128 

 

Chapter 6: Implications for Drivers who Withdraw AED Treatment .............................. 135 

6.1 Introduction ........................................................................................................ 135 

6.2 Methods .............................................................................................................. 136 

6.2.1 Antiepileptic Drug Withdrawal Study ......................................................... 136 

6.2.2 Systematic Review ...................................................................................... 139 

6.2.2.1 Cochrane Collaboration Tool .................................................................. 140 

6.2.2.2 Newcastle-Ottawa Scale ......................................................................... 141 

6.3 Results ................................................................................................................. 141 

6.3.1 Antiepileptic Drug Withdrawal Study ......................................................... 141 

6.3.2 Recurrence Risk Following Antiepileptic Drug Withdrawal ........................ 143 

6.3.3 Risk Following Recurrence and Recommencing Treatment ....................... 144 

6.3.4 Systematic Review ...................................................................................... 145 

6.4 Discussion ............................................................................................................ 151 

 

Chapter 7: Internal Validation of Prognostic Models ................................................... 157 

7.1 Introduction ........................................................................................................ 157 

7.2 Evaluating Model Performance .......................................................................... 158 

7.2.1 Measures of Explained Variation ................................................................ 158 

7.2.1.1 Spearman, Kendall and Somer ................................................................ 159 

7.2.1.2 Schemper (& Henderson) ........................................................................ 161 

7.2.1.3 Korn & Simon .......................................................................................... 162 

7.2.1.4 Graf & Schumacher ................................................................................. 163 

7.2.1.5 Nagelkerke .............................................................................................. 163 

7.2.1.6 Haegerty & Zheng ................................................................................... 164 

7.2.1.7 O’Quigley ................................................................................................. 164 

7.2.1.8 Kent & O’Quigley ..................................................................................... 165 

7.2.1.9 Maddala .................................................................................................. 165 



ix 
 

7.2.1.10 Conclusion ........................................................................................... 165 

7.2.2 Discrimination ............................................................................................. 166 

7.2.3 Calibration ................................................................................................... 167 

7.3 Internal Validation of Prediction Models ............................................................ 167 

7.3.1 Apparent Validation ................................................................................ 167 

7.3.2 Split-sample validation ............................................................................ 168 

7.3.3 Cross-validation ....................................................................................... 168 

7.3.4 Bootstrap Validation ............................................................................... 169 

7.4 Internal Validation of the SANAD Models........................................................... 170 

7.4.1 Time to Treatment Failure .......................................................................... 171 

7.4.2 Time to 12 Month Remission ...................................................................... 173 

7.5 Conclusion ........................................................................................................... 175 

 

Chapter 8: Externally Validating Prognostic Models – Simulation Study ....................... 179 

8.1 Introduction ........................................................................................................ 179 

8.2 External Validation .............................................................................................. 181 

8.2.1 Literature Review ........................................................................................ 183 

8.2.2 Predictive Performance .............................................................................. 188 

8.2.3 Discrimination ............................................................................................. 189 

8.2.4 Calibration ................................................................................................... 193 

8.2.5 Prognostic Separation ................................................................................. 194 

8.2.6 Royston-Parmar’s Alternative to the Cox Model ........................................ 198 

8.2.7 Conclusion ................................................................................................... 202 

8.3 Missing Data ........................................................................................................ 203 

8.3.1 Mechanisms ................................................................................................ 204 

8.3.1.1 Missing Completely at Random .............................................................. 204 

8.3.1.2 Missing at Random .................................................................................. 204 

8.3.1.3 Ignorable ................................................................................................. 204 

8.3.1.4 Non-Ignorable ......................................................................................... 205 

8.3.2 Missing Data within Covariates ................................................................... 205 

8.3.2.1 Complete Case Analysis .......................................................................... 205 

8.3.2.2 Available Case Analysis ........................................................................... 207 

8.3.2.3 Additional Category or Missing Indicator Method ................................. 208 

8.3.2.4 Imputation .............................................................................................. 208 



x 
 

8.3.2.5 Maximum Likelihood Algorithms ............................................................ 213 

8.3.2.6 The Expectation-Maximisation Algorithm .............................................. 214 

8.3.3 Methods for Handling Missing Covariates .................................................. 214 

8.3.3.1 Remodelling with Variable Matching ...................................................... 216 

8.3.3.2 Random Selection with Replacement ..................................................... 216 

8.3.3.3 Single Imputation via Estimated Proportions ......................................... 216 

8.3.3.4 Hot Deck Imputation ............................................................................... 217 

8.3.3.5 Multiple Imputation ................................................................................ 217 

8.3.3.6 Conclusion ............................................................................................... 218 

8.4 Simulation Study ................................................................................................. 219 

8.4.1 Methods Under Consideration ................................................................... 219 

8.4.2 Simulation Procedures – Data Generation ................................................. 220 

8.4.2.1 Survival Data ........................................................................................... 221 

8.4.2.2 Censoring Indicator ................................................................................. 223 

8.4.2.3 Covariate Data ......................................................................................... 223 

8.4.3 Simulation Procedures - Scenarios to be Investigated ............................... 224 

8.4.4 Simulation Procedures – Statistical Methods ............................................. 225 

8.4.5 Results ......................................................................................................... 228 

8.4.5.1 Concordance ........................................................................................... 229 

8.4.5.2 Deviance .................................................................................................. 230 

8.4.5.3 Prognostic Separation ............................................................................. 232 

8.4.5.4 Measures of Accuracy ............................................................................. 233 

8.5 Conclusion ........................................................................................................... 236 

 

Chapter 9: Externally Validating Prognostic Models – Case Study ................................ 241 

9.1 Introduction ........................................................................................................ 241 

9.2 Validation using NGPSE ....................................................................................... 249 

9.2.1 Results ......................................................................................................... 249 

9.2.1.1 Sensitivity Analysis .................................................................................. 252 

9.2.2 Conclusion ................................................................................................... 254 

9.3 Validation using WA ............................................................................................ 254 

9.3.1 Results ......................................................................................................... 254 

9.3.2 Conclusion ................................................................................................... 256 

9.4 Validation using FIRST ......................................................................................... 257 



xi 
 

9.4.1 Sensitivity Analysis ...................................................................................... 257 

9.4.1.1 Conditional Seizure Risks ........................................................................ 259 

9.4.2 Methods for Handling a Missing Covariate ................................................. 262 

9.4.3 Conclusion ................................................................................................... 264 

9.5 Missing Data – Comparing Simulated and Real Results ...................................... 264 

9.5.1 Results ......................................................................................................... 265 

9.5.1.1 Missing Binary Covariate ......................................................................... 265 

9.5.1.2 Missing Categorical Variable ................................................................... 265 

9.5.2 Conclusion ................................................................................................... 269 

9.6 Summary ............................................................................................................. 269 

 

Chapter 10: Prognostic Models for Remission – Mixture Modelling ............................. 275 

10.1 Introduction ........................................................................................................ 275 

10.2 Mixture Modelling .............................................................................................. 276 

10.2.1 General Finite Mixture Models ................................................................... 278 

10.2.1.1 Estimating the Parameters in Finite Mixture Densities ...................... 278 

10.2.1.2 Detecting Finite Mixture Densities ..................................................... 281 

10.2.1.3 Determining the Number of Components in a Mixture ...................... 282 

10.2.1.4 Including Covariates in a Finite Mixture Model .................................. 284 

10.2.2 Finite Mixture Models for Survival .............................................................. 284 

10.2.2.1 Long-Term Survivor Model (Proportion Cured Model) ....................... 288 

10.2.2.2 Fitting by Maximum Likelihood ........................................................... 290 

10.2.2.3 Application of the EM Algorithm ........................................................ 291 

10.3 Modelling Time to 12 Month Remission ............................................................. 292 

10.3.1 Non-Mixture Modelling .............................................................................. 292 

10.3.1.1 Immediate 12 Month Remission ......................................................... 292 

10.3.1.2 Time to Delayed 12 Month Remission ................................................ 295 

10.3.1.3 Discussion ............................................................................................ 297 

10.3.2 Mixture Modelling ...................................................................................... 298 

10.3.2.1 Stage 1: Is there a cure fraction? ........................................................ 298 

10.3.2.2 Stage 2: Distribution of Delayed Remission Group ............................. 299 

10.3.2.3 Step 3: Covariates ............................................................................... 303 

10.3.2.4 Step 4: Setting Up the Likelihood ........................................................ 306 

10.3.2.5 Step 5: Is the assumption valid? ......................................................... 309 



xii 
 

10.3.2.6 Discussion ............................................................................................ 309 

10.3.3 Future Work ................................................................................................ 311 

10.4 Conclusion ........................................................................................................... 312 

 

Chapter 11: Conclusions and Further Work ................................................................. 315 

11.1 Introduction ........................................................................................................ 315 

11.2 Recommendations for Practice ........................................................................... 316 

11.2.1 Model Development ................................................................................... 317 

11.2.2 Model Presentation .................................................................................... 317 

11.2.3 Model Validation ......................................................................................... 318 

11.3 Recommendations for Research ......................................................................... 319 

11.3.1 Model Development ................................................................................... 319 

11.3.2 Model Validation ......................................................................................... 320 

11.4 Future Work ........................................................................................................ 321 

 

Bibliography .............................................................................................................. 325 

 

Appendix A – Further Results from Chapter 5 ............................................................. 345 

 

Appendix B – Search Strategy used in Chapter 6 ......................................................... 351 

 

Appendix C – Further Results from Chapter 8 .............................................................. 353 

 

Appendix D – Further Results from Chapter 9 ............................................................. 367 

 

Appendix E – Published Papers ................................................................................... 371 

  



xiii 
 

Abbreviations 

AED Antiepileptic Drug 

AIC Akaike’s Information Criterion 

CBZ Carbamazepine 

CI Confidence Interval 

CT/MRI Computerised Tomography or Magnetic Resonance Imaging 

EEG Electroencephalogram 

EM Expectation-maximisation algorithm 

FIRST First tonic-clonic dataset from Italy 

FP Fractional Polynomial 

GBP Gabapentin 

HR Hazard Ratio 

IQR Interquartile Range 

LTG Lamotrigine 

MAR Missing at random 

MCAR Missing completely at random 

MESS Multicentre Study of Early Epilepsy and Single Seizures 

MFP Multivariable Fractional Polynomial 

NGPSE National General Practice Survey of Epilepsy 

OXC Oxcarbazepine 

ROC Receiver Operating Characteristic curve 

SANAD Standard Versus New Antiepileptic Drug trial 

TPM Topiramate 

WA Western Australian dataset of first tonic-clonic seizures 



xiv 
 

  



 
 

1 
 

Chapter 1: Introduction to 

Prognostic Factor Studies  

1.1 Introduction to Prognostic Factors for Epilepsy 

Epilepsy is a common neurological condition, with an estimated incidence of 50 per 

100,000 and prevalence of 5 to 10 per 1000 in the developed world. Between two and 

three percent of the population will be given a diagnosis of epilepsy at some time in their 

lives, the majority of whom will go into remission. However, up to 30% of those with 

epilepsy will fail to respond to monotherapy with standard antiepileptic drugs. 

Prognostic factors are defined as demographic, disease-specific, or co-morbid 

characteristics associated strongly enough with a condition's outcome to predict accurately 

the eventual development of those outcomes.   Prognostic factors can help to identify 

patients at different degrees of risk for specific outcomes, facilitate treatment choice and 

aid patient counselling.  Few prognostic models based on randomised controlled trial data 

or prospective cohorts have been published in epilepsy.   

Patients with epilepsy can be loosely categorised as having had a first seizure, being newly 

diagnosed with epilepsy – defined as at least two clinically unprovoked seizures, having 

established epilepsy, or frequent unremitting seizures despite optimum treatment.  

Prognostic models for time to treatment failure and time to 12 month remission for newly 

diagnosed patients are developed in Chapter 4.  In Chapter 5 a prognostic model for risk of 

seizure recurrence following a first ever seizure is developed and in Chapter 6 prognostic 

models are developed for risk of recurrence for patients who withdraw treatment following 

a period of remission and for patients who reinstate treatment following seizure 

recurrence after a period of remission.  The models in Chapter 5 and 6 are particularly 
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focussed on people with epilepsy who drive as the models influence the driving regulations 

regarding time off driving following a seizure or treatment withdrawal.  

Before prognostic models can be accepted into general practice they need to be validated.  

Internal validation – assessment of model validity for the setting where the development 

data originated from – is examined in Chapter 7 for the models developed in Chapter 4.  

External validation – assessment of model validity in other samples which are fully 

independent from the development data – is examined via a literature review and 

simulation study in Chapter 8, the results of which are applied to external validation of the 

model from Chapter 5 in Chapter 9. 

The internal validity of the model for remission in Chapter 4 is found to be poor at one 

year.  This may relate to the heterogeneity of outcome for epilepsy – some patients achieve 

remission immediately at 12 months while others may never achieve remission.  Therefore, 

it may be more appropriate to model the three distinct patient subgroups in one overall 

model for time to 12 month remission via a three-component mixture model.  This is the 

content of Chapter 10 which precedes an overview of the entire thesis together with 

suggestions for future research and clinical practice (Chapter 11). 

This chapter continues with a summary of prognostic factors studies including approaches 

to studying prognostic factors in section 1.3.1 and possible improvements that could be 

made to future prognostic factor studies (section 1.3.2).  This is followed by an overview of 

methods for modelling survival data including parametric methods, such as the accelerated 

failure time model (section 1.4.2.2) and the Cox proportional hazards model (section 

1.4.2.3), and nonparametric methods like neural networks (section 1.4.3.1) and hierarchical 

trees (section 1.4.3.2).  The chapter concludes with an overview of the thesis including a 

detailed summary of each chapter (section 1.5).  
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1.2 Introduction to Prognostic Factor Studies 

Prognostic factors are defined as demographic, disease-specific, or co-morbid 

characteristics associated strongly enough with a condition's outcome to predict accurately 

the eventual development of those outcomes [1].   Prognostic factors can help to identify 

patients at different degrees of risk for specific outcomes, facilitate treatment choice and 

aid patient counselling.  

When individual prospects for survival, or indeed any outcome, are highly variable, it is 

natural to look for possible explanations.  Knowledge of prognostic variables can aid in the 

understanding of a disease [2-4] and may lead to variation in treatment according to a 

patients’ predicted probability of survival [5-7].  Prognostic factor studies are described in 

section 1.3. 

In the medical literature, much emphasis has traditionally been given to the identification 

of predictors.  As of January 2007, over 60,000 papers had been published with the term 

“predictor” or “prognostic factor” [8].   Statistical models for prediction can be discerned 

into main classes: regression, classification, and neural networks.  These models are 

discussed in section 1.4. 

1.3 Prognostic Factor Studies 

The purpose of prognostic factor studies is to improve understanding of the disease 

process, improve the design and analysis of clinical trials and define risk groups based on 

prognosis.  In addition, prognostic factor studies can assist in comparing outcomes 

between treatment groups in non-randomised studies by allowing adjustment for case mix, 

predicting disease outcomes more accurately or parsimoniously and guiding clinical 

decision making, including treatment selection and patient counselling [9, 10].  



 
 

4 
 

When conducting and reporting prognostic factor studies, researchers should consider the 

approach to prognosis, explanatory or outcome prediction, and phase of investigation [11].  

Readers of health care research will then be better able to evaluate the goals and interpret, 

and appropriately use, the results of prognostic factor studies. 

Windeler observed that summaries of prognosis are not meaningful unless associated with 

a particular strategy for treatment and suggested that the greatest importance of 

prognostic factor studies is to aid decisions about treatment [12].  If the treatment received 

varies in relation to prognostic variables, then the study cannot deliver an unbiased and 

meaningful assessment of prognostic ability, unless the different treatments are equally 

effective - in which case, why vary the treatments?  Such variation in treatment may be 

quite common once there is evidence, usually non-systematic, that a variable is prognostic.  

Ideally therefore, prognostic variables should be evaluated either in a cohort of patients 

treated the same way or in a randomised trial [13, 14].   

Case-control and cross sectional studies may both be used to examine risk factors but these 

designs are much weaker [10].  This is because cross sectional studies are primarily used to 

determine prevalence and are also used to infer causation.  They do not provide an 

explanation for their findings.  Case-control studies determine the relative importance of a 

predictor variable in relation to the presence or absence of the disease.  They are 

retrospective and cannot therefore be used to calculate the relative risk.  The major 

problem with case-control studies are the familiar ones of confounding variables and bias.  

Case-control designs have, however, been shown to yield optimistic results for evaluations 

of diagnostic tests, a result that is likely to be relevant to prognostic studies [15].  This is 

because often, mild cases that are difficult to diagnose are omitted from case-control 

studies, causing an overestimation of sensitivity as well as specificity.  Also, diagnostic 

accuracy can be overestimated if the test is evaluated in a group of patients already known 
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to have the disease and a separate group of normal patients, rather than in a relevant 

clinical population [16].  This is obviously the scenario for a case-control study.  

1.3.1 Approaches to Prognostic Factor Studies 

Two approaches to prognostic factor studies have been identified by Hayden - explanatory 

analysis and outcome prediction [11].  Explanatory studies focus on the causal association 

between prognostic factors and an outcome, whereas outcome prediction studies focus on 

variables taken together to identify the combination of factors that is most strongly 

associated with outcome and can be used to stratify patients on an outcome, often to 

triage them into treatment programs. 

Altman and Lyman have also developed criteria for the design of a prognostic factor study 

[9].  According to this, primary and secondary hypotheses should be clearly stated, 

including any subgroup analyses planned in advance of the study.  Prognostic factors for 

which there is sufficient evidence to warrant further investigation based on previous 

studies, biological and clinical plausibility and relevance, and importance to the 

understanding or treatment of the disease should also be considered.   

Additionally, Altman and Lyman suggest that the study population should be defined with 

specific inclusion and exclusion criteria and methods to judge evaluability [9].  Patient 

treatment should be either standardised or assigned by randomisation and assays should 

be reproducible and be performed with knowledge of the clinical data and patient 

outcome.  The planned analysis, including proposed hypothesis testing on subgroups and 

anticipated interaction in advance of the study should also be specified as well as the key 

study features including the above information which should be fully detailed in a formal 

written protocol. 
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To develop an alternative framework for understanding prognosis, Hayden [11] adapted 

the work of Altman and Lyman [9] and integrated the discussion of causal understanding 

published by Goldthorpe [17].  She identified three phases of explanatory prognosis 

investigation.  The purpose of each phase can be described as exploration, confirmation 

[18], and development of understanding respectively.  To support all three phases, 

additional information can be obtained from clinical observations, basic science, descriptive 

studies, and other sources that may support the evidence on prognosis. 

Phase 1 studies identify associations between a number of potential prognostic factors and 

a health outcome and are the most common phase of prognostic investigation [11].  

Although this type of investigation is necessary to identify new factors, it provides the least 

conclusive information regarding the independence of a variable as a valid prognostic 

factor.  Phase 1 studies provide hypothesis-generating evidence indicative of a potential 

association between a prognostic factor and an outcome.  They are often recognisable by 

their objective statements that present broad exploratory aims.  Phase 1 studies do not 

focus on one specific prognostic factor rather the prognostic factor of interest is 

investigated as one of many factors assessed for their association with the outcome.  For 

this reason, most Phase 1 studies only discuss the findings for factors that are found to be 

statistically significant, regardless of clinical significance. 

Phase 1 investigations are appropriate when it is unclear which variables are important in 

predicting an outcome for a population [11].  However, it should be recognised that results 

from multiple studies in this exploratory phase of investigation often have widely varying 

results as spurious associations are common, and real effects are sometimes missed [9].  

Also, some associations are present in one population but not in another.  Further testing 

in a Phase 2 confirmatory investigation is required to confirm the results of a Phase 1 study. 



 
 

7 
 

Phase 2 studies test the independence of the association between a prognostic factor and 

the outcome of interest.  These studies aim to measure the independent effect of a 

prognostic factor while controlling for confounders [11].  Typical Phase 2 studies are 

recognisable by their objective statements that outline a specific prognostic factor of 

interest and aim to investigate the relationship between this variable and the outcome.  In 

Phase 2 studies, the importance shifts to assessing whether the factor independently adds 

to currently known prognostic factors. 

For a specific prognostic factor, the finding of a significant association in a study testing an 

independent association is a stronger finding than an association identified in the previous 

phase of investigation [11].  However, both Phase 1 and 2 studies are based on the often 

unrealistic assumption that the effect of the prognostic factor on the outcome is direct and 

isolated.  This may be inadequate to describe complex relationships for most conditions, 

and where the impact of factors may change over time. 

Phase 3 studies of prognosis attempt to describe the complexity of the prognostic 

pathways or processes.  These studies apply knowledge from the previous phases of study 

on independent associations and incorporate other knowledge from the field of study [11].  

Phase 3 explanatory studies start with an explicit theoretical framework that includes the 

prognostic construct of interest, variables that are thought to influence or modify the effect 

of that factor, variables that are thought to be intermediate or a mediator in the pathway 

toward the outcome, potential confounding variables, and the outcome of interest.  Phase 

3 explanatory studies provide evidence supportive of the mechanism or mechanisms of 

action of a prognostic factor on the outcome.  However, the strength of interpretation of 

Phase 3 explanatory studies depends on the strength of the theoretical framework and the 

extent to which existing knowledge about the disease or illness supports the study [11]. 
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Table 1 provides a summary of the phases of an exploratory prognostic factor investigation 

[11]. 

Table 1: Phases of an Exploratory Prognostic Factor Investigation 

Phase of 
Investigation 

Issue addressed for prognostic factor 
of interest

 
Interpretation of results for 
prognostic factor of interest 

Phase 1: 
Exploration of 
associations 

Measures the presence of a 
prognostic relationship between 

factor(s) and the outcome 

Provides hypothesis-generating 
evidence indicative of a potential 
association between a prognostic 

factor and outcome 

Phase 2: 
Testing independent 

associations 

Measures the strength of the 
prognostic relationship between a 

factor and the outcome while 
controlling for alternative 

explanations 

Provides evidence supportive of the 
independent effect of a prognostic 

factor 

Phase 3: 
Understanding and 
testing prognostic 

pathways 

Examines the role of the prognostic 
factor and the process by which it 

impacts the outcome 

Provides evidence supportive of the 
prognostic factor’s mechanism(s) of 

action on the outcome 

 

This framework differs from that of Altman and Lyman [9] in two ways.  Firstly, the two 

approaches of prognosis studies were distinguished between.  Secondly, cross-sectional 

studies were not included under the umbrella of prognosis which Altman and Lyman [9] 

described as “hypothesis generating” studies.  These studies provide information that may 

lead to testing in longitudinal studies.  However, without a longitudinal component they do 

not provide information on predictors of outcome over time [11]. 

Hayden has identified three specific areas where consideration of a framework of 

explanatory prognosis studies is important: defining the study objectives, presenting the 

study methods and data, and interpreting and applying the results of the study [11].  In 

terms of defining study objectives, investigators need to clearly identify the purpose of 

their study, to specify how their study will be used to improve health and health care, and 

to outline how their study will add to the existing knowledge in the area.  This means they 

must decide what approach, explanatory or outcome prediction, and what phase of 

investigation, is needed to advance the knowledge on a specific topic.  The extent of the 
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previous evidence, from prognosis research and other sources of information, will inform 

the study objectives about the phase of investigation [11].  A systematic and thoughtful 

review of literature is commonly required before funding for new randomised controlled 

trials is received, and is equally appropriate before planning and conducting new prognosis 

studies. 

The study design should follow directly from the prognosis study objectives.  For Phase 2 

and 3 explanatory studies, a clear presentation and rationale should be given to explain 

which confounders will be adjusted for in the analysis and why [19].  Study reports should 

give a clear and thoughtful presentation of what the current study adds to the available 

literature, the limitations of the research, and recommendations for future research.  Phase 

1 studies provide exploratory evidence regarding potential prognostic factors.  Further 

study, in the form of a Phase 2 study, would be needed to confirm the independent 

predictive effect of that factor while thoughtful planning and investigation of the 

prognostic pathway in a Phase 3 study is required to further understand how the 

prognostic factor affects the outcome.   

Interpretation of evidence from Phase 1 or 2 studies, without understanding a potential 

prognostic factor’s causal pathway may lead to inappropriate or harmful treatment 

recommendations or policy decisions.  A review, Phase 2, by Goldman [20] stated that 

studies had consistently shown that older patients had a higher risk of cardiac 

complications and in most studies age had been an independent predictive factor even 

after controlling for the severity of cardiac disease and combined conditions.   Two recent 

studies, Phase 3, of elderly patients suggested that such prevailing attitudes may lead to 

under-treatment or even inappropriate treatment of the elderly.  Maly [21] found a 

negative association between age and discussion of treatment options including surgery for 
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breast cancer by physicians while Ellis [22] advocated an aggressive surgical approach in 

elderly patients for cancer of the oesophagus and cardia. 

Interventions that are planned based on an understanding of how factors influence 

outcome, differences over time, dosage differences, or different contextual settings will 

allow optimisation of patient management.  For example, in patients with laryngeal 

carcinoma, breast carcinoma and carcinoma of the bladder, prognostic factors are used to 

select patients who are good candidates for organ preservation [23]. 

The explanatory framework presented can assist clinicians in their interpretation of the 

prognosis literature.  Researchers can also use the framework to plan innovative research 

programs based on theoretical models of prognostic pathways. 

1.3.2 Improvements to Prognostic Factor Studies 

The recently proposed REMARK consensus [24] is a step forward for the standardisation of 

the reporting of cancer prognostic marker studies.  No such guidelines currently exist for 

prognostic factor studies.   In general, authors should avoid highlighting only the significant 

associations and they should try to present, or at least alert readers to, all covariates that 

they considered a priori versus post hoc.  Additionally, journals should encourage the 

publication of well designed, executed and reported prognostic factor studies, regardless of 

the significant or non-significant findings.   

The development of collaborations and networks between investigators may be beneficial, 

if such networks focus also on minimising selective reporting and publication bias [25, 26].  

Transparency and public availability of protocols, data, analyses and results would also be 

helpful [25-27].  Funding groups should also realise that investigators should not be 

supported primarily for their ability to produce statistically significant results, but they 
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should reward novel ideas, rigorous design, implementation and transparent reporting of 

results, regardless of their statistical significance.   

1.4 Modelling Survival Data 

1.4.1 Introduction 

When the length of time taken for an event to occur is measured, the resulting data are 

known as time-to-event, or survival, data.  Often the event is death, hence the name of the 

method - survival analysis where the term survival usually means remaining event free.  In 

the medical setting the event might be discharge from hospital, weaning of a breast-fed 

infant, recurrence of tumour or remission from a disease and the time starting point might 

be time of diagnosis, time of surgery or time of entrance into the study. 

One problem with time-to-event data is that the event is often not observed on all 

subjects.  This might be because a person dropped out due to death or some other reason, 

or maybe the study ended before the event had occurred for an individual.  Although it is 

not known whether the event will happen, duration of follow-up for a person without the 

event being observed is known.  Individuals for whom the event is not observed are called 

censored.  Methods of analysis must be able to cope with censored values.   

Often a number of variables are observed at the commencement of a trial, and survival is 

related to the values of these variables; that is, the variables are prognostic.  Methods of 

analysis must be able to take account of the distribution of prognostic variables in the 

groups under study.  There are many ways to analyse time-to-event data, the most popular 

of which is the Cox proportional hazards model.  Alternatives include parametric methods, 

such as the accelerated failure time model, hierarchical trees and neural networks. 
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1.4.2 Parametric Methods 

A possible approach to the analysis of studies with survival time as the variable of interest 

is to postulate a distribution for survival time and to estimate the parameters of this 

distribution from the data.  This approach is usually applied by starting with a model for the 

death rate and determining the form of the resulting survival time distribution. 

The death rate will usually vary with time since entry to the study,  , and will be denoted 

    , referred to as the hazard function.  Suppose the probability density of survival time is 

     and the corresponding distribution function is     .  Then, since death rate is the rate 

at which deaths occur divided by the proportion of the population surviving, 

Equation 1 

     
    

      
 

    

    
 

where             is the proportion surviving and is referred to as the survivor 

function.  Therefore      and      can be specified in terms of      and the general 

solution is obtained by integrating Equation 1 with respect to   and noting that      is the 

derivative of     .  

In general, the hazard will depend on time and a family of models and may be written as  

Equation 2 

                 
    

where     is the matrix representation of the regression function             and 

      is the time-dependent part of the model [28].  The term       could represent any 

parametric function of   such as the exponential, Weibull or Gompertz.   
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Equation 2 is a regression model in terms of the covariates and is also referred to as a 

proportional hazards model since the hazards for different sets of covariates remain in the 

same proportion for all  .  Data can be analysed parametrically using Equation 2 provided 

that some particular form of       is assumed.  The parameters of       and also the 

regression coefficients,  , would be estimated. 

1.4.2.1 Parametric Models 

1.4.2.1.1 Exponential 

The simplest model for the hazard function is to assume that it is constant over time.  The 

hazard of death at any time after the time origin of the study is then the same, irrespective 

of the time elapsed.  Under this model the hazard function may be written as        for 

     .  Thus, the corresponding survivor function is               and so the 

implied probability density function of the survival times is                for 

     .   

The exponential model is investigated in Chapter 10.  It is examined for its suitability to 

model time to 12 month remission for patients in The SANAD Trial (Chapter 4) who achieve 

remission but not immediately at 365 days. 

1.4.2.1.2 Weibull 

In practice, the assumption of a constant hazard function, or equivalently of exponentially 

distributed survival times, is rarely tenable.  A more general form of hazard function is such 

that               for      , a function that depends on two parameters   and  , 

which are both greater than zero.  In the particular case that    , the hazard function 

takes a constant value  , and the survival times have an exponential distribution.  For other 

values of  , the hazard function increases, for    , or decreases, for    , 

monotonically.  The shape of the hazard function depends on the value of   so   is known 

as the shape parameter while the parameter   is a scale parameter. 
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For this choice of hazard function, the survival function is given by               .  The 

corresponding probability density function is then                      for 

     . 

The Weibull model is investigated in Chapter 10.  It is examined for its suitability to model 

time to 12 month remission for patients in The SANAD Trial (Chapter 4) who achieve 

remission but not immediately at 365 days. 

1.4.2.1.3 Log-logistic 

One limitation of the Weibull hazard function is that it is a monotonic function of time.  

However, situations in which the hazard function changes direction can arise.  For example, 

following a heart transplantation, a patient faces an increasing hazard of death over the 

first ten days after transplant while the body adapts to the new organ.  The hazard then 

decreases with time as the patient recovers.  In situations such as this, a unimodal hazard 

function may be appropriate. 

A particular form of unimodal hazard is the function 

     
       

      
, 

for          .  This hazard function decreases monotonically if    , but if    , 

the hazard has a single mode.  The survivor function corresponding to the hazard function 

is given by 

             
  

, 

and the probability density function is 

     
       

        
 . 
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This is the density of a random variable   that has a log-logistic distribution with 

parameters   and  .  The distribution is so called because the variable      has a logistic 

distribution, a symmetric distribution whose probability density function is very similar to 

that of the normal distribution. 

The log-logistic model is investigated in Chapter 10.  It is examined for its suitability to 

model time to 12 month remission for patients in The SANAD Trial (Chapter 4) who achieve 

remission but not immediately at 365 days. 

1.4.2.1.4 Gompertz 

Although the Weibull model is the most widely used parametric model, the Gompertz has 

found application in demography and biological sciences.  Indeed the distribution was 

introduced by Gompertz in 1825 as a model for human mortality [29]. 

The hazard function of the Gompertz distribution is given by               for 

      and    .  In the particular case where    , the hazard function has a 

constant value   and the survival times then have an exponential distribution.  The 

parameter   determines the shape of the hazard function, positive values leading to a 

hazard function that increases with time.  Like the Weibull hazard function, the Gompertz 

hazard increases or decreases monotonically. 

The survivor function of the Gompertz distribution is given by          
 

 
            

and the corresponding density function is                  
 

 
           . 

The Gompertz distribution is included for completeness only.  It is not used within this 

thesis. 
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1.4.2.2 Accelerated Failure Time 

Another way of representing the effect of the covariates is to suppose that the distribution 

of survival time is changed by multiplying the time-scale by       
   , that is, that the 

logarithm of survival time is increased by   
  .  The effect of a predictor is to alter the rate 

at which a subject proceeds along the time axis (i.e. to accelerate the time to failure [30]).   

The hazard can then be written 

Equation 3 

                  
           

     

This is referred to as an accelerated failure time model.  For the exponential distribution, 

       , Equation 2 and Equation 3 are equivalent, with      , so the accelerated 

failure time model is also a proportional hazards model.  The same is true for the Weibull 

and Gompertz but in general the accelerated failure time model would not be a 

proportional hazards model [28]. 

The accelerated failure time model would have been used in Chapters 4, 5 and 6 if the 

proportional hazards assumption of the Cox model was found not to be valid for any of the 

developed prognostic models.  In this case the results would be compared to those from 

the accelerated failure time model to determine if the violation of the assumption affected 

the conclusion.  The developed models all satisfied the proportional hazards assumption so 

the accelerated failure time model was not required. 

1.4.2.3 Cox Proportional Hazards 

Since often an appropriate parametric form of       is unknown and, in any case, not of 

primary interest, it would be more convenient if it were unnecessary to substitute any 

particular form for       in Equation 2.  This was the approach introduced by Cox [31].  The 

model is then non-parametric with respect to time but parametric in terms of the 
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covariates.  Estimation of   and inferences are developed by considering the information 

supplied at each time that a death occurred. 

Consider a death occurring at time    and suppose that there were   
  subjects alive just 

before   , that the values of   for these subjects are         
  and that the subject that 

died is denoted, with no loss of generality, by the subscript 1.  The set of   
  subjects at risk 

is referred to as the risk set.  The risk of death at time    for each subject in the risk set is 

given by Equation 2.   

This does not supply absolute measures of risk but does supply the relative risks for each 

subject since, although       is unknown, it is the same for each subject [28].  Thus, the 

probability that the death observed at    was of the subject who did die at that time is 

   
         

          
 

where summation is over all members of the risk set.  Similar terms are derived for each 

time that a death occurred and are combined to form a likelihood. 

The Cox regression or proportional hazards model [31, 32] is the standard statistical tool 

used to analyse multiple prognostic factors.  The risk function for a patient with values 

             of the prognostic factors can be written as                 

                           where        denotes the hazard function of the 

event-free or overall survival time random variable   and       is the baseline hazard 

function representing the instantaneous risk of dying at time   given survival up to time   

for a patient with             .  Since this model can be re-expressed in the 

form     
     

     
               , the proportional hazards model may also be 

regarded as a linear model for the logarithm of the hazard ratio.  The estimated log-hazard 

ratios     can then be interpreted as estimated effects of the factors             .   
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If    is measured on a quantitative scale then           represents the increase or decrease 

in risk if    is increased by one unit.  If    is a binary covariate then           is the hazard 

ratio of the alternative category to the baseline category, which is assumed to be constant 

over the time range considered. 

Although the Cox model is non-parametric to the extent that no assumptions are made 

about the form of the baseline hazard, there are still a number of important assumptions 

that need to be assessed after a model has been fitted to an observed set of survival data.  

The first such assumption is non-informative censoring.  To satisfy this assumption the 

design of the underlying study must ensure that the mechanisms giving rise to censoring of 

individual subjects are not related to the probability of an event occurring.  For example, in 

clinical studies, care must be taken that continuation of follow-up does not depend on a 

participants’ medical condition.   

The second assumption of the Cox model is that of proportional hazards.  In a regression 

setting this means that the survival curves for two strata, determined by the particular 

choices of values for the variables, must have hazard functions that are proportional over 

time, i.e. constant relative hazard.  There are tests that can be applied to test 

proportionality. 

The Cox proportional hazard model is used in Chapters 4, 5, 6, 8, 9 and 10 to model time to 

event for various outcomes and various types of patients. 

1.4.3 Nonparametric Methods 

The nonparametric methods described in sections 1.4.3.1 and 1.4.3.2 are included for 

completeness only and are not used within this thesis. 
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1.4.3.1 Neural Networks 

Faraggi and Simon [33], and others [34-37], have proposed a neural network generalisation 

of the Cox regression model defined by                                    where 

                        
 
     

    and            are the values of the   

prognostic factors.   The weights                       can be estimated from the 

data via maximisation of the partial likelihood although other optimisation procedures are 

often used.  Although the problem of censoring is satisfactorily solved in this approach, 

there remain problems with potentially serious over-fitting of the data, especially if the 

number,  , of hidden units is large [38]. 

In general, feed-forward neural networks with one hidden layer are universal 

approximators [39] and can consequently approximate any function defined by the 

conditional probability that   is equal to one given   with arbitrary precision by increasing 

the number of hidden units.  This flexibility can however lead to serious over-fitting.  This 

can be compensated for by introducing some weight decay [40, 41], for example by adding 

a penalty term       
  

         
  

   
 
     to the log-likelihood [38].  The smoothness 

of the resulting function is then controlled by the decay parameter  . 

Another form of neural networks that have been applied to survival data are the so-called 

single time point models [42].  As they are identical to a logistic perceptron, otherwise 

known as a common logistic regression model, or a feed-forward neural network with a 

hidden layer, they correspond to fits of logistic regression models or their generalisations 

to survival data.  In practice, a single time point    is fixed and the network is trained to 

predict the survival probability.  The corresponding model is given by           

          
 
    , or its generalisation when introducing a hidden layer, where      
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denotes the logistic function,                   , and is called the activation 

function [43]. 

A common drawback of these naïve approaches is that they do not enable incorporation of 

censored observations in a straightforward manner, which is closely related to the fact that 

they are based on unconditional survival probabilities instead of conditional survival 

probabilities.  Neither omission of the censored observations, as suggested by Burke [44], 

nor treating censored observations as uncensored [43] are valid approaches but both 

instead are a serious source of bias.  De Laurentiis and Ravdin [42] and Ripley [41] propose 

to impute estimated conditional survival probabilities for the censored cases from a Cox 

regression model.  Further work is needed in this area. 

1.4.3.2 Hierarchical Trees 

Hierarchical trees are an approach for nonparametric modelling of the relationship 

between a response variable and several potential prognostic factors [45-49].  The idea of 

Classification And Regression Trees (CART), a synonym for different types of tree based 

analyses, is to construct subgroups that are internally as homogeneous as possible with 

regard to the outcome and externally as separated as possible.  Hence the method leads 

directly to prognostic subgroups defined by the potential prognostic factors and is achieved 

by a recursive tree building algorithm. 

The tree building algorithm produces a binary tree with a set of patients, a splitting rule, 

and the minimal   value, at each interior node.  For patients in the resulting final nodes, 

various statistics can be computed such as Kaplan-Meier estimates of event-free survival or 

hazard ratios with respect to specific references or combined groups. 

Unfortunately prognostic factors are usually measured on different scales meaning the 

number of possible partitions will be different [38].  Correction of   values and/or 
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restriction to a set of pre-specified cutpoints may be useful to overcome the problem that 

factors allowing more splits have a higher chance of being selected by the tree building 

algorithm.  Due to multiple testing, the algorithm may also be biased in favour of these 

factors over binary factors with prognostic relevance [38]. 

To improve the predictive ability of trees, stabilising methods based on resampling have 

been proposed [50-54].  However, the results are difficult to interpret which reduces their 

value for practical applications.   

1.4.4 Comparison of Methods 

Although traditional statistical methods such as Cox proportional hazards or logistic 

regression are easy to perform and routinely available in standard software packages, 

machine learning methods such as hierarchical trees and neural networks are thought to 

predict more accurately because of greater model-fitting flexibility [55]. 

Artificial neural networks are popularly used as universal non-linear inference models.  

However, they suffer from two major drawbacks.  The way they work is hidden because of 

the distributed nature of the representations they form [56], and this makes it difficult to 

interpret what they do.  Worse still, there are no clearly accepted models of generality 

which makes it difficult to demonstrate reliability when applied to future data. 

Cox proportional hazards models are well suited for regression modelling of survival data.  

They are simple to fit, can deal with time-varying regression coefficients as well as time-

dependent covariates and no assumption is made on the distribution of the lifetimes of the 

baseline population.  However, they are not flexible enough to deal with time-varying 

dynamics of covariate effects [57].  Additionally, the Cox model has the advantage over 

neural networks of providing some insight into which variables are most influential for 
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prognosis.  Nevertheless, it is likely that the assumptions required by the Cox model may 

not be satisfied in all datasets, justifying the use of neural networks in certain cases. 

Parametric regression models, such as the exponential, Weibull and Gompertz, may involve 

stronger distributional assumptions than it is suitable to make and inference procedures 

may not be sufficiently robust to departures from these assumptions [30].  This seems 

particularly to be the case in medical applications in which only limited experimentation in 

similar situations may have preceded the study in question or in which data are recorded 

by a number of individuals.  Parametric models are also less flexible than proportional 

hazard models [38].   

Although rank tests, encompassing accelerated failure time models, are derived with 

certain alternatives in mind for which optimum parametric procedures exist, they generally 

possess greater robustness than the corresponding parametric tests and are generally less 

sensitive to outliers [30].  In addition, for testing the null hypothesis, these tests generally 

involve only a small loss in efficiency compared to the parametric procedure when such a 

procedure is appropriate.  Unfortunately though, accelerated failure time models are 

difficult to extend to handle time-varying effects. 

1.5 Thesis Outline 

This chapter has considered prognostic factors studies and statistical models for prediction.  

The thesis continues with chapters on epilepsy, methods for identifying prognostic factors 

for epilepsy, prognostic modelling of time to treatment failure and time to 12 month 

remission for newly diagnosed patients, prognostic modelling of risk of recurrence for 

patients with a first seizure only, prognostic modelling of risk of recurrence for patient who 

withdraw their medication, validation methods for prognostic models and more 
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sophisticated mixture modelling methods.  Further descriptions of each chapter can be 

found in sections 1.5.1 to 1.5.10. 

1.5.1 Introduction to Epilepsy 

In Chapter 2, the condition of epilepsy will be summarised including descriptions of seizure 

types, such as simple partial seizures and absence seizures, and classifications, such as focal 

epilepsy or generalised epilepsy.  Methods of identification and diagnosis such as 

electroencephalogram (EEG) and magnetic resonance imaging (MRI) will also be outlined 

together with potential treatments including resective surgery, antiepileptic drug 

treatment and the ketogenic diet.   

The chapter will conclude with a literature review of prognostic factors studies in epilepsy 

which will highlight the dearth of such studies and provide justification for further research 

in this area.  The clinical background of epilepsy, described in this chapter, will inform the 

terminology and medical concepts used throughout my thesis (Chapters 4 to 11). 

1.5.2 Methods for Identifying Prognostic Factors for Epilepsy 

Chapter 3 will focus on generic methods of modelling prognostic factors.  Concepts such as 

handling continuous predictors by splines or fractional polynomial transformations will be 

considered as well as whether variable centring is appropriate, and if so, how it should be 

done.  Following on from this, model building and development will be considered 

including variable selection via sequential or all-subset strategies.  Methods for testing the 

proportional hazards assumption, required for the Cox model to be valid, will be outlined 

with particular interest in residuals.  Finally, a description of the use of competing risks 

analysis will be provided as such an analysis is required if patients can fail treatment for 

multiple reasons.  The chapter concludes with a section describing the chosen methods of 

analysis used in Chapters 4, 5 and 6. 
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1.5.3 Identifying Prognostic Factors for Epilepsy 

The work in Chapter 4 has been published in Lancet Neurology and I am first author.   

Using data from arm A of The SANAD Trial, multivariable models are produced for time to 

treatment failure, both overall and in the competing risks setting, and for time to 12 

months of remission.  In addition to presenting the models, risk estimates are calculated for 

various combinations of risk factors.  To aid the interpretation of these risk estimates by 

non-statisticians, forest-style plots are used to illustrate the heterogeneity of outcome for 

differing patient groups.   

Validation of these models is required and is the subject of subsequent chapters.  Internal 

validation is undertaken in Chapter 7 while the concept of external validation is examined 

in Chapter 8.  

1.5.4 Implications for Drivers with a First Seizure 

The work in Chapter 5 has been published in the British Medical Journal, together with an 

editorial, and I am again first author.   

Using data from the Multicentre study of Early epilepsy and Single Seizures (MESS), a 

prognostic model for the risk of a second seizure following a first ever seizure is developed.  

In an extension to the model, the time until the recurrence risk is below 20% is calculated 

for various combinations of risk factors to determine how long people with a first seizure 

should refrain from driving before their risk of a second seizure falls before the 

recommended risk level set by the U.K. based Driving and Vehicle Licensing Agency (DVLA). 

As a result of this work, the DVLA changed their guidelines concerning time off driving for 

patients with a first seizure. 

This model again needs to be validated.  External validation of this model is performed in 

Chapter 9. 
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1.5.5 Implications for Drivers who withdraw AED Treatment 

The work in Chapter 6 has been published in the Journal of Neurology, Neurosurgery and 

Psychiatry, and I am again first author. 

Using data from the Medical Research Council Antiepileptic Drug Withdrawal Study (MRC 

AEDWS) two prognostic models are developed.  The first considers time to seizure 

recurrence following treatment withdrawal while the second considers time to seizure 

recurrence following treatment reinstatement after seizure recurrence for patients 

withdrawing their antiepileptic drug medication.  In addition to the modelling presented, a 

literature review is described which identified three studies that provide additional 

information on risk of seizure recurrence following treatment withdrawal for patients in 

remission from seizures. 

1.5.6 Internal Validation of Prognostic Models 

Internal validation is necessary to assess the ability of models to predict outcome in 

settings where the development data originated from.  Methods of assessing model 

performance are outlined in Chapter 7, such as the    measure, together with methods of 

discrimination, via use of the  -statistic, and calibration, via plots.  Methods of internal 

validation are also considered including bootstrap resampling. 

The models derived in Chapter 4 using The SANAD Trial for time to treatment failure and 

time to 12 months of remission are validated internally in Chapter 7.  Both models show 

fairly good internal validity although there are signs of poor validity at one year for the 

remission model.  Reasons for this poor validity, together with an alternative way of 

modelling time to 12 month remission for patients with epilepsy, are described in Chapter 

10. 
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1.5.7 Externally Validating Prognostic Models – Simulation Study 

Chapter 8 begins with a literature review considering methods of external validation of 

prognostic models and methods used to handle covariates missing from the independent 

dataset used for validation - the validation dataset.  Discovering that very few prognostic 

models are externally validated, possibly due to a lack of guidelines on appropriate 

methods, Chapter 8 describes a detailed simulation study aimed at identifying methods of 

external validation and methods of handling covariates missing from the validation dataset.  

The so-called ‘imputation’ methods are derived from methods used to handle missing data 

within a covariate.  Three methods of external validation are examined – discrimination via 

the  -statistic, calibration via deviance, and prognostic separation via Royston and 

Sauerbrei’s method. 

The parameters used for the simulation study are based upon those derived in Chapter 4, 

from The SANAD Trial. 

1.5.8 Externally Validating Prognostic Models – Case Study 

Having examined methods of external validation, and methods for handling a covariate 

missing from the validation dataset in Chapter 8, Chapter 9 applies the methods to real 

data.  The model derived in Chapter 5 looking at risk of a second seizure following a first 

ever seizure, derived using the MESS data, is used as the development dataset.  Three 

independent datasets are used as validation data.  One of the validation datasets was 

collected in the U.K., one in Italy and one in Western Australia.   

The three methods of external validation considered in Chapter 8 are examined.  

Additionally, the Italian dataset is missing a covariate so the five imputation methods also 

described in Chapter 8 are tested on this dataset.  Using all these methods it is possible to 

decide if the MESS model from Chapter 5 is a clinically useful tool. 
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1.5.9 Prognostic Models for Remission – Mixture Modelling 

In Chapter 7 the internal validity of the model for time to 12 month remission, derived 

using The SANAD Trial in Chapter 4, was found to be fairly poor at one year.  This may be 

because of the heterogeneity of the remission outcome for patients with epilepsy – some 

patients will achieve 12 month remission immediately, some will achieve 12 month 

remission but not immediately, and some may never achieve remission. 

In Chapter 10, two types of mixture modelling are examined to handle the varying types of 

remission that a patient can achieve.  First, logistic regression is used to model immediate 

remission and survival analysis is used to examine time to 12 month remission conditional 

on not achieving it immediately.  Second, a three component mixture model is derived to 

model all three types of remission simultaneously. 

1.5.10 Conclusions and Further Work 

Chapter 11 uses the work of Chapters 2 to 10 to suggest recommendations for research 

and recommendations for practice.   

Recommendations for research can be split into model development and model validation.  

The main suggestions for model development include interpreting hazard ratios and 

confidence intervals for large numbers of interactions (Chapter 4), deriving a likelihood 

function for a mixture model and using it to obtain risk estimates (Chapter 10), and 

assessing model validation of a mixture model (Chapters 7-10).  The key ideas for model 

validation include assessing alternative scenario for external validation and handling a 

missing covariate (Chapter 8), assessing alternative methods of external validation (Chapter 

8), and producing a definition of plausibly related datasets (Chapter 8). 

Further research needs to include external validation of the models derived in Chapter 4 

using The SANAD Trial, and the combining of all four datasets examined in Chapter 9, to 
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give a more accurate estimate of recurrence risk as well as suggesting improved driving 

guidelines. 
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Chapter 2: Introduction to Epilepsy 

2.1 Introduction 

This chapter begins with an overview of epilepsy (section 2.1).  Various seizure types are 

then described (section 2.2) including those associated with focal epilepsies (section 2.2.1) 

and those with generalised epilepsies (section 2.2.2).  Section 2.3 then summarises 

frequent methods of investigation and diagnosis before moving on to look at treatment 

options in section 2.4.  

The impact of epilepsy on a person’s life is considered in section 2.5, especially with regards 

to driving (section 2.5.1) – following a seizure a person must refrain from driving.  This is 

true for all types of seizures, whether or not the person has a diagnosis of epilepsy or not.  

The issue of seizures and driving is considered in detail in Chapters 5 and 6.  The chapter 

concludes with a literature review aimed at identifying prognostic factor studies in epilepsy 

(section 2.6) before outlining the clinical motivation for the thesis (section 2.7). 

Epilepsy is one of the most common disorders of the brain [58].  It accounts for 1% of the 

global burden of disease, a figure equivalent to breast cancer in women and lung cancer in 

men [59].  Worldwide, epilepsy affects 50 million people [58], 80% of whom are in 

developing countries.  Within the United Kingdom, one in 131 people, approximately 

456,000, have epilepsy, making it the most common serious neurological condition [60].  

Every day in the UK, 75 people are diagnosed with epilepsy.   

The definition of epilepsy requires the occurrence of two unprovoked seizures [61] and is 

the tendency to have recurrent seizures due to abnormal electrical discharge from central 

nervous system neurons [62].  The estimated prevalence of epilepsy is 0.5% to 1% in the 

developed world [63] and the overall incidence of epilepsy is 40 to 70 cases per 100,000 
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per year in industrialised countries and 100 to 190 cases per 100,000 per year in resource-

poor countries [64].   

Although most people refer to ‘epilepsy’, it is more accurate to talk about ‘the epilepsies’ 

because epilepsy is a heterogeneous condition [58]; for example some types of epilepsy are 

associated with childhood onset while some will only start in later life.  Anyone can develop 

epilepsy and although males are slightly more likely to develop it than females it is not 

known why [65, 66].  Children and adults over the age of 60 are also more likely to develop 

epilepsy than young adults [67].   

Approximately three percent of the population will have epilepsy at some point in their 

lives [65] while 5% will have a single seizure at some time [68].  The majority of people with 

epilepsy will go into remission, however up to 30% will develop refractory, or drug-

resistant, epilepsy and continue to have seizures despite treatment with combinations of 

antiepileptic drugs [69, 70].  Only 52 per cent of people with epilepsy in the UK are seizure 

free [71] although it is estimated that 70 per cent could be seizure free with the right 

treatment [72].   

Sometimes the reason epilepsy develops is clear; it can be related to brain damage caused 

by surgery, a severe head injury, a stroke, or an infection of the brain, such as meningitis or 

encephalitis.  Very occasionally, the cause is a brain tumour.  For six out of ten people, 

there is no known structural cause [73], and for many of these the cause is thought to be 

genetic. 

2.2 Seizure Types  

Neurons, or specialised nerve cells, normally generate and transmit electrochemical 

impulses that act on other neurons, glands, and muscles to produce human thoughts, 

feelings, and actions.  In epilepsy, the normal pattern of neuronal activity becomes 
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disturbed, causing strange sensations, emotions, and behaviour, or sometimes convulsions, 

muscle spasms, and loss of consciousness.  During a seizure, neurons may fire as many as 

500 times a second, much faster than normal.  In some people, this happens only 

occasionally; for others, it may happen hundreds of times a day.  

Seizures can arise in any part of the cerebral cortex and patient experiences during a 

seizure will depend on where in the brain the seizure is happening.  There are around 40 

different types of seizure and a person may have more than one type [74].   

In 1981, the International League Against Epilepsy established standardised classifications 

and terminology for epileptic seizures [75] which provided a universal vocabulary that not 

only facilitated communication among clinicians, but also established a foundation for the 

performance of quantitative clinical and basic research on epilepsy.   There have been 

subsequent iterations of these classifications the last of which was published in 2010 [76].  

According to this, Figure 1 summarises possible symptoms according to seizure type. 

Seizures can be categorised according to which part, or parts, of the brain the epileptic 

activity starts in, and how widely and rapidly it spreads.  Partial seizures, also known as 

focal seizures, involve epileptic activity that starts in just one part of the brain.  Sometimes, 

epileptic activity that starts as a partial seizure can spread to the rest of the brain.  When 

this happens, the seizure is known as secondary generalised.  Conversely, in generalised 

seizures, the seizures involve both cerebral hemispheres from the onset. 
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Figure 1: Seizure map and brief summary of possible symptoms 

2.2.1 Focal Epilepsies 

Within the focal epilepsies, the epilepsy is classified according to the site of onset and the 

aetiology.  Regarding the site of onset, this is usually classified according to which lobe the 

seizure starts in.  The brain has four lobes - temporal, frontal, occipital or parietal, as shown 

in Figure 2.  Therefore, it may be possible to classify a patient as having complex partial 

seizures as part of a temporal lobe epilepsy. 

Regarding aetiology, there are three main categories; symptomatic where there is a known 

cause for a person’s epilepsy, such as a head injury; idiopathic epilepsy where, despite 

investigation, no apparent cause for the epilepsy can be found and a genetic aetiology is 

assumed; and cryptogenic epilepsy for which, like idiopathic epilepsy, no apparent cause 

can be found however, there is strong evidence to suggest that this type of epilepsy may be 

the result of brain damage.  For example, a patient with an epilepsy arising from a temporal 

lobe tumour would be considered as having a symptomatic temporal lobe epilepsy. 

Focal 

Simple 

Activity while person is 
alert 

Complex 

Activity with change in 
awareness 

Secondary generalised 

Activity begins in one area 
and spreads 

Primary Generalised 

Absence 

Staring and blinking 

Myoclonic 

Short jerking movements 
of parts of the body 

Tonic-clonic 

Going stiff and falling 
followed by convulsions 

Tonic 

Going stiff and falling but 
without convulsions 

Atonic 

Falling limply to the 
ground 
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Partial (focal) seizures can happen as a result of epileptic activity in any area of the brain, 

although the most common areas are the temporal lobes [73].  This is often as a result of 

mesial temporal sclerosis, the aetiology of which is poorly understood, or other pathologies 

such as head injury, or infection such as meningitis.  

Partial seizures are the most common type of seizures experienced by people with 

epilepsy.  Virtually any movement, sensory, or emotional symptom can occur as part of a 

partial seizure, including complex visual or auditory hallucinations.  There are three main 

categories of partial seizures: simple, complex and secondary generalised. 

 

Figure 2: The areas of the brain 

2.2.1.1 Simple or Complex Partial Seizures 

Partial seizures are subdivided into simple partial seizures and complex partial seizures.  

People who have simple partial seizures do not lose consciousness during the seizure.  

However, some people, although fully aware of what is going on, find they cannot speak or 

move until the seizure is over.  They remain awake and aware throughout.  Sometimes they 

can talk quite normally to other people during the seizure and they can usually remember 

exactly what happened to them while it is going on.  However, simple partial seizures can 

affect movement, emotion, sensations, and feelings in unusual and sometimes even 

frightening ways. 
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Complex partial seizures affect a larger area of the brain than simple partial seizures and 

they affect consciousness.  During a complex partial seizure, a person cannot interact 

normally with other people, is not in control of his or her movements, speech or actions, 

does not know what he or she is doing and cannot remember afterwards what happened 

during the seizure.  Although complex partial seizures can affect any area of the brain, they 

often take place in one of the brain's two temporal lobes.   

Although someone may appear to be conscious because he or she remains standing with 

eyes open and moving about, it will be an altered consciousness - a dreamlike, almost 

trancelike state.  A person may even be able to speak, but the words are unlikely to make 

sense and he or she will not be able to respond to others in an appropriate way. 

All seizures have a tendency to cluster.  This will, however, be more obvious for seizures 

that occur more frequently such as simple partial seizures and complex partial seizures. 

2.2.1.2 Secondary Generalised Seizures  

Partial seizures may be followed by a generalised seizure, called secondary generalisation, 

which causes loss of consciousness.  Secondary generalisation occurs when a partial seizure 

spreads and activates the entire cerebrum bilaterally.  Activation may occur so rapidly that 

the initial partial seizure is not clinically apparent or is very brief. 

2.2.2 Generalised Epilepsies 

A number of generalised epilepsies are recognised, and they are classified according to the 

seizure types the patient experiences, EEG changes and other characteristics such as 

learning disability.  The majority of the generalised epilepsies are classified as idiopathic 

and are believed to have a genetic aetiology.  Examples include childhood absence 

epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy and generalised epilepsy 
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with tonic-clonic seizures on awaking.  The main primary generalised seizure types are 

absence, myoclonic, tonic-clonic, tonic and atonic. 

2.2.2.1 Absence Seizures  

Absence seizures mainly happen in childhood [77].  During an absence seizure, the child 

appears to be daydreaming or switching off.  However, in an absence seizure, the child 

cannot be woken up.  They are very briefly unconscious and unaware of what is happening 

around them.  Because most children tend to daydream at times, absences can be very 

hard to spot.  In some cases, children can be having hundreds of absence seizures a day.  

This prevents them from learning and fully taking part in school or family activities.  These 

children are missing out on tiny pieces of information.  For example, they might hear the 

first part of a sentence but not the end.  They may hear the instruction to go out and play, 

but not when to be back.  Because they might then not do what is expected of them, this 

may be mistaken for poor behaviour.  

2.2.2.2 Myoclonic Seizures 

Most people experience a sudden jerk as they are falling asleep.  Although this jerk is not 

epilepsy, it is similar to the jerks experienced by someone who has myoclonic seizures.  The 

term myoclonic comes from ‘myo’ meaning muscle, and ‘clonus’ meaning jerk.  Myoclonic 

seizures can affect the whole body, but are usually restricted to one or both arms and 

sometimes the head.  During the seizure, the person is not conscious, but the seizure is so 

brief that the person appears to remain fully conscious.  Myoclonic seizures may occur as a 

single seizure or a cluster of seizures.  

2.2.2.3 Tonic-Clonic Seizures  

This is the most common and widely recognised generalised seizure.  A tonic-clonic seizure 

affects both cerebral hemispheres from the onset.  There are two phases to this type of 

seizure: the ‘tonic’ phase followed by the ‘clonic’ phase.  In the tonic phase the person goes 
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stiff because all their body’s muscles contract, the person loses consciousness and falls to 

the floor and breathing patterns change with the result that there is less oxygen than 

normal in the lungs.   Because of this, the blood circulating in the body is less red than 

usual, causing the skin (particularly around the mouth and under the finger nails) to appear 

blue in colour.  This is called ‘cyanosis’.  The person may bite their tongue and the inside of 

their cheeks.  

After the tonic phase has passed, the clonic phase of the seizure begins.  The limbs jerk 

because now the muscles tighten and relax in turn.  After a further minute or so, the 

muscles relax and the person’s body goes limp.  Slowly they will regain consciousness, but 

may well be groggy or confused.  They will gradually return to normal but may not be able 

to remember anything for a while.  Very often, the person remains sleepy and may have a 

headache and aching limbs.  Recovery times differ from person to person.  

2.2.2.4 Tonic Seizures  

Tonic seizures result in all the muscles tightening.  The body stiffens and the person will fall 

over unless they are supported.  Tonic seizures usually last less than 20 seconds and most 

often happen during sleep.  

2.2.2.5 Atonic Seizures 

Atonic seizures are also called drop attacks or akinetic seizures.  In an atonic seizure, all 

muscle tone is lost and the person drops heavily to the ground.  The seizure is very brief 

and the person is not confused afterwards and is usually able to get up again straight away.  

However, because the person’s body usually falls forward in an atonic seizure, they are at 

risk of banging their head on furniture or other hard objects. 
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2.2.3 Status Epilepticus 

Status epilepticus is defined as a condition in which seizures occur so frequently that the 

patient does not fully recover from one seizure before having another.  Status epilepticus is 

also defined as a single prolonged seizure.  A seizure lasting more than five minutes – 

especially a tonic-clonic seizure in an older child or adult – should be considered status 

epilepticus.  

Status epilepticus is a medical emergency because the longer the seizure lasts the less likely 

it is to stop on its own.  It is also less likely to stop with emergency medicines.  Status 

epilepticus can lead to brain damage, or even death.  

Several types of status epilepticus exist depending on seizure type: tonic-clonic, simple 

partial, complex partial, and absence.  Tonic-clonic status epilepticus is the most common 

and most life-threatening type. 

2.3 Investigations and Diagnosis  

Diagnosis is mainly based on the description given of the seizure(s) and, if possible, an eye 

witness account.  There is no single test to determine if someone does or does not have 

epilepsy and frequently, when epilepsy begins, the tests are normal.   However, there are 

various hospital tests that can help clinicians make a diagnosis, although not everyone 

needs to have every test.   

In the first case a clinician will want to determine if a patient has had a seizure.  Answering 

this is almost entirely dependent upon getting a good description of the seizure(s).  The 

next question might involve determining if the seizures were focal or generalised.  An 

electroencephalogram (EEG) may be used to answer this.  Finally, the clinician will probably 

want to investigate why the person had a seizure.  The EEG can again help with this if it 

shows features of an idiopathic generalised epilepsy.  Magnetic Resonance Image (MRI) 
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brain scans can also help answer this question as they identify abnormalities that have 

caused the epilepsy.  These methods will be explained further in sections 2.3.1 and 2.3.2. 

2.3.1 Electroencephalogram  

The electroencephalogram, or EEG, gives clinicians information about the activity of the 

brain.  However an EEG only shows what is happening in the brain when the test is being 

done - it is not able to show what has already happened, or what is going to happen in the 

future.   

Although an EEG is localised, it integrates neuronal activity over a very large number of 

neurons which can make EEGs difficult to interpret.  Additionally, EEGs are reported in a 

qualitative way which makes it challenging to standardise reporting.  Typical examples of 

EEGs can be seen in Chapter 5. 

During an EEG, a technician places electrodes on the scalp which are then connected to the 

EEG machine that records the electrical signals in the brain.  During the EEG test, a person 

is asked to do things such as open and close their eyes, breathe deeply and look at flashing 

lights.  If seizures appear to be connected to sleep patterns, clinicians may suggest doing an 

EEG during sleep or after a period of sleep deprivation. 

Some people have an abnormal EEG but it does not necessarily mean they have epilepsy.  

Similarly, a normal EEG does not necessarily mean that someone does not have epilepsy. 

2.3.2 Magnetic Resonance Imaging 

The magnetic resonance imaging, or MRI, uses radio frequency waves and a magnetic field.  

It can show if there is a structural cause for the epilepsy. 

Most of the human body is comprised of water molecules comprising hydrogen and oxygen 

atoms.  Within the centre of each hydrogen atom is a particle called a proton.  These 
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protons are very sensitive to magnetic fields.  Therefore, when the magnets within the MRI 

scanner are switched on, the protons in the patient’s body are pulled towards the same 

direction.  Short bursts of radio waves to certain areas of the body pull the protons out of 

position.  As this happens, each proton transmits a radio signal that provides its exact 

location in the body.  The radio signals of millions of protons can be collected together and 

combined to create a detailed image of the inside of the body [78]. 

An MRI is not always used for people who have generalised seizures.  This is because 

generalised epilepsy is unlikely to be caused by damage to a part of the brain’s structure.  

In this situation the scan is unlikely to add anything to the diagnosis. 

2.4 Treatment  

The most common way epilepsy is treated is with antiepileptic drugs (AEDs).  AEDs do not 

cure epilepsy, but are designed to try and stop seizures happening.  AEDs make the brain 

more resistant to the spread of the abnormal electrical activity [79].  

There are many different AEDs available and the most appropriate drug is chosen based on 

the type of seizures and the person.  It is common practice to start the drug at a low 

dosage, referred to as a loading dose, with a gradual increase, to keep side effects to a 

minimum.  However, everyone is different, and some people find that they are particularly 

sensitive to a drug, even at low dosages.  

Wherever possible, clinicians treat epilepsy with one drug.  Where seizures prove difficult 

to control with one AED, more than one drug may be considered.  Different AEDs have 

different mechanisms of action and as a result of this, combining drugs, so called 

polytherapy or adjunct therapy, can often lead to improved seizure control.  
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Each AED has a recommended maintenance, or daily, dosage range that is very different, 

depending on the drug.  For example, 500 milligrams (mg) of lamotrigine is the 

recommended maximum dose [80], whereas for sodium valproate it is 2500 mg [81].  

However, this is only a guide for clinicians when prescribing, because some people may 

need dosages outside the usual range.  Common antiepileptic drugs can be seen in Table 2 

together with their abbreviation, year of introduction and primary indication [82].  The 

drugs listed here do not represent a comprehensive list of all antiepileptic drugs.  However, 

these are the drugs used in The SANAD Trial (Chapter 4) and the MESS study (Chapter 5). 

The length of time taken to gain control of the seizures varies from person to person.  The 

majority of people find the right AED and dosage very quickly.  However, for some people it 

can take a lot longer to find the right drug or drugs at the right dosage(s).  About 30% of 

people with epilepsy have epilepsy that is difficult to control with AEDs [69, 70]. 
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Table 2: Common Antiepileptic Drugs as used in SANAD and MESS 

Generic Drug 

Name 
Abbreviation 

Date of 

U.K. 

Licence 

Primary Indication 

Carbamazepine CBZ 1965 
Focal and secondary generalised tonic-clonic 

seizures, primary generalised tonic-clonic seizures 

Gabapentin GBP 1993 
Monotherapy and adjunctive treatment of focal 

seizures with or without secondary generalisation 

Lamotrigine LTG 1991 

Monotherapy and adjunctive treatment of focal 

seizures and generalised seizures including tonic-

clonic seizures; seizures associated with Lennox-

Gastaut syndrome; monotherapy of typical absence 

seizures in children 

Oxcarbazepine OXC 2000 

Monotherapy or adjunctive treatment of focal 

seizures with or without secondary generalised 

tonic-clonic seizures 

Phenytoin PHT 1938 All forms of epilepsy except absence seizures 

Topiramate TPM 1995 

Monotherapy and adjunctive treatment of 
generalised tonic-clonic seizures or focal seizures 

with or without secondary generalisation; adjunctive 
treatment of seizures associated with Lennox-

Gastaut syndrome 

Valproate VPS 1993 All forms of epilepsy 
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2.4.1 Non-Drug Treatments 

Most people with epilepsy take AEDs for their epilepsy and these can be very effective.  

Other treatments that are scientifically proven to work are surgery, vagus nerve stimulation 

and the ketogenic diet [79].  

2.4.1.1 Resective Surgery  

Only a small number of people with epilepsy are suitable for resective surgery.  Clinicians 

will usually consider surgery for epilepsy if a person is finding it difficult to get control of 

their seizures with AEDs.  This is most likely to be if a person has tried lots of different AEDs 

and taken a combination of more than one type.   

Surgery is not an option for everyone with epilepsy.  This may be because there is no 

obvious structural cause for the epilepsy, because the exact site of seizures cannot be 

identified, or because to operate would be too great a risk.  

2.4.1.2 Vagus Nerve Stimulation 

Vagus Nerve Stimulation, VNS, is a treatment for epilepsy where a small generator is 

implanted under the skin below the left collar bone.  This generator is connected to a lead 

with three coils at one end, which are wrapped around the vagus nerve in the left side of 

the neck [79].  The VNS stimulates the vagus nerve at intervals to reduce the frequency and 

intensity of seizures.  VNS doesn’t necessarily work straight away, taking from a couple of 

months to two years to see a noticeable reduction.  

Although it is rare for a person to become seizure free as a result of VNS, many people have 

fewer or less severe seizures and therefore report a better quality of life overall [83].  Some 

people experience no change in seizure control.  
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2.4.1.3 The Ketogenic Diet  

Since it was first used in the 1920s, this diet has been a controversial therapy for children 

with difficult to control epilepsy.  It can, however, be very good at controlling seizures [84, 

85].  Interest in the diet has grown again in recent years and it is achieving increasingly 

widespread use.  Although some children find the diet unpleasant and difficult to follow, 

other children manage it very well.  The ketogenic diet is high in fats, low in carbohydrates 

and adequate in protein.  

In the small number of studies done so far, it seems that the ketogenic diet could also be 

good at controlling seizures in adults [86].  The difficulty is that most adults find the diet 

unpleasant and too strict to keep to.  

2.5 Living with Epilepsy 

Having seizures, or being diagnosed with epilepsy, can affect people in different ways.  

Some people feel relieved to be given a name and treatment for their condition.  However, 

one of the biggest concerns for people with epilepsy is how it affects day to day life.    

Many people with epilepsy do lead full lives.  However, it is fairly common for people with 

epilepsy to find it hard to remember things as epileptic seizures can affect memory.  If 

there is damage to the brain that causes the epilepsy, this can also cause memory problems 

as may the antiepileptic medication itself.  Depression is also common which may be 

because of the epilepsy medication or the epilepsy itself.  However, someone with epilepsy 

may have to change things about their life that they did not want to and other people may 

treat a person differently because of their epilepsy. 

With the right support and relevant safety precautions, there is little that someone with 

epilepsy should need to avoid.  Many people with epilepsy have their seizures completely 
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controlled by antiepileptic medication and do not need to take any greater safety 

precautions than anyone else be it at home, or out and about.   

Most people with epilepsy can participate fully in school but at times, seizures or side 

effects of seizure medicine may interfere with schoolwork.  Additionally, having seizures 

may make it more difficult to find a job or to work at certain occupations.   

With the exception of the armed forces it is against the law for employers to discriminate 

against people with epilepsy.  However, if the epilepsy is not well controlled there will be 

some careers such as working at heights, becoming an airline pilot, train driver, policeman 

etc that are not appropriate.  

2.5.1 Epilepsy and Driving 

For people who have epilepsy or seizures, there are specific regulations about holding a 

driving license.  The regulations depend on the type of license held (Group 1, car drivers, or 

Group 2, HGV drivers), and when the person has seizures (as some people have seizures 

only while they are asleep).  There are additional regulations for individuals who have a 

single (one-off) seizure. 

For people who drive, one immediate effect of having a seizure is that they have to stop 

driving.  This is true for all types of seizures, whether or not the person has a diagnosis of 

epilepsy or not.  For many people this can have a big impact on their life, and be very 

difficult or upsetting. 

The effect of seizures on driving is further considered in Chapters 5 and 6. 

2.6 Prognostic Factor Studies in Epilepsy 

The choice of a first antiepileptic drug is arguably the most important decision that a 

patient with epilepsy will make as the majority of patients achieve seizure control on that 
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drug, possibly at the consequence of adverse effects.  It is thus important to have reliable 

evidence about the likely risk-benefit ratio of potential treatments to inform treatment 

choice.  For chronic conditions such as epilepsy this evidence will largely come from head 

to head randomised controlled trials in which long term outcomes have been assessed.  

Relatively few head to head trials have been undertaken in epilepsy with the majority of 

those that have been carried out being industry sponsored studies that have tended to 

recruit selected populations, make treatment comparisons that do not reflect every day 

treatment choices, and have patient follow-up that is typically less than 12 months such 

that long term seizure control outcomes cannot be assessed.  

The epilepsies are a heterogeneous group of disorders with varied outcome and a number 

of clinical factors have been shown to influence outcome.  In a search of the literature we 

found 54 studies that identified prognostic factors for epilepsy.  Studies of interest 

considered seizure outcomes for patients with either a single seizure only, with at least two 

seizures but newly diagnosed epilepsy, or patients with refractory epilepsy.  Refractory 

epilepsy was defined as per the study, or at least two years without seizure control despite 

at least two antiepileptic drugs at optimal dose either as monotherapy or polytherapy. 

28 studies considered prognostic factors for children with epilepsy.  Nine of these studies 

looked at prognostic factors for the risk of seizure recurrence after withdrawal of 

antiepileptic drugs.  The most frequently reported prognostic factors in these studies were 

aetiology, seizure type, age and EEG result [87-94].  Another 12 of the 28 studies 

considered prognostic factors for seizure outcomes, three of which focussed on particular 

seizure types with the most common factors being aetiology, seizure frequency, seizure 

type and neurological/mental retardation [95-103].  Three of the remaining studies in 

children considered remission in newly referred patients with the prognostic factor 

aetiology being recorded for all studies [104-106].  The final four studies in children 



 
 

46 
 

considered, in one case, remission after a second drug failure with prognostic factors 

seizure type and frequency [107], and three considered seizure outcome for medically 

intractable epilepsy with the common prognostic factor being history of status epilepticus 

[108, 109]. 

Eight studies focussed on seizure outcomes for either a specific seizure type or specific type 

of epilepsy.  Of these, three studies considered prognostic factors for patients with absence 

seizures with the most common factor being IQ level, also described as mental retardation 

[110-112], while two studies considered prognostic factors for patients with juvenile 

myoclonic seizures.  No prognostic factor was common to both studies [113, 114].  The 

other three studies focussed on either a specific epilepsy type or seizure type.  For patients 

with mesial temporal lobe epilepsy prognostic factors for febrile seizure history, mesial 

temporal sclerosis, age at onset and EEG result [115] were identified.  For symptomatic 

focal epilepsy prognostic factors seizure type, nocturnal seizures, history of status 

epilepticus and EEG result [116] were identified.  Finally, for complex partial epilepsy 

prognostic factors history of neonatal seizures, time between seizures, EEG result, and style 

of therapy (monotherapy or polytherapy) [117] were found to be significant. 

Six studies considered patients who were newly diagnosed with epilepsy.  In most cases 

there was little overlap in the identified prognostic factors, however number of seizures 

was identified by three studies [118-120].  Five studies looked at seizure outcomes for 

patients withdrawing their antiepileptic drug therapy.  Of these the most commonly 

reported prognostic factors were duration of remission and seizure type [121-123].   

Seven other studies identified prognostic factors for epilepsy, one of which was concerned 

with prognostic factors for intractability - aetiology, neurological development, seizure 

frequency, history of status epilepticus and effect of AED therapy [124].  Two other studies 

considered prognostic factors for long-term retention of treatment on either lamotrigine or 
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topiramate.  The factors for lamotrigine were seizure type and treatment [125] while for 

topiramate they were learning disability, age at onset, treatment history, style of treatment 

and dosage [126].  Seizure type was found to be a prognostic factor for seizure outcome in 

a study comparing phenytoin and valproate in adults [127].  The final three studies all 

looked at partial epilepsy and common prognostic factors for seizure outcomes in these 

were EEG result and seizure type [128-130]. 

2.7 Clinical Motivation 

Few prognostic models based on prospective cohorts or randomised controlled trial data 

have been published in epilepsy.  Those that have, include models from the National 

General Practice Survey of Epilepsy (NGPSE) [131], the MRC antiepileptic drug withdrawal 

study [119, 132] and the Multicentre study of early Epilepsy and Single Seizures (MESS) 

[133].  The NGPSE models identify patient characteristics that modify seizure recurrence 

while the MRC antiepileptic withdrawal study provides important predictors of risk of 

seizure recurrence with and without AED withdrawal for patients in remission from 

seizures.  However, many patients in NGPSE were not prescribed antiepileptic drugs.  For 

patients with single seizures and early epilepsy the MESS models predict the risk of seizure 

recurrence for the policies of immediate and delayed AED treatment. 

Although a number of clinical and population based studies have been undertaken to 

assess outcome and predictors of outcome in epilepsy, as shown in section 2.6, few 

predictive models have been published that can be used to predict an individual patient’s 

outcome in every day practice.  This may be due to the sample of patients studied, the 

specifics of the outcome considered or the size or design of the study.   Additionally no 

prognostic models represent an epilepsy cohort accrued at the start of treatment.   
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There is clearly a need for prognostic models in epilepsy not only for patients who have had 

a first seizure but also for patients who are attempting to achieve remission from seizures 

and for those wishing to withdraw from epilepsy treatment following a period of remission.   

Two prognostic models for patients with newly diagnosed epilepsy are presented in 

Chapter 4.  A prognostic model for the risk of seizure recurrence following a first ever 

seizure in the context of driving is developed in Chapter 5 while in Chapter 6, a model is 

developed for patients wishing to withdraw from treatment following a period of 

remission, again in the context of driving.  

Any prognostic model, which is to be implemented in general practice, needs to be 

validated both internally and externally.  Internal validation of models is addressed in 

Chapter 7 while external validation is considered via a simulation study and case study in 

Chapters 8 and 9 respectively.  Finally, more complex prognostic models, which combine 

patients at all stages of the condition simultaneously, are considered via mixture modelling 

in Chapter 10. 
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Chapter 3: Methods for Identifying 

Prognostic Factors for Epilepsy 

3.1 Introduction 

In order to fully investigate potential prognostic factors for patients with epilepsy, and thus 

develop an appropriate prognostic model, various techniques and methods need to be 

considered such as curve fitting, variable centring, model selection, assumption testing, 

treatment-covariate interactions and competing risks.  This chapter will provide an 

overview of this theory.  The methods described in this chapter will be used in subsequent 

chapters.  

Handling continuous predictors via splines and fractional polynomials will be examined in 

section 3.2.  In section 3.3 variable centring will be discussed while methods for model 

building and development will be presented in section 3.4.  Methods for testing the 

proportional hazards assumption for the Cox model will be addressed in section 3.5 before 

competing risks methods are described in section 3.6.  The chapter will conclude (section 

3.7) with a description of the methods used in Chapters 4, 5 and 6. 

3.2 Handling Continuous Predictors 

In the past, a linear function has been an acceptable model for data-dependent model 

building with continuous covariates.  This may not be appropriate in applications where the 

data contain strong evidence against linearity.  In these situations a cutpoint model may be 

used.  Since then, further guidance has been provided suggesting spline model fits or 

fractional polynomial transformations. 
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The cutpoint model (section 3.2.1) is included for completeness only.  Continuous 

predictors are investigated in Chapter 4 via fractional polynomial (section 3.2.3) 

transformations.  The knot positions from a potential spline model fit (section 3.2.2) are 

used to categorise the continuous predictors for presentation only, post analysis. 

3.2.1 Cutpoint Model 

In the cutpoint model, a change point is selected and then the dichotomised or categorical 

variable is used in a univariate analysis.  More specifically, denote the covariate of interest 

by  .  If this covariate has been measured on a quantitative scale, the proportional hazards 

[31] cutpoint model is defined as  

                             

where  

             
 

 
                   

denotes the hazard function of the event-free survival time random variable   [43].  The 

parameter           is referred to as the hazard ratio of observations and is estimated 

through             by maximising the corresponding partial likelihood [31] with given 

cutpoint  .    is usually unknown and hence a problem of model selection where the 

cutpoint   also has to be estimated from the data. 

A popular approach for this type of data-dependent categorization is the ‘minimum   

value’ method where, within a certain range of the distribution of  , called the selection 

interval, the cutpoint    is taken such that the   value for the comparison of observations 

below and above the cutpoint is a minimum [43].  This method, also referred to as the 

optimal cutpoint method, may lead to a severe overestimation of the absolute value of the 

log-hazard ratio, which is equivalent to an inflation of the type 1 error rate [134].  In order 
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to correct for the overestimation of the absolute value of the log-hazard ratio, Verweij 

[135] proposes shrinking the parameter estimates by a shrinkage factor,  .  In the cutpoint 

model the log-hazard ratio should then be estimated by             where    is based on 

the minimum   value method and    is the estimated shrinkage factor.  In a recent paper by 

Schumacher [136] several methods to estimate    were compared.   

As a somewhat ad hoc approach, the shrinkage factor can be obtained using the corrected 

P-value.  A second approach is based on cross-validation calibration with leave-one-out, 10-

fold or bootstrap cross-validation methods.  The final approach examined by Schumacher 

used a heuristic estimator described by van Houwelingen and Le Cessie [137]. 

Even with the correction via a shrinkage factor, the optimal cutpoint approach still has 

disadvantages; in particular, different studies will most likely yield different cutpoints, 

making comparisons across studies extremely difficult or even impossible.  Thus other 

approaches should be preferred. 

3.2.2 Spline Functions 

Using spline functions in regression models enables modelling of continuous covariates.   

For fitting functions of a single variable, the general principle is that the domain of a 

covariate is covered by knots and local polynomial pieces are anchored at these knots.  

Available techniques differ in the number of knots used, the approach for determining knot 

positions and in the way the parameters for the polynomial pieces are estimated [138].   

The simplest spline function is a linear spline function, a piecewise linear function.  Suppose 

that the  -axis is divided into intervals with endpoints at  ,  , and   called knots.  The 

linear spline function is given by                               

         where       
     
     

  [139].  
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Although the linear spline is simple and can approximate many common relationships, it is 

not smooth and will not fit highly curved functions well.  Alternatives include smoothing 

splines which place one knot at each unique covariate value and use a roughness penalty 

for parameter estimation.  With regression splines, only a small number of knots are used, 

with the advantage that parameter estimation can be performed by standard regression 

methods.  Regression splines can be extended by using a large number of knots combined 

with penalised parameter estimation [140] to make the exact knot position less important.  

Such procedures are closely related to smoothing splines and share the advantage that only 

a single smoothing parameter must be selected per covariate.   

Cubic polynomials have been found to have good properties with an ability to fit sharply 

curving shapes.  This ensures linearity in the tails of the distribution and thus avoids 

unrealistic end effects of the fitted functions.  However, Stone and Koo [141] have found 

that cubic splines do have a drawback in that they can be poorly behaved in the tails, that is 

before the first knot and after the last knot.  They cite advantages of constraining the 

function to be linear in the tails.  Their restricted cubic spline function has the additional 

advantage that only     parameters must be estimated, besides the intercept, as 

opposed to     parameters with the unrestricted cubic spline.   

The restricted cubic spline function with   knots         is given by [142]  

                             

where      and for          ,  

            
  

         
        

       
 

       
          

       
. 

Stone [143] found that the location of knots in a restricted cubic spline model is not very 

crucial in most situations.  The fit depends much more on the choice of  , the number of 
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knots.  Placing knots at fixed quantities, percentiles, of a predictor’s marginal distribution is 

a good approach in most datasets.  This ensures that enough points are available in each 

interval and also guards against letting outliers overly influence knot placement.  

Recommended equally spaced quantiles are shown in Table 3. 

Table 3: Recommended equally spaced quantiles for placement of between three and seven knots ( ) with 

restricted cubic spline models 

  Quantiles 

3 0.10 0.50 0.90     

4 0.05 0.35 0.65 0.95    

5 0.05 0.28 0.50 0.73 0.95   

6 0.05 0.23 0.41 0.59 0.77 0.95  

7 0.03 0.18 0.34 0.50 0.66 0.82 0.98 

 

Stone has found that more than five knots are seldom required in a restricted cubic spline 

model [143].  The principle decision is then between       or  .  For many datasets, 

    offers an adequate fit of the model and is a good compromise between flexibility 

and loss of precision caused by overfitting a small sample.  When the sample size is large 

(i.e.       with a continuous uncensored response variable),     is a good choice.  A 

linear spline and a cubic spline, each with five knots, can be seen in Figure 3. 

 

Figure 3: Linear spline and cubic spline with five knots (4 degrees of freedom) 
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3.2.3 Fractional Polynomials 

An approach to prognostic modelling of survival data that provides more flexibility than 

polynomials [144] while preserving the simplicity of the final model to an acceptable 

degree was originally developed by Royston and Altman [144] and is termed the fractional 

polynomial (FP) approach.  One, two or more power transformations of the form    are 

fitted, the exponent(s),  , being chosen from a small, preselected set 

                           where    is defined as     .  The set   includes the most 

commonly used power transformations and has the advantages of stabilising a function 

and enabling transportability to other settings. 

An integer suffix to FP denotes the degree of the fractional polynomial.  An FP1 

transformation of a positive argument     with power   is defined as    where     

while an FP1 function or model is defined as  

  
             

             

An FP2 transformation of   with powers          , or for       (‘repeated powers’) is 

the vector    with  

             
               

                   

  

while an FP2 function or model with parameter vector          
  and powers   is  

  
             

      
                     

The constant,   , is optional and depends on the context.  For example, it is usually 

included in a normal-errors model, but not in the Cox regression model for survival data.  

There are eight FP1 functions and 36 FP2 functions comprising eight ‘repeated powers 
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functions’ where       and 28 combinations of each of the eight members of   where 

     .  More than two terms are rarely required in practical applications. 

The general definition of an FP  function with powers              is most easily 

written as a recurrence relation.  Let         and     .  Then 

  
                          

 

   

 

where        
             

                     

   for        . 

This extension of standard polynomials generates a considerable range of curve shapes 

while still preserving simplicity when compared to smoothing splines or other 

nonparametric techniques for example.   

3.2.3.1 Choice of Origin 

If non-positive values of   can occur, then a preliminary transformation of   to ensure 

positivity is needed.  Common cases are where   is a count, when          is 

traditionally used; where   is a positive random variable such as a physical quantity for 

which recorded values can be zero, due to imprecise measurement and/or rounding of 

observations; or where   is a difference or log ratio between two quantities.  A simple 

solution is to choose a non-zero origin   and work with             where      is 

the smallest observed, or smallest possible, value of  .  A possible choice of   is the 

rounding interval of the sample values of  , or the minimum increment between successive 

ordered sample values of   [144].  If   is a count, then a natural choice is     [145].   

3.2.3.2 Function Selection Procedure 

An obvious question to ask with FP modelling concerns how to select a suitable function for 

the data.  The approach of Royston and Sauerbrei [145] has been developed to answer the 
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question in terms of a closed test procedure.  In the following description of the functional 

selection procedure (FSP), a linear function is assumed as the default when   is either 

selected because of statistical significance or included in the model on a priori reasoning.  

The procedure runs as follows: 

1. Test the best FP2 model for   at the   significance level against the null model 

using four degrees of freedom.  If the test is not significant, stop, concluding that 

the effect of   is not significant at the   level.  Otherwise continue. 

2. Test the best FP2 for   against a straight line at the   level using three degrees of 

freedom.  If the test is not significant, stop, the final model being a straight line.  

Otherwise continue. 

3. Test the best FP2 for   against the best FP1 at the   level using two degrees of 

freedom.  If the test is not significant, the final model is FP1; otherwise the final 

model is FP2.  End of procedure. 

The test at step 1 is of overall association of the outcome with  .  The test at step 2 

examines the evidence for nonlinearity.  The test at step 3 chooses between a simpler or 

more complex nonlinear model.  Before applying the procedure, the user must decide on 

the nominal P-value,  , and on the degree   of the most complex FP model allowed. 

Holländer and Schumacher [146] showed, in a simulation study, that FSP preserves the 

family-wise type 1 error probability and generally ends up with a log-linear relationship if it 

is present. 

3.2.3.3 Multivariable Fractional Polynomial 

Sauerbrei and Royston [147] have extended the FP approach, proposing a model building 

strategy consisting of FP-transformations and selection of variables by backward 

elimination, called the multivariable FP approach (MFP).  It combines variable selection by 
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backward elimination with determination of functional form for continuous predictors by 

the FSP [10, 11]. 

The MFP algorithm investigates, in a systematic way, whether the effect of a continuous 

covariate is better modelled by a non-linear function from the class of fractional 

polynomials (FP) or by a linear function. 

3.2.3.4 Modelling Continuous Variables with a ‘Spike’ at Zero 

Royston et al. [148] describe a procedure to deal with the ‘spike’ at zero problem which 

commonly arises in epidemiology and other fields.  For example, a variable for number of 

cigarettes smoked per day will have a high number of zero responses.  General fractional 

polynomial (FP) methodology does not address the question of how to model the factor 

when there is such a spike at zero.  It is not always the case that the spike will represent 

genuine zero responses.  For example, in laboratory assays some samples will fall below the 

limit of detection.  In these cases zero-inflated mixtures are used such as the zero-inflated 

Poisson model [149].   

The definition of epilepsy requires two unprovoked seizures.  Therefore, in trials of newly 

diagnosed patients, there will be a higher number of patients with only two seizures.  This 

is particularly relevant to the SANAD dataset and in Chapter 4, FPs and FPs with a spike (at 

two) will be considered when modelling total number of seizures before randomisation. 

In the logistic regression setting, theoretical results [150, 151] suggest that a binary 

variable, say  , should be included in the model to represent exposure/non-exposure.  

However, the dose-response function for the exposed individuals still needs to be 

determined.  For univariate dose-response modelling, Royston and Sauerbrei [145] 

suggested a new approach to the problem by extending FP modelling to include  .  Their 

procedure comprises of two stages [148]: first, determine the best FP function when   is 
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included in the model; second, assess whether   or the FP component can be eliminated 

without harming the model fit. 

3.2.3.4.1 FSP-Spike Procedure 

Consider a model whose linear predictor,  , is given by 

   
     

                     
  

where    and    are powers from the standard set   of FP transformations.  The linear 

predictor   is an FP function of     where     and a constant     when    .  Thus   

is a discontinuous function of   with a possible jump at    .  The expression for   is 

equivalent to 

                                  

where    
     
     

 , and 

                 
     

                  
 . 

The function selection procedure (FSP)-spike procedure for selecting a model has two 

stages.  In the first stage, the most complex model comprising   and                 is 

compared with the null model on 5 degrees of freedom.  If the test is significant, the steps 

of the FSP for selecting an FP function are followed, but with   always included in the 

model.  In the second stage, which is performed separately,  , and the remaining FP or 

linear component are each tested for removal from the model.  If both parts are significant, 

the final model includes both; if one or both parts are non-significant the one with the 

smaller deviance difference is removed.  In the latter case, the final model comprises either 

the binary dummy variable or the selected FP function.  If only the FP function is selected, 

the spike at zero plays no further part.  Since the selection of an FP function may be 
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affected by the presence of the binary dummy variable, the resulting model may differ 

from a standard FP analysis [148]. 

The decision to use a model including   as just described, or to work with the standard FP 

class, is best made on subject-matter grounds rather than by considering the fit of 

functions with or without  . 

3.2.3.4.2 Multivariable Case 

In reality it may be unrealistic to consider assessing the effect of an exposure with a spike 

at zero in univariate models; possible confounders may need to be considered.  The 

confounder model can easily be determined by using a variation - the multivariable FP 

(MFP) procedure [138, 145].  For variables with a spike at zero within MFP the standard FSP 

is replaced with the first stage of FSP-spike.  The second stage must be done separately for 

all spike variables after MFP has been completed. 

3.2.3.5 Hazard Ratios and Confidence Intervals 

To aid interpretation, it can be helpful to present continuous variables as categorised 

variables.  Having modelled the variable using an appropriate continuous model fit, hazard 

ratios and associated 95% confidence intervals may be calculated post hoc from the fitted 

FP model.   

Denote the centre of the baseline, reference, category as      where   is the variable of 

interest and    and    are the 1st and 2nd FP2 transformations of the variable with 

coefficients    and    respectively.  Then, 
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The variance can be calculated as 

                         
   

 
 
               

   
 
 
                  

  
          

   
 , 

and thus a 95% confidence interval for the post hoc hazard ratios is           

                . 

In the case of FP1 transformations, the above equations are much simplified.  In addition, 

the log hazard ratios can obviously be varied to odds ratios. 

3.2.4 Comparison of Splines and Fractional Polynomials 

MFP and spline model-building procedures give roughly comparable multivariable models.  

Some of the weaker predictors may be included by one procedure but not by another, and 

estimated functions often show some differences.  In regions with sparse data the 

differences can be major, but where there is enough data the functions and their 

interpretation are similar.  If interest lies mainly in the simpler task of deriving a good 

predictor, the differences between the selection procedures become smaller.  

Results from MFP are more stable and easier to interpret and transfer to other 

environments while spline functions with large degrees of freedom produce many artefacts 

and spline functions cannot easily be written down.  However, if sample size is adequate, 

MFP and splines with small degrees of freedom give similar results.  Predictors are similar 

but there can be substantial differences when interest is in individual variables.  Differences 

may appear with weakly influential predictors and in regions with sparse data.  In general, 

transportability and general usefulness are more important than minor improvements in 

goodness of fit [145]. 
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3.3 Variable Centring 

Centring involves shifting the scale of a variable by subtracting a single value from all of the 

data points.  It is called centring because people often use the mean as the value they 

subtract, so the new mean is now at zero, but it does not have to be the mean.  In fact, 

there are many situations when a value other than the mean is most meaningful. 

There are mixed opinions on the value of centring.  Cronbach [152] suggests, ‘in regression 

analysis, always centre’ stating reasons such as increased relevance of the estimated 

regression coefficients and diminished multicollinearity.  If centring is done unnecessarily, 

the cost is minor.  Aiken and West [153] and Cohen et al [154] have described centring and 

the consequences of non-centred data while Glantz and Slinker [155] and Kromrey and 

Foster-Johnson [156] take the stand that centring does not usually change the statistical 

results, is necessary only in certain circumstances and can thus easily be avoided. 

All variables analysed in the thesis are centred.   This is particularly of relevance to the work 

in Chapters 4, 5, 6 and 10. 

3.3.1 Multicollinearity 

There are two sources of correlation between a predictor and an even power of the 

predictor, say between   and    [154].  The first is non-essential multicollinearity that 

exists merely due to the scaling, non-zero mean, of  .  The second is essential 

multicollinearity, correlation that exists because of any non-symmetry in the distribution of 

the original   variable.  Marquardt [157] refers to the problems of multicollinearity 

produced by non-centred variables as non-essential ill-conditioning, whereas those that 

exist because of actual relationships between variables in the population are referred to as 

essential ill-conditioning.   
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Problems with multicollinearity in least squares regression are well documented, 

particularly with multiple regression models containing both main effects and interaction 

terms [154] – in general for two factors   and  , if the effect of variable   on the outcome 

varies according to the level of variable  , there is said to be an interaction between   and 

 .   

Although the least squares estimates of the regression coefficients remain unbiased, as 

multicollinearity increases, the determinants of the independent variables covariance and 

correlation matrices approach zero and the standard errors of the coefficients increase.  

The resulting ill-conditioning yields coefficients, and an associated variance-covariance 

matrix, that are unstable.  Small changes due to measurement or rounding error may be 

magnified resulting in large changes in the coefficients and associated variance-covariance 

matrix.  In addition, when multicollinearity is present, slight sampling fluctuations in the 

estimates of the covariances can result in great variability in the values and signs of least 

squares estimates of the coefficients.  Finally, as a result of the increase in the expected 

distance between the vector of the least squares coefficient and the vector of true 

regression coefficients, estimates with excessively large values or unreasonable signs may 

result when extreme collinearity is present [156]. 

The problems of collinearity may be overcome in several ways.  In some situations the 

collinearity will have arisen purely as a computational problem and may be solved by 

alternative definitions of some of the variables.  For example, if both   and    are included 

as explanatory variables and all the values of   are positive, then   and    are likely to be 

highly correlated.  This can be overcome by redefining the quadratic term as        , 

which will reduce the correlation whilst leading to an equivalent regression [28].  If the 

multicollinearity is structural, it can often be dealt with by centring the measured 
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independent variables on their mean values before computing the power, e.g. squared, and 

interaction, cross-product, terms specified by the regression equation.   

3.3.2 Interpretation 

Lower order coefficients in higher order regression equations, regression equations 

containing terms of higher than order unity, only have meaningful interpretation if the 

variable has a meaningful zero.   For example, if some behaviour were predicted from a 

measure of motivation,  , and a seven point attitude scale,  , ranging from one to seven, 

the regression coefficient for   on   would be the slope of   on   at the value    , a 

value not even defined on the scale.  Similarly, if strength of athletes were produced from 

their height and weight, the regression coefficient predicting strength from height would 

represent the regression of strength on height for athletes weighing 0 pounds. 

There is a simple solution to making the value, zero, meaningful on any quantitative scale; 

centre the linear predictor.  Thus the regression of   on   at     becomes meaningful; it 

is the linear regression of   on   at the mean of the variable  .  To gain the benefits of 

interpretation of lower order terms, it is unnecessary to centre the criterion  .  This can be 

left in raw score form so that predicted scores will be in the metric of the observed 

criterion [154]. 

3.3.3 Discussion 

Cohen et al [154] strongly recommend the use and reporting of centred polynomial 

equations.  They suggest that doing so has no effect on the estimate of the highest order 

interaction in the regression equation and also yields two straightforward, meaningful 

interpretations of each first-order regression coefficient of predictors entered into the 

regression equation.  Firstly, the effects of the individual predictors at the mean of the 

sample and secondly, the average effects of each individual predictors across the range of 

the other variables.  Aiken and West [153] also recommend centring, this time for 
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computational reasons because the centred overall regression analysis provides regression 

coefficients for primary terms that may be informative.  

The main disadvantage of centring, however, is that the variables are no longer the natural 

variables of the problem.  If a predictor has a meaningful zero point, then one may wish to 

keep the predictor in non-centred form.  Centring also produces a puzzling effect.  When 

predictors are centred and entered into regression equations containing interactions, the 

regression coefficients for the first order effects are different numerically from those 

obtained by performing a regression analysis on the same data in raw score or non-centred 

form.  The regression coefficients do not change when predictors are centred in regression 

equations containing no interactions [154].  Differences between the non-centred 

equation, and the centred one get absorbed into the intercept [155], therefore, according 

to Glantz and Slinker [155], centring will only be beneficial if an intercept term is included 

in the model.   

Studies performed by Kromrey and Foster-Johnson [156] showed that regression equations 

obtained with centred and raw data were equivalent, results of hypothesis testing with 

either type of data were exactly the same and neither approach provided a viable vehicle 

for the interpretation of main effects in regression.  They therefore suggest ‘one might just 

as well not bother.’  There is, though, very little cost to unnecessary centring but the costs 

of not centring when it is necessary can be major [158] as using non-centred data in 

regression analysis, often leads to inconsistent and misleading results.  Thus it would 

always be better to centre in regression analyses. 

It can be argued that not centring represents a de facto decision that all ordinal variables 

be centred at zero, that all binary and categorical independent variables be coded 

somewhat arbitrarily, 1 and 0, and that one category, also often arbitrarily chosen, be used 

as the reference category.  This can lead to serious errors of statistical inference [158].   
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Kraemer and Blasey [158] recommend the following default approach to protect against 

most errors in statistical inference.  Each binary independent variable should be coded 

     and      while each ordinal independent variable should be centred with the 

median response.  Categorical independent variables should be ‘dummy coded’ as usual, 

but instead of coding each response as 1 and 0, the values       and      should be 

used where   is the number of categories.  As in the usual situation, one categorical 

‘dummy’ is omitted, but with the proposed centring it does not matter which one.  For 

example, for a three level variable, the traditional dummy coding may be as in the left hand 

side of Table 4 while the recommended coding with centring is as per the right hand side. 

Table 4: Alternatives for dummy coding of a three level categorical variable 

 
Traditional Coding Coding with Centring 

            

Baseline 0 0   
     

   

Level 1 1 0  
     

   

Level 2 0 1   
    

   

 

Requiring that centring always be done merely asks that what is done implicitly anyway be 

done explicitly and thoughtfully, which promotes better application and understanding of 

the results of regression analysis. 

3.4 Model Building and Development 

When developing regression models, data analysts are often faced with many predictor 

variables that may influence an outcome variable.  Often a practitioner’s task is to build a 

reliable regression model that fits the data well, is plausible, simple enough to be 

interpretable and useful in practice.  Model selection reduces to a decision to include or 

exclude each variable.  Many procedures for selecting variables have been proposed 

although often they do not lead to the same solution when applied to the same problem 
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and the ‘best’ way of selecting a multivariable model is still unresolved despite more than 

half a century of research.  It is generally agreed that subject matter knowledge, when 

available, should guide model building, however, such knowledge is often limited and data-

dependent model building is required [159]. 

If the number of independent variables is large, a parsimonious model is preferred, i.e. a 

subset of ‘important’ predictors whose regression coefficients    differ from 0.   There are 

two main types of strategies for variable selection to achieve such a model – sequential 

strategies and all-subsets strategies.  Sequential strategies, such as forward selection (FS), 

stepwise selection (StS) or backwards elimination (BE) procedures, are based on a 

sequence of tests of whether a given variable should be added to the current model or 

removed from it, or whether selection should stop.  A nominal significance level,  , for 

each of these tests is chosen in advance and largely determines how many variables will 

end up in the model.   

Mantel [160] and others [161, 162] argue strongly in favour of backward elimination over 

forward selection, especially when collinearity is present.  Forward selection starts by 

considering   univariate models, all of which underfit the data and have a large residual 

variance.  In contrast, backward elimination starts with the full model.  It is likely that some 

of the variables in the full model have no effect, but it is at least a reasonable starting 

point.  If collinearity between predictors is low, then forward selection and backward 

elimination frequently select the same model.   

Some computer programs use a stepwise strategy and combine it with Akaike’s 

Information Criterion (AIC) [163] or the Bayesian Information Criterion (BIC) [164] as 

selection criteria.  In all-subsets strategies, a model is selected by minimising an 

information criterion over the    available models with up to   variables.  For a given 

model,  , the information criterion, IC, is of the form                  where   is the 
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maximised log likelihood of  ,        is the number of estimated parameters and   is a 

penalty constant.  The penalty constant     gives the AIC, independent of sample size.   

AIC is an index used in a number of areas as an aid to choosing between competing models.  

It is defined as 

        

where    is the maximized log-likelihood and   is the number of parameters in the model 

[165].  The index takes into account both the statistical goodness of fit and the number of 

parameters that have to be estimated to achieve this particular degree of fit, by imposing a 

penalty for increasing the number of parameters.  

BIC has a penalty constant        and therefore depends on the sample size.  For 

censored survival data, the sample size   may be replaced by the number of events [166].  

The penalty constant of      for BIC is larger than that of 2 for AIC, generally resulting in 

models with a smaller number of predictors.  This approach however, has major 

drawbacks, including the possibility of selecting models which omit important predictors 

[163]. 

Variable selection via AIC is implemented in Chapters 4, 5 and 6 to develop parsimonious 

multivariable models. 

3.4.1 Treatment-Covariate Interactions Methods 

Multivariable models need to be checked for interactions, including the relevant main 

effects [145].  Testing for binary by binary interactions can be done by standard methods 

such as the likelihood ratio test which may also be suitable for continuous by binary and 

continuous by continuous interactions.  Alternatives for these latter two combinations are 

available in the form of Multivariable Fractional Polynomial Interactions (MFPI). 
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Treatment-covariate interactions are considered in Chapter 4 via the likelihood ratio test 

(section 3.4.1.1) and multivariable fractional polynomial interactions (section 3.4.1.2). 

3.4.1.1 Likelihood Ratio Test 

In order to compare alternatives models, fitted to an observed set of survival data, a 

statistic that measures the extent to which the data are fitted by a particular model is 

required.  As the likelihood function summarises the information that the data contain 

about the unknown parameters in a given model, a suitable summary statistic is the value 

of the likelihood function when the parameters are replaced by their maximum likelihood 

estimates.  This is the maximised likelihood under an assumed model and can be computed 

from Equation 4 by replacing the  ’s by their maximum likelihood estimates under the 

model [167].       is the vector of covariates for the individual who dies at the  th ordered 

death time,     .  For a given set of data, the larger the value of the maximum likelihood, 

the better the agreement between the model and the observed data. 

Equation 4 

      
           

                   

 

   

 

It is more convenient to use minus twice the logarithm of the maximised likelihood in 

comparing alternative models.  If the maximised likelihood for a given model is denoted by 

  , the summary measure of agreement between the model and the data is        .     is 

the product of a series of conditional probabilities, so this statistics will be less than unity 

[167].  In consequence,         will always be positive, and for a given dataset, the smaller 

the value of        , the better the model. 

The statistic         cannot be used on its own as a measure of model adequacy as the 

value of   , and hence of        , is dependent upon the number of observations in the 
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dataset.  Thus if, after fitting a model to a set of data, additional data become available to 

which the fit of the model was the same as that to the original data, the value of         

for the enlarged dataset would be different from that of the original data [167].  

Accordingly the value of         is only useful when making comparisons between models 

fitted to the same data. 

3.4.1.2 Multivariable Fractional Polynomial Interactions 

Royston and Sauerbrei [168] proposed an extension of the MFP algorithm to investigate 

interactions between categorical and continuous covariates.  It is an extension of the MFP 

procedure for simultaneous selection of influential prognostic variables and the selection of 

the function form for a continuous covariate.  The multivariable fractional polynomial 

interaction, MFPI, algorithm models the prognostic effect of a continuous variable by FP2 

transformations within treatment groups, but under the constraint of the same powers.  It 

can be done in a univariate setting or by adjusting the model for other covariates.  The type 

1 error probability of MFPI is found to be close to its nominal value. 

Assume a covariate   has two levels coded 1 and 2.  The influence of the continuous 

covariate   on the estimated treatment effect is determined by                    

where              are the estimated functions for the prognostic effect of   in treatment 

group  .  A plot of      together with a point-wise confidence band is called a treatment-

effect plot. 

Let    be a continuous covariate and    be, for simplicity, a binary treatment variable, 

coded       and let   be a vector of potential prognostic factors.  With a pre-specified 

hypothesis,    is the only covariate to be investigated for interaction with   .  The 

relationship between the outcome and    is modelled by an FP with the same powers but 

different regression coefficients at each level of   .  A standard test of interaction is 

performed on regression coefficients at the final step.  To reduce possible confounding, 
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adjustment for   may be made.  Since    cannot belong to the adjustment model, a 

different model may be chosen for each    that is investigated.  The complete procedure is 

as follows: 

1. Apply the MFP algorithm to  , possibly including   , with a P-value threshold of    

for selecting variables and FP transformations.  Let    be the resulting covariate 

vector, called the adjustment model.     may include transformed variables in   

selected by the MFP algorithm.  If all variables in   are uninfluential, then    may 

even by empty. 

2. Find by maximum likelihood the best-fitting FP2 powers,          , for which   , 

with        , always adjusting for    and   .  Denote the FP2 transformations 

  
 
    

     
   . 

3. For groups       and powers    for      , define new predictors       
   if 

    , and       otherwise. 

4. The test of       interaction is a likelihood ratio test between the nested models 

                    
  and      

     
     .  The difference in deviance is compared 

with    on two degrees of freedom. 

5. If an interaction is not found, then    is regarded as a potential prognostic factor 

only.  To investigate if an FP2 function is still needed for   , the final model is 

chosen by repeating step 1, but including    as a potential prognostic factor. 

The reason why FP2 functions are fitted to   , rather than simpler functions, is to find the 

best-fitting specification from a flexible class.  In terms of bias or variance trade-off, 

increased variance incurred through the use of FP2 powers for    may be tolerated at the 

price of low bias.  To avoid excessive overfitting, leading to serious artefacts in the fitted 

functions, estimation of different powers in each treatment group is not considered.  An 

FP2 function with the same powers in each treatment group is already a flexible 
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specification.  When    is binary or categorical, the approach reduces to the usual approach 

of estimating and testing multiplicative interaction term(s), adjusting for   . 

Further refinements of the procedure are possible.  A less flexible option would involve use 

of linear functions.  Alternatively, FP1 functions could be used.  For greater flexibility it may 

be possible to allow the powers to be different in the treatment groups.  However, except 

in very large samples, the advantage of increased flexibility would probably be outweighed 

by the increased instability [145]. 

3.5 Testing the Proportional Hazards Assumption 

As mentioned previously, the Cox model relies on the proportional hazards assumption.  

Therefore the proportional hazards assumption will be investigated using log cumulative 

hazard plots and Schoenfeld residual plots.  The assumption will also be tested to see 

whether incorporating a time-dependent covariate effect indicates significant violations. 

If the proportional hazards assumption is found not to be valid, the results will be 

compared to those from the accelerated failure time model.  This will determine if the 

violation of the assumption affects the conclusion. 

The proportional hazards assumption is tested in Chapters 4, 5 and 6 via log cumulative 

hazard plots (section 3.5.1), the inclusion of time-dependent covariate effects (section 

3.5.2), and examination of Schoenfeld residuals (section 3.5.3.1).  Other types of residuals 

are included in this chapter for completeness only.  

3.5.1 Log Cumulative Hazard Plots 

A graphical approach for checking the proportional hazards assumption involves comparing 

log–log survival curves over different combinations of categories of variables being 

investigated.  Parallel curves indicate that the proportional hazards assumption is satisfied.  
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A log–log survival curve is a transformation of an estimated survival curve that results from 

taking the natural log of an estimated survival probability twice.  Mathematically, a log–log 

curve is written as           .  

Recall that the formula for the survival curve of the Cox model is  

            
         

 
    

. 

The first time logs are taken the resulting expression is 

                     
 
               . 

Since        denotes a survival probability, its value for any   and any specification of the 

vector   will be some number between 0 and 1.  It follows that the natural log of any 

number between 0 and 1 is a negative number, so that the log of        as well as the log 

of       are both negative numbers.  Thus, when taking the second log, the log of 

             must be calculated.  

After some algebra, this expression can be rewritten as the sum of two terms, one of which 

is the linear sum of the      and the other is the log of the negative log of the baseline 

survival function.  Suppose two different specifications of the   vector are considered, 

corresponding to two different individuals,    and   .  Then the corresponding log–log 

curves for these individuals are given in Equation 5 [169]. 

Equation 5 
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Subtracting the second log–log curve from the first yields the expression shown in Equation 

6.  This expression is a linear sum of the differences in corresponding predictor values for 

the two individuals.  Note that the baseline survival function has dropped out, so that the 

difference in log–log curves involves an expression that does not involve time t. 

Equation 6 

                                           

 

   

 

Alternatively, using algebra, Equation 6 can be re-written by expressing the log–log survival 

curve for individual     as the log–log curve for individual     plus a linear sum term that is 

independent of  , as shown in Equation 7.  This says that if a Cox model is used and the 

estimated log–log survival curves for individuals are plotted on the same graph, the two 

plots will be approximately parallel.  The distance between the two curves is the linear 

expression involving the differences in predictor values, which does not involve time.  In 

general, if the vertical distance between two curves is constant, then the curves are 

considered parallel. 

Equation 7 

                                             

 

   

 

The parallelism of log–log survival plots for the Cox proportional hazards model provides a 

graphical approach for assessing the proportional hazards assumption.  That is, if a Cox 

model is appropriate for a given set of predictors, one should expect that empirical plots of 

log–log survival curves for different individuals will be approximately parallel. 
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3.5.2 Time-Dependent Covariate Effects 

When time-dependent variables are used to assess the proportional hazards assumption 

for a time-independent variable, the Cox model is extended to contain interaction terms 

involving the time independent variable being assessed and some function of time.  When 

assessing predictors one-at-a-time, the extended Cox model takes the general form shown 

in Equation 8 for the predictor  .  

Equation 8 

                           

One choice for the function      is simply      equal to  , so that the product term takes 

the form   .  Other choices for g(t) are also possible, for example, log t.  Using the above 

one-at-a-time model, the proportional hazards assumption is assessed by testing for the 

significance of the product term.  The null hypothesis is therefore    .  The test can be 

carried out using either a Wald statistic or a likelihood ratio statistic.  In either case, the test 

statistic has a chi-square distribution with one degree of freedom under the null 

hypothesis. 

3.5.3 Residuals for Cox regression model 

A goodness of fit testing approach is appealing because it provides a test statistic and p-

value for assessing the proportional hazards assumption for a given predictor of interest.  

Thus, the researcher can make a more objective decision using a statistical test than is 

typically possible when using a graphical approach.  Many goodness of fit testing 

procedures are based on residuals which are values that can be calculated for each 

individual in the study, and have known behaviour when the fitted model is satisfactory.  

Schoenfeld residuals, Martingale residuals and deviance residuals are the most popular. 
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3.5.3.1 Schoenfeld Residuals 

According to Collett [167], the Schoenfeld residuals are particularly useful in evaluating the 

assumption of the proportional hazards after fitting a Cox regression model.  Grambsch and 

Therneau [170] have shown that the expected value of the     scaled Schoenfeld residuals, 

for the     explanatory variable,   , in the model,     
 , is given by       

              

where       is taken to be a time-varying coefficient of   ,        is the value of the 

coefficient at the     death time,    and     is the estimated value of    in the fitted Cox 

regression model.  Consequently, a plot of the values of     
      against the death times 

should give information about the form of the time-dependent coefficient of   ,      .  In 

particular, a horizontal line will suggest that the coefficient of    is constant and the 

proportional hazards assumption is satisfied.  A smoothed curve can be superimposed onto 

this plot to aid interpretation.  This plot can also be supplemented by fitting a straight line, 

and formally testing if the slope of this line is zero.  However, this procedure has its 

limitations, since a slope that is not significantly different from zero may be found when 

there is, in fact, a non-linear relationship between the coefficient and time. 

3.5.3.2 Martingale Residuals 

Suppose that the     survival time is a censored observation,   
 , and let    be the actual, 

but unknown, survival time, so that      
 .  The Cox-Snell [171] residual for this individual, 

evaluated at the censored survival time, is then given by           
             

  , 

where       
   and       

   are the estimated cumulative hazard and survivor functions 

respectively for the     individual at the censored survival time.  Also, suppose that    is a 

censoring indicator which takes the value zero if the observed survival time of the     

individual is censored and unity if it is uncensored. 

Residuals,           , are known as Martingale residuals since they can be derived 

using Martingale methods.  They take values between    and unity with the residuals for 
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censored observations being negative.  In large samples, the Martingale residuals are 

uncorrelated with one another and have an expected value of zero.  They are not 

symmetrically distributed about zero which therefore makes plots based on the residuals 

difficult to interpret. 

3.5.3.3 Deviance Residuals 

The deviance residuals, which were introduced by Therneau et al [172], are more 

symmetrically distributed around zero than Martingale residuals.  They are defined by [167] 

                                   
    

where     is the Martingale residual for the     individual,    is the event indicator and the 

function        is the sign function - the function that takes the value    if its argument is 

positive and    if negative.  Thus          ensures that the deviance residuals have the 

same sign as the Martingale residuals. 

The deviance is a statistic that is used to summarise the extent to which the fit of a model 

of current interest deviates from that of a model which is a perfect fit to the data.  The 

statistic is given by                     where      is the maximised partial likelihood 

under the current model and     is the maximised partial likelihood under the full model.  

The deviance residuals are then such that       
 , so that observations that correspond 

to relatively large deviance residuals are those that are not well fitted by the model. 

An alternative way of viewing the deviance residuals is to consider them as Martingale 

residuals which have been transformed to produce values that are symmetric about zero 

when the fitted model is appropriate.  Although these residuals can be expected to be 

symmetrically distributed about zero when an appropriate model has been fitted, they do 

not necessarily sum to zero. 
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3.5.4 Comparison of Deviances 

Two disadvantages of the Martingale residuals are that they depend heavily on the 

observed survival time and require an estimate of the cumulative hazard function.  Both of 

these disadvantages are overcome in a residual proposed by Schoenfeld [173].  This 

residual differs from the Martingale residuals in one other important respect - there is not 

a single value of the residual for each individual, but a set of values, one for each 

explanatory variable included in the fitted Cox regression model.  While Martingale 

residuals are useful for assessing the correct functional form for the effect of a covariate, 

almost all of the available literature on testing the proportional hazards assumption uses 

Schoenfeld residuals.   

3.6 Competing Risks Methods 

When only one of several different types of event can occur, the probability of these events 

is referred to as competing risks.  In the epilepsy setting, treatment failure may arise as a 

result of either adverse events or inadequate seizure control.  Cumulative incidence 

analysis will be used to show the contribution to the treatment failure outcome across 

drugs while covariates will be tested by Gray’s method [174]. 

Many sources [169, 175] suggest that modelling competing risks survival data can be 

carried out using a Cox model.  The drawback of performing a survival analysis for each 

event type separately, where the other, competing, event types are treated as censored 

categories is the assumption that the competing risks are independent.  Cumulative 

incidence analysis makes no such assumption and allows the assessment of cause-specific 

withdrawal in the presence of other competing risks. 

Competing risks analyses are undertaken in Chapter 4 via cumulative incidence analysis 

(section 3.6.1) with examination of covariates by Fine and Gray’s method (section 3.6.2). 
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3.6.1 Cumulative Incidence Analysis 

The cumulative incidence curve estimates the marginal probability of an event and is 

therefore not estimated using a product-limit formulation.  The independence of 

competing risks is still required, when a proportional hazard model is used to obtain hazard 

ratio estimates for individual competing risks, as an intermediate step in the computation 

of a cumulative incidence curve.  This assumption will be satisfied whenever competing 

risks are mutually exclusive and events are non-recurrent; that is, one and only one event 

can occur at any one time and only once over time.  Irrespectively, the cumulative 

incidence curve has a meaningful interpretation in terms of treatment utility regardless of 

whether competing risks are independent [30, 169].   

To construct a cumulative incidence curve, first estimate the hazard at ordered time points 

   when the event of interest occurs.  This hazard estimate is simply the number of events 

that occur at    divided by the number at risk at   .  This can be written as  

        
   

  
  

where the     denotes the number of events for risk   at time    and    is the number of 

subjects at that time.  Thus, at any particular time, 
   

  
   is the estimated proportion of 

subjects failing from risk  .  

To be able to fail at time   , the subject must have survived the previous time when a 

failure occurred.  The probability of surviving the previous time      is denoted        , 

where      denotes the overall survival curve rather than the cause-specific survival curve 

     .  Overall survival must be considered here because the subject must have survived all 

other competing events.  The incidence of failing from event-type   at time    is then simply 

the probability of surviving the previous time period multiplied by        .  The cumulative 
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incidence at time    is then the cumulative sum up to time    of these incidence values over 

all event-type   failure times.   

3.6.2 Fine and Gray 

Fine and Gray [176] provide methodology for modelling the cumulative incidence curve 

with covariates using a proportional hazards assumption.  They refer to the cumulative 

incidence curves as sub-distribution functions.  The cumulative incidence curve models 

developed by Fine and Gray are analogous to the Cox model but, for any failure type, they 

model a cumulative incidence curve.  

Fine and Gray’s model is based on                     where   is the hazard of the 

subdistribution,    is the baseline hazard of the subdistribution,   is the vector of the 

covariates and   is the vector of the coefficients.  The form of the partial likelihood is 

similar to that used in the Cox model.  Written for just one covariate,  , the partial 

likelihood is given by Equation 9 [177] 

Equation 9 

      
        

                

 

   
 

where the product is taken over all   time points              where an event of 

interest was observed.   

There are two main differences between the partial likelihood for Fine and Gray’s model 

and that of the Cox model; the risk set    is defined in a different way and weights     are 

added.  The risk set is formed of those who did not experience an event by time   and of 

those who experienced a competing risk event by time  , 

                                                                    . 
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Thus those who experienced other types of events remain in the risk set all the time.  The 

weights are defined as  

    
      

              
 

where    is the Kaplan-Meier estimate of the survivor function of the censored distribution.  

The censoring distribution is defined by         where    is the time to the first event and 

   is 1 if no event is observed and 0 if any kind of event was observed.  At each time point 

where an event of interest occurred, indexed by  , the set of individuals at risk, indexed by 

 , includes those who did not have any type of event by time    as well as those who had a 

competing risks event before   .  The weight is 1 for the former and less than or equal to 1 

for the latter.  In this way those individuals experiencing a competing risk event do not 

participate fully in the partial likelihood: the further the time point,   , is from the time 

when the competing risk event occurred, the smaller the weight. 

To investigate the proportionality assumption for the competing risks regression, 

                 can be plotted against          .  Additionally, a time-dependent 

covariate may be included in the model, which tests whether the hazard ratio changes with 

time [177].   

3.7 Discussion 

Time to event outcomes will be summarised by Kaplan-Meier curves for each level of a 

categorical prognostic factor and compared overall using log-rank tests.  A Cox model for 

the prognostic factor effect will then be fitted using indicator variables for the levels of the 

categorical variable.  Univariate hazard ratios together with associated 95% confidence 

intervals for levels of each categorical prognostic factor will also be calculated.  Hazard 
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ratios together with their associated 95% confidence intervals will be calculated for any 

continuous variables.   

The hazard of each event in the multivariate setting will be assessed using a Cox 

proportional hazards regression model.  Best-fitting, parsimonious, multivariable models 

will be produced with backwards elimination by Akaike’s Information Criterion (AIC) [178]– 

the smaller the value of this statistic, the better the model [167].  Schoenfeld residual plots 

will be used to test the proportional hazards assumption. 

It is necessary to consider the effect of treatment in each case; to do this treatment will be 

forced to stay in the model.  I.e. it will be included as a variable and, irrespective of the 

backward elimination process, it will remain in the model.   

Potential prognostic factors may be investigated via implementation of methods for curve 

fitting, variable centring, model selection, assumption testing, treatment-covariate 

interactions and competing risks.  These methods will be employed in Chapter 4 to develop 

prognostic models for time to treatment failure and time to 12 months of remission for 

patients with epilepsy. 

  



 
 

82 
 

  



 
 

83 
 

Chapter 4: Identifying Prognostic 

Factors for Epilepsy 

4.1  Introduction 

This chapter begins with an explanation of how it is possible to use The SANAD Trial data to 

investigate more than overall estimates of treatment effect (section 4.1).  In section 4.2 The 

SANAD Trial is described in detail (section 4.2.1) together with the prognostic modelling 

methods used (section 4.2.2).  A prognostic model for time to treatment failure can be seen 

in section 4.3.1 while a model for time to 12 month remission can be seen in section 4.3.3. 

The SANAD dataset will be further examined in Chapter 7 where the internal validation of 

the models presented in this chapter will be considered.  Additionally, a simulation study 

into methods of external validation will be considered in Chapter 8 and the SANAD dataset 

will be used to inform the simulations.  Finally, the SANAD dataset will also be considered 

in Chapter 10 where a more complex method of modelling time to 12 month remission will 

be considered. 

The work presented in this chapter has been published in Lancet Neurology and I am first 

author.  This is important research and has been discussed at various epilepsy meetings 

and conferences since its publication. 

The epilepsies represent a heterogeneous group of disorders and we recognise a number 

of differing seizure types [76] and epilepsy syndromes [179] with differing aetiologies, 

severity and age of onset.  While results from the Standard and New Antiepileptic Drug trial 

(SANAD) published so far [180, 181] provide overall estimates of treatment effect, SANAD 

recruited a large heterogeneous group of patients providing an opportunity to use 

prognostic modelling to investigate which clinical factors might influence outcome.  The 
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results will inform patient counselling about likely outcomes, treatment choices and the 

design of future monotherapy epilepsy trials. 

4.2 Methods 

4.2.1 SANAD 

SANAD [180] had two arms, A and B.  In the case of arm A, the recruited patients were 

those for whom clinicians considered carbamazepine the first line standard treatment, 89% 

of whom were classified with a focal epilepsy.  Patients were randomly allocated to 

treatment with carbamazepine, gabapentin, lamotrigine, oxcarbazepine or topiramate.  

Overall results indicated that lamotrigine was a potential first line treatment as it was 

significantly superior to carbamazepine for the outcome time to treatment failure 

(lamotrigine vs.  carbamazepine: HR 0.78 95% CI (0.63 to 0.97)), but similar to 

carbamazepine for time to 12 month remission.  Gabapentin and topiramate were 

identified as poor first line treatments, gabapentin due to lack of efficacy and topiramate 

due to both lack of efficacy and poor tolerability. 

The methods for the SANAD study have been published elsewhere [180].  In summary, 

patients were eligible for inclusion in the study if, in the previous year, they had a history of 

at least two clinically definite unprovoked epileptic seizures, they were at least five years 

old, and if the recruiting clinician deemed carbamazepine as opposed to valproate, to be 

the optimal standard treatment option in the case of arm A and valproate rather than 

carbamazepine to be the optimal in the case of arm B.  Patients generally had newly 

diagnosed and untreated epilepsy, but could also be recruited if they were taking a 

monotherapy drug that was not being investigated in SANAD (e.g.  phenytoin) with a 

change in drug indicated, or if they had previously been treated with an antiepileptic drug, 
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had had a seizure remission, but had a recurrence of seizures following antiepileptic drug 

withdrawal.   

Exclusion criteria included treatment contraindication, a history of progressive neurological 

disease or a history of only acute symptomatic seizures such as febrile seizures.  Patients 

were recruited to the trial between December 1st 1999 and August 31st 2004 and were 

followed-up, if possible, until between May 1st 2005 and August 31st 2005 although some 

follow-up data were obtained up to January 13th 2006.  Following enrolment by the 

recruiting physician and obtainment of informed consent, patients were allocated 

randomly to treatment.  Between December 1st 1999 and June 1st 2001 patients were 

allocated in a ratio of 1:1:1:1 to carbamazepine, gabapentin, lamotrigine, and topiramate in 

arm A, and 1:1:1 to valproate, lamotrigine and topiramate in arm B.   

From 1st June 2001 to 31st August 2004 an oxcarbazepine group was added to arm A of the 

trial and patients were randomly allocated in a ratio of 1:1:1:1:1 to carbamazepine, 

gabapentin, lamotrigine, oxcarbazepine or topiramate.  Randomisation was by a central 

telephone service via the minimisation method which was balanced across centre, gender 

and treatment history.  While the drug allocation was randomised, the dose and 

preparation was based on the clinicians’ usual practice aided by guidelines in the trial 

protocol.   

Baseline clinical information and demographic data such as neurological history, EEG, brain 

imaging results, seizure classification and epilepsy type were obtained for all randomised 

patients.  Where there was uncertainty between focal onset and generalised onset 

seizures, patients were recorded as having unclassified convulsive, or other unclassified, 

seizures.  Follow-up occurred at three, six and 12 months and successive yearly intervals 

from randomisation with additional visits as clinically indicated.  At each visit the 
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occurrence of seizures, adverse events, hospital admissions and antiepileptic drug 

treatment were recorded. 

There were two primary outcomes - time to treatment failure from randomisation and time 

to 12 month remission from randomisation.  Treatment failure can be split into two main 

categories; inadequate seizure control for which the randomised drug might be withdrawn 

or a second treatment added, or due to unacceptable adverse events.  Patients were 

categorised into these two main failure reasons as in the original SANAD analyses [180, 

181].  Patients categorised as failing due to inadequate seizure control included those citing 

inadequate seizure control as the only reason for treatment failure, those with both 

inadequate seizure control and unacceptable side effects, and those who died where the 

cause of death was related to epilepsy.  Patients were categorised as failing due to adverse 

events if they recorded unacceptable adverse events, withdrew treatment following a 

period of remission of less than 12 months where adverse events likely influenced the 

decision to withdraw treatment, and those withdrawing treatment due to pregnancy or 

planned pregnancy due to concerns about teratogenic effects.  Time to 12 month remission 

was defined as time from randomisation to 365 days of seizure freedom. 

4.2.2 Prognostic Modelling 

Analyses were undertaken using R version 2.9.2 [182] and SAS version 9 [183]. 

The aim of the prognostic modelling was to identify two sets of factors – one set that 

predict time to 12 month remission, and one set that predict time to treatment failure.  

Clinical consensus and knowledge from previous prognostic studies in epilepsy [119, 120] 

led to the following list of potential prognostic factors: gender, febrile seizure history, first 

degree relative with epilepsy, CT/MR scan result, treatment history, age, time from first 

seizure to randomisation, neurological insult (e.g.  hemiparesis), total number of seizures 

ever before randomisation, EEG result, seizure type and epilepsy type.  For the CT/MR 
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results, scans were classified as normal, abnormal and not done.  Patients were classified as 

having neurological insult if they had learning disabilities or neurological deficit.  EEGs were 

classified as normal, not done, non-specific abnormality and epileptiform abnormality 

(focal or generalised spikes or spike and slow wave activity). 

Seizure types were classified according to the International League Against Epilepsy seizure 

classification [76].  Epilepsy type was first classified as focal, generalised or unclassified.  In 

arm A, patients with a focal epilepsy were further classified as temporal lobe, frontal lobe, 

parietal lobe, occipital lobe, benign focal epilepsy, or focal epilepsy not localised.  For the 

regression modelling, due to small numbers of participants, occipital lobe, parietal lobe and 

benign focal epilepsy were combined in a group referred to as other.   

Modelling methods used are as outlined in detail in Chapter 3 but in summary variables 

associated with a higher chance of treatment failure and a higher chance of achieving 12 

month remission were determined after adjusting for multiple variables using Cox 

proportional hazards modelling methods.  As oxcarbazepine was only included in the 

randomisation after June 1st 2001 all analyses were stratified by randomisation period to 

account for the reduced patient numbers for this drug.  

Variables were centred to diminish multicollinearity [158] and tested via the likelihood 

ratio test [167].  Best-fitting, parsimonious, multivariable models were produced with 

backwards elimination with AIC – selection starts with the full model and eliminates 

predictors one at a time, at each step considering whether the criterion will be improved, 

smaller AIC, by adding back in a variable removed at a previous step [178].  From the 

multivariable model the probability of the event was calculated for combinations of risk 

factors.  The proportional hazards assumption was investigated using Schoenfeld residual 

plots [173] and incorporation of time-dependent covariate effects while the internal 
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validity was assessed by the concordance statistic which evaluates the discriminatory 

power and the predictive accuracy of nonlinear statistical models [184]. 

Assessment of the different reasons for treatment withdrawal requires a competing risks 

analysis which considers the probability of one of several different events occurring.  

Cumulative incidence analyses were undertaken to assess the probability of one of the two 

treatment failure events occurring (inadequate seizure control and unacceptable adverse 

events), with covariates tested by Gray’s method [174].  

Continuous variables were investigated using log, fractional polynomial and fractional 

polynomial with spike transformations [144, 145, 185, 186].  The results for the continuous 

variables are presented as post-hoc defined categorical variables with categories chosen 

according to knot positions for a spline model fit to the data [143] as described in Chapter 

3.  In the final model the variables were retained as continuous and presented as 

categorical variables on for ease of interpretation by non-statisticians.  

The variable for time from first seizure to randomisation includes extreme values.  A 

sensitivity analysis was performed which examined time to treatment failure and time to 

12 month remission in two scenarios.  First, time from first seizure to randomisation was 

included unchanged, and second the variable was reduced by excluding patients with 

extreme values (1% at either end of the range).  Patients with a seizure 18 days or less 

before randomisation and with a seizure over 41 years before randomisation were 

consequently examined to determine their impact on the analysis.   

An alternative scenario would involve regarding the extreme values as missing data and re-

estimating them via imputation.  However, recommended practice is to remove the 1% 

extreme values as this smoothly draws in the extreme tails [187].  Following this sensitivity 

analysis the 1% extreme values were removed therefore people with a time from first 
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seizure to randomisation in the first or last one percent of the variable were removed from 

the dataset – this applied to 34 patients (labelled ‘extremes’ in Figure 4). 

4.3 Results 

Figure 4 illustrates patient disposition for patients in arm A of SANAD.  1721 patients were 

recruited into the study, 44 of whom were excluded from the analyses as they were 

subsequently found not to have epilepsy.  Outcome data were available for 1664 patients 

who contributed to the analysis of time to treatment failure and 1644 who contributed to 

the analysis of time to 12 month remission.  Table 5 summarises the demographic details of 

the included patients; 55% of the patients were male, the median age was about 37 years, 

5% had a history of febrile seizures, 10% had a first degree relative with epilepsy and 82% 

were treatment naive.  The median time from first seizure to randomisation was 1.4 years, 

11% had history of neurological insult, the median number of seizures ever before 

randomisation was 12 and approximately 46% had abnormal EEG results.  An abnormal 

CT/MR result was seen in 26% while 32% had simple or complex partial seizures only, 58% 

had secondary generalised seizures and 10% uncertain seizures.  90% of patients were 

classified with focal epilepsy and 10% unclassified epilepsy.  Data were similar for time to 

12 month remission.  
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‘Extremes removed’ relates to the removal of patients with a time from first seizure to randomisation within 

the first or last one percent of the variable while ‘Generalised removed’ relates to removal of patients with 

generalised epilepsy type.  Percentages in final row are percentage of allocated patients with available data – 

93% of all randomised patients were available for analysis of time to treatment failure; 92% of all randomised 

patients were available for analysis of time to 12 month remission 

Figure 4: The SANAD Trial – arm A: Patient Disposition 
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Table 5: The SANAD trial – arm A: Baseline patient demographics 

 Treatment Failure Outcome 

 
CBZ 

(n=355) 

GBP 

(n=356) 

LTG 

(n=357) 

OXC 

(n=193) 

TPM 

(n=347) 

Total 

(n=1608) 

Gender: Male 196 (55) 197 (55) 199 (56) 102 (53) 193 (56) 887 (55) 

History of febrile seizures 24 (7) 15 (4) 22 (6) 7 (4) 13 (4) 81 (5) 

First degree relative with epilepsy 36 (10) 41 (12) 33 (9) 21 (11) 34 (10) 165 (10) 

Treatment history 

  Treatment naive 

  Taking non-SANAD AED  

  Seizures after remission 

 

290 (82) 

57 (16) 

8 (2) 

 

289 (81) 

56 (16) 

11 (3) 

 

292 (82) 

58 (16) 

7 (2) 

 

167 (87) 

23 (12) 

2 (1) 

 

282 (81) 

57 (16) 

9 (3) 

 

1320 (82) 

251 (16) 

37 (2) 

Age at randomisation in years, 

Median (IQR) 

 

38 (25 to 53) 

 

36 (24 to 50) 

 

34 (22 to 51) 

 

40 (27 to 56) 

 

37 (25 to 52) 

 

38 (24 to 52) 

Years from 1
st

 seizure to 

randomisation, Median (IQR) 

1.4 

(0.5 to 4.9) 

1.3 

(0.6 to 6.0) 

1.4 

(0.5 to 4.7) 

1.3 

(0.5 to 4.0) 

1.4 

(0.5 to 5.3) 

1.4 

(0.5 to 5.1) 

Neurological insult 42 (12) 41 (12) 41 (11) 16 (8) 43 (12) 113 (7) 

Number seizures ever before 

randomisation, Median (IQR) 

 

12 (4 to 75) 

 

14 (4 to 70) 

 

12 (4 to 60) 

 

11 (4 to 53) 

 

12 (4 to 100) 

 

12 (4 to 70) 

Seizure type 

  Simple or complex partial only 

  2° Generalised tonic-clonic 

  Uncertain 

 

122 (34) 

202 (57) 

31 (9) 

 

112 (31) 

209 (59) 

35 (10) 

 

105 (29) 

216 (61) 

36 (10) 

 

55 (28) 

117 (61) 

21 (11) 

 

116 (33) 

193 (56) 

38 (11) 

 

510 (32) 

937 (58) 

161 (10) 

Epilepsy type   

  Focal 

    Temporal 

    Frontal 

    Other 

    Not specified 

  Unclassified 

 

325 (92) 

150 (46) 

20 (6) 

20 (6) 

135 (42) 

30 (8) 

 

323 (91) 

120 (37) 

17 (5) 

28 (9) 

158 (49) 

33 (9) 

 

321 (90) 

107 (33) 

34 (11) 

17 (5) 

163 (51) 

36 (10) 

 

173 (90) 

56 (32) 

5 (3) 

13(8) 

99 (57) 

20 (10) 

 

311 (90) 

114 (37) 

31 (10) 

21 (6) 

145 (47) 

36 (10) 

 

1453 (90) 

547 (38) 

107 (7) 

99 (7) 

700 (48) 

155 (10) 

EEG results 

  Normal 

  Non-specific abnormality 

  Epileptiform abnormality 

  Not done 

 

150 (42) 

59 (17) 

113 (32) 

33 (9) 

 

177 (50) 

48 (13) 

100 (28) 

31 (9) 

 

169 (47) 

56 (16) 

100 (28) 

32 (9) 

 

84 (44) 

32 (17) 

54 (28) 

23 (12) 

 

144 (41) 

59 (17) 

104 (30) 

40 (12) 

 

724 (45) 

254 (16) 

471 (29) 

159 (10) 

CT/MR results 

  Normal 

  Abnormal 

  Not done 

 

205 (58) 

99 (28) 

51 (14) 

 

225 (63) 

82 (23) 

49 (14) 

 

207 (58) 

83 (23) 

67 (19) 

 

109 (56) 

53 (27) 

31 (16) 

 

188 (54) 

103 (30) 

56 (16) 

 

934 (58) 

420 (26) 

254 (16) 

Values in the table are actual number with percentages in brackets unless otherwise stated. 

 

4.3.1 Time to overall Treatment Failure 

Figure 5 shows the unadjusted time to treatment failure for the 1608 patients that 

contributed to the analysis.  Results for both the univariate and multivariable modelling are 

presented in Table 6.  In the univariate model the following factors were significantly  

associated (at the 5% level) with higher risk of treatment failure: gender, having an 

epileptiform EEG abnormality, being randomised to carbamazepine rather than to 

lamotrigine, treatment history, age, time from first seizure to randomisation, total number 

of seizures ever before randomisation, epilepsy type and seizure type. 
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Figure 5: The SANAD Trial – arm A: Unadjusted Kaplan-Meier curve for overall time to treatment failure (left) 

and cumulative incidence curves for time to treatment failure according to competing risks (right) 

 

For the treatment failure outcome, a HR > 1 indicates that treatment failure is more likely.  

The resulting parsimonious multivariable model included variables for gender, treatment 

history, age, total number of seizures ever before randomisation, EEG result, seizure type, 

focal epilepsy site of onset and treatment which was forced into the model.   

Treatment failure rates reduced as age increased and patients aged 10 years or under were 

significantly more likely to experience treatment failure.   Treatment failure rates increased 

as total number of seizures before randomisation increased and patients with less than or 

equal to two seizures before randomisation were significantly less likely to experience 

treatment failure.  Treatment failure was significantly (5% level) more likely in women than 

men (male vs.  female: HR 0.86 95% CI (0.75 to 0.99)), patients taking a non-SANAD 

antiepileptic drug immediately prior to randomisation rather than being treatment naive 

(non-SANAD vs.  naive: HR 1.27 95% CI (1.05 to 1.53)), patients with an epileptiform EEG 

abnormality rather than a normal EEG (abnormal vs.  normal: 1.26 95% CI (1.07 to 1.50)), 

patients with simple or complex partial seizures without secondary generalisation rather 
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than secondary generalised tonic-clonic seizures (secondary generalised vs.  simple or 

complex: HR 0.78 95% CI (0.66 to 0.91)), epilepsy that is not localised rather than temporal 

lobe epilepsy (not localised vs.  temporal: HR 1.25 95% CI (1.06 to 1.47)) and patients taking 

carbamazepine rather than lamotrigine (lamotrigine vs.  carbamazepine: HR 0.76 95% CI 

(0.61 to 0.95)).   

In order to illustrate the range of treatment failure rates predicted by the multivariable 

model, Figure 6 gives estimates of the proportion of patients having treatment failure 

events at 1 and 3 years after randomisation for patients treated with either carbamazepine 

or lamotrigine together with the associated 95% confidence intervals.  Patients were 

assumed to be treatment naive, have normal EEG results, simple or complex partial 

seizures and temporal lobe epilepsy.   

In general, based on the forest plots in Figure 6 and consequently a subset of the SANAD 

data, overall treatment failure rates are lowest in patients treated with lamotrigine.  There 

is a slight decrease in the risk of failure with an increase in age and men have a slightly 

lower chance of treatment failure than women.  There is also a very slight increase in the 

chance of treatment failure with an increase in total number of seizures ever before 

randomisation. 
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Table 6: The SANAD Trial – arm A: Univariate and Multivariable Hazard Ratios and Confidence Intervals for 

Overall Time to Treatment Failure 

 Hazard Ratio (95% CI) 

Prognostic Factor Comparison Univariate p-value Univariate Multivariable 

Gender 
Female 

Male 
0.01 

1.00 

0.82 (0.72 to 0.95) 

1.00 

0.86 (0.75 to 0.99) 

Febrile seizure 

history 

Absent 

Present 
0.78 

1.00 

1.05 (0.77 to 1.43) 
N/A 

First degree relative 

with epilepsy 

Absent 

Present 
0.15 

1.00 

1.18 (0.95 to 1.48) 
NA 

CT/MR scan result 

Normal 

Abnormal 

Not Done 

0.79 

1.00 

1.06 (0.90 to 1.24) 

1.01 (0.82 to 1.24) 

N/A 

Treatment history 

Treatment naive 

Seizures after remission 

Taking non-SANAD AEDs 

0.01 

1.00 

1.44 (0.93 to 2.24) 

1.32 (1.10 to 1.59) 

1.00 

1.35 (0.87 to 2.10) 

1.27 (1.05 to 1.53) 

Age (years) 

[Linear] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

0.02 

1.00 

0.95 (0.92 to 0.99) 

0.89 (0.82 to 0.98) 

0.84 (0.73 to 0.97) 

0.78 (0.63 to 0.96) 

0.71 (0.54 to 0.94) 

1.00 

0.95 (0.91 to 0.99) 

0.88 (0.80 to 0.97) 

0.82 (0.71 to 0.96) 

0.76 (0.61 to 0.94) 

0.68 (0.51 to 0.91) 

Time from 1st 

seizure (months) 

[Log] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

0.00 

1.00 

1.04 (1.01 to 1.06) 

1.07 (1.02 to 1.12) 

1.10 (1.03 to 1.18) 

1.11 (1.05 to 1.19) 

1.17 (1.05 to 1.30) 

N/A 

Neurological insult 
Absent 

Present 
0.67 

1.00 

1.05 (0.85 to 1.30) 
N/A 

Total number of 

seizures 

[Scale: 100, power: 

0] 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

0.00 

1.00 

1.03 (1.02 to 1.03) 

1.09 (1.07 to 1.12) 

1.19 (1.13 to 1.25) 

1.33 (1.23 to 1.44) 

1.61 (1.41 to 1.84) 

1.00 

1.02 (1.01 to 1.03) 

1.08 (1.05 to 1.11) 

1.17 (1.10 to 1.23) 

1.28 (1.17 to 1.40) 

1.52 (1.31 to 1.76) 

EEG results 

Normal 

Not done 

Non-specific abnormality 

Epileptiform abnormality 

0.02 

1.00 

1.22 (0.95 to 1.57) 

1.22 (0.99 to 1.49) 

1.27 (1.08 to 1.50) 

1.00 

1.25 (0.96 to 1.61) 

1.20 (0.98 to 1.47) 

1.26 (1.07 to 1.50) 

Epilepsy type 
Focal 

Unclassified 
0.02 

1.00 

0.74 (0.57 to 0.96) 
N/A 

Seizure type 

Simple or complex partial only 

2° Generalised tonic-clonic 

Uncertain 

0.00 

1.00 

0.77 (0.66 to 0.89) 

0.62 (0.47 to 0.81) 

1.00 

0.78 (0.66 to 0.91) 

0.33 (0.05 to 2.37) 

Focal epilepsy site 

of onset 

Temporal 

Not localised 

Frontal 

Other 

Unclassified 

0.13 

1.00 

1.04 (0.89 to 1.22) 

1.08 (0.81 to 1.45) 

0.87 (0.63 to 1.20) 

0.75 (0.57 to 0.99) 

1.00 

1.25 (1.06 to 1.47) 

1.18 (0.88 to 1.58) 

0.92 (0.66 to 1.28) 

2.69 (0.37 to 19.74) 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

0.00 

1.00 

1.18 (0.96 to 1.45) 

0.75 (0.60 to 0.94) 

0.93 (0.71 to 1.22) 

1.21 (0.99 to 1.49) 

1.00 

1.23 (1.00 to 1.51) 

0.76 (0.61 to 0.95) 

0.94 (0.72 to 1.23) 

1.23 (1.00 to 1.52) 

Hazard ratio greater than 1 indicates that treatment failure is more likely in the alternative group than in the 

baseline group. 
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Risk Factors 

Patients with treatment failure at 

1 year 

% (95% CI) 

Patients with treatment failure at 3 

years 

% (95% CI) 

Age Gender Seizures Treatment Total Total 

10 M 2 CBZ 27 (21 to 35) 42 (33 to 52) 

10 F 2 CBZ 31 (24 to 39) 47 (37 to 58) 

10 M 2 LTG 21 (16 to 28) 34 (26 to 43) 

10 F 2 LTG 24 (18 to 31) 38 (30 to 48) 

10 M 10 CBZ 32 (25 to 40) 49 (40 to 59) 

10 F 10 CBZ 36 (29 to 45) 54 (45 to 64) 

10 M 10 LTG 25 (20 to 32) 40 (32 to 49) 

10 F 10 LTG 29 (22 to 36) 45 (36 to 54) 

40 M 2 CBZ 23 (18 to 30) 37 (30 to 46) 

40 F 2 CBZ 27 (21 to 34) 42 (34 to 51) 

40 M 2 LTG 18 (14 to 24) 30 (23 to 38) 

40 F 2 LTG 21 (16 to 27) 34 (26 to 42) 

40 M 10 CBZ 28 (23 to 34) 44 (36 to 52) 

40 F 10 CBZ 32 (26 to 39) 49 (41 to 57) 

40 M 10 LTG 22 (17 to 28) 35 (28 to 43) 

40 F 10 LTG 25 (20 to 31) 40 (32 to 48) 

75 M 2 CBZ 20 (15 to 26) 32 (25 to 41) 

75 F 2 CBZ 23 (17 to 30) 36 (28 to 45) 

75 M 2 LTG 15 (11 to 21) 25 (19 to 33) 

75 F 2 LTG 18 (13 to 24) 29 (22 to 37) 

75 M 10 CBZ 24 (19 to 30) 38 (30 to 47) 

75 F 10 CBZ 27 (21 to 34) 42 (34 to 52) 

75 M 10 LTG 19 (14 to 24) 30 (23 to 38) 

75 F 10 LTG 21 (16 to 28) 34 (27 to 43) 

 

 

Figure 6: The SANAD Trial – arm A: Combination of Risk Factors for Time to Treatment Failure  

(N.B. ‘Seizures’ is ‘Total Number of Seizures before randomisation’ variable) 
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4.3.2 Time to Treatment Failure due to Competing Risks 

Table 7: The SANAD Trial – arm A: Multivariable Hazard Ratios and Confidence Intervals for Time to 

Treatment Failure - Competing Risks Analysis: Full model (all variables) 

 Hazard Ratio (95% CI) 

Prognostic 

Factor 
Comparison Inadequate Seizure Control Unacceptable Adverse Events 

Gender 
Female 

Male  

1.00 

1.06 (0.85 to 1.31) 

1.00 

0.80 (0.66 to 0.98) 

Febrile 

seizure 

history 

Absent 

Present 

1.00 

0.90 (0.55 to 1.49) 

1.00 

1.09 (0.69 to 1.72) 

First degree 

relative  

Absent 

Present 

1.00 

0.88 (0.62 to 1.27) 

1.00 

1.26 (0.92 to 1.72) 

CT/MR scan 

result 

Normal 

Abnormal 

Not Done 

1.00 

1.38 (1.08 to 1.77) 

0.77 (0.55 to 1.08) 

1.00 

0.90 (0.70 to 1.15) 

1.16 (0.87 to 1.56) 

Treatment 

history 

Treatment naive 

Seizures after remission 

Taking non-SANAD AED 

1.00 

0.58 (0.22 to 1.50) 

1.76 (1.34 to 2.31) 

1.00 

1.77 (0.99 to 3.17) 

0.92 (0.68 to 1.23) 

Age (years) 

[Linear] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

1.00 

0.84 (0.79 to 0.90) 

0.67 (0.57 to 0.78) 

0.54 (0.42 to 0.68) 

0.40 (0.29 to 0.57) 

0.29 (0.18 to 0.47) 

1.00 

1.06 (1.01 to 1.12) 

1.15 (1.01 to 1.31) 

1.24 (1.02 to 1.52) 

1.38 (1.03 to 1.84) 

1.54 (1.04 to 2.28) 

Time from 1st 

seizure 

(years) 

[Log] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

1.00 

0.90 (0.86 to 0.95) 

0.83 (0.77 to 0.90) 

0.76 (0.68 to 0.86) 

0.76 (0.67 to 0.86) 

0.65 (0.54 to 0.79) 

1.00 

1.08 (1.03 to 1.12) 

1.14 (1.05 to 1.23) 

1.21 (1.08 to 1.36) 

1.22 (1.09 to 1.38) 

1.36 (1.13 to 1.64) 

Neurological 

insult 

Absent 

Present 

1.00 

0.83 (0.59 to 1.16) 

1.00 

1.07 (0.78 to 1.48) 

Total number 

of seizures 

[Scale: 100, 

power: 0] 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

1.00 

1.05 (1.04 to 1.07) 

1.20 (1.15 to 1.26) 

1.44 (1.32 to 1.57) 

1.80 (1.56 to 2.09) 

2.69 (2.11 to 3.44) 

1.00 

0.99 (0.97 to 1.00) 

0.95 (0.91 to 1.00) 

0.91 (0.83 to 1.00) 

0.86 (0.74 to 1.00) 

0.77 (0.60 to 1.00) 

EEG results 

Normal 

Missing 

Non-specific abnormality 

Epileptiform abnormality 

1.00 

0.78 (0.50 to 1.22) 

0.99 (0.72 to 1.37) 

1.13 (0.88 to 1.46) 

1.00 

1.34 (0.94 to 1.91) 

1.20 (0.90 to 1.60) 

1.15 (0.90 to 1.48) 

Seizure type 

Simple or complex focal only 

2° Generalised tonic-clonic 

Unclassified 

1.00 

1.07 (0.84 to 1.36) 

0.77 (0.10 to 6.08) 

1.00 

0.66 (0.52 to 0.82) 

Could not be estimated 

Focal 

Epilepsy Site 

of Onset 

Temporal 

Not Localised 

Frontal 

Other 

Unclassified 

1.00 

1.19 (0.92 to 1.52) 

0.93 (0.61 to 1.44) 

1.05 (0.66 to 1.67) 

1.38 (0.17 to 11.20) 

1.00 

1.18 (0.93 to 1.48) 

1.31 (0.85 to 2.01) 

0.76 (0.45 to 1.29) 

Could not be estimated 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

1.00 

2.53 (1.85 to 3.47) 

1.08 (0.77 to 1.52) 

1.14 (0.73 to 1.77) 

1.45 (1.04 to 2.03) 

1.00 

0.58 (0.43 to 0.79) 

0.62 (0.45 to 0.84) 

0.84 (0.59 to 1.20) 

1.02 (0.78 to 1.33) 
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Table 7 shows multivariable results for a competing risks analysis for time to treatment 

failure for our two treatment failure categories; inadequate seizure control and adverse 

events.  Two models were fitted, one using all thirteen potential prognostic factors and one 

using only the variables included in the parsimonious multivariable model for overall 

treatment failure.  This latter model was fitted to determine if any of the results seen in the 

overall model can be explained by the effects of either or both of the competing risks.  

Results for the model using only the variables included in the parsimonious model for 

treatment failure can be seen in Table 8.  Results for the full multivariable model for the 

competing risks outcome can be seen in Table 7.   

In Table 7 two results could not be estimated.  The reason for the unusual results is that the 

two categories in question have exactly the same patients with treatment failure due to 

unacceptable adverse events.  A sensitivity analysis was undertaken to see the effect of this 

occurrence and it was found to have no implication on the model - the model was robust to 

removal of seizure type and focal epilepsy site of onset in turn and also to collapsing of the 

latter two categories of each of the offending variables in turn.  

4.3.2.1 Treatment Failure due to Inadequate Seizure Control 

For time to treatment failure due to inadequate seizure control the significant variables (5% 

level) according to the matched multivariable model (Table 8) were treatment history, age, 

number of seizures before randomisation, and treatment.  Compared to treatment naive 

patients, patients already taking a non-SANAD AED had a higher treatment failure rate 

(taking non-SANAD AED vs.  treatment naive: HR 1.56 95% CI (1.20 to 2.03)).  For age a 

linear effect was observed with older patients significantly less likely to have a treatment 

failure than younger patients (see discussion below also), while treatment failure rates 

increased significantly with increasing number of seizures before randomisation.   
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4.3.2.2 Treatment Failure due to Unacceptable Adverse Events 

For treatment failure due to adverse events the variables significantly (5% level) associated 

with outcome, according to the matched multivariable model (Table 8), were gender, 

treatment history, age, seizure type, and treatment.  Women were more likely to have 

treatment failure than men (male vs.  female: HR 0.81 95% CI (0.66 to 0.98)).   Patients 

restarting treatment following a period of remission had a higher treatment failure rate 

than treatment naive patients (seizures after remission vs.  treatment naive: HR 2.13 95% 

CI (1.22 to 3.73)).  For age a linear effect was observed with older patients significantly 

more likely to have a treatment failure than younger patients (see discussion below also).  

Patients with simple or complex partial seizures were significantly more likely to have a 

treatment failure than patients with secondary generalised tonic clonic seizures (secondary 

generalised tonic clonic vs.  simple or complex partial: HR 0.69 95% CI (0.55 to 0.86)).   

As shown in Figure 7, for time to treatment failure for any reason, according to the 

multivariable model, as age increases the likelihood of treatment failure decreases.  

However when the reason for treatment failure is considered an X-shaped plot is produced; 

the likelihood of treatment failure due to inadequate seizure control decreases with age 

while the likelihood of treatment failure due to unacceptable adverse events increases with 

age.  More explicitly, younger patients are at a higher risk of withdrawal due to inadequate 

seizure control whereas younger patients are at a lower risk of withdrawal due to 

unacceptable adverse events.  A similar X-shaped plot is produced for number of seizures 

before randomisation.  In the analysis of treatment failure for any reason the likelihood of 

treatment failure increased with number of seizures.  When the reason for treatment is 

considered, the likelihood of treatment failure due to inadequate seizure control increases 

with number of seizures while the likelihood of failure due to adverse events decreases 

(slightly) with number of seizures, therefore patients with a smaller number of seizures 
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before randomisation are at a higher risk of withdrawal due to unacceptable adverse 

events but lower risk of withdrawal due to inadequate seizure control. 

 

 

Solid lines are used for hazard ratio estimates while dotted lines represent confidence intervals. 

Figure 7: The SANAD Trial – arm A: Relative Hazard Plots for Age and Total Number of Seizures for the 

Outcome Time to Treatment Failure 
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Table 8: The SANAD Trial – arm A: Univariate and Multivariable Hazard Ratios and Confidence Intervals for 

Time to Treatment Failure - Competing Risks Analysis 

Hazard Ratio (95% CI) 

 Inadequate Seizure Control Unacceptable Adverse Events 

Prognostic 

Factor 
Comparison Univariate Multivariable Univariate Multivariable 

Gender 
Female 

Male 

1.00 

0.96 (0.78 to 1.18) 

1.00 

1.06 (0.86 to 1.31) 

1.00 

0.79 (0.65 to 0.97) 

1.00 

0.81 (0.66 to 0.98) 

Febrile 

seizure 

history 

Absent 

Present 

1.00 

0.94 (0.59 to 1.49) 
N/A 

1.00 

1.06 (0.68 to 1.65) 
N/A 

First 

degree 

relative 

Absent 

Present 

1.00 

0.99 (0.70 to 1.41) 
N/A 

1.00 

1.19 (0.87 to 1.62) 
N/A 

CT/MR 

scan result 

Normal 

Abnormal 

Not Done 

1.00 

1.18 (0.94 to 1.49) 

0.74 (0.53 to 1.03) 

N/A 

1.00 

0.98 (0.77 to 1.24) 

1.21 (0.93 to 1.58) 

N/A 

Treatment 

history 

Treatment 

naive 

Seizures after 

remission 

Taking non-

SANAD AED 

1.00 

 

0.61 (0.25 to 1.50) 

 

1.72 (1.34 to 2.19) 

 

1.00 

 

0.48 (0.19 to 1.23) 

 

1.56 (1.20 to 2.03) 

 

1.00 

 

1.89 (1.10 to 3.24) 

 

0.95 (0.72 to 1.26) 

 

1.00 

 

2.13 1.22 to 3.73) 
 

1.00 (0.75 to 1.33) 
 

Age 

(years) 

[Linear] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

1.00 

0.85 (0.80 to 0.90) 

0.68 (0.60 to 0.78) 

0.56 (0.45 to 0.69) 

0.43 (0.32 to 0.58) 

0.32 (0.21 to 0.48) 

1.00 

0.85 (0.79 to 0.90) 

0.68 (0.58 to 0.78) 

0.55 (0.44 to 0.69) 

0.42 (0.30 to 0.58) 

0.31 (0.19 to 0.48) 

1.00 

1.07 (1.02 to 1.13) 

1.18 (1.04 to 1.34) 

1.29 (1.07 to 1.56) 

1.45 (1.10 to 1.91) 

1.65 (1.13 to 2.39) 

1.00 

1.06 (1.00 to 1.12) 

1.14 (1.01 to 1.30) 

1.23 (1.01 to 1.49) 

1.35 (1.02 to 1.79) 

1.50 (1.02 to 2.20) 

Time from 

1st seizure 

(months) 

[Log] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

1.00 

1.00 (0.96 to 1.03) 

0.99 (0.93 to 1.06) 

0.99 (0.89 to 1.09) 

0.99 (0.89 to 1.10) 

0.98 (0.84 to 1.15) 

N/A 

1.00 

1.06 (1.02 to 1.09) 

1.10 (1.04 to 1.17) 

1.16 (1.05 to 1.27) 

1.16 (1.05 to 1.28) 

1.26 (1.09 to 1.46) 

N/A 

Neurologi

cal insult 

Absent 

Present 

1.00 

1.09 (0.80 to 1.47) 
N/A 

1.00 

1.03 (0.76 to 1.40) 
N/A 

Total 

number of 

seizures 

[Scale: 

100, 

power: 0] 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

1.00 

1.04 (1.03 to 1.05) 

1.14 (1.10 to 1.18) 

1.29 (1.21 to 1.38) 

1.52 (1.36 to 1.69) 

2.01 (1.67 to 2.42) 

1.00 

1.04 (1.03 to 1.05) 

1.14 (1.09 to 1.18) 

1.29 (1.19 to 1.39) 

1.51 (1.33 to 1.71) 

2.00 (1.62 to 2.47) 

1.00 

1.00 (0.99 to 1.01) 

1.01 (0.98 to 1.05) 

1.02 (0.95 to 1.10) 

1.04 (0.93 to 1.17) 

1.07 (0.88 to 1.30) 

1.00 

1.00 (0.99 to 1.01) 

0.99 (0.95 to 1.04) 

0.99 (0.91 to 1.07) 

0.98 (0.86 to 1.12) 

0.97 (0.77 to 1.21) 

EEG 

results 

Normal 

Not done 

Non-specific 

abnormality 

Epileptiform 

abnormality 

1.00 

0.81 (0.53 to 1.24) 

1.02 (0.75 to 1.38) 

 

1.34 (1.07 to 1.69) 

 

1.00 

0.79 (0.51 to 1.22) 

1.01 (0.74 to 1.38) 

 

1.21 (0.94 to 1.55) 

 

1.00 

1.33 (0.95 to 1.86) 

1.24 (0.94 to 1.64) 

 

1.34 (1.07 to 1.69) 

 

1.00 

1.34 (0.95 to 1.88) 

1.21 (0.91 to 1.61) 

 

1.11 (0.87 to 1.41) 

 

Epilepsy 

type 

Focal 

Unclassified 

1.00 

0.64 (0.43 to 0.96) 
N/A 

1.00 

0.90 (0.64 to 1.27) 
N/A 

Seizure 

type 

Simple or 

complex partial 

only 

2° Generalised 

tonic-clonic 

Unclassified 

 

1.00 

 

 

0.98 (0.78 to 1.22) 

 

0.65 (0.42 to 0.99) 

 

1.00 

 

 

1.01 (0.79 to 1.28) 

 

0.76 (0.08 to 7.29) 

 

1.00 

 

 

0.71 (0.58 to 0.87) 

 

0.71 (0.47 to 1.02) 

 

1.00 

 

 

0.69 (0.55 to 0.86) 

 

Could not be 

estimated 
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Hazard Ratio (95% CI) 

Inadequate Seizure Control Unacceptable Adverse Events 

Prognostic 

Factor 
Comparison Univariate Multivariable Univariate Multivariable 

Focal 

epilepsy 

site of 

onset 

Temporal 

Not localised 

Frontal 

Other 

Unclassified 

 

1.00 

1.00 (0.79 to 1.26) 

1.04 (0.68 to 1.58) 

1.08 (0.69 to 1.68) 

0.65 (0.42 to 0.99) 

 

1.00 

1.18 (0.92 to 1.51) 

1.04 (0.69 to 1.59) 

1.04 (0.66 to 1.66) 

1.28 (0.13 to 

12.72) 

 

1.00 

1.04 (0.83 to 1.30) 

1.13 (0.75 to 1.70) 

0.70 (0.43 to 1.15) 

0.91 (0.63 to 1.31) 

 

1.00 

1.17 (0.93 to 1.48) 

1.24 (0.81 to 1.90) 

0.76 (0.45 to 1.26) 

Could not be 

estimated 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

1.00 

2.40 (1.77 to 3.25) 

1.10 (0.78 to 1.55) 

1.12 (0.73 to 1.71) 

1.39 (1.00 to 1.94) 

1.00 

2.45 (1.80 to 3.34) 

1.05 (0.75 to 1.48) 

1.12 (0.73 to 1.73) 

1.44 (1.03 to 2.00) 

1.00 

0.58 (0.43 to 0.78) 

0.61 (0.45 to 0.82) 

0.82 (0.57 to 1.16) 

1.01 (0.77 to 1.31) 

1.00 

0.59 (0.43 to 0.80) 

0.62 (0.46 to 0.85) 

0.84 (0.59 to 1.20) 

1.01 (0.77 to 1.32) 

 

Hazard ratio greater than 1 indicates that treatment failure is more likely in the alternative group than in the 

baseline group. 

4.3.3 Time to 12 Month Remission 

Results for both the univariate and the multivariable analyses for the outcome time to 12 

month remission are summarised in Table 9.  In the univariate analyses the variables 

significantly associated with time to 12 month remission at the 5% level were gender, 

treatment history, age, time from first seizure to randomisation, neurological insult, total 

number of seizures before randomisation, epilepsy type, seizure type, focal epilepsy site of 

onset, and treatment.  Of these, the parsimonious multivariable model did not include 

epilepsy type or seizure type but did include CT/MR scan results.   
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Table 9: The SANAD Trial – arm A: Univariate and Multivariable Hazard Ratios and 95% Confidence Intervals 

for Time to 12 Month Remission 

 Hazard Ratio (95% Confidence Interval) 

Prognostic Factor Comparison Univariate p-value Univariate Multivariable 

Gender 
Female 

Male 
0.00 

1.00 

1.21 (1.07 to 1.37) 

1.00 

1.19 (1.05 to 1.35) 

Febrile seizure history 
Absent 

Present 
0.89 

1.00 

1.02 (0.78 to 1.34) 
N/A 

First degree relative 

with epilepsy 

Absent 

Present 
0.85 

1.00 

0.98 (0.80 to 1.20) 
N/A 

CT/MR scan result 

Normal 

Abnormal 

Not Done 

0.08 

1.00 

0.89 (0.77 to 1.03) 

1.12 (0.94 to 1.33) 

1.00 

0.88 (0.76 to 1.03) 

1.12 (0.93 to 1.34) 

Treatment history 

Treatment naive 

Seizures after remission 

Taking non-SANAD AED 

0.00 

1.00 

1.09 (0.72 to 1.63) 

0.55 (0.46 to 0.67) 

1.00 

1.06 (0.70 to 1.61) 

0.64 (0.52 to 0.78) 

Age (years) 

[Scale: 100, 

powers: 1, 2] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

0.00 

1.00 

0.84 (0.77 to 0.93) 

0.76 (0.64 to 0.91) 

0.79 (0.63 to 0.98) 

1.00 (0.81 to 1.24) 

1.56 (1.26 to 1.98) 

1.00 

0.88 (0.79 to 0.97) 

0.82 (0.68 to 0.99) 

0.85 (0.68 to 1.07) 

1.07 (0.86 to 1.34) 

1.60 (1.26 to 2.03) 

Time from 1st seizure 

(months) 

[Scale: 1000, 

power: 1] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

0.00 

1.00 

1.00 (0.99 to 1.00) 

0.98 (0.98 to 0.99) 

0.95 (0.93 to 0.98) 

0.95 (0.92 to 0.97) 

0.69 (0.57 to 0.84) 

1.00 

1.00 (1.00 to 1.01) 

1.01 (1.00 to 1.02) 

1.03 (1.00 to 1.07) 

1.14 (1.01 to 1.29) 

1.39 (1.04 to 1.86) 

Neurological insult 
Absent 

Present 
0.00 

1.00 

0.72 (0.59 to 0.89) 

1.00 

0.75 (0.61 to 0.93) 

Total number of 

seizures 

[Log] 

≤2 

(2,3) 

(4,11) 

(12,50) 

(51,299) 

>300 

0.00 

1.00 

0.96 (0.95 to 0.97) 

0.87 (0.85 to 0.89) 

0.76 (0.72 to 0.80) 

0.64 (0.59 to 0.69) 

0.47 (0.41 to 0.54) 

1.00 

0.96 (0.95 to 0.97) 

0.87 (0.85 to 0.90) 

0.76 (0.72 to 0.81) 

0.65 (0.59 to 0.71) 

0.48 (0.41 to 0.56) 

EEG results 

Normal 

Not done 

Non-specific abnormality 

Specific abnormality 

0.73 

1.00 

0.96 (0.76 to 1.22) 

1.09 (0.92 to 1.31) 

1.00 (0.86 to 1.15) 

N/A 

Epilepsy type 
Focal 

Unclassified 
0.00 

1.00 

1.59 (1.31 to 1.93) 
N/A 

Seizure type 

Simple or complex partial only 

2° Generalised tonic-clonic 

Uncertain 

0.00 

1.00 

1.01 (0.88 to 1.16) 

1.63 (1.32 to 2.01) 

N/A 

Focal epilepsy site of 

onset 

Temporal 

Not localised 

Frontal 

Other 

Unclassified 

0.00 

1.00 

0.98 (0.85, 1.13) 

1.02 (0.79, 1.32) 

1.10 (0.84, 1.42) 

1.59 (1.29, 1.96) 

1.00 

0.87 (0.75, 1.02) 

1.12 (0.86, 1.45) 

1.02 (0.78, 1.34) 

1.15 (0.87, 1.44) 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

0.02 

1.00 

0.75 (0.62 to 0.90) 

0.93 (0.78 to 1.11) 

0.99 (0.79 to 1.24) 

0.84 (0.70 to 1.01) 

1.00 

0.71 (0.59 to 0.86) 

0.90 (0.75 to 1.08) 

0.97 (0.77 to 1.22) 

0.81 (0.68 to 0.98) 

Hazard ratio greater than 1 indicates that 12 month remission is more likely in the alternative group than in the 

baseline group. 
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Solid lines represent the hazard ratio estimates while the dotted lines represent the confidence interval 

estimates. 

Figure 8: The SANAD Trial – arm A: Hazard ratio plots for age, time from first seizure to randomisation and 

total number of seizures for the outcome time to 12 month remission 

 

Focusing on the results of the multivariable model, for age, the relation is U-shaped with 

patients aged less than or equal to 10 years old or over 71 years having a significantly 

higher chance of remission (Figure 8).  The relationship between the other significant (5% 

level) variables in the multivariable model and time to 12 month remission are as follows; 

males had a higher 12 month remission rate than females (male vs.  female: HR 1.19 95% CI 

(1.05 to 1.35)); treatment naive patients had a higher 12 month remission rate than 
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patients currently taking a non-SANAD antiepileptic drug (taking non-SANAD AED vs.  

treatment naive: HR 0.64 (0.52 to 0.78)); 12-month remission rates decreased with an 

increasing number of seizures before randomisation, for example compared to patients 

with two seizures the estimate for patients with two to three seizures is 0.96 (0.95 to 0.97) 

and for patients with four to 11 seizures is 0.87 (0.85 to 0.90).  Regarding treatment, 12 

month remission rates were significantly higher for patients on carbamazepine than for 

those on gabapentin (gabapentin vs.  carbamazepine: 0.71 (0.59 to 0.86)) or topiramate 

(topiramate vs.  carbamazepine: HR 0.81 (0.68 to 0.98)).  Plots for the continuous variables 

within the multivariable model can be seen in Figure 8.   

In order to illustrate the range of 12 month remission rates predicted by the multivariable 

model, Figure 9 shows estimates of the proportion of patients achieving a remission one 

and three years after randomisation for patients treated with either carbamazepine or 

lamotrigine together with the associated 95% confidence intervals.  Patients were assumed 

to be treatment naive, have been randomised six months from their first seizure, not have 

neurological insult, have normal CT/MR result and have temporal lobe epilepsy.  In the 

subset of combinations considered, remission rates are highest in older patients.  Males are 

slightly more likely to achieve remission than women as are patients with fewer seizures.  

There is a very minor increase in probability of remission in patients on carbamazepine 

compared to those on lamotrigine. 
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Risk Factors 
Percentage of patients achieving 12 month remission, together 

with 95% confidence intervals at: 

Age Gender 
Seizures before 

randomisation 
Treatment 1 year 3 years 

10 Male 2 CBZ 47 (39 to 56) 92 (86 to 97) 

10 Female 2 CBZ 42 (34 to 50) 89 (81 to 94) 

10 Male 2 LTG 44 (36 to 52) 90 (83 to 95) 

10 Female 2 LTG 38 (31 to 47) 86 (78 to 92) 

10 Male 10 CBZ 36 (30 to 43) 83 (76 to 90) 

10 Female 10 CBZ 31 (25 to 38) 78 (70 to 85) 

10 Male 10 LTG 33 (27 to 40) 80 (72 to 87) 

10 Female 10 LTG 29 (23 to 35) 74 (66 to 82) 

40 Male 2 CBZ 43 (36 to 50) 89 (83 to 94) 

40 Female 2 CBZ 37 (31 to 45) 85 (78 to 91) 

40 Male 2 LTG 39 (32 to 47) 87 (79 to 92) 

40 Female 2 LTG 34 (28 to 41) 82 (74 to 88) 

40 Male 10 CBZ 32 (27 to 38) 79 (72 to 86) 

40 Female 10 CBZ 28 (23 to 33) 73 (66 to 80) 

40 Male 10 LTG 29 (24 to 35) 75 (67 to 83) 

40 Female 10 LTG 25 (21 to 31) 69 (61 to 77) 

75 Male 2 CBZ 63 (53 to 73) 98 (95 to 100) 

75 Female 2 CBZ 57 (48 to 67) 97 (92 to 99) 

75 Male 2 LTG 59 (49 to 70) 97 (93 to 99) 

75 Female 2 LTG 53 (44 to 63) 95 (90 to 98) 

75 Male 10 CBZ 50 (42 to 60) 94 (88 to 98) 

75 Female 10 CBZ 45 (36 to 53) 91 (84 to 95) 

75 Male 10 LTG 47 (38 to 56) 92 (85 to 96) 

75 Female 10 LTG 41 (33 to 50) 88 (80 to 94) 
 

 

Figure 9: The SANAD Trial – arm A: Combination of Risk Factors for Time to 12 Month Remission  

(N.B. ‘Seizures’ is ‘Total Number of Seizures before randomisation’ variable) 
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4.4 Discussion 

Predicting outcome in epilepsy is complex but necessary to inform patient counselling 

about prognosis and treatment choices.  Numerous clinical factors have been indentified in 

this chapter that influence the outcome measures time to treatment failure and time to 12 

month remission.  Multivariable models have also been produced that will inform clinicians 

and patients about likely outcomes. 

SANAD remains the largest randomised control trial in epilepsy and includes data on long 

term treatment outcomes which is vital if we are to inform the management of this chronic 

condition.  The dataset provides an unrivalled opportunity to investigate factors that 

influence treatment outcome for patients starting antiepileptic drug monotherapy.  SANAD 

recruited a heterogeneous group of patients which some have criticised [188, 189] but this 

can also be argued as a strength, as illustrated by this chapter, as the inclusion of a large 

heterogeneous population of patients enables a thorough investigation of factors that 

influence treatment outcome.   

Given that SANAD is a large dataset it is perhaps unsurprising that around nine prognostic 

covariates have been identified.  Obviously, of more importance than the statistical 

significance of these covariates is the ability of the models to predict outcome.  In this 

chapter we only provide a sense of this via the tables of probabilities of events at one and 

three years for various covariate combinations.  In Chapter 7, internal validation of these 

models is considered which provides a measure of how good they are at predicting the 

outcomes. 

Blinding a long term trial such as SANAD poses significant challenges, for example, patient 

groups such as women of child-bearing age potentially might be excluded.  The blinding 

would need a double dummy approach which could affect compliance and would come at 

significant expense such that it would be unaffordable to public funders such as the 
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National Institute for Health Research Health Technology Assessment programme.  SANAD 

was therefore an un-blinded trial which could have influenced outcome assessment, for 

example decisions as to whether a treatment had failed, although examination of dosing 

data indicates that reasonable doses were tried before a decision was made that treatment 

had failed.   

While randomised controlled trials are the best methodology for assessing treatment 

outcomes, they might recruit a selected population which might influence estimates of 

prognosis.  Ideally SANAD should have recruited a greater proportion of children and 

elderly patients; nonetheless the analysis has clearly identified the influence of age on 

outcome.   Additionally, the inclusion criteria for SANAD were broad.  There were few 

exclusion criteria and the vast majority of patients with a new diagnosis of epilepsy were 

eligible for inclusion.  Therefore, we believe that there are sufficient data provided for the 

clinicians to make a judgment.  Hence, in general terms the SANAD recruits should be fairly 

representative of a completely unselected population based cohort, that, ideally, a 

prognostic model would be based on. 

While some advocate separate trials for adults and children [190, 191], assuming that 

relative treatment responses differ according to age, our results emphasise the importance 

of trials that recruit a wide age range of patients, allowing a thorough investigation of the 

influence of age upon treatment outcome.  This is reinforced by the X-shaped relationship 

between age and reasons for treatment failure.  The notion that separate trials in children 

would be an inefficient approach to estimating treatment effects is supported by the EMAs 

decision to allow data from adults to be extrapolated to children down to the age of four 

for licensing purposes.   

Although randomised controlled trials might be an optimal design to detect treatment 

effects, they may not be ideal for building prognostic models, given that trials tend to 
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exclude subjects with comorbidities for safety reasons, and possibly select amongst those 

that are eligible a more motivated group.  However a population based study would be 

confounded in any assessment of relative treatment effects. 

For a prognostic model, it might well be that there are subgroups in which the model does 

not predict well for example children vs. adults.   We explored interactions for the models 

presented in this chapter.  No treatment-covariate interaction terms were found for time 

to 12 month remission and two were found for time to treatment failure - focal epilepsy 

site of onset and total number of seizures ever before randomisation.  Although these 

terms could easily be included in the multivariable model, interpretation of the results was 

very difficult due to the large number (6 levels of seizure category, 5 levels of treatment 

and 5 levels of lobe = 150) of possible combinations of interaction terms.  Both interactions 

were significant for inadequate seizure control only, and not for failure due to adverse 

effects.  Given that results for 12 month remission were also presented, which is a pure 

seizure outcome, we have not presented these data.  

While we have presented a number of predictive models that can further inform patient 

counselling and treatment decisions, ideally these models require validation in other 

similar datasets and the predictive power of the model also needs to be explored.  

Unfortunately there are no other datasets that are similar to SANAD.  The best match is a 

set of individual participant data collected by the Tudur Smith et al [192].  However this 

data is missing important covariates and the treatments patients were randomised to do 

not always coincide with SANAD drugs.  Therefore more work needs to be undertaken to 

determine how best to overcome these difficulties – see Chapters 8 and 9.    

While other prognostic models have been undertaken in epilepsy [119, 193, 194] no 

alternative epilepsy monotherapy trial has had sufficient power to thoroughly investigate 

prognostic factors.  Related datasets include the NGPSE study [195] and the MESS study 
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[133] as described in section 2.6.  NGPSE was a large prospective GP based observational 

study based on an unselected cohort of patients.  The only independent predictor of one 

year and two year remission was the number of seizures experienced by the patient in the 

six months after the first seizure.  It is important to note though that many patients in 

NGPSE were not prescribed antiepileptic drugs.  MESS was an unmasked, multicentre, 

randomised study of immediate and deferred antiepileptic drug treatment in 1447 patients 

with single seizures and early epilepsy.  Number of seizures of all types at presentation, 

presence of a neurological disorder, and an abnormal EEG were significant factors in 

indicating future seizures.   

Our results highlight the heterogeneity in terms of outcome in epilepsy and the complex 

interplay between the factors that influence it, given the numerous factors identified in our 

models.  Patients with differing risks of treatment failure, for unacceptable adverse events 

or inadequate seizures control, and differing risks of 12 month remission can however be 

identified at the point in time when antiepileptic drug treatment is initiated.  This is 

emphasised by the data presented in Figure 6 and Figure 9.  These data will inform patient 

counselling and inform decisions about monitoring and follow-up. 

While clinical predictors of outcome have been identified, the mechanism by which these 

factors influence outcome remain poorly understood, and it is likely that many are 

surrogates for underlying pathological processes.  Also, some variability in outcome 

remains unexplained, and we have not been able to identify factors that influence response 

to a specific drug.  There is much interest in personalised medicine and pharmacogenetics, 

although to date this endeavour has not identified genetic factors that predict outcome.  

Studies such as SANAD in which clinical outcome data and DNA are collected alongside one 

another should provide a powerful resource to investigate clinical and genetic predictors of 

outcome, and consortia pulling together such cohorts are evolving and should soon be 
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providing results.  We do of course need reliable evidence about outcome and predictors of 

outcome associated with newer drugs such as levetiracetam, zonisamide and lacosamide, 

and long term trials assessing these drugs are urgently required to inform clinical decision 

making and policy. 

  



 
 

111 
 

Chapter 5: Implications for Drivers 

with a First Seizure  

5.1 Introduction 

This Chapter begins with an overview of driving regulations both within the U.K. and 

further afield (section 5.1).  In section 5.2 the Multicentre centre for Early epilepsy and 

Single Seizures (MESS) is introduced and the methods used to calculate risk of seizure 

recurrence following a first ever seizure are calculated.  Results, together with recurrence 

risks for combinations of risk factors, are presented in section 5.3. 

The work in this chapter has been published in the British Medical Journal (BMJ) and I am 

first author.  The BMJ felt that the work was very important.  Consequently, they 

simultaneously published an editorial about the paper.  In addition, as a result of the 

analyses presented in this chapter and in the BMJ article, the DVLA have changed their 

guidelines concerning time off driving for patients with a first seizure.  The work is now 

being considered by the European Union in an attempt to harmonise driving regulations 

across the EU. 

Driving regulations in the European Union currently differ among member states [196] and 

there are extremes in regulations worldwide. In Bulgaria, Central African Republic, China, 

Estonia, Ghana, India, Korea, Pakistan, Portugal, Rwanda, Singapore, Taiwan, Turkey and 

Uzbekistan, a single seizure of any type, at any time in an individual’s life causes indefinite 

loss of driving privileges.  Conversely, in Argentina there are no specific laws prohibiting 

people with epilepsy from driving although patients generally rely on advice from their 

physicians [197, 198].  
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In 1995 and 1996 the International League Against Epilepsy and the International Bureau 

for Epilepsy organised workshops to discuss driving regulations around epilepsy and 

seizures, but the recommendations made were never reflected in an official European 

guideline or in European law.  Following further calls for harmonisation across the 

European Union [199-201] member states have been engaged in a process of identifying 

minimum standards for driving, and these are now in the process of being implemented in 

the United Kingdom and other European Union states.  

Where possible the United Kingdom based Driving and Vehicle Licensing Agency adopt a 

risk based approach to determine who can return to driving after an incapacitating event 

such as an epileptic seizure [202].  Epilepsy comes under the 1988 Road Traffic Act, but 

single seizures, which by definition do not constitute epilepsy, come under the domestic 

regulations (1999 Motor Vehicles (Driving Licences) Regulations).  People who have had a 

single unprovoked seizure are usually allowed to regain their ordinary, group 1, driving 

licence six months after the event provided their risk of a seizure recurrence in the next 

year is below 20%.  Drivers can regain their heavy goods vehicle, group 2, licence after five 

years provided their risk of a seizure recurrence is below 2% and they have been without 

the need for antiepileptic drug treatment for at least five years.  Although these minimum 

risk levels of 20% and 2% are somewhat arbitrary, they are supported by other member 

states [201] and have been adopted in the criteria determining minimum driving standards 

that are being harmonised across the European Union.  

Outside of the European Union there do not appear to be any countries that have such a 

risk based approach.  Within the United States each individual state has its own legislation 

for driving with epilepsy and single seizures.  When surveyed in 2001 [203] 28 states, out of 

a possible 50, including the District of Columbia, required people with epilepsy to be free of 

seizures for single fixed periods with a median restriction of six months (range, 3 to 12 
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months).  23 states adopted more flexible approaches to restricting driving such as varying 

seizure free restrictions based on individual clinical factors.  However, many states allow 

patients to drive after shorter seizure free periods than stated in law which may be because 

these laws are usually unpublished and not readily accessible.  In 13 states the time was 

decided by the treating doctor or a medical advisory board but in six of these states 

clinicians were not legally shielded for their assessments. 

When implementing the new European Union legislation, member states may adopt the 

minimum standard and should not allow a more lenient standard.  Member states can, 

however, adopt a stricter standard provided it can be justified, although it is likely that any 

state that sets a more stringent standard would face a challenge in court.  In October 2009, 

after a discussion at a meeting of the Secretary of State for Transport’s Joint Honorary 

Medical Advisor Panel on Vision and Neurology Disorders, at which the findings in this 

chapter were also discussed, the agency altered its guidance [202].  The new guidance 

stated that after a first unprovoked seizure, drivers may regain their ordinary, group 1, 

licence once they had been seizure free for six months, provided that their risk of a seizure 

recurrence in the next year was below the Driving and Vehicle Licensing Agency’s 20% cut-

off.  Note that the 20% risk threshold was unchanged. 

Very few published studies have estimated the risk of seizure recurrence and/or 

investigated factors that modify risk.  Publications that do exist [119, 204] have focused on 

recurrence immediately after a first seizure and none have presented risks of recurrence in 

the next 12 months at time points such as six or 12 months after an index seizure.  Reliable 

published data are therefore needed to inform Driving and Vehicle Licensing Agency 

guidance, European Union legislation, and legislation outside the European Union as well as 

decisions made by clinicians. 
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MESS [133] was a randomised controlled trial that compared the policies of immediate or 

deferred treatment in people presenting with a first unprovoked seizure or with early 

epilepsy.  The trial remains the largest reported study of patients with single seizures and 

early epilepsy, and although the primary purpose of the study was to compare treatment 

policies, it also provided an important opportunity to examine the risks of seizure 

recurrence and factors that modify those risks.  MESS was used to determine a predictive 

model for the risk of seizure recurrence after a single seizure [119].  The dataset is 

therefore ideal to obtain estimates of seizure recurrence within the next year at various 

time points following an index seizure.   

In this chapter, data from participants with only a single unprovoked seizure, referred to as 

the index seizure, at entry into the MESS study was analysed to estimate seizure recurrence 

risk in the 12 months after the index seizure.  Modelling was used to investigate how 

antiepileptic drug treatment and several clinical factors influence the risk of seizure 

recurrence. 

5.2 Methods 

Patients were eligible for inclusion in the MESS study [133] if they were at least one month 

old; had a history of at least one clinically definite, spontaneous, unprovoked epileptic 

seizure (excluding acute symptomatic seizures or febrile convulsions); and if both the 

clinician and the patient, or carer, were uncertain about whether or not to start 

antiepileptic drug treatment.  Exclusion criteria included previous treatment with 

antiepileptic drugs or the presence of a progressive neurological disease.  

People were recruited to the trial between 1 January 1993 and 31 December 2000 and 

were followed-up, if possible, from 31 December 2001 to 30 June 2002.  After the 

recruiting clinician had obtained informed consent and enrolled the participant, the 
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participant was allocated randomly to treatment policy by telephone or facsimile by way of 

the minimisation method, which was balanced across centre or region and number of 

seizures at randomisation.  For participants assigned to immediate treatment, the clinician 

selected the optimum antiepileptic drug treatment, dose and duration, based on their 

usual practice, and started treatment as early as possible.  Participants assigned to deferred 

treatment received no medication until the clinician and patient agreed that it was 

necessary, mainly after a seizure recurrence. 

Baseline clinical information and demographic data was obtained for all randomised 

participants and those eligible people who did not provide consent for randomisation.  EEG 

was requested for all randomised participants, and brain imaging (CT/MRI) was undertaken 

if clinically indicated.  Follow-up occurred at three, six, and 12 months and successive yearly 

intervals from randomisation, with additional visits as clinically indicated.  At each visit the 

occurrence and type of any seizures was recorded, together with antiepileptic drugs taken, 

if appropriate, and any adverse events.  Date and cause of death were also obtained as 

necessary. 

In the original MESS study primary seizure outcomes were time from randomisation to first 

seizure of any type, time from randomisation to first tonic-clonic seizure, time from 

randomisation to second and fifth seizure of any type, and time from randomisation to two 

year remission of seizures.  Additional primary outcomes were the proportion of patients 

seizure free for two years between one and three years after randomisation and three and 

five years after randomisation.  Secondary clinical outcomes consisted of adverse events in 

each group and quality of life, assessed at randomisation, two years and four years.  

To make the analyses reported here relevant to those of driving age, only participants aged 

16 years or over were included.  16 was chosen as the lower cut-off as, by age 17, after 12 

months of follow-up, these participants would be eligible to apply for a provisional licence.  



 
 

116 
 

Additionally, interest only lay in participants with a single seizure as the guideline for 

driving differs between these patients and those classified as having epilepsy, defined as at 

least two clinically unprovoked, spontaneous seizures. 

Patients were classified as remote symptomatic if on entry to MESS the clinician considered 

their seizure to be caused by a remote disease such as a head injury; meningitis or 

encephalitis, or both; intracranial surgery; or other disease.  Neurological deficit included 

hemiparesis (weakness on one side of the body) and learning difficulty, while an abnormal 

EEG was defined as epileptiform activity with focal, as shown in Figure 10, or generalised 

spikes, as shown in Figure 11, or spike and slow wave activity, as shown in Figure 12 [205, 

206]. 

 

Figure 10: EEG displaying an abnormal discharge called focal spike 
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Figure 11: EEG displaying an abnormal discharge called a generalised spike and wave 

 

Figure 12: EEG displaying a two-second burst of generalised polyspike-slow wave complex on eye closure in 

patient with eyelid myoclonia with absenses (idiopathic, myoclonic epileptic syndrome) 
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5.2.1 Statistical analysis 

Analyses were undertaken using R version 2.9.2 [182] and SAS version 9 [183]. 

Although MESS was a randomised trial, in this analysis time to event was measured from 

the date of the first seizure, occurring before study entry, referred to as the index seizure, 

and not the date of randomisation.  The outcome of interest was the probability of being 

seizure free for the next 12 months conditional on being seizure free from the index seizure 

to the time point in question.  This outcome is of interest as the Driving and Vehicle 

Licensing Agency require the probability of being seizure free for the next 12 months to be 

less than 20% before a person can regain their ordinary, group 1, driving license.  

The probability of someone who is seizure free at six months after the index seizure, 

remaining seizure free throughout months seven to 18 was calculated by dividing the 

probability of being seizure free for 18 months by the probability of being seizure free for 

six months.  This can be interpreted as the relative probability of being seizure free to 18 

months if six months seizure freedom has already been achieved.  Conditional probabilities 

for other time points were calculated similarly [207].   

Confidence intervals were estimated around the conditional seizure freedom probabilities.  

The variance of these rates was estimated as follows.  Given   time intervals 

                          , let    be the number of deaths during interval  ,   
  be the 

adjusted number at risk for interval  ,      be the probability of surviving past time  , and 

       be the conditional probability of surviving past   conditional on surviving past time 

 .  Then the variance of the conditional probability of surviving past    given survival past 

  , with      , is given by Equation 10 which is a variation of the usual Greenwood’s 

formula for unconditional survival [207, 208].   
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Equation 10 

Var                       
 

 
  

  
    

     

 

     

 

The 95% confidence intervals were constructed assuming that the conditional rates follow 

a normal distribution, and are as shown in Equation 11. 

Equation 11 

                  Var              

Variables associated with a higher risk of seizure recurrence in the next 12 months, both 

univariately and after adjusting for multiple variables, were determined using log-rank tests 

and Cox proportional hazards modelling methods as described in Chapter 3.  A best fitting, 

parsimonious, multivariable model was produced with variable reduction by Akaike’s 

Information Criterion [178], as also described in Chapter 3.  For this model missing values 

were excluded except in the case of EEG results and CT/MRI results, where a third category 

was created for missing results, or test not done, as there was too much missing data to 

ignore and the missingness was informative.  The proportional hazards assumption was 

investigated using Schoenfeld residual plots [173] and incorporation of time-dependent 

covariate effects [175] as described in Chapter 3. 

From the multivariable model the risk of recurrence in the next 12 months for 

combinations of risk factors was calculated [167] as it is important to determine which 

groups of patients are at highest risk of a recurrence and similarly, which patient groups are 

at least risk of a recurrence, not only for driving implications but also for treatment 

implications.  To determine annual recurrence risks for combinations of risk factors the 

baseline survivor function was estimated from the multivariate model assuming a 
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piecewise linear assumption.  The estimate was subsequently raised to a suitable power 

calculated from combinations of variable coefficient estimates [167].  For example if the 

estimated hazard function for the  th patient has the form  

                                    

where         equals unity for male patients and           equals unity for patients with 

a first degree relative with epilepsy, then the estimated survivor function for the  th 

individual is given by 

               
                            

 

where        is the baseline survivor function.  So, for a female with a first degree relative 

with epilepsy, the estimated survivor function for this individual is  

               
        

. 

From this, conditional probabilities can be calculated in the manner described above. 

An extension of this is to determine the length of time until the conditional seizure 

recurrence risk falls below the current Driving and Vehicle Licensing Agency threshold of 

20% for people with various combinations of risk factors.  As in the analysis involving 

combinations of risk factors, seizure recurrence risks can be calculated at each time point 

for any combination of variables within the multivariable model.  The seizure recurrence 

risk in the next 12 months for these combinations can also be calculated for each time 

point making it trivial to determine the time point where the seizure recurrence risk in the 

next 12 months falls below 20%. 
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5.3 Results 

 

Figure 13: The MESS Study: Flow of patients through the study 

Figure 13 shows the flow of patients through the MESS study.  Consent was not obtained 

for 404 of 1847 eligible patients.  The remaining 1443 patients were randomised; 722 to 

immediate antiepileptic drug treatment of whom 317 had a date of index seizure recorded 

and were consequently analysed, and 721 to deferred antiepileptic drug treatment, of 

whom 320 were analysed. Table 10 summarises the characteristics of the analysed 

patients.   

65% of the patients were male, the median age was 33, 16% had remote symptomatic 

seizures, 7% had neurological deficit, 5% had previous acute symptomatic seizures and 10% 

had a first degree relative with epilepsy.  32% of patients were classified with focal epilepsy 

and 66% with generalised epilepsy while 18% of patients had seizures only while asleep, 

49% had abnormal EEG results and 11% had an abnormal CT/MRI result. 

Assessed for eligibility (n=1847) 

Randomised to immediate antiepileptic drug 
treatment (n=722) 

Aged at least 16 years at randomisation 
(n=555) 

Only one seizure before randomisation 
(n=323) 

Had date of index seizure recorded; analysed 
(n=317; 44% of randomised patients) 

Randomised to deferred antiepileptic drug 
treatment (n=721) 

Aged at least 16 years at randomisation 
(n=544) 

Only one seizure before randomisation 
(n=324) 

Had date of index seizure recorded; analysed 
(n=320; 44% of randomised patients) 

Excluded (no consent; n=404) 
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Table 10: The MESS Study: Characteristics of patients; values are numbers (percentages) unless stated 

Characteristic 
Immediate Treatment 

(n=317) 

Delayed Treatment 

(n=320) 

Total 

(n=637) 

Age at randomisation in years, 

median (IQR) 
32.0 (21.5, 49.5) 33.8 (22.4, 50.6) 32.9 (21.9, 50.3) 

Gender 

    Male 

    Female 

 

199 (63) 

118 (37) 

 

213 (67) 

107 (33) 

 

412 (65) 

225 (35) 

Aetiology 

    Remote symptomatic 

    Not remote symptomatic 

 

55 (17) 

262 (83) 

 

49 (15) 

271 (85) 

 

104 (16) 

533 (84) 

Neurological deficit 

    Absent 

    Present 

    Missing 

 

288 (91) 

27 (8) 

2 (1) 

 

299 (94) 

19 (5) 

2 (1) 

 

587 (92) 

46 (7) 

4 (1) 

Previous acute symptomatic seizures 

    Febrile 

    Other 

    No 

 

15 (5) 

1 (0) 

301 (95) 

 

14 (4) 

7 (2) 

299 (94) 

 

29 (5) 

8 (1) 

600 (94) 

Epilepsy in first degree relative 

    Yes 

    No 

 

33 (10) 

284 (90) 

 

34 (11) 

286 (89) 

 

67 (10) 

570 (90) 

Seizures 

    Focal 

    Generalised/not definitely focal 

    Other 

 

102 (32) 

205 (65) 

10 (3) 

 

100 (31) 

217 (68) 

3 (1) 

 

202 (32) 

422 (66) 

13 (2) 

Seizures only while asleep 

    Yes 

    No 

    Missing 

 

65 (20) 

252 (80) 

- 

 

50 (16) 

269 (84) 

1 (0) 

 

115 (18) 

521 (82) 

1 (0) 

EEG results 

    Normal 

    Abnormal 

    Not done/Missing 

 

147(46) 

149 (47) 

21 (7) 

 

136 (43) 

160 (50) 

24 (7) 

 

283 (44) 

309 (49) 

45 (7) 

CT/MRI scan results 

    Normal 

    Abnormal 

    Not done/Missing 

 

219 (69) 

38 (12) 

60 (19) 

 

231 (72) 

34 (11) 

55 (17) 

 

450 (71) 

72 (11) 

115 (18) 

 

Seizures while asleep are very difficult to determine in people who have experienced few 

seizures.  The DVLA guidelines [202] make special provision for this – a person who has 

suffered a seizure whilst asleep must refrain from driving for at least one year from the 

date of seizure, as for patients with seizures while awake.  However, if the person has had a 

seizure whilst asleep more than three years previously, and has not had seizures whilst 

awake since the original seizure whilst asleep, they may be licensed even though seizures 
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during sleep may continue to occur.  Only if a seizure whilst awake occurs subsequently do 

the formal epilepsy regulations apply. 

Table 11 shows the risk of seizure recurrence in the next 12 months for patients 

randomised to immediate or delayed treatment at various time points following an index 

seizure.  For patients randomised to the immediate treatment group the unadjusted risk of 

seizure recurrence in the next 12 months at six months after the index seizure was 14% 

(95% confidence interval 10% to 18%), significantly below 20%.  For the delayed treatment 

group the estimate was 18% but the confidence interval (13% to 23%) did not exclude a 

20% risk of recurrence.  At 12 months, however, the risk was reduced to 10% (6% to 15%), 

significantly below 20%. 

Table 11: The MESS Study: Risk of seizure recurrence over 12 months at time points after index seizure:  

Risk (%, 95% confidence interval) 

 Immediate treatment Delayed treatment 

Time post index 

seizure (months) 

Number at 

Risk 

Risk of seizure in 

following 12 months 

Number at 

Risk 

Risk of seizure in 

following 12 months 

6 260 14 (10 to 18) 254 18 (13 to 23) 

12 230 7 (4 to 11) 219 10 (6 to 15) 

18 211 8 (5 to 12) 197 12 (8 to 17) 

24 199 7 (3 to 10) 182 10 (5 to 14) 

 

The univariate and multivariable results can be seen in Table 12.  In the univariate model, 

factors significantly associated with a higher risk of seizure recurrence in the next 12 

months were a remote symptomatic seizure (remote symptomatic vs. not remote 

symptomatic - HR: 1.45, 95% CI: (1.06 to 1.98)), neurological deficit (present vs. absent - 

HR: 1.80, 95% CI: (1.17 to 2.76)), seizure while asleep (yes vs. no - HR: 1.49, 95% CI: (1.11 to 

2.00)), abnormal EEG result (abnormal vs. normal - HR: 1.62, 95% CI: (1.25 to 2.09)), and 

absence of CT/MRI (not done/missing vs. normal - HR: 1.37, 95% CI: (1.00 to 1.86)).  

Treatment policy was not a significant factor (immediate vs. delayed – HR: 0.83, 95% CI: 
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(0.65 to 1.06)) probably owing to lack of power, as the effect estimate for immediate 

treatment is of a similar magnitude to that in the main analysis of the MESS trial. 

Table 12: The MESS Study: Effect estimates from univariate and multivariable analyses 

Variable Comparison 
Univariate 

p-value 

Univariate hazard 

ratio (95% CI) 

Multivariable hazard 

ratio (95% CI) 

Age at 

randomisation 

[16,25) 

0.71 

1.00 

N/A 
[25, 35) 0.86 (0.59 to 1.23) 

[35, 50) 1.00 (0.72 to 1.39) 

≥ 50 1.08 (0.79 to 1.48) 

Gender 
Male 

Female 
0.42 

1.00 

0.90 (0.69 to 1.16) 
N/A 

Aetiology 
Not remote symptomatic 

Remote symptomatic 
0.02 

1.00 

1.45 (1.06 to 1.98) 

1.00 

1.33 (0.95 to 1.87) 

Neurological 

deficit 

Absent 

Present 
0.01 

1.00 

1.80 (1.17 to 2.76) 
N/A 

Acute 

symptomatic 

seizures 

None 

0.96 

1.00 

N/A Febrile seizure(s) 0.98 (0.55 to 1.75) 

Other 1.17 (0.37 to 3.65) 

Epilepsy in first 

degree relative 

No 

Yes 
0.07 

1.00 

1.37 (0.97 to 1.94) 

1.00 

1.33 (0.94 to 1.90) 

Seizure type 

Generalised or not definitely focal 

0.23 

1.00 

N/A Partial 0.79 (0.61 to 1.04) 

Other 0.83 (0.34 to 2.01) 

Seizures only 

while asleep 

No 

Yes 
0.01 

1.00 

1.49 (1.11 to 2.00) 

1.00 

1.47 (1.09 to 1.97) 

EEG results 

Normal 

0.00 

1.00 1.00 

Abnormal 1.62 (1.25 to 2.09) 1.55 (1.20 to 2.01) 

Not done/Missing 1.48 (0.86 to 2.55)* 1.29 (0.74 to 2.27)* 

CT/MRI scan 

results 

Normal 

0.08 

1.00 1.00 

Abnormal 1.32 (0.91 to 1.91)* 1.07 (0.72 to 1.61) 

Not done/Missing 1.37 (1.00 to 1.86) 1.29 (0.94 to 1.78) 

Treatment policy 
Delayed 

Immediate 
0.13 

1.00 

0.83 (0.65 to 1.06) 

1.00 

0.82 (0.64 to 1.05) 

 

Table 13 shows the risk estimates for seizure recurrence in the next 12 months at several 

time points after the index seizure based on the univariate analysis for the variables with 

significant hazard ratios.  At six months the estimate for patients with a neurological deficit 

was above 20%, although the confidence interval (13% to 49%) did not exclude the 

possibility of the risk being below 20%.  By 12 months the estimate was 20% which is on 

the threshold set by the DVLA.  The risk of recurrence in the next year at six months for 
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patients with remote symptomatic epilepsy was 20% (10% to 30%) which reduced to 13% 

by 12 months although this estimate is still not significantly below 20% (4% to 22%). 

Table 13: The MESS Study: Risk of seizure recurrence over 12 months at time points after index seizure: 

univariate model 

Variables 
Risk of recurrence at time points (95% CI) 

6 months 12 months 18 months 

Cause of seizure:    

    Not remote  

        symptomatic 
15 (12 to 19) 8 (5 to 11) 11 (7 to 14) 

    Remote symptomatic 20 (10 to 30) 13 (4 to 22) 9 (1 to 17) 

Neurological deficit:    

    Absent 15 (12 to 18) 8 (6 to 11) 11 (7 to 14) 

    Present 31 (13 to 49) 20 (2 to 37) — 

Seizures only while 

asleep: 
   

    Yes 19 (11 to 28) 10 (3 to 17) 11 (3 to 19) 

    No 15 (12 to 19) 9 (6 to 12) 10 (6 to 13) 

EEG results:    

    Normal 13 (9 to 17) 6 (3 to 9) 8 (4 to 12) 

    Abnormal 19 (14 to 24) 12 (8 to 17) 13 (8 to 18) 

  Not done or missing* 15 (1 to 29) 10 (0 to 23) — 

*Missing entries arose as a result of insufficient follow-up data or insufficient participant numbers. 

As described in Chapter 3 and in section 5.2.1, the multivariable Cox model was developed 

with variable selection by AIC – the model with the smallest AIC was chosen as the best 

fitting model – selection starts with the full model and eliminates predictors one at a time, 

at each step considering whether the criterion will be improved, smaller AIC, by adding 

back in a variable removed at a previous step [178].  The parsimonious model (Table 12) 

included variables for aetiology (cause of the seizure), epilepsy in a first degree relative, 

seizure while asleep, EEG result, CT/MRI result, and treatment policy, which was forced 

into the model.  From the model, seizure while asleep (yes vs. no – HR: 1.47, 95% CI (1.09 

to 1.97)), and an abnormal EEG result (not done/missing vs. normal – HR: 1.37, 95% CI (1.00 

to 1.86)) were associated with a higher risk of seizure recurrence in the next 12 months, 

but again treatment policy was not a significant factor (immediate vs. delayed – HR: 0.83, 

95% CI (0.65 to 1.06)). 
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Figure 14: The MESS Study: Survival function over time for treatment policy 

 

Figure 15: The MESS Study: Schoenfeld residuals for treatment policy 

 

There was no evidence to suggest that the proportional hazards assumption, underlying 

the Cox model, was invalid – in the case of treatment policy, for example.  The graph of the 

survival function versus the survival time shows almost parallel curves (Figure 14) and the 

p-value for the test of the Schoenfeld residuals was 0.96 which was not significant so 

together with Figure 15, there is no reason to doubt the proportional hazards assumption. 
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The risk of recurrence at 12 months for patients with various combinations of risk factors 

(i.e. varying characteristics) was estimated from the parsimonious multivariable regression 

model.  As a large number of combinations was possible Table 14 shows selected results for 

remote and non-remote symptomatic seizure, EEG result, and CT/MRI results assuming 

that the index seizure was not during sleep and that participants did not have a first degree 

relative with epilepsy.  Appendix A shows the estimates for all possible combinations of 

factors. 

Table 14: The MESS Study: Risk of seizure recurrence in next 12 months estimated from multivariable model 

at specific seizure free periods.  Estimates presented assume seizures not confined to sleep and no first 

degree relative with epilepsy 

Cause of 

seizure 

Test results 

Months 

from index 

seizure 

Immediate treatment Delayed treatment 

EEG CT/MRI 

Risk of seizure 

in next 12 

months  

(%, 95% CI) 

Months 

from index 

seizure until 

annual risk 

falls <20% 

Risk of seizure 

in next 12 

months  

(%, 95% CI) 

Months 

from index 

seizure until 

annual risk 

falls <20% 

Not remote 

symptomatic 
Normal Normal 

6 13 (10 to 16)* 
1.2 

16 (12 to 19)* 
3.2 

12 7 (5 to 10)* 9 (6 to 12)* 

Not remote 

symptomatic 
Abnormal Normal 

6 20 (16 to 23) 
5.5 

23 (20 to 26) 
7.0 

12 11 (9 to 14)* 13 (11 to 16)* 

Not remote 

symptomatic 
Normal Abnormal 

6 14 (11 to 17)* 
2.1 

17 (14 to 20) 
3.6 

12 8 (5 to 11)* 10 (7 to 12)* 

Not remote 

symptomatic 
Abnormal Abnormal 

6 21 (18 to 24) 
6.1 

25 (22 to 28)† 
8.1 

12 12 (9 to 15)* 14 (12 to 17)* 

Remote 

symptomatic 
Normal Normal 

6 17 (14 to 20) 
3.6 

20 (17 to 23) 
6.0 

12 10 (7 to 12)* 12 (9 to 14)* 

Remote 

symptomatic 
Abnormal Normal 

6 25 (22 to 28)† 
8.7 

30 (27 to 32)† 
10.7 

12 15 (12 to 17)* 18 (15 to 20) 

Remote 

symptomatic 
Normal Abnormal 

6 18 (15 to 21) 
4.8 

22 (19 to 25) 
6.5 

12 10 (8 to 13)* 13 (10 to 15)* 

Remote 

symptomatic 
Abnormal Abnormal 

6 27 (24 to 30)† 
9.2 

32 (29 to 34)† 
11.3 

12 16 (13 to 18)* 19 (16 to 21) 

*Confidence interval lies completely below 20%. †Confidence interval lies completely above 20%. 

 

Although the unadjusted results suggested that patients who start treatment after a single 

seizure and are seizure free for six months, on average have a less than 20% risk of 

recurrence in the next 12 months, our multivariable results indicated that the risk in some 

subgroups was significantly greater than 20%.  This included patients with a remote 
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symptomatic seizure and an abnormal EEG result whether or not their CT/MRI result was 

normal.  For patients with a non-remote symptomatic seizure, abnormal EEG result and 

abnormal CT/MRI scan result the estimate was higher than 20% but the lower end of the 

confidence interval was less than 20% suggesting that some people with that combination 

of risk factors may have a less than 20% risk of seizure recurrence in the next 12 months.   

The estimate from the unadjusted results suggested that patients who had not started AED 

treatment after a single seizure and who were seizure free for six months had a less than 

20% risk of recurrence in the next 12 months.  However, the multivariable results indicated 

that some subgroups had a recurrence risk significantly greater than 20%.  This included 

patients with an abnormal EEG result and abnormal CT/MRI result whether or not their 

seizure was remote symptomatic.  This also included patients with a remote symptomatic 

seizure and an abnormal EEG result whether or not their CT/MRI result was normal.  

For some subgroups the estimate was higher than 20% but the confidence interval included 

or the lower bound of the confidence interval was less than 20%.  For example, patients 

with a remote symptomatic seizure, an abnormal EEG result and an abnormal CT/MRI 

result, and patients with a remote symptomatic seizure, a normal EEG result and abnormal 

CT/MRI  result.  This again highlights that although the group contains patients with a risk 

of seizure recurrence in the next 12 months in excess of 20%, some may have a risk that is 

below this threshold, set by the Driving and Vehicle Licensing Agency. 

5.4 Discussion 

MESS was a randomised trial comparing the policies of immediate or delayed treatment for 

patients presenting with a single seizure or early epilepsy.  This data can be used to 

estimate time from a first to second seizure, and for the purposes of informing driving 
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regulations, the risk of a further seizure following a specific period of seizure freedom can 

be calculated.  

The unadjusted estimates suggest that after a first seizure, the overall risk of a recurrence 

in the 12 months after a seizure free period of six months is below 20%.  The confidence 

intervals around these estimates suggest that this risk is significantly below 20% for 

patients who start antiepileptic drug treatment (risk 14%, 95% confidence interval (10% to 

18%)), but not for those who do not (risk 18%, 95% confidence interval (13% to 23%)).  

The univariate and multivariable analyses allow the identification of patients that are at 

differing risks of recurrence and hence those that might be at high or low risk of recurrence 

at specific time points after a first seizure.  In the multivariable analyses, patient subgroups 

were identified whose risk was significantly more than 20% irrespective of the treatment 

policy.  Hence guidance is needed from driving regulators as to how far to individualise risk 

and whether clinicians should focus on unadjusted results when making recommendations 

about driving, or on results from univariate or multivariable models. 

It could be argued that at the population level the risk, ignoring the confidence interval, of 

a seizure recurrence is below 20% after a six month seizure free period, thus all patients 

should be able to regain their driving licence, which would be in keeping with the new 

European Union standards, accepting that some in the population will have a risk above 

20%.  Alternatively a more conservative approach could be taken to individualise risk.  The 

multivariable model identified several subgroups that had a risk of recurrence that is 

significantly greater than 20% after a six month seizure free period, this includes those with 

a non-remote symptomatic seizure who do not start treatment and have both an abnormal 

EEG result and an abnormal CT/MRI result and those with a remote symptomatic seizure 

and an abnormal EEG result, irrespective of the result for CT/MRI and treatment policy.  

Additionally the risk estimate for several subgroups was greater than 20%, although the 
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lower confidence limit was below 20%.  Similarly, the estimate for some subgroups was 

below 20% but the upper limit of the confidence interval was above 20%.  These results 

might be used to justify a decision to prevent subgroups with a higher risk of seizure 

recurrence from returning to driving, which is reflected in the current guidance from the 

Driving and Vehicle Licensing Agency.  Any attempt to utilise these data to inform driving 

policy could have important implications on resources for health services, as investigations 

such as EEG may be required that are not otherwise clinically indicated, and patients could 

choose to take AED treatment, which is not otherwise clinically indicated. 

One risk of using a randomised controlled trial such as MESS is the recruitment of a 

selected population that is not necessarily representative of the general population.  This 

raises questions about the generalisability of results.  In MESS, the baseline characteristics 

of patients not randomised were similar to those randomised, which might argue against a 

major selection bias when patients made the decision to enter the trial or not.  However, 

patients were only given the opportunity to enter MESS if the clinician was uncertain about 

the need to start treatment, thus patients entered into MESS might not be representative 

of the general population of patients presenting with a first seizure.  This might have 

resulted in people at low risk of a seizure recurrence not entering the trial as they did not 

want to start treatment, and patients at a high risk of a seizure recurrence not entering the 

trial as they wanted to start treatment.  Given the possibility that patients at both low or 

high risk of a recurrence did not enter MESS it is difficult to predict whether this would 

have caused an underestimation or overestimation of risk for seizure recurrence in the 

unadjusted analyses.  In the multivariable analyses, this might have resulted in an 

overestimation of risk for subgroups at low risk of a recurrence and an underestimation of 

risk for patients at a high risk of a recurrence. 
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In MESS, most participants (75%) were randomised within three months of their first 

seizure.  Thus another potential selection bias is that some patients had a second seizure 

whilst waiting to see a specialist.  These patients were thus likely to start treatment at that 

point rather than join the trial therefore MESS might have recruited patients with a lower 

risk of a seizure recurrence than the general population.  It is unlikely that this has biased 

analyses, however, as patients with a recurrence within six months of their first seizure 

could not contribute to the risk estimates presented in this chapter.  This is because the 

estimates were conditional on being seizure free for six or 12 months after a first seizure.  

In MESS, participants were seen predominantly by neurologists who were experienced at 

identifying and classifying seizures.  However, a further challenge in outpatient based 

studies of seizures and epilepsy, such as MESS, is that seizures are reported to the clinician 

by the patient and it is possible that patients under-report the occurrence of seizures 

although there is no published evidence of this.  Validating patient reporting in an 

outpatient population with infrequent seizures is difficult and to date has not been done.  If 

under-reporting of seizures has occurred, this would result in an underestimate of the risks 

of recurrence. 

Although the possibility and effects of biases from selection and reporting of seizures 

cannot be ruled out, MESS remains the largest reported study of early epilepsy and single 

seizures.  The analyses presented in this chapter enabled an estimation of risk of seizure 

recurrence in the next 12 months after periods of seizure freedom and the identification of 

patients who might be at a high risk of recurrence. 

NGPSE [209] is the only other study where risks of recurrence have been estimated after 

seizure free periods.  As explained in sections 2.7 and 4.4, the trial was a population based 

study that recruited 564 patients with definite new onset seizures.  This included 446 with 

unprovoked seizures, 83 with acute symptomatic seizures, and 35 with alcohol induced 
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seizures.  Overall, 252 patients had a single seizure as their index seizure, whereas the 

remainder were ascertained after their second or a subsequent seizure.  While population 

based studies might be the ideal design to produce generalisable estimates of seizure 

recurrence risks, the results of the NGPSE highlight potential problems with ascertainment 

in epilepsy studies, particularly where the outcome of importance is the risk of recurrence 

after a first seizure.  In their paper assessing recurrence risks after a first seizure, the NGPSE 

group reported analyses for time from first to second seizure for all patients and for the 

subgroup of patients where the index seizure was the first seizure.  Risk estimates of 

recurrence were significantly lower for the group where the index seizure was the first 

seizure: 37% compared with 67% at 12 months [209].  Survival curves were also given for 

the risk of a recurrence for the whole study population for a seizure free period of six, 12, 

or 18 months after a first seizure.  After six months of being seizure free the risk of a 

recurrence over the next 12 months was about 35% for the whole study population, 

substantially higher than the overall estimates in our analyses of MESS: 14% with 

antiepileptic drug treatment and 18% without treatment.  

For the population in NGPSE where the first seizure was the index seizure, which is the 

comparable population in this analysis, the risk of a recurrence over the next 12 months 

after a seizure free period of six months was about 18%, similar to the estimate in this 

analysis of MESS.  This highlights the importance of ascertaining patients after their first 

seizure rather than after a second or subsequent seizure.  Multivariable analyses of the 

NGPSE identified symptomatic seizures, neurological deficit, and no AED treatment as risk 

factors for a recurrence of seizure after a first seizure, which were also identified in MESS.  

Data from the NGPSE have not been used to estimate the risks of recurrence in the next 12 

months for patients seizure free for various periods for individual risk groups, and with a 

fairly small sample size validation may not be reliable. 
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Further research and guidance is required to inform risk based policies, including 

regulations about returning to driving after a single seizure.  To inform recommendations 

about driving, clinicians and patients require guidance as to whether the focus should be 

on risk estimates alone or on risks and their associated confidence intervals.  If the focus is 

on the estimate only, the unadjusted estimates presented here suggest that treated and 

untreated patients are eligible to drive after being seizure free for six months.  If the focus 

is on the risk estimate and its associated confidence interval, a patient who starts 

treatment will be eligible to drive after being seizure free for six months.  For patients who 

do not start treatment the advice depends on the perspective taken.  A conservative 

approach would allow patients to regain their licence once the upper confidence interval 

has dropped below 20%.  However, this would prevent patients who do not start treatment 

from returning to driving after being seizure free for six months, and potentially coerce 

people into taking AED treatment that is not otherwise clinically indicated.  A more liberal 

approach would be to allow people to regain their licence provided that the lower 

confidence limit is below 20%.  This approach could result in those at a high risk of 

recurrence regaining their licence.  An intermediate approach might be to require the risk 

estimate to be below 20% and also to define the upper limit of the confidence interval that 

would be acceptable. 

The conditional probability survival estimates presented here require that long term follow-

up information be available on a large population of patients.  The estimates reported here 

are based on the MESS trial which remains the largest reported study of patients with 

single seizures and early epilepsy.  Even with this large dataset, there were some subgroups 

for which estimate could not be generated. 

Conditional survival estimates appear encouraging for patients in MESS; however different 

patterns may emerge for other patient groups as these patterns are dependent on the 
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underlying hazard rates.  If the hazard rate is decreasing over time, then the conditional 

survival will be better than at time 0, as demonstrated here.  However, if the hazard rate is 

increasing over time then the reverse would be apparent.  If there are no underlying 

changes in the hazard rate over time, then the conditional probabilities will be the same as 

the survival at time 0. 

This reanalysis of MESS provides data that can potentially inform decisions about returning 

to driving for people who have had a first unprovoked seizure.  MESS recruited a broad 

heterogeneous population, which has allowed the investigation of factors that influence 

seizure recurrence as presented in this chapter.  Results should therefore be relevant to the 

general population, but selection bias may be at play and some caution is required in 

interpreting results.  Ideally, external validation of the models presented here is required 

and work is ongoing to establishing a consortium to attempt to validate and refine the 

model presented here.  There are additional challenges to externally validating prognostic 

models, details of which can be found in Chapter 8.  

The MESS data allow an estimation of seizure recurrence risk conditional on having been 

seizure free for six or 12 months.  Further guidance is now required from driving authorities 

as to how these data should be interpreted.  In particular, guidance is needed as to 

whether a population approach should be taken, with a focus on unadjusted results or 

whether attempts should be made to individualise risk.  Guidance is also required as to 

whether the focus should be on risk estimates only or on the confidence interval as well.  If 

the confidence interval is to be included, guidance is needed as to whether the 

conservative, liberal, or intermediate approach should be taken. 
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Chapter 6: Implications for Drivers 

who Withdraw AED Treatment 

6.1 Introduction 

In this chapter a further analysis of data from the Antiepileptic Drug Withdrawal Study is 

presented.  The chapter begins with a background to the U.K. driving regulations for people 

who withdraw treatment following a period of remission from seizures (section 6.1).  The 

Medical Research Council Antiepileptic Drug Withdrawal Study is then introduced (section 

6.2.1).  A systematic review of AED withdrawal studies is also presented (section 6.2.2).  

The risk of seizure recurrence   is presented for people who have had their AED treatment 

withdrawn (section 6.3.2) and for people with a seizure recurrence during or following AED 

withdrawal who then restart treatment (section 6.3.3).   

The work presented in this chapter has been published in the Journal of Neurology, 

Neurosurgery and Psychiatry, and I am first author.  The DVLA are currently considering 

changing their guidelines for time off driving following treatment withdrawal after a period 

of remission as a result of this work. 

Around 60% to 70% of people with epilepsy will enter a remission from seizures on AED 

treatment [69] and many of these will become eligible to drive.  It is common for 

individuals who have had two or more years without seizures to consider AED withdrawal.  

However, a decision to withdraw AED treatment will increase the probability of a seizure 

occurring.  The seizure recurrence risks associated with the policies of continued treatment 

or withdrawal were examined in the Medical Research Council Antiepileptic Drug 

Withdrawal Study [132] which found a two year seizure recurrence risk of 22% with 

continued antiepileptic drug treatment and 41% with withdrawal of treatment.    
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The Driving and Vehicle Licensing Agency currently advises that patients undergoing 

antiepileptic drug withdrawal should not drive while the drug is being withdrawn and for a 

further six months after the last dose has been taken.  If an epileptic seizure does occur and 

treatment is reinstated, a further one year period of seizure freedom [202] is required, as 

per the Road Traffic Act [210].  Following calls for harmonisation across the European 

Union [199, 200, 202], member states have been engaged in a process of identifying 

minimum standards to drive which are now being considered by the United Kingdom and 

other European Union states.  The new European Union standard states that seizures 

occurring during physician advised change or withdrawal of medication requires three 

months without driving if the previously effective treatment is reinstated [199].  At present 

there is little published evidence to support either the United Kingdom or European Union 

standards.  There is therefore a need for reliable published data to inform 

recommendations made about people with epilepsy who have a seizure recurrence when 

withdrawing antiepileptic drug treatment with regards to driving. 

6.2 Methods 

Analyses were undertaken using R version 2.9.2 [182]. 

6.2.1 Antiepileptic Drug Withdrawal Study 

The Medical Research Council Antiepileptic Drug Withdrawal Study (MRC AEDWS) was a 

prospective multicentre randomised study of continued AED treatment versus slow 

withdrawal.  It randomised 1021 patients who had been free from seizures for at least two 

years.  Recruitment began in February 1984 and was completed in June 1988 with follow-

up continuing until June 1989, where possible.  Patients were eligible for entry in the 

Antiepileptic Drug Withdrawal Study provided they had a history of two or more definite 

unprovoked seizures, had been free of all seizures for at least two years, and were taking 
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antiepileptic drugs.  Those who had a progressive neurological disorder or other conditions 

likely to reduce follow-up below two years were excluded.   

Demographic and clinical data on all eligible patients were recorded at entry: presence of 

developmental delay, neurological handicap or neurological disorder; psychiatric history; 

results of most abnormal EEG based on review of historical reports when available; dates of 

first, second and most recent seizures and their classification from clinician’s review of 

historical data; details of AED therapy including starting date, drug and dose at remission of 

seizures and entry; diurnal pattern of seizures and family history of epilepsy; and previous 

unsuccessful attempts at AED withdrawal.   

Consenting patients were randomised to continued treatment or to slow withdrawal of 

AEDs by use of the method of minimisation.  Allocation to the two treatment policies was 

balanced by centre and by the seizure-free period before registration.  Patients randomised 

to slow withdrawal had therapy withdrawn according to guidelines suggested by the 

steering committee with decrements every four weeks.  Physicians were encouraged to 

make smaller decrements in patients receiving small doses of drugs with the aim being to 

extend withdrawal to a minimum of six months.  Patients taking more than one AED had 

the drugs withdrawn sequentially in an order determined by the clinician.  Follow-up was at 

three, six and 12 months and yearly thereafter from the date of randomisation.  At each 

follow-up appointment information was collected about AEDs, including dose and adverse 

events, and dates of any seizures together with a clinical description and whether or not 

AEDs were restarted.  Patients with seizures during follow-up could have their antiepileptic 

drug regimen modified by their clinician.  A Consort type diagram of the patient flow 

through the trial can be seen in Figure 16. 
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Figure 16: MRC AEDWS: Consort Diagram; Bold figures relate to patients used for these analyses 

In this chapter two outcomes were assessed: the risk of a seizure recurrence in the next 12 

months at a number of time points following AED withdrawal; the risk of a seizure 

recurrence in the next 12 months at a number of time points following AED withdrawal, a 

seizure recurrence and reinstatement of AED treatment.  For the purpose of this analysis, 

withdrawal is assumed to have taken exactly six months for each patient as the date of last 

dose was not recorded.  For the risk of recurrence following AED withdrawal, if a person 
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had a seizure whilst withdrawing they were excluded from the analysis.  In the case of risk 

following seizure recurrence and reinstatement of AED treatment, patients were removed 

from the analysis if they: did not restart medication following a seizure; if they did not 

attempt to withdraw treatment despite being in the withdrawal arm of the study; if they 

were withdrawing treatment, had a seizure and then continued to withdraw; if they were 

withdrawing treatment, had a seizure and did not alter their dose; or if they restarted 

treatment despite not having a seizure. 

This analysis was restricted to patients randomised to slow withdrawal of AED treatment 

and aged at least 16 years.  The outcome of interest is the probability of being seizure free 

for the next 12 months given that a person is seizure free until the time point of interest 

post-withdrawal.  Conditional probabilities were calculated as per Chapter 4 and again 

confidence intervals for these estimates were calculated utilising a revised version of 

Greenwood’s formula [207, 208, 211].  Univariate analyses used log-rank tests and Cox 

proportional hazards modelling methods [31].   

6.2.2 Systematic Review 

The aim of the systematic review was to identify clinical trials that estimated the risk of 

seizure recurrence following antiepileptic drug withdrawal in patients of driving age who 

had been free from seizures for at least 24 months whilst on AED treatment.  Randomised 

controlled trials and prospective observational studies, in which at least 50 patients 

initiated AED withdrawal, were included.  Studies had to include patients with epilepsy 

treated with AED therapy, aged 16 years or over, who had been in remission for at least 

two years.  The search strategy used in MEDLINE can be found in Appendix B. 

Trials were assessed for inclusion by two investigators and one investigator extracted the 

data.  The primary outcome measure was time to seizure recurrence while a secondary 

analysis considered prognostic factors for seizure recurrence.  The risk of seizure 
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recurrence in the next 12 months following AED withdrawal was calculated, where 

possible, for each trial together with the risk following recurrence and reinstatement of 

AED treatment.  This was done using survival estimates obtained from the Kaplan-Meier 

curve. 

Risk of bias was assessed using standard Cochrane methodology in the case of randomised 

controlled trials.  In the case of observational studies, the Newcastle-Ottawa Scale (NOS) 

for assessing the quality of nonrandomised studies in meta-analyses was used [212].  

6.2.2.1 Cochrane Collaboration Tool 

Many tools have been proposed for assessing the quality of studies.  Most tools are scales, 

involving scoring various components of quality and combining them to give a summary 

score.  Alternatively a checklist can be used, in which specific questions are asked [213].  

The Cochrane Collaboration’s recommended tool for assessing risk of bias [214] is neither a 

scale nor a checklist.  Instead, it is a domain-based evaluation, in which critical assessments 

are made separately for different domains.  It was developed between 2005 and 2007 by a 

working group of methodologists, editors and review authors.  It is a two-part tool, 

addressing seven specific areas, namely sequence generation, allocation concealment, 

blinding of participants and personnel, blinding of outcome assessment, incomplete 

outcome data, selective outcome reporting and ‘other issues’. 

Each domain in the tool includes one or more specific entries in a ‘Risk of bias’ table.  For 

each entry, the first part of the tool describes what was reported to have happened in the 

study, while the second part of the tool assigns a judgement relating to the risk of bias for 

that entry; either low, high or unclear risk of bias. 

 



 

141 
 

6.2.2.2 Newcastle-Ottawa Scale 

Nonrandomised studies, including case-control and cohort studies, can be challenging to 

implement and conduct, however, assessment of the quality of such studies is essential for 

a proper understanding of nonrandomised studies.  The Newcastle-Ottawa Scale (NOS) 

[212] is an ongoing collaboration between the Universities of Newcastle, Australia and 

Ottawa, Canada.  It was developed to assess the quality of nonrandomised studies.  A 'star 

system' has been developed in which a study is judged on three broad perspectives: the 

selection of the study groups; the comparability of the groups; and the ascertainment of 

either the exposure or outcome of interest for case-control or cohort studies respectively.  

Stars are awarded for high quality choices. 

6.3 Results 

6.3.1 Antiepileptic Drug Withdrawal Study 

Table 15 summarises the patient demographics for the populations under analysis.  49% of 

all relevant patients, those randomised to slow withdrawal and aged 16 or over, were male, 

16% had delayed development, 8% had neurological deficit, 18% had a first degree relative 

with epilepsy, 9% had a history of febrile seizures and 78% had abnormal EEG results.  The 

median age at randomisation was 34 with mean duration of epilepsy at randomisation 9 

years, median duration of antiepileptic drug treatment at randomisation 8 years and 

median seizure free period at randomisation 3 years.   
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Table 15: MRC AEDWS: Characteristics of patients undergoing antiepileptic drug withdrawal 

Characteristic, n (%) 

Slow Withdrawal 

Group 16 years and 

older 

(n=406) 

Seizure Free 

Following AED 

Withdrawal 

(n=317) 

Seizure Recurrence 

Following 

Randomisation 

(n=197) 

Gender 

    Male 

    Female 

 

198 (49) 

208 (51) 

 

154 (49) 

163 (51) 

 

96 (49) 

101 (51) 

Development 

    Normal 

    Delayed 

 

343 (84) 

63 (16) 

 

265 (84) 

52 (16) 

 

166 (84) 

31 (16) 

Neurological Deficit 

    Absent 

    Present 

 

372 (92) 

34 (8) 

 

288 (91) 

29 (9) 

 

182 (92) 

15 (8) 

First Degree Relative with 

Epilepsy 

    No 

    Yes 

    Missing 

 

 

338 (83) 

66 (16) 

2 (1) 

 

 

270 (85) 

45 (14) 

2 (1) 

 

 

160 (82) 

36 (18) 

1 (0) 

History of Febrile Seizures 

    No 

    Yes 

    Missing 

 

377 (93) 

27 (6) 

2 (1) 

 

298 (94) 

17 (5) 

2 (1) 

 

179 (91) 

17 (9) 

1 (0) 

EEG Results 

    Normal 

    Abnormal 

    Missing 

 

71 (17) 

239 (59) 

96 (24) 

 

58 (18) 

178 (56) 

81 (26) 

 

34 (22) 

119 (78) 

- 

Age at Randomisation (years) 

    Median (IQR) 

 

34 (24 to 49) 

 

34 (24 to 50) 

 

34 (24 to 47) 

Age at First Seizure (years) 

    Median (IQR) 

 

18 (13 to 30) 

 

19 (13 to 30) 

 

16 (13 to 27) 

Duration of Epilepsy at 

Randomisation (years) 

    Median (IQR) 

 

 

9 (5 to 19) 

 

 

9 (5 to 19) 

 

 

9 (4 to 20) 

Duration of AED Treatment at 

Randomisation (years) 

    Median (IQR) 

 

 

6 (4 to 13) 

 

 

6 (3 to 13) 

 

 

8 (4 to 15) 

Period Seizure Free at 

Randomisation (years) 

    Median (IQR) 

 

 

4 (3 to 6) 

 

 

4 (3 to 6) 

 

 

3 (2 to 5) 

Seizure Types  

(n, % answering ‘yes’) 

    Simple Partial 

    Complex Partial 

    Simple Partial with 2° tonic- 

        clonic 

    Complex Partial with 2° tonic- 

        clonic 

    Tonic-Clonic 

    Myoclonic 

    Simple Absence 

    Complex Absence 

 

 

402 (99) 

377 (93) 

377 (93) 

 

316 (78) 

 

158 (39) 

389 (96) 

388 (96) 

394 (97) 

 

 

313 (99) 

293 (92) 

293 (92) 

 

254 (80) 

 

120 (38) 

309 (98) 

305 (96) 

309 (98) 

 

 

197 (100) 

182 (92) 

182 (92) 

 

155 (79) 

 

75 (38) 

183 (93) 

185 (94) 

189 (96) 
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6.3.2 Recurrence Risk Following Antiepileptic Drug Withdrawal 

Figure 17 shows time to first seizure from the date of complete treatment withdrawal for 

the 317 patients who remained seizure free during AED withdrawal.   

 

Figure 17: MRC AEDWS: Time to first seizure post-withdrawal 

Table 16 shows the probability of having a seizure in the next 12 months given that patients 

were seizure free at various time points post-withdrawal.  At three months following 

treatment withdrawal the estimated 12 month recurrence risk was 15% with 95% 

confidence interval (10% to 19%), significantly below the 20% risk bar set by the Driving 

and Vehicle Licensing Agency.  At six months the estimate was 9% with 95% confidence 

interval (5% to 13%). 

Table 16: MRC AEDWS: Probability of having a seizure in next 12 months at time points following 

antiepileptic drug withdrawal for patients who were seizure free during drug withdrawal 

Time post-

withdrawal 

(months) 

Number at 

Risk 

Number of Events 

from baseline 

Probability of seizure in next 12-months given seizure 

free at stated time post-withdrawal (% (95% CI)) 

0 317 0 30 (25 to 35) 

3 257 64 15 (10 to 19) 

6 235 84 9 (5 to 13) 

12 221 96 9 (5 to 14) 

18 188 105 8 (3 to 13) 

24 126 113 5(0 to 11) 
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Univariate regression analyses indicated that the following variables were significantly 

associated with seizure recurrence risk: duration of antiepileptic drug treatment at 

randomisation (≥20 years vs. 3 years - HR: 2.50, 95% CI: (1.05 to 5.98)) and myoclonic 

seizures (present vs. absent - HR: 2.47, 95% CI: (1.01 to 6.06)).  

6.3.3 Risk Following Recurrence and Recommencing Treatment 

 

Figure 18: MRC AEDWS: Time to first seizure from treatment restart 

Table 17: MRC AEDWS: Probability of having a seizure in next 12 months at time points after reinstating 

antiepileptic drug treatment for patients with a seizure recurrence following randomisation 

Time from 

treatment restart 

(months) 

Number at 

Risk 

Number of events 

from baseline 

Probability of seizure in next 12-months given 

seizure free at stated time post-withdrawal  

(% (95% CI)) 

0 127 0 45 (36 to 53) 

3 87 39 26 (17 to 35) 

6 79 47 18 (10 to 27) 

12 68 57 17 (8 to 27) 

18 62 61 12 (4 to 20) 

24 52 68 5 (0 to 11) 

 

Figure 18 shows time from restarting AED treatment to a further seizure recurrence for 

patients who withdrew treatment, had a further seizure and then reinstated treatment.  At 

three months after reinstating treatment the estimated seizure recurrence risk in the next 
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12 months was 26% with associated 95% confidence interval (17% to 35%), while the 

estimate at six months was 18% with 95% confidence interval (10% to 27%) as shown in 

Table 17. 

Univariate regression analyses indicated that the following were significantly associated 

with a seizure recurrence: history of psychiatric disease (present vs. absent - HR: 1.86, 95% 

Confidence CI: (1.07 to 3.23)), history of status epilepticus (present vs. absent - HR: 2.47, 

95% CI: (1.07 to 5.72)) and complex partial seizures with secondary tonic-clonic seizures 

(present vs. absent - HR: 2.14, 95% CI: (1.29 to 3.55)).  

6.3.4 Systematic Review 

In addition to the Antiepileptic Drug Withdrawal study [132], five studies were found that 

met all the inclusion criteria (Lossius [215], Aktekin [216], Specchio [121], Callaghan [217]  

and Overweg [218]).  Lossius, Antiepileptic Drug Withdrawal study and Callaghan were 

randomised controlled trials.  Lossius and Antiepileptic Drug Withdrawal study compared 

withdrawal to non-withdrawal while, in the case of Callaghan, the cohort had been 

recruited into a trial that compared treatment efficacy.  Patients were then followed up to 

the point of AED withdrawal and beyond.  Aktekin, Specchio and Overweg were 

prospective observational studies.  Characteristics of the included studies can be seen in 

Table 18. 



 

 
 

1
4
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Table 18: Studies Meeting the Inclusion Criteria - clinical trials that estimated the risk of seizure recurrence following antiepileptic drug withdrawal in patients of driving age who had 

been free from seizures for at least 24 months whilst on AED treatment 

Study Design 
Number of 

participants 
Setting Age range 

Duration AED 

treatment 

Duration of 

Remission 
Withdrawal policy 

Lossius 

[215] 

Randomised Controlled 

Trial 
168 

Hospital based 

neurological 

outpatient clinics 

18-67 Unknown 2+ years 

AED dose reduction by 

20% of initial dose in 

1
st

 6 weeks and 20% of 

the initial dose every 

2
nd

 week 

Aktekin [216] Observational 79 

Hospital based 

neurological 

outpatient clinics 

Mean ± Standard 

Deviation 

Seizure free: 

38.43±17.35 

Relapsed: 

39.39±13.68 

~ 7 years 4+ years 1/6
th

 every 2 months 

Specchio [121] Observational 330 

Hospital based 

neurological 

outpatient clinics 

< 15: (n=38) 

15-34: (158) 

35-54: (22) 

> 54: (7) 

1+ years 2+ years 

25% of the 

maintenance dose at 

entry was subtracted 

every 3 months or 

longer 

MRC AED Withdrawal 

Study Group [132] 

Randomised Controlled 

Trial 
1013 

Hospital based 

neurological 

outpatient clinics 

Median (IQR) 

27 (17, 42) 
Mean ~ 7 years 2+ years 

Decrements every 4 

weeks 

Callaghan [217] 

Longitudinal Follow-up 

of Randomised 

Controlled Trial 

92 Unknown Mean: 24 Unknown 2+ years 

Dosage decreased by 1 

unit in intervals of 2 

weeks 

Overweg [218] Observational 62 
2 Specialised 

Epilepsy Clinics 
18-60 Unknown 3+ years 

Dosage decreased by 1 

unit in intervals of 2 

weeks 
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Nine other studies (Ohta [219], Shinnar [220], Aldenkamp [221], Mastropaolo [90], 

Ehrhardt [222], Matricardi [91], Arts [94], Bouma [92] and Todt [93]) were found which 

might meet the inclusion criteria listed but further clarification from the authors together 

with individual patient data is required.  For example, some studies in children were long-

term studies and consequently patients may have been at least 16 years of age with at 

least two year remission.  All six included studies reported seizure relapse or recurrence, 

and prognostic factors for seizure recurrence were also reported.  For additional details see 

Table 19.   

There were potentially important differences among the cohorts that could have 

influenced the estimated risks of seizure recurrences.  Two studies recruited only adults 

while four had no age limits.  Specchio recruited patients of all ages, 7% of which were aged 

less than 15 and since data were not available for age subgroups calculations in this review 

were based on the whole study population.  The age of patients in the Callaghan study is 

unclear; the mean age is given as 24 but a standard error is not provided.  The patients 

reported in Callaghan were a subset of 181 patients previously reported in a separate 

publication by Callaghan [223].  Those 181 patients ranged in age from four to 75, however, 

no further information was provided therefore, once again, the whole study population 

was used for the analysis.  Four studies required patients to be in a remission of two or 

more years, one study three or more years and another study four or more years.   

Most of the studies had a low risk of bias, as shown in Table 20. 
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Table 19: Summary of results including predictors for seizure freedom for studies looking at AED withdrawal 

in patients of driving age in remission for at least 24 months on treatment 

Study Results 
Predictors for seizure 

freedom 

Lossius 
Seizure relapse within 12 months: 

7% (non withdrawers), 15% (withdrawers) 

 Prior use of CBZ 

 Neurological 

examination results 

Aktekin 

57% relapsed 

(although 42.8% did not relapse during the discontinuation 

programme) 

 

For patients discontinuing treatment, the probability of relapse 

was 21.4% during the tapering period, 28.6% at 1 month, 14.3% at 

3 months, 3.6% at 6 months, 7.1% at 12 months, 17.8% at 24 

months and 7.1% at 36 months 

 Age at onset  of epilepsy 

 Duration of active 

epilepsy 

Specchio 

In patients continuing treatment, the probability of remission was 

95% at 6 months, 91% at 12 months, 82% at 24 months, 80% at 36 

months and 68% at 60 months  

 

The corresponding values for patients discontinuing treatment 

were 88, 74, 57, 51 and 48% 

 Duration of active 

disease 

 Number of years of 

remission at study entry 

 Psychiatric examination 

results 

AED 

Withdrawal 

Study 

Group 

35% of the randomised patients had a seizure(s) during follow-up  

 

In the slow withdrawal group, 48% seizures occurred in patients 

during AED reduction and 52% after drug withdrawal 

 

In patients continuing treatment, the seizure recurrence per year 

was 14% up to 6 months, 11% up to 12 months, 13% to 18 months, 

11% to 24 months, 9% to 3 years  and 4% to 4 years  

 

The corresponding values for patients discontinuing treatment 

were 40, 37, 16, 14, 6 and 3% 

 Taking two or more AEDs 

at randomisation 

 History of either primary 

or secondarily 

generalised tonic-clonic 

seizure 

 Period free of seizures at 

randomisation 

Callaghan 
Relapse rate 33.7% 

Average duration of remission was 26 months (range 1-62) 

 Number of seizures a 

patient had before 

control was achieved 

 Number of drugs tried as 

single-drug therapy 

 Type of treatment 

withdrawal 

Overweg 

66% patients who completed the study relapsed.  

11% had relapsed by, or prior to, 50% reduction of AEDs, 45% up 

to the point of complete withdrawal of medication and 10 more in 

the following year.   

Three further late recurrences brought the total relapse rate to 

66%. 

 Age at withdrawal 

 Age at onset 

 Age at last seizure 

 Duration of Epilepsy 
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Table 20: Quality Assessment of studies looking at AED withdrawal in patients of driving age in remission for 

at least 24 months on treatment 

Study Item Author’s Judgement Description 

Lossius 

Sequence 

Generation? 
“Randomised in blocks of 10” Low Risk 

Allocation 

Sequence 

Concealment? 

“Receive blindly active medication or placebo in pre-

packed dispensers” 
Low Risk 

Blinding? Double Blind Low Risk 

Aktekin 

Representative of 

exposed cohort? 

Representative of the average epileptic in remission in 

the community 
Low Risk 

Assessment of 

outcome 
Self report (but of obvious outcome) Low Risk 

Adequacy of 

follow-up 
8 years follow-up and only four drop-outs Low Risk 

Specchio 

Representative of 

exposed cohort? 

“Patients discontinuing AEDs were younger, and had a 

poorer education, a shorter disease duration or a normal 

EEG at entry, less frequent seizure relapse after starting 

treatment, a shorter duration of active disease and more 

years of remission” 

High Risk 

Selection of the 

non exposed 

cohort 

Drawn from the same community as the exposed cohort Low Risk 

Assessment of 

outcome 
Self report (but of obvious outcome) Low Risk 

Adequacy of 

follow-up 

16 years follow-up and only 9 drop outs (5 from 

discontinuing group, 4 from continuing group) 
Low Risk 

AED 

Withdrawal 

Study Group 

Sequence 

Generation? 
“Randomisation by minimisation” Low Risk 

Allocation 

Sequence 

Concealment? 

Telephone Service Low Risk 

Blinding? No blinding High Risk 

Callaghan 

Sequence 

Generation? 
Randomisation was based on two Latin squares Low Risk 

Allocation 

Sequence 

Concealment? 

The drug was identified from the randomisation list by a 

person not otherwise involved in the study 
Low Risk 

Blinding? 
The drug was identified from the randomisation list by a 

person not otherwise involved in the study 
Low Risk 

Overweg 

Representative of 

exposed cohort? 

“Heavily weighted with subjects presenting special 

problems, including resistance to therapy.  227 patients 

were nevertheless found who had been seizure-free for 3 

years” 

Low Risk 

Assessment of 

outcome 
Self report (but of obvious outcome) Low Risk 

Adequacy of 

follow-up 

All drop-outs accounted for.  Follow-up continued 

beyond 2 years in some cases 
Low Risk 
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There were also important differences in the policy of AED withdrawal and lack of detail as 

to precisely when AED withdrawal was completed.  In the Lossius study, withdrawal 

commenced one month after recruitment into the study.  In the context of this analysis, 

the mean period of drug withdrawal was 18 weeks which is approximately 4.5 months.  

This is not a reported time point and very difficult to read from the Kaplan-Meier curve.  

Therefore, the mean period was rounded up to six months, a reported time point.  In the 

study reported by Specchio withdrawal is assumed to have taken exactly 12 months.  In 

Callaghan exact time to withdrawal is not known however the Kaplan-Meier curve shows 

the probability of remaining seizure free after the withdrawal of treatment.   

For estimation of the risk of a seizure recurrence in the next 12 months following AED 

withdrawal, Lossius, Specchio, Antiepileptic Drug Withdrawal Study Group and Callaghan 

provide Kaplan-Meier curves with numbers at risk.  Aktekin provides the number of 

patients who had relapsed at various time points and Overweg by the end of the study.  

Table 21 shows estimates for seizure recurrence in the next 12 months at zero, three, six, 

12 and 18 months after antiepileptic drug withdrawal for Lossius, Specchio, Antiepileptic 

Drug Withdrawal Study and Callaghan.  It was not possible to calculate confidence intervals 

for Lossius, Specchio and Callaghan as the number of events or number at risk at time 

points were not given.  Due to differences in study design and lack of sufficient data in 

published literature it was not possible to undertake a meta-analysis of results.  

Immediately following AED withdrawal the risk estimate of a seizure in the next 12 months 

was highest in Antiepileptic Drug Withdrawal Study 30% (95% confidence interval: 25% to 

35%), Callaghan gives a similar estimate at 28%, while the estimate for Lossius was 12% and 

for Specchio, 19%.  At three, six and 12 months following AED withdrawal the estimate 

from the Antiepileptic Drug Withdrawal study is intermediate with Lossius giving a lower 
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risk, Specchio a higher risk and Callaghan giving both lower and higher risks of recurrence in 

the next 12 months. 

For patients who had a seizure recurrence following AED withdrawal and reinstated 

treatment, none of the included papers provide data that enabled a calculation of the risk 

of a seizure recurrence.  

Table 21: Probability of having a seizure in the next 12 months at time points following antiepileptic drug 

withdrawal 

Time post-

withdrawal 

(months) 

Study Number at Risk 
Number of 

Events 

Percentage probability of 

seizure in next 12-months 

given seizure free at stated 

time post-withdrawal 

(95% CI) 

0 

Lossius 

Specchio 

MRC AEDW 

Callaghan 

65 

164 

317 

92 

Unknown 

38 

1 

Unknown 

12 

19 

30 (25 to 35) 

28 

3 

Lossius 

Specchio 

MRC AEDW 

Callaghan 

62 

Unknown 

257 

Unknown 

Unknown 

Unknown 

64 

Unknown 

7 

19 

15 (10 to 19) 

12 

6 

Lossius 

Specchio 

MRC AEDW 

Callaghan 

60 

Unknown 

235 

70 

Unknown 

Unknown 

84 

Unknown 

6 

16 

9 (5 to 13) 

12 

12 

Lossius 

Specchio 

MRC AEDW 

Callaghan 

53 

114 

221 

58 

Unknown 

50 

96 

Unknown 

4 

12 

9 (5 to 14) 

3 

18 

Lossius 

Specchio 

MRC AEDW 

Callaghan 

53 

Unknown 

188 

Unknown 

Unknown 

Unknown 

105 

Unknown 

6 

2 

8 (3 to 13) 

10 

 

6.4 Discussion 

The United Kingdom Driving and Vehicle Licensing Agency take a risk based approach to 

guidance with an individual usually being allowed to regain their ordinary driving license 

once their risk of a seizure in the next 12 months falls below 20% [202].  This re-analysis of 
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data from the Antiepileptic Drug Withdrawal study indicated that for patients who remain 

seizure free during AED withdrawal, the risk of a seizure recurrence in the next 12 months 

immediately following drug withdrawal was 30% (25% to 35%).  Once the patient has been 

seizure free for a further three months the risk is significantly less than 20%, 15% (10% to 

19%), and similarly at later time points.  For patients who have a seizure recurrence during 

or following AED withdrawal and reinstate treatment, their risk of a seizure recurrence in 

the next 12 months immediately after restarting treatment was 45% (36% to 53%) and 

following a further three months seizure freedom the risk was 26% (17% to 35%).  Once the 

patient has been seizure free for six months after restarting treatment the risk estimate 

was below 20% at 18% (10% to 27%) but not significantly so.   

While the Antiepileptic Drug Withdrawal study remains the largest study to assess 

outcomes following AED withdrawal, it does have a number of limitations when used to 

estimate absolute risk of seizure recurrences.  The study is over 20 years old, and 

treatment polices might now differ, particularly given the ever increasing number of AEDs 

available.  Thus there might be important differences in the population of patients offered 

AED withdrawal now compared to 20 years ago.  The ideal study design would be a 

population based cohort study, but the Antiepileptic Drug Withdrawal study was a 

randomized controlled trial designed to compare the policies of continued, or withdrawal 

of, AED treatment, and analyses reported here have used only data for those randomised 

to treatment withdrawal.  Patients entered the study if they were prepared to be 

randomised to either policy and thus selection bias might exist; patients recruited may not 

be representative of the general population as patients at high risk might not have been 

offered entry to the study while patients at low risk might have chosen drug withdrawal 

rather than to join the trial.  Any observational study would suffer from similar selection 

biases as AED withdrawal cannot be imposed upon an unselected population.  A further 

problem with the Antiepileptic Drug Withdrawal Study, and any other outpatient based 
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study of epilepsy, is that seizures are patient reported events and cannot be validated.  

There is thus a risk that patients might under report events, and if this occurred would 

result in an underestimation of the seizure recurrence risk.  

The systematic review identified five studies in addition to the Antiepileptic Drug 

Withdrawal study, three observational studies and two randomised controlled trials.  There 

were potentially important differences among these studies with respect to patient 

populations and withdrawal policy.  Only three of these studies provided data that allowed 

the calculation of seizure recurrence risks following AED withdrawal and at subsequent 

time points.  Lossius reported consistently lower estimates of a seizure recurrence than the 

Antiepileptic Drug Withdrawal Study even though duration of drug withdrawal was 

significantly longer.  Specchio reported consistently higher estimates while Callaghan’s 

results were mixed.  Immediately following AED withdrawal the risk of a seizure in the next 

12 months was estimated at 19% in Specchio, 12% in Lossius and 28% in Callaghan 

compared to an estimate of 30% (25%, 35%) from the Antiepileptic Drug Withdrawal Study.  

Following a further three months seizure freedom after AED withdrawal all four studies 

estimate the risk of a seizure in the next 12 months at below 20%.  Similarly risk estimates 

at subsequent time points are below 20%.      

Confidence intervals for the risk estimates in the published papers were unavailable.  

Parmar et al [224] describe a method to estimate the effective number alive at the start of 

a time interval, the effective number censored in a time interval, the effective number at 

risk in a time interval and the effective number of deaths in a time interval.  The standard 

adaptation of Greenwood’s formula for conditional probabilities, used to estimate the 

confidence intervals in this chapter, requires the number at risk and the number of events 

at each (survival) time point.  Therefore, to obtain confidence intervals for the estimates 

using data from Lossius, Specchio and Callaghan, it would be necessary to calculate the 
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estimates of number of events and number at risk at each possible survival time point 

between estimates (six and 18 months say).  Therefore, although it is possible to calculate 

confidence intervals from the published data, they have not been calculated here which 

means we are reliant on only point estimates.  Ideally, individual patient data would be 

obtained for the studies included in the systematic review and therefore a meta-analysis 

could be performed enabling more reliable estimates concerning risk of seizure recurrence 

to be obtained. 

Data from the Antiepileptic Drug Withdrawal study indicated that patients who withdrew 

AED treatment and then had a further six months of seizure freedom had a risk of a seizure 

recurrence in the next 12 months significantly below 20%.  The current United Kingdom 

guidance therefore avoids allowing patients to return to driving whilst their risk is above 

20%.  In fact the estimate at three months after treatment withdrawal was significantly 

below 20% at 15% (10% to 19%).  It might be therefore that current United Kingdom 

guidance is too conservative and patients might be eligible to return to driving earlier. 

For patients who have a seizure recurrence during or following AED withdrawal and 

reinstate treatment, data from the Antiepileptic Drug Withdrawal study indicated that the 

risk of a seizure recurrence in the next 12 months having been seizure free for six months 

after reinstating treatment was 18%.  However, due to the relatively small sample size, the 

95% confidence interval (10% to 27%) does not exclude a recurrence risk in excess of 20%.  

At three months after recommencing AED treatment, the risk of a seizure in the next 12 

months was estimated at 26% (17% to 35%) while at 12 months after reinstating treatment 

the risk was 17% (8% to 27%).  If the focus is purely upon the point estimates, these data 

suggest that the current United Kingdom legislation is too conservative.  Conversely, the 

new European Union minimum standard appears too liberal.  These data will need to be 
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taken into account by European Union member states as they make decisions about 

adopting the proposed minimum driving standards. 

As highlighted by the systematic review, few published prospective studies have assessed 

seizure recurrence risks following AED withdrawal and none have assessed seizure 

recurrence risks for patients who have a recurrence and reinstate treatment.  Further 

prospective studies are required to inform driving policy and patient counselling.  The 

epilepsies are a heterogeneous group of disorders and it is likely that some patients will be 

at a higher risk of seizure recurrence than others [119, 193, 225] and such studies will need 

to be large enough to allow an examination of predictors of risk.  However, further 

guidance is now required from driving authorities as to if and how to stratify risk when 

considering fitness to drive. 
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Chapter 7: Internal Validation of 

Prognostic Models 

7.1 Introduction 

This chapter begins by explaining the purpose of a prognostic model and therefore 

identifies why validation is an important part of the modelling process.  The chapter then 

goes on to summarise methods for evaluating model performance (section 7.2) and for 

investigating internal validation via apparent (section 7.3.1), split-sample (section 7.3.2), 

cross (section 7.3.3) and bootstrap (section 7.3.4) validation.  Results from the internal 

validation of the prognostic models developed in Chapter 4 are then presented in section 

7.4. 

A predictive model’s purpose is to provide valid outcome predictions for new patients.  

When a prediction model is developed it is important to assess how good the model 

predictions are – this is known as model performance.  The distance between the predicted 

outcome and actual outcome is central to quantifying overall model performance from a 

statistical perspective.  These distances are related to the concept of goodness-of-fit of a 

model with better models having smaller distances between predicted and observed 

outcome. 

Essentially, the dataset used to develop a model is not of interest other than to learn for 

the future.  Validation is therefore an important aspect of the process of predictive 

modelling.  There are two types of validation – internal which assesses model validity for 

the setting where the development data originated from, and external which assesses 

validity in other samples which are fully independent from the development data and 
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originate from different but plausibly related settings.  Internal validity will be considered in 

this chapter whilst external validation will be considered in Chapters 8 and 9. 

7.2 Evaluating Model Performance 

A number of performance measures exist for prediction models many of which are related 

to each other.  From a statistical perspective a small distance between the observed 

outcome and the predicted outcome is desired.  Explained variation can then be used to 

indicate performance and assess the predictability of the outcome.  Measures that are in 

wide use in medical journals today include the concordance statistic (area under the ROC 

curve) for discrimination and various tests for calibration and goodness-of-fit.  

Discrimination and calibration are also considered as measures of external validation.  

Further details about the application of these measures can be found in Chapters 8 and 9. 

7.2.1 Measures of Explained Variation 

In linear regression the coefficient of determination,   , is widely used to indicate how well 

the covariates,  , in the form of a predictor   , ‘reduce the randomness’ in the outcome 

variable   in a particular dataset.     has many attractive properties [226]; it is the square 

of the Pearson correlation coefficient between the predictor    and  , it is maximised by 

the usual least-square or maximum likelihood estimators, it is asymptotically independent 

of the sample size and it is easy to understand and can be explained by graphical means.  

   is a population parameter so it depends not only on   parameters but also on the 

distribution of  .   

For other regression models a similar measure is desired, however, the concept of variance 

or residual variance is more elusive or not uniquely defined.  Generalisation of    to other 

regression models can be done in many ways depending on which properties one wishes to 

retain and which definition one wants to generalise. 
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Various authors have tried to develop a useful    measure for Cox’s model however an 

additional complication in this situation is censoring.  Some authors aim at measuring how 

well the covariates explain the variation in a particular dataset given its censoring structure 

while some aim at measuring how well the covariates actually predict survival in the wider, 

underlying population from which the data were sampled. 

Schemper and Stare [227] suggest that for measures of explained variation for the Cox 

model: the expected value of a measure should not be substantially affected by censoring 

provided that an underlying uncensored population can be assumed [228]; a measure 

should not be affected by monotonic transformation of the time scale as the estimation of 

the coefficients in the Cox model is also invariant to such transformation; a measure should 

have an intuitively clear interpretation [229]; if a dataset could alternatively be analysed by 

a linear model the resulting values of explained variation should be similar for both 

approaches; and a measure should also be robust when applied to mis-specified models.  

There are further criteria [229] which should be met, such as independence from the units 

of measurements of model variables, and a range of possible values between 0 and 1.   

Several measures of explained variation have been suggested for the Cox model.  These are 

outlined in sections 7.2.1.1 to 7.2.1.9 together with a description of their adherence to the 

criteria. 

7.2.1.1 Spearman, Kendall and Somer 

When attempting to measure the correlation between two sets of data, various correlation 

coefficients may be used.  In particular, two non-parametric correlation coefficients are 

Spearman’s rank correlation coefficient,   , and Kendall’s rank correlation coefficient,   

[230].  Of these, Spearman’s is more widely used [231].  In significance testing both 

measures usually produce very similar results [232].  Although Kendall’s   is more 

demanding from a calculation point of view, its distribution approaches normality more 
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rapidly than Spearman’s   .  Additionally, although the two coefficients produce similar 

results, Spearman’s    tends to be larger than Kendall’s   in absolute value [232].  Somers’ 

  is an ordinal measure of association introduced by Somers [233].  It can be defined in 

terms of Kendall’s  .  Both Somers’   and Kendall’s   are conservative estimates of the 

degree of relationship between the dependent variable and the independent variable 

[234].  Somers’   is different from Kendall’s   in that it only makes a correction for tied 

pairs on the independent variable [235]. 

Korn and Simon [236] suggest an approach to calculate Somers’ D which in general requires 

numerical integration and leads to results dependent on the choice of   , a common 

censoring time for all survival times, which cannot exceed the maximum observed survival 

time.  Brown et al. [237] suggested two generalisations of Kendall’s   for censored data 

which are both biased towards zero as their ‘imputation’ for an undefined score from the 

comparison of two survival times does not take into account the correlation of the 

covariates.   

The definition of   -measures based on the squared correlation of the predictor and of 

survival for the general linear model is appealing for its simplicity.  It is obvious that  , 

denoting any of the standard correlation coefficients, has to be replaced by a measure of 

monotonic association as the relationship between predictor and outcome is non-linear but 

usually monotonic.  Furthermore, to be consistent with the Cox model, the measure should 

only use the order of survival times.  Therefore, Spearman’s   , Kendall’s  , Somers’   or 

related measures are appropriate in this situation. 

A hybrid of   and    is     (partial ranking); this coefficient is the Pearson correlation,  , of 

the predictor    and the ranks of survival time  .    It is more consistent with the semi-

parametric character of the Cox model, and its superiority over    can be demonstrated for 

a model with a strong binary and a weak continuous covariate [238].  
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7.2.1.2 Schemper (& Henderson) 

In 1990 Schemper described a  measure,    [239], based on a measure of the proportion of 

explained variation, a generalisation of the sum of squares definition of   , with 

differences being calculated on the axis of survival proportion rather than survival times.  

Schemper also proposed [239] a measure    which is identical to    except for the squaring 

of the averaged residuals which are omitted.     is preferred over    because of the 

consistency with related methodology.  Additionally, in the case of   , the Kaplan-Meier 

estimator produces means of the individual survival process under the assumption of non-

informative censoring and these means minimise the average squared ‘residuals’.  

Both measures are, however, dependent on the amount of censoring and therefore violate 

the first criterion for an assumed uncensored population.  Schemper’s approaches permit a 

very intuitive interpretation:  the measures quantify the degree to which prediction of the 

values of an individual survival process can be improved when replacing the unconditional 

with the conditional expectation (survival functions) of the process. 

None of the measures described in sections 7.2.1.1 and neither    and   , which relate to 

the    definition based on the squared correlation of the predictor and of survival, provide 

an unbiased estimate of the correlation in an uncensored population from a censored 

population [227].  However, in 1997 Schemper accomplished this using multiple imputation 

[240].  In this technique, censored survival times are terminated with random residual 

lifetimes to become uncensored survival times.  The algorithm enforces consistency with 

the estimates from the Cox model and with observed conditional distributions of survival 

times.  Several such augmented datasets are generated, a measure of association between 

survival and predictor being calculated for each and the squared average association taken 

as the explained variation. 
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With the multiple imputation algorithm, proposed by Schemper [240], the computed 

values of all rank correlation measures considered in section 7.2.1.1,   
 ,    

 ,    and   , are 

unaffected by censoring and are also invariant under transformation of survival time.  Only 

   
  is sensitive to transformation of the explanatory variables, thus being more consistent 

with the assumptions underlying the Cox model than the others.  Also, the criterion of good 

intuitive interpretability and simplicity is fulfilled. 

In 2000, Schemper and Henderson [238] suggested a new measure of the proportion of 

variation of possibly censored survival times explained by a given proportional hazards 

model.  The proposed measure, termed  , shares several favourable properties with the 

earlier    but also improves the handling of censoring.  The statistic contrasts distance 

measures between individual survival processes and fitted survival curves with and without 

covariate information.  Schemper and Henderson recommend graphical comparisons of 

survival curves for prognostic index groups to improve the understanding of obtained 

values.  The main advantages of the new measures are correction for the weakness in the 

handling of censoring [241] and direct estimation of well-defined population quantities. 

7.2.1.3 Korn & Simon 

Korn and Simon [236] suggest using the proportion of explained variation measure in the 

context of survival data.  Apart from the squared difference, they consider other possible 

forms of the distance of the response    from a central location parameter, unconditional 

or conditional on a given model and covariate vector    for the     observation.  The 

problem with survival data is these distances usually cannot be calculated because of the 

censoring in  .  To overcome this problem Korn and Simon [236] do not use the actual 

survival times, but times derived from the predicted survival functions.  Thus the actual 

survival times are used only in fitting the model, while in calculating the distance for an 
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individual an expected value of the distance of   from its predictor is calculated where   is 

distributed according to the estimated survival function for individual  . 

This measure is dependent on the amount of censoring so violates the criterion for an 

assumed uncensored population.  Furthermore, this approach also violates another 

criterion as the required differences in the time scale make their measure dependent on 

transformations of time; measures for two Cox models with identical regression 

coefficients can therefore differ.  This measure quantifies the degree to which prediction of 

the time of death, within a range of interest, can be made more precise when replacing 

unconditional by conditional survival functions.   

7.2.1.4 Graf & Schumacher 

Graf and Schumacher [241] investigated relationships of Korn and Simon’s [236] explained 

variation measure based on integrated binary squared loss and of Schemper’s [239]   .  

They also dealt with the interesting aspect of describing explained variation in the course of 

time rather than averaging over time.  The resulting measures are similar to those of 

Schemper et al. [227, 238-240]. 

7.2.1.5 Nagelkerke 

Nagelkerke [226] suggested the use of likelihood based measures,    
     

  

  
     

where    is the likelihood for the model without predictors (otherwise known as the 

intercept model) and    is the likelihood for the full model, for the Cox model which will 

work for time dependent     .  There are three possible definitions of  ;   is the total 

sample size including censored observations which had been proposed already in 1988 by 

Kent and O’Quigley [242],   is the number of uncensored observations i.e. (for continuous 

time) the number of failure times, or   is 2log (cardinality of the outcome space). 
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Additional requirements should be imposed to make a choice; the definition of   should be 

meaningful in the context of conditional logistic regression, for which there are no 

censored observations, and joining or splitting of datasets from the same population 

should not (much) affect the value of   .  This leaves only the number of uncensored 

observations, failure times, as a valid choice.  For tied data Nagelkerke suggests taking the 

number of failures and not the failure times.   

This likelihood based measure is a reasonable measure of how well the covariates reduce 

the randomness in a particular dataset with particular censoring properties.  It is easy to 

calculate and to interpret, also for time dependent     , but it depends on the censoring 

pattern.  The dependency is usually not very much if the proportional hazards assumption 

is correct and the censoring is random – the distribution of      changes with time and 

censoring removes more late failure times than early failure times, but the effect is usually 

small [226].   

7.2.1.6 Haegerty & Zheng 

Haegerty and Zheng (2005) link predictive accuracy to sensitivity and specificity of a marker 

M (e.g.   ) at any time point where sensitivity is              and specificity is 

            .  This leads to time dependent ROC curves.  The suggested measure is 

the weighted average of the areas under the curve of such curves. 

7.2.1.7 O’Quigley 

O’Quigley et al [243] derived a ‘variance’ measure on the basis of squared Schoenfeld 

residuals [173].  It is based on predicted covariates at failure times rather than predicted 

survival time.  The measure is elegant and stays close to properties of the proportional 

hazards model.  However, it is focused on a specific dataset, does not have an intuitive 

interpretation and has little meaning outside the proportional hazards setting. 
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7.2.1.8 Kent & O’Quigley 

Kent and O’Quigley [242] apply the information gain approach of Kent [244] to their 

measure.  They use the fact that estimates of the coefficient in the Cox model are invariant 

under monotonic transformation of the time scale to choose a Weibull model for the 

baseline hazard.  In their paper, Kent and O’Quigley also present a simple approximation 

for squared multiple correlation coefficients   
 ,     

 , and a related simple measure    
 .  

The usage of expected log-likelihoods makes   
  independent of censoring.  The measures 

  
 ,     

  and    
  fulfil the first  and second of Schemper and Stare’s [227] criteria. 

7.2.1.9 Maddala 

Maddala’s   
  is appealing as it is easily calculated and is equal to the usual    in linear 

regression under normally distributed errors [245].  It is not affected by monotonic 

transformation of the time scale, but it violates the first criteria, its expectation being 

affected by censoring.  Under no censoring, Kent and O’Quigley’s   
  is not necessarily 

close to Maddala’s   
 , because the likelihoods are calculated based on the densities of the 

extreme value distribution and not using partial likelihoods [239].   

7.2.1.10 Conclusion 

The proportion of variation in a response variable that is explained by a fitted model is 

often used in statistical modelling to summarise the fit of the model.  A number of 

measures of explained variation have been proposed for use in modelling survival data, 

which are analogues of the    statistic that is widely used in linear regression analysis. 

There are clearly other possibilities to those listed in section 7.2.1 for measures of 

explained variation.  According to Nagelkerke [226], nobody has looked at the reduction by 

using covariates in the predicted time span that an individual will die with       

probability.  This has direct relevance for doctors and patients and also has meaning 
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outside the context of specific models.  This proposal however lacks all the invariance 

properties of the proportional hazards model. 

Schemper and Stare [227], in a review of new measures for explained variation, conclude 

that no particular statistic can be recommended for general use.  Moreover, the most 

satisfactory measures are more difficult to compute.  For this reason, measures of 

explained variation are not routinely used in modelling survival data [167]. 

7.2.2 Discrimination 

Harrell’s   
  [246] has been shown to be inadequate as a measure of proportion of 

explained variation [239].  The explained proportion of log-likelihood does not permit an 

analogous interpretation of explained variation for the dependent variables, its values 

being implausibly low when compared with all other measures.   

Harrell also suggested the  -index [247] which is based on pairwise comparisons of 

individuals in a sample for which the shorter life-time is uncensored.  Each pair is either 

‘concordant’ (one individual has higher values on both covariate and survival time), 

‘discordant’ (the individual with a lower value on one covariate has a higher value on the 

other) or ‘uncertain’ (explanatory variable    is tied).  This  -index, the ‘explained 

proportion of concordances’ can be transformed to Somers’  .  The  -index is frequently 

used, typically ranges between 0.5 and 1, and cannot be regarded as a measure of 

explained variation although it can be used as a measure of discrimination. 

Discrimination refers to a model’s ability to correctly distinguish the two classes of 

outcome [248].  A model with good discrimination ability produces higher predicted 

probabilities for subjects who had events than subjects who did not have events.  The area 

under the ROC curve is one of the most used measures for model discrimination [249] and 

relates to Harrell’s   statistic described in further detail in Chapter 8.  In the literature a 



 

167 
 

value of more than 0.70 for the area under the ROC curve is considered satisfactory for 

discrimination [250]. 

7.2.3 Calibration 

Model calibration describes how well the estimates of survival from the model correspond 

to the survival from the observed data [251, 252] and can be described as a measure of the 

extent of bias in a model [184].  A model is well calibrated when predicted and observed 

values agree for any reasonable grouping of the observation, ordered by increasing 

predicted values.  A common form of the calibration statistics is based on the Pearson χ2 

statistic that compares the observed and expected outcomes within each group defined by 

the rank ordering of the predicted probabilities [253].   

In a survival context the calibration of a model is usually studied at fixed time points.  For 

these time points grouped patients can be considered with sufficient numbers per group to 

allow for calculation of survival rates with the Kaplan-Meier method [254].  This observed 

survival is compared with the mean predicted survival from the prognostic model.   

7.3 Internal Validation of Prediction Models 

Internal validation assesses model validity for the setting where the development data 

originated from [8].  It is important to obtain an honest estimate of performance for 

patients that are similar to those in the development sample.  Several techniques are 

available to assess internal validity such as apparent validation, split-sample validation, 

cross-validation and bootstrap validation.   

7.3.1 Apparent Validation 

With apparent validation, model performance is assessed directly in the sample from 

where it was derived, but this leads to a biased estimate of performance as model 

parameters were optimised for the sample [8].  However all of the available data is used to 
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develop the model and all of the data is used to test the model hence the procedure gives 

optimistic but stable estimates of performance. 

7.3.2 Split-sample validation 

With split-sample validation, the sample is randomly divided into two groups.  In one group 

the model is created and in the other the model performance is evaluated.  Typical splits 

are fifty-fifty or two thirds to one third. 

If samples are split fully at random, imbalances may occur with respect to the outcome and 

the distribution of predictors.  For predictors with skewed distributions the consequences 

may be even worse.  Stratifying the random sampling by outcome and relevant predictors 

may alleviate this problem. 

There are many drawbacks to split-sample methods [254-256] - only part of the data is 

used for model development which leads to less stable model results compared with 

development with all development data i.e. there are problems related to variance.  There 

are also problems related to bias - an assessment of the performance is obtained when 

part of the data is used.  The performance of a model based on the full sample is actually 

required. 

Split-sample validation is a classical but inefficient approach to model validation [8].  

Simulation studies have shown that large sample sizes are required to make split-sample 

validation reasonable [257] but with large samples, the apparent validity is already a good 

indicator of model performance.  Steyerberg [8] therefore concludes that split-sample 

validation is a method that works when it is not needed.  

7.3.3 Cross-validation 

Cross-validation is an extension of split-sample validation aiming for more stability [8].  A 

prediction model is again tested on a random part that was left out from the sample and 



 

169 
 

the model is developed in the remaining part of the sample.  However in cross-validation 

this process is repeated for consecutive fractions of patients.  For example, the dataset may 

be split into deciles with model development in nine of the ten and testing in one of the 

ten, which is repeated ten times.  In this way all patients have served once to test the 

model.  The performance is commonly estimated as the average of all assessments [254]. 

Cross-validation can use a larger part of the sample for model development than split-

sample validation which is an advantage.  However, the cross-validation procedure may 

need to be repeated several times to obtain stable results.  The most extreme cross-

validation is to leave out each patient once, which is equivalent to the jack-knife procedure 

[258] but with large numbers of patients, this procedure is not very efficient. 

Cross-validation may not properly reflect all sources of model uncertainty, such as that 

caused by automated variable selection methods.  The underestimation of variability is 

easily recognised for jack-knife cross-validation, where the development sample is identical 

to the full sample except for one patient [258], hence the same predictors will generally be 

selected in each jack-knife sample as in the full sample.  Such model uncertainty can better 

be reflected with bootstrap validation. 

7.3.4 Bootstrap Validation 

Bootstrapping reflects the process of sampling from the underlying population.  Bootstrap 

samples, which are of the same size as the original sample, are drawn with replacement 

from the original sample, reflecting the drawing of samples from an underlying population 

[258].  In the context of model validation, 100-200 bootstraps may often be sufficient to 

obtain stable estimates.   

For bootstrap validation a prediction model is developed in each bootstrap sample.  This 

model is evaluated both in the bootstrap sample and in the original sample.  The difference 
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in performance indicates the optimism which is subtracted from the apparent performance 

of the original model in the original sample [254, 257-259]. 

There are many advantages of bootstrap validation; the optimism-corrected performance 

estimate is stable since samples of size   are used to develop the model as well as to test 

the model.  This is similar to apparent validation and an advantage over split-sample and 

cross-validation methods.  Compared with apparent validation, some uncertainty is added 

by having to estimate the optimism.  When sufficient bootstraps are taken, this additional 

uncertainty is however negligible. 

Additionally, bootstrap validation can appropriately reflect all sources of model 

uncertainty, especially variable selection [260].  Disadvantages of bootstrap validation, and 

other resampling methods such as cross-validation, include that only automated modelling 

strategies can be used, such as fitting a full model without selection, or following an 

automated stepwise selection approach. 

7.4 Internal Validation of the SANAD Models 

Analyses were undertaken using R version 2.9.2 [182]. 

It is of importance to determine whether the models presented in Chapter 4 are good at 

predicting outcome.  The SANAD dataset is a large dataset and therefore it is unsurprising 

that nine prognostic factors were identified.  Of greater importance than the statistical 

significance of these covariates is the ability of the models to predict outcome.  

Consequently, internal validation was performed with bootstrap resampling to assess this.   

To assess explained variation, the Nagelkerke    measure of model fit was estimated.  As 

described in 7.2.1.5, Nagelkerke’s measure is easy to calculate and interpret.  It is also 
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readily available in statistical software packages and the most frequently reported    

measure [261].  For these reasons it was our preferred measure.   

The bootstrap resampling approach was applied to assess the extent of model over-

optimism (overfitting) in the final model using 200 bootstrap resamples.  The bootstrap 

validation method was preferred as the optimism-corrected performance estimate is 

stable.  This is an advantage over split-sample and cross-validation methods.  Additionally, 

bootstrap validation can reflect all sources of model uncertainty and does not lead to 

biased estimates of performance, unlike apparent validation, if sufficient bootstraps are 

taken (section 7.3.4).  The bootstrap resampled estimate of    was produced to give an 

improved estimate of model accuracy.   

Model discrimination was considered via Harrell’s  -statistic, again bootstrapped over 200 

resamples.  Finally, calibration plots were produced using the same 200 bootstrap 

resamples.  Graphical results can be easier to interpret than p-values, therefore we 

preferred calibration plots over the use of Pearson’s    statistic [238]. 

7.4.1 Time to Treatment Failure 

The Nagelkerke    measure of model fit was 0.133.  This suggested that the covariates 

reduce the randomness in the SANAD dataset by 13%.  This is a low value however, as 

explained above, the    measure is not ideal for Cox models.  The bootstrap resampled 

estimate of    was 0.139 suggesting that model under-optimism was only 1%. 

The concordance statistic was 0.596 for the model and for the bootstrapped model it was 

0.600.  These values differ by only 0.004 which suggested that there is little under-

optimism.  The  -statistic of 0.6 showed that the model accurately discriminated patients 

60% of the time.  Given the desire was to predict patients with poorer outcome our  -

statistic represents reasonable internal validation. 
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Calibration plots at one, two and three years can be seen in Figure 19, Figure 20 and Figure 

21 respectively.  If the model was perfectly calibrated at each time point the predicted 

(blue lines) and observed (black lines) values would sit perfectly on each other.  In the case 

of the SANAD model for time to treatment failure, the predicted and observed lines are not 

perfectly matched although they are close, especially at two and three years.  Therefore, 

there is no reason to doubt the internal validity of the time to treatment failure model for 

the SANAD data. 

 

Figure 19: The SANAD Trial – arm A: Calibration plot for time to treatment failure (Table 6, Chapter 4) at 1 

year 
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Figure 20: The SANAD Trial – arm A: Calibration plot for time to treatment failure (Table 6, Chapter 4) at 2 

years 

 

Figure 21: The SANAD Trial – arm A: Calibration plot for time to treatment failure (Table 6, Chapter 4) at 3 

years 

7.4.2 Time to 12 Month Remission 

The Nagelkerke    measure of model fit was 0.118 suggesting that the covariates reduced 

the randomness in the SANAD dataset by 12%.  The bootstrap resampled estimate of    

was 0.144 suggesting that model under-optimism was only 3%. 
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The concordance statistic was 0.665 for the model and for the bootstrapped model it was 

0.666.  These values differ by only 0.001 which suggested that there was little under-

optimism.  The  -statistic of 0.7 showed that the model accurately discriminated patients 

70% of the time which therefore suggested acceptable internal validation [139, 262].   

Calibration plots at one, two and three years can be seen in Figure 22, Figure 23 and Figure 

24 respectively.  In the case of the SANAD model for time to 12 month remission, the 

predicted and observed lines are very close at two and three years suggesting good model 

validity.  At one year the lines are not very close suggesting that the model does not fit the 

data particularly well at one year.  This may be because approximately 30% of patients 

achieved remission immediately at 365 days.  Therefore more sophisticated techniques 

may be needed to take account of this in the modelling process.  Mixture modelling is used 

in Chapter 10 to see if this patient subgroup, together with those who achieve remission 

but at a later time point, and those who do not achieve remission, can be modelled more 

appropriately.   

 

Figure 22: The SANAD Trial – arm A: Calibration plot for time to 12 month remission (Table 9, Chapter 4) at 1 

year 
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Figure 23: The SANAD Trial – arm A: Calibration plot for time to 12 month remission (Table 9, Chapter 4) at 2 

years 

 

Figure 24: The SANAD Trial – arm A: Calibration plot for time to 12 month remission (Table 9, Chapter 4) at 3 

years 

7.5 Conclusion 

Prognostic models have many uses such as guiding health-care policy, determining study 

eligibility of patients for new treatments, defining inclusion criteria for clinical trials to 

control for variation in prognosis, and selecting appropriate tests and therapies in 
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individual patient management including supporting decisions on withholding or 

withdrawing therapy.  The evaluation of prognostic models has become an increasingly 

important topic with a rise in the number of such models in the public domain.  There has 

therefore been a requirement to evaluate and validate prediction models.  There are three 

main ways that a model can be evaluated and two ways that a model can be validated.   

In section 7.2.1 a number of measures of explained variation were proposed for evaluating 

survival data, which are variations of the    statistic that is widely used in linear regression 

analysis.  Schemper and Stare [227], in a review of new measures for explained variation, 

concluded that no particular statistic could be recommended for general use.  Moreover, 

the most satisfactory measures are more difficult to compute [167].   

Overall statistical performance measures incorporate both calibration and discrimination 

aspects.  Discrimination was described in section 7.2.2.  It relates to how well a prediction 

model can discriminate those with the outcome from those without the outcome.  

Calibration, described in section 7.2.3, relates to the agreement between observed 

outcomes and predictions.  Studying discriminative ability and calibration is often more 

meaningful than an overall measure such as    when the quality of model predictions for 

individuals needs to be appreciated [8].  

A model is developed within a representative sample of patients from an underlying 

population.  This underlying population has specific characteristics.  At least the internal 

validity, or reproducibility, of the predictive model should be determined for the underlying 

population.  This can be done by testing the model in the development sample by either 

apparent, split-sample, cross or bootstrap validation as outlined in section 7.3.  

Bootstrapping appears most attractive provided that all modelling steps can be replayed 

which may sometimes be difficult. 
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Having applied bootstrap resampling to the SANAD models for time to treatment failure 

and time to 12 month remission (sections 7.4.1 and 7.4.2), it was found that both models 

showed signs of fairly good internal validation.  There are concerns over the validity of the 

12 month remission model at one year.  However, in Chapter 10 mixture modelling 

techniques will be employed to attempt to better account for the patient subgroups – 

immediate remission at 365 days, delayed remission and no remission.   

Further work is now needed to validate the models in external data.  A simulation study 

assessing methods for external validation is presented in Chapter 8 while an application of 

the results of the simulation study to real data can be found in Chapter 9. 
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Chapter 8: Externally Validating 

Prognostic Models – Simulation 

Study 

8.1 Introduction 

In Chapters 4, 5 and 6, I developed prognostic models for various patient groups and 

various outcomes.  Before a predictive or prognostic model can be introduced into general 

practice, it should be externally validated to ensure that it performs satisfactorily in 

datasets that are fully independent of the development data.  In theory the dataset used to 

externally validate the model will be plausibly related to the development data meaning 

that both datasets will effectively be samples taken from the same ‘super-population’ [8].  

Therefore this chapter will now examine external validation methods, while Chapter 9 will 

apply the results of this chapter to real data. 

This chapter begins with an overview of types of external validation (section 8.2), a 

literature review (section 8.2.1) and a summary of the most commonly employed methods 

of external validation (sections 8.2.2 to 8.2.6).  Methods for handling missing data within 

covariates are then presented in section 8.3 together with possible adaptations of these 

methods to the situation of handling a covariate missing from the validation dataset.  A 

simulation study which compares the performance of methods of external validation and 

also compares the performance of methods of handling a covariate missing from the 

validation dataset is then presented in section 8.4. 

As yet, very few authors externally validate their predictive model(s).  This may be due to a 

lack of evidence as to the best method to apply or perhaps because it is difficult to identify 

comparative studies that provide information on the same set of potential confounders 
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[263] and consequently the development and validation datasets are unlikely to provide 

information on the same set of potential confounders.  There is no literature available on 

how to deal with this situation apart from the suggestion of filling in any gaps with a 

constant value [8].   

Initial work has been presented for missing covariates in an individual patient data meta-

analysis [263] via way of a bivariate random-effects meta-analysis.  For this method 

information is used from all available cohorts while adjusting for all the potential 

confounders; fully adjusted and partially adjusted estimated effects are used in cohorts 

with full confounder information together with an estimate of their within-cohort 

correlation.  This method cannot be used as a method of external validation with a 

validation dataset missing a covariate because the method [263] assumes that full and 

partial covariate models are correlated and that this correlation is similar across trials – 

with one development dataset and one validation dataset this is a big assumption to make. 

Prognostic models have many uses such as guiding health-care policy, determining study 

eligibility of patients for trials of new treatments, defining inclusion criteria for clinical trials 

to control for variation in prognosis, and selecting appropriate tests and therapies in 

individual patient management including supporting decisions on withholding or 

withdrawing therapy.  The evaluation of prognostic models has become an increasingly 

important topic recently with an increase in the number of such models in the public 

domain.   Therefore prognostic models must be externally validated and consequently 

simple but reliable methods for external validation, especially in the common situation of 

covariates missing from the validation dataset, must be determined. 

In what follows, the data used to derive the model will be referred to as the development 

dataset.  The external, independent, data used to validate the model will be referred to as 

the validation dataset. 



 

181 
 

8.2 External Validation 

The purpose of a prognostic model is to provide valid outcome predictions for patients.  

Before a prognostic model is used in clinical practice it is important to have an indication 

that the model would work well on a second similar cohort to that used to develop the 

model.  External validity, also known as generalisability or transportability, is essential to 

support general applicability of a prediction model to populations that are ‘plausibly 

related’.  The definition of plausibly related populations requires subject knowledge as it is 

not self-evident.  Steyerberg [8] defines such populations as those that can be thought of as 

parts of a ‘super-population’ and therefore populations that have matching covariates.   

There are different types of plausibly related populations leading to several variations of 

external validation: temporal, geographic and fully independent [8].  With temporal 

validation, a predictive model is validated in more recently treated patients.  This may be 

achieved straightforwardly by splitting the development data into a part containing early 

treated patients, used to develop the model, and another part containing the most recently 

treated patients, used to assess the performance.  An alternative is a prospective 

application of the model in a specifically collected cohort. 

With geographic validation, a predictive model is validated according to site.  It can be 

labelled leave-one-centre-out cross-validation.  In geographic validation, the splits are not 

at random unlike in standard cross-validation.  A drawback of geographic validation is that 

validation samples may get quite small, leading to unreliable results.  

With fully independent validation, a predictive model is validated by independent 

investigators.  Other investigators may use slightly different definitions of predictors, 

outcome and study patients that are differently selected compared with the development 

setting.  Fully independent validation studies often provide more unfavourable results than 

temporal or geographical external validation [8].  If model performance is found adequate 
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by fully independent investigators the validation is more convincing than when found by 

the investigators who developed the model. 

There are several main considerations when validating a model such as study design, 

measuring the intrinsic prognostic information, comparing predictions with observations, 

quantifying the performance of a model and pre-specifying adequate performance [264].  A 

system, however, can never be fully validated – you can never be certain that it will apply 

to the next suitable patient or subject [264, 265].   

There are a  few inter-related reasons why prognostic models may not perform well such as 

deficiencies of standard modelling methods, deficiencies in the design of prognostic studies 

and non-transportability of models [264].  In terms of inadequate model development, the 

sample size may be relatively small, or patients may be selected from a single centre.  Also, 

statistical analysis may often be suboptimal e.g. with stepwise selection in relatively small 

samples with many potential predictors, and no shrinkage of regression coefficients to 

compensate overfitting [8].  Other explanations include true differences between 

development and validation settings, especially in coding of predictors and outcome.  

Moreover, variables required for a model may not be available at validation.  

External validation is often referred to in the discussion section of a paper however it is 

unusual for external validation results to be presented.  This may be because there is a 

variety of methods but no direct comparison of them and therefore it is difficult to know 

which methods to apply.  Additionally, it may be because a suitable dataset for validation is 

missing a significant covariate.  Again there are no published guidelines on how to handle 

this situation.  This chapter addresses both of these issues.   
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8.2.1 Literature Review 

There are several well-known examples of predictive models or indices used in medicine.  

Two such models are the Framingham risk prediction model for atherosclerotic 

cardiovascular disease [266] and the Nottingham Breast Cancer Index [267].  The 

performances of the models or indexes have been evaluated differently but authors of 

both have a common aim to ensure that the models perform sufficiently well and perform 

suitably in relation to prior knowledge.  Neither model has been externally validated in the 

true sense but both have been validated sufficiently to be accepted into general clinical 

practice. 

The Framingham model [266] was assessed via discrimination and calibration.  In addition, 

the sensitivity of the top quantile resulting from the model was considered and finally,  the 

performance of the model was compared with that of another popular Framingham risk 

score [268] in terms of survival probabilities.  The Nottingham Breast Cancer Index [267] 

was assessed by comparing the performance of the index with that of the most significant 

factor alone in terms of survival probability.  Additionally the index was compared with an 

earlier criterion for poor prognosis, again in terms of survival probabilities.  In addition they 

considered a group of patients in the lowest quantile in terms of expected and observed 

survival and finally they examined the performance of the new index as a predictor of five 

year survival. 

A literature review was undertaken to summarise characteristics of other previous studies 

that have externally validated a prognostic model.  Any studies, excluding laboratory based 

ones, in which a prognostic model was externally valid were included.  Information was 

collected on the size of the development dataset, the size of the validation dataset, the 

type of outcome measure, the number of covariates included in the development model, 

external validation methods and methods for handling covariates missing from the 
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validation dataset.  A summary of the prognostic models was also obtained together with a 

description of the similarity in the data between the development and validation datasets. 

The following strategy was used in MEDLINE which was searched from 2002 to 9th June 

2011 – the last ten years was chosen to reflect the large volume of prognostic models 

published in recent years. 

1. (Prognostic adj (model* or factor*)).ti. 

2. (Predictive adj (model* or factor*)).ti. 

3. 1 or 2 

4. validat*.tw. 

5. 3 and 4 

6. limit 5 to yr="2002 - 2011" 

 

One hundred and nine studies were found that met the inclusion criteria.  Of these, 29 

externally validated at least one previously published prognostic model, 38 validated a 

previously unpublished Cox proportional hazards model and 35 validated other 

unpublished models while seven did not mention the type of model being validated.  The 

unpublished models that were not developed via the Cox model were developed using a 

variety of methods including Monte Carlo Markov Chains, regression (parametric, logistic, 

linear, fuzzy logic, bivariate), recursive partitioning, proportional odds, Bayesian networks, 

Generalised Estimating Equations, Artificial Neural Network and Real Time-Quantitative 

Polymerase Chain Reaction.  Table 22 summaries the size of the development and 

validation datasets, the number of covariates and the methods of external validation per 

validated model type: published, unpublished Cox, unpublished other and not specified. 
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Overall the median size of the development dataset was larger than that of the validation 

dataset.  On an individual level there were many occasions where the validation dataset 

was larger than the development dataset irrespective of the type of model being validated.  

In most cases only a few covariates were included in the model, irrespective of the type of 

model being validated although, of course, there are many exceptions to this.  Most 

authors only employed one method of external validation while some listed up to seven.  

There was also large variation in the description of the methods.   



 

 
 

1
8
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Table 22: Summary of Literature Review identifying studies which externally validated a prognostic model.  Entries are numbers of studies (percentage) 

 
Published 

(n=29) 
Unpublished Cox 

(n=38) 
Unpublished other 

(n=35) 
Not specified 

(n=7) 
Total 

(n=109) 

Summary Statistics  

Size of Development Dataset, 
Median (IQR) 

395 (150, 1298) 337 (124, 851) 478.5 (213, 2763) 124 (62, 174) 395 (151.5 to 1348) 

Size of Validation Dataset, 
Median (IQR) 

280 (117, 1230) 158.5 (110, 449) 280 (116, 1351) 189 (103.5, 306) 280 (115.5 to 1318) 

Number of covariates in the model, 
Median (IQR); Maximum 

4 (5, 7); 11 4 (3, 6); 12 5 (4, 7); 20 5 (3, 5); 6 5 (4 to 7); 20 

Number of external validation methods used, 
Median (IQR) 

1 (1, 2) 1 (1, 2) 2 (1, 2.5) 1 (1, 1.5) 1 (1, 2) 

Methods  

Discrimination 
    c-statistic 
    Other* 

 
15 
2 

 
16 
4 

 
20 
3 

 
3 
0 

 
54 
9 

Repeat analysis and compare results 6 12 6 2 26 

Calibration 
    Hosmer-Lemeshow 
    Plots 
    Other* 

 
4 
3 
1 

 
1 
2 
1 

 
5 
2 
3 

 
0 
1 
0 

 
10 
8 
5 

Graphical comparison via    1 5 2 0 8 

Comparison of analysis product 
       
    Proportion of separation 
    t-test 
    Other* 

 
1 
0 
1 
5 

 
2 
1 
0 

10 

 
3 
2 
3 
7 

 
2 
0 
1 
1 

 
8 
3 
5 

23 

Comparison of accuracy 
   Brier 
   Sensitivity/Specificity 
   Positive predictive value 
   Negative predictive value 
   Other* 

 
1 
1 
2 
1 
3 

 
0 
1 
1 
1 
3 

 
1 
5 
4 
4 
1 

 
1 
0 
0 
0 
1 

 
3 
7 
7 
6 
8 

Other methods (Cochrane-Armitage, trend test, two-way 
ANOVA, Sheffé procedure, shrinkage etc.) 

3 4 4 0 11 
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In general, discrimination (n=63), calibration (n=23) and comparison of analysis product 

(n=39) such as prognostic separation, were the most frequently implemented methods of 

external validation.    Other frequently employed methods of external validation were 

comparison of accuracy (n=31) and repetition of the analysis with comparison of the results 

(n=26).  Accuracy of models is frequently compared via sensitivity, specificity, positive 

predicted value and negative predictive value.  Sensitivity and specificity are statistical 

measures of the performance of a classification function.  Sensitivity measures the 

proportion of actual positives which are correctly identified as such while specificity 

measures the proportion of negatives which are correctly identified [269].  The whole point 

of a prognostic model is to use it to make a prognosis, so it is important to know the 

probability that the model will give the correct prognosis.  The sensitivity and specificity do 

not give us this information.  Instead the data can be approached from the direction of the 

results, using predictive values - the positive predictive value is the proportion of subjects 

with positive results who are correctly identified while the negative predictive value is 

defined as the proportion of subjects with negative results who are correctly identified 

[270].  The latter tend to be used for diagnostic tests although it can be adapted to other 

situations. 

Many of the methods identified in the literature review are dependent on the type of 

model being validated.  For example, positive and negative predictive values are most 

appropriate for models concerning diagnosis while the  -statistic can be used to measure 

the predictive power of any model [271] and the area under the ROC curve can be used to 

test the ability of a model to correctly classify those with and without the disease or event 

as appropriate [272]. 

Only one study considered how to handle a covariate missing from the validation dataset.  

In Mekhail’s study [273] variables with a lot of missing data were not considered when the 
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model was re-developed using the validation dataset therefore the variables were forced 

to be missing from the validation dataset.  Risk groups were developed using the 

development data and also using the validation data and were then compared.  Any other 

study that mentioned missing data did so in the context of missing data within a covariate 

only.  In most cases however, the validation datasets were collected specifically for 

validating a prognostic model, hence missing covariates were not an issue. 

There is little evidence in the literature as to how to externally validate prognostic models 

and even less on which methods should be used in preference.  In the literature review 

four broad methods of external validation were found: repeat analysis with comparison of 

results, comparison of observed and predicted values, calibration and discrimination.  

Although we found 109 studies which had made some attempt to externally validate a 

prognostic model many hundreds or even thousands of models for clinical prediction 

(prognosis or diagnosis) are published in the medical literature every year [274].  Therefore 

it seems that external validation is still infrequently implemented and often poorly 

reported. 

Some methods of external validation are now described. 

8.2.2 Predictive Performance 

Proving that a model has good predictive qualities is not trivial.  Several statistical measures 

have been proposed for this purpose and deciding which is the most suitable can often be 

challenging and will depend, not only on the type of outcome the model is predicting, but 

also on the clinical area within which it is being utilised as predictive values calculated in 

one clinical setting are not necessarily applicable in another.  Popular choices of outcomes 

are continuous and binary however they are not exclusive as time-to-event outcomes are 

also useful.  Censored observations are inherent to time-to-event datasets and survival 

analysis methods such as the Cox proportional hazards model are required to deal with 
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them.  This censoring also necessitates special consideration when testing the performance 

of survival models. 

Jorgensen [275] summarises such tests for binary and continuous outcomes but does not 

provide a summary for survival outcomes.   In the case of binary outcomes goodness of fit 

via the Brier score, calibration, and sensitivity and specificity are considered.  ROC curves 

are reviewed which determine a threshold probability above which a drug will not be 

prescribed, for example.  To determine a model’s diagnostic accuracy, positive and 

negative predictive values are suggested while contingency tables are recommended to 

calculate the measure of discriminatory ability.  These methods constitute a toolkit for 

assessing how well a model fits a dataset, as well as how it performs in reflecting the true 

situation both at the population and at an individual level.  However, none of these 

methods give consideration to the clinical consequences of applying the model in practice 

and as a result the conclusions can sometimes be misleading.   

A regression model may be externally validated by checking the predictive accuracy of the 

model in the validation data and the goodness of fit of the model [275].  Some proposals 

for quantifying the predictive performance of survival models have concentrated on 

discrimination, while others have considered accuracy of predictions either at the group 

level, or for individual patients.  

8.2.3 Discrimination 

Discrimination is the ability of the model to allocate to patients who experience the 

outcome of interest a higher predicted probability of experiencing the event than that 

allocated to those who did not experience the event.  It is often assessed via the area under 

the ROC curve.  For continuous data the area under the ROC curve can be interpreted as 

the probability that the results of a randomly selected patient experiencing the event will 
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be greater than the result of a randomly selected patient without the event, i.e. the 

probability that the two results are ranked in the correct order [249]. 

To apply ROC curve methodology to survival data it is necessary to choose a particular time 

point    at which the survival status can be ascertained.  Popular choices for    include a 

fixed number of years, the median follow up time or the median survival time.  Graf [276] 

pointed out that when the prediction is made at     the status of    is not yet 

determined, but will evolve in the period from 0 to    according to some stochastic 

mechanism.  For many patients the status at    will never be known because they are 

censored before   .  Another criticism of this approach is that area under the ROC curve 

measures the discrimination of the model at an arbitrary time point rather than over all the 

relevant time period. 

These issues are addressed by an adaptation of ROC methodology to survival data 

proposed by Harrell [184].  This method does not depend on choosing a fixed time for 

evaluation of the model and takes into account censoring of individuals.  Harrell’s  -index is 

defined as the proportion of all usable subject pairs in which the predictions and outcomes 

are concordant.  In predicting the time to an event,   is calculated using all possible pairs of 

subjects, at least one of whom has suffered the event.  If the predicted survival time is 

larger for the subject who actually survived longer, the predictions for that pair are 

concordant with the outcomes.  If one subject suffered the event and the other is known to 

have survived at least to the survival time of the first, the second subject is assumed to 

survive the first.  When predicted survival times are identical for a pair then 0.5 rather than 

1 is added to the count of concordant pairs in the numerator of  , but one is added to the 

denominator which counts usable pairs.  The formula for the concordance statistic is 

     
 

 
    where   is the number of orderings as expected,   is number of tied 
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predictions and   is number of comparisons.  A value of       corresponds to the 

agreement expected by chance and     corresponds to perfect concordance. 

Harrell’s   is a reparameterisation of Somers’  , similar to the area under the ROC curve.  

Rather than measuring the ability of a continuous variable to predict disease say, Harrell’s    

measures the ability of a continuous variable to predict survival.  Somers’   is an 

asymmetric measure of association between two variables and is defined in terms of 

Kendall’s    [230] whose population value is traditionally defined as  

                               

where         and         are bivariate random variables sampled independently from 

the same population and      denotes expectation. 

This definition can be generalised to left- or right-censored, stratified, clustered, or 

weighted data in the following way.  Suppose that 4-variate observations               are 

sampled from an arbitrary population using an arbitrary sampling scheme.  The    are 

censorship indicators for the corresponding    and the    are censorship indicators for the 

corresponding   .  These censorship indicators are negative for left censorship, positive for 

right censorship and zero for non-censorship [277].   

Define a censored sign difference for two values,   and   with respective censorship 

indicators   and   as  

                
                 

                   
           

  . 

Given two observations               and              , call the product of 

                   and                    the concordance-discordance difference for the 
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two observations and say that the two observations are concordant if the product is 1, 

discordant if the product is -1 and neither concordant nor discordant if the product is 0. 

Kendall’s    can now be redefined as                                             i.e. 

the mean concordance-discordance difference.  The population value of Somers’ D [233] is 

defined as 

    
   

   
 . 

Therefore     is the difference between two probabilities - the probability that the larger 

of the two   values is associated with the larger of the two   values and the probability 

that the larger   value is associated with the smaller   value.      is the difference 

between the two corresponding conditional probabilities, given that the two   values are 

known to be unequal.  Somers’   is related to Harrell’s   index by        [184, 247]. 

To determine if there is a significant difference between two prediction models within the 

same dataset Newson [277] proposes calculating confidence intervals for the difference 

between Somers’   (equivalently Harrell’s  ) parameters of the predictors with respect to 

the outcome.  Confidence intervals for Kendall’s    and Somers’   are more informative 

than  -values alone for three reasons.  Firstly, confidence intervals show that a high  -

value does not prove a null hypothesis.  Secondly, for continuous data, Kendall’s    can 

often be used to define robust confidence limits for Pearson’s correlation [277] by 

Greiner’s relation [278].  Thirdly, confidence limits can be defined for differences between 

two Kendall’s   ’s or Somers’  ’s and these are informative because a larger Kendall’s    or 

Somers’   cannot be secondary to a smaller one.  The sampling variances of the point 

estimates can be estimated using a jack-knife method via Newson’s Stata package 

somersd [279].  
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It is not, however, appropriate to calculate a confidence interval for a difference in 

concordance statistic between the development and validation dataset.  This is because the 

prognostic model would be fitted using the development dataset and then its predictive 

power would be measured.  In general, confidence interval formula do not cover this 

situation because the fitting process typically chooses parameter values to maximise the 

apparent predictive power of the model in the development dataset.  This will usually imply 

that the predictive power observed in the development dataset will be overoptimistic 

[271]. 

8.2.4 Calibration 

The deviance of a model,  , defined as minus twice the log-likelihood can be thought of as 

a measure of the lack of fit of the data to the model.  The performance of a survival model 

on external data may be measured by comparing the fit using the parameters estimated 

from the development dataset (‘fixed’ parameters) with the fit using the parameters 

estimated from the validation dataset [280]. 

Denote the deviance using the fixed parameters as    and the deviance using re-estimated 

parameters as   .  If the two deviances are similar then the model generalises well.  The 

difference in deviances,      , has an approximate    distribution with degrees of 

freedom equal to the number of parameters,  , in the model since this is the difference in 

the number of degrees of freedom between the model fitted with re-estimation and the 

model fitted without re-estimation of parameters [281].  

This methodology was discussed by Spiegelhalter [281] et al when they used deviance 

statistics to choose the best model in the context of a Bayesian framework.  The result that 

the deviance difference is distributed as    with degrees of freedom equal to the number 

of re-estimated parameters depends on the independence of the parameters.  It is likely 

that the assumption is violated in this application of external validation.  However, a test 
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based on the assumption of independence will tend to be liberal since the effective number 

of parameters must be less than or equal to the actual number of parameters and the sum 

of the degrees of freedom with the corresponding    reference value still provides a useful 

benchmark for comparing models [280].  

8.2.5 Prognostic Separation 

The aim of prognostic classification schemes is to define subgroups of patients with well 

separated survival distributions [282].  For survival data, the statistical methodology for 

assessing such schemes consists mainly of a range of ad hoc approaches [276].  Measures 

of separation may be used in situations where the proposed measures of inaccuracy cannot 

be calculated as a classification scheme is not supplemented by predictions of any kind 

such as survival time, survival status or survival probability.  There are several measures of 

separation including, SEP [276] and PSEP [264], however no proposal seems to be 

universally accepted [283]. 

In survival analysis, a ‘natural’ approach often used in the medical literature to measure the 

prognostic ability of a model is to generate a prognostic classification scheme comprising 

two or more risk groups and to plot the Kaplan-Meier survival curves for each group.  This 

leads to the idea of separation of survival curves as a measure of prognostic information, 

and led Graf and colleagues to propose a measure that they called SEP [276].  SEP is 

defined as 

         
  

 
     

 

   

  

where    denotes the number of patients in risk stratum   ,     is the estimated log-hazard 

ratio or log-relative risk of patients in risk stratum    with respect to a baseline reference, 

  is the total number of patients and   is the number of groups of patients.  The baseline 
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reference can be estimated in a Cox model where the dummy covariates for risk strata are 

centred to have mean zero and therefore the SEP measure is based on the assumption of 

proportional hazards between risk strata [276]. 

The measure, SEP, incorporates weights of relative size of the subgroups because a 

clinically useful categorisation needs to define groups which are not only well separated, 

but which additionally incorporate a substantial part of the patients.  The SEP may be used 

for a comparison of different schemes but the measure itself is not very informative and 

gives no estimate of the degree of separation of the different subgroups.  In the case of 

three or more categories, it does not take into account the ordering of the categories and 

therefore it may be misleading [282].   

A simple index of separation, PSEP, can be defined as follows.  Suppose the outcome of 

concern is death within a predefined period following measurement of prognostic factors.  

Suppose also that a prognostic classification scheme of some kind has been defined in 

some way.  All that is required is that any patient may be classified into one of two or more 

prognostic groups, and that the groups with best and worst predicted prognosis have been 

identified.  When there are more than two groups it is essential to ensure that the extreme 

groups, from which PSEP is calculated, are large enough and have sufficient events to allow 

adequate estimates of        and      .  If not, amalgamation of groups may be required 

[264].  Let 

                                                                                        

                                                                                       

Then the predicted prognostic information can be measured by the separation,      

            .  For example [284], if there were three risk groups, low, medium and high, 

and the respective six month death rates were 0.571, 0.787 and 0.947 then             

and            so           .  To compare the PSEP for the original data with the 
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PSEP for the validation data, it is necessary to use the same data points and consider PSEP 

agreements at each time point.  This method does not however, take into account fewer 

numbers at risk and increased uncertainty later in the curve.    

Royston and Sauerbrei’s method of separation [283] is based on the estimation of the 

underlying spread of the log hazard ratios compared with baseline.  The estimate is most 

accurate when the underlying log hazard ratios are approximately normally distributed 

between individuals, although the method is applicable more generally. 

Suppose the data on   individuals are denoted by                        , where for the 

 th individual    is the observed time,    is 1 if the event of interest is experienced at    or 0 

otherwise (right censoring), and    is the covariate vector of prognostic factors.  The Cox 

model may be written as  

Equation 12 

                       

where         is the prognostic index for the  th individual [283]. 

Consider the distribution of the prognostic index values.  Defining order statistics 

            it is possible to write               where    is the  th expected 

standard Normal order statistic (rankit) in a sample of size  .  Ordering the data on the    

and substituting for      in Equation 12 gives 

                                  . 

So far no specific distribution has been assumed for the   .  Now suppose that the    are 

Normally distributed         where   is the standard deviation of the prognostic index 

values.  By definition, the regression of the      on the    is linear with               

and         [283]. 
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To a first approximation, ignore the random perturbation    and set     .  Then  

Equation 13 

                               . 

Under the Normality assumption, the special Cox model (Equation 13) is approximately 

linear in the   .  On fitting it to the data, the constant   becomes part of the baseline 

hazard function and the regression coefficient,   , will estimate  .  Royston and Sauerbrei’s 

proposed measure   is defined as 

      

where            . 

Let         .  The slope from Cox regression (Equation 13) on the    is    , giving   

directly.  The scaled rankits         may be calculated using Blom’s approximation to 

rankits [285] 

                
  

 
 

  
 
 

  

where        is the inverse standard Normal distribution function.  If some of the       are 

tied the relevant    are averaged within the groups defined by the tied values. 

To calculate a confidence interval for the difference in separation between two models it is 

possible to take bootstrap resamples and compute the difference in separation between 

the development model and validation model [258] in each sample.  For a large number of 

bootstrap resamples, the ratio of the mean difference in separation to its standard 

deviation may be assumed standard Normal under the hypothesis that there is zero 

difference between the separations.  A confidence interval can therefore be calculated in 

the usual way [283]. 
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8.2.6 Royston-Parmar’s Alternative to the Cox Model 

The Cox proportional hazards model was designed to estimate the effects of covariates on 

the hazard function, but not to estimate or predict survival probabilities.  By definition, it 

does not satisfy full validation requirements.  Instead Royston and Parmar [277, 286] 

recommend use of adequately flexible parametric survival models, both for estimation and 

validation. 

The Cox proportional model is a near-universal tool in the analysis of prognostic models in 

clinical medicine [287].  However, it was not formulated with the concept of full external 

validation in mind.  The main issue is that a parametric estimate of the baseline survival 

function is not available.  Prediction in new data of survival probabilities from a Cox model 

is therefore problematic.  Further, covariate effects must conform to the proportional 

hazards assumption, which is quite limiting, particularly in data with medium- or long-term 

follow-up. 

Royston and Parmar describe families of flexible parametric survival models resembling 

generalised linear models with various link functions.  The models rely on transformation of 

the survival function by a link function     . 

Equation 14 

                      

where              is the baseline survival function and   is a vector of parameters to 

be estimated for covariate vectors      

Exponentiating Equation 14, proportional cumulative hazards models are obtained as 

                    

where        is the cumulative hazard function and  
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Equation 15 

             

is the baseline cumulative hazard function.  This is also a proportional hazard model.   

Royston and Parmar approximated         by a restricted cubic spline function of log time 

with two ‘boundary’ knots and   interior knots 

Equation 16 

                                         

where                               is a vector of spline basis functions [288].  

Ignoring the constant term   , a spline with   knots has     degrees of freedom.  The 

proportional hazards model obtained by substituting Equation 16 for       in Equation 15 

is fully specified parametrically and may be written as 

Equation 17 

                      . 

If the prognostic index is written as      then Equation 17 may be rewritten as  

Equation 18 

           
             . 

Since the term         in Equation 18 has not changed, the shape of the baseline 

cumulative hazard function is unaltered, but its location changes through   
      when 

     
  or     .  Estimation of    is relevant in validation studies where recalibration is 

of interest [289].  Regression on the prognostic index in the development data yields 

     .  In the validation data, a value of     much less than 1 may indicate a model with 

poor performance.   If       the model is probably useless [290]. 



 
 

200 
 

In a validation study, interest lies in whether values of   ,  , or   from the development 

dataset still hold in the validation dataset.  Sometimes a simple recalibration,    , of   

improves model fit in the validation dataset.  In the validation dataset the prognostic index 

  is calculated using values of the parameter vector,   , estimated on the development 

dataset and applied to the covariate values of the validation dataset.  The components of   

are not re-estimated on the validation dataset.  Similarly, the baseline survival function is 

calculated in the validation dataset using the parameter vector          estimated on the 

primary dataset, together with the time values in the validation dataset and the set of 

spline knots used in the development dataset. 

It is possible that the predicted survival probabilities derived from    ,    and    are 

sufficiently accurate in the validation dataset to remove the need to adjust any of the 

model parameters.  This is the ideal situation regarding validation (case 1).  There are six 

additional cases which comprise a structured ordered set of models allowing one to assess, 

and if necessary improve, the fit of the original model in the validation dataset.  The 

adjustments provide a route to updating a given model in a simple way, thus avoiding 

complete reconstruction.  Of course, in some situations reconstruction may be 

unavoidable.  In any case, an updated model should be re-validated in further independent 

data [290]. 

The need for updating, if detected, indicates different types of lack of fit of the original 

model: 

1. Re-estimate   .  Altering    moves the entire baseline distribution function up or 

down.  The shift is sometimes referred to as ‘recalibration in the large’ [254].  A 

situation in which    changes is where the susceptibility of the patients to an event 

differs systematically between the primary and secondary datasets. 
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2. Re-estimate   (but not   ).  This is a more radical revision.  Changing   alters the 

shape of the baseline distribution but not its general level. 

3. Re-estimate    and  .  Similar to 2 except that the general level is also changed. 

4. Regarding   as a continuous covariate with a linear effect in the secondary dataset, 

estimate its slope,   .  This idea, which was proposed for the logistic model by 

Miller [291], proposes that the effect of   is linear but may be mis-calibrated (i.e. 

    ).  Since     is often less than one,    is sometimes described as a shrinkage 

factor. 

These simple adjustments to the original model may produce major or minor changes in 

the goodness of fit (deviance).  Such information may guide the interpretation of the 

results, and where appropriate, the choice of a ‘final’ updated model for the validation 

dataset. 

Cox’s model does not include a transportable estimate of the baseline survival function, 

making prediction of the latter from the development to the validation dataset infeasible.  

An alternative approach to validating a Cox model is to regard a Royston-Parmar 

proportional hazard model as a Cox model with a parametric baseline distribution function.  

The steps of the analysis are therefore: 

1. Fit the Cox model to the development data and estimate the prognostic index   

2. In Royston-Parmar proportional hazard models for the development data with   

offset, search for a parsimonious spline function for the baseline cumulative hazard 

function 

3. Apply the above methods to the validation dataset 
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Since Cox and Royston-Parmar proportional hazard models yield almost identical 

parameter estimates, one could dispense with fitting the Cox model and regard validating a 

Royston-Parmar model as equivalent to validating a Cox model with the same covariates. 

According to Royston and Parmar [290] validation is not about refitting the predictors in a 

postulated model on the validation dataset and comparing the estimated  ’s as some have 

done.  It is about predicting relevant quantities, such as survival distributions, from a model 

fully specified on the development dataset to a validation dataset and examining its 

accuracy.  Only parametric models support this approach for time-to-event data and 

therefore Royston and Parmar suggest that since the Cox model does not estimate the 

baseline distribution, it cannot be fully validated [290]. 

8.2.7 Conclusion 

As shown by the literature review in section 8.2.1 a variety of methods are currently 

employed by researchers who externally validate their prognostic model(s).  The most 

frequently reported measures encompass repeating the analysis and comparing the results, 

discrimination, calibration and comparing the products of the analysis, all of which have 

been described in sections 8.2.2 to 8.2.6. 

The literature review did not, however, identify studies that have compared different 

methods of external validation.  Therefore there is a gap in the literature with regards to 

guidelines for the best method of external validation or indeed which the better methods 

of external validation are.  The simulation study presented in section 8.4 will compare the 

performance of methods for external validation in an attempt to address this lack of 

evidence.  
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8.3 Missing Data 

It is often difficult to identify studies, independent from the data used to develop a 

prognostic model, which provide information on the same set of potential confounders.  

Consequently the development and validation datasets are unlikely to provide information 

on the same set of covariates.  This is certainly the case for the models developed using 

SANAD in Chapter 4 and using MESS in Chapter 5.   

There are many available strategies for handling missing data within covariates [292, 293] 

within individual studies.  These include the simple deletion approaches of complete case 

analysis and available case analysis [294] and all case approaches of analysing the missing 

data as a separate category [295], single imputation [293] and multiple imputation [296, 

297].  More complex approaches based on the use of the maximum likelihood can also be 

effective and practical methods for handling missing covariate data [298].  These 

approaches are suitable for handling small amounts of missing data within a covariate 

either by removing cases or by making informed decisions based on non-missing entries of 

the covariate.  There are also methods for handling missing data in individual patient data 

meta-analyses [299].  There are, however, no guidelines on how to handle the situation of 

a covariate with every entry missing, equivalent to a missing covariate, apart from the 

suggestion of filling in any gaps with a constant value [8].   

Section 8.3.1 considers the mechanisms of missing data before the methods of handling 

missing data within a covariate are summarised in section 8.3.2.  Adaptations of these 

methods to handling covariates with every entry missing in the context of external 

validation are then presented in section 8.3.3. 
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8.3.1 Mechanisms 

In 1976 Rubin [300] rigorously defined different assumptions that might plausibly be made 

about missing data mechanisms.  He defined four assumptions: missing completely at 

random, missing at random, ignorable missingness and non-ignorable missingness. 

8.3.1.1 Missing Completely at Random 

Suppose there are missing data on a particular variable  .  The data on   are said to be 

missing completely at random (MCAR) if the probability of missing data on   is unrelated to 

the value of   itself or to the values of any other variables in the dataset.  When this 

assumption is satisfied for all variables, the set of individuals with complete data can be 

regarded as a simple random subsample from the original set of observations.  Although 

MCAR is a rather strong assumption, there are times when it is reasonable, especially when 

data are missing as part of the research design [298].   

8.3.1.2 Missing at Random 

A considerably weaker assumption is that the data are missing at random (MAR).  Data on 

  are said to be missing at random if the probability of missing data on   is unrelated to 

the value of  , after controlling for other variables in the analysis.  This means that the 

conditional probability of missing data on  , given both   and  , is equal to the probability 

of missing data on   given   alone. 

It is impossible to test whether the MAR condition is satisfied - because the values of the 

missing data are unknown it is not viable to compare the values of those with and without 

missing data to see if they are systematically different on that variable. 

8.3.1.3 Ignorable 

The missing data mechanism is said to be ignorable if the data are MAR and the parameters 

that govern the missing data process are unrelated to the parameters to be estimated.  
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Ignorability means that there is no need to model the missing data mechanism as part of 

the estimation process.  However, special techniques are needed to utilise the data in an 

efficient manner [298]. 

8.3.1.4 Non-Ignorable 

If the data are not MAR the missing data mechanism is said to be non-ignorable.  In that 

case, usually the missing data mechanism must be modelled to get good estimates of the 

parameters of interest.  Unfortunately, for effective estimation with non-ignorable missing 

data, very good prior knowledge about the nature of the missing data process usually is 

needed, because the data contain no information about what models would be appropriate 

and the results typically will be very sensitive to the choice of model. 

8.3.2 Missing Data within Covariates 

Currently there are many strategies for handling missing data within a covariate - complete 

case analysis, available case analysis, all case approach of analysing the missing data as a 

separate category, single imputation, multiple imputation and more complex approaches 

based on the use of the maximum likelihood.  A summary of each of these methods is 

presented in sections 8.3.2.1 to 8.3.2.6. 

8.3.2.1 Complete Case Analysis 

Complete case analysis restricts attention to cases where all variables are present; any 

observations with missing values for any of the covariates are deleted.  Complete case 

analysis assumes missingness in the covariates is not associated with the outcome [301].  It 

is also known as listwise deletion or casewise deletion [302]. 

Complete case analysis provides a statistical analysis that is fully adjusted for all potential 

confounders.  Advantages of this approach are simplicity, since standard statistical analyses 

can be applied without modifications, and comparability of univariate statistics since these 
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are all calculated on a common sample base of cases.  Additionally, complete case analysis 

is the method that is most robust to violations of MAR among independent variables in a 

regression analysis – specifically, if the probability of missing data on any of the 

independent variables does not depend on the values of the dependent variable then 

regression estimates using complete case analysis will be unbiased if all the usual 

assumptions of the regression model are satisfied [298].  Disadvantages stem from the 

potential loss of information, and resulting precision, in discarding incomplete cases.  The 

loss in sample size can be considerable, especially if the number of missing variables is large 

[293].  If the data are not MCAR but only MAR complete case analysis can yield biased 

estimates. 

8.3.2.1.1 Propensity Score Correction 

An extension to the idea of complete case analysis is to weight the remaining complete 

cases after the incomplete cases have been removed so that their distribution more closely 

resembles that of the full sample or population with respect to auxiliary variables.  Pugh et 

al [303] propose a propensity score correction which uses derived sampling weights to deal 

more appropriately with missing covariate data than blind use of only the complete cases. 

The method weights observations based on their likelihood of being incomplete.  The 

underlying idea is to reweight cases from under-represented groups; let      if individual 

  has no missing covariates, 0 otherwise.  Logistic regression can be used to estimate each 

subject’s probability of complete data,   , or ‘propensity score’ and in the Cox model    
  

can be used.  A subject with complete data and a low propensity score is treated as the 

representative for a large cohort of similar subjects for whom data collection failed and is 

thus given a correspondingly large weight.    It need not improve on complete case analysis 

and may do worse - the relative performance of the two approaches depends on the 

mechanism leading to the missing data [175]. 
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If the probability of a particular covariate entry being missing depends on the possibly 

unobserved value of the covariate, but not on other covariates or data, then the complete 

case approach is consistent but the propensity score method need not be [175].  If the 

probability of missingness depends on the values of completely observed variables, but not 

on the value of the missing covariate itself then Pugh’s method is consistent, but complete 

case analysis need not be so [175].  If missingness depends on both of these factors both 

methods may be inconsistent.  The completeness propensity score approach is valid when 

the probability of being missing depends only on the values of observed data, response, or 

prediction, and not on the values of missing covariates [304].  

8.3.2.2 Available Case Analysis 

For univariate analyses a natural alternative is to include all cases with complete data for 

the variables in the fitted model, an option termed available case analysis, also known as 

pairwise deletion.  The idea of available case analysis is to compute each required summary 

statistic using all the cases that are available.  Once the summary measures have been 

computed they can be used to calculate the parameters of interest such as regression 

coefficients.  Although missing data may cause different observations to be used in 

calculating different statistics, the missing data do not cause observations to be omitted 

from the entire analysis as in complete case analysis.  For example, in a sample consisting 

of 10 observations, the correlation between variables   and   may be computed only by 

using observations one to five because   is missing for observations six to 10, whereas the 

correlation between variables   and   may be calculated only by using observations six to 

10 because   is missing for observations one to five.   

The main problem with pairwise deletion is that the estimated standard errors and test 

statistics produced by conventional software are biased [298]. 
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8.3.2.3 Additional Category or Missing Indicator Method 

In some situations missing data may be a valid response and consequently a larger 

proportion of responses may be missing than expected.  For example, the variable for the 

results of a clinical test could have normal or abnormal as responses for patients who had 

the test.  Some patients however may not have had the test because it was deemed not to 

be relevant.  Therefore a third category can be introduced for ‘not done’ or ‘missing’.  This 

ensures all cases can be analysed and takes account of the validly missing data. 

A variation on this method is to create a dummy variable   that is equal to 1 if data are 

missing on variable   and equal to 0 otherwise.  A new variable    can be created such 

that 

    
                           

                       
  

where   can be any constant.  The dependent variable   can be regressed on   ,  , and 

any other variables in the intended model.  This technique, known as dummy variable 

adjustment or the missing-indicator method, can be extended easily to the case of more 

than one independent variable with missing data.  The apparent virtue of the dummy 

variable adjustment method is that it uses all the information that is available about the 

missing data [298].  Unfortunately this method generally produces biased estimates of the 

coefficients, as proven by Jones [305]. 

8.3.2.4 Imputation 

Except in special circumstances that usually involve only very simple models, the primary 

alternative to deleting incomplete observations is imputation of the missing values.  The 

basic idea is to substitute some reasonable guess, imputation, for each missing value and 

then proceed to do the analysis as if there were no missing data.  Imputation is a general 



 
 

209 
 

and flexible method for handling missing data problems, however, it is not without issues 

[293, 306]. 

Decisions need to be made regarding which information to use in computing imputed 

values for missing data.  They can be filled in by sampling non-missing values of the 

variable, or by using a constant such as the median or mean non-missing value.  Imputation 

algorithms can be based only on external information not otherwise used in the model or 

they can be derived by only analysing inter-relationships between the predictor variables.  

Imputations can also use relationships among the predictor and outcome variables and 

they can take into account the reason for non-response if known [139]. 

8.3.2.4.1 Single Imputation 

In single imputation only one estimate, such as a mean, is imputed and then the resulting 

data is analysed as if there were no missing data.  Single imputation is simple, reduces bias 

due to non-response compared to complete and available case analyses, and improves 

precision but it underestimates the standard error and can lead to incorrect p-values.  

Several variations of single imputation exist: unconditional mean imputation, conditional 

mean imputation and hot deck imputation.   

8.3.2.4.1.1 Unconditional Mean Imputation 

A particularly simple form of imputation is to estimate missing values     by    
   

, the mean 

of the recorded values of   .  In mean substitution missing values are replaced by the 

average of the observed values for that item.  The average is preserved but other aspects 

of its distribution are altered with potentially serious consequences [292].   

Unconditional mean imputation is simple to implement for any type of variable and in 

addition, once missing values are imputed and incorporated into the dataset, multiple 

users can use the data with consistent results.  However, one value cannot reflect sampling 
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variability and marginal distributions and associations are distorted because there is no 

residual variance after the imputation [293]. 

8.3.2.4.1.2 Conditional Mean Imputation 

A more promising form of imputation is to substitute means that are conditioned on the 

variables recorded in an incomplete case.  This method, proposed by Buck [307], first 

estimates the mean and covariance from the multivariate normal distribution, from the 

sample mean and covariance matrix based on the complete cases.  These estimates are 

then used to calculate the linear regressions of the missing variables on the present 

variables, case by case.  Substituting the observed values of the present variables for a case 

in the regressions yields predictions for the missing values in that case.  

In the simple case a multiple regression could be estimated with several independent 

variables.  One of these variables,  , may have missing data for some of the cases.  For 

those cases with complete data, it is possible to regress   on all other independent 

variables.  Using the estimated equation, predicted values for the cases with missing data 

on   can be generated which are substituted for the missing data and the analysis 

proceeds as if there were no missing data [298].   

Buck’s method [307] projects the incomplete cases to the regression line, a process that 

makes the assumption that the regression is linear.  This assumption is particularly tenuous 

if the imputation involves extrapolation beyond the range of the complete data.  However, 

the filled-in data from Buck’s method [307] yields reasonable estimates of means, 

particularly if the normality assumptions are plausible.  The sample covariance matrix from 

the filled-in data underestimates the sizes of variances and covariances, although the 

extent of underestimation is less than that obtained when unconditional means are 

substituted. 
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Although the regression based imputations in Buck’s method [307] appear to require that 

the variables         are interval scaled, the method can be applied to categorical 

variables by replacing each of them by a set of dummy variables, numbering one less than 

the number of categories.  If a categorical variable is completely observed, then the dummy 

variables always appear as independent variables in the regressions for Buck’s method and 

no problems arise.  If it is sometimes missing, then the set of dummy variables also appear 

as dependent variables in linear regressions.  The imputations from the regressions are 

linear estimates of the probability of falling into the categories represented by each of the 

dummy variables.  Problems can arise from the fact that linear regression is used to predict 

these probabilities; for example, the predicted values can lie outside the range (0,1).  Thus 

Buck’s method has limitations when some of the missing variables are categorical [293].  

8.3.2.4.1.3 Hot Deck Imputation 

Another example of a simple imputation technique is the hot deck method in which a single 

value is imputed for each missing observation.  This technique selects a value at random, 

usually with replacement from a donor pool of complete cases, and the missing value is 

then replaced by the selected value [308].  This strategy introduces variation into the 

analysis consistent with the range of possible values seen in the complete data [309].  The 

matching process can be carried out using so-called filter variables.  The records match if 

they have the same values on the filter variables [310]. 

The main advantage of this non-parametric technique is that it does not require strong 

distributional assumptions or careful modelling to develop selection criteria for imputing a 

value – in fact it preserves the distribution of item values and permits the use of the sample 

weight for all items.  Additionally, the results obtained from different analyses are 

consistent with one another [310].  However the disadvantages of the method are that 

there are no clear criteria to guide the selection of the donor set of complete cases, and, 
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although the variability of items is not distorted, it still distorts correlations and other 

methods of association [309].  In addition, the predictor variable must all be categorical, or 

treated as such, which imposes serious limitations on the number of possible predictor 

variables [310]. 

8.3.2.4.2 Multiple Imputation 

The key idea of the multiple imputation procedure is to replace each missing value with a 

set of   plausible values.  Each value is a Bayesian draw from the conditional distribution 

of the missing observation given the observed data [311].  The imputations produce   

‘completed’ datasets, each of which is analysed using the method that would have been 

appropriate had the data been complete.  The model for the latter analysis is called the 

substantive model, while that used to produce the imputations is called the imputation 

model.  A strength of the multiple imputation procedure is that, to a certain extent, the 

two models can be considered separately.   

Multiple imputation is most straightforward to use under MAR, and most software 

implementations make this assumption.  However, it is quite possible to apply it in missing 

not at random settings, and this is particularly convenient when certain classes of pattern-

mixture models are used to construct the imputation model.  Multiple imputation involves 

three distinct phases [296]: 

1. The missing values are filled in   times to generate   complete datasets 

2. The   complete datasets are analysed by using standard procedures 

3. The results from the   analyses are combined into a single inference 

Suppose that interest lies in making inferences about the     parameter vector   from 

the substantive model and that it is possible to make appropriate Bayesian posterior draws 

from the imputation model.  Replacing the missing data by their corresponding imputation 

samples,   completed datasets are constructed.  Denote by     and    respectively the 
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estimate of   and its covariance matrix from the  th completed dataset          .  

The multiple imputation estimate of   is the simple average of the estimates,  

    
 

 
     

   . 

The advantages of multiple imputation are that a single set of imputed datasets can be 

used for a variety of analyses and it accounts for missing data uncertainty.  However, it is 

cumbersome to use because of the need to analyse multiple datasets and combine the 

results to make one overall inference. 

8.3.2.5 Maximum Likelihood Algorithms 

Theory-based maximum likelihood approaches for dealing with missing data have been 

known in the technical literature for some time [306, 312, 313].  As the methods require 

the less restrictive MAR assumption, unbiased parameter estimates should result under 

both MCAR and MAR [314].  In addition maximum likelihood methods should yield more 

efficient estimates than listwise and pairwise deletion under MCAR.  In theory, likelihood 

methods are more attractive than ad hoc techniques of case deletion and single imputation 

[292].  However, they still rest on a few crucial assumptions - the sample is large enough for 

maximum likelihood estimates to be approximately unbiased and normally distributed, and 

the likelihood function comes from an assumed parametric model for the complete data.  

Depending on the application, likelihood methods may or may not be robust to departures 

from model assumptions. 

Intuitively the missing data is ‘filled in’ with a best guess at what it might be under the 

current estimate of the unknown parameters, then the parameters are re-estimated from 

the observed and filled-in data.  In a formal sense there is no difference between the 

maximum likelihood estimation for incomplete data and maximum likelihood estimation 

for complete data: the likelihood for the parameters based on the incomplete data is 
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derived and the maximum likelihood estimates are found by solving the likelihood equation 

[293]. 

8.3.2.6 The Expectation-Maximisation Algorithm 

The expectation-maximisation (EM) algorithm is a convenient and widely applicable 

computational technique that can be used when the observed data likelihood is awkward 

and/or difficult to compute.  It is a general-purpose iterative algorithm for calculating 

maximum likelihood estimates in parametric models for incomplete data.  The condition 

for the EM algorithm to be valid, in its basic form, is ignorability, and hence MAR.  Within 

each iteration of the EM algorithm there are two steps called the expectation step, or E 

step, and the maximisation step, or M step.  

The fundamental idea behind the EM algorithm is to associate with the given incomplete 

data problem a complete data problem for which maximum likelihood estimation is 

computationally easier.  Starting from suitable initial parameter values, the E and M steps 

are repeated until convergence.  Given a set of parameter estimates, such as the mean 

vector and covariance matrix for a multivariate normal setting, the E step calculates the 

conditional expectation estimates.  This step often reduces to calculating simple sufficient 

statistics.  Given the complete data log-likelihood, the M step then finds the parameter 

estimates to maximise the complete data log-likelihood from the E step. 

The fact that the EM algorithm is guaranteed to converge to a, possibly local, maximum is a 

great advantage.  However a disadvantage is that this convergence is slow and that 

precision estimates are not automatically provided. 

8.3.3 Methods for Handling Missing Covariates 

Within an individual study missing covariates have not been considered as there is no data 

to base the imputation (or similar) on.  However, in the case of external validation, extra 
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data is available that may inform ‘replacement’ of the covariate.  It may be possible to 

adapt some of the existing methods for handling missing data within covariates to the 

situation of every entry missing.  The situation of a missing covariate may  reasonably 

satisfy the MCAR assumption if missingness is not related to anything within the study 

design –  there may be examples where this is not the case for example if the reason for 

the missing data was related to severity of disease, say if a CT scan was not indicated.  In 

these cases further consideration would be needed to decide which methods of imputation 

were valid. 

Of the standard methods for handling missing data within a covariate outlined in section 

8.3.2, available case analysis, additional category for missing responses, mean imputation 

and maximum likelihood methods are not adaptable to covariates with every entry missing.  

In the case of available case analysis this is because all cases would be removed while in the 

case of an additional category for missing responses it would not be possible to fit a Cox 

model as the variable with the additional category would have only one category.   Mean 

imputation is not possible as there is no data to estimate the mean from and if the mean 

from the relevant variable within the development data was imputed, all cases would have 

the same response and therefore the Cox model could not be fit.  Finally, for maximum 

likelihood methods, the joint distribution of the observed and missing covariates is 

required but this is unobtainable in the situation of a missing covariate. 

Five adaptations of existing methods for handling missing data within a covariate to the 

situation of handling a covariate missing from the validation dataset are (1) remodelling 

with variable matching; (2) random selection with replacement; (3) single imputation via 

estimated proportions; (4) hot deck imputation; (5) random selection with replacement 

multiple times.  These methods will be outlined in sections 8.3.3.1 to 8.3.3.5. 
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8.3.3.1 Remodelling with Variable Matching 

The extension of complete case analysis to external validation involves fitting the model on 

a reduced covariate set.  To externally validate a prognostic model using a validation 

dataset missing at least one covariate, the model is refit with the development dataset 

restricted to include only covariates that are available in the validation dataset.  This is 

similar to Mekhail’s [273] approach for handling missing covariates by remodelling the data 

on the reduced dataset as described in the literature review of section 8.2.1. 

There are limitations to this approach in terms of how many variables are missing - if the 

validation dataset has no variables in common with the development data then, obviously, 

this approach is unsuitable.  This is, however, also true for the other imputation methods. 

8.3.3.2 Random Selection with Replacement 

In random selection with replacement, each entry of the missing variable is imputed by 

randomly selecting an entry from the equivalent variable in the development dataset.  

Random selection with replacement is used to ensure that the imputed variable in the 

validation dataset is not just a re-ordered copy of the variable from the development 

dataset. 

8.3.3.3 Single Imputation via Estimated Proportions 

In single imputation via estimated proportions each entry of the missing variable is imputed 

with a random number.  The imputed random number is based on the summary statistic(s) 

of the equivalent variable in the development dataset.  For example, if the missing variable 

in the validation dataset is a binary variable, then the proportion of positive responses in 

the equivalent variable within the development dataset is estimated.  The missing variable 

is then imputed with zeros and ones generated according to these proportions.  In the case 

of continuous variables, the mean and standard deviation are estimated from the 

development dataset and these estimates are used to obtain values that can be imputed 
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into the validation dataset.  Finally, for categorical variables the percentage of each 

response is used to inform the imputation.  Essentially we are assuming that the missing 

values are random draws from a normal distribution with mean and standard deviation 

estimated from the development dataset. 

8.3.3.4 Hot Deck Imputation 

In the case of a missing covariate there is no way to match a missing with a non-missing 

respondent.  The only plausible alternative is to impute the missing covariate values with 

values recorded for similar respondents in the development data.  In our simulation study 

(section 8.4), similar respondents have matched binary, categorical and continuous 

variables.  Continuous variables are matched to the nearest respondent based on the 

smallest mean square error between the continuous variable in the development dataset 

and the equivalent continuous variable in the validation dataset.  

8.3.3.5 Multiple Imputation  

The conditional distribution of the missing observation is not known in the case of a 

variable with every entry missing.  However a variation is to randomly select, with 

replacement, values of the missing covariate from the development set to produce   

datasets.  In the first step the validation data is used to fit the Cox model except for the 

missing covariate which is substituted with data from the relevant covariate within the 

development data, using random selection with replacement.  This is repeated   times.  

The outcomes are calculated as usual and finally, results from all the analyses are combined 

to produce a mean outcome across the repetitions.  Rubin [296] claimed that only three to 

10 imputations may be needed.  He showed that the efficiency of an estimate based on   

imputations is approximately  
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where   is the rate of missing information for the quantity being estimated.  The 

efficiencies achieved for various values of m and rates of missing information are shown in 

Table 23. 

Table 23: Efficiencies achieved for various numbers of imputations and rates of missing information 

   

  0.1 0.3 0.5 0.7 0.9 

3 97 91 86 81 77 

5 98 94 91 88 85 

10 99 97 95 93 92 

20 100 99 98 97 96 

 

8.3.3.6 Conclusion 

In the literature review (section 8.2.1) we found only one study where there was an issue 

with a covariate missing from the validation dataset.  This was because nearly every study 

had collected a validation dataset specifically with the intention of externally validating 

either a previously published prognostic model, or validating a prognostic model they had 

developed. 

As observed by Royston, of the many hundreds of prognostic models published each year, 

only very few are externally validated [274].  Perhaps a reason for this is a lack of funding to 

obtain a validation dataset with covariates that match those in the prognostic model.  

Plausibly related datasets are already available within the field of epilepsy however, and I 

imagine the same applies to many other medical fields.  Unfortunately, many of them are 

missing covariates found to be significant in a prognostic model.  Therefore methods for 

handling missing covariates in the context of external validation need to be found.  In the 

simulation study of section 8.4 the performance of methods for handling a covariate 

missing from the validation dataset are compared to potentially address this issue. 
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8.4 Simulation Study 

The simulations were conducted using the R statistical programming language versions 

2.9.2 and 2.14.1 [182]. 

As described in Bonnett [315] and in Chapter 4, the SANAD dataset has recently been used 

to determine if any clinical factors influence outcome and to develop prognostic models.  

These prognostic models should be validated in plausibly related validation datasets.  

Unfortunately no other datasets that are similar to SANAD exist.  The best match is a set of 

individual participant data that has been collected [192].  However these data do not 

include all the covariates that were found to be significant in the multivariable model.  

Therefore, it is of particular relevance to see how data, based on SANAD, can be validated 

using independent data with missing covariates.    

As shown in the literature review, in section 8.2.1, various methods of external validation 

exist however there is no evidence to suggest which method is most appropriate.  

Additionally, methods for handling covariates missing from the validation data do not 

currently exist.  To determine which methods of external validation are appropriate and to 

investigate strategies for handling covariates missing from the validation dataset, a 

simulation study was undertaken. 

8.4.1 Methods Under Consideration 

The most common methods of external validation listed in the literature were repetition of 

the complete analysis (53%), discrimination (41%), calibration (39%) and comparison of a 

product of the analysis (35%).  Repetition of the analysis involves re-running the model 

selection process in the validation dataset.  Given a dataset it is possible to fit thousands of 

models and therefore different researchers might discover or learn different things from 

the same dataset [316].  Additionally, it is possible to gear model building and model 

selection efforts towards criteria that favour good performance [316].  Therefore repeating 
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the analysis may lead to biased results as researchers could engineer the model selection 

process to produce a multivariable model that closely matches that developed using the 

development model.  For this reason, and together with the time-consuming nature of 

repeating the analysis, repetition of the analysis will not be considered as a method of 

external validation in the simulation study. 

Instead, the other popular methods of external validation will be considered – comparison 

of discrimination, comparison of calibration and a comparison of products of the analysis.  

We will consider discrimination via comparison of concordance (Harrell’s   or equivalently 

Somers’  ) statistics, calibration via comparison of deviance statistics and comparison of a 

product of the analysis via a measure of prognostic separation.   

As shown in the literature review in section 8.2.1, very few prognostic models are 

externally validated.  In clinical medicine, the focus of this thesis, the Cox proportional 

hazards model is a near-universal tool in the analysis of prognostic models [287].  Therefore 

for our purpose it is most appropriate to focus on external validation of Cox models 

although it would be interesting to extend the simulation study to Royston-Parmar’s 

alternative in the future.  

The five methods of handling covariates missing from the validation dataset under 

consideration in the simulation study are (1) remodelling with variable matching; (2) 

random selection with replacement; (3) single imputation via estimated proportions; (4) 

hot deck imputation; and (5) random selection with replacement multiple times, all of 

which were described in section 8.3.3. 

8.4.2 Simulation Procedures – Data Generation 

Data used to derive the data-generation process for the simulations consisted of 1644 

patients recruited to the SANAD study [180], although development datasets of size 1500 
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were simulated for simplicity.  Time to first seizure after randomisation was the chosen 

outcome variable as this was the simplest time to event outcome of the SANAD study. 

Sections 8.4.2.1 through to 8.4.2.3 describe how the data were simulated. 

8.4.2.1 Survival Data 

It is common to model survival times through the hazard function.  As the Cox proportional 

hazards model is formulated through the hazard function, the simulation of appropriate 

survival times is not straightforward [317] - the effect of the covariates have to be 

translated from the hazard to the survival times because the usual software packages for 

Cox models require the individual survival time data, not the hazard function.  The 

translation of the regression coefficients from hazard to survival time is simple if the 

baseline hazard function is constant i.e. the survival times are exponentially distributed 

[317]. 

Among the commonly used survival time distributions, only the exponential, Weibull and 

Gompertz distributions share the assumption of proportional hazards with the Cox model 

as described in section 1.4.2.  The survival function of the Cox model is given by        

               
     where             

 

 
d  is the cumulative baseline hazard 

function [30].  Thus the distribution function of the Cox model is          

               
    .   

Let   be a random variable and let the distribution function,  , of   be constant.  Then 

       follows a uniform distribution on the interval from 0 to 1 [318].  Then let   be 

the survival time of the Cox model,                  
   .   

It therefore follows that                    
            and, as both          

and            according to the properties of a standard uniform distribution, 

                 
           .   
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If         for all  , then    can be inverted and the survival time,  , of the Cox model 

can be expressed as Equation 19 by taking the logarithm of both sides of the equation, 

dividing through by –          and inverting      . 

Equation 19 

    
                     

where   is a random variable with         .  By applying Equation 19, uniformly 

distributed random numbers can be transformed into survival times following a specific Cox 

model.  An appropriate cumulative baseline hazard function, such as the exponential, 

Weibull or Gompertz, then just needs to be inserted into the formula.   

Table 24 summarises the survival time and hazard function equations for these three 

distributions where   is a variable following a uniform distribution on the interval from 0 to 

1.  By inserting the inverse of the cumulative hazard function for the exponential 

distribution,   
          , into Equation 19 we transformed uniformly distributed 

random numbers into survival times following a Cox-exponential model [317].  The Cox-

exponential distribution was used for simplicity in our simulation study. 

Table 24: Survival time and hazard function equations for the Cox-exponential, Cox-Weibull and Cox-

Gompertz distributions 

 Model 

Characteristic Cox-exponential Cox-Weibull Cox-Gompertz 

Survival time    
       

         
     

       

         
 
   

   
 

 
      

        

         
  

Hazard function                                                              
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8.4.2.2 Censoring Indicator 

A censoring indicator is a binary variable which follows a binomial distribution.  In this case 

  is the probability of being censored as a result of either loss to follow-up or study 

completion without an event.  Any survival times equal to or in excess of the maximum 

follow-up time were censored.   

A patient randomised to SANAD could potentially have been followed-up for a maximum of 

seven years.  In the case of time to first seizure the longest follow-up occurred 

approximately 6.5 years into the trial.  Therefore, the maximum possible simulated survival 

time was 6.5 years.  Any survival times equal to or in excess of this time were censored.  

For all other patients, censoring was in the same proportions as in SANAD. 

For each case, if the uncensored survival time for a case was less than or equal to the 

censored time, then the event was considered to be observed and the survival time 

equalled the uncensored survival time.  Otherwise the event was considered censored and 

the survival time equalled the censored time. 

8.4.2.3 Covariate Data 

We assumed that there were three predictor variables.  We selected the following variables 

from the SANAD dataset: gender, age and epilepsy type.  For simplicity, covariate data was 

generated using an underlying multivariate normal distribution [319] with means and 

covariance matrix as per the SANAD data (Table 25).  Age was normally distributed so no 

transformation was required to make the assumption of normality more appropriate.  

However, in the clinical setting, continuous variables are often considered to follow the log 

normal distribution [320].  Therefore, the generated covariate data for the continuous 

variable was transformed onto the log scale prior to analysis.  The continuous covariate 

(simulated age) was truncated using the upper and lower observed limits of 86 and five 
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respectively to produce realistic values and reasonable estimates for the mean and 

standard deviations [321]. 

Binary and categorical variables were generated as latent normal variables – they were 

generated as continuous variables and then a cut-point of 0.5 was used to obtain the binary 

covariate and cut-points of 0.33 and 0.66 were used for the three-level categorical 

covariate [321].  Two dummy variables were then created accordingly. 

Table 25: Data structure for the SANAD dataset and associated means, standard deviations (SDs) and 

variance-covariance matrix 

 Variance-Covariance Matrix 

Covariate 
Variable 

Type 

Groupings/ 

Measurement 
Mean (SD) Gender 

Epilepsy 
Type 

Age 

Gender Binary 
0 = female 

1 = male 
0.55 (0.50) 0.25 0.01 -0.15 

Epilepsy 

Type 
Categorical 

0 = partial 

1 = generalised 

2 = unclassified 

1.21 (0.60) 0.01 0.35 -0.26 

Age Continuous Years 38.30 (18.34) -0.15 -0.26 336.36 

 

8.4.3 Simulation Procedures - Scenarios to be Investigated 

There are a large number of variations that could be tested, irrespective of the aim - 

number and combination of covariates present and missing; types of covariates present 

and missing; size of the development and validation datasets; how closely the ‘super-

population’ assumption is adhered to; length of follow-up etc.   We varied the following 

factors in our simulations: the size of the validation dataset and the missing variable.  

During the literature review (section 8.2.1), data was collected on the sample size of both 

the validation and development datasets.  The size of the validation dataset could be 

considered as a percentage of the size of the development dataset.  Of those articles that 

externally validated a Cox model, the 25th percentile of these values was 57% while the 75th 

percentile was 115%.  Therefore, the two sample sizes we considered were 855 and 1725.  
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With regards to the missing variable, none or one of the binary, continuous and categorical 

variables were forced to be missing in turn. 

The scenarios examined are shown in Table 26 with scenarios 1 and 5 testing the methods 

of external validation and 2, 3, 4, 6, 7 and 8 testing the methods of imputation.  The missing 

data methods have been compared by comparing each method of external validation 

(concordance, deviance and prognostic separation) from the validation dataset with 

missing data to the corresponding method of external validation from the validation 

dataset without missing data. 

Table 26: Simulation Strategies used to consider methods of external validation and methods to handle a 

covariate missing from the validation dataset 

 implies the variable is present in the dataset;  implies that the variable is missing from the dataset 

Scenario Dataset to be generated Number of subjects 
Variable present? 

Binary Continuous Categorical 

- Development 1500   

1 Validation 855   

2 Validation with missing data 855   

3 Validation with missing data 855   

4 Validation with missing data 855   

5 Validation 1725   

6 Validation with missing data 1725   

7 Validation with missing data 1725   

8 Validation with missing data 1725   

 

8.4.4 Simulation Procedures – Statistical Methods 

Once a development dataset and a fully independent validation dataset had been randomly 

generated a Cox model, adjusted for the three simulated covariates, was fitted to each.  

The prognostic measure of separation for each model was obtained together with the 

deviance, concordance statistic, regression coefficients and respective standard errors.  

This process was then repeated 1400 times for each possible combination of size of 
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validation dataset (855 and 1725) and missing data (none, missing binary, missing 

categorical, missing continuous).  The number of simulations was based on the accuracy of 

the regression coefficients and was calculated using the following formula: 

   
         

 
 
 

 

where   was the specified level of accuracy of the estimate that we were willing to accept, 

         was the         quantile of the standard normal distribution and    was the 

variance from the parameter of interest [322].  In our case, a 5% accuracy of the true 

coefficient was required and               therefore 1400 simulations were run.   

Within each scenario we computed: the proportion of the 1400 differences in prognostic 

separation between the development and validation datasets within 5% tolerability limits 

of zero, the proportion of the 1400 p-values for the difference in deviance between the 

development and validation datasets within 5% of zero (indicating that the models are not 

externally valid) and the proportion of the 1400 differences in concordance between the 

development and validation datasets within 5% of zero.  

To summarise the estimates once all simulations had been performed, the average 

regression coefficient over the simulations was calculated as a true estimate of interest 

where   was the number of simulations and   
  was the regression coefficient for 

simulation  . 

    
  
 

 

 

   

 

As the simulation study had been designed to mimic the results that could have been 

obtained from a single study, an assessment of the uncertainty in the regression coefficient 
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between simulations, denoted       , was the empirical standard error calculated as the 

standard deviation of the regression coefficients from all simulations. 

              
     

 
 

   

 

 

Standardised bias was calculated as per Equation 20.  A standardised bias of greater than 

40% in either direction has been shown [323] to have noticeable adverse impact on the 

efficiency, coverage and error rate.  Therefore, a result of greater than 40% in either 

direction was taken as a poor result. 

Equation 20 

 
    

      
      

Mean square error (MSE) was calculated as per Equation 21.  It provided a useful measure 

of the overall accuracy because it incorporated both measures of bias and variability and 

was calculated for each method.  A mean square error of 0 suggests the estimator    

predicts observations of the parameter   with perfect accuracy [319]. 

Equation 21 

      
 
         

 
 

The coverage of a confidence interval is the proportion of confidence intervals that contain 

the true specified parameter value [319].  The coverage should be approximately equal to 

the nominal coverage rate, usually taken as 95%.  Coverage above 95% suggests that the 

estimates are too conservative as more simulations will not find a significant result when 

there is a true effect leading to a loss of statistical power with too many type II errors.  In 
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contrast, coverage below 95% is unacceptable as it indicates inappropriate over-confidence 

in the estimates since more simulations will incorrectly detect a significant result which 

leads to higher than expected type I errors. 

The coverage should not fall outside of approximately two standard errors of the nominal 

coverage probability,   where 

               . 

So, if 95% confidence intervals are calculated using 1400 independent simulations then 

                and hence between 1314 and 1346 of the confidence intervals should 

include the true regression coefficient value. 

8.4.5 Results 

Each method should conclude that the model developed using the development dataset 

was externally validated by the validation dataset due to the way the data were simulated.  

Any method which did not reach this conclusion was deemed to be a poor method of 

external validation.  However, a dataset could be chosen that differs from the development 

dataset just by chance hence bootstrap resampling has been used.   

To enable comparison across methods sensitivity and specificity could be calculated.  

However, this would require further simulation settings so that we could capture situations 

where the ‘truth’ is that the model is not externally valid.  This is obviously virtually 

impossible to define and so this simulation study is liable to criticism as we have only 

assessed performance for cases where the data are related.  In pre-emption of this, 

external validation hinges on satisfying the condition that datasets have come from a 

super-population.  There will, of course, be different degrees of how well this is satisfied in 

practice and so an extension to this simulation study would consider varying degrees of 

adherence to the super-population condition.   
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In the case of the concordance and prognostic separation methods the model would be 

externally valid if the difference between the development and validation datasets was 

zero hence the proportion of simulations within 5% tolerability limits of zero have been 

calculated.  In the case of the deviance method, a p-value for the comparison of deviance 

between the development and validation dataset would be less than 0.05 if the model is 

not externally valid, although some comparisons would be significant just by chance. 

8.4.5.1 Concordance 

For ease of interpretation results are presented graphically although numerical results are 

available in Appendix C.  Only the results for the 5% tolerability limits are presented here - 

the 10% results can also be found in Appendix C.  Figure 25 shows the mean concordance 

values over 1400 simulations.   The concordance statistic shows almost perfect agreement 

between the validation and development datasets for the case of no missing data and for 

each method of imputation (mean development  -statistic variable matching: 0.55; mean 

validation  -statistic variable matching: 0.55; mean development  -statistic otherwise: 

0.56; mean validation  -statistic otherwise: 0.56).  The poorest, although still good, 

agreement is in the case of variable matching where 97.1% of differences in concordance 

values between the development and the validation dataset are within 5% of zero 

difference suggesting that the model is externally valid 97% of the time. 
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Figure 25: Mean Concordance Values from simulation study examining methods of external validation and 

methods of handling a covariate missing from the validation dataset 

 

8.4.5.2 Deviance 

Figure 26 shows the proportion of p-values less than 5% for the comparison of deviances 

between the development and validation datasets over 1400 simulations – a p-value less 

than 5% implies that the model is not externally valid.  The deviance statistic seems to 

suggest that although there is agreement between the development and validation models, 

it is weak agreement which should not be the case given the method of data simulation.  

Results for validation datasets which are larger than the development ones are slightly 

better than for those where the validation dataset is smaller than the development dataset 

irrespective of the method of imputation.  In the case of multiple imputation (random 

selection with replacement multiple times) only 13.4% of models had a significant p-value 

(at the 5% level) and were therefore not externally valid.  This method of imputation has 

performed much better than the other four methods – in the case of variable matching at 

least 43% of models had a significant p-value.  For random selection with replacement, 

single imputation via estimation and hot deck imputation at least 62% of models had a 

significant p-value and therefore were not externally valid. 
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Figure 26: Mean p-values for Comparison of Deviance from simulation study examining methods of external 

validation and methods of handling a covariate missing from the validation dataset 

 

The simulations without missing data gave poorer results than the simulations with missing 

data.  A reason for this is that by using imputation methods, or removing a covariate in the 

case of variable matching, the validation dataset is a closer match to the development 

dataset by the nature of the imputation than two randomly generated datasets – when the 

validation dataset was forced to be identical to the development dataset the method lead 

to 100% agreement as expected.  An additional reason may be the possible violation of the 

assumption required for the distribution of the deviance difference - the result that the 

deviance difference is distributed as    with degrees of freedom equal to the number of 

re-estimated parameters depends on the independence of the parameters, details of which 

are explained in section 8.2.4.   
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8.4.5.3 Prognostic Separation 

The mean difference in prognostic separation between the development and validation 

datasets over 1400 simulations can be seen in Figure 27. Generally the prognostic 

separation measure showed poor agreement between the validation and development 

datasets.  Validation datasets which were larger than the development datasets tended to 

show slightly better agreement.  In the case of multiple imputation the prognostic 

separation measure showed near perfect agreement between the validation and 

development datasets especially with validation datasets which were larger than the 

development datasets (over 97.1% of mean differences within 5% of 0 for the small 

validation sets and over 99.5% of difference within 5% of 0 for large validation sets). 

Figure 27: Mean Separation Values from simulation study examining methods of external validation and 

methods of handling a covariate missing from the validation dataset 
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8.4.5.4 Measures of Accuracy 

Average coefficient values,   , were similar for the development and validation dataset as 

shown by Figure 28.  Standard error values were also similar (not presented – see Appendix 

C).  In Figure 28 values presented are the mean coefficient values over all coefficients per 

scenario per method.   

Figure 29 shows the mean bias results, taken over all coefficients.  In most cases 

standardised bias was very small and certainly within the recommended 40% limits 

suggesting that bias was not an issue.  Only in the situation of variable matching does bias 

become an issue, especially when a categorical variable is the variable missing from the 

validation dataset.  In this case some individual biases exceed 40%.  However, the mean 

results are within the 40% boundary. 

Figure 28: Mean Coefficient Values from simulation study examining methods of external validation and 

methods of handling a covariate missing from the validation dataset 
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Figure 29: Mean Bias Results from simulation study examining methods of external validation and methods 

of handling a covariate missing from the validation dataset 

 

Values presented in Figure 30 are the mean MSE values over all coefficients per scenario 

per method while those in Figure 31 are the mean coverage values over all coefficients per 

scenario per method.  The MSE values are also very close, or equal, to zero which suggests 

almost perfect accuracy in the results irrespective of the presence of missing data and the 

strategies employed to impute missing data (Figure 30). 

No method led to 95% coverage (Figure 31).  The mean coverage values ranged from 80% 

to 100% with validation datasets that were smaller than the development validation 

datasets having larger coverage values generally.  In the case of multiple imputation the 

coverage values were 100% irrespective of the size of the validation datasets. 
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Figure 30: Mean MSE Values from simulation study examining methods of external validation and methods of 

handling a covariate missing from the validation dataset 

 

Figure 31: Mean Coverage Values from simulation study examining methods of external validation and 

methods of handling a covariate missing from the validation dataset 
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8.5 Conclusion 

We conducted a series of bootstrap simulations to examine the performance of methods of 

external validation and methods for handling covariates missing from the validation 

dataset.  Concordance has been applied to many previous models (as shown by the 

literature review in section 8.2.1) while deviance and the measure of prognostic separation 

have been applied sparingly as shown by [251, 280].  A comparison of these methods has 

not previously been made, nor an assessment of their ease of application to prognostic 

models.  Standard methods of handling missing data within covariates have been regularly 

applied but this simulation study is the first to vary these methods to handle covariates 

that are completely missing in the context of external validation of prognostic models. 

In the current study, we found that the use of concordance showed most often that the 

model was externally valid when the development and validation datasets were simulated 

in the same way.  The measure of prognostic separation showed that the models were 

externally valid for over 90% of the simulations in the case of random selection with 

replacement multiple times (multiple imputation).  This is likely to be as a result of the 

mechanics of multiple imputation – the imputation process was applied 20 times and the 

results averaged.   Given that the measure of prognostic separation should have shown 

almost all models to be externally valid, especially in the case of no missing data, it cannot 

be recommended for general practice.   

The deviance measure showed that the models were externally valid for over 80% of the 

simulations in the case of multiple imputation only.  In the case of no missing data, over 

60% of models had p-values for the comparison of deviance less than 5% and therefore at 

least 60% of models were not externally valid according to this measure.  This should not 

be the case given the way the data were simulated and therefore comparison of deviance 

also cannot be recommended for general practice.   
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In the case of deviance it is also important to note that a significant p-value suggests that a 

model is not externally valid.  However a non-significant p-value does not necessarily 

indicate that the model is externally valid.  This is obviously not an ideal conclusion to draw 

from a measure of external validation – we want to conclude that a model is externally 

valid rather than there not being enough evidence to conclude it is not externally valid.  

Therefore this is another reason that this method cannot be recommended for general 

practice. 

Variable matching was a poor method of imputation leading to results which were highly 

biased in this simulation study.  Methods random selection with replacement, single 

imputation via estimation, hot deck imputation and random selection with replacement 

multiple times were all appropriate methods of imputation in this simulation study as they 

generally led to unbiased, accurate results.  The more data missing from the validation 

dataset the better the model performed in terms of external validation because the 

validation dataset was effectively converging to the development dataset.  Therefore 

caution is required when interpreting these results and further investigation is needed to 

examine the effect of more than one missing covariate. 

It is important to note that the methods of external validation examined here are 

measuring different things – discrimination and calibration in the case of Harrell’s  -statistic 

and deviance respectively.  Ideally, it would be possible to use any of the methods to 

examine the external validity of a prognostic model and therefore use multiple methods to 

confirm the conclusion.  However, our results suggested that it may be only concordance 

which was a reliable method of external validation.  It is also worth noting that different 

degrees of external validation are likely rather than a clear-cut yes or no answer.  The 

degree of external validity may be influenced by what the model will be used for as the 

consequences of using an ‘incorrect’ model in practice may have different impacts.  For 
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example a model used to predict a mild adverse event such as a rash or head ache may not 

need to be as accurate as a model predicting risk of seizure recurrence and hence a lower 

degree of external validity may be acceptable for the adverse event model than the seizure 

risk model.    

Further limitations of the work in this chapter include the simplicity of the simulated model 

which is unrealistic in having only three covariates – as shown in the literature review 

(section 8.2.1) the median number of covariates was five although a maximum of 20 has 

been observed.  Additionally, all the imputation methods rely on having access to the 

development dataset which is often not possible.  The simulation study presented here also 

makes a large assumption that the development and validation datasets are similar which 

is often not the case as the purpose of external validation is to evaluate the model for a 

slight different, though not dissimilar, case-mix.  The simulation study as it currently stands, 

however, highlights the problems of external validation of prognostic models – even in the 

situation of an over-simplistic development prognostic model with a very similar validation 

model, two out of the three chosen methods of external validation failed to show 

validation when it was known to be present.  This highlights the need for considerable 

further research in this area. 

In 2004 May [280] measured the quality of predictions from prognostic models for survival 

time data using three different methods: Harrell’s concordance statistic, Brier statistic and 

a novel method using deviance differences.  The results showed that the deviance statistic 

was able to discriminate between quite similar models and could be used to choose a 

prognostic model that generalised well to new data.  May found Harrell’s  -statistic worked 

well in evaluating discrimination but was insensitive to differences in calibration and 

insensitive to differences between prognostic models [280]. 
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The Brier score compares predicted probabilities with Bernouilli outcomes at a particular 

time, which is problematic in the context of censored survival data since different models 

may predict better at different lengths of follow up.  May found that it failed to 

discriminate between the predictive performance of candidate prognostic models [280].   

May’s newly proposed approach based on deviance differences was able to discriminate 

between candidate prognostic models, however, further methodological work was 

recommended to support the use of deviance differences in model validation.  In our 

simulation study we found that deviance differences were not usually appropriate in 

external validation of prognostic models. 

While there is no doubt that models should be validated [264] and some authors do 

externally validate their model, as highlighted in the literature review, there are no specific 

guidelines on the best method of external validation.  Also, although the recommended 

practice is to validate a model in a dataset that is plausibly related to the development 

dataset [8] there is very little literature on how to handle a covariate missing from the 

validation dataset.  The work presented here suggests that concordance may be a simple 

method to externally validate prognostic models.   

With regards to methods for handling covariates missing from the validation dataset in our 

simulation study, random selection with replacement, single imputation via estimation, hot 

deck imputation and random selection with replacement multiple times were found to be 

suitable imputation options.  Computation time was extensive for hot deck imputation and 

multiple imputation.  However, for validation of a single model via hot deck imputation, 

rather than validation of 1400 models as per the simulation study, computational time was 

up to five minutes, while it was up to one minute for multiple imputation.  Results were 

available instantly for the other methods of imputation.  Therefore, although hot deck and 

multiple imputation take marginally longer to run, there is little practical difference 



 
 

240 
 

between them.  Therefore hot deck imputation or random selection with replacement 

multiple times may be the most appropriate methods, as shown by slightly improved 

results in this simulation study. 

A personal decision regarding whether an increased type 1 or type 2 error is more 

acceptable then needs to be made.  If an increased type 1 error is more acceptable then 

hot deck imputation may be the best method, otherwise random selection with 

replacement multiple times may be better. 

Further work is now required to test these findings in other settings.  Application of these 

methods of external validation and methods for handling missing covariates to real 

datasets can be seen in Chapter 9. 
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Chapter 9: Externally Validating 

Prognostic Models – Case Study 

9.1 Introduction 

In Chapter 5 a model was developed to determine for how long after a first unprovoked 

seizure a driver must be seizure-free before the risk of recurrence in the next 12 months 

falls below 20% enabling them to regain their driving license [193].  In this chapter the 

methods of external validation considered in Chapter 8 will be applied to real data to 

examine the externally validity of the prognostic model from Chapter 5.  A summary of the 

developed model can be found in section 9.1 together with the three external validation 

datasets.  Validation of the model is considered in sections 9.2 to 9.4.  In section 9.5 

simulated results are compared to real data which is forced to be missing to further 

investigate the methods of handling a missing covariate.  

The model developed in Chapter 5 contained variables for aetiology, first degree relative 

with epilepsy, seizures only while asleep, EEG result, CT/MRI result and treatment policy 

which was forced into the model.  We wished to externally validate this model using 

plausibly related datasets –NGPSE [131], a dataset collected in local epilepsy clinics in 

Western Australia (WA) [324] and the FIRST (FIRST) dataset from Italy [204].  NGPSE used 

the United Kingdom primary care system to obtain comprehensive data on a large and 

unselected cohort of patients with a possible diagnosis of epilepsy.  It was initiated in 1984 

and is one of the largest prospective cohort studies of epilepsy undertaken anywhere in the 

world.   The WA dataset was collected in a hospital based study with the majority of 

patients referred from the emergency room following a first-ever tonic-clonic seizure.  The 

dataset is in excess of 2000 patients who were recruited between 2000 and 2009.  The 

FIRST dataset comprises patients from a randomized clinical trial on the efficacy of 
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antiepileptic drugs in reducing the risk of relapse after a first unprovoked tonic-clonic 

seizure. 

NGPSE and WA do not have missing covariates and therefore provide a useful case study 

for the methods of external validation described in Chapter 8.  FIRST is missing a covariate 

and therefore can be used to investigate the methods of imputation also discussed in 

Chapter 8.  In addition to the three methods of external validation and five methods of 

imputation, and although not strictly a method of external validation, it is of interest to 

compare the conditional seizure risks across the validation and MESS datasets.    

A summary of the demographics of patients in MESS, NGPSE, FIRST and WA, of driving age 

with only one seizure at randomisation (or recruitment as appropriate) can be seen in Table 

27.  A combined Kaplan-Meier curve for time from first to second seizure for these datasets 

can be seen in Figure 32. 

Analyses were undertaken using R version 2.9.2 [182]. 
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Figure 32: Kaplan-Meier curve for MESS, NGPSE, WA and FIRST including numbers at risk 

(Patients of driving age with only one seizure at randomisation/recruitment)
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Table 27: Demographics of patients in MESS, NGPSE, FIRST and WA (of driving age with only one seizure at randomisation/recruitment) 

Entries in bold relate to variables included in the multivariable model 

 MESS NGPSE WA FIRST 

Characteristic 
Immediate 
Treatment  

(n=317) 

Delayed 
Treatment 

(n=320) 

Total 
(n=637) 

On 
Treatment at 
Recruitment 

(n=79) 

Not On 
Treatment at 
Recruitment 

(n=196) 

Total 
(n=275) 

On 
Treatment 

at 
Recruitment 

(n=235) 

Not On 
Treatment at 
Recruitment 

(n=621) 

Total 
(n=856) 

On 
Treatment 

at 
Recruitment 

(n=156) 

Not On 
Treatment at 
Recruitment 

(n=149) 

Total 
(n=305) 

Age at 
randomisation 
in years, 
median (IQR) 

32.0  
(21.5, 49.5) 

33.8  
(22.4, 50.6) 

32.9  
(21.9, 50.3) 

53.7  
(39.7, 74.6) 

44.1  
(27.0, 66.6) 

50.3  
(31.8, 68.7) 

48.0  
(34.0, 64.5) 

36.0  
(24.0, 52.0) 

39.0  
(26.0, 56.0) 

29.0  
(20.0, 45.0) 

28.0  
(20.0, 48.0) 

28.0  
(20.0, 46.0) 

Gender 
    Male 
    Female 

 
199 (63) 
118 (37) 

 
213 (67) 
107 (33) 

 
412 (65) 
225 (35) 

 
39 (49) 
40 (51) 

 
97 (49) 
99 (51) 

 
136 (49) 
139 (51) 

 
154 (66) 
81 (34) 

 
390 (63) 
231 (37) 

 
544 (64) 
312 (36) 

 
91 (58) 
65 (42) 

 
82 (55) 
67 (45) 

 
173 (57) 
132 (43) 

Aetiology 
    Remote 
symptomatic 
    Not remote 
symptomatic 

55 (17) 
 

262 (83) 

49 (15) 
 

271 (85) 

104 (16) 
 

533 (84) 

57 (72) 
 

22 (28) 

100 (51) 
 

96 (49) 

157 (57) 
 

118 (43) 

136 (58) 
 

99 (42) 

138 (22) 
 

483 (78) 

274 (32) 
 

585 (68) 

11 (7) 
 

145 (93) 

11 (7) 
 

138 (93) 

22 (7) 
 

283 (93) 

Neurological 
deficit 
    Absent 
    Present 
    Missing 

 
 

288 (91) 
27 (8) 
2 (1) 

 
 

299 (94) 
19 (5) 
2 (1) 

 
 

587 (92) 
46 (7) 
4 (1) 

NA NA NA 
 

183 (78) 
52 (22) 

 
574 (92) 

47 (8) 

 
757 (88) 
99 (12) 

 
 

135 (87) 
21 (13) 

0 (0) 

 
 

131 (12) 
18 (88) 

0 (0) 

 
 

266 (87) 
39 (13) 

0 (0) 

Previous acute 
symptomatic 
seizures 
    Febrile 
    Other 
    No 

 
 
 

15 (5) 
1 (0) 

301 (95) 

 
 
 

14 (4) 
7 (2) 

299 (94) 

 
 
 

29 (5) 
8 (1) 

600 (94) 

 
NA 

 
NA 

 
NA 

 
 
 

2 (1) 
231 (98) 

2 (1) 

 
 
 

20 (3) 
595 (96) 

6 (1) 

 
 

22 (3) 
826 (96) 

7 (1) 

 
 
 

38 (24) 
0 (0) 

118 (76) 

 
 
 

31 (21) 
0 (0) 

118 (79) 

 
 
 

69 (23) 
0 (0) 

236 (77) 
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 MESS NGPSE WA FIRST 

Characteristic 
Immediate 
Treatment  

(n=317) 

Delayed 
Treatment 

(n=320) 

Total 
(n=637) 

On 
Treatment at 
Recruitment 

(n=79) 

Not On 
Treatment at 
Recruitment 

(n=196) 

Total 
(n=275) 

On 
Treatment at 
Recruitment 

(n=235) 

Not On 
Treatment at 
Recruitment 

(n=621) 

Total 
(n=856) 

On 
Treatment at 
Recruitment 

(n=156) 

Not On 
Treatment at 
Recruitment 

(n=149) 

Total 
(n=305) 

Epilepsy in first 
degree relative 
    Yes 
    No 
    Missing 

 
 

33 (10) 
284 (90) 

 

 
 

34 (11) 
286 (89) 

 

 
 

67 (10) 
570 (90) 

 

 
 

4 (5) 
75 (95) 

 

 
 

17 (9) 
179 (91) 

 

 
 

21 (8) 
254 (92) 

 

 
 

20 (9) 
207 (88) 

8 (3) 

 
 

73 (12) 
532 (85) 

16 (3) 

 
 

93 (11) 
739 (86) 

24 (3) 

 
 

24 (15) 
132 (85) 

 

 
 

12 (8) 
137 (92) 

 

 
 

36 (12) 
269 (88) 

 

Seizures 
    Partial 
    Generalised/ not 
definitely partial 
    Other 

 
102 (32) 
205 (65) 

 
 

10 (3) 

 
100 (31) 
217 (68) 

 
 

3 (1) 

 
202 (32) 
422 (66) 

 
 

13 (2) 

NA NA NA NA NA NA NA NA NA 

Seizures only 
while asleep 
    Yes 
    No 
    Missing 

 
 

65 (20) 
252 (80) 

- 

 
 

50 (16) 
269 (84) 

1 (0) 

 
 

115 (18) 
521 (82) 

1 (0) 

 
 

19 (24) 
60 (76) 

0 (0) 

 
 

21 (11) 
175 (89) 

0 (0) 

 
 

40 (15) 
235 (85) 

0 (0) 

 
 

57 (24) 
177 (75) 

1 (1) 

 
 

473 (76) 
147 (24) 

1 (0) 

 
 

650 (76) 
204 (24) 

2 (0) 

NA NA NA 

EEG results 
    Normal 
    Abnormal 
    Not 
done/Missing 

 
147(46) 
149 (47) 

21 (7) 
 

 
136 (43) 
160 (50) 

24 (7) 
 

 
283 (44) 
309 (49) 

45 (7) 
 

 
9 (10) 

26 (33) 
44 (57) 

 

 
41 (21) 
45 (23) 

110 (56) 
 

 
50 (18) 
71 (26) 

154 (56) 
 

 
63 (27) 

157 (67) 
15 (6) 

 

 
363 (59) 
250 (40) 

8 (1) 
 

 
426 (50) 
407 (48) 

23 (2) 
 

 
73 (47) 
83 (53) 

 
 

 
71 (52) 
78 (48) 

 
 

 
144 (47) 
161 (53) 

 
 

CT/MRI results 
    Normal 
    Abnormal 
    Not 
done/Missing 

 
219 (69) 
38 (12) 
60 (19) 

 

231 (72) 
34 (11) 
55 (17) 

450 (71) 
72 (11) 

115 (18) 

19 (24) 
15 (19) 
45 (57) 

38 (20) 
24 (12) 

134 (68) 

57 (21) 
39 (14) 

179 (65) 

89 (38) 
134 (57) 

12 (5) 

457 (74) 
108 (17) 

56 (9) 

546 (64) 
242 (28) 

68 (8) 

124 (79) 
32 (21) 

0 (0) 

122 (82) 
27 (18) 

0 (0) 

246 (81) 
59 (19) 

0 (0) 



 
 

246 
 

 

In theory, data used to externally validate a prognostic model should be plausibly related to 

the development dataset, such that the datasets can be considered to come from the same 

super-population.  There are however, no guidelines suggesting how to check whether the 

development and validation datasets are from a super-population.   

In the case of our validation datasets some are more plausibly related to MESS than others.   

Patients in NGPSE tended to be older than those in MESS and there were more females in 

NGPSE, although the variables for age and gender were not included in the multivariable 

model being validated here.  Considerably more patients in NGPSE had a remote 

symptomatic aetiology than those in MESS and many more patients in NGPSE had missing 

results for EEG and CT/MRI.  Characteristics for patients in the WA dataset were mostly 

similar to those in MESS except for previous acute symptomatic seizures which were more 

frequently reported in WA.  Additionally, many more patients had seizures only while 

asleep in WA than in MESS. 

The FIRST dataset had a similar distribution of characteristics to those of MESS.  More 

patients had previous febrile seizures in FIRST although this variable was not included in 

the multivariable model for MESS.  In FIRST, data on seizures while asleep was not 

collected.  Additionally in FIRST, EEG and CT/MRI result were divided into two categories 

(normal/not done and abnormal) unlike in MESS where patients could have three result 

categories: normal, abnormal and not done.  Follow-up in FIRST was considerably shorter 

than in MESS as shown in Figure 32. 

Table 28 summarises the unadjusted 12 month seizure recurrence risks at time points 

following a first seizure for each dataset.  The risks, according to NGPSE, were similar to the 

overall estimates in our analysis of MESS.  All estimates from 12 months onwards were 

significantly below 20% in both MESS and NGPSE.  Estimates at six months varied however - 

according to the NGPSE results, patients who were treated immediately should wait 12 
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months until their recurrence risk in the next 12 months was significantly below 20% unlike 

the MESS results which suggested only six months.  Patients in NGPSE who were treated 

immediately had a higher risk of a seizure in the following 12 months generally than those 

who were not treated.  This is probably due to the ability of clinicians to detect patients at 

high risk of seizure recurrence and to recommend relevant treatment.  Confidence intervals 

for NGPSE were wider than for MESS as a result of the smaller sample size for NGPSE.   

The 12 month seizure recurrence risks at time points post index seizure for the WA dataset 

were similar to those for the MESS data.  Instead of concluding that patients who were 

treated should be allowed to drive after six months and those who were not treated after 

12 months, results from WA suggested patients should wait 12 months irrespective of the 

treatment policy - the conditional risks were not significantly below 20% until 12 months.   

The results for FIRST were very similar to those using the MESS data.  As for the MESS data 

the point estimates at six month were less than the 20% risk level set by the DVLA but the 

result was only significantly below 20% for patients randomised to immediate treatment. 

Despite the differences in characteristics and follow-up it is plausible that these datasets 

came from the same super-population.  FIRST is the closest match to MESS in terms of the 

proportions of patients with certain characteristics, however the follow-up is much shorter 

and a significant covariate is missing.  In the case of NGPSE and WA, information on the 

same covariates is available but the proportions of patients with some characteristics are 

not always similar to the MESS data.  These datasets are, however, the closest matches 

available and hence we will continue with the external validation of MESS with NGPSE, WA 

and FIRST.  MESS is validated with NGPSE in section 9.2, with WA in 9.3 and FIRST in 9.4.  
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Table 28: 12 month seizure recurrence risks at time points post index seizure: 

Risk of seizure in next 12 months (%, 95% Confidence Interval) 

 

MESS NGPSE WA FIRST 

Immediate treatment Delayed treatment 
Immediate 

Treatment (Treated) 

Delayed Treatment 

(Not treated) 

Immediate 

Treatment (Treated) 

Delayed Treatment 

(Not treated) 

Immediate 

Treatment (Treated) 

Delayed Treatment 

(Not treated) 

Time post 

index 

seizure 

(months) 

No. at 

Risk 

Risk of 

seizure 

No. at 

Risk 

Risk of 

seizure 

No. at 

Risk 

Risk of 

seizure 

No. at 

Risk 

Risk of 

seizure 
No. at 
Risk 

Risk of 
seizure 

No. at 
Risk 

Risk of 
seizure 

No. at 
Risk 

Risk of 
seizure 

No. at 
Risk 

Risk of 
seizure 

6 260 
14  

(10 to 18) 
254 

18  

(13 to 23) 
56 

19  

(8 to 29) 
136 

16  

(10 to 23) 
128 

23  
(16 to 30) 

382 
18  

(14 to 22) 
139 

11  
(5 to 16) 

106 
19  

(11 to 27) 

12 230 
7  

(4 to 11) 
219 

10  

(6 to 15) 
44 

5  

(0 to 12) 
113 

8  

(3 to 13) 
106 

10  
(4 to 16) 

335 
11  

(8 to 15) 
128 

9  
(4 to 14) 

86 
11  

(4 to 17) 

18 211 
8  

(5 to 12) 
197 

12  

(8 to 17) 
41 

8  

(0 to 16) 
102 

3  

(0 to 7) 
91 - 286 

8  
(4 to  11) 

114 
7  

(2 to 12) 
74 

12  
(3 to 20) 

24 199 
7  

(3 to 10) 
182 

10  

(5 to 14) 
39 

6  

(0 to 13) 
102 

3  

(0 to 7) 
82 - - - 106 

8  
(2 to 14) 

65 
11 

(2 to 20) 
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9.2 Validation using NGPSE 

Of the 792 patients recruited to the NGPSE study, 217 were aged less than 16 years at 

ascertainment.  For 300 patients this was not their first episode so they were removed 

from the analysis.  This left 275 suitable patients in comparison to 637 available for analysis 

in the MESS study.   

9.2.1 Results 

The external validation results of MESS via NGPSE can be seen in Table 29.  The p-value for 

the comparison of deviance was significant (0.01).  Therefore the prognostic model 

developed using the MESS data does not appear to generalise well to the NGPSE data 

according to the deviance statistic.  However, in the simulation study, comparison of 

deviance was found to be a poor method of external validation.  The poor validation could 

therefore be a reflection on the method of validation rather than a lack of agreement 

between the datasets.  Additionally, this may be because of the small sample size of 

NGPSE. 

Table 29: Summary of Results of external validation of MESS model via NGPSE dataset 

 MESS NGPSE 

Deviance 

Statistic 30.91 10.26 

Degrees of Freedom 8 

p-value 0.01 

Concordance 

Statistic 0.591 (0.556, 0.627) 0.601 (0.547, 0.654) 

Difference in Concordance 0.01 

Prognostic Separation 

Statistic 0.636 0.634 

Difference ( 95% CI) 0.00 (-0.02, 0.03) 

 

As explained in section 8.2.3 it is not appropriate to calculate a confidence interval for a 

difference in concordance statistic between the development and validation datasets.  

However it is possible to obtain estimates of confidence intervals for individual 
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concordance statistics [277].  If two statistics have non-overlapping confidence intervals 

they are necessarily significantly different.  However, if they have overlapping intervals it is 

not necessarily true that they are not significantly different [325].  In the absence of a 

better method, we considered the similarity of the concordance statistic across the 

development and validation dataset via examination of the individual confidence intervals 

[326].  In the case of MESS and NGPSE, as shown in Table 29, the confidence intervals and 

estimates were very similar.  Therefore it seems reasonable to conclude that the MESS 

model generalises well to NGPSE according to the concordance measure.   

A confidence interval for the difference in prognostic separation between the development 

and validation datasets was calculated via bootstrap resampling.  In the case of MESS and 

NGPSE the confidence interval for a difference in separation was (-0.02, 0.03) which 

included 0.  Therefore, the MESS model generalises well to the NGPSE dataset according to 

prognostic separation (Table 29).   

Table 30 shows the conditional risk estimates for MESS and NGPSE according to the 

prognostic model for time to second seizure following a first ever seizure.  This model was 

developed using patients from the MESS study who were of driving age (over 16 at 

randomisation) and had had only one seizure at recruitment.  Full details of the calculations 

can be found in Bonnett et al. 2010 [193] and in Chapter 5.  The estimates presented 

assume that seizures were not confined to sleep and that there were no first degree 

relatives with epilepsy.  The estimates for NGPSE were generally in agreement with the 

estimates for MESS although they were marginally higher for patients in NGPSE who were 

treated at ascertainment than they were for the comparable patients in MESS.   
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Table 30: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time points of seizure freedom. Estimates presented assume seizures not confined 

to sleep and no first degree relative with epilepsy – MESS & NGPSE 

 
 

MESS NGPSE 

Variable Immediate Treatment Delayed Treatment Treated Not Treated 

Aetiology EEG 

CT/MRI 

scan 

results 

Months 

from 

index 

seizure 

Risk of 

seizure 

within next 

12 months 

(%, 95% CI) 

Months from 

index seizure 

until annual 

risk falls 

below 20% 

Risk of 

seizure 

within next 

12 months 

(%, 95% CI) 

Months from 

index seizure 

until annual 

risk falls 

below 20% 

Risk of seizure 

within next 12 

months 

(%, 95% CI) 

Months from 

index seizure 

until annual 

risk falls 

below 20% 

Risk of 

seizure 

within next 

12 months 

(%, 95% CI) 

Months from 

index seizure 

until annual 

risk falls below 

20% 

Not remote 

symptomatic 
Normal Normal 

6 

12 

13 (10 to 16) 

7 (5 to 10) 
1.2 

16 (12 to 19) 

9 (6 to 12) 
3.2 

17 (11 to 22) 

7 (3 to 11) 
4.8 

16 (11 to 22) 

7 (3 to 11) 
4.8 

Not remote 

symptomatic 
Abnormal Normal 

6 

12 

20 (16 to 23) 

11 (9 to 14) 
5.5 

23 (20 to 26) 

13 (11 to 16) 
7.0 

21 (15 to 26) 

9 (5 to 13) 
6.2 

20 (15 to 25) 

9 (5 to 13) 
6.1 

Not remote 

symptomatic 
Normal Abnormal 

6 

12 

14 (11 to 17) 

8 (5 to 11) 
2.1 

17 (14 to 20) 

10 (7 to 12) 
3.6 

19 (13 to 24) 

8 (4 to 12) 
5.7 

18 (13 to 24) 

8 (4 to 12) 
5.5 

Not remote 

symptomatic 
Abnormal Abnormal 

6 

12 

21 (18 to 24) 

12 (9 to 15) 
6.1 

25 (22 to 28) 

14 (12 to 17) 
8.1 

23 (18 to 28) 

10 (6 to 14) 
7.5 

23 (17 to 28) 

10 (6 to 14) 
7.4 

Remote 

symptomatic 
Normal Normal 

6 

12 

17 (14 to 20) 

10 (7 to 12) 
3.6 

20 (17 to 23) 

12 (9 to 14) 
6.0 

19 (14 to 25) 

8 (4 to 12) 
5.7 

19 (13 to 24) 

8 (4 to 12) 
5.7 

Remote 

symptomatic 
Abnormal Normal 

6 

12 

25 (22 to 28) 

15 (12 to 17) 
8.7 

30 (27 to 32) 

18 (15 to 20) 
10.7 

24 (18 to 29) 

10 (6 to 14) 
7.5 

23 (18 to 28) 

10 (6 to 14) 
7.5 

Remote 

symptomatic 
Normal Abnormal 

6 

12 

18 (15 to 21) 

10 (8 to 13) 
4.8 

22 (19 to 25) 

13 (10 to 15) 
6.5 

21 (16 to 27) 

9 (5 to 13) 
6.3 

21 (16 to 26) 

9 (5 to 13) 
6.2 

Remote 

symptomatic 
Abnormal Abnormal 

6 

12 

27 (24 to 30) 

16 (13 to 18) 
9.2 

32 (29 to 34) 

19 (16 to 21) 
11.3 

26 (21 to 31) 

12 (8 to 16) 
9.4 

26 (21 to 31) 

11 (7 to 15) 
9.3 
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9.2.1.1 Sensitivity Analysis 

External validity involves checking that a model is valid in populations that are plausibly 

related to the development dataset.  In this section a sensitivity analysis is presented which 

investigated the impact of length of follow-up of the development and validation datasets 

on external validation. 

As shown in Figure 32, there are very few patients at risk after about eight years in MESS.  

It is therefore of interest to investigate if truncating NGPSE at eight years to match the 

MESS data makes a difference to the external validity.  If patients with follow-up in excess 

of eight years in NGPSE are influencing seizure risk estimates this may have an impact on 

the results of external validation.  This is because the agreement between the MESS and 

NGPSE models without influential patients may be reduced. 

The external validation results in this truncated setting can be seen in Table 31.  The 

confidence intervals for the concordance statistics were very similar between the MESS and 

truncated NGPSE datasets.  Together with the small difference in concordance it seems 

that the MESS model generalises well to the NGPSE dataset, truncated at eight years.  The 

confidence interval for a difference in prognostic separation between the development and 

validation datasets was (-0.02, 0.03) which includes 0.  Therefore it seems that the MESS 

model does generalise well to the NGPSE data.  These conclusions are the same as those 

obtained for the external validation of MESS with the complete NGPSE dataset. 

The p-value of 0.02 was significant for the comparison of deviance between the 

development (MESS) and validation (NGPSE) datasets.  Therefore the prognostic model 

developed using the MESS data does not appear to generalise well to the truncated NGPSE 

data.  This conclusion is as per the comparison of MESS and the complete NGPSE dataset. 
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Table 31: Summary of Results of external validation of MESS model via a truncated NGPSE dataset 

 MESS NGPSE 

Deviance 

Statistic 30.91 13.08 

Degrees of Freedom 8 

p-value 0.02 

Concordance 

Statistic 0.591 (0.556, 0.627) 0.599 (0.544, 0.655) 

Difference in Concordance 0.01 

Prognostic Separation 

Statistic 0.636 0.632 

Difference (& 95% CI) 0.00 (-0.03, 0.02) 

 

 

Table 32: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time 

points of seizure freedom. Estimates presented assume seizures not confined to sleep and no first degree 

relative with epilepsy – truncated NGPSE 

Variable  Immediate Treatment Delayed Treatment 

Aetiology EEG CT/MRI 

Months 
from 
index 

seizure 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months 
from index 

seizure 
until 

annual risk 
falls below 

20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls 
below 20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
26 (19, 33) 
12 (6, 18) 

9.4 
22 (15, 30) 
10 (4, 16) 

6.9 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
27 (20, 34) 
12 (6, 18) 

9.5 
23 (16, 30) 
11 (4, 17) 

7.5 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
31 (24, 37) 
14 (9, 20) 

10.7 
27 (20, 34) 
12 (6, 18) 

9.5 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
32 (25, 38) 
15 (9, 21) 

10.7 
28 (21, 35) 
13 (7, 19) 

9.5 

Remote 
symptomatic 

Normal Normal 
6 

12 
27 (20, 34) 
12 (6, 18) 

9.5 
23 (16, 31) 
11 (5, 17) 

7.5 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
28 (21, 35) 
13 (7, 19) 

9.5 
24 (17, 31) 
11 (5, 17) 

8.0 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
32 (25, 38) 
15 (9, 21) 

10.7 
28 (21, 35) 
13 (7, 19) 

9.5 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
33 (27, 39) 
16 (10, 21) 

10.7 
29 (22, 36) 
13 (7, 19) 

9.5 

 

Truncating NGPSE at eight years did not have an impact on the results of the external 

validation.  However the conditional seizure risks shown in Table 32 were higher than the 

original NGPSE analyses and were also higher than the MESS results (Table 30).  For this 
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reason it seems better not to truncate the dataset.  However, further sensitivity analyses, 

and potentially simulation studies, are needed to determine if this result is valid over many 

situations.  They are also needed to develop guidelines for checking that the development 

and validation datasets are from the same super-population. 

9.2.2 Conclusion 

According to the comparison of deviance method, the MESS model does not generalise 

well to NGPSE.  However the concordance and prognostic separation measures suggest 

that, in fact, the MESS model does generalise well to NGPSE.  In addition the conditional 

seizure risks were similar across MESS and NGPSE.  

 Truncating the NGPSE dataset to more closely match the length of follow-up in MESS had 

no impact on the external validity of the MESS model.  It did, however, lead to increased 

risk estimates in NGPSE which were less similar to MESS.  Therefore truncating the NGPSE 

dataset had a negative impact on the results. 

9.3 Validation using WA 

In the WA dataset there were 856 suitable patients with one seizure at recruitment and 

aged over 16 years.   

9.3.1 Results 

The results of comparison of deviance, concordance and prognostic separation can be seen 

in Table 33.  The p-value of 0.07 for the comparison of deviance was not significant at the 

5% level.  Therefore there was no evidence (at the 5% level) to suggest that the MESS 

model was not externally valid although at the 10% level of significance there is such 

evidence.  
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The confidence intervals for the concordance statistics for the MESS and NGPSE datasets 

were very similar.  Therefore, together with the small difference in concordance, it seems 

that the MESS model generalises well to the WA dataset.  The confidence interval for a 

difference in separation between the development and validation datasets did not include 

0.  Therefore it seems that the MESS model does not generalise very well to the WA 

dataset according to prognostic separation. 

Table 33: Summary of Results of external validation of MESS model via WA dataset 

 MESS WA 

Deviance 

Statistic 30.91 45.40 

Degrees of Freedom 8 

p-value 0.07 

Concordance 

Statistic 0.591 (0.556, 0.627) 0.590 (0.563, 0.618) 

Difference in Concordance 0.00 

Prognostic Separation 

Statistic 0.636 0.556 

Difference (& 95% CI) 0.08 (0.06, 0.10) 

 

Table 34 shows the seizure recurrence risks in the next 12 months at specific time points of 

seizure freedom as estimated from the multivariable model fitted to the WA dataset.  The 

estimates presented assumed that seizures were not confined to sleep and that there were 

no first degree relatives with epilepsy.  These estimates are generally in agreement with 

those in MESS (Table 30) for patients with normal and abnormal EEG and CT/MRI results, 

but lower for patients with abnormal EEG but normal CT/MRI results.  Additionally, the risk 

estimates were generally higher in the WA dataset for patients with abnormal CT/MRI 

results and normal EEG results than in MESS.    
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Table 34: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time 

points of seizure freedom. Estimates presented assume seizures not confined to sleep and no first degree 

relative with epilepsy 

Variable  Immediate Treatment Delayed Treatment 

Aetiology EEG CT/MRI 

Months 
from 
index 

seizure 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months 
from index 

seizure until 
annual risk 
falls below 

20% 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months from index 
seizure until annual 
risk falls below 20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
19 (16 to 23) 
11 (8 to 14) 

5.8 
22 (19 to 25) 
11 (8 to 14) 

7.0 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
6 (2 to 10) 

12 (9 to 15) 
3.6 

10 (7 to 14) 
12 (9 to 15) 

4.0 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
29 (26 to 32) 
12 (10 to 15) 

7.3 
32 (29 to 35) 
13 (10 to 16) 

7.3 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
20 (17 to 23) 
13 (10 to 16) 

6.0 
23 (20 to 27) 
14 (11 to 16) 

7.3 

Remote 
symptomatic 

Normal Normal 
6 

12 
18 (15 to 22) 
14 (11 to 17) 

5.6 
22 (19 to 25) 
14 (11 to 17) 

6.5 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
0 (0 to 2) 

15 (12 to 18) 
3.5 

4 (0 to 8) 
15 (12 to 18) 

3.8 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
31 (28 to 34) 
16 (13 to 18) 

8.5 
35 (32 to 37) 
16 (13 to 19) 

8.7 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
17 (14 to 21) 
16 (14 to 19) 

5.5 
22 (19 to 25) 
17 (14 to 20) 

6.5 

 

9.3.2 Conclusion 

According to comparison of prognostic separation the MESS model does not generalise well 

to the WA dataset.  The comparison of deviance results suggest that the model also does 

not generalise well at the 10% level of significance but it is alright at the 5% level.  The 

comparison of concordance suggests that the MESS model does generalise well to WA.  The 

conditional risk estimates for WA were similar to those for MESS but there were some 

subgroups that had very different risk estimates. 

In the simulation study of Chapter 8 neither comparison of deviance nor prognostic 

separation performed as expected and were consequently not recommended as methods 

of external validation.  Based on this, it appears that the MESS model does generalise well 

to WA as the concordance statistics were very similar across the MESS and WA datasets. 
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9.4 Validation using FIRST 

Of the 420 patients randomised to the FIRST study, 305 were older than 16 at recruitment.  

Within FIRST there are issues with the EEG and CT/MRI variables which were only recorded 

as abnormal or normal with the normal response also being used for patients who did not 

have such a scan in FIRST.  Additionally, no data was collected on seizures only while 

asleep.  As the seizures while asleep variable is missing from FIRST, the five methods of 

imputation described in Chapter 8 were employed: (1) remodelling with variable matching; 

(2) random selection with replacement; (3) single imputation via estimated proportions; (4) 

hot deck imputation; and (5) random selection with replacement multiple times. 

9.4.1 Sensitivity Analysis 

In MESS, patients could have result categories normal, abnormal or not done for EEG and 

CT/MRI result.  In FIRST however, results were only available in the form of normal/not 

done and abnormal.  In the interests of completeness a sensitivity analysis was performed 

for a single method of imputation, variable matching, to determine if this difference in 

classification had a significant impact on the external validation results.   

When the sleep variable was removed from MESS, to match FIRST, and when EEG and CT 

were left unchanged in MESS, it was not possible to obtain a comparison of deviance with 

FIRST.  This was because the number of degrees of freedom was different across the 

models - in MESS there were seven but in FIRST there were only five.  When EEG and CT 

were collapsed to two categories each in MESS to match FIRST, the p-value for the 

comparison of deviance between MESS and FIRST was 0.86 which was not significant (Table 

35).  Therefore there is no evidence to suggest that the prognostic model developed using 

the MESS data (with EEG and CT/MRI collapsed to two categories each) does not generalise 

well to the FIRST data (with variable matching).  
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The confidence intervals for concordance were quite similar for MESS and FIRST 

irrespective of the categorisation of the EEG and CT/MRI variables in MESS.  Together with 

the relatively small differences in concordance, the MESS model seems to generalise fairly 

well to the FIRST data with variable matching. 

Table 35: Summary of Results of external validation of MESS model with EEG and CT variables with 3 

categories and the FIRST dataset using variable matching 

 
FIRST  

(variable matching) 

MESS 

 (EEG/CT as 3 

categories) 

MESS  

(EEG/CT as 2 

categories) 

Deviance 

Statistic 23.03 N/A 21.11 

Degrees of Freedom - N/A 5 

p-value - N/A 0.86 

Concordance 

Statistic 0.646(0.593, 0.699) 0.581 (0.545, 0.618) 0.576 (0.541, 0.612) 

Difference in 

Concordance 
 0.07 0.07 

Prognostic Separation 

Statistic 0.830 0.578 0.517 

Difference (& 95% CI)  -0.27 (-0.28, -0.22) -0.31 (-0.34, -0.29) 

 

The confidence intervals for the difference in prognostic separation between the 

development and validation datasets did not include 0, irrespective of the number of 

categories used to model EEG and CT/MRI in MESS.  Therefore the MESS model does not 

generalise to the FIRST dataset according to this measure. 

The external validation results were comparable across the sensitivity analysis.  The only 

difference was that it was not possible to draw a conclusion for external validation via 

comparison of deviance when EEG and CT/MRI were grouped in three categories in MESS 

but in two in FIRST.  Given that the results for the concordance and separation measures 

were very similar across the sensitivity analysis, the external validation of MESS via FIRST 

proceeded with the EEG and CT/MRI variables collapsed to only two categories each for 

MESS.  This ensured that all three methods of external validation could be tested. 
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Another option would be to remove the differently categorised variable from the 

development dataset, especially if it has a small influence on the model, re-develop the 

reduced model and then validation it.  Methodologically neither are ideal solutions.  It is 

preferable to leave the developed model untouched during the external validation phase of 

analysis.  Therefore, if other validation datasets were available it would be best to exclude 

FIRST from the external validation stage, especially as, in addition to the differing 

categorisations of EEG and CT/MRI, a variable is missing. 

9.4.1.1 Conditional Seizure Risks 

Table 36 shows the seizure recurrence risks in the next 12 months, estimated from the 

amended multivariable model for MESS, at specific time points of seizure freedom – EEG 

and CT/MRI were collapsed to two categories each and the variable for seizures while 

asleep has been removed from MESS as per the variable matching method of handling a 

missing covariate.  Estimates presented assume no first degree relative with epilepsy.  

Without the variable for seizures while asleep some confidence intervals for MESS do not 

overlap which makes them difficult to interpret.  

The recurrence risks for patients without a remote symptomatic aetiology were higher in 

the model for MESS without the sleep variable (Table 36) than in the model with the 

variable (Table 30).  The risks for patients with a remote symptomatic aetiology were lower 

in the case of the model without the sleep variable than for the model with the variable.  

This suggests an interaction may exist between seizures while asleep and aetiology.  The 

log-likelihood for the model with aetiology and sleep was 10.7 on two degrees of freedom.  

For the model inclusive of an interaction term the log-likelihood was 11.3 on three degrees 

of freedom.  The difference in log-likelihood was not statistically significant as the p-value 

for the difference was 0.53.  Therefore there was insufficient evidence of an interaction 
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between aetiology and sleep.  The differences observed between the results in Table 36 

and Table 30 are therefore likely to be because of the highly influential sleep variable. 

The conditional risks for FIRST were quite different to those for MESS (without the sleep 

variable and with EEG and CT/MRI categories each collapsed) as can be seen in Table 36.  In 

most cases they were much lower than the MESS results.  However, for patients with 

remote symptomatic aetiology who were in the delayed treatment category, the estimates 

were generally much higher than for the same patients in MESS. 

 



 

 
 

2
6

1 

Table 36: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time points of seizure freedom. Estimates presented assume no first degree 

relative with epilepsy. MESS (EEG/CT 2 categories) & FIRST (variable matching) 

 MESS FIRST 

Variable  Immediate Treatment Delayed Treatment Immediate Treatment Delayed Treatment 

Aetiology EEG 
CT/MRI 

scan 
results 

Months 
from 
index 

seizure 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls below 
20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls below 
20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls below 
20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls below 
20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
18 (15, 21) 
10 (8, 13) 

4.8 
22 (19, 25) 
12 (10, 15) 

6.5 
6 (2,11) 
4 (0, 9) 

<1 
14 (9, 18) 
10 (5, 14) 

0.6 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
26 (24,29) 
15 (13, 18) 

9.2 
31 (28, 34) 
18 (16, 20) 

10.8 
10 (5, 14) 
7 (2, 11) 

<1 
20 (16,24) 
14 (10, 18) 

5.3 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
19 (16, 22) 
11 (8, 13) 

5.3 
22 (19, 25) 
13 (10, 15) 

6.8 
8 (3, 13) 
5 (1, 10) 

<1 
16 (12, 21) 
11 (7, 15) 

2.2 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
27 (24, 30) 
16 (13, 18) 

9.2 
32 (29, 34) 
19 (16, 21) 

11.3 
11 (7, 16) 
8 (4, 12) 

<1 
23 (19, 27) 
16 (13, 20) 

7.4 

Remote 
symptomatic 

Normal Normal 
6 

12 
13 (10, 17) 

7 (5, 10) 
1.2 

16 (13, 19) 
9 (6, 12) 

3.2 
10 (6, 15) 
7 (3, 11) 

<1 
21 (17, 25) 
15 (11, 19) 

6.7 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
19 (16, 22) 
11 (8, 14) 

5.5 
23 (20, 26) 
13 (10, 16) 

6.9 
15 (11, 19) 
10 (6, 14) 

0.7 
30 (26, 34) 
21 (18, 25) 

12.4 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
14 (10, 17) 

8 (5, 10) 
1.7 

16 (13, 19) 
9 (6, 12) 

3.4 
12 (7, 17) 
8 (4, 12) 

<1 
25 (21, 29) 
17 (14, 21) 

10.2 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
20 (17, 23) 
11 (9, 14) 

5.7 
24 (21, 26) 
13 (11, 16) 

7.6 
18 (13, 22) 
12 (8, 16) 

2.7 
35 (31, 38) 
25 (22, 28) 

16.0 
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9.4.2 Methods for Handling a Missing Covariate 

The results of external validation via variable matching were presented in section 9.4.1.  

Following on from the sensitivity analysis of section 9.4.1, the EEG and CT/MRI variables 

were modeled as two categories each in MESS for the external validation via FIRST. 

Comparison of deviance led to non-significant p-values for all methods of imputation (Table 

37).  Therefore there is no evidence to suggest that the prognostic model developed using 

the MESS data does not generalise well to the FIRST dataset irrespective of the method 

used to handle the missing covariate.  This conclusion was confirmed by the confidence 

intervals for the concordance statistics which were fairly similar across all imputation 

methods.  Together with the relatively small differences in concordance between MESS and 

the imputed FIRST datasets, it seems that the MESS model generalises fairly well to FIRST. 

 The confidence intervals for the difference in separation between the development and 

validation datasets did not include 0, the value of no difference.  Therefore it seems that 

the MESS model does not generalise well to the FIRST dataset according to prognostic 

separation, again irrespective of the method of imputation used. 

Tables of the conditional seizure risks for FIRST via these four methods of imputation can 

be seen in Appendix D - they were almost identical to those presented for FIRST in Table 

36. 
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Table 37: Summary of Results of external validation using MESS with EEG and CT variables having 2 categories each and the FIRST dataset 

 MESS 
FIRST 

(random selection) 
FIRST 

(single imputation) 
FIRST 

(hot deck) 
FIRST 

(multiple imputation) 

Deviance 

Statistic 27.09 24.70 23.04 25.43 24.40 

Degrees of Freedom - 6 6 6 6 

p-value - 0.88 0.67 0.95 0.85 

Concordance 

Statistic (95% CI) 
0.587  

(0.552, 0.622) 
0.648  

(0.596, 0.700) 
0.651  

(0.597, 0.705) 
0.655  

(0.601, 0.709) 
0.648  

(0.595, 0.701) 

Difference in Concordance - 0.06 0.06 0.07 0.06 

Prognostic Separation 

Statistic 0.587 0.853 0.845 0.931 0.932 

Difference (& 95% CI) - 
-0.27  

(-0.29, -0.24) 
-0.26  

(-0.29, -0.23) 
-0.35  

(-0.37, -0.32) 
-0.35  

(-0.32, -0.27) 
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9.4.3 Conclusion 

The conditional seizure risks for FIRST are considerably lower than they are for MESS.  

Irrespective of the method of imputation chosen, comparison of deviance suggests that the 

MESS model generalises well to the FIRST dataset.  This was also confirmed by the 

comparison of concordance.   

The comparison of prognostic separation suggests that the MESS model does not 

generalise well to the FIRST data however.  In the simulation study of Chapter 8, prognostic 

separation was found to be an inadequate method of external validation.  Therefore the 

poor validation seen here may be as a result of the method of external validation rather 

than the validity of the model. 

9.5 Missing Data – Comparing Simulated and Real Results 

In the FIRST dataset there was a variable missing.  Therefore, in section 9.4, the five 

methods of handling missing covariates tested in the simulation study of Chapter 8 were 

applied.  All five performed fairly equally, whereas the simulation study results suggested 

that variable matching was a poor method of imputation whilst the others were 

acceptable. 

The NGPSE and WA datasets are complete and therefore provide an opportunity to 

compare the ‘true’ results with results from the five methods of imputation using real data 

rather than simulated data.  There are only two types of covariate in the MESS model - 

binary and categorical.  One of each of these was forced to be missing in turn from the 

NGPSE and WA datasets.  The five methods of imputation were then applied and the 

deviance, concordance and separation statistics were calculated.  This enabled us to 

compare the results of the imputed data with the truth, and further investigate methods 

for handling covariates missing from the validation dataset. 
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9.5.1 Results 

The binary variable chosen to be missing from the MESS model was aetiology and the 

categorical variable was EEG result.  External validation results for each scenario can be 

seen in Table 38, Table 39, Table 40 and Table 41. 

9.5.1.1 Missing Binary Covariate 

In the case of a missing binary covariate, the deviance, concordance and prognostic 

separation measures all showed good agreement between the complete NGPSE dataset 

and each of the imputed versions.  The dataset that had the binary variable replaced via 

multiple imputation showed closest agreement with the complete dataset according to the 

deviance and concordance measures.  The prognostic separation measure showed closest 

agreement with the complete dataset when the missing binary variable was imputed by 

random selection with replacement. 

For a binary variable forced to be missing from the WA dataset, the deviance and 

concordance measures showed good agreement between the complete dataset and each 

of the imputed versions.  In both these cases the closest agreement between the complete 

and imputed datasets occurred when the binary variable was replaced via multiple 

imputation.  The measure of prognostic separation showed quite poor agreement between 

the complete and imputed datasets irrespective of the method of imputation – all 

confidence intervals for a difference between the complete and imputed datasets did not 

include the value of no difference, 0.  However, the differences in prognostic separation 

were fairly small (≤0.05 in all cases) with the difference between the complete dataset and 

the one imputed via hot deck imputation being the smallest. 

9.5.1.2 Missing Categorical Variable 

When a categorical covariate was forced to be missing from the validation dataset, the 

concordance statistic showed good agreement between the complete dataset and the 
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imputed versions across all five methods of imputation for both the NGPSE and WA 

datasets.  In the case of NGPSE the closest agreement was found when multiple imputation 

was implemented.  For WA the closest agreement was as a result of hot deck imputation.   

For NGPSE, the deviance measures were comparable across the complete and imputed 

datasets with random selection with replacement leading to the closest agreement.  For 

the WA dataset, the deviance measure showed varying levels of agreement – all methods 

of imputation except hot deck imputation led to significant p-values.  There was 

consequently sufficient evidence at the 10% level to conclude no agreement between the 

complete and imputed datasets.  Therefore the deviance measure may not be an 

appropriate method of assessing external validation.  It could also be that the methods of 

handling the missing covariate are not appropriate in this case.  This may be due to the 

large size of the WA dataset, the level of correlation between the variables, or some other 

reason.  

With regards to prognostic separation, the only non-significant difference was for the 

NGPSE dataset imputed via random selection with replacement.  None of the differences in 

prognostic separation between the complete WA dataset and each imputed version were 

non-significant.  The prognostic separation measure therefore suggested there was no 

agreement between the complete and imputed datasets for the WA dataset.  Again, this 

suggests that the prognostic separation measure may be inappropriate, but also it may be 

the case that the methods of imputation are inappropriate in this case. 

 



 

 
 

2
6

7
 

Table 38: Methods of Imputation tested on a missing binary variable in NGPSE 

Missing Binary - NGPSE Complete Variable Matching Random Selection Single Imputation Hot Deck Multiple Imputation 

Deviance 

Statistic 10.26 N/A 9.64 10.13 9.7 10.24 

Degrees of Freedom - N/A 8 8 8 8 

p-value - N/A 1.00 1.00 1.00 1.00 

Concordance 

Statistic 
0.601 

(0.547, 0.654) 
0.597 

(0.543, 0.651) 
0.596 

(0.541, 0.651) 
0.596 

(0.541, 0.651) 
0.595 

(0.540, 0.650) 
0.598 

(0.544, 0.652) 

Difference in Concordance - 0.004 0.005 0.005 0.006 0.003 

Prognostic Separation 

Statistic 0.634 0.622 0.639 0.647 0.624 0.645 

Difference (& 95% CI) - 
0.01 

(-0.02, 0.05) 
0.00 

(-0.04, 0.03) 
-0.01 

(-0.05, 0.02) 
0.01 

(-0.02, 0.04) 
-0.01 

(-0.05, 0.02) 

 

Table 39: Methods of Imputation tested on a missing binary variable in WA 

Missing Binary - WA Complete Variable Matching Random Selection Single Imputation Hot Deck Multiple Imputation 

Deviance 

Statistic 45.4 N/A 39.65 38.93 38.94 39.66 

Degrees of Freedom - N/A 8 8 8 8 

p-value - N/A 0.68 0.59 0.60 0.68 

Concordance 

Statistic 
0.590 

(0.563, 0.618) 
0.579 

(0.551, 0.607) 
0.581 

(0.554, 0.609) 
0.579 

(0.551, 0.607) 
0.580 

(0.552, 0.607) 
0.598 

(0.544, 0.652) 

Difference in Concordance - 0.011 0.009 0.011 0.010 -0.008 

Prognostic Separation 

Statistic 0.554 0.505 0.513 0.507 0.522 0.511 

Difference (& 95% CI) - 
0.05 

(0.03, 0.06) 
0.04 

(0.03, 0.06) 
0.05 

(0.03, 0.06) 
0.03 

(0.02, 0.05) 
0.04 

(0.03, 0.06) 
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Table 40: Methods of Imputation tested on a missing categorical variable in NGPSE 

Missing Categorical - NGPSE Complete Variable Matching Random Selection Single Imputation Hot Deck Multiple Imputation 

Deviance 

Statistic 10.26 N/A 11.02 7.29 6.75 8.27 

Degrees of Freedom - N/A 8 8 8 8 

p-value - N/A 1.00 0.94 0.90 0.98 

Concordance 

Statistic 
0.601 

(0.547, 0.654) 
0.578 

(0.525, 0.632) 
0.592 

(0.537, 0.648) 
0.578 

(0.526, 0.631) 
0.579 

(0.524, 0.634) 
0.585 

(0.531, 0.639) 

Difference in Concordance - 0.023 0.009 0.023 0.022 0.005 

Prognostic Separation 

Statistic 0.634 0.506 0.657 0.576 0.548 0.588 

Difference (& 95% CI) - 
0.13 

(0.10, 0.16) 
-0.02 

(-0.06, 0.01) 
0.06 

(0.03, 0.09) 
0.09 

(0.06, 0.12) 
0.05 

(0.01, 0.08) 

 

Table 41: Methods of Imputation tested on a missing categorical variable in WA 

Missing Categorical - WA Complete Variable Matching Random Selection Single Imputation Hot Deck Multiple Imputation 

Deviance 

Statistic 45.4 N/A 30.29 29.99 35.84 31.27 

Degrees of Freedom - N/A 8 8 8 8 

p-value - N/A 0.06 0.05 0.30 0.08 

Concordance 

Statistic 
0.590 

(0.563, 0.618) 
0.578 

(0.550, 0.605) 
0.579 

(0.550, 0.607) 
0.578 

(0.550, 0.605) 
0.582 

(0.554, 0.610) 
0.578 

(0.550, 0.606) 

Difference in Concordance - 0.012 0.011 0.012 0.008 0.012 

Prognostic Separation 

Statistic 0.554 0.446 0.457 0.450 0.495 0.463 

Difference (& 95% CI) - 
0.11 

(0.09, 0.12) 
0.10 

(0.08, 0.11) 
0.10 

(0.09, 0.12) 
0.06 

(0.04, 0.07) 
0.09 

(0.07, 0.11) 
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9.5.2 Conclusion 

We have once again demonstrated that the concordance measure most frequently shows 

agreement when it is known to be present.  Consequently it seems that concordance is the 

best method of external validation.  In terms of handling covariates missing from a 

validation dataset, all five methods of imputation are fairly comparable, with multiple 

imputation being the most consistent method across a missing binary or categorical 

variable. 

Given that there are slight differences in the results for missing binary and missing 

categorical variables, it may not be sensible to infer these results to a missing continuous 

variable.  Ideally, another prognostic model, which contains a binary, categorical and 

continuous variable, should be obtained together with a suitable validation dataset.  The 

analysis in section 9.5.1 can then be repeated and the performance of the methods of 

external validation and methods for handling covariates missing from the validation dataset 

can then be compared across all types of missing data.  Guidelines for handling one missing 

variable of each type may then be produced with possible extensions to more than one 

missing covariate. 

9.6 Summary 

We have attempted to validate a prognostic model for time to second seizure following a 

first ever seizure, in the context of patients who drive, with the NGPSE, FIRST and WA 

datasets.  Following on from the simulation study of Chapter 8, three methods of external 

validation were tested together with five methods of imputation where necessary. 

In the simulation study, concordance was found to correctly identify agreement between 

the validation and development datasets when they were simulated in the same way.  In 

this case study we found, based on the concordance statistic, that the model developed 
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using MESS generalised well to the NGPSE and WA datasets.  The MESS model did not 

generalise as well to the FIRST dataset (Table 42). 

Table 42: Summary of concordance for external validation of MESS model via NGPSE, WA and FIRST datasets 

 Concordance Difference 

MESS 0.591 (0.556, 0.627) NA 

NGPSE 0.601 (0.547, 0.654) 0.01 

 WA 0.590 (0.563, 0.618) 0.00 

MESS: No Sleep Variable 0.576 (0.541, 0.612) NA 

FIRST: Variable Matching 0.646 (0.593, 0.699) 0.07 

MESS: Sleep Variable 0.587 (0.552, 0.622) NA 

FIRST: Random Selection 0.648 (0.596, 0.700) 0.06 

FIRST: Single Imputation 0.651 (0.597, 0.705) 0.06 

FIRST: Hot Deck 0.655 (0.601, 0.709) 0.07 

FIRST: Multiple Imputation 0.648 (0.595, 0.701) 0.06 

 

In the case of NGPSE and WA where no variables were missing, the prognostic measure of 

separation (Table 43) showed that the MESS model did generalise but not very well.  The 

comparison of deviance (Table 44) suggested that the model is not externally valid.  

Table 43: Summary of prognostic separation for external validation of MESS model via NGPSE, WA and FIRST 

datasets 

 Separation Difference Confidence Interval  

MESS 0.636 NA NA 

NGPSE 0.634 0.04 (-0.02, 0.03) 

WA 0.553 0.05 (0.06, 0.10) 

MESS: No Sleep Variable 0.482 NA NA 

FIRST: Variable Matching 0.782 0.30 (-0.34, -0.29) 

MESS: Sleep Variable 0.587 NA NA 

FIRST: Random Selection 0.853 0.27 (-0.29, -0.24) 

FIRST: Single Imputation 0.845 0.26 (-0.29, -0.23) 

FIRST: Hot Deck 0.931 0.35 (-0.37, -0.32) 

FIRST: Multiple Imputation 0.932 0.35 (-0.32, -0.27) 

 

In the case of FIRST where a variable was missing, comparison of deviance suggested no 

evidence to conclude that the MESS model was not externally valid.  Comparison of 

separation suggested that the MESS model did not generalise well.  It is likely that this is as 
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a result of the method of external validation rather than the model and data in question 

although it could be as a result of underlying differences in the population as outlined in 

section 9.1. 

Table 44: Summary of deviance for external validation of MESS model via NGPSE, WA and FIRST datasets 

 Deviance P-value 

MESS 30.91 NA 

NGPSE 10.26 0.01 

WA 45.40 0.07 

MESS: No Sleep Variable 21.11 NA 

FIRST: Variable Matching 23.03 0.86 

MESS: Sleep Variable 27.09 NA 

FIRST: Random Selection 24.70 0.88 

FIRST: Single Imputation 23.04 0.67 

FIRST: Hot Deck 25.43 0.95 

FIRST: Multiple Imputation 24.40 0.85 

 

In the simulation study of Chapter 8 variable matching was found to be a poor method of 

imputation.  Methods random selection with replacement, single imputation via 

estimation, hot deck imputation and random selection with replacement multiple times 

were found to be appropriate.  In our external validation of MESS all five methods led to 

poor comparison of separation although the concordance statistic showed good 

agreement, and p-values for the comparison of deviance were highly non-significant.  

When the methods of imputation were tested on real data, all five methods were found to 

be comparable, with multiple imputation being the most consistent method across a 

missing binary or categorical variable. 

In the case of comparison of deviance, a significant p-value suggests that the deviances are 

not comparable across the development and validation datasets – in other words the 

development model is not externally valid.  A non-significant p-value, on the other hand, 

only implies that there is insufficient evidence of a difference in deviances.  From this, it is 
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not possible to infer that the models are externally valid [231] – this confusing 

interpretation of the results provide an additional justification for not using comparison of 

deviance as a method of external validation (Chapter 8). 

The MESS model appears to be externally valid, to different degrees, using different 

datasets; the model generalises fairly well to the NGPSE and WA datasets and not quite so 

well to the FIRST dataset.  This may be due to underlying population differences - FIRST is 

the closest match to MESS in terms of the proportions of patients with certain 

characteristics, however the follow-up is much shorter and a significant covariate is 

missing.  In addition, EEG result and CT/MRI result were categorised differently in FIRST 

than in MESS and there may be other differences in unmeasured covariates. 

Data used to externally validate a prognostic model should come from the same super-

population as the development data.  There are however, no guidelines suggesting how to 

check whether the development and validation datasets are from a super-population.  

From our analyses it appears that length of follow-up is not too important, as the results of 

the external validation were unaffected when we truncated NGPSE to match the length of 

follow-up in MESS.  However, the conditional risk estimates became considerably higher 

than those for the complete NGPSE dataset, and consequently became considerably higher 

than those for MESS which suggested that truncating was not a sensible option.   

If a prognostic model is only externally valid in a population that is too similar, say almost 

identical, to that used to derive the model then it may not be generaliseable more widely.  

The three external validation datasets investigated here were plausibly related datasets to 

MESS but were not a perfect match.  Given that the model appears to be externally valid in 

populations that are slightly different in some respects to the MESS dataset it may be 

possible to conclude that the model is more useful as a clinical tool. 
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Inevitably, studies brought together for external validation will differ.  This is also the case 

in systematic reviews and meta-analyses.  According to Cochrane guidelines [214], meta-

analyses should only be considered when a group of studies is sufficiently homogeneous in 

terms of participants, interventions and outcomes to provide a meaningful summary.  This 

can be equated to  performing external validation when an independent dataset needs to 

be sufficiently similar to the development dataset to provide a reasonable estimate of 

validity [8].   

The decision of sufficient homogeneity is often based on clinical input in the case of meta-

analyses and I recommend a similar process for external validation – if the independent 

dataset(s) is sufficiently homogenous in terms of participants, interventions and outcomes 

then it may be suitable for external validation.  Obviously, this will vary according to 

medical area and therefore clinical input would be required. 
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Chapter 10: Prognostic Models for 

Remission – Mixture Modelling 

10.1 Introduction 

In this chapter more complex modelling methods than those used in Chapter 4 will be 

investigated to assess if a model can be developed which more appropriately accounts for 

the different patient groups.  The chapter begins with a summary of the theory of mixture 

modelling (section 10.2), especially in the context of survival data (section 10.2.2).  Then 

two alternative methods for modelling time to 12 month remission are presented.   In 

section 10.3.1, the patients are split into two groups - those who achieve immediate 12 

month remission and those who achieve delayed 12 month remission.  Patients with 

refractory epilepsy are included in the delayed 12 month remission group as censored 

observations.  Prognostic models for each group are derived.  In section 10.3.2, mixture 

modelling techniques are implemented to derive a single prognostic model for all three 

patient groups. 

In Chapter 7, the prognostic model for time to 12 month remission, derived using a Cox 

model, showed poor internal validation at one year.  This may be because prognostic 

factors for the patient group achieving remission immediately at 365 days differ from those 

for the patient group achieving remission after one year.   

Considering arm A of the SANAD dataset (described thoroughly in Chapter 4), time to 12 

month remission is thought to comprise three distinct sections, as can be seen in Figure 33.  

The first section is at one year where a spike represents people who achieve remission 

immediately at 12 months.  The second section represents who achieve 12 month 

remission but not immediately, referred to as the delayed remission group.  Finally, the 



 

276 
 

survival curve flattens out although most Kaplan-Meier curves flatten towards the end of 

follow-up due to fewer subjects being at risk.  However, in the case of epilepsy, clinical 

knowledge suggests that not all patients achieve remission.  Therefore, in Figure 33, the 

flattening out is likely to represent patients who do not achieve remission, called the 

refractory epilepsy group (or the ‘cure’ group in frailty modelling terminology).   

 

Figure 33: The SANAD Trial – arm A: Kaplan-Meier curve for time to 12 month remission 

10.2 Mixture Modelling 

Finite mixture models were first proposed over a century ago in the classic paper of 

Pearson [327].  He fitted a mixture of two univariate Normal components to data on crab 

measurements provided by his colleague Weldon [328, 329] via moments-based fitting.  

Pearson’s approach [327] involved large amounts of algebra.  In the early part of the 

twentieth century various attempts were made to simplify the method [330].  Over the 

following 30 years, work continued on the use of the method of moments for this mixture 

problem - Charlier and Wicksell [331] extended the method to the case of more than two 
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univariate normal components.  In addition, Stromgren [332] considered the use of 

cumulants.  More recently, Cohen [333] showed how an iterative procedure, involving the 

solving of a cubic equation for a negative root, could be used as an alternative to solve 

Pearson’s [327] nonic.  Tan and Chang [334] and Fryer and Robinson [335], and others, 

showed however that maximum likelihood estimation was, in fact, superior to the methods 

of moments for this problem.  Recent work by Lindsay and Basak [336], amongst others, 

shows renewed interest in the method of estimation for normal mixtures. 

Following the introduction of high-speed computers, interest focused on maximum 

likelihood estimation of the parameters in a mixture distribution.  Rao [337] first used this 

method for a mixture model applying Fisher’s method of scoring for a mixture of two 

univariate distributions with equal variances.  It has, however, been noted [338] that 

Newcomb [339] predates Pearson’s early attempt at mixture models with the method of 

moments.  He suggested an iterative reweighting scheme, which can be interpreted as an 

application of the EM algorithm of Dempster [306], to compute the maximum likelihood 

estimate of the common mean of a mixture in known proportions of a finite number of 

univariate normal populations with known variances. 

After Rao’s paper [337] maximum likelihood estimation was not pursued further until 

Hasselblad [340, 341] who addressed the problem, initially for a mixture of   univariate 

normal distributions with equal variances, and then for mixtures of distributions from the 

exponential family.  Convergence properties of the maximum likelihood solution for the 

mixture problem were established theoretically after Dempster et al. [306] had formalised 

this iterative scheme in a general context.  In addition, their paper proved to be a spring-

board for further research into the applications of finite mixture models which is continuing 

to this day. 
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10.2.1 General Finite Mixture Models 

Finite mixture densities are a family of probability density functions of the form  

                    
 
     

where    is a  -dimensional random variable,                   and 

      
    

      
   with the    being the mixing proportions, or mixing weights, and the 

             the component densities of the mixture, with density    parameterised by 

  .  The mixing proportions are non-negative and are such that    
 
     .  The number 

of components forming the mixture is   [342].   In most applications of mixture densities, 

the    are assumed to take the same specified form, such as a univariate Gaussian.  In some 

applications it is better to allow different forms as   varies.  A particular case of this, 

referred to as a nonstandard mixture, is for     where one of the component densities is 

concentrated on a single value. 

Finite mixture densities are frequently used in either the situation where the population, 

whose distribution is to be modelled, is known to consist of well-defined subpopulations 

but the individual class memberships are unavailable or too expensive to obtain, or in the 

situation where subpopulations are only suspected and finite mixture models are used to 

explore the data for any potentially informative groupings.  A simple example of the first 

scenario would be if clinical measurements were available for patients, but disease 

classifications were not.  In the second case, finite mixture densities act as a relatively 

sound model for cluster analysis [342]. 

10.2.1.1 Estimating the Parameters in Finite Mixture Densities 

One of the main challenges when applying finite mixture densities is the estimation of the 

parameters of the mixture, which may or may not include the number of components,  .  

Given a sample of observations,           , from the mixture density, the log-likelihood 
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function,  , is defined as                
    [342].  The likelihood equation 

     

  
  , 

where           , can be solved to give estimates of the parameters in the model.  In 

addition, it has been shown [340, 341, 343-346] that the likelihood equations can be 

rearranged such that the likelihood estimate of      satisfies the equations 

Equation 22 

    
 

 
         

 

   

 

and 

Equation 23 

          
 
   

 
               

   
   

where          is the estimated posterior probability of an observation,  , arising from 

component density,  .   

In the situation of a mixture where the  th component density is multivariate normal with 

mean,   , and covariate matrix,   , Equation 22 and Equation 23 become [342] 

Equation 24 

    
 

 
         

 
   , 

Equation 25 

    
 

    
   

 
           , 

and 
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Equation 26 

    
 

    
                 

 
        

 
   . 

The estimation of the unknown parameters,  , on the basis of the observations    is only 

meaningful if   is identifiable [347].  In general, a parametric family of densities         is 

identifiable if  

Equation 27 

              
  , 

if and only if     .  Identifiability for mixture distributions is defined in a slightly 

different way.  Suppose that         has two component densities, say           and  

          that belong to the same parametric family.  Then Equation 27 will still hold 

when the component labels   and   are interchanged in  .  That is, although this class of 

mixtures may be identifiable,   is not [347].  This lack of identifiability is not of concern in 

the normal course of events in the fitting of mixture models by maximum likelihood, say, 

via the EM algorithm.  However, it does cause problems in a Bayesian framework where 

posterior simulation is used to make inferences from the mixture model [347]. 

Hasselblad [340, 341], Wolfe [343-345] and Day [346] all suggested an iterative scheme for 

solving the likelihood equations.  This involved finding initial estimates of the posterior 

probabilities from given initial values of the parameters of the mixture, and then evaluating 

the right-hand sides of Equation 24, Equation 25 and Equation 26 to give revised estimates 

of the parameter values.  From these, new estimates of the posterior probabilities were 

derived and the procedure was repeated until a suitable convergence criterion was 

satisfied.  This procedure is a particular example of the EM algorithm [342], described by 

Dempster, Laird and Rubin [306] in the context of likelihood estimation for incomplete data 

problems. 
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One of the problems of the EM algorithm, noted by McLachlan and Basford [348], is its 

generally slow convergence rate.  Others have highlighted the fact that the algorithm need 

not converge at the global maximum.  Alternative algorithms, such as the Quasi-Newton 

algorithm, have also been shown to have convergence problems.  A more general problem 

of likelihood estimation for mixture models is that examples can be found where the 

likelihood is unbounded, so that the maximum likelihood estimate does not exist [342]. 

10.2.1.2 Detecting Finite Mixture Densities 

Finite mixture densities are most applicable in situations where separate groups of 

observations, with different distributions, seem to exist as a result of the nature of the 

application.  In many real-life situations however, the evidence for modelling data with a 

mixture distribution will need to be obtained empirically.  It is in these situations that the 

number of components in the mixture,  , is important having determined if a mixture 

density is an appropriate model for the data.  The procedures that have been suggested for 

answering such questions involve a combination of graphical techniques and quasi-

significance tests [342]. 

In the case of univariate data the simplest way to determine whether a mixture distribution 

is a suitable model for a sample of observations is to draw a sample histogram; clear 

multimodality is assumed to provide strong evidence that a mixture distribution is 

appropriate [342].  However, only in particular circumstances will the mixing of at least two 

unimodal densities lead to a mixed density with more than a single mode [349].  Therefore, 

it is important to look for alternatives to the histogram for evidence of a mixture.   One 

possibility, particularly for mixtures with normal components, is to use a Q-Q plot of the 

data, or a variation of such a plot proposed by Fowlkes [350], which he claims is particularly 

sensitive to the presence of mixtures. 
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Fowlkes’ suggested procedure is to plot             against   
       

 
     where 

                 represent the ordered sample values, which have mean    and 

standard deviation  ,              and   is the standard normal distribution function.  

When the observations arise from a single normal density, Fowlkes’ proposed plot results 

in an approximately horizontal line at    .  Mixture densities lead to plots having a 

characteristic cyclical pattern about zero, which differs from the pattern given by other 

non-normal distributions [350]. 

To detect multivariate normal mixtures an option is a chi-squared probability plot of the 

Mahalanobis distance of each observation from the sample mean vector [342].  If the data 

are from a single multivariate normal density these distances have an approximately chi-

squared distribution with   degrees of freedom, where   is the number of variables.  

Therefore a chi-squared probability plot of the ordered distances will result in an 

approximately straight line through the origin.  Mixtures of multivariate normals will, 

however, tend to give plots that are ‘S’ shaped. 

10.2.1.3 Determining the Number of Components in a Mixture 

Despite the widespread use of finite mixture models, the decision of how many 

components are required to adequately represent the data is, according to many authors 

[351-354] an important problem, but without a satisfactory statistical solution.   

A natural candidate for testing the hypothesis      against             , where   is 

the number of components in a mixture density, is the likelihood ratio statistic,  .  

However, this does not lead to a suitable significance test, because, for mixture densities, 

regularity conditions do not hold for       to have its usual asymptotic null distribution 

which is a chi-squared distribution with degrees of freedom equal to the difference in the 

number of parameters under the competing hypotheses [342].  This is because the null 
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distribution is on the edge of the parameter space.  Despite there being no completely 

satisfactory method of using the likelihood ratio statistic as a formal significance test for 

number of components, McLachlan and Basford [348] suggest that Wolfe’s modified 

likelihood ratio test [355] can be used as an informal guide to the appropriate number of 

components.  Wolfe, on the basis of a limited simulation study, suggested that the null 

distribution of the likelihood ratio statistic, for testing     against   components, is chi-

squared with      degrees of freedom, where   is the number of extra parameters in the 

    component mixture. 

In the context of survival data, Hunsberger et al [356] propose a maximum-likelihood 

approach to estimate the number of mixture components.  For Hunsberger’s [356] 

approach to estimating the number of mixture components let    be the true failure time 

for individual  , let    be an individual’s potential censoring time and    be the 

corresponding censoring indicator.  Observations then consist of               with 

     if       (uncensored) and      if       (censored). 

Alternative Bayesian approaches are also possible such as reversible-jump Monte Carlo 

methods [357] and a Markov-chain Monte Carlo method that treats the parameters of the 

model as a marked Poisson process [358].  These require bootstrapping to obtain an 

assessment of the p-value. 

Carrying out a hypothesis test based on bootstrapping can be computationally demanding.  

Therefore the estimation of the order of a mixture model has been considered mainly by 

using a penalised form of the log-likelihood function – as the likelihood increases with the 

addition of a component to a mixture model, information criteria such as AIC [163] and BIC 

[166] attempt to balance the increase in fit obtained against the larger number of 

parameters estimated for models with more components. 
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In addition, to ensure that over-parameterisation is accounted for, it is important to ensure 

that the segments are sufficiently separated.  An entropy statistic can be used to evaluate 

the degree of separation and hence assess the ability of a mixture model to provide well-

separated components. 

10.2.1.4 Including Covariates in a Finite Mixture Model 

Introduce a finite mixture model with   groups where the probability of being in a 

particular group           can be allowed to depend on subject-specific covariates 

where     denotes covariates           measured on subject  .  Polychotomous logistic 

regression parameterisation is used as per Equation 28 with           
 
   , 

                  
 
 and                    .  The vector    contains parameters 

that characterise the effect of covariates    on the probability of being in the  th group. 

Equation 28 

              
               

 
    

                    
 
      

    
 

10.2.2 Finite Mixture Models for Survival 

Finite mixtures have frequently been used in a variety of fields to model heterogeneous 

data.  The potential of finite mixture models has been extended to survival analysis as they 

can be used to analyse failure-time data in a variety of situations including in the case of 

competing risks.  In the case of survival analysis, the observations are the times to failure 

and since failure can be due to a variety of causes, each with its own particular survival 

time distribution, the overall survival time distribution will be a mixture.  Historical 

attempts to fit negative exponential or Weibull distributions etc. have been described by 

Mendenhall and Hader [359] and by Kao [360] while, more recently, applications of mixture 

distributions to survival times have been described by McGiffin et al [361] and Lui, Darrow 

and Rutherford [362].  
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In general, to specify a survivor function by a mixture model, it is assumed that the 

probability density function,     , of the survival time,  , has the finite mixture form [363]  

Equation 29 

             

 

   

 

where               denote   component densities occurring in proportions         

where                 .  The survival function      corresponding to Equation 29 

has the functional form 

             
 
      

where  

              
 

 
          . 

For the mixture model specification, Equation 29, of the survivor function,     , the 

corresponding hazard function      is  

      
        

  
 

             
 
   

    
  

where       is the hazard function corresponding to the  th component survivor function 

      in the model.       can be written as  

Equation 30 

             

 

   

 

where  
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          . 

Thus, the imposition of a mixture model on the survivor function implies a mixture model 

for the hazard function of the form in Equation 30 [363]. 

Suppose that       has the proportional hazards form 

              
          

where   is the vector of covariates and        is the baseline hazard function that does not 

depend on           .  Then 

Equation 31 

        
                       

  

   
 
           

  
 

where  

                     
 

 

  

and  

              

for        .  It can be seen from Equation 31 that although         has a proportional 

hazards form,         does not in general [363]. 

In the context of cure mixture models with survival data Greenhouse and Silliman [364] use 

a parametric cure model to analyse a dataset where the patients who are not cured are 

modelled according to a Weibull distribution.  The approach of Hunsberger [356] is similar 

to that of Greenhouse and Silliman but it potentially allows for more than two mixture 
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components.  Both use a Weibull distribution to model the survival in the non-cured 

groups. 

In Hunsberger [356] the survivor function for the  th patient is  

Equation 32 

                                                             

where             is a Weibull survival distribution indexed by parameters   ,    also 

                and                .  Alternatively, a cure component can replace 

a Weibull distribution in this formulation.  For example a cure component can replace the 

Weibull distribution for group 1 by replacing             with         in Equation 32.  

Models are identifiable up to a permutation of the group labels.  Therefore, the groups are 

ordered in terms of the median survival in each group. 

Hunsberger [356] uses maximum likelihood to estimate the model parameters.  As an 

example, the likelihood,         , for the model with three groups, two Weibull and a 

cure component is  

Equation 33 

                                           
  

 

   

                                      
       

where             and             are different Weibull distributions and             and 

            are the respective cumulative distribution functions.  The maximum likelihood 

estimates are found by maximising               with respect to the set of unknown 

parameters.  The parameter estimates are obtained using a quasi Newton-Raphson 

algorithm, which is available in the software package ‘gauss’ [365].  Hypothesis testing for 
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assessing the effect of covariates on the probability of being in a particular group is 

conducted with likelihood ratio tests. 

10.2.2.1 Long-Term Survivor Model (Proportion Cured Model) 

In some situations where the aim is to estimate the survival distribution for a particular 

type of failure, a certain fraction of the population, say   , may never experience this type 

of failure.  It is characterised by the overall survival curve being levelled at a non-zero 

probability.  In some applications, the surviving fractions are said to be cured [347] and the 

estimation of    is of interest.  Although it can be difficult to distinguish between a cure 

group and survival functions with long tails [366], Yu et al [367] showed that the cure 

fraction could be estimated well if follow-up was longer than the median survival. 

Assume that an individual has probability         of failing from the cause of interest 

and probability    of never experiencing failure from this cause.  Further, assume that the 

individual cannot fail from any other cause during the course of the study.  Let   be a 

random variable denoting the time to failure, where     denotes the event that the 

individual will not fail from the cause of interest.  The probability of this latter event is    

[347].  The unconditional survival function of   can then be expressed as  

Equation 34 

                 

where        denotes the conditional survival function for failure from the cause of 

interest.  The mixture model described in Equation 34, with the first component having 

mass one at    , can be regarded as a nonstandard mixture model [347] and is used in a 

variety of applications in survival analysis.  This model is sometimes referred to as the long-

term survival mixture model as individuals who will never fail can be viewed as being long-

term survivors.  This approach enables the proportion,   , of patients suffering no relapse 
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of the disease to be estimated without needing to specify a survivor function for those 

patients who die without evidence of a relapse of the disease under study.  This mixture 

approach, which was adopted by Farewell [368] and by McLachlan et al [369], among 

others, provides an alternative to the use of the Kaplan-Meier estimate. 

In more recent work involving this class of mixture models, Kuk and Chen [370] proposed a 

semi-parametric generalisation of the parametric model of Farewell.  Their model also 

assumes a proportional hazards model for the component hazard function      , 

              
         , 

but the baseline hazard function can be any arbitrary unspecified function not necessarily 

in the Weibull or Gompertz families.  Estimates of the regression parameters are obtained 

by maximising a Monte Carlo approximation of a marginal likelihood and the EM algorithm 

is used to estimate the baseline survivor function. 

Usually, for the long-term survival mixture model to be applicable, the observed data are of 

the form        
 

 for the  th entity where      implies that the  th individual was 

observed to fail from the cause of interest at time    during the following up period, and 

     implies that the failure time was censored at time    [347].  In this context, Equation 

34 can be fitted by maximum likelihood after the specification of a parametric model 

         for      .   
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An individual who fails from the cause of interest at time              contributes a 

likelihood factor             where          is the density of   corresponding to         .  

An individual who has been followed to time    without failure contributes a likelihood 

factor                which is the probability that an individual never experiences 

failure.  The log likelihood,        , for         
    is then given by 

                                                               

 

   

 

10.2.2.2 Fitting by Maximum Likelihood 

In order to fit the mixture model, defined by Equation 29, to the observed failure-time data 

maximum likelihood can be used such that the form of each component density is specified 

up to a manageable number of unknown parameters.  These parameters are then inferred 

by considering the likelihood function that can be formed under these specified parametric 

forms [363].   

Let                                      denote the parametric forms of the density, 

survivor and hazard functions respectively with respect to the  th component in the mixture 

representation, Equation 29.  Here,    is a vector containing the unknown parameters in 

the parametric representation of these quantities for the  th component of the mixture.  

The vector of all unknown parameters is denoted by  .  When parametric forms are 

adopted for the mixing proportions        ,   is given by                   where 

     
      

   .   
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In some situations, the mixing proportions    are modelled as logistic functions of the 

covariate vector  .  In this case, the vector   of all unknown parameters is given by 

          .  With   defined in either way, the log-likelihood function for   is given by 

                       

 

   

        

 

   

              

where          and          denote the mixture density and survivor functions with 

components modelled parametrically [363].  The maximum likelihood estimator    of   is 

then obtained as an appropriate root of the likelihood equation 

Equation 35 

                 . 

10.2.2.3 Application of the EM Algorithm 

Rather than solving the likelihood equation, Equation 35, directly, solutions can be found 

by applying Dempster et al.’s EM algorithm [306].  This algorithm can be applied in the 

same manner in the context of survival analysis as for mixture models in general, with 

modifications to allow for the presence of censored data [363].  On the      th iteration 

of the EM algorithm,        is given by the value of   that globally maximises 

                           ,  

which is the conditional expectation of the complete-data log-likelihood,         , given 

the observed data   and the current fit      for  .  The calculation of this equation 

corresponds to the E-step while its maximisation with respect to   corresponds to the M 

step of the EM algorithm [363], as described in section 8.3.2.6. 
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10.3 Modelling Time to 12 Month Remission  

The SANAD time to 12 month remission data was investigated in two ways.  In section 

10.3.1 a non-mixture modelling approach was used while in section 10.3.2 a three 

component mixture model was derived. 

10.3.1 Non-Mixture Modelling 

The outcome immediate 12 month remission was assessed by logistic regression.  For each 

prognostic factor for this outcome, the log-odds ratio and 95% confidence interval was 

calculated.  Model fits were tested by chi-square methods.  Of the 1620 patients suitable 

for analysis in arm A, 32 had no follow-up data and 74 (5%) had a follow-up of less than 365 

days, 12 months.  47 of these patients had a seizure during follow-up and were therefore 

included in the denominator  

The outcome time to 12 month remission conditional on not achieving it immediately at 

365 days was assessed by life table analysis according to Kaplan-Meier.  The prognostic 

values of factors for these outcomes were tested by log-rank methods.  For each factor the 

hazard ratio and associated 95% confidence interval were calculated.  Best-fitting, 

parsimonious, Cox multivariable models were produced with backwards elimination by AIC 

– selection starts with the full model and eliminates predictors one at a time, at each step 

considering whether the criterion will be improved, smaller AIC, by adding back in a 

variable removed at a previous step [178].  Of the 1514 patients with a follow-up of at least 

365 days, 471 had a remission time of exactly 365 days and were consequently removed 

from the dataset.  Therefore 1043 patients were analysed to determine prognostic factors. 

10.3.1.1 Immediate 12 Month Remission 

The outcome immediate 12 month remission is equivalent to a time to 12 month remission 

of 365 days.  Univariate and multivariable odds ratios can be seen in Table 45. 
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In the univariate model the following factors were significantly associated with immediate 

12 month remission: gender, treatment history, neurological insult, epilepsy type, seizure 

type, focal epilepsy site of onset, age, time from first seizure to randomisation, total 

number of seizures ever before randomisation and treatment.  The resulting parsimonious 

multivariable model included variables for gender, treatment history, age, time from first 

seizure to randomisation, neurological insult, total number of seizures ever before 

randomisation and treatment, which was forced into the model.  

Immediate 12 month remission was more likely in men than women (male vs. female: HR 

1.06 95% CI (1.01 to 1.11)) and less likely in patients who were taking non-SANAD AEDs at 

randomisation compared to those who were treatment naive (non-SANAD AEDs vs. naive: 

HR 0.90 95% CI (0.85 to 0.96)).  Immediate 12 month remission was also less likely in 

patients with a neurological insult (present vs. absent: HR 0.92 95% CI (0.86 to 0.99)) and in 

patients taking gabapentin rather than carbamazepine (gabapentin vs. carbamazepine: HR 

0.89 95% CI (0.83 to 0.95)).  Immediate 12 month remission was increasingly likely with 

increasing age while it was less likely with an increase in the number of seizures ever 

before randomisation. 
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Table 45: The SANAD Trial – arm A: Univariate and Multivariable Odds Ratios for Immediate 12 Month 

Remission 

 Odds Ratio (95% Confidence Interval) 

Prognostic Factor Comparison 
P-value 

(univariate) 

Univariate 

(n=1513) 

Multivariable 

(n=1513) 

Gender 
Female 

Male 
0.00 

1.00 

1.42 (1.14 to 1.77) 

1.00 

1.06 (1.01 to 1.11) 

Febrile seizure history 
Absent 

Present 
0.13 

1.00 

0.69 (0.39 to 1.17) 
NA 

First degree relative with 

epilepsy 

Absent 

Present 
0.13 

1.00 

0.78 (0.54 to 1.13) 
NA 

CT/MRI scan result 

Normal 

Abnormal 

Not Done 

0.20 

1.00 

1.03 (0.79 to 1.33) 

1.18 (0.87 to 1.61) 

NA 

Treatment history 

Treatment naive 

Seizures after remission 

Taking non-SANAD AEDs 

0.00 

1.00 

1.30 (0.63 to 2.62) 

0.43 (0.29 to 0.60) 

1.00 

1.09 (0.94 to 1.27) 

0.90 (0.85 to 0.96) 

Age (years) 

[Linear] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

0.00 

1.00 

1.15 (1.08 to 1.22) 

1.39 (1.21 to 1.61) 

1.66 (1.34 to 2.07) 

2.10 (1.53 to 2.88) 

2.73 (1.78 to 4.18) 

1.00 

1.03 (1.01 to 1.04) 

1.06 (1.03 to 1.09) 

1.10 (1.05 to 1.15) 

1.15 (1.08 to 1.22) 

1.20 (1.10 to 1.31) 

Time from 1st seizure 

(months) 

[Log] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

0.00 

1.00 

0.99 (0.99 to 1.00) 

0.98 (0.96 to 0.99) 

0.93 (0.89 to 0.97) 

0.92 (0.87 to 0.97) 

0.57 (0.40 to 0.81) 

1.00 

1.00 (1.00 to 1.00) 

1.00 (1.00 to 1.01) 

1.01 (1.00 to 1.02) 

1.01 (1.00 to 1.02) 

1.09 (1.01 to 1.18) 

Neurological insult 
Absent 

Present 
0.00 

1.00 

0.56 (0.38 to 0.82) 

1.00 

0.92 (0.86 to 0.99) 

Total number of seizures 

[Scale: divided by 100,  

power 0: log] 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

0.00 

1.00 

0.92 (0.91 to 0.93) 

0.76 (0.72 to 0.79) 

0.57 (0.52 to 0.63) 

0.40 (0.34 to 0.47) 

0.22 (0.17 to 0.29) 

1.00 

0.99 (0.98 to 0.99) 

0.95 (0.94 to 0.96) 

0.90 (0.89 to 0.92) 

0.85 (0.82 to 0.87) 

0.76 (0.72 to 0.79) 

EEG results 

Normal 

Missing 

Non-specific abnormality 

Epileptiform abnormality 

0.17 

1.00 

1.05 (0.70 to 1.55) 

1.10 (0.80 to 1.50) 

0.87 (0.67 to 1.13) 

NA 

Seizure type 

Simple or complex focal only 

2° Generalised tonic-clonic 

Uncertain 

0.00 

1.00 

1.31 (1.03 to 1.69) 

2.60 (1.78 to 3.79) 

NA 

Epilepsy type 
Focal 

Unclassified 
0.00 

1.00 

2.16 (1.53 to 3.04) 
NA 

Focal epilepsy site of onset 

Temporal 

Not localised 

Frontal 

Other 

Unclassified 

0.00 

1.00 

1.04 (0.81 to 1.35) 

0.94 (0.58 to 1.50) 

0.86 (0.51 to 1.40) 

2.17 (1.49 to 3.16) 

NA 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

0.01 

1.00 

0.56 (0.40 to 0.78) 

0.76 (0.55 to 1.04) 

0.94 (0.64 to 1.39) 

0.83 (0.60 to 1.15) 

1.00 

0.89 (0.83 to 0.95) 

0.94 (0.88 to 1.00) 

0.99 (0.91 to 1.07) 

0.96 (0.90 to 1.03) 
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10.3.1.2 Time to Delayed 12 Month Remission 

The outcome time to delayed 12 month remission is equivalent to time to 12 month 

remission conditional on not having achieved it at 365 days.  Univariate and multivariable 

hazard ratios can be seen in Table 46. 

In the univariate model CT/MRI results, treatment history, seizure type, time from first 

seizure to randomisation and total number of seizures ever before randomisation were 

significantly associated with delayed 12 month remission.  The resulting parsimonious 

multivariable model included variables for gender, CT/MRI result, treatment history, 

seizure type, total number of seizures ever before randomisation and treatment which was 

forced into the model.  

Delayed 12 month remission was less likely in patients with an abnormal CT/MRI result 

compared to a normal result (abnormal vs. normal: HR 0.81 95% CI (0.66 to 0.99)) and in 

patients who were taking non-SANAD AEDs at randomisation compared to those who were 

treatment naive (non-SANAD AEDs vs. naive: HR 0.67 95% CI (0.53 to 0.86)).  Delayed 12 

month remission was decreasingly likely with an increase in the number of seizures ever 

before randomisation. 
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Table 46: The SANAD Trial – arm A: Univariate and Multivariable Hazard Ratios for Time to Delayed 12 Month 

Remission 

 Hazard Ratio (95% Confidence Interval) 

Prognostic Factor Comparison 
P-value 

(univariate) 

Univariate 

(n=1043) 

Multivariable 

(n=1043) 

Gender 
Female 

Male 
0.24 

1.00 

1.11 (0.94 to 1.31) 

1.00 

1.13 (0.96 to 1.35) 

Febrile seizure history 
Absent 

Present 
0.20 

1.00 

1.25 (0.90 to 1.74) 
NA 

First degree relative with 

epilepsy 

Absent 

Present 
0.39 

1.00 

1.12 (0.87 to 1.46) 
NA 

CT/MRI scan result 

Normal 

Abnormal 

Not Done 

0.03 

1.00 

0.79 (0.65 to 0.97) 

1.09 (0.85 to 1.39) 

1.00 

0.81 (0.66 to 0.99) 

1.09 (0.85 to 1.40) 

Treatment history 

Treatment naive 

Seizures after remission 

Taking non-SANAD AEDs 

0.00 

1.00 

0.95 (0.52 to 1.73) 

0.60 (0.47 to 0.76) 

1.00 

0.98 (0.53 to 1.79) 

0.67 (0.53 to 0.86) 

Age (years) 

[Linear] 

≤10 

(10 to 24) 

(25 to 36) 

(37 to 49) 

(50 to 70) 

>71 

0.12 

1.00 

0.96 (0.48 to 1.93) 

0.94 (0.30 to 2.92) 

0.93 (0.23 to 3.67) 

0.92 (0.18 to 4.62) 

0.91 (0.15 to 5.48) 

NA 

Time from 1st seizure 

(months) 

[Log] 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

0.00 

1.00 

0.95 (0.93 to 0.98) 

0.92 (0.87 to 0.97) 

0.88 (0.81 to 0.95) 

0.88 (0.81 to 0.95) 

0.82 (0.72 to 0.93) 

NA 

Neurological insult 
Absent 

Present 
0.09 

1.00 

0.81 (0.62 to 1.04) 
NA 

Total number of seizures 

[Scale: 100, power: 0] 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

0.00 

1.00 

0.98 (0.97 to 0.99) 

0.93 (0.90 to 0.96) 

0.86 (0.81 to 0.92) 

0.79 (0.71 to 0.87) 

0.67 (0.56 to 0.80) 

1.00 

0.98 (0.97 to 0.99) 

0.94 (0.91 to 0.97) 

0.88 (0.82 to 0.94) 

0.81 (0.73 to 0.90) 

0.70 (0.58 to 0.84) 

EEG results 

Normal 

Missing 

Non-specific abnormality 

Epileptiform abnormality 

0.59 

1.00 

0.89 (0.63 to 1.25) 

1.10 (0.86 to 1.41) 

1.08 (0.89 to 1.31) 

NA 

Seizure type 

Simple or complex focal only 

2° Generalised tonic-clonic 

Uncertain 

0.03 

1.00 

0.86 (0.72 to 1.03) 

1.26 (0.92 to 1.73) 

1.00 

0.83 (0.69 to 1.00) 

1.05 (0.75 to 1.46) 

Epilepsy type 
Focal 

Unclassified 
0.07 

1.00 

1.34 (0.99 to 1.81) 
NA 

Focal epilepsy site of onset 

Temporal 

Not localised 

Frontal 

Other 

Unclassified 

0.14 

1.00 

0.93 (0.77 to 1.12) 

1.07 (0.76 to 1.49) 

1.27 (0.91 to 1.76) 

1.32 (0.96 to 1.83) 

NA 

Treatment 

Carbamazepine 

Gabapentin 

Lamotrigine 

Oxcarbazepine 

Topiramate 

0.29 

1.00 

0.87 (0.68 to 1.12) 

1.06 (0.83 to 1.35) 

1.02 (0.73 to 1.42) 

0.83 (0.64 to 1.08) 

1.00 

0.84 (0.66 to 1.08) 

1.04 (0.82 to 1.33) 

1.00 (0.72 to 1.38) 

0.84 (0.65 to 1.09) 
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10.3.1.3 Discussion 

A prognostic model for overall time to 12 month remission was derived in Chapter 4.  It 

included variables for gender, CT/MRI scan result, treatment history, age, time from first 

seizure to randomisation, neurological insult, total number of seizures before 

randomisation, focal epilepsy site on onset and treatment.  All these variables were found 

to be significant prognostic factors for either the model for immediate 12 month remission 

(section 10.3.1.1), or time to delayed 12 month remission (section 10.3.1.2), or both.   

Gender, treatment history, total number of seizures, site of onset and treatment were 

included in both the model for immediate 12 month remission, and the model for delayed 

remission.  In the immediate remission model, age, time from first seizure and neurological 

insult were significant factors while in the delayed model CT/MRI result and seizure type 

were significant. 

As there were some differences in the prognostic factors for immediate 12 month 

remission and those for delayed remission it is possible that the model developed in 

Chapter 4 with these patient groups combined is not the most appropriate model.  This 

may explain why the internal validation of the model developed in Chapter 4 was poor at 

one year – patients with immediate 12 month remission have different significant clinical 

factors to those with delayed 12 month remission and therefore need to be modelled 

independently. 

It is difficult to provide clinical reasoning for the difference in the results when comparing 

variables identified for immediate and delayed 12 month remission.  If anything, this work 

highlights the need for further work into the biology of epilepsy.  This research may then 

explain why age is important for predicting immediate remission but not delayed remission 

while time from first seizure and total number of seizures are similar across both outcomes.  

One reason may be that the immediate and delayed analyses comprise different number of 
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patients.  Therefore, the delayed analyses have less power to detect the effects of 

prognostic factors. 

10.3.2 Mixture Modelling 

As the SANAD time to 12 month remission data comprised three distinct patient groups, a 

three component mixture model for the outcome was investigated.  There were several 

stages to the derivation process – existence of a cure fraction, distribution of the survival 

data, covariate selection and likelihood formulation.  These are described in sections 

10.3.2.1 to 10.3.2.4. 

10.3.2.1 Stage 1: Is there a cure fraction? 

In the case of the refractory group, assume that an individual has probability           

of achieving 12 month remission and probability    of never achieving 12 month remission.  

Additionally, assume that the individual cannot fail from any other cause during the course 

of the study.   

In the case of SANAD, follow-up may be insufficient to determine a cure fraction.  A crude 

way to determine if there is a cure fraction is to ignore patients who achieved 12 month 

remission immediately.  Then, a normal cure rate model can be fitted to the delayed and 

potentially refractory patient group using standard cure rate methodology via the ‘gfcure’ 

programme within R [371].   

Table 47: The SANAD Trial – arm A: Cure Fractions 

 Cure Fraction 

Exponential 0.08% 

Weibull 29.8% 

Log-logistic 30.4% 
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The distribution of the delayed remission group is unknown.  Therefore, the test for a cure 

fraction was performed using exponential, Weibull and log-logistic baseline distributions.  

The cure fractions for each distribution can be seen in the Table 47. 

The ‘gfcure’ package uses an extended generalised gamma distribution which, with 

appropriate reparameterisation, includes most commonly used distributions as special 

cases.  The boundary conditions of the likelihood ratio test are not violated with this 

distribution and the standard asymptotic theory of the likelihood ratio test can be applied 

[372]. 

Table 48: The SANAD Trial – arm A: Log-likelihoods for potential model fits to the data 

 
Log-likelihood  

Survival Model Cure Rate Model Cure Fraction Present? 

Exponential -4656.467 -1055.915 Yes 

Weibull -4544.611 -896.314 Yes 

Log-logistic -4494.850 -853.357 Yes 

 

Therefore, to test whether these cure fractions were significant, a form of the log-

likelihood was used for the inclusion of the cure rate.  A model was fitted with all relevant 

covariates included, as per the multivariable analysis of time to 12 month remission for the 

SANAD data (Chapter 4), and a cure fraction.  This was then compared to a standard model 

fitted to the survival data only, with all the same covariates.  The results, shown in Table 

48, suggest that there is a cure fraction, irrespective of the distribution.  The log-logistic 

model appeared to be the better fit based on these results. 

10.3.2.2 Stage 2: Distribution of Delayed Remission Group 

To determine the distribution of the patients who achieve 12 month remission but not 

immediately at 12 months, the so-called delayed remission group, the exponential, Weibull 

and log-logistic distributions were considered.  To begin with, the survivor functions were 

estimated and then graphs were plotted to assess whether the data appeared to follow an 
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underlying exponential, Weibull or log-logistic distribution.  Next, a straight line was fitted 

to these graphs to estimate the model parameters.  Maximum likelihood estimation of the 

parameters was then carried out and the results compared to the estimates from the 

straight line.  The fitted distribution was then compared to the actual data. 

The exponential distribution has density function               , hazard function 

       and survivor function               where   is a positive constant.  It 

therefore follows that              .  To test if the exponential distribution fits the 

data, –            can be plotted against  .  If the lifetime distribution underlying the data is 

exponential, then the plot will, approximately, be a straight line through the origin, 

gradient  . 

The Weibull distribution has density function                      , hazard function  

            and survivor function                where     are positive constants.  

It therefore follows that                           .      –             can be plotted 

against      and if the lifetime distribution is Weibull, then the plot will approximately be a 

straight line, gradient  , intercept      [373].   

The log-logistic distribution has the density function      
         

          
, hazard function  

     
         

       
 and survivor function      

 

       
 where     are positive constants.  It 

therefore follows that     
 

     
               .  If the lifetime distribution is log-

logistic, the plot of     
 

     
    against      should approximately give a straight line 

with intercept       and gradient   [373].  

The three plots can be seen in Figure 34.  None of the plots are a perfect straight line. 
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Figure 34: The SANAD Trial – arm A: Plots to test fit of various models to the data 

 

Having fitted a straight line to each plot, the intercepts and gradients are as shown in Table 

49.  The parameters were additionally estimated by the maximum likelihood method and 

can also be seen in Table 49.  

In the case of the straight line estimates,       intercept  and           .  In the case 

of the maximum likelihood estimates, the output from R for the estimated survivor 

function is in parametric form with the relationship between this and the estimates for a 

straight line model being               
 

 
          , and        

  .  Therefore, 
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                  and    
       [373].  The parameters can now be compared, as 

per Table 49.   

For an exponential fit, the gradient is required to be one.  This is not the case according to 

our parameter estimates suggesting that the exponential is not a suitable model. 

Table 49: The SANAD Trial – arm A: Parameter estimates for various model fits to the data 

Distribution 
Straight Line Estimates Maximum Likelihood Estimates 

Intercept Gradient λ γ Intercept Scale λ γ 

Exponential 0.1547 0.0007 1.1673 0.0007 7.4539 1.000 0.0006 1.0000 

Weibull -5.447 0.775 0.0043 0.775 7.2910 0.608 0.0007 1.6447 

Log-logistic -6.540 1.006 0.0014 1.006 6.9604 0.431 0.0009 2.3202 

 

The fit was then evaluated by plotting the estimated survivor function along with the 

model estimates as shown in Figure 35.  The unusual cure fraction of 0.08% together with 

the exponential fit plot in Figure 35 shows, convincingly, that a constant hazard was not a 

sensible assumption.  This distribution is therefore not appropriate for the delayed 

remission group.  The log-logistic model fits the data better than the Weibull.  Therefore, 

the log-logistic distribution appears to be the best choice of model for the delayed 

refractory group. 

 

Figure 35: The SANAD Trial – arm A: Model Fit plots; Black line represents the data 
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Mixture modelling was therefore undertaken to model patients who achieved 12 month 

remission immediately (logistic regression), those who achieved 12 month remission but 

not immediately at 12 months (parametric survival model with log-logistic distribution) and 

those who did not achieve 12 month remission (refractory patient group i.e. cure fraction).   

The effects of covariates were considered to investigate whether predictions could be 

made about which remission group a patient fell into based on their baseline 

characteristics. 

10.3.2.3 Step 3: Covariates 

10.3.2.3.1 Immediate Remission 

With 12 possible covariates there are 212=4096 possible combinations of variables to try in 

the model.  Although there are pre-set routines available in standard software packages to 

try all these combinations with logistic regression and survival analysis, they are not 

available for cure rate models.  Therefore Collett [167] recommends a general strategy for 

model selection. 

In step one, each possible variable is fit, one at a time, and the resulting         for each 

model is compared with that for the null model.  This determines which variables are 

significant independently.   In step two, the variables that appear to be important in step 1 

are then fitted together.  The change in the value of         is computed when each 

variable on its own is omitted from the set.  Only those that lead to a significant increase in 

the value of         are retained in the model.  Once a variable has been dropped, the 

effect of omitting each of the remaining variables in turn is then examined. 

In the third step variables that were not important on their own, and so were not under 

consideration in step 1 may become important in the presence of others.  These variables 

are therefore added to the model from step 2, one at a time, and any that reduce         
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significantly are retained in the model.  In the last step, a final check is made to ensure that 

no term in the model can be omitted without significantly increasing the value of        , 

and that no term not included significantly reduces        . 

Before Collett’s strategy was employed, the functional form for the continuous variables in 

SANAD was determined.  In line with Chapter 4, our preferred transformations were linear, 

log or FP.  However, FP transformations are not available with cure rate models currently 

and consequently were not considered here.   

Table 50: The SANAD Trial – arm A: Coefficients and Standard Errors for Immediate Remission 

Variable Coefficient Standard Error Comparison Odds Ratio (95% CI) 

Intercept 0.39 0.05 - N/A 

Time from First Seizure 0.04 0.01 

≤2 

(2 to 5) 

(6 to 17) 

(18 to 59) 

(60 to 239) 

>240 

1.00 

1.02 (1.01 to 1.03) 

1.04 (1.03 to 1.06) 

1.06 (1.04 to 1.09) 

1.09 (1.05 to 1.12) 

1.16 (1.09 to 1.23) 

Total Number of Seizures -0.10 0.01 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

1.00 

0.95 (0.95 to 0.96) 

0.91 (0.90 to 0.93) 

0.86 (0.84 to 0.88) 

0.80 (0.77 to 0.83) 

0.71 (0.68 to 0.75) 

Treatment: GBP -0.12 0.03 GBP vs. CBZ 0.89 (0.84 to 0.95) 

Treatment: LTG -0.06 0.03 LTG vs. CBZ 0.94 (0.88 to 1.00) 

Treatment: OXC -0.01 0.04 OXC vs. CBZ 0.99 (0.91 to 1.07) 

Treatment: TPM -0.03 0.03 TPM vs. CBZ 0.97 (0.91 to 1.03) 

 

Following Collett’s general strategy for model selection, the final model included variables 

for time from first seizure to randomisation, total number of seizures ever before 

randomisation and treatment, which was forced into the model, with coefficient values, 

standard errors and associated odds ratios and confidence intervals as in Table 50.  The 

chance of immediate remission increases with an increase in the time from first seizure to 

randomisation but decreases with an increase in total number of seizures before 
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randomisation.  Immediate remission is less likely in patients treated with gabapentin than 

in those treated with carbamazepine. 

10.3.2.3.2 Delayed Remission 

Collett’s strategy was used to determine the parsimonious multivariable model for delayed 

epilepsy.  As before, every patient was treated, therefore treatment was forced into the 

model.  The final model included variables for treatment history, time from first seizure to 

randomisation, total number of seizures ever before randomisation and treatment.  The 

coefficients, standard errors, odds ratios and confidence intervals can be seen in Table 51. 

The log-logistic model is both an accelerated failure time model and a proportional odds 

model [374].  Hence the regression coefficients can be interpreted as the log odds ratio (for 

surviving) with one unit increase in the variable. 

Table 51: The SANAD Trial – arm A: Coefficients and Standard Errors for Delayed Remission 

Variable Coefficient 
Standard 

Error 
Comparison 

Odds Ratio  

(95% CI) 

Log(Scale) -0.89 0.03 - N/A 

Intercept 6.66 0.08 - N/A 

Treatment History: Recent 

Seizures 
0.05 0.18 

Recent Seizures vs. 

Treatment Naive 
1.06 (0.74 to 1.51) 

Treatment History: 

Taking non-SANAD AEDs 
0.25 0.07 

Taking non-SANAD AEDs 

 vs. Treatment Naive 
1.28 (1.11 to 1.48) 

Time from First Seizure 0.00 0.00 

≤2 

(2 to 7) 

(8 to 18) 

(19 to 60) 

(61 to 277) 

>277 

1.00 

1.00 (1.00 to 1.00) 

1.00 (1.00 to 1.00) 

0.99 (0.97 to 1.02) 

0.97 (0.87 to 1.07) 

0.92 (0.73 to 1.17) 

Total Number of Seizures 0.07 0.02 

≤2 

(2 to 3) 

(4 to 11) 

(12 to 50) 

(51 to 299) 

>300 

1.00 

1.03 (1.02 to 1.05) 

1.07 (1.03 to 1.10) 

1.11 (1.06 to 1.17) 

1.17 (1.09 to 1.26) 

1.27 (1.13 to 1.43) 

Treatment: GBP 0.09 0.07 GBP vs. CBZ 1.09 (0.94 to 1.26) 

Treatment: LTG -0.03 0.07 LTG vs. CBZ 0.97 (0.84 to 1.12) 

Treatment: OXC 0.00 0.09 OXC vs. CBZ 1.00 (0.83 to 1.21) 

Treatment: TPM 0.11 0.08 TPM vs. CBZ 1.12 (0.96 to 1.30) 
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Delayed remission was more likely in patients with recent seizures following previous 

remission on monotherapy than in treatment naive patients.  The chance of delayed 

remission increased with an increase in total number of seizures before randomisation. 

10.3.2.3.3 Refractory Epilepsy 

The final model for the refractory epilepsy group just included treatment – no covariates 

were found to be significant for this group.  Standard errors were not estimable from the 

cure part of the model but the coefficients and associated odds ratios can be seen in Table 

52.  It is unknown why the standard errors are not estimable – Dr Peng, the author of 

‘gfcure’ was unable to suggest why this anomaly occurred. 

Table 52: The SANAD Trial – arm A: Coefficient values for Refractory Epilepsy 

Variable Coefficient Comparison Odds Ratio 

Intercept 2.54 - NA 

Treatment: GBP 0.18 GBP vs. CBZ 1.20 

Treatment: LTG 0.47 LTG vs. CBZ 1.60 

Treatment: OXC 0.26 OXC vs. CBZ 1.29 

Treatment: TPM 0.40 TPM vs. CBZ 1.49 

 

10.3.2.4 Step 4: Setting Up the Likelihood 

There are several mixture models published in the literature such as [375] and [376].  For 

epilepsy, there are examples of seizure count analyses via mixture modelling [377, 378] but 

no models for remission from seizures.  Now the component densities and covariates have 

been determined for each patient group (immediate remission, delayed remission and 

refractory) we wish to combine them to produce one overall model.  To do this we need to 

specify the survivor function by a mixture model. 

All times were transformed so that the adjusted time to 12 month remission for a patient 

with immediate 12 month remission was 0, i.e.     . 
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 Let individual,  , have time to 12 month remission    where    = time to 12 month 

remission – 365 days.   

 Let     be an indicator variable which is equal to 1 if time to 12 month remission is 

0 and 0 otherwise, equivalent to an indicator variable for immediate 12 month 

remission.   

 Let     be an indicator variable which is equal to 1 if    is observed (and greater 

than 0) and 0 if    is censored (and greater than 0).  This is equivalent to an 

indicator variable for delayed 12 month remission.   

 Let    be an (imaginary) indicator variable for the refractory group – it is imaginary 

as it is not possible to determine if a patient is refractory.  We can only determine if 

they achieved 12 month remission.   

 Let    be the probability that     equals 1, i.e. the probability of achieving 12 

month remission immediately. 

 Let    equal the probability that      which is equivalent to the probability that 

   is equal to one, i.e. the probability of having refractory epilepsy.   

The function,                   can be considered in three sections which correlate with 

the three shapes of the curve – the peak related to immediate 12 month remission, the 

curve related to achieving 12 month remission but not immediately at 12 months 

(‘delayed’), and the flattened line related to patients who do not achieve 12 month 

remission (‘refractory’).  In Equation 36,        is the hazard function for time period    and 

       is the survival function.  The middle two parts of the function relate to the observed 

time to delayed 12 month remission (2nd line) and censored time to delayed 12 month 

remission (3rd line). 
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Equation 36 
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The likelihood function for   is 
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The log-likelihood is therefore 

                       

                          

                        
         

    
        

  
  

                                                       
         

               
       

                                                               

                                . 

From this log-likelihood parameter estimates may be obtained.  This requires use of an EM 

algorithm such as Newton-Raphson [379].  Implementation of these algorithms would need 

to be done in a software package such as Matlab [380] and is a complex stage of the 

analysis.  Alternatively, software packages such as Latent GOLD [381] could be used to fit 

the mixture model but these require a new programming language to be learnt.  

Additionally, the relevant covariates need to be included into the model which is again, 

very complex, involving either a one-step full information maximum-likelihood approach, 

standard three-step approach or two adjusted three-step approaches [382].  Literature on 
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these methods is currently in press and was therefore unavailable for use as part of this 

thesis. 

10.3.2.5 Step 5: Is the assumption valid? 

In all the analyses above we have assumed that there were no withdrawals before 365 

days.  If some patients were censored with time to 12 month remission less than 365 days 

then further investigation is necessary.   

There were 77 patients who withdrew before 365 days.  The minimum time to withdrawal 

was 17 days while the maximum was 364 days with median 258 days (IQR 154 to 329).  Of 

these 77 patients, 12 withdrew their consent, 22 died and 43 provided no reason for 

withdrawal. 

To handle the potential invalidity of the assumption a sensitivity analysis could be 

performed considering the coefficient estimates at six months, nine months, 12 months 

and 15 months.  If the coefficients were broadly similar then there would be some stability 

in the model so the invalidity would be less concerning.  However, if the assumption was 

not valid then the negative binomial, Poisson or similar model would need to be invoked 

but this would require more research as the methodology needed is not currently available.  

10.3.2.6 Discussion 

Analyses in section 10.3.2.1 suggested the presence of a cure fraction (refractory patient 

group) for the time to 12 month remission outcome of the SANAD dataset.  The log-logistic 

distribution was found to be the most appropriate distribution for the delayed remission 

group.   

Significant covariates for immediate 12 month remission were time from first seizure to 

randomisation, total number of seizures before randomisation and treatment, which was 

forced into the model.  For delayed 12 month remission, the significant covariates were 
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treatment history, time from first seizure to randomisation, total number seizures before 

randomisation and treatment, which was again forced into the model.  No covariates were 

found to be significant for refractory epilepsy so only treatment was included in the model. 

The cured population (refractory group) may be more like the delayed 12 month remission 

population so that the variables included in the model may be more like those identified in 

Table 46 for overall time to delayed 12 month remission.  This is because patients who 

achieve immediate 12 month remission are unlikely to be similar to those who never 

achieve remission.  However, those who achieve remission but at a later time point than 12 

months may take 5 years to achieve remission, or longer, and hence are more likely to be 

similar to the refractory group who have not achieved remission whilst under observation.  

The impact of this on these results is unknown but could be explored in sensitivity analyses. 

Fewer covariates were found to be significant via the mixture modelling approach (section 

10.3.2) than both the non-mixture modelling approach (section 10.3.1) and the modelling 

all data together approach (Chapter 4).   Given that the models in section 10.3.1 were 

derived via stepwise selection with AIC, and those in this section (10.3.2) were derived 

using Collett’s strategy, it is unsurprising that the same significant covariates were not 

identified.  Additionally, a different modelling approach has been used which may also 

account for the different covariate list.  If the same strategies were employed to determine 

both the mixture and non-mixture models, the covariates may be the same.  This is 

because the immediate remission group is the same in both approaches.  Additionally, no 

significant covariates were identified for the refractory group via the mixture modelling 

approach.  Therefore, despite the refractory patients being unidentifiable during the non-

mixture modelling approach, this is unlikely to impact on the covariates. 

Although a direct comparison of results across the mixture modelling and non-mixture 

modelling approaches is not appropriate, broad comparisons can be made.  For patients 
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who achieve remission immediately at 12 months results are quite similar – time from first 

seizure to randomisation is moderately significant via the mixture modelling approach and 

slightly significant for the non-mixture modelling approach.  The relationship between 

chance of immediate remission and total number of seizures before randomisation is the 

same across both approaches – as number of seizures increases, chance of immediate 

remission decreases.  Immediate remission is less likely in patients on gabapentin than in 

those on carbamazepine, irrespective of the modelling method.  Therefore, these 

prognostic factors appear to be robust to the choice of modelling method. 

For time to delayed 12 month remission, remission was more likely in patients who were 

previously treated with non-SANAD AEDs but had a change in drug indicated than in 

treatment naive patients via the mixture modelling approach.  In the non-mixture 

modelling results this conclusion was reversed – remission was less likely in patients who 

were previously treated with non-SANAD AEDs but had a change in drug indicated than in 

treatment naive patients.  The effect of total number of seizures before randomisation was 

inconsistent across the mixture and non-mixture modelling methods.  In the non-mixture 

modelling case, as number of seizures increased the chance of remission decreased while 

in the mixture modelling case the chance of remission increased. 

The mixture modelling work is based on parametric modelling techniques while the non-

mixture modelling work is based on semi-parametric modelling techniques.  If parametric 

methods were used to model the immediate and delayed remission groups in the non-

mixture approach the results may be more similar to those from the mixture modelling 

approach. 

10.3.3 Future Work 

Many issues remain in this area of my research.  To begin with we need to determine why 

there is a difference between the maximum likelihood and straight line estimates (Table 
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49).  It is most likely that the difference is caused by the influential curve up until log(time) 

three.  To investigate whether this conjecture is correct, the fitted values could be plotted 

against actual times, taking account of the censoring.  If the values do not match then this 

suggests our assumption is correct.  Another option is to simulate data with both sets of   

and   and then plot the two related lines and compare them with the actual fit. 

Assuming that a mixture model for time to 12 month remission, adjusted for covariates, 

can be developed it will be necessary to validate it both internally and externally.  No 

literature on how to validate mixture models exists.  It may be possible to ensure that the 

covariates chosen for the immediate 12 month remission group are robust by performing a 

sensitivity analysis, checking the covariates by Cox’s method at nine months and at 15 

months.  If the same covariates were found to be included in the multivariable model the 

choice of covariates may be robust.  If not, further work may be required into covariate 

selection.  For the delayed 12 month remission and the refractory groups, it may again be 

possible to perform a kind of internal validation via a sensitivity analysis.  In this case the 

included covariates could be modelled together with any known clinically significant 

variables simultaneously, via Cox’s method, for the delayed and refractory parts of the 

model. 

10.4 Conclusion 

Substantial progress has been made in the fitting of mixture models, especially by the 

method of maximum likelihood, since mixture models were first proposed in the 19th 

Century.  Despite the arrival of high-speed computers, people have been generally 

unwilling to fit mixture models to data of more than one dimension [347].  This may be 

because of a lack of understanding of issues that arise with their fitting such as the 

presence of multiple maxima in the mixture likelihood function and the unboundedness of 
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the likelihood function in the case of normal components with unequal covariance matrices 

[347].  As the difficulties of these computational issues come to be properly understood 

and addressed there is hope for an increase in the use of mixture models in practice. 

The first 50 years of using finite mixture densities, following Pearson’s pioneering work in 

1894, was focussed on the development of techniques designed to simplify the large 

amount of arithmetic involved in applying the method of moments in estimating 

parameters.  During the last 20 years the wide availability of powerful computers has 

lessened these problems and maximum likelihood estimation can now be applied routinely 

to find parameter estimates for mixtures of normal and of other densities [342].  Mixtures 

continue, however, to provide a rich source of material for statisticians and recent work 

includes the development of models for data consisting of both continuous and categorical 

variables [383, 384], the linking of mixture models with hidden Markov chain models and 

with artificial neural networks [385, 386], the use of influence-based diagnostics for normal 

mixtures [387, 388] and further consideration of the number of components problem 

[389]. 

In section 10.3.1 prognostic models for immediate 12 month remission and delayed 12 

month remission were developed.  Variables found to be significant for these models were 

similar to those included in the overall model for time to 12 month remission in Chapter 4.  

Given that the immediate and delayed models in section 10.3.1 were found to have fairly 

distinct significant variables it is unsurprising that the model in Chapter 4 did not validate 

well internally, especially at one year – modelling techniques need to take account of the 

different patient groups. 

Section 10.3.2 extended the work of section 10.3.1 by considering a mixture model for the 

time to 12 month remission outcome which considered the three patient groups 

independently, but together in one model.  There were very few covariates found to be 
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significant for this model however a different variable selection technique was employed 

than used in Chapter 4 and section 10.3.1.  Initial work suggests that mixture modelling 

may provide a reliable way of modelling the three distinct ‘types’ of remission – immediate, 

delayed and refractory, however, to date this is ongoing work due to the complexity of the 

modelling.  The next stage is to derive the likelihood inclusive of the chosen covariates.  

From this estimates of risk may be obtained. 

The tools required to derive a mixture model are complex and the literature on how to use 

mixture models is not always available.  However, as we have shown in this thesis, if 

distinct groups are known to be present in the data they should be modelled 

independently.  We have investigated two methods of doing this, one with mixture 

modelling methods and one without.  The advantage of the non-mixture method is that it is 

computationally fairly simple, however in the case of epilepsy, the refractory patient group 

cannot easily be identified – a cure model could be fitted to the model that did not achieve 

immediate remission, however this is a form of mixture modelling.  Therefore, mixture 

modelling techniques are required if prognostic models for time to 12 month remission 

from seizures is to be appropriately modelled. 
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Chapter 11: Conclusions and 

Further Work 

11.1 Introduction 

Predicting outcome in epilepsy is complex but necessary to inform patient counselling 

about prognosis and treatment choices.  This thesis has examined prognostic factors for 

patients with a first seizure, with newly diagnosed epilepsy, and with established epilepsy 

or frequent unremitting seizures despite optimum treatment.  It has been shown that very 

few prognostic models exist for epilepsy and within this thesis prognostic factors have been 

modelled for these patient groups for outcomes including seizure recurrence, seizure 

remission and treatment failure. 

Prognostic models for time to treatment failure and time to 12 months of remission, 

developed using The SANAD Trial (Chapter 4), have been published in Lancet Neurology, 

which is owned by The Lancet.  I am first author on this paper.  The work within the 

publication has been actively discussed at several epilepsy meetings and conferences. 

Patients with epilepsy are subject to driving restrictions if their risk of a seizure in the next 

12 months is in excess of 20%.  We have produced prognostic models from which we can 

estimate the length of time until the risk of a seizure is under this risk threshold for patients 

with a first ever seizure, and also for patients who withdraw treatment after a period of 

remission. 

The prognostic model for patients with a first seizure (Chapter 5) has been published in the 

British Medical Journal (BMJ) and I am first author.  In addition, the editors of the BMJ felt 

that the paper was sufficiently important to warrant an editorial, especially as it led the 

DVLA to change their guidelines for time off driving for patients with a first seizure. 
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The prognostic models for risk of recurrence after treatment withdrawal following a period 

of remission (Chapter 6) have been published in the Journal of Neurology, Neurosurgery 

and Psychiatry, which is owned by the BMJ.  Again, I am first author of the paper and the 

DVLA are currently considering changing their guidelines following this publication. 

Validation is an integral part of the modelling process and therefore internal validation 

methods have been applied to selected models in this thesis.  A search of the literature 

revealed that very few prognostic models are externally validated, possibly due to a lack of 

guidance on suitable methods, or possibly due to the lack of appropriate datasets on which 

to perform external validation.  A simulation study was therefore undertaken to assess 

methods of externally validating a prognostic model and also to assess methods for 

handling covariates missing from the validation dataset.  The investigated methods were 

also demonstrated in a motivating example.   

The prognostic model for time to 12 month remission for patients with newly diagnosed 

epilepsy was found to be internally valid via calibration plots at two and three years, but 

not at one year.  It is possible that this is because of the distinct patient groups present for 

the outcome – some patients achieved remission immediately at 365 days, some achieved 

remission at a later time point, and some did not achieve remission.  Mixture modelling 

techniques were thought to be appropriate for this scenario; they were therefore 

employed to attempt to develop a combined prognostic model which included all patient 

groups simultaneously, adjusted for covariates. 

11.2 Recommendations for Practice 

In this thesis strategies for model development and presentation, and strategies for model 

validation have been considered.  In addition, prognostic models for epilepsy have been 
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developed which were shown to be fairly well validated both internally and externally.  

They, consequently, may be recommended for practice.   

11.2.1 Model Development 

Many methods need to be considered when developing a prognostic model.  For example, 

variables should be centred to reduce multicollinearity and also to increase the relevance 

of the estimated regression coefficient [152].  Similarly, when model building, variable 

selection techniques such as AIC [163] must be carefully decided upon to balance the need 

for simplicity with a minimal loss of information.   When only one of several different types 

of event can occur, the probability of these events must be modelled via competing risk 

techniques such as cumulative incidence analysis [177] with covariate testing via Gray’s 

method [174]. 

When developing prognostic models, continuous covariates should not usually be 

dichotomised [390] and instead modelled via spline [254] or FP [144] transformations.  

Splines can be poorly behaved in the tails [141] and are very complex to write down [145].  

However, FPs offer increased flexibility over polynomial transformations while still 

preserving the simplicity of the final model [184].  FPs were first proposed by Royston and 

Sauerbrei in 1994 [144] and are consequently relatively new.  Therefore there may be 

elements to these methods which are not understood properly yet, especially with regard 

to treatment-covariate interactions.  Consequently, although we recommend that 

continuous covariates be modelled via FP transformations, some caution is still required 

when using them. 

11.2.2 Model Presentation 

Prognostic models are developed to inform patient counselling and treatment choices.  

Therefore they must be easy to interpret by clinicians and patients alike.  It is thus 
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inadvisable to present statistical models for clinical interpretation.  Instead, we recommend 

presenting forest-style plots for combinations of risk factors as shown in this thesis.  These 

can be used to illustrate the proportion of patients with the event of interest at various 

time points, for any combination of risk factors together with confidence intervals. 

11.2.3 Model Validation 

For a prognostic model to be implemented in general practice it needs to be validated.  

Internal validation assesses model validity for the setting where the development data 

originated from, and external validation assesses validity in other samples which are fully 

independent from the development data and originate from different but plausibly related 

settings [8].   

Methods of internal validation are readily available and include an assessment of model 

performance such as    [226] together with discrimination [248] and calibration [251, 252] 

methods.  They must be applied to each prognostic model developed. 

Literature on methods of external validation is lacking, as shown by our review.  However, 

in our simulation study we discovered that Harrell’s  -statistic [184], a measure of 

concordance, is a reliable method of highlighting agreement between the development and 

validation datasets when it exists.  The simulation study has also shown that a covariate 

missing from the validation dataset may be imputed via several adaptations of methods for 

handling missing data within a covariate.  The best performing methods were hot deck 

imputation and multiple imputation.  Therefore external validation should be implemented 

for each prognostic model developed, assuming there is a plausibly related dataset 

available.  If a suitable dataset is not available, attempts should be made to recruit a 

relevant cohort. 
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11.3 Recommendations for Research 

This thesis has highlighted areas where further research is recommended particularly with 

regards to model development and validation. 

11.3.1 Model Development 

Investigation of possible treatment-covariate interactions for the time to treatment failure 

model using the SANAD dataset suggested two such interactions - focal epilepsy site of 

onset with treatment, and total number of seizures ever before randomisation with 

treatment.  Although these terms could easily have been included in the multivariable 

model, interpretation of the results was difficult due to the 150 possible combinations of 

interaction terms.  Current literature for interpreting regression coefficients for multiple 

inter-linked interaction terms is lacking.  Further research into how to interpret hazard 

ratios and confidence intervals for large numbers of interaction terms is required. 

Mixture modelling techniques, enabling all patient groups to be combined in a single 

prognostic model, are becoming increasingly popular.   Our initial work suggests that 

mixture modelling may provide a way of modelling patients with immediate remission, 

delayed remission and refractory epilepsy together in one prognostic model.  However, due 

to the complexity of the modelling, further research is required particularly with regards to 

deriving the likelihood and obtaining risk estimates.  Additionally, further research is 

required into the estimation of standard errors for the group of refractory patients 

(Chapter 10) using the ‘gfcure’ package.  It is currently unknown why the errors are 

unestimable. 

Assuming a suitable mixture model for time to 12 month remission can be developed, it will 

be necessary to validate it both internally and externally.  Literature on how to validate a 

mixture model is currently lacking – a brief search revealed no articles that mentioned 
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validation of a mixture model.  Further research into internal and external validation 

methods of mixture models is required.  

11.3.2 Model Validation 

In our simulation study, which assessed methods of external validation and methods for 

handling covariates missing from the validation dataset, eight scenarios were considered in 

which the size of the validation dataset and the type of missing data were varied.  Clearly 

there are many other possible scenarios including varying the number and combination of 

covariates present and missing, the types of covariates present and missing, the size of the 

development and validation datasets, how closely the super-population assumption is 

adhered to, and the length of follow-up etc.    During the case study extension to the 

simulation study, length of follow-up of the NGPSE dataset was truncated to match the 

length of follow-up of the MESS study.  In this single case, truncating NGPSE did not affect 

the level of external validation.  This suggests that length of follow-up may not have an 

impact on the external validity of a model.  However, the conditional seizure risks were 

found to be much higher in the truncated dataset.  Further research is required to build 

upon the initial findings presented in this thesis and to investigate alternative scenarios. 

In the simulation study discrimination was investigated via Harrell’s  -statistic, calibration 

via deviance, and separation via Royston’s measure of prognostic separation.  However, 

alternative methods exist to investigate these areas such as calibration plots [391, 392], 

ROC curves [272] and the Hosmer-Lemeshow statistic [262].   These alternative methods 

need to be investigated to see if they show agreement between the validation and 

development datasets when it is known to be present.  If so, then a battery of tools for 

external validation could be produced.  However, interpretation of the methods of external 

validation is not always easy – the methods can give conflicting results and there are 

different degrees of agreement between the development and validation datasets rather 
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than clear cut “agreement” or “no agreement” conclusions.  This makes it difficult to draw 

firm conclusions. 

In theory, the dataset used to externally validate a prognostic model will be plausibly 

related to the development data.  Therefore both datasets will effectively be samples taken 

from the same super-population.  There are, however, no guidelines for choosing plausibly 

related datasets.  We proposed that plausibly related datasets should conform to the 

Cochrane guidelines for combining studies in a meta-analysis [214].  Namely, that a group 

of studies is sufficiently homogeneous in terms of participants, interventions and outcomes 

to provide a meaningful summary.  However, further simulation studies are required to 

determine if such guidelines are relevant and if extra conditions or amended conditions are 

required.    

11.4 Future Work 

Multivariable prognostic models for time to treatment failure and time to 12 month 

remission have been developed using the SANAD data [315].  In this thesis the models 

showed fairly good internal validity.  External validation has not been undertaken due to 

the lack of a plausibly related dataset.  The best match is a set of individual participant data 

collected by Tudur Smith et al [192].  This data is missing important covariates though and 

the treatments patients were randomised to do not always coincide with SANAD drugs.   

It is important that the SANAD models developed in this thesis are externally validated so 

that the models may be implemented in general practice.  One option would be to recruit a 

cohort of patients, with the same inclusion criteria as SANAD, and treated with 

carbamazepine, gabapentin, topirimate, oxcarbazepine and lamotrigine, as per SANAD.  

Baseline demographics, gender, treatment history, age, time from first seizure to 

randomisation, neurological insult, total number of seizures, EEG result, CT/MRI scan 
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result, seizure type, focal epilepsy site of onset and treatment, should then be obtained so 

that external validation methods can be employed.  This however, is a very costly and time-

consuming process.   

Another option would be to use the individual patient dataset [192] to validate the SANAD 

models.  Before this could happen however, methods for handling multiple missing 

covariates need to be found.  Additionally, methods for handling non matching treatments 

need to be found which may involve clinical methods such as matching drugs by indication 

or chemical structure, or statistical methods such as mixed treatment comparisons [192].  

Therefore, further research is required to develop methods for handling multiple missing 

covariates and also handling treatments that do not coincide with those used in the 

development dataset. 

The methods of external validation investigated in the simulation study were demonstrated 

in a case study which validated a model developed using MESS via NGPSE, WA and FIRST.  

The MESS model was shown to generalise well to the NGPSE and WA datasets and fairly 

well to the FIRST dataset.  Given that the model generalised fairly well to three alternative 

datasets it may be possible to use the combined information from the four studies to 

produce more precise conditional risk estimates in a similar fashion to a meta-analysis 

[214].   Given the heterogeneity between the datasets, a random-effects model is most 

likely to be appropriate if the meta-analysis style analysis is implemented  [214].   

This aim could be achieved by analysing all the data together in a Cox model stratified by 

dataset [167, 393].  Following on from modelling the combined data, more accurate, and 

potentially more representative, estimates of months from index seizure until annual 

seizure risk falls below 20% may be obtainable.  These estimates could be used to better 

inform driving regulations both within the United Kingdom and European Union about 

length of time before the risk of a seizure in the next 12 months falls below the 20% 
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threshold level for specific patient subgroups.  Further work is also needed to inform 

regulators as to whether a 20% threshold is optimum [202]. 
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Appendix A – Further Results from Chapter 5 

Table 53: The MESS Study: Risk of seizure recurrence at 12 months for patients with various combinations of risk factors -estimated from the multivariable regression model 

Variable  Immediate Treatment Delayed Treatment 

Aetiology 
First Degree 

Relative with 
Epilepsy 

Seizures Only 
While Asleep 

EEG Results 
CT/MRI Scan 

Results 
Months from 
index seizure 

Risk of seizure in next 
12 months (%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls <20% 

Risk of seizure in next 
12 months (%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls <20% 

Not remote 
symptomatic 

No No Normal Normal 
6 13 (10 to 16)* 

1.2 
16 (12 to 19)* 

3.2 
12 7 (5 to 10)* 9 (6 to 12)* 

Not remote 
symptomatic No No Normal Abnormal 

6 14 (11 to 17)* 
2.1 

17 (14 to 20) 
3.6 

12 8 (5 to 11)* 10 (7 to 12)* 

Not remote 
symptomatic No No Normal Not Done 

6 17 (13 to 20)  
3.5 

20 (17 to 23) 
5.7 

12 9 (7 to 12)* 11 (9 to 14)* 

Not remote 
symptomatic No No Abnormal Normal 

6 20 (16 to 23) 
5.5 

23 (20 to 26) 
7.0 

12 11 (9 to 14)* 13 (11 to 16)* 

Not remote 
symptomatic No No Abnormal Abnormal 

6 21 (18 to 24) 
6.1 

25 (22 to 28)† 
8.1 

12 12 (9 to 15)* 14 (12 to 17)* 

Not remote 
symptomatic No No Abnormal Not Done 

6 24 (22 to 27)† 
7.8 

29 (26 to 32)† 
10.0 

12 14 (12 to 17 * 17 (15 to 20) 

Not remote 
symptomatic No No Not Done Normal 

6 17 (13 to 20) 
3.5 

20 (17 to 23) 
5.7 

12 9 (7 to 12)* 11 (9 to 14)* 

Not remote 
symptomatic No No Not Done Abnormal 

6 18 (15 to 21) 
4.0 

21 (18 to 24) 
6.2 

12 10 (7 to 13)* 12 (10 to 15)* 

Not remote 
symptomatic No No Not Done Not Done 

6 21 (18 to 24) 
6.1 

25 (22 to 28)† 
8.1 

12 12 (9 to 15)* 14 (12 to 17)* 

Not remote 
symptomatic No Yes Normal Normal 

6 19 (15 to 22) 
4.8 

22 (19 to 25) 
6.8 

12 11 (8 to 13)* 13 (10 to 15)* 

Not remote 
symptomatic No Yes Normal Abnormal 

6 20 (19 to 23) 
5.7 

24 (21 to 27)† 
7.6 

12 11 (9 to 14)* 14 (11 to 16)* 

Not remote 
symptomatic No Yes Normal Not Done 

6 23 (20 to 26) 
7.0 

28 (25 to 30)† 
9.8 

12 14 (11 to 16)* 16 (14 to 19)* 

Not remote 
symptomatic No Yes Abnormal Normal 

6 27 (25 to 30)† 
9.2 

32 (30 to 35)† 
11.8 

12 16 (14 to 19)* 19 (17 to 22) 
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Not remote 
symptomatic No Yes Abnormal Abnormal 

6 29 (26 to 32)† 
10.0 

34 (32 to 37)† 
16.3 

12 17 (15 to 20) 21 (18 to 23) 

Not remote 
symptomatic No Yes Abnormal Not Done 

6 34 (31 to 36)† 
12.5 

39 (37 to 42)† 
24.4 

12 20 (18 to 23) 24 (22 to 26)† 

Not remote 
symptomatic No Yes Not Done Normal 

6 23 (20 to 26) 
7.0 

28 (25 to 30)† 
9.8 

12 14 (11 to 16)* 16 (14 to 19)* 

Not remote 
symptomatic No Yes Not Done Abnormal 

6 25 (22 to 28)† 
8.2 

29 (27 to 32)† 
10.5 

12 15 (12 to 17)* 17 (15 to 20) 

Not remote 
symptomatic No Yes Not Done Not Done 

6 29 (26 to 32)† 
10.0 

34 (32 to 37)† 
16.3 

12 17 (15 to 20) 20 (18 to 23) 

Not remote 
symptomatic Yes No Normal Normal 

6 17 (14 to 20) 
3.6 

20 (17 to 23) 
6.0 

12 10 (7 to 12)* 12 (9 to 14)* 

Not remote 
symptomatic Yes No Normal Abnormal 

6 18 (15 to 21) 
4.8 

22 (19 to 25) 
6.5 

12 10 (8 to 13)* 13 (10 to 15)* 

Not remote 
symptomatic Yes No Normal Not Done 

6 21 (18 to 24) 
6.3 

25 (23 to 28)† 
8.7 

12 12 (10 to 15)* 15 (12 to 17)* 

Not remote 
symptomatic Yes No Abnormal Normal 

6 25 (22 to 28)† 
8.7 

30 (27 to 32)† 
10.7 

12 15 (12 to 17)* 18 (15 to 20) 

Not remote 
symptomatic Yes No Abnormal Abnormal 

6 27 (24 to 30)† 
9.2 

32 (29 to 34)† 
11.3 

12 16 (13 to 18)* 19 (16 to 21) 

Not remote 
symptomatic Yes No Abnormal Not Done 

6 31 (29 to 34)† 
11.3 

37 (34 to 39)† 
23.6 

12 19 (16 to 21) 22 (20 to 24) 

Not remote 
symptomatic Yes No Not Done Normal 

6 21 (18 to 24) 
6.3 

25 (23 to 28)† 
8.7 

12 12 (10 to 15)* 15 (12 to 17)* 

Not remote 
symptomatic Yes No Not Done Abnormal 

6 23 (20 to 26) 
7.0 

27 (24 to 30)† 
9.2 

12 13 (11 to 16)* 16 (13 to 18)* 

Not remote 
symptomatic Yes No Not Done Not Done 

6 27 (24 to 30)† 
9.2 

32 (29 to 34)† 
11.3 

12 16 (13 to 18)* 19 (16 to 21) 

Not remote 
symptomatic Yes Yes Normal Normal 

6 24 (21 to 27)† 
7.7 

28 (26 to 31)† 
10.0 

12 14 (11 to 17)* 17 (14 to 19)* 

Not remote 
symptomatic Yes Yes Normal Abnormal 

6 26 (23 to 28)† 
8.8 

30 (28 to 33)† 
10.8 

12 15 (12 to 17)* 18 (15 to 20) 

Not remote 
symptomatic Yes Yes Normal Not Done 

6 30 (27 to 33)† 
10.7 

35 (33 to 38)† 
23.4 

12 18 (15 to 20) 21 (19 to 23) 

Not remote 
symptomatic Yes Yes Abnormal Normal 

6 35 (32 to 37)† 
16.3 

40 (38 to 43)† 
24.6 

12 21 (18 to 23) 25 (22 to 27)† 
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Not remote 
symptomatic Yes Yes Abnormal Abnormal 

6 37 (34 to 39)† 
23.6 

43 (41 to 45)† 
25.1 

12 22 (20 to 25) 26 (24 to 29)† 

Not remote 
symptomatic Yes Yes Abnormal Not Done 

6 42 (40 to 45)† 
25.1 

49 (47 to 51)† 
27.0 

12 26 (24 to 28)† 31 (29 to 33)† 

Not remote 
symptomatic Yes Yes Not Done Normal 

6 30 (27 to 32)† 
10.7 

35 (33 to 37)† 
23.4 

12 18 (15 to 20) 21 (19 to 23) 

Not remote 
symptomatic Yes Yes Not Done Abnormal 

6 32 (29 to 34)† 
11.3 

37 (35 to 40)† 
24.1 

12 19 (16 to 21) 22 (20 to 25) 

Not remote 
symptomatic Yes Yes Not Done Not Done 

6 37 (34 to 39)† 
23.6 

43 (41 to 45)† 
25.1 

12 22 (20 to 25) 26 (24 to 29)† 

Remote symptomatic No No Normal Normal 
6 17 (14 to 20) 

3.6 
20 (17 to 23) 

6.0 
12 10 (7 to 12)* 12 (9 to 14)* 

Remote symptomatic 
No No Normal Abnormal 

6 18 (15 to 21) 
4.8 

22 (19 to 25) 
6.5 

12 10 (8 to 13)* 13 (10 to 15)* 

Remote symptomatic 
No No Normal Not Done 

6 21 (18 to 24) 
6.3 

25 (23 to 28)† 
8.7 

12 12 (10 to 15)* 15 (12 to 17)* 

Remote symptomatic 
No No Abnormal Normal 

6 25 (22 to 28)† 
8.7 

30 (27 to 32)† 
10.7 

12 15 (12 to 17)* 18 (15 to 20) 

Remote symptomatic 
No No Abnormal Abnormal 

6 27 (24 to 40)† 
9.2 

32 (29 to 34)† 
11.3 

12 16 (13 to 18)* 19 (16 to 21) 

Remote symptomatic 
No No Abnormal Not Done 

6 31 (29 to 34)† 
11.3 

37 (34 to 39)† 
23.6 

12 19 (16 to 21) 22 (20 to 24) 

Remote symptomatic 
No No Not Done Normal 

6 21 (18 to 24) 
6.3 

25 (23 to 28)† 
8.7 

12 12 (10 to 15)* 15 (12 to 17)* 

Remote symptomatic 
No No Not Done Abnormal 

6 23 (20 to 26) 
7.0 

27 (24 to 30)† 
9.2 

12 13 (11 to 16)* 16 (13 to 18)* 

Remote symptomatic 
No No Not Done Not Done 

6 27 (24 to 30)† 
9.2 

32 (29 to 34)† 
11.3 

12 16 (13 to 18)* 19 (16 to 21) 

Remote symptomatic 
No Yes Normal Normal 

6 24 (21 to 27)† 
7.7 

28 (26 to 31)† 
10.0 

12 14 (11 to 17)* 17 (14 to 19)* 

Remote symptomatic 
No Yes Normal Abnormal 

6 26 (23 to 28)† 
8.8 

30 (28 to 33)† 
10.8 

12 15 (12 to 17)* 18 (15 to 20) 

Remote symptomatic 
No Yes Normal Not Done 

6 30 (27 to 33)† 
10.7 

35 (33 to 38)† 
23.4 

12 18 (15 to 20) 21 (19 to 23) 

Remote symptomatic 
No Yes Abnormal Normal 

6 35 (32 to 37)† 
16.3 

40 (38 to 43)† 
24.6 

12 21 (18 to 23) 25 (22 to 27)† 
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Remote symptomatic 
No Yes Abnormal Abnormal 

6 37 (34 to 39)† 
23.6 

43 (41 to 45)† 
25.1 

12 22 (20 to 25) 26 (24 to 29)† 

Remote symptomatic 
No Yes Abnormal Not Done 

6 42 (40 to 45)† 
25.1 

49 (47 to 51)† 
27.0 

12 26 (24 to 28)† 31 (29 to 33)† 

Remote symptomatic 
No Yes Not Done Normal 

6 30 (27 to 32)† 
11.7 

35 (33 to 37)† 
23.4 

12 18 (15 to 20) 21 (19 to 23) 

Remote symptomatic 
No Yes Not Done Abnormal 

6 32 (29 to 34)† 
11.3 

37 (35 to 40)† 
24.1 

12 19 (16 to 21) 22 (20 to 25) 

Remote symptomatic 
No Yes Not Done Not Done 

6 37 (34 to 39)† 
23.6 

43 (41 to 45)† 
25.1 

12 22 (20 to 25) 26 (24 to 29)† 

Remote symptomatic 
Yes No Normal Normal 

6 22 (19 to 25) 
6.7 

26 (23 to 29)† 
8.8 

12 13 (10 to 15)* 15 (13 to 18)* 

Remote symptomatic 
Yes No Normal Abnormal 

6 24 (21 to 26)† 
7.6 

28 (25 to 31)† 
9.8 

12 14 (11 to 16)* 16 (14 to 19)* 

Remote symptomatic 
Yes No Normal Not Done 

6 27 (25 to 30)† 
9.8 

32 (30 to 35)† 
12.0 

12 16 (14 to 19) * 19 (17 to 22) 

Remote symptomatic 
Yes No Abnormal Normal 

6 32 (29 to 35)† 
11.8 

37 (35 to 40)† 
24.1 

12 19 (17 to 21) 23 (20 to 25) 

Remote symptomatic 
Yes No Abnormal Abnormal 

6 34 (32 to 37)† 
16.3 

40 (37 to 42)† 
24.6 

12 20 (18 to 23) 24 (22 to 27)† 

Remote symptomatic 
Yes No Abnormal Not Done 

6 39 (37 to 42)† 
24.4 

46 (43 to 48)† 
25.6 

12 24 (22 to 26)† 28 (26 to 30)† 

Remote symptomatic 
Yes No Not Done Normal 

6 27 (25 to 30)† 
9.8 

32 (30 to 35)† 
12.0 

12 16 (14 to 19)* 19 (17 to 22) 

Remote symptomatic 
Yes No Not Done Abnormal 

6 29 (27 to 32)† 
10.0 

34 (32 to 37)† 
16.3 

12 17 (15 to 20) 21 (18 to 23) 

Remote symptomatic 
Yes No Not Done Not Done 

6 34 (31 to 37)† 
16.3 

40 (37 to 42)† 
24.4 

12 20 (18 to 23) 24 (22 to 26)† 

Remote symptomatic 
Yes Yes Normal Normal 

6 31 (28 to 33)† 
10.8 

36 (33 to 38)† 
23.5 

12 18 (16 to 21) 22 (19 to 24) 

Remote symptomatic 
Yes Yes Normal Abnormal 

6 33 (30 to 35)† 
12.0 

38 (36 to 40)† 
24.2 

12 19 (17 to 22) 23 (21 to 25)† 

Remote symptomatic 
Yes Yes Normal Not Done 

6 38 (35 to 40)† 
24.2 

44 (42 to 46)† 
25.5 

12 23 (21 to 25)† 27 (25 to 29)† 

Remote symptomatic 
Yes Yes Abnormal Normal 

6 43 (41 to 45)† 
25.5 

50 (48 to 52)† 
27.0 

12 27 (25 to 29)† 32 (30 to 34)† 
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Remote symptomatic 
Yes Yes Abnormal Abnormal 

6 46 (44 to 48)† 
25.6 

52 (51 to 54)† 
28.8 

12 29 (26 to 31)† 34 (32 to 35)† 

Remote symptomatic 
Yes Yes Abnormal Not Done 

6 52 (50 to 54)† 
27.0 

59 (57 to 61)† 
55.6 

12 33 (31 to 35)† 39 (37 to 41)† 

Remote symptomatic 
Yes Yes Not Done Normal 

6 38 (35 to 40)† 
24.2 

44 (42 to 46)† 
25.5 

12 23 (21 to 25)† 27 (25 to 29)† 

Remote symptomatic 
Yes Yes Not Done Abnormal 

6 40 (38 to 42)† 
24.6 

46 (44 to 48)† 
25.7 

12 24 (22 to 27)† 29 (27 to 31)† 

Remote symptomatic 
Yes Yes Not Done Not Done 

6 46 (44 to 48)† 
25.6 

52 (51 to 54)† 
28.8 

12 28 (26 to 31)† 33 (31 to 35)† 

 
*Confidence interval lies completely below 20%. †Confidence interval lies completely above 20%. 
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Appendix B – Search Strategy used 
in Chapter 6 

MEDLINE (Ovid) search strategy: 

1. randomized controlled trial.pt. 

2. controlled clinical trial.pt. 

3. (randomized or randomised).ab. 

4. placebo.ab. 

5. clinical trials as topic.sh. 

6. randomly.ab. 

7. trial.ti. 

8. epidemiologic studies/ or case-control studies/ or cohort studies/ or longitudinal studies/ 

or follow-up studies/ or prospective studies/ 

9. (case control or case-control).tw. 

10. (cohort adj (study or studies)).tw. 

11. cohort analy$.tw. 

12. (("follow up" or "follow-up") adj (study or studies)).tw. 

13. (observational adj (study or studies)).tw. 

14. (longitudinal adj (study or studies)).tw. 

15. or/1-14 

16. (epilep$ or convulsion$ or seizure$).ti,ab. 

17. exp Epilepsy/ 

18. exp Seizures/ 

19. convulsive disorder.tw. 

20. or/16-19 
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21. 15 and 20 

22. exp animals/ not humans.sh. 

23. 21 not 22 

24. withdraw$.ti,ab. 

25. alcohol withdrawal.tw. 

26. alcohol dependence.tw. 

27. 25 or 26 

28. 24 not 27 

29. 23 and 28 

30. limit 29 to english language 
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Appendix C – Further Results from Chapter 8 

Numerical results for the simulation study.  Values used as part of the multivariable normal distribution can be seen in section C.1 while numbers of failed 

simulations can be seen in section C.2.  Results of the three measures of external validation can be seen in sections C.3 to C.5.  Coefficient values are 

shown in section C.6 and measures of bias, mean square error and coverage can be seen in section C.7. 

C.1 Multivariate Normal Distribution 
Values obtained from SANAD data. 

C.1.1 Means 
Binary Continuous Categorical 

0.55 38.30 1.21 

C.1.2 Covariance Matrix 
 Binary Continuous Categorical 

Binary 0.25 -0.15 0.01 

Continuous -0.15 336.36 -0.26 

Categorical 0.01 -0.26 0.35 
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C.2 Number of failed simulations 

Scenario 
Imputation Method 

(1) – Variable Matching (2) – Random Selection with Replacement (3) – Imputation via Estimation (4) – Hot Deck (5) – Multiple Imputation 

1a & 1b 0 

1a & 1c 0 0 0 0 0 

2a & 2b 0 0 0 0 0 

3a & 3b 0 0 0 0 0 

4a & 4b 0 

4a & 4c 0 0 0 0 0 

5a & 5b 0 0 0 0 0 

6a & 6b 0 0 0 0 0 

C.3 Concordance Statistic 

C.3.1 No missing data 
Scenario Development Concordance Validation Concordance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1b 0.56 0.56 0.00 99.8 100 

4a & 4b 0.56 0.56 0.00 99.9 100 

C.3.2 Variable Matching 
Scenario Development Deviance Validation Deviance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 0.54 0.54 0.01 97.1 100 

2a & 2b 0.55 0.55 0.00 99.9 100 

3a & 3b 0.55 0.55 0.00 99.9 100 

4a & 4c 0.54 0.54 0.00 99.2 100 

5a & 5b 0.55 0.55 0.00 100 100 

6a & 6b 0.55 0.55 0.00 100 100 
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C.3.3 Random Selection with Replacement 
Scenario Development Deviance Validation Deviance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 0.56 0.56 0.00 99.8 100 

2a & 2b 0.56 0.56 0.00 99.8 100 

3a & 3b 0.56 0.56 0.00 99.6 100 

4a & 4c 0.56 0.56 0.00 100 100 

5a & 5b 0.56 0.56 0.00 99.9 100 

6a & 6b 0.56 0.56 0.00 100 100 

C.3.4 Single Imputation via Estimation 
Scenario Development Deviance Validation Deviance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 0.56 0.56 0.00 99.8 100 

2a & 2b 0.56 0.56 0.00 99.6 100 

3a & 3b 0.56 0.56 0.00 99.4 100 

4a & 4c 0.56 0.56 0.00 99.9 100 

5a & 5b 0.56 0.56 0.00 99.9 100 

6a & 6b 0.56 0.56 0.00 100 100 

C.3.5 Hot Deck Imputation 
Scenario Development Deviance Validation Deviance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 0.56 0.56 0.00 99.6 100 

2a & 2b 0.56 0.56 0.00 99.7 100 

3a & 3b 0.56 0.56 0.00 99.6 100 

4a & 4c 0.56 0.56 0.00 99.8 100 

5a & 5b 0.56 0.56 0.00 100 100 

6a & 6b 0.56 0.56 0.00 100 100 
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C.3.6 Random Selection with Replacement Multiple Times 
Scenario Development Deviance Validation Deviance Mean difference % p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 0.56 0.56 0.00 100 100 

2a & 2b 0.56 0.56 0.00 100 100 

3a & 3b 0.56 0.56 0.00 100 100 

4a & 4c 0.56 0.56 0.00 100 100 

5a & 5b 0.56 0.56 0.00 100 100 

6a & 6b 0.56 0.56 0.00 100 100 

C.4 Deviance Statistic 
Mean differences are mean differences in deviance statistics between the development and validation statistics over 1400 simulations.  The p-value is the 

mean p-value for the chi-squared test of difference in deviances between the development and validation data.  

C.4.1 No missing data 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1b 45.63 28.12 -17.51 0.11 73.9 78.6 

4a & 4b 46.50 52.14 5.64 0.17 61.1 68.8 

C.4.2 Variable Matching 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 15.19 4.72 -10.46 0.20 52.1 61.6 

2a & 2b 37.74 22.59 -15.16 0.14 68.4 73.6 

3a & 3b 37.56 22.51 -15.06 0.12 70.6 75.5 

4a & 4c 15.30 7.30 -8.00 0.24 43.2 51.2 

5a & 5b 37.42 42.96 5.54 0.18 58.6 65.4 

6a & 6b 38.07 42.61 4.54 0.17 60.3 68.0 
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C.4.3 Random Selection with Replacement 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 45.74 27.93 -17.81 0.11 74.1 79.0 

2a & 2b 45.71 27.51 -18.20 0.11 74.7 79.1 

3a & 3b 45.67 27.99 -17.68 0.12 73.4 78.5 

4a & 4c 45.62 52.63 7.02 0.16 64.4 70.1 

5a & 5b 45.45 51.88 6.44 0.16 64.8 70.6 

6a & 6b 46.10 52.83 6.74 0.14 66.5 72.4 

C.4.4 Single Imputation via Estimation 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 45.74 27.74 -18.00 0.11 74.3 79.2 

2a & 2b 45.71 27.70 -18.01 0.11 73.7 78.4 

3a & 3b 45.67 28.15 -17.52 0.11 73.9 78.9 

4a & 4c 45.62 52.69 7.07 0.16 62.4 68.4 

5a & 5b 45.45 51.58 6.13 0.15 64.4 71.3 

6a & 6b 46.10 52.75 6.65 0.15 65.9 72.1 

C.4.5 Hot Deck Imputation 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 45.74 28.23 -17.52 0.12 73.2 77.9 

2a & 2b 45.71 27.63 -18.08 0.11 72.9 78.1 

3a & 3b 45.64 27.98 -17.69 0.11 75.1 79.1 

4a & 4c 45.62 52.18 6.57 0.16 65.0 69.8 

5a & 5b 45.45 51.69 6.24 0.15 63.1 69.8 

6a & 6b 46.10 52.95 6.85 0.15 64.9 70.5 
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C.4.6 Random Selection with Replacement Multiple Times 

Scenario Development Deviance Validation Deviance Mean difference 
p-value for 
difference 

% p-values ≤ 0.05 % p-values ≤ 0.10 

1a & 1c 45.71 27.93 -17.78 0.11 13.4 45.9 

2a & 2b 45.63 27.54 -18.08 0.11 13.6 47.1 

3a & 3b 45.60 28.15 -17.45 0.11 12.1 44.9 

4a & 4c 45.59 52.24 6.64 0.16 2.3 18.9 

5a & 5b 45.63 51.75 6.12 0.16 3.0 17.7 

6a & 6b 45.71 52.82 7.11 0.15 2.8 18.4 

C.5 Prognostic Separation 
  values are the mean prognostic separation values over 1400 simulations.     represents the change in prognostic separation values. 

C.5.1 No missing data 

Scenario              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1b 0.36 0.37 0.01 41.6 72.6 

4a & 4b 0.36 0.36 0.00 49.5 80.4 

 

C.5.2 Variable Matching 

Scenario              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1c 0.21 0.24 0.03 30.4 57.4 

2a & 2b 0.39 0.39 0.00 34.4 63.5 

3a & 3b 0.31 0.31 0.00 43.6 72.9 

4a & 4c 0.21 0.21 0.00 38.8 68.8 

5a & 5b 0.39 0.39 0.00 41.7 72.6 

6a & 6b 0.31 0.31 0.00 48.7 81.3 
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C.5.3 Random Selection with Replacement 

              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1c 0.36 0.37 0.01 41.7 73.3 

2a & 2b 0.36 0.37 0.01 40.6 73.2 

3a & 3b 0.36 0.37 0.01 41.5 72.4 

4a & 4c 0.36 0.36 0.00 48.5 80.8 

5a & 5b 0.36 0.36 0.00 50.1 82.8 

6a & 6b 0.36 0.36 0.00 47.9 80.6 

C.5.4 Single Imputation via Estimation 

              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1c 0.36 0.37 0.01 42.9 73.7 

2a & 2b 0.36 0.37 0.01 40.0 72.4 

3a & 3b 0.36 0.37 0.01 42.6 73.1 

4a & 4c 0.36 0.36 0.00 49.7 80.5 

5a & 5b 0.36 0.36 0.00 50.6 81.7 

6a & 6b 0.36 0.36 0.00 47.7 81.3 

C.5.5 Hot Deck Imputation 

              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1c 0.36 0.37 0.01 40.2 72.1 

2a & 2b 0.36 0.37 0.01 41.1 72.3 

3a & 3b 0.36 0.37 0.01 43.2 72.1 

4a & 4c 0.36 0.36 0.00 48.9 80.7 

5a & 5b 0.36 0.36 0.00 49.6 82.0 

6a & 6b 0.36 0.36 0.00 48.0 81.8 
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C.5.6 Random Selection with Replacement Multiple Times 

Scenario              
%     

(-0.05, 0.05) 
%    

(-0.10, 0.10) 

1a & 1c 0.36 0.37 0.01 98.1 100 

2a & 2b 0.36 0.37 0.01 98.2 100 

3a & 3b 0.36 0.37 0.01 97.1 100 

4a & 4c 0.36 0.36 0.00 99.8 100 

5a & 5b 0.36 0.36 0.00 99.5 100 

6a & 6b 0.36 0.36 0.00 99.8 100 

C.6 Coefficient Values 
The values presented are the mean values over 1400 simulations 

C.6.1 No missing data 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.53 0.17 -0.51 0.21 

4a & 4b -0.20 0.07 -0.19 0.07 -0.52 0.13 -0.51 0.16 -0.19 0.07 -0.18 0.06 -0.52 0.12 -0.50 0.14 
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C.6.2 Variable Matching 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1c -0.18 0.07 -0.18 0.07 NA -0.20 0.16 -0.15 0.15 NA 

2a & 2b -0.19 0.07 NA -0.52 0.13 -0.50 0.15 -0.19 0.09 NA -0.52 0.17 -0.51 0.21 

3a & 3b NA -0.18 0.07 -0.52 0.13 -0.49 0.15 NA -0.18 0.09 -0.52 0.17 -0.49 0.21 

4a & 4c -0.18 0.07 -0.18 0.07 NA -0.20 0.11 -0.15 0.11 NA 

5a & 5b -0.19 0.07 NA -0.52 0.13 -0.50 0.15 -0.19 0.07 NA -0.52 0.12 -0.50 0.14 

6a & 6b NA -0.18 0.07 -0.52 0.13 -0.50 0.15 NA -0.18 0.06 -0.51 0.12 -0.49 0.14 

C.6.3 Random Selection with Replacement 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.19 0.09 -0.53 0.17 -0.51 0.21 

2a & 2b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.52 0.17 -0.50 0.21 

3a & 3b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.52 0.17 -0.50 0.21 

4a & 4c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.19 0.06 -0.52 0.12 -0.50 0.14 

5a & 5b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.19 0.06 -0.52 0.12 -0.50 0.14 

6a & 6b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.51 0.15 -0.19 0.07 -0.18 0.06 -0.52 0.12 -0.50 0.14 
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C.6.4 Single Imputation via Estimation 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.52 0.17 -0.51 0.21 

2a & 2b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.19 0.09 -0.52 0.17 -0.51 0.21 

3a & 3b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.52 0.17 -0.50 0.21 

4a & 4c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.19 0.06 -0.53 0.12 -0.50 0.14 

5a & 5b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.18 0.07 -0.52 0.12 -0.50 0.14 

6a & 6b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.51 0.15 -0.19 0.07 -0.18 0.06 -0.52 0.12 -0.50 0.14 

C.6.5 Hot Deck Imputation 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.19 0.09 -0.53 0.17 -0.51 0.21 

2a & 2b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.19 0.09 -0.52 0.17 -0.50 0.21 

3a & 3b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.52 0.17 -0.50 0.21 

4a & 4c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.19 0.06 -0.52 0.12 -0.50 0.15 

5a & 5b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.18 0.07 -0.52 0.12 -0.50 0.14 

6a & 6b -0.19 0.07 -0.19 0.07 -0.52 0.13 -0.51 0.15 -0.19 0.07 -0.18 0.06 -0.52 0.12 -0.50 0.14 
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C.6.6 Random Selection with Replacement Multiple Times 

Scenario 

Development Validation 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

                                                                                
1a & 1c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.53 0.17 -0.50 0.21 

2a & 2b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.53 0.17 -0.50 0.21 

3a & 3b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.09 -0.18 0.09 -0.53 0.17 -0.50 0.21 

4a & 4c -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.18 0.06 -0.53 0.12 -0.50 0.14 

5a & 5b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.18 0.06 -0.53 0.12 -0.50 0.14 

6a & 6b -0.19 0.07 -0.18 0.07 -0.52 0.13 -0.50 0.15 -0.19 0.07 -0.18 0.06 -0.52 0.12 -0.50 0.14 

C.7 Accuracy 

C.7.1 No missing data 

Scenario 
Binary Continuous 

Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1b -0.89 0.00 86.2 -5.62 0.00 88.7 -8.24 0.01 88.2 -14.13 0.01 88.3 

4a & 4b 6.24 0.01 80.8 3.08 0.01 80.1 -1.59 0.02 81.8 -2.42 0.03 83.4 
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C.7.2 Variable Matching  

Scenario 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1c -30.30 -0.02 91.6 68.91 0.04 92.1 NA 

2a & 2b -2.36 0.00 88.1 NA -3.68 0.02 88.5 -7.50 0.02 88.5 

3a & 3b NA -1.40 0.00 89.8 -2.71 0.02 89.6 -2.00 0.03 87.8 

4a & 4c -33.85 -0.02 89.5 58.59 0.04 88.4 NA 

5a & 5b -0.88 0.00 81.7 NA -6.24 0.01 81.9 -5.89 0.02 82.6 

6a & 6b NA 6.77 0.01 82.3 -0.92 0.02 82.8 -0.83 0.03 83.6 

C.7.3 Random Selection with Replacement  

Scenario 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1c 2.05 0.01 86.1 -4.92 0.00 88.9 -7.72 0.01 89.7 -10.24 0.02 88.9 

2a & 2b -3.95 0.00 88.2 -0.23 0.00 87.4 -3.05 0.02 87.9 -7.32 0.02 88.4 

3a & 3b 1.10 0.01 89.0 -1.67 0.00 89.8 -3.07 0.02 89.5 -2.79 0.03 87.8 

4a & 4c 0.14 0.01 82.4 -0.85 0.00 81.9 -6.31 0.01 81.6 -7.09 0.02 80.1 

5a & 5b -1.41 0.00 82.0 1.11 0.00 82.3 -5.95 0.01 80.9 -5.82 0.02 82.4 

6a & 6b -6.91 0.00 80.9 7.07 0.01 83.0 -0.39 0.02 83.4 -0.15 0.03 83.9 
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C.7.4 Single Imputation via Estimation  

Scenario 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1c -0.41 0.00 86.9 -3.62 0.00 89.2 -2.35 0.02 88.1 -7.18 0.02 87.1 

2a & 2b -2.25 0.00 88.2 -8.09 0.00 88.7 -3.49 0.02 87.6 -8.00 0.02 87.9 

3a & 3b -5.15 0.00 88.4 -1.70 0.00 89.5 -2.23 0.02 89.3 -3.68 0.03 87.4 

4a & 4c 0.05 0.01 82.6 -1.03 0.00 82.9 -8.31 0.01 81.1 -6.18 0.02 83.4 

5a & 5b -1.32 0.00 81.5 3.58 0.01 83.1 -6.28 0.01 81.4 -5.14 0.02 83.1 

6a & 6b -3.10 0.00 81.2 7.67 0.01 82.6 -1.29 0.02 83.2 -0.93 0.03 83.4 

C.7.5 Hot Deck Imputation  

Scenario 
Binary Continuous 

Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1c -0.23 0.00 87.0 -5.83 0.00 89.4 -10.75 0.01 87.4 -8.79 0.02 87.9 

2a & 2b -2.93 0.00 87.3 -6.90 0.00 89.2 -4.04 0.02 88.1 -7.56 0.02 88.5 

3a & 3b -1.65 0.00 88.2 -1.00 0.00 90.1 -2.24 0.02 89.6 -2.43 0.03 87.9 

4a & 4c -0.49 0.00 81.9 -0.24 0.00 81.8 -4.17 0.02 81.3 -4.44 0.02 81.6 

5a & 5b -1.70 0.00 82.0 3.10 0.01 83.1 -6.55 0.01 81.9 -5.05 0.02 83.0 

6a & 6b -6.41 0.00 81.7 6.38 0.01 83.2 -0.94 0.02 83.0 -0.28 0.03 83.6 
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 C.7.6 Random Selection with Replacement Multiple Times 

Scenario 

Binary Continuous 
Categorical 
(Dummy 1) 

Categorical 
(Dummy 2) 

Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 
Bias 
(%) 

MSE 
Coverage 

(%) 

1a & 1c -1.14 0.00 100 -0.49 0.00 100 -3.97 0.01 100 -3.00 0.02 100 

2a & 2b 0.30 0.01 100 1.45 0.01 100 -2.25 0.01 100 -2.90 0.02 100 

3a & 3b -2.22 0.00 100 -1.05 0.00 100 -2.41 0.01 100 -3.08 0.02 100 

4a & 4c -0.31 0.00 100 0.11 0.00 100 -0.44 0.02 100 -0.59 0.02 100 

5a & 5b -0.10 0.01 100 0.17 0.00 100 -0.29 0.02 100 -0.58 0.02 100 

6a & 6b 0.07 0.01 100 -0.25 0.00 100 0.71 0.02 100 -0.19 0.02 100 
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Appendix D – Further Results from Chapter 9 

Table 54: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time points of seizure freedom. Estimates presented assume seizures not confined 

to sleep and no first degree relative with epilepsy. MESS (EEG/CT as 2 categories) & FIRST (random selection) 

 MESS FIRST 

Variable  Immediate Treatment Delayed Treatment   

Aetiology EEG 
CT/MRI 

scan results 

Months 
from 
index 

seizure 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls 
below 20% 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls 
below 20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls 
below 20% 

Risk of 
seizure 

within next 
12 months 
(%, 95% CI) 

Months from 
index seizure 
until annual 

risk falls 
below 20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
13 (10 to 16) 

7 (4 to 10) 
1.2 

16 (13 to 19) 
9 (6 to 12) 

3.2 
7 (2, 11) 
4 (0, 9) 

0.0 
14 (9, 18) 
10 (5, 14) 

0.6 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
19 (16 to 22) 
11 (8 to 13) 

5.3 
23 (20 to 26) 
13 (10 to 16) 

6.8 
10 (5, 14) 
7 (2, 11) 

0.0 
20 (16, 24) 
14 (10, 18) 

4.5 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
13 (10 to 17) 

7 (5 to 10) 
1.2 

16 (13 to 19) 
9 (6 to 12) 

3.3 
8 (3, 13) 
5 (1, 10) 

0.0 
16 (12, 21) 
11 (7, 15) 

2.2 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
19 (16 to 22) 
11 (8 to 14) 

5.5 
23 (20 to 26) 
13 (11 to 16) 

6.9 
11 (7, 16) 
8 (4, 12) 

0.0 
23 (20, 27) 
17 (13, 20) 

7.4 

Remote 
symptomatic 

Normal Normal 
6 

12 
18 (14 to 21) 
10 (7 to 13) 

4.0 
21 (18 to 24) 
12 (9 to 15) 

6.1 
10 (5, 15) 
7 (3, 11) 

0.0 
21 (17, 25) 
15 (11, 19) 

6.1 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
25 (22 to 28) 
14 (12 to 17) 

8.7 
30 (27 to 33) 
17 (15 to 20) 

10.7 
15 (10, 19) 
10 (6, 14) 

0.8 
30 (26, 33) 
21 (18, 25) 

11.0 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
18 (15 to 21) 
10 (7 to 13) 

4.0 
21 (18 to 24) 
12 (9 to 15) 

6.3 
12 (7, 17) 
8 (4, 12) 

0.0 
25 (21, 29) 
17 (14, 21) 

9.9 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
26 (23 to 28) 
15 (12 to 17) 

8.7 
30 (28 to 33) 
18 (15 to 20) 

10.7 
18 (13, 22) 
12 (8, 16) 

2.5 
35 (31, 38) 
25 (21, 28) 

16.0 
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Table 55: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time 

points of seizure freedom. Estimates presented assume seizures not confined to sleep and no first degree 

relative with epilepsy. FIRST (single imputation) 

Variable  Immediate Treatment Delayed Treatment 

Aetiology EEG CT/MRI 

Months 
from 
index 

seizure 

Risk of 
seizure within 

next 12 
months 

(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
6 (2, 11) 
4 (0, 9) 

0.0 
14 (9, 18) 
10 (5, 14) 

0.6 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
10 (5, 14) 
7 (2, 11) 

0.0 
20 (16, 24) 
14 (10, 18) 

4.5 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
8 (3, 13) 
5 (1, 10) 

0.0 
16 (12, 21) 
11 (7, 15) 

2.2 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
11 (7, 16) 
8 (4, 12) 

0.0 
23 (19, 27) 
16 (13, 20) 

7.4 

Remote 
symptomatic 

Normal Normal 
6 

12 
10 (6, 15) 
7 (3, 11) 

0.0 
21 (17, 25) 
15 (11, 19) 

6.1 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
15 (11, 19) 
10 (6, 14) 

0.8 
30 (27, 34) 
22 (18, 25) 

12.4 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
12 (8, 17) 
8 (4, 13) 

0.0 
25 (21, 29) 
18 (14, 21) 

9.9 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
18 (13, 22) 
12 (8, 16) 

2.5 
35 (32, 38) 
25 (22, 29) 

16.0 
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Table 56: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time 

points of seizure freedom. Estimates presented assume seizures not confined to sleep and no first degree 

relative with epilepsy. FIRST (hot deck imputation) 

Variable  Immediate Treatment Delayed Treatment 

Aetiology EEG CT/MRI 

Months 
from 
index 

seizure 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
7 (2, 12) 
5 (1, 9) 

0.0 
14 (10, 19) 
10 (6, 14) 

0.6 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
11 (6, 15) 
8 (4, 12) 

0.0 
22 (18, 26) 
16 (12, 20) 

7.1 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
7 (3, 12) 
5 (1, 9) 

0.0 
15 (11, 20) 
11 (7, 15) 

1.6 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
12 (7, 16) 
8 (4, 12) 

0.0 
24 (20, 28) 
17 (14, 21) 

9.9 

Remote 
symptomatic 

Normal Normal 
6 

12 
11 (6, 16) 
8 (4, 12) 

0.0 
23 (19, 27) 
16 (13, 20) 

7.1 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
18 (13, 22) 
13 (9, 16) 

2.5 
34 (31, 38) 
25 (22, 29) 

16.8 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
12 (8, 17) 
9 (5, 13) 

0.0 
25 (21, 29) 
18 (14, 22) 

10.2 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
19 (15, 23) 
14 (10, 18) 

4.0 
37 (34, 40) 
28 (24, 31) 

16.8 
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Table 57: Seizure recurrence risk in the next 12 months estimated from multivariable model at specific time 

points of seizure freedom. Estimates presented assume seizures not confined to sleep and no first degree 

relative with epilepsy. FIRST (multiple imputation) 

Variable  Immediate Treatment Delayed Treatment 

Aetiology EEG CT/MRI 

Months 
from 
index 

seizure 

Risk of 
seizure within 

next 12 
months 

(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Risk of seizure 
within next 12 

months 
(%, 95% CI) 

Months 
from 
index 

seizure 
until 

annual 
risk falls 
below 
20% 

Not remote 
symptomatic 

Normal Normal 
6 

12 
6 (2, 11) 
4 (0, 9) 

0.0 
14 (9, 18) 
10 (5, 14) 

0.5 

Not remote 
symptomatic 

Abnormal Normal 
6 

12 
10 (5, 14) 
7 (2, 11) 

0.0 
20 (16, 24) 
14 (10, 18) 

4.8 

Not remote 
symptomatic 

Normal Abnormal 
6 

12 
8 (3, 12) 
5 (1, 10) 

0.0 
16 (12, 20) 
11 (7, 15) 

2.0 

Not remote 
symptomatic 

Abnormal Abnormal 
6 

12 
11 (7, 16) 
8 (4, 12) 

0.0 
23 (19, 27) 
16 (13, 20) 

7.4 

Remote 
symptomatic 

Normal Normal 
6 

12 
10 (6, 15) 
7 (3, 11) 

0.0 
21 (17, 25) 
15 (11, 19) 

6.6 

Remote 
symptomatic 

Abnormal Normal 
6 

12 
15 (11, 19) 
10 (6, 14) 

1.1 
30 (27, 34) 
22 (18, 25) 

12.1 

Remote 
symptomatic 

Normal Abnormal 
6 

12 
12 (7, 17) 
8 (4, 13) 

0.0 
25 (21, 29) 
17 (14, 21) 

9.9 

Remote 
symptomatic 

Abnormal Abnormal 
6 

12 
18 (13, 22) 
12 (8, 16) 

2.6 
35 (31, 38) 
25 (22, 29) 

15.7 

 

  



 

371 
 

Appendix E – Published Papers 

Work from Chapters 4, 5 and 6 has been published.  Full references for the relevant articles 

are shown and copies included. 

Chapter 4 
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