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Abstract

We consider various geometrical and physical aspects of the r-map and c-map, which
are two maps induced by the dimensional reduction of 5d and 4d, N = 2 supergravity
coupled to vector multiplets respectively. We treat reduction over a spacelike or timelike
dimension on an equal footing, and prove, for the first time, that the target manifold
in the image of the timelike c-map is para-quaternion Kähler. In order to do this we
provide a new formulation of projective special Kähler geometry based on real Darboux
coordinates, which is useful both mathematically and physically in its own right.

As an application we investigate how the r-map and c-map can be used to generate
new stationary black hole solutions. In four dimensions we construct new extremal non-
BPS solutions, and in both four and five dimensions we construct new non-extremal
solutions. We also take the first steps towards constructing new rotating solutions,
though at this stage we only recover known solutions.

The systematic and geometrical nature of these constructions allows us to gain a
deeper understanding of many familiar properties of black holes in supergravity, such
as the attractor mechanism and the transformation of BPS into non-BPS black holes
using a field rotation matrix. We also observe an interesting and novel feature relating
to non-extremal black holes: in order for solutions to correspond to non-extremal black
holes with finite scalar fields we find that the number of integration constants must
reduce by half. This suggests that non-extremal black holes always satisfy first order
equations similar to their extremal counterparts. For STU -like models all calculations
are performed explicitly.
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Chapter 1

Introduction

This thesis is devoted to various physical and geometrical aspects of five- and four-
dimensional theories of N = 2 supergravity coupled to vector multiplets. Such theories
play an important role in the study of non-perturbative gauge theories [1, 2], string the-
ory compactifications [3, 4, 5], and black hole physics [6, 7, 8]. Theories with extended
supersymmetry come equipped with two types of geometry: spacetime geometry and
the geometry of the scalar target manifold. For N = 2 supersymmetry the latter are
known as ‘special’ geometries and are interesting mathematically in their own right
[9, 10, 11].

We will concentrate on two particularly important tools at our disposal: the maps
induced by the dimensional reduction of five- or four-dimensional N = 2 supergravity
coupled to vector multiplets, which go by the names of the r-map and c-map respec-
tively. By developing our analysis of these maps we gain a deeper understanding of the
geometry and physics of these theories as a whole. Moreover, we can use these results
to construct new solitonic solutions such as black holes, which play an important role
as a testing ground for string theory and other quantum theories of gravity. Let us now
give an introduction to, and summary of, the main results:

1. The real formulation of projective special Kähler geometry
The standard form of the Lagrangian of 4d, N = 2 supergravity coupled to vector
multiplets is presented in terms of complex scalar fields [12, 13, 14], which reflects the
fact that the definition of projective special Kähler geometry is formulated in terms
of complex coordinates [13, 11]. However, in certain circumstances it is desirable to
use a formulation of this geometry in terms of real coordinates, for instance in the
study of non-holomorphic corrections and the OSV conjecture [15, 16, 17, 18]. More
recently it has been appreciated that it is also extremely useful for the construction of
new black hole solutions [19, 20, 21], which we discuss later. We will also see that the
real formulation of projective special Kähler geometry allows us in turn to provide a
new formulation of the c-map in terms of real coordinates, and will play an important
role in the proof that the target manifold in the image of the temporal c-map is para-
quaternion Kähler.

Although the real formulation of affine special Kähler geometry has been known
for some time and is relatively straight-forward [11], the real formulation of projective
special Kähler geometry has only been considered recently and is technically more
challenging. A particular formulation of projective special Kähler geometry in terms
of real coordinates has been proposed in [22], though we find there is still room for
improvement in various conceptual and practical aspects of this construction. In this

1



CHAPTER 1. INTRODUCTION 2

thesis we will present a new formulation of projective special Kähler geometry that
is given in terms of real Darboux coordinates and uses horizontal fields on a larger
ambient space (the associated conic affine special Kähler manifold). The advantage of
this approach is that we expose the underlying conic structure very clearly, and full
symplectic covariance is manifest, at least before projecting down. All data is expressed
in terms of a single function called the Hesse potential [11], which replaces the role of
the holomorphic prepotential when using special real coordinates.

2. The r-map and c-map
The r-map and c-map were first developed around two decades ago [23, 24, 25, 26], and
have remained to this day a consistently active area of research for both physicists and
mathematicians.

Through dimensional reduction of 5d, N = 2 supergravity coupled vector mul-
tiplets over a spacelike dimension one obtains a theory of 4d, N = 2 supergravity
coupled to vector multiplets. This induces a map from the target manifold of the five-
dimensional theory, a projective special real manifold, into the target manifold of the
four-dimensional theory, a projective special Kähler manifold [24], which is called the r-
map. One may alternatively consider the dimensional reduction of the same theory but
over a timelike dimension. In this case the four-dimensional theory has an Euclidean
spacetime signature and the target manifold is a projective special para-Kähler mani-
fold [27]. We call this the timelike r-map1 in order to distinguish it from the spacelike
r-map.

Recent progress in the r-map has focussed on the generalisation of the spacelike or
timelike r-map to include theories that are direct generalisations of N = 2 supergravity
coupled to vector multiplets [27, 28], and also to include theories in which N > 2 [29].
Since the timelike generalised r-map involves dimensional reduction over time it can be
used as a technique for constructing stationary black hole solutions to supergravity and
its generalisations [30, 31, 32]. In this thesis we will provide a review of this generalised
r-map based on [27], which we will later use to construct new non-extremal black hole
solutions.

The c-map is technically more challenging than the r-map for two reasons. First, the
spacelike c-map is a map from a projective special Kähler manifold into a quaternion
Kähler manifold [26], which is a relatively difficult type of manifold to study. Second,
the isometry group generated by the c-map is more complicated than the r-map [26, 33,
34]. However, for the same reasons the c-map is a particularly interesting construction
in both a physical and mathematical sense. We will revisit the original formulation of
the spacelike c-map by Ferrara and Sabharwal [26], before providing a new formulation
of this map based entirely on real coordinates, which has appeared in the publication
[19] by the author. This makes critical use of the real formulation of projective special
Kähler geometry discussed previously. We then go on to provide a proof, for the first
time, that the target manifold in the image of the timelike c-map is para-quaternion
Kähler. This result will appear later in [28].

Using our formalism we also prove the existence of a second integrable and metric
compatible complex structure on the quaternion Kähler manifold in the image of the
spacelike c-map, in addition to the integrable complex structure found in [35]. Both
complex structures are also integrable and metric compatible on the para-quaternion
Kähler manifold in the image of the timelike c-map, in which case the second complex
structure is also compatible with the para-quaternion structure.

1In the literature this is also sometimes called the temporal r-map or para-r-map.
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3. Black hole solutions
Over the years black holes have remained an inexhaustible source of interest to physi-
cists across a broad spectrum of sub-disciplines, such as cosmology, quantum gravity,
information theory and recently even condensed matter physics. In this thesis we are
interested in black holes from a theoretical point of view, and they will only be con-
sidered in isolation from other cosmological objects. The most important feature for
us is the existence of an event horizon. We will be particularly interested in static,
charged black hole solutions. These come in two varieties: extremal and non-extremal.
For charged black holes the mass cannot be lower than the charge M ≥ |Q|, and we
define extremal black holes to be those that saturate this bound, i.e. M = |Q|, whereas
non-extremal black holes do not, i.e. M > |Q|.

In order to give a complete description of black hole physics, up to and including the
event horizon, one must appeal to a theory that unifies gravity and quantum mechanics.
Conversely, any theory that purports to be a consistent theory of quantum gravity
should provide a satisfactory description of black hole physics. This is why black holes
play such an important role as a testing ground for string theory and other theories of
quantum gravity. Over the past two decades tremendous progress has been made in
our understanding of black hole physics in string theory, which is the main motivation
for their discussion in this thesis. The matching of the microscopic entropy [6] and
macroscopic entropy [7] of a certain class of five-dimensional BPS black holes is one of
the most celebrated results of the theory. This discovery ushered in the next two decades
of intense interest in black hole physics in string theory and its compactifications to
five- or four-dimensional supergravity, which are the theories we will consider in this
thesis.

An important subclass of black hole solutions in theories of extended supergravity
consists of so-called BPS black holes, which are characterised by preserving some degree
of supersymmetry from their parent theory. They saturate a bound relating their mass
with the central charge, and in the static case are necessarily extremal. Some well-
known black holes can be interpreted as BPS solutions when embedded into supersym-
metric theories, such as the extremal Reissner–Nordström black hole [36, 37]. BPS black
holes exhibit an interesting feature known as the attractor mechanism, which is a pro-
cess by which the behaviour of the solution at the horizon is completely by the charges
and becomes independent of the asymptotic values of the moduli fields [7, 38, 39, 40].
More generally, BPS solutions can be determined on the whole of spacetime in terms
of harmonic functions through so-called generalised stabilisation equations, which re-
duce to the attractor equations in the near horizon limit [41, 42, 43, 44, 45]. Attractor
behaviour can also occur for non-BPS black holes [46, 47], and is now understood to
be a consequence of extremality.

The fact that BPS black holes are invariant under certain supersymmetry transfor-
mations means that they admit Killing spinors, see e.g. [48, 14], which are the fermionic
analogue of Killing vectors. Solving the Killing spinor equations amounts to solving a
set of first order differential equations. This is often easier than solving the equations
of motion, which are second order. Constructing non-BPS solutions is more challenging
since they do not satisfy Killing spinor equations. One approach is to identify ‘fake’
Killing spinor equations, and use these to construct non-BPS solutions in a similar way
to their BPS counterparts. However one needs to impose spherical symmetry and/or
that the target manifold is a symmetric space [49, 31, 50, 51, 52].

In this thesis we will present a new method of constructing static four-dimensional
non-BPS extremal black hole solutions, which has appeared in the publication [19] by
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the author. We work directly at the level of the equations of motion and do not assume
that spacetime is spherically symmetric or that the target manifold is a symmetric
space. While we cannot prove that non-BPS extremal solutions exist for generic models,
we will show that such solutions can always be found for a large class of models, which,
in particular, contains all models in the image of the r-map. For certain models we
construct explicit solutions, such as for STU -like models and the STU + aU3 model.
For completeness we will also discuss the analogous case in five dimensions, where
the procedure for constructing extremal BPS and non-BPS solutions directly from the
equations of motion was first pioneered by Mohaupt and Waite in [32].

In contrast to extremal black holes, progress in our understanding of their non-
extremal counterparts has been slower and more recent. Since non-extremal black
holes cannot be BPS solutions one cannot use the standard method of Killing spinor
equations to construct solutions. Various methods have been used to construct non-
extremal solutions, which often involve reducing the equations of motion to first order
equations (without doubling the total number of equations) [53, 54, 55, 56, 57, 58, 49].
In this case the number of integration constants necessarily reduces by half.

Since the formalism we develop for constructing extremal black holes works directly
at the level of equations of motion, it can be adapted in a systematic way to constructing
new non-extremal solutions. Since one would not expect the reduced spacetime metric
to be flat in the case of non-extremal black holes we have to modify our ansatz from
the extremal case. In addition we impose that solutions are spherically symmetric, as
one cannot construct static multi-centred non-extremal solutions generically. In both
five and four dimensions we find that for STU -like models we can integrate the second
order equations of motion directly and obtain the general solution. We then identify
the subset that correspond to new non-extremal black hole solutions with scalar fields
that take finite values. In the five-dimensional case these solutions have appeared in
two publications by the author [59, 60], while in the four-dimensional case they are to
appear shortly [61].

We also discuss non-extremal black hole solutions to models more general than
STU -like models, but find that we must set some scalar fields to be proportional to one
another. We therefore only obtain solutions with as many independent scalar fields as
there are blocks in the metric. This still allows us to show that in five dimensions there
is a universal non-extremal solution with constant scalar fields given by the Reissner–
Nordström metric, and in the four dimensional class of models mentioned above we
find that there is a universal solution with one non-constant scalar field.

A novel property that we observe in all of our non-extremal solutions is that in
order for the scalar fields to take finite values on the horizon the number of integration
constants must reduce by half. This suggests that non-extremal black hole solutions
are always governed by first order equations, just like their extremal counterparts.
Although non-extremal solutions have previously been observed to satisfy first order
equations, the logic here is different. We start with the general solution to the equations
of motion and show that for these solutions to correspond to black holes with finite
scalar fields the number of integration constants must reduce by half.

Our formalism also allows one to consider stationary four-dimensional solutions.
We consider rotating spacetimes with a flat three-dimensional metric and find that
we can very easily recover the known BPS solutions [62, 63, 41, 42]. In the rotating
case we observe that non-BPS solutions are characterised by having a non-flat three-
dimensional metric, which we will not consider in this thesis. We leave the study of
new rotating solutions, both non-BPS and non-extremal, to future work.
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This thesis is organised as follows follows: in chapters 2 and 3 three we provide the
necessary mathematical and physical background needed for the main part of the thesis.
We then follow roughly the chronological order in which the research was undertaken,
and which also corresponds to the level of complexity of the material. In chapter 4
we review the generalised r-map, which we then use in chapter 5 to construct new
non-extremal black hole solutions in five dimensions. In chapter 6 we present the real
formulation of projective special Kähler geometry and perform the c-map, which we
then formulate in terms of real coordinates. We recover the results of Ferrara and
Sabharwal before providing the proof that the target manifold in the image of the
timelike c-map is para-quaternion Kähler. In chapter 7 we use the c-map to construct
four-dimensional black hole solutions. We first recover the known rotating and static
BPS solutions, before moving on to new static non-BPS and non-extremal solutions.
We end with a conclusion and outlook in chapter 8.

1.1 Notation and conventions

We use the conventions of [14]. The signature of the spacetime metric is given by

(+ + . . .+) Euclidean spacetime ,

(−+ . . .+) Lorentzian spacetime .

We will always use the Einstein summation convention for repeated indices unless
explicitly stated otherwise, i.e. AµAµ =

∑
µA

µAµ. We denote the symmetric and
antisymmetric parts of a tensor field by

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) .

The coefficients of the Levi-Civita connection D in a coordinate basis are given by

DXY = XµDµ(Y λ∂λ) = Xµ
[
∂µY

λ + ΓλµνY
ν
]
∂λ ,

where

Γλµν =
1

2
gλρ(∂µgρν + ∂νgρµ − ∂ρgµν) .

The coefficients of the Riemann curvature tensor are given by

Rρλµν = ∂µΓρνλ − ∂νΓρµλ + ΓρµσΓσνλ − ΓρνσΓσµλ ,

which means the curvature two-form is related to the Levi-Civita one-form (spin con-
nection) by

Rab = dωab + ωac ∧ ωcb .

The Ricci curvature is defined by the contraction of the Riemann curvature

Rµν = Rλµλν ,

and the scalar curvature is defined by the contraction of the Ricci curvature R = Rµµ.
We will frequently switch between a local coordinate basis {dxµ} of the tangent

bundle and a local orthonormal basis {ea}, which we refer to as a vielbein basis and
the individual ea as vielbeins. We will use Greek indices for the coordinate basis and
Latin indices for vielbein basis

gµν dx
µ ⊗ dxν = ηab e

a ⊗ eb .
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The transformation matrices e a
µ are defined to satisfy ea = e a

µ dx
µ, and we denote the

determinant by

e := det(e a
µ ) =

√
|det(gµν)| .

The m-dimensional epsilon symbol is defined to be

ε12...m = 1 ,

and the epsilon tensor is given by

εµ1...µm = e εµ1...µm .

Three useful identities are

εµ1...µm = e εµ1...µm = e gµ1ν1 . . . gµmνmεν1...νm = (−)fe−1 εµ1...µm , (1.1)

and
εµ1...µkρk+1...ρmε

ν1...νkρk+1...ρm = (−)fp!(m− k)!δν1µ1 . . . δ
νk
µk
, (1.2)

where f is the number of timelike dimensions. It is also useful to note that by definition

e dxµ1 ∧ . . . ∧ dxµm = εµ1...µmdmx .

We write an arbitrary p-form as

αp =
1

p!
(αp)µ1...µp dx

µ1 ∧ . . . ∧ dxµp .

Exterior derivatives act on the left

dαp =
1

p!
∂ν(αp)µ1...µp dx

ν ∧ dxµ1 ∧ . . . ∧ dxµp ,

as does the interior product ιXg(·, ·) = g(X, ·). The Hodge star is defined by

?αp =
1

p!(m− p)!
(αp)µ1...µpε

µ1...µp
νp+1...νmdx

νp+1 ∧ . . . ∧ dxνm .

Consider a p-form αp in the case where p is even and precisely half the number of
dimensions of the manifold. If the metric has Lorentzian signature then ??αp = −αp,
and so we can split the p-form into self-dual and anti self-dual parts

α±p =
1

2
(αp ∓ i?αp) ,

where ?α±p = ±iα±p . A useful example is the two-form F on a four-dimensional manifold
with Lorentzian signature (e.g. spacetime), which we write as

F =
1

2
Fµνdx

µ ∧ dxν .

The Hodge-star is given by

?F =
1

4
Fρσε

ρσ
µνdx

µ ∧ dxν ,

and ??F = −F . We can therefore split the F into self-dual and anti-self-dual parts

F± =
1

2
(F ∓ i?F ) .

We can write this in components as

F±µν =
1

2
(Fµν ± iF̃µν) ,

where we have defined

F̃µν = −1

2
Fρσε

ρσ
µν .



Chapter 2

Preliminary mathematics

In this opening chapter we will introduce various mathematical concepts that will be
important throughout this thesis. These are based in the field of differential geometry,
a firm grasp of which is essential for the study of gravity, gauge theory and super-
symmetry. Our aim is to fully understand special geometry, which is needed to define
N = 2 supergravity in three, four and five dimensions.

We will begin in section 2.1 with a discussion about connections, which are one
of the fundamental objects in differential geometry. This will also serve as a brief
introduction to differential geometry, and here we will define many elementary objects.
In section 2.2 we will introduce special real manifolds, which are the simplest type of
manifolds in special geometry. We then move on to special (para-)Kähler manifolds
in section 2.3, and finish with a discussion of (para-)quaternion Kähler manifolds in
section 2.4.

2.1 Connections

Connections can be defined on two types of fibre bundles: vector bundles, and principal
bundles. In section 2.1.1 we will focus on connections on the tangent bundle, which
is a specific type of vector bundle. Here the main motivation is to understand what
is meant by an affine connection that is flat and torsion-free (a special connection) or
torsion-free and metric compatible (the Levi-Civita connection). This will be important
later when we discuss the intrinsic definition of special geometry. In section 2.1.2 we
will discuss connections on principal bundles in general. Here the goal is to understand
parallel transport and holonomy. An important result is corollary 2.1, which relates
the Riemannian holonomy group to the Levi-Civita connection one-form.

This section is based on the well-known texts [64, 65, 66, 67], but for consistency
all definitions are based specifically on those in [67]. Throughout this section we will
let M denote an arbitrary m-dimensional differentiable manifold.

7
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2.1.1 Connections on the tangent bundle

Definition 2.1 (affine connection). An affine connection∇ is a map from two smooth
vector fields into another smooth vector field1

∇ : Γ(TM)× Γ(TM) −→ Γ(TM)

(X,Y ) 7−→ ∇XY ,

that satisfies the following conditions:

∇X(Y + Z) = ∇XY +∇XZ ,

∇(X+Y )Z = ∇XZ +∇Y Z ,

∇fXY = f∇XY ,

∇X(fY ) = X(f)Y + f∇XY ,

for all vector fields X,Y, Z ∈ Γ(TM) and smooth functions f on M .

We can write ∇XY in a coordinate basis as

∇XY = Xµ∇µ(Y λ∂λ) = Xµ
[
∂µY

λ + ΓλµνY
ν
]
∂λ , (2.1)

where the components Γλµν are called the connection coefficients.
An affine connection allows one to define the notion of parallel transport. Consider

a curve c : [a, b]→M , parametrised by t, and a vector field V tangent to the curve. A
vector field X is parallel transported along c(t) if

∇VX = 0 .

Using a curve c(t) and an affine connection ∇ we can compare a vector X(a) at the
point c(a) with a vector X(b) at c(b) in a unique and meaningful way. Moreover, we
can define a privileged type of curve that has a tangent vector field V which satisfies

∇V V = 0 ,

or can be brought to this form by a reparametrisation of c(t). Such a curve is called a
geodesic.

The action of an affine connection ∇ can be extended to arbitrary tensors by first
requiring that the covariant derivative ∇X acting on a function be the standard direc-
tional derivative (which is also the same as the action of the Lie derivative)

∇Xf = X(f) = LXf .

This is an extremely versatile formula, from which many properties of the Lie derivative
and covariant derivative can be understood. In particular, if ω is a one-form we may
require that the covariant derivative satisfies the product rule

∇X(ω(Y )) = X(ω(Y )) =: (∇Xω)Y + ω(∇XY ) ,

and so we should define the action of ∇X on a one-form ω to be

∇Xω : Γ(TM) −→ R
Y 7−→ (∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ) .

1We denote the set of smooth vector fields by Γ(TM), and more generally the set of smooth sections
of an arbitrary vector bundle by Γ(V ).
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The action of ∇X can be extended to an arbitrary tensor field through the rule

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2) .

For a tensor field T of type (r, s) we will often write ∇T to denote the map Γ(TM)×
Γ(⊗rT ∗M ⊗s TM) −→ Γ(⊗rT ∗M ⊗s TM) given by (X,T ) 7→ ∇XT .

Given an affine connection we can define curvature and torsion. The Riemann
curvature tensor is defined by

R : Γ(TM)× Γ(TM)× Γ(TM) −→ Γ(TM)

(X,Y, Z) 7−→ R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,

and the torsion tensor by

T : Γ(TM)× Γ(TM) −→ Γ(TM)

(X,Y ) 7−→ T (X,Y ) = ∇XY −∇YX − [X,Y ] .

A connection is said to be flat if the Riemann curvature vanishes, and torsion-free if
the torsion vanishes. Note that these definitions are given in terms of a connection and
not any metric that may exist on the manifold.

Let (M, g) be a pseudo-Riemannian manifold with signature (p, q). An object that
will play an important role later on is the connection one-form. In order to define this
we must first introduce an orthonormal frame {ea}, i.e. a basis of the tangent space
that satisfies

g(ea, eb) = ηab , where η =

(
−1p 0

0 1q

)
.

Any orthonormal frame is related to a coordinate frame {∂µ} by an SL(m,R) transfor-
mation denoted e µ

a

ea = e µ
a

∂

∂xµ
,

and two orthonormal frames {ea} and {e′a} are related to one another by an SO(p, q)
transformation.

We adopt the physics terminology of referring to {ea} as a vielbein basis, and
the individual ea as vielbeins. We will call the matrices e µ

a vielbein transformation
matrices (or simply transformation matrices). Confusingly, this is different from most
of the literature in mathematics, where e µ

a are referred to as vielbeins and {ea} as an
orthonormal frame. The inverse transformation matrices eaµ are defined through the

expression eaµe
µ
b = δab , and can be written as eaµ = gµνη

abe ν
b . Just like expression

(2.1), we can write ∇XY in a vielbein basis as

∇XY = Xa∇a(Y cec) = Xa
[
eaY

c + γcabY
b
]
ec . (2.2)

The connection coefficients in vielbein and coordinate bases are related through

γcab = ecλe
µ
a (∂µe

λ
b + e ν

b Γλµν) = ecλe
µ
a∇µe λ

b .

The vielbein one-forms ea are defined to be the set of one-forms dual to the vielbeins
ea. We can now define the matrix-valued one-form ωab, called the connection one-form,
by

ωab = γacbe
c .
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It will be useful later to interpret ω as a one-form that takes values in the Lie algebra
of the general linear group ω ∈ gl(m,R) ⊗ T ∗M (note that actually every real m ×m
matrix is an element of gl(m,R)). The connection one-form satisfies Cartan’s structure
equations

T a = dea + ωab ∧ eb ,
Rab = dωab + ωac ∧ ωcb ,

where T a = 1
2T

a
bce

b∧ec is the torsion two-form and Rab = 1
2R

a
bcde

c∧ed is the curvature
two-form. These are related to the previously defined torsion and Riemann curvature
through

T abc = 〈ea, T (eb, ec)〉 ,
Rabcd = 〈ea, R(eb, ec, ed)〉 .

Definition 2.2 (Levi-Civita connection). Given a pseudo-Riemannian manifold
(M, g) the Levi-Civita connection, denoted D, is the unique connection that is metric
compatible and torsion-free

Dg = 0 , T (X,Y ) = 0 ,

for all X,Y ∈ Γ(TM).

We can formulate the definition of the Levi-Civita connection in terms of a connec-
tion one-form by the following proposition:

Proposition 2.1 . The Levi-Civita one-form is the unique connection one-form that
satisfies

(i) ωab ∈ so (p, q) ,

(ii) 0 = dea + ωab ∧ eb ,

where (i) corresponds to metric compatibility and (ii) corresponds to being torsion-free.

Proof. (Nakahara) By Cartan’s structure equations it follows that the torsion-free con-
dition implies (ii). We need to show that metric compatibility implies (i). First define

γabc = ηadγ
d
bc , ωab = ηadω

d
b .

Since ∇µg = 0 for metric compatible connections we have

γabc = ηade
d
λe

µ
b ∇µe

λ
c = ηade

µ
b ∇µ(edλe

λ
c )− ηade λ

c e
µ
b ∇µe

d
λ

= ηcde
d
λe

µ
b ∇µe

λ
a = −γcba ,

and since ωac = γabce
b we have

ηacω
c
b = −ηbcωca ,

which proves (i). Since the Levi-Civita connection is unique the connection coefficients
γabc are unique (up to SO(p, q) rotations of the vielbein basis), and, hence, the Levi-
Civita one-form is unique.
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2.1.2 Connections on principal bundles

Definition 2.3 (principal bundle). A principal bundle P (M,G) is a fibre bundle
P

π−→M in which the group G acts freely and transitively on the fibres.

For any fibre bundle the transition functions act on a fibre on the left

Lgu = gu ,

where π(u) = π(gu) = p. For a principal bundle there is an additional group action,
which acts on a fibre on the right

Rgu = ug ,

where again π(u) = π(ug) = p. By definition the group action is free and transitive
on each fibre π−1(p), which means that any two points u, v ∈ π−1(p) are related by a
unique element g ∈ G through the right action Rgu = v. The right and left actions
commute.

Example 2.1 (frame bundle). A particularly useful example of a principal bundle is the
frame bundle. A frame {θα} at p ∈ M is simply a basis of the tangent space TpM .
Since any two frames are related by a GL(m,R) transformation, the frame bundle is
a GL(m,R) principal bundle. Moreover, since GL(m,R) is also the structure group
of the tangent bundle, the frame bundle is the principal bundle associated with the
tangent bundle. The group action of a ∈ GL(m,R) on a frame {θα} is defined by the
by the right action

Raθα = θβa
β
α .

On each chart (Ui, x
µ) and (Uj , y

ν) we can write

θα

∣∣∣
π−1(Ui)

= (θi)
µ
α

∂

∂xµ
, θα

∣∣∣
π−1(Uj)

= (θj)
ν
α

∂

∂yν
,

where (θi), (θj) ∈ GL(m,R). Local trivialisations on Ui and Uj are therefore given by

φ−1
i,p (u) = (p, (θi)

µ
α ) , φ−1

j,p (u) = (p, (θj)
ν
α ) .

On overlapping charts we have θα
∣∣
π−1(Ui)

= θα
∣∣
π−1(Uj)

and, hence,

(θi)
µ
α =

∂xµ

∂yν
(θj)

ν
α .

The transition functions must satisfy (θi)
µ
α = (tij)

µ
ν(θj)

ν
α and are therefore given by

(tij)
µ
ν =

∂xµ

∂yν
∈ GL(m,R) ,

which confirms that the structure group is GL(m,R).

The vertical subspace VuP ⊂ TuP of a principal bundle is defined to be the subspace
tangent to the fibre π−1(p), and is given by the kernel of π∗

Y ∈ VuP ⇔ π∗Y = 0 .
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There is an isomorphism from the Lie algebra of G to the vertical subspace given by

] : g −→ VuP

A 7−→ A]u ,

where

A]u(f) =
d

dt
f(u exp(tA))

∣∣∣
t=0

.

The vector field A] is called the fundamental vector field generated by A. A complement
to the vertical subspace is called a horizontal subspace, which is not unique in general.
A choice of unique horizontal subspace at every point u ∈ P is equivalent to choosing
a connection

unique horizontal subspace ⇔ connection

Definition 2.4 (connection on a principal bundle). A connection ∇ on a principal
bundle P (M,G) is the unique separation of the tangent space at every point u ∈ P
into a vertical subspace V,u P and horizontal subspace H∇u P such that

(i) TuP = VuP ⊕H∇u P .

(ii) Any smooth vector field X on P separates into X = XV + XH , where XV and
XH are smooth vector fields and XV

u ∈ VuP and XH
u ∈ H∇u P for every point

u ∈ P .

(iii) H∇ugP = Rg∗H
∇
u P for any g ∈ G.

Just like for an affine connection on the tangent space, the concept of a connection
on a principal bundle can be re-expressed in terms of a one-form. On a principal bundle
we define a connection one-form ω ∈ g⊗T ∗P to be the projection of the tangent space
onto the vertical component, which is isomorphic to g ' VuP , that satisfies

(i) ω(A]) = A , A ∈ g ,

(ii) R∗gω = Adg−1ω .

A horizontal subspace is then defined by the kernel of ω

X ∈ H∇u P ⇔ ω(X) = 0 ,

and it is clear that a connection ∇ is completely equivalent to a connection one-form
ω.

Given a coordinate patch Ui of M and local section σi of P , we can locally define
a g-valued one-form Ai on Ui given by

Ai = σ∗i ω ∈ g⊗ T ∗Ui . (2.3)

On the overlap of patches Ui and Uj these one-forms are related by

Aj = t−1
ij Aitij + t−1

ij dtij .

Conversely, if we have a g-valued one-form Ai and section σi on each patch Ui of an
open cover of M , and the Ai satisfy the above relation on the overlap of patches, then
there exists a unique connection one-form ω on M such that Ai = σ∗i ω on each patch.
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Given a principal bundle one may consider a so-called associated vector bundle,
which we denote by P ×ρ V

πE−→M where ρ is a k-dimensional representation of G and
V is a vector space of dimension k. This is defined by identifying points (u, v) with
(ug, ρ(g)−1v), where u ∈ P, v ∈ V, g ∈ G. The fibre structure is given by πE(u, v) =
πE(ug, ρ(g)−1v) = π(u), and local trivialisations by ψi : Ui × V → π−1

E (Ui). Consider
a principal bundle with G ⊂ GL(m,R) and an associated rank m vector bundle in the
standard representation of GL(m,R). In this case there is a 1:1 relationship between
connections on the principal bundle and connections on the associated vector bundle.

Example 2.2 (frame and tangent bundles). The tangent bundle is a rank m vector
bundle associated with the frame bundle GL(m,R). The transition functions act on
the fibre on the left through the standard representation of GL(m,R), and there is
therefore a 1:1 correspondence between connections on the two bundles. In particular,
the Levi-Civita connection is uniquely defined on the tangent bundle and therefore also
on the frame bundle.

Definition 2.5 (horizontal lift). Let P (M,G) be a principal bundle and γ : [0, 1]→
M be a curve in M . A curve γ̃ : [0, 1] → P in P is a horizontal lift of γ if π ◦ γ̃ = γ
and the vector field tangent to γ̃(t) always lies in H∇γ̃(t)P .

Proposition 2.2 . For a curve γ : [0, 1] → M and point u ∈ π−1(γ(0)) there exists a
unique horizontal lift γ̃ such that γ̃(0) = u.

Proof. (Nakahara) Consider a patch Ui, section σi and a curve γ̃(t) in P such that
π ◦ γ̃ = γ and γ̃(0) = u. Such a curve can always be written in π−1(Ui) as

γ̃(t) = σi(t)gi(t) , (2.4)

where we have introduced the notation σi(γ(t)) = σi(t). Note that gi(t) is a G-valued
function of the curve parameter and not of a point in P . Let X denote the vector
field tangent to γ, and X̃ the vector field tangent to γ̃. We will employ the standard
notation

X̃u =
d

dt
γ̃(t)

∣∣∣
t=0

, (2.5)

to represent the vector which acts on a smooth function f on P as

X̃u(f) =
d

dt
f(γ̃(t))

∣∣∣
t=0

.

Using the decomposition (2.4) the vector X̃p can be expanded as

X̃u =
d

dt
σi(t)

∣∣∣
t=0

gi(0)︸ ︷︷ ︸
1

+σi(0)
d

dt
gi(t)

∣∣∣
t=0︸ ︷︷ ︸

2

. (2.6)

Since (
Rgi(0)∗(σi∗X)

)
u
(f) =

d

dt
f
(
Rgi(0)σi(t)

)∣∣∣
t=0

=
d

dt
f(σi(t)gi(0))

∣∣∣
t=0

,

we can write the first term in (2.6) as

1 = Rgi(0)∗(σi∗X)u .
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To analyse the second term we may use the decomposition (2.4) to write

σi(0)
d

dt
gi(t)

∣∣∣
t=0

= γ̃(0)g−1
i (0)

d

dt
gi(t)

∣∣∣
t=0

.

Observe that

g−1
i (0)dgi(X)

∣∣∣
t=0

= g−1
i (0)

d

dt
gi(t)

∣∣∣
t=0

=
d

dt

[
g−1
i (0)gi(t)

] ∣∣∣
t=0
∈ TeG ' g ,

since g−1
i (0)gi(t) = e at t = 0. Therefore γ̃(0)g−1

i (0) ddtgi(t)|t=0 represents the vertical
vector field (gi(t)dgi(X)|t=0)] at γ̃(0) = u. We can then write the second term in (2.6)
as

2 = (gi(t)dgi(X))]u .

We can therefore write (2.6) as

X̃u = Rgi(0)∗(σi∗X)u +
(
g−1
i (0)dgi(X)

)]
u
,

which we can write at an arbitrary point on the curve γ̃(t) as

X̃ = Rgi(t)∗(σi∗X) +
(
gi(t)

−1dgi(X)
)]
. (2.7)

Note that the first term lies in H∇γ̃(t)P and the second term in Vγ̃(t)P .

The vector field X̃ tangent to γ̃ is the horizontal lift of γ if it satisfies ω(X̃) = 0.
Acting with ω on (2.7) we have

0 = ω(X̃) = Rgi(t)∗ω(σi∗X) + g−1
i (t)dgi(X)

= g−1(t)ω(σi∗X)g(t) + g−1
i (t)dgi(X) .

We can act on the left with g(t) to obtain

dgi(t)

dt
= −ω(σi∗X)gi(t) ,

and by the definition of Ai in (2.3) we can write this as

dgi(t)

dt
= −Ai(X)gi(t) . (2.8)

This is simply an ODE with initial condition u = σi(0)gi(0), and by the fundamental
theorem of ODEs (the Picard–Lindelöf theorem) a unique solution is guaranteed to
exist.

For a point u ∈ P with π(u) = p, consider a path γ : [0, 1] → M that satisfies
γ(0) = γ(1) = p. Such a path is called a loop, and we denote the set of loops at p by

Cp =
{
γ : [0, 1]→M

∣∣ γ(0) = γ(1) = p
}
.

The horizontal lift of a loop defines a transformation between points on the fibre Pγ :
π−1(p)→ π−1(p), which is compatible with the right action of the group

Pγ(ug) = Pγ(u)g .

The point u1 = γ̃(1) = Pγ(u) ∈ π−1(p) is known as the parallel transport of u along
the loop γ.
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Definition 2.6 (holonomy group). The set of group transformations induced by par-
allel transport of a point u ∈ P around all loops γ ∈ Cp(M) is given by

Holu(∇) =
{
g ∈ G

∣∣ Pγ(u) = ug, for some γ ∈ Cp(M)
}
⊂ G ,

and is known as the holonomy group at u.

Throughout this thesis we will assume that all manifolds are connected, in which
case the holonomy group at every point u ∈ P is isomorphic to the holonomy group at
every other point. One can then talk about the holonomy group of a connection on a
principal bundle Hol(∇) ⊂ G without reference to a particular point. We denote the
Lie algebra of the holonomy group as hol(∇) ⊂ g. Whenever a manifold is not simply-
connected we will take the holonomy group to be the restricted holonomy group, which
is generated by the set of all loops that can be shrunk to a point without any topological
obstructions.

We will now present a theorem that relates the holonomy group to the connection
one-form. This plays an important role later on in this thesis. We will give two different
proofs: first a constructive proof that is valid only on manifolds which admit a global
coordinate system. The second proof makes use of the Ambrose–Singer theorem and is
valid for all manifolds.

Theorem 2.1 . Let P (M,G) be a principal bundle over a connected manifold M
equipped with a connection ∇. If the connection one-form takes values in h, a Lie
subalgebra of g, then the holonomy group is a subgroup of H ⊂ G, i.e.

ω ∈ h⊗ T ∗M , h ⊂ g ⇒ Hol(∇) ⊂ H .

Proof (1). Suppose the manifold can be covered by a single coordinate patch U1, and
that the Lie-algebra valued one-form A1 takes values in h

A1 = σ∗1ω ∈ h⊗ T ∗U1 .

The expression (2.8) is valid for any point on a curve in the coordinate patch U1 and
therefore M . The holonomy group consists of all group elements g1(1) of the form
γ̃(0) = γ̃(1)g1(1) where the curve γ is a loop. Since g1(t) must satisfy (2.8) for all t we
have

g1(1) ∈ Hol(∇) ⇔ dg1

dt

∣∣∣
t=1

= −A1(X)g1(1) .

Since A1(X) ∈ h and g1(0) = e it follows that g1(1) ∈ H.

Proof (2). The curvature two-form of a connection on a principal bundle is defined to
be

Ω = ∇ω ∈ g⊗ Λ2(P ) .

This satisfies Cartan’s structure equations

Ω = dω + ω ∧ ω ,

which generalise Cartan’s structure equations for an affine connection. We now need
to make use of the following celebrated theorem by Ambrose and Singer:
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Lemma 2.1 (Ambrose–Singer theorem). Let P (M,G) be a principal bundle with
a connection ∇. Then the Lie algebra of the holonomy group at the point u is given by

holu(∇) = {Ωu(X,Y ) = −ωu([X,Y ])
∣∣ X,Y ∈ HuP} .

See [64] for proof.

From this lemma it follows immediately that if ω ∈ h ⊂ g then Hol(∇) ⊂ H, which
completes proof (2).

Corollary 2.1 . If the Levi-Civita connection one-form of a pseudo-Riemannian man-
ifold M takes values in the Lie subalgebra h ⊂ so(p, q) then the Riemannian holonomy
group is given by

Hol(D) ⊂ H .

2.2 Special real manifolds

Special real manifolds come in two types: affine special real and projective special
real2. These correspond to the target manifolds of 5d, N = 2 rigid vector multiplets
and 5d, N = 2 vector multiplets coupled to supergravity respectively [68, 69]. How-
ever, we will later consider generalisations of 5d, N = 2 vector multiplets coupled to
supergravity, and accordingly we need to consider a more general type of geometry,
which we will simply call generalised projective special real geometry.

We will follow the procedure outlined in [59] for defining a generalised projective
special real manifold, which itself was based on [34] and unpublished work by Vicente
Cortés and Thomas Mohaupt. The method is to first define a d-conic Hessian man-
ifold. A generalised projective special real manifold is then defined as a particular
hypersurface in, or equivalently quotient of, a d-conic Hessian manifold.

Definition 2.7 (Hessian manifold). A pseudo-Riemannian manifold (M, g) is Hes-
sian if there exists a flat, torsion-free connection ∇ such that ∇g is completely sym-
metric.

For a flat, torsion-free connection one may cover the manifoldM with a set of normal
coordinate charts, in which the coordinates hI are flat with respect to the connection,
i.e.

∇dhI = 0 ⇒ ∇XY = XI
(
∂IY

J
)
∂J , where ∂I =

∂

∂hI
.

In such coordinates the requirement that ∇g is completely symmetric is equivalent to

∂IgJK = ∂JgIK ,

where gIJ = g(∂I , ∂J). This is the condition that the metric g is locally given by the
second derivatives of a function [70]

gIJ =
∂2

∂hI∂hJ
H .

We call the function H the Hesse potential, and it is unique up to terms linear in hI .

2Often the prefix ‘very’ is also added. This sentence would then read: ‘affine very special real and
projective very special real’.
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Definition 2.8 (affine special real). An affine special real manifold (M, g,∇) is a
pseudo-Riemannian manifold (M, g) equipped with a flat, torsion-free ‘special’ connec-
tion ∇ such that ∇g is completely symmetric and the corresponding Hesse potential is
a cubic polynomial.

Definition 2.9 (d-conic Hessian). A d-conic Hessian manifold (M, g,∇, ξ) is a pseudo-
Riemannian manifold (M, g) equipped with a flat, torsion-free ‘special’ connection ∇
and vector field ξ such that

(i) ∇g is completely symmetric.

(ii) Dξ = d
21, where D is the Levi-Civita connection.

(iii) ∇ξ = 1.

Let us discuss each condition in turn. Condition (i) tells us that the manifold is
Hessian with respect to the special connection. We call the normal coordinates hI

‘special’ coordinates as they are associated with the special connection.
To analyse condition (ii) we follow a similar procedure to [71], which deals with the

specific case d = 2. We begin by considering the Koszul formula

2g(DXY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X) .

The part symmetric in X and Z gives

g(DXY,Z) + g(DZY,X) = Y g(X,Z) + g([X,Y ], Z)− g([Y,Z], X)

= (LY g)(X,Z) . (2.9)

Plugging in Y = ξ we find
Lξg = dg ,

which in component form reads

Lξgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gνρ∂µξ

ρ = dgµν . (2.10)

This means that ξ is a homothetic Killing vector field of weight d. Condition (ii) also
implies that

Dµξν = Dνξµ ⇒ ξµ = ∂µf ,

for some function f , and the metric can be written as

gµν =
d

2
Dµ∂νf .

We now define a new function V by

V := gµν∂µf∂νf = g(ξ, ξ) .

Taking derivatives we find
∂µV = d∂µf ,

and we can make the choice V = df = g(ξ, ξ). We now choose f to be one of our
coordinates x0 = f , and so

ξ = df
∂

∂f
⇒ ξµ = dfδµ0 .



CHAPTER 2. PRELIMINARY MATHEMATICS 18

We can deduce the g00 component of the metric through

V = gµνξ
µξν = g00(df)2 ⇒ g00 =

1

df
,

and since ξ is orthogonal to surfaces of constant f there can be no cross terms in the
metric g0i = 0. We can therefore write the metric as

g =
df2

df
+ hij(f, x

k)dxidxj .

We now define the new radial coordinate r such that rd = df , and we have

ξ = r
∂

∂r
.

From the (i, j) component of (2.10) we have

r
∂

∂r
hij(r, x

k) = dhij(r, x
k) ⇒ hij(r, x

k) = rdḡij(x
k) ,

and the metric therefore decomposes as

g = rd−2dr2 + rdḡij(x)dxidxj . (2.11)

One can a define new set of coordinates yI = (r, rxi), for which the homothetic Killing
vector ξ becomes an Euler vector field

ξ = yI
∂

∂yI
.

In these coordinates [
ξ,

∂

∂yI

]
= − ∂

∂yI
. (2.12)

We now plug in X = ∂
∂yI

, Y = ξ, Z = ∂
∂yJ

to the symmetric part of the Koszul formula

(2.9) and make use of (2.12) to find

ξgIJ(y) = (d− 2)gIJ(y) .

This shows that condition (ii) can be seen as a homogeneity condition on the compo-
nents of the metric (in particular coordinates).

The last condition (iii) ensures that ξ is the Euler field associated with, in particular,
the special coordinates hI

ξ = hI
∂

∂hI
.

Therefore the components of the metric in a basis of special coordinates are homoge-
neous functions of degree (d− 2)

ξgIJ(h) = (d− 2)gIJ(h) .

Contracting this with hI , hJ we have

gIJ(h) =
∂2

∂hI∂hJ

[
1

d(d− 1)

(
gIJh

IhJ
)]

,
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and we see that one can always choose a unique Hesse potential that is a homogeneous
function of degree d, given by

H =
1

d(d− 1)
gIJh

IhJ .

Let us now introduce a second metric on M , given by

a =

(
∂2

∂hI∂hJ
H̃

)
dhI ⊗ dhJ ,

where we have defined

H̃ := −1

d
logH .

We can write this metric in a special coordinate basis as

aIJ = −1

d

(
HIJ

H
− HIHJ

H2

)
, (2.13)

where HI and HIJ are the first and second derivatives of the Hesse potential respec-
tively. If the metric g has signature (+− . . .−), which is positive in the ξ direction (this
is the case in 5D, N = 2 supergravity), then a is strictly positive definite (+ + . . .+).
The vector field ξ is now a Killing vector field of a

Lξa = 0 .

Definition 2.10 (generalised projective special real). A generalised special real
manifold (M̄, ḡ) is a hypersurface of constant H in a d-conic Hessian manifold, with
metric induced from a.

It is particularly convenient to consider the hypersurface defined by H = 1

M̄ ' {H = 1} ⊂M .

Let us denote the embedding of M̄ into M given by this hypersurface H = 1 by
i : M̄ → M . For this embedding both the pull-back of −1

d
g and a induce the same

metric on M̄

ḡ = i∗
(
−1

d
∂2H

)
= i∗

(
∂2H̃

)
.

Let φx denote local coordinates on M̄ , which therefore parametrise the hypersurface
H = 1. The metric in these coordinates is written as

ḡ = ḡxydφ
x ⊗ dφy =

(
aIJ

∂hI

∂φx
∂hJ

∂φy

) ∣∣∣∣∣
H=1

dφx ⊗ dφy .

A particularly useful set of coordinates is given by

φx =
hx

h0
, h0 = Ĥ(φ1, . . . , φn)−

1
d := H

(
1,
h1

h0
, . . . ,

hn

h0

)− 1
d

. (2.14)

It is worth noting that one can also realise M̄ as the quotient manifold M/R>0 with
quotient metric obtained from (M,a).

For the special case that d = 3 and the Hesse potential is a polynomial then (M̄, ḡ)
represents the target manifold of 5D, N = 2 supergravity coupled to vector multiplets
[69]. The matrix aIJ restricted to the hypersurface H = 1 provides the coupling matrix
for the kinetic term of the gauge fields.
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2.3 Special (para-)Kähler manifolds

In this section we will introduce the notion of a special-Kähler manifold. Like special
real manifolds these come in two types: affine special Kähler manifolds and projective
special Kähler manifolds, which correspond to the target manifolds of 4d, N = 2 rigid
vector multiplets and 4d, N = 2 vector multiplets coupled to supergravity respectively
[12, 13]. We will also need to consider the Euclidean versions of these theories, which
have slightly different target space geometries. The target manifold geometry of Eu-
clidean 4d, N = 2 rigid vector multiplets and 4d, N = 2 vector multiplets coupled to
supergravity are given by affine special para-Kähler manifolds and projective special
para-Kähler manifolds respectively [72, 27]. The prefix ‘para’ means that we replace the
underlying complex manifold with a so-called para-complex (or split-complex) mani-
fold. In a para-complex manifold the original role of the imaginary unit i, which squares
to −1, is replaced by a para-imaginary unit e, which squares to +1, while the principle
of conjugation is still respected

i2 = −1, ī = −i −→ e2 = +1 , ē = −e .

This definition will be made precise shortly. From a para-complex manifold one can
correspondingly define a para-Kähler manifold and a special para-Kähler manifold.
Since the difference between complex manifolds and para-complex manifolds is encoded
completely in a particular choice of sign, we can actually describe both manifolds
simultaneously by introducing ‘ε-notation’, where

ε =

{
−1 , complex manifold ,

+1 , para-complex manifold .

Accordingly we define the ε-imaginary unit iε to satisfy

1.iε = iε.1 = iε , i2ε = ε . (2.15)

The definition of an ε-complex number can be made precise by formally adjoining iε
to the field of real numbers R[iε] = Cε such that iε satisfies (2.15). An ε-complex
manifold is therefore a complex manifold when ε = −1, and a para-complex manifold
when ε = +1, likewise for ε-Kähler and special ε-Kähler.

The precise definition of affine special Kähler and projective special Kähler man-
ifolds has undergone many refinements over the years [73, 74, 75]. We will use the
definition of affine special Kähler found in [11], which gives a mathematically rigorous
and intrinsic definition of affine special Kähler geometry3. We will use the definition of
a projective special Kähler manifold found in [27], which uses the Kähler quotient of a
particular type of affine special Kähler manifold that has the property of being coni-
cal. At the time of writing no intrinsic definition of projective special Kähler geometry
exists. Also, the definition of affine special Kähler given in [11] can easily be adapted
to give an affine special para-Kähler version [72]. The definition of projective special
Kähler found in [27] already contains the definition of the para case.

In the previous section we found that we could generalise the definition of pro-
jective special real manifolds in a meaningful way. However, at the time of writing
no satisfactory analogous generalisation of projective special Kähler geometry exists,

3By intrinsic we mean a description in terms of data on the tangent bundle and its associated
bundles, which are constructed directly from the coordinate charts.
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though some clues have been uncovered by considering the dimensional reduction of
five-dimensional theories with generalised projective special real geometry [34]. The
search for a meaningful generalisation of projective special Kähler geometry remains
an interesting open question.

Later in the thesis we will need to prove that certain manifolds are ε-complex by
the integrability of almost ε-complex structures. It is therefore necessary to go through
the definition of ε-complex manifolds from the bottom up. After that we can introduce
ε-Kähler manifolds, and finally special ε-Kähler manifolds.

Definition 2.11 (almost ε-complex manifold). An almost ε-complex manifold (M,J)
is a manifold endowed with a globally defined smooth tensor field J ∈ Γ(EndTM) such
that J2

p = ε IdTpM for every point p ∈M , and in the case where ε = 1 the dimensions of
the eigendistributions T±M := ker(Id∓ J) are required to be equal. We call J almost
ε-complex structure. One can always find local coordinates at p such that

Jp =

(
0 1

ε1 0

)
,

however this is not necessarily true for any other point in the patch. Almost ε-complex
manifolds have an even number of dimensions.

An almost ε-complex structure induces a dual almost ε-complex structure J∗ ∈
Γ(EndT ∗M), which is defined by

J∗ : T ∗M −→ T ∗M

ξ(X) 7−→ (J∗ξ)(X) = ξ(JX) .

Theorem 2.2 (Newlander–Nirenberg). Consider the complex distribution given by
D = T 1,0MC on an almost complex manifold (ε = −1). The distribution D is integrable
iff

[Γ(D),Γ(D)] ⊂ Γ(D) .

It follows by complex conjugation that T 0,1MC is also an integrable distribution, and
the almost complex structure J itself is said to be integrable.

Remark 2.1. The Newlander–Nirenberg theorem can be reformulated in terms of one-
forms as follows: Consider n linearly independent one-forms θa such thatD = ∩aker(θa).
The distribution D is integrable iff

dθa = Cabcθ
b ∧ ϕc ,

where ϕc are arbitrary one-forms.

Theorem 2.3 (Frobenius). Consider the real distributions D̃+ = T+M and D̃− =
T−M on an almost para-complex manifold (ε = 1). The distribution D̃± is integrable
iff

[Γ(D̃±),Γ(D̃±)] ⊂ Γ(D̃±) .

If both D̃+ and D̃− are integrable then the para-complex structure J is integrable.

The integrability condition of both almost complex and almost para-complex struc-
tures is characterised by a vanishing Nijenhuis tensor

N(X,Y ) = −J2[X,Y ] + J [JX, Y ] + J [X,JY ]− [JX, JY ] .
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Definition 2.12 (ε-complex manifold). An almost ε-complex manifold (M,J) is an
ε-complex manifold if the almost ε-complex structure J is integrable.

Remark 2.2. A differentiable map between two ε-complex manifolds f : (M,J) →
(M ′, J ′) is ε-holomorphic if df ◦ J = J ′ ◦ df . In the case where the image of the map is
Cε this defines an ε-holomorphic function as a map f : M → Cε where df ◦ J = iεdf .

Definition 2.13 (ε-Hermitian manifold). An ε-complex pseudo-Riemannian mani-
fold (M, g, J) is ε-Hermitian if the metric is compatible with the ε-complex structure

gp(X,Y ) = gp(JpX, JpY ) , X, Y ∈ TpM .

The metric g itself is said to be an ε-Hermitian metric.

The metric on an ε-Hermitian manifold induces a non-degenerate two-form ωp(·, ·) :=
ε gp(Jp·, ·), called the fundamental two-form. Any ε-complex pseudo Riemannian man-
ifold (M, g, J) defines a ε-Hermitian manifold (M, ĝ, J) with Hermitian form given by
ĝ := g− iω. A (−1)-Hermitian manifold (a Hermitian manifold) has signature (2p, 2q),
whereas a (+1)-Hermitian manifold (a para-Hermitian manifold) always has neutral
signature (2n, 2n).

Definition 2.14 (ε-Kähler). An ε-Hermitian manifold (M, g, J) is ε-Kähler if the fun-
damental form is closed dω = 0. Locally ε-Kähler manifolds admit an ε-Kähler potential
K(z, z̄) such that the metric and fundamental form are given by [66]

g = Re

(
∂2K(z, z̄)

∂zi∂z̄j
dzi ⊗ dz̄j

)
, ω = 2iε∂∂̄K =

∂2K(z, z̄)

∂zi∂z̄j
dzi ∧ dz̄j .

Theorem 2.4 . An ε-Hermitian manifold (M, g, J) is ε-Kähler iff the ε-complex struc-
ture is parallel with respect to the Levi-Civita connection

DJ = 0 .

For proof see for example [67].

Definition 2.15 (affine special ε-Kähler). We define an affine special ε-Kähler man-
ifold (M, g, J,∇) as a pseudo-Riemannian manifold (M, g) equipped with a flat, torsion-
free ‘special’ connection ∇ and integrable complex ε-structure J such that

(i) ∇g is completely symmetric.

(ii) dω = 0 .

(iii) ∇ω = 0 .

Condition (i) tells us that the manifold is Hessian with respect to the special con-
nection ∇. From condition (ii) we know that it is ε-Kähler. The last condition can be
seen as a compatibility condition that ensures the Hessian structure coincides with the
Kähler structure. In the literature condition (i) is usually replaced by the condition
that ∇J is symmetric. However, given (iii) both conditions can be shown to be equiva-
lent. One may also consider affine special complex manifolds without the requirement
of being Kähler [76], however such manifolds will not appear in this thesis.

It can easily be shown that the condition of the special connection ∇ to be torsion-
free is actually unnecessary, as it is implied by the other conditions [11]. However, since
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the torsion-free condition is integral to the definition of special complex and special real
manifolds we include it here for clarity. The special connection∇ is also not unique, and
in fact there is an S1 family of special connections generated by the complex structure
[76]

∇(α) = eαJ ◦ ∇ ◦ e−αJ .

On an affine special ε-Kähler manifold one can introduce ‘special’ ε-holomorphic
coordinates XI , which are characterised by having a flat real part with respect to the
special connection

∇Re(dXI) = 0 , ∇I = ∂I .

The manifold can always be covered by an atlas of special coordinate charts. Special ε-
holomorphic coordinates corresponding to different special connections in the S1 family
∇(α) are related by phase transformations

(∇(0), XI) −→ (∇(α), eiαXI) .

Proposition 2.3 . On a special ε-holomorphic coordinate patch there exists a local
ε-holomorphic function F (X) such that the Kähler potential is given by

K(X, X̄) := iε(X
I F̄I − FIX̄I) , (2.16)

where we have introduced the notation FI = ∂IF (X). The components of the metric
are therefore given by

NIJ :=
∂2K

∂XI∂X̄J
= −iε(FIJ − F̄IJ) = −ε 2Im(FIJ) . (2.17)

The function F (X) is known as the ε-holomorphic prepotential.
The functions FI also form an ε-holomorphic special coordinate system on the affine

special Kähler manifold, i.e. ∇Re(dFI) = 0. The two special coordinate systems XI

and FI are conjugate to one another in the sense that their real parts form a flat
Darboux coordinate system, i.e. ω = Re(XI) ∧ Re(FI).

Proof. For an affine special Kähler manifold this was proved by Freed in [11], and for
an affine special para-Kähler manifold by Cortés et al in [72].

Any two special ε-holomorphic coordinate systems (XI , FI) and (X̃I , F̃I) are related
linearly by a real symplectic transformation and a complex translation(

XI

FI

)
= P

(
X̃I

F̃I

)
+

(
a
b

)
, P ∈ Sp(2n,R) , a, b ∈ Cn . (2.18)

However, the second derivatives of the prepotential transform fractionally linearly

FIJ =

[(
DF̃ + C

)(
BF̃ +A

)−1
]
IJ

,

where we have made the decomposition

P =

(
A B
C D

)
.
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Remark 2.3. We define the real coordinates xI , yI to be the real parts of XI , FI

xI = Re(XI) , yI = Re(FI) .

These define a flat Darboux coordinate system, i.e.

ω = dxI ∧ dyI , ∇dxI = ∇dyI = 0 .

Transition functions are of the form(
xI

yI

)
= P

(
x̃I

ỹI

)
+

(
a
b

)
, P ∈ Sp(2n,R), a, b ∈ Rn .

We will refer to xI , yI as special real coordinates. Affine special ε-Kähler manifolds
are Hessian manifolds, and the Hessian structure is compatible with the special real
coordinates. We will come back to this point in section 6.1, where we will investigate
the real formulation of affine special ε-Kähler geometry in much more detail. For now
we will continue with the traditional formulation of affine special ε-Kähler geometry in
terms of special ε-holomorphic coordinates.

Definition 2.16 (conic affine special ε-Kähler). A conic affine special ε-Kähler
manifold (N, gN , J,∇, ξ) is an affine special ε-Kähler manifold endowed with a vec-
tor field ξ that satisfies

(i) Dξ = 1, where D is the Levi-Civita connection.

(ii) ∇ξ = 1 .

Conic affine special Kähler manifolds are clearly a special class of 2-conic Hessian
manifolds. They actually admit two distinguished vector fields: ξ and Jξ, which com-
mute with one another, and define a distribution D = span{ξ, Jξ} on the tangent
bundle. This has dimension 2 so long as gN (ξ, ξ) = gN (Jξ, Jξ) is point-wise non-zero,
which we will assume from now on. The Lie derivative of the J with respect to ξ can
be written as

(LξJ)X = (DξJ)X − J(DXξ) +DJXξ ,

for any smooth vector field X ∈ Γ(TM). Since N is Kähler we have DJ = 0, and
from condition (i) we have DXξ = X and DJXξ = JX. The Lie derivative therefore
vanishes

LξJ = 0 ,

which implies that ξ is ε-holomorphic. By a similar argument one can show that Jξ
is also ε-holomorphic. In addition, the vector fields ξ and Jξ define an ε-holomorphic
action of a two-dimensional abelian Lie algebra. ξ generates homotheties whereas Jξ
generates isometries

Lξg = 2g , LJξg = 0 .

We will assume that this infinitesimal action lifts to a principal C∗ε -action on N with
base manifold N̄ = N/C∗ε .

We can analyse condition (i) in precisely the same way as for a d-conic Hessian
manifold, with the particular choice of d = 2. This means that there always exists real
coordinates (r, xi) such that

gN = dr ⊗ dr + r2ḡ′ij(x)dxi ⊗ dxj , ξ = r
∂

∂r
.
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Again, by defining the new coordinates pa = (r, rxi) the vector field becomes an Euler
field

ξ = pa
∂

∂qa
,

and the components of the metric in these coordinates are homogeneous functions of
degree zero

ξ gab(p) = 0 .

Condition (ii) ensures that ξ is the Euler vector field associated with the special real
coordinates qa = (xI , yJ)

ξ gab(q) = 0 .

In special holomorphic coordinates XI the vector field ξ and Jξ take the form

ξ = XI ∂

∂XI
+ X̄I ∂

∂X̄I
, Jξ = iXI ∂

∂XI
− iX̄I ∂

∂X̄I
.

The prepotential is a homogeneous function of degree 2, i.e. F (λX) = λ2F (X) for
λ ∈ Cε.

It is useful to define the rank two tensor field g by

g =
∂2K

∂XI∂X̄J
dXI ⊗ dX̄J ,

where K(X, X̄) = − logK(X, X̄) with K the ε-Kähler potential. We can write the
components of g as

gIJ̄ =
∂2K

∂XI∂X̄J
= − NIJ

X̄NX
+

(NX̄)I(NX)J
(X̄NX)2

. (2.19)

One may easily show that this tensor field is degenerate along the subspace D spanned
by ξ and Jξ from the fact that

XIgIJ̄ = gIJ̄X̄
J = 0 . (2.20)

Both vector fields ξ and Jξ act as ‘isometries’ of this tensor field

Lξg = LJξg = 0 .

Definition 2.17 (projective special ε-Kähler). A projective special ε-Kähler man-
ifold (N̄ , ḡ, J̄ , ∇̄) is defined to be the quotient manifold N/C∗ε of a conic affine special
ε-Kähler manifold (N, g, ξ, J,∇). The metric ḡ on N̄ is induced by the tensor field g on
N , and the complex structure and connection J̄ , ∇̄ on N̄ are induced by J,∇ on N .

One can locally define a projective special ε-Kähler manifold as a codimension 2
hypersurface in a conic affine special ε-Kähler manifold by imposing any appropriate
constraints that fix the homothety ξ and isometry Jξ. Such a choice can be given
by imposing that the ε-Kähler potential K is constant, and the phase of the special
coordinates XI is constant. A particularly useful choice is to select the hypersurface
K = 1 and Im(X0) = 0, so we have

M̄ ' {K = 1 , Im(X0) = 0} ⊂M .
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This hypersurface can be parametrised by a set of projective coordinates zA = XA/X0,
which satisfy the relations

zA =
XA

X0
, |X0|2 = iε

[
2F − 2F̄ − (zA − z̄A)(FA + F̄A)

]
, Im(X0) = 0 ,

where FA =
∂F
∂zA

and

F(z) := F

(
1,
X1

X0
, . . . ,

Xn

X0

)
.

These are completely analogous to the coordinates φx introduced in the previous sec-
tion, which parametrise the hypersurface H = 1 on a projective special real manifold.
The ε-Kähler potential on M̄ can be written in terms of projective coordinates as

K̄ = − log
(
−iε

[
2F − 2F̄ − (zA − z̄A)(FA + F̄A)

])
,

and the metric itself is given by

ḡ = Re

(
∂2K̄(z, z̄)

∂zA∂z̄B
dzA ⊗ dz̄B

)
.

2.4 (Para-)quaternion Kähler manifolds

In this section we will discuss quaternion Kähler and para-quaternion Kähler mani-
folds. Quaternion Kähler manifolds appear as the target manifold of 4d, N = 2 hyper
multiplets coupled to supergravity [77]. It is expected that para-quaternion Kähler
manifolds appear as the target manifold of the Euclidean version of such theories, as
this is the case for certain symmetric space examples obtained by dimensional reduc-
tion over time [78, 51]. We will later prove that all Euclidean hyper multiplets obtained
from dimensional reduction over time are para-quaternion Kähler, which is one of the
main results of this thesis. Some standard references on quaternion Kähler manifolds
are [79, 66, 80]. For para-quaternion Kähler manifolds we follow the definition given in
[81].

In the previous section we discussed both Kähler and para-Kähler manifolds in a
unified way using ε-notation. One can also take this approach for quaternion and para-
quaternion Kähler manifolds, e.g. [81], as the two types of manifold do indeed share
many similar features. However, for applications in this thesis they exhibit enough
differences to warrant a separate discussion for each case, and this is the approach we
will take here.

Before we give the definition of a quaternion Kähler manifold we first define the
pseudo-unitary-symplectic group Sp(k, l) by

Sp(k, l) = U(2k, 2l) ∩ Sp(2k + 2l,C) ⊂ SO(4k, 4l) .

It follows that Sp(1) = U(2)∩Sp(2,C) = SU(2). We define the product of these groups
by

Sp(k, l) · Sp(1) = (Sp(k, l)× Sp(1))/Z2 ,

where the Z2 corresponds to ±Id. The group Sp(k, l) ·Sp(1) acts on a set of m quater-
nions xµ ∈ Hm through left multiplication by A ∈ Sp(k, l) and right multiplication by
λ ∈ Sp(1), i.e.

Sp(k, l) · Sp(1)×Hm −→ H
m

(Aµν , λ;xµ) 7−→ Aµνx
νλ† .
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Definition 2.18 (quaternion Kähler). A 4n-dimensional pseudo-Riemannian mani-
fold (M, g) is a quaternion Kähler manifold if the Riemannian holonomy group Hol(D)
is a subgroup of Sp(k, l) · Sp(1).

On a quaternion Kähler manifold there exists a quaternion structure given by Q =
span{J1, J2, J3} ⊂ End(TM), which is generated by three metric compatible almost
complex structures J1, J2 and J3 that satisfy the quaternion relations

J2
1 = J2

2 = J2
3 = −1 , J1J2 = J3 = −J2J1 .

The Levi-Civita connection preserves this structure in the sense that the covariant
derivative of Jα is a linear combination of J1, J2, J3, which from the quaternion relations
implies that

DXJ1 = + α(X)J2 + β(X)J3

DXJ2 = −α(X)J1 + γ(X)J3

DXJ3 = −β(X)J1 − γ(X)J2

where α, β, γ ∈ Γ(T ∗M). At a point in the overlap of charts p ∈ Ui∩Uj the quaternion
structure Qp ⊂ End(TpM) on Ui and Uj agree with one another, however the almost
complex structures themselves need not be the same, i.e. J1

∣∣
Ui
6= J1

∣∣
Uj

etc.

A quaternion Kähler manifold necessarily has 4n real dimensions and metric signa-
ture (4k, 4l). Since for the particular case n = 1 the restriction Hol(D) ⊂ Sp(1) · Sp(1)
only implies that the manifold is oriented, the following stronger definition is used
instead: a 4-dimensional pseudo-Riemannian manifold is quaternion Kähler if it is
an oriented Einstein manifold with self-dual Weyl tensor. This ensures that for any
quaternion Kähler manifold we have

Rµν = R(n+ 2)gµν ,

and since the scalar curvature R of a quaternion Kähler manifold is always constant all
quaternion Kähler manifolds are Einstein manifolds [79]. Despite their name, quater-
nion Kähler manifolds are in general neither Kähler manifolds nor even complex man-
ifolds.

A practical way to show that a manifold is quaternion Kähler is to compute the
Levi-Civita connection one-form. One must make the decomposition

ω = p⊗ 1(2k,2l) + 12 ⊗
(

q t
−t̄ q̄

)
,

where the components of p, q, t are one-forms, and check that

(
q t
−t̄ q̄

)
∈ sp(k, l) ⇔

q†
(
−1k 0

0 1l

)
= −

(
−1k 0

0 1l

)
q

tT
(
−1k 0

0 1l

)
= −

(
−1k 0

0 1l

)
t

and
p ∈ sp(1) ⇔ Tr(p) = 0 , p† = −p .

If these conditions are satisfied then ω ∈ (sp(p, q)⊕ sp(1))⊗ T ∗M and by corollary 2.1
the manifold is quaternion Kähler.
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Definition 2.19 (para-quaternion Kähler). A 4n-dimensional pseudo-Riemannian
manifold (M, g) is a para-quaternion Kähler manifold if the Riemannian holonomy
group Hol(D) is a subgroup of Sp(2k + 2l,R) · Sp(2,R).

On a para-quaternion Kähler manifold there exists a para-quaternion structure
Q̃ = span{J̃1, J̃2, J̃3} ⊂ End(TM) that is generated by two metric compatible almost
para-complex structures J̃1, J̃2 and one metric compatible almost complex structure J̃3

that satisfy the para-quaternion (or ‘split’ quaternion) relations

J̃2
1 = J̃2

2 = 1 , J̃2
3 = −1 , J̃1J̃2 = J̃3 = −J̃2J̃1 .

The Levi-Civita connection preserves the para-quaternion structure in the sense that
the covariant derivative of J̃α is a linear combination of J̃1, J̃2, J̃3, which from the
para-quaternion relations implies that

DX J̃1 = + α(X)J̃2 + β(X)J̃3

DX J̃2 = −α(X)J̃1 + γ(X)J̃3

DX J̃3 = β(X)J̃1 + γ(X)J̃2

where α, β, γ ∈ Γ(T ∗M). At a point in the overlap of charts p ∈ Ui ∩ Uj the para-
quaternion structure Q̃p ⊂ End(TpM) on Ui and Uj agree with one another, however the
almost (para-)complex structures themselves need not be the same, i.e. J̃1

∣∣
Ui
6= J̃1

∣∣
Uj

etc.
As for a quaternion Kähler manifold, a para-quaternion Kähler manifold necessarily

has 4n real dimensions and neutral metric signature (2n, 2n). Since for n = 1 the
restriction Hol(D) ⊂ Sp(2,R) · Sp(2,R) only implies that the manifold is oriented we
use the stronger definition that a 4-dimensional pseudo-Riemannian manifold is para-
quaternion Kähler if it is an oriented Einstein manifold with self-dual Weyl tensor.
This ensures that for any para-quaternion Kähler manifold we have

Rµν = R(n+ 2)gµν ,

and since the scalar curvature R of a para-quaternion Kähler manifold is alway constant
all para-quaternion Kähler manifolds are Einstein manifolds. Para-quaternion Kähler
manifolds are in general neither Kähler manifolds nor even para-complex manifolds.

A practical way to show that a manifold is para-quaternion Kähler is to compute
the Levi-Civita connection one-form. One must make the decomposition

ω = p⊗ 1(2k,2l) + 12 ⊗
(

q t
−tT −qT

)
,

where the components of p, q, t are one-forms, and check that(
q t
−tT −qT

)
∈ sp(2k + 2l,R) ⇔ tT

(
−1k 0

0 1l

)
=

(
−1k 0

0 1l

)
t ,

and
p ∈ sp(2,R) ⇔ Tr(p) = 0 .

If these conditions are satisfied then ω ∈ (sp(2k + 2l,R) ⊕ sp(2,R)) ⊗ T ∗M and by
corollary 2.1 the manifold is para-quaternion Kähler.



Chapter 3

Preliminary physics

We will now introduce the necessary background physics needed in order to understand
the main part of this thesis. This includes an introduction to N = 2 supergravity,
both from the point of view of the supersymmetry algebra and the Lagrangian, and a
primer on black hole physics. We must also introduce the reader to the procedure of
dimensional reduction. We will take some time to go through the calculations necessary
for the r-map and c-map fully and explicitly, as they are often only summarised in the
literature.

We discussN = 2 supergravity in section 3.1, and present the necessary Lagrangians
we will need to use later on in the thesis. In section 3.2 we discuss three important black
hole solutions: the Schwarzschild, Reissner–Nordström and Kerr–Newman solutions.
We then discuss how these can be embedded into theories of extended supergravity.
We lastly discuss dimensional reduction in section 3.3, summarising the most important
results at the beginning of this section.

3.1 N = 2 supergravity

In this thesis we will deal exclusively with theories of N = 2 supergravity (along
with a particular generalisation thereof in five dimensions). Here we will provide an
introduction to the subject. This discussion is designed to be self-contained, and should
be understandable even if the previous chapter has been skipped. However, we shall
try to link in with some of the geometrical concepts introduced in the previous chapter
when it provides additional illumination on the subject at hand.

In section 3.1.1 we will introduce the supersymmetry algebra, and discuss massive
and massless representations. We then present the Lagrangians of five-dimensional
vector multiplets, four-dimensional vector multiplets and hyper multiplets in sections
3.1.2, 3.1.3 and 3.1.4 respectively.

3.1.1 Algebra and representations

We will focus on the supersymmetry algebra and representations in four spacetime
dimensions, as it is the most physically relevant. Although the five-dimensional algebra
and representations will also be used in this thesis, the discussion is close enough to the
four-dimensional case that it will not be repeated here. We refer the reader to the many
comprehensive texts on supersymmetry in five-dimensions and higher, e.g. [82, 83, 14].

It is understood that the laws of physics should be invariant under Poincaré trans-
formations. These transformations are generated by the operators Pµ (translations) and

29
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Mµν (Lorentz transformations), which together form the Lie algebra of the Poincaré
group

[Pµ, Pν ] = 0 ,

[Mµν , Pρ] = i
(
ηµρPν − ηνρPµ

)
,

[Mµν ,Mρσ] = i
(
ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

)
.

A famous no-go theorem by Coleman and Mandula states that any symmetry of the
S-matrix with bosonic generators must commute with the Lie algebra of the Poincaré
group, and so any other non-trivial symmetry must be internal (i.e. the generators
transform as scalars) [84, 85]. However, one can get round this theorem by introducing
fermionic generators that anti-commute with one another but do not commute with
all elements of the Poincaré algebra. A theorem by Haag, Lopuszanski and Sohnius
[86] tells us that the only way to do this consistently is to extend the Poincaré algebra
into a so-called super Poincaré algebra by introducing fermionic generators QAα , which
satisfy

[Pµ, Q
A
α ] = 0 ,

{QAα , Q̄Bβ̇ } = 2δAB(σµ)αβ̇P
µ ,

{QAα , QBβ } = εαβZ
AB ,

where Q̄Aα̇ = ε β
α̇ (QAβ )∗ and spinorial indices are raised and lowered with δαβ̇. The

matrices σµ are given by

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The generators QAα , Q̄
A
α̇ transform as two-component Weyl spinors under Lorentz trans-

formations, with chirality +1/2,−1/2 respectively. This completely fixes their commu-
tation relations with the generators of Lorentz transformations

[Mµν , Q
A
α ] = −i1

2(σµν) β
α QAβ ,

[Mµν , Q̄
A
α̇ ] = −i1

2(σ̄µν) β̇
α̇ Q̄A

β̇
,

where σµν = 1
2σ[µσν]

1. The operators ZAB commute with all elements of the super
Poincaré algebra and are therefore called central charges. The indices A,B run from
1, . . . ,N , where N measures the extent to which the theory is supersymmetric, or,
more precisely, there are 4N real supercharges associated with the theory [87]. When
the central charges vanish the supersymmetry algebra is invariant under U(N ) ‘R-
symmetry’ automorphisms QAα → SABQ

B
α .

A theory that respects the symmetries generated by the super Poincaré algebra and
has a non-dynamical spacetime metric is called a theory of rigid (or global) supersym-
metry. If we include gravity, i.e. allow the spacetime metric to become a dynamical
field, we call it instead a theory of supergravity (or local supersymmetry).

The symmetries generated by QAα , Q̄
A
α̇ transform particles of different spin into one

another. Since the supersymmetry generators commute with the momentum operator
Pµ, in all irreducible representations of the super Poincaré algebra any bosonic (rsp.

1Note that Ji = {M23,M31,M12}, σi = −i 1
2
{σ23, σ31, σ12} and so we have [Ji, Q

A
α ] = − 1

2
(σi)

β
α QAβ .



CHAPTER 3. PRELIMINARY PHYSICS 31

fermionic) particle is always accompanied by at least one fermionic (rsp. bosonic) par-
ticle of the same mass. A closed set of bosonic and fermionic particles that transform
into one another under supersymmetry transformations is called a multiplet, and the
particular types of multiplet allowed in a theory depends on the value of N .

In this thesis we are primarily concerned with theories that have N = 2 supersym-
metry, which we will now exclusively focus on. In this case the super Poincaré algebra
reduces to

{QAα , Q̄Bβ̇ } = 2δAB(σµ)αβ̇P
µ ,

{Q1
α, Q

2
β} = −{Q2

α, Q
1
β} = 2εαβ|Z| .

Here we have defined 2|Z| := |Z12|, and we have made a U(1) phase transformation of
the supersymmetry generators to eliminate the phase of the central charge Z12.

Massive representations

For massive representations we choose a frame in which Pµ = (−M, 0, 0, 0), and so

σµPµ = Mσ0 =

(
M 0
0 M

)
. (3.1)

In this case we can write the algebra as

{QAα , Q̄Bβ } = 2Mδαβδ
AB ,

{Q1
α, Q

2
β} = −{Q2

α, Q
1
β} = 2εαβ|Z| .

It is useful to define the following linear combination of supersymmetry generators [87]

aα =
1√
2

(
Q1
α + ε β̇

α Q̄2
β̇

)
, bα =

1√
2

(
Q1
α − ε β̇

α Q̄2
β̇

)
,

which satisfy

{aα, āβ̇} = 2(M + |Z|)δαβ̇ ,

{bα, b̄β̇} = 2(M − |Z|)δαβ̇ .

Irreducible massive representations of the Poincaré algebra are identified by the spin s
of a particle (i.e. its representation under the little group SO(3)), upon which aα, bα act
as annihilation operators and āα̇, b̄α̇ act as creation operators. A basis of irreducible
representations is therefore given by

āα̇1 . . . b̄β̇1 . . . |s〉 ,

where
aα|s〉 = bα|s〉 = 0 .

In order to avoid negative norm states we need M ≥ |Z|. States which saturate this
bound are known as Bogomol’nyi–Prasad–Sommerfield (BPS) states.

For massive representations in which M > |Z| the full set of supersymmetry gener-
ators act non-trivially, and since we have 4 creation operators we have 24 = 16 states
in a representation. This is not true if the BPS bound is satisfied, i.e. M = |Z|. In
this case representations can be chosen such that the bα, b̄α̇ annihilate all states, and
therefore such states remain invariant under half the supersymmetry transformations.
Since we have 2 creation operators we only have 22 = 4 states in these so-called ‘BPS’
multiplets.
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Massless representations

Massless states are classified in terms of helicity, which characterises their representation
in terms of the little group SO(2). We can obtain states with different helicity by
acting on the state with the supersymmetry generators QAα , Q̄

A
α̇ . Since these operators

commute with Pµ they have the same four-momentum, and we can always choose a
frame in which Pµ = (−E, 0, 0, E), i.e.

σµPµ = E(σ0 + σ3) =

(
2E 0
0 0

)
. (3.2)

This implies that {QA−1/2, Q̄
B
− ˙1/2
} = 0, and therefore QA−1/2 and Q̄B

− ˙1/2
and the central

charge Z annihilate all states. The remaining supersymmetry generators QA1/2 and

Q̄A˙1/2
lower and raise helicity by 1/2 respectively, and so we have 22 = 4 states in each

representation. Allowing the lowering operators2 1
2
√
E
Q1

1/2,
1

2
√
E
Q2

1/2 to act on a state

of maximum helicity gives four distinct states with the same four-momentum:

helicity state

λmax |λmax〉

λmax − 1/2 1
2
√
E
Q1

1/2|λmax〉 1
2
√
E
Q2

1/2|λmax〉

λmax − 1 1
4EQ

1
1/2Q

2
1/2|λmax〉

These four states form a basis of an irreducible representation of the supersymme-
try algebra. Note that since the central charge annihilates every state the operators
Q1

1/2, Q
2
1/2 anti-commute. The possible base states of massless representations of the

N = 2 super-Poincaré algebra contain the following combinations of helicities [87]

λmax

helicity

2 3
2 1 1

2 0 −1
2 −1

2 1

3
2 2 1

1 1 2 1

1
2 1 2 1

0 1 2 1

−1
2 1 2 1

−1 1 2 1

−3
2 1 2

−2 1

2The factors of 2
√
E have been included to ensure the correct normalisation.
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A state with helicity +1 belongs to a massless vector boson, which transforms into
a state of helicity −1 under CP transformations. Therefore a physical representation
must include states with helicities +1 and −1. A massless vector multiplet is therefore
obtained by combining the representation with maximum helicity +1 with a represen-
tation of maximum helicity 0. It contains a massless vector field Aµ, two Weyl spinors
λ1, λ2 and a complex scalar field φ. By the same argument the gravity multiplet is
obtained through the representations with maximum helicities 2 and −1, and consists
of the graviton gµν , two Weyl spinors ψ1

µ, ψ
2
µ called gravitini, and the graviphoton gauge

field Aµ. A hyper multiplet consists two representations with maximum helicity 1/2,
and contains two Weyl spinors γ1, γ2 and four real scalar fields q1, q2, q3, q4.

Our discussion now switches focus from the N = 2 supersymmetry algebra and
representations to the Lagrangian and field content of N = 2 supergravity coupled to
vector and hyper multiplets. The scalar fields in these Lagrangian are hugely important
to our discussion, as they form of so-called non-linear sigma models (see appendix A)
into a specific type of target manifold associated with these theories. These target man-
ifolds are given precisely by the special geometries introduced in the previous chapter,
which is where the name comes from.

The Lagrangian of N = 2 supergravity coupled to vector multiplets takes a slightly
different form in five and four dimensions, and so must be discussed separately. For
five-dimensional vector multiplets the corresponding target manifold is an affine special
real or projective special real manifold, depending on whether the theory has rigid or
local supersymmetry respectively. For four-dimensional vector multiplets this is an
affine special Kähler or projective special Kähler manifold. For hyper multiplets in
three, four or five dimensions the target manifold is always a hyper Kähler manifold
for rigid supersymmetry or a quaternion Kähler manifold for local supersymmetry.

In this thesis we are concerned exclusively in theories with local supersymmetry,
so we will only consider vector and hyper multiplets coupled to supergravity. We will
begin by discussing the Lagrangian of five-dimensional vector multiplets coupled to
supergravity, before moving on to vector multiplets. We end with the Lagrangian for
hyper multiplets coupled to supergravity in either three, four or five dimensions, for
which the bosonic part is always the same.

3.1.2 Five-dimensional vector multiplets

A vector multiplet in five dimensions is built out of a vector Aµ, a real scalar φ, and two
spinors. The gravity multiplet consists of the five-dimensional metric gµν , vector field
Aµ, and two gravitini. We will consider n vector multiplets coupled to the supergravity
multiplet, so in total the bosonic Lagrangian consists of n scalar fields φx, (n+1) vector
fields AIµ, and the metric. It is given by [69, 88, 27, 14]

e−1L5 =
1

2
R− 3

4
āxy(φ)∂µφ

x∂µφy − 1

4
aIJ(φ)F IµνF

J µν

+
1

6
√

6
CIJKF

I
µνF

J
ρσA

K
λ e
−1εµνρσλ . (3.3)

The constant coefficients CIJK completely determine the dynamics of the Lagrangian.
The coupling matrices are defined as follows: first we define the (n+ 1) scalar fields hI

by

hx = φxh0 , h0 = H
(
1, φ1, . . . , φn

)− 1
3 , (3.4)
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where H is completely determined by CIJK through

H(h0, . . . , hn) =
1

6
CIJKh

IhJhK .

The fields φx parametrise the hypersurface H(h) = 1. The couplings of the vector fields
are defined as

aIJ(h) = −1

3

∂2

∂hI∂hJ
logH(h1, . . . , hn) = −1

3

(
HIJ

H
− HIHJ

H2

)
,

where HI = ∂IH , HIJ = ∂2
I,JH. This can be written explicitly in terms of φx through

(3.4). The couplings of the scalar fields are given by

āxy = aIJ(φ)
∂hI

∂φx
∂hJ

∂φy
.

The scalar kinetic term takes the form of a non-linear sigma model, which allows us
to give a mathematical interpretation of the couplings that appear in the Lagrangian.
The scalar fields can be interpreted as differentiable maps from five-dimensional space-
time into an n-dimensional projective special real target manifold, as described in the
previous chapter. The positive definite metric axy on the projective special real man-
ifold is given by the push-forward of the positive definite metric aIJ = −1

3∂
2
I,J logH

on the associated 3-conic Hessian manifold with Hesse potential H, which is a cubic
polynomial with coefficients 1

6CIJK . In the notation of the previous section we would
write

ḡ = axy dφ
x ⊗ dφy = π∗a , a = aIJ dh

I ⊗ dhJ .

We can understand the metric HIJ , which has signature (+− . . .−), as the metric that
appears in the definition of a 3-conic Hessian manifold.

The most straight-forward method of deriving the Lagrangian (3.3) is to first derive
the Lagrangian of the corresponding superconformal theory, which is somewhat easier,
and then to use the fact that it is gauge equivalent to the Lagrangian of the Poincaré
theory. Unfortunately this process is rather long and arduous, and to present it in
this thesis would require us to deviate too far from the narrative. A comprehensive
review of this method can be found in [88], and the reader may also refer to [8, 14] for
reviews of the analogous method in four dimensions. We end our discussion of five-
dimensional vector multiplets by remarking that one of the gauge fixing conditions,
known as the D-gauge, places a hypersurface constraint on the scalar fields appearing
in the superconformal theory. We can now understand why we projected the (n + 1)
scalar fields hI onto the hypersurface H(h) = 1, which we then parametrised by the n
physical scalar fields φx.

3.1.3 Four-dimensional vector multiplets

A vector multiplet in four dimensions with Minkowski (rsp. Euclidean) spacetime sig-
nature is built out of one vector field Aµ, one complex (rsp. para-complex) scalar field
z, and two spinors. The gravity multiplet is built from the four-dimensional metric
gµν , a vector field Aµ, and two gravitini. We will consider n vector multiplets coupled
to supergravity, which has bosonic field content consisting of n (para-)complex scalar
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fields zA, (n+ 1) vector fields AIµ and the metric. The bosonic part of the Lagrangian
is given by [89, 27, 14]

e−1L4 = 1
2R− ḡAB̄(z, z̄)∂µz

A∂µz̄B

+ 1
4IIJ(z, z̄)F IµνF

J µν + 1
4RIJ(z, z̄)F IµνF̃

Jµν . (3.5)

The dynamics of the Lagrangian are completely determined by a (para-)holomorphic
function F , called the prepotential, which is homogeneous of degree 2. The coupling
matrices are defined as follows: first define the (n+ 1) (para-)complex scalar fields XI

by

zA =
XA

X0
, z̄A =

X̄A

X̄0
, Im(X0) = 0 ,

|X0| =
(
− iε

[
2F − 2F̄ − (zA − z̄A)(FA + F̄A)

] )− 1
2
,

(3.6)

where FA = ∂
∂zA
F and F is completely determined by the prepotential F (X) =

F (X0, . . . , Xn) through
F(z) = F (1, z1, . . . , zn) .

The fields zA parametrise the codimension 2 hypersurface e−K = 1, Im(X0) = 0, where

e−K = iε
(
XI F̄I − FIX̄I

)
= −NIJX

IX̄J , NIJ = −iε(FIJ − F̄IJ) .

The couplings of the gauge fields are defined by

NIJ(X, X̄) = RIJ(X, X̄) + iεIIJ(X, X̄) = F̄IJ(X̄)− ε iε
(NX)I(NX)J

XNX
, (3.7)

where (NX)I = NIJX
J and XNX = NIJX

IXJ . This can be written explicitly in
terms of zA, z̄A using (3.6). In order to define the scalar couplings we must first define
gIJ̄ precisely as in (2.19), which we repeat here:

gIJ̄ =
∂2K

∂XI∂X̄J
= − NIJ

X̄NX
+

(NX̄)I(NX)J
X̄NX2

. (3.8)

This rank two tensor field is degenerate along the directions ξ = XI∂I + X̄I∂Ī and
Jξ = X̄I∂Ī − X̄I∂Ī due to (2.20). The couplings for the scalar fields are then defined
as

ḡAB̄ = gIJ̄
∂XI

∂zA
∂X̄J

∂z̄B
=

∂2K̄

∂zA∂z̄B
,

where
K̄ = − log

(
− iε

[
2F − 2F̄ − (zA − z̄A)(FA + F̄A)

] )
.

As for five-dimensional vector multiplets, the scalar kinetic term is given by a non-
linear sigma model. The scalar fields form differentiable maps from four-dimensional
spacetime into an 2n-dimensional projective special (para-)Kähler target manifold, as
defined in the previous chapter. The matrix ḡAB̄ is required to be positive definite, and
is given by the push-forward of the degenerate tensor field gIJ̄ on the corresponding
conic affine special (para-)Kähler manifold with prepotential F . We can write this as

ḡ = Re
(
ḡAB̄ dz

A ⊗ dz̄B
)

= π∗g , g = Re
(
gIJ̄ dX

I ⊗ dX̄J
)
.
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The matrix IIJ can be understood as a negative definite metric on the conic affine
special (para-)Kähler manifold.

The Lagrangian (3.5) is most clearly derived by gauge fixing the corresponding
superconformal theory, as for the five-dimensional case. As mentioned, the reader may
refer to [8, 14] for comprehensive and modern reviews of this method. One of the
gauge-fixing conditions, known as the D-gauge, places one hypersurface constraint on
the scalar fields XI appearing in the super conformal theory. This corresponds to the
hypersurface e−K = 1. In contrast to the five-dimensional theory, we must also fix
a U(1) symmetry which corresponds to an overall phase transformation of the scalar
fields XI . We can choose this to be for example Im(X0) = 0.

3.1.4 Hyper multiplets

Hyper multiplets are built out of 4 real scalar fields q1, q2, q3, q4 and two spin 1/2 fields.
We will consider n hyper multiplets coupled to supergravity. The bosonic part of the
Lagrangian consists of 4n scalar fields qu, the graviphoton and the metric, and takes the
same form in three, four and five dimensions. The bosonic part of the action decouples
into two distinct parts L = LEM + Lscal. This first part is simply the bosonic part
of the pure supergravity Lagrangian, which is given by a standard Einstein–Maxwell
Lagrangian

e−1LEM = 1
2R−

1
4FµνF

µν .

Note that in the three-dimensional case the gauge field can be dualised into a scalar
field. The second part consists only of the scalar fields

e−1Lscal = −huv ∂µqu∂µqv . (3.9)

We can consider more generally n hyper multiplets along with n′ vector multiplets
coupled to supergravity. It this case we would simply replace the LEM part of the
Lagrangian with the Lagrangian of n′ vector multiplets coupled to supergravity, as
previously discussed.

The couplings of scalar fields can be rather more general than in the previous cases
of vector multiplets. For hyper multiplets the matrix huv must describe a metric on a
quaternion Kähler manifold with scalar curvature [77, 14]

R = −4n(n+ 2) . (3.10)

Recall from the definition of a quaternion Kähler manifold that this means the holonomy
group of the Levi-Civita connection is a subgroup of Sp(n)·Sp(1).

Clearly we can understand the kinetic term for the scalar fields appearing in the
hyper multiplet Lagrangian as a non-linear sigma model from three-, four-, or five-
dimensional spacetime into a 4n-dimensional quaternion Kähler target manifold, as
described in the previous chapter, with scalar curvature given by (3.10). Like in the case
for the vector multiplets, the Lagrangian can be derived from super conformal methods
[14]. In this case the physical scalar fields qu of the Poincaré theory parametrise a
codimension 4 hypersurface of a hyper Kähler manifold.

3.2 Black holes

In this section we will introduce the three fundamental solutions of Einstein–Maxwell
theory: the Schwarzschild, Reissner–Nordström and Kerr–Newman black holes. This
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not only gives us the opportunity to discuss various interesting aspects of black hole
physics, but also all new solutions that we present will be direct generalisations of
these black holes. Supergravity theories necessarily introduce more fields into the La-
grangian, and black hole solutions subsequently become more complicated. However,
an interesting new feature arises called the attractor mechanism, which we should also
try to understand.

We introduce the Schwarzschild black hole in section 3.2.1, which allows us to discuss
some interesting concepts that are related to all black holes solutions, such as an event
horizon, surface gravity, mass and thermodynamics. Here we also provide our working
definition of a black hole solution. We then give the details of the Reissner–Nordström
and Kerr–Newman solutions in section 3.2.2. We then take a first look at black hole
solutions in supersymmetry and the attractor mechanism in section 3.2.3. This section
is concluded with an example of a black hole solution to the STU model, which is a
particular model of supergravity coupled to three vector multiplets.

3.2.1 Schwarzschild black hole and general properties

We begin our discussion of black hole physics by introducing the simplest black hole
solution: the Schwarzschild black hole. Analysing the Schwarzschild metric leads natu-
rally to a discussion of singularities and event horizons, which allows us to present our
working definition of a black hole. We then discuss some more interesting properties
of black holes in general, such as surface gravity, mass and thermodynamics. Since
all the spherically symmetric black holes we will encounter in this thesis contain the
Schwarzschild solution as a limit in which the charge and angular momentum vanish,
it will also be of direct relevance later on in this thesis.

A minimal theory of pure gravity is described by the Einstein–Hilbert action3

SEH =
1

16πGN

∫
d4x eR .

Gravity can be coupled minimally to some matter content Smat using the action SEM +
Smat and replacing the partial derivatives appearing in Smat with covariant derivatives.
The energy-momentum tensor associated with the matter sector is given by

Tµν = −2e−1 δSmat

δgµν
.

The equations of motion corresponding to the variation of the whole action SEM + SM

with respect to the metric can then be written as

Rµν − 1
2gµνR = 8πGNTµν ,

which henceforth shall be called the Einstein equations. Vacuum solutions are by
definition solutions to the Einstein equations with Tµν = 0. By taking the trace of the
remaining Einstein equations we find that the Ricci scalar vanishes R = 0, and, hence,
the Ricci tensor vanishes Rµν = 0.

The oldest solution of the vacuum Einstein equations is given by the Schwarzschild
metric [90]

ds2 = −
(

1− 2MGN

r

)
dt2 +

(
1− 2MGN

r

)−1

dr2 + r2dΩ2
(2) ,

3Recall that throughout this thesis we are using the notation e =
√
−g.
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where dΩ2
(2) represents the line element on the unit two-sphere

dΩ2
(2) = dθ2 + sin2 θ dφ2 .

The most obvious features of the solution are that it is spherically symmetric and
asymptotically Minkowski. In fact, by Birkhoff’s theorem it is the unique spherically
symmetric solution to the vacuum Einstein equations [91]. Another important feature
of this solution is that it is stationary. This means that there exists a timelike Killing
vector field4 ξ, i.e.

Lξg = 0 .

Moreover, if we parametrise the flow by t and choose this to be our timelike coordinate
then the metric is independent of t. The Schwarzschild metric actually satisfies the
stronger condition of being static. This means the ξ defines an integrable distribution,
i.e. it is normal to a set of hypersurfaces that foliate spacetime. In this case one can
choose coordinates in which the mixed terms gti of the metric vanish.

The Schwarzschild solution appears to have a singularity in the metric at r =
2MGN, but since this can be removed by a coordinate transformation it is not con-
sidered a true singularity of the underlying spacetime. On the other hand the point
r = 0 is a true singularity in the sense that scalar curvature, which is independent of
the choice of coordinates, is divergent. The choice of radial coordinate r = 2MGN,
which actually describes a sphere, is still physically interesting, however. It describes
a surface called an event horizon, which can be understood as follows: consider an ob-
server falling directly into a Schwarzschild black hole, i.e. their worldline is fixed in the
θ, φ coordinates. The infinitesimal ratio between proper time τ and coordinate time t
is given in terms of r by [92]

dτ

dt
=

(
1− 2MGN

r

)1/2

=: V (r) .

Now consider two static observers at positions r1 < r2 (with the same θ, φ coordinates),
and let the the observer at r1 emit a light ray of frequency ω1 outward towards the
observer at position r2, who measures the frequency to be ω2. The two frequencies are
related by

ω1

ω2
=
V (r2)

V (r1)
< 1 .

The frequency of the light ray appears to the observer at r2 to be shifted towards the
red end of the spectrum, or ‘red-shifted’. As the first observer moves closer toward the
horizon the red-shift becomes infinite. On and beyond the horizon no light can escape
to an outside observer. This motivates us to call such an object a black hole.

Definition 3.1 (black hole). A black hole metric is a solution of a classical theory
containing gravity that satisfies the following properties:

(i) It is asymptotically Minkowski.

(ii) There exists an event horizon with finite area.

4In mathematical terminology a Killing vector field is simply a vector field that is an isometry of
the metric.
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In the literature one often comes across more refined definitions of a black hole,
usually relating to the causal structure of spacetime. The definition presented above
has the advantage of being simple and intuitive, and will be adequate for this thesis.
If a metric admits a single event horizon then it describes a single black hole. We
will later come across metrics which admit many separate horizons, and in which case
describe multiple black holes. It is also worth mentioning that black hole metrics need
not be stationary; however this is the only type of black hole solution we will encounter
in this thesis.

Let us now continue with our analysis of the Schwarzschild black hole by calculating
the ADM mass. Mass is a difficult property to define in general relativity, but in
asymptotically flat spacetimes one can define a concrete notion of mass by integrating
the gravitational field strength over a hypersurface shell of infinite radius. This is called
the ADM mass, and is determined by the formula [93]

MADM =
1

16πGN

∮
Σ∞

d2Σi
[
∂jhij − ∂i

(
δklhkl

)]
, (3.11)

where hij is the purely spatial part of the metric, i.e. ds2 = gttdt
2+2gtidtdx

i+hijdx
idxj .

The submanifold Σ∞ is a hypersurface at spatial infinity, where dΣi represents the line
element. For example, the ADM mass of the Schwarzschild metric is given by

MADM = − 1

8πGN
lim
r→∞

∮
Σr

d2Σr∂r

(
1− 2MGN

r

)−1

,

where the hypersurface Σr = Sr is a two-sphere of radius r with line element

d2Σr = e
1

2
εrij dx

i ∧ dxj = r2 sin θ dθ ∧ dϕ .

After performing the integration we find the expected result

MADM = − 1

2GN
lim
r→∞

r2∂r

(
1− 2MGN

r

)−1

= M .

Another interesting property of a black hole is the surface gravity. Consider an
observer at a constant radius r > 2MGN. This observer will experience an acceleration
due to gravity, which for the Schwarzschild black hole is given by

aµ = ∇µ log V (r) ⇒ |a| =
√
∇µV (r)∇µV (r)

V (r)
.

At the horizon the denominator approaches zero, but the numerator V (r)|a| remains
finite. For the Schwarzschild black hole this takes the value

κS = lim
r→2MGN

V (r)|a| = 1

4MGN
,

which we call the surface gravity of the black hole as it represents the strength of the
gravitational field at the event horizon.

The macroscopic observables of a black hole system (mass M , charge Q and angular
mom. J) satisfy the following laws of black hole mechanics [92]

0. The surface gravity κS is constant for a stationary black hole.
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1. When comparing two infinitesimally close black holes the difference in mass is
given by

δM =
1

8π
κSδA+ ΩδJ + µδQ ,

where A is the area of the event horizon.

2. The area of the event horizon is strictly increasing δA ≥ 0 for any process.

3. The surface gravity cannot vanish by any physical process.

These laws bear a striking resemblance to the laws of thermodynamics. The thermody-
namical analogue of the zeroth law is the statement that the temperature is constant
in a system in thermodynamic equilibrium. The first law of thermodynamics ensures
the conservation of energy through the formula

δE = TδS + p δV + µδN ,

which is clearly similar to the first law of black hole mechanics. The second law of
thermodynamics states that entropy can never decrease through any physical process for
a closed system, as for the area of the event horizon. The analogue in thermodynamics
of the surface gravity not vanishing is that the temperature never vanishes in a physical
process, which completes the analogy for all four laws.

3.2.2 Reissner–Nordström and Kerr–Newman black holes

Let us now consider a theory of gravity coupled to the field strength of an abelian gauge
vector, commonly called Einstein–Maxwell theory5

SEM = 1
2

∫
d4x e

[
R− 1

4FµνF
µν
]
. (3.12)

There exists a unique, static, spherically symmetric and purely electric solution to the
field equations given by

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2
(2) .

This is called the Reissner–Nordström solution, having been discovered independently
by Reissner and Nordström [94, 95]. It is clear that in the limit Q → 0 we obtain the
Schwarzschild black hole. In this sense the Reissner–Nordström solution represents a
controlled deviation away from the Schwarzschild black hole, where the deviation is
measured by the electric charge Q. In order for an event horizon to exist the bound
M ≥ |Q| must be respected. The particular solution that satisfies M = |Q| is called
an extremal Reissner–Nordström black hole, and exhibits many distinguished features,
which we will come to shortly. The case where M > Q is called a non-extremal black
hole. In the case where M < Q no horizon exists, and the solution exhibits a naked
singularity.

It is useful to define r± = M ±
√
M2 −Q2 and c = 1

2(r+ − r−), in which case(
1− 2M

r
+
Q2

r2

)
=
(

1− r+

r

)(
1− r−

r

)
.

5From now on we set 8πGN = 1.
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The extremal limit is given by c→ 0, and for this reason c is called the non-extremality
parameter. In the extremal limit r+ → r− and both horizons degenerate into just one
horizon. A particularly useful parametrisation of the Reissner–Nordström line element
is obtained by introducing the shifted radial coordinate ρ = r − r−, in which case(

1− 2M

r
+
Q2

r2

)
=
W

H2
,

where

W = 1− 2c

ρ
, H = 1 +

r−
ρ
.

The full Reissner–Nordström line element can then be written as

ds2 = −W
H2

dt2 +H2

(
dρ2

W
+ ρ2dΩ2

(2)

)
. (3.13)

In the extremal limit W → 1, which shows that a non-extremal black hole can be
obtained from an extremal black hole by ‘dressing’ the line element with an additional
harmonic function W . The extremal Reissner–Nordström metric is written as

ds2 = −H−2dt2 +H2
(
δijdx

idxj
)
, (3.14)

where H = 1− M
ρ with M the mass of the black hole.

Non-extremal Reissner–Nordström black holes have an outer event horizon located
at r = r+, which, as we have previously discussed, is a hypersurface of infinite red
shift. They also exhibit a second type of horizon, known as a Cauchy horizon, located
at r = r− < r+. This inner horizon is a hypersurface of infinite blue shift, and has a
repulsive surface gravity, equal in magnitude to the surface gravity at the outer horizon.
Again, there is a singularity located at r = 0. In the extremal limit both horizons
coincide, and the surface gravity vanishes. For such black holes the attractive force of
gravity exactly balances with the repulsive force of electromagnetism. Therefore two
extremal black holes will neither attract nor repel one another, which is known as the
‘no-force’ property.

In order to solve the static field equations it is not actually necessary that the
metric is spherically symmetric. A class of non-spherically symmetric solutions is given
by taking the line element (3.14) but requiring only that H is a harmonic function with
respect to the flat three-dimensional metric

∆H = 0 .

These are known as the Majumdar–Papapetrou class of solutions. However, the only
type of solutions that do not exhibit naked singularities are the multi-centred general-
isations of the extremal Reissner–Nordström solution [96]

H = 1 +
∑
α

Mα

|~ρ− ~ρα|
,

which describes multiple black holes located at ~ρ = ~ρα. This solution describes a
configuration of multiple extremal black holes with individual masses Mα, which remain
in static equilibrium due to the no-force property of the extremal black holes.

Let us consider again solutions to the Einstein–Maxwell theory. We will relax the
condition that solutions are static and spherically symmetric, and demand only that
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solutions are stationary and axially symmetric. In this case there exists a unique black
hole solution that is characterised by mass M , charge Q and angular momentum J .
This is given by the Kerr–Newman metric [97]

ds2 = −∆

R
(dt− α sin2 θ dϕ)2 +R

(
dr2

∆
+ dθ2

)
+

sin2 θ

R

(
(r2 + α2)dϕ− αdt

)2
,

where α = J
M is a constant parameter and

R = r2 + α2 cos2 θ ,

∆ = r2 − 2Mr + α2 +Q2 .

Clearly in the static limit α→ 0 we recover the Reissner–Nordström solution. One can
also consider the limit Q→ 0, in which case we have a rotating uncharged black hole,
called simply a Kerr black hole. We are using a set of oblate spheroidal coordinates
(a.k.a. Boyer–Lindquist coordinates), which are related to cartesian coordinates through

x =
√
r2 + α2 sin θ cosϕ ,

y =
√
r2 + α2 sin θ cosϕ ,

z = r cos θ .

In the static limit these reduce to the standard spherical polar coordinates.
For a Kerr–Newman black hole an event horizon only exists if the bound M2 ≥

Q2 + J2 is satisfied. The event horizon will not be a sphere, but a so-called oblate
spheroid. The singularity will no longer be a point but a ring, located at r = α sin θ.
For non-zero J the particular solution for which M = |Q| will have a naked singularity
and therefore cannot be called a black hole. However, for this over-rotating class of
solutions the three-dimensional part of the metric is flat. This will play an important
role later in the thesis. For later reference, the Kerr–Newman metric can be written in
a manner adapted to dimensional reduction as

ds2 = −eφ(dt2 + Vϕdϕ)2 + e−φds2
3 , (3.15)

where

eφ =
∆− α2 sin2 θ

Σ
,

Vϕ =
α sin2 θ(r2 + α2 −∆)

∆− α2 sin2 θ
,

ds2
3 =

∆− α2 sin2 θ

∆
dr2 + (∆− α2 sin2 θ)dθ2 + ∆ sin2 θdϕ2 .

We end our discussion of black hole solutions of the Einstein–Maxwell theory by
remarking that there exist higher-dimensional analogues of such solutions [98]. In higher
dimensions there also exist black objects with more exotic topologies, but none of which
will be directly relevant to this thesis. What will be relevant is the five-dimensional
analogue of the Reissner–Nordström solution. This simply corresponds to adjusting
certain numerical factors in the metric, and setting the poles of the harmonic functions
to scale as 1/ρ2. We refer the reader to [60] for a more detailed overview.
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3.2.3 Black holes in supergravity

The bosonic part of the action of pure 4d , N = 2 supergravity is precisely the same
as the Einstein–Maxwell Lagrangian (3.12). Therefore, we can embed the Reissner–
Nordström solution into a theory of pure supergravity by adding two gravitini ψAµ to the
action. The Reissner–Nordström solution is then interpreted as a bosonic background
solution, i.e. ψAµ = 0.

For the extremal Reissner–Nordström solution the embedding into supergravity
allows us to understand its peculiar features. This is because there exist certain super-
symmetry transformations under which the solutions is invariant [99]

δε(x)

(
gµν , ψ

A
µ , Aµ

)∣∣∣
extRN

= 0 .

The fermionic parameters ε are analogous to Killing vectors, and are therefore re-
ferred to as Killing spinors and the above equations as ‘Killing spinor equations’. The
extremal Reissner–Nordström black hole admits precisely four Killing spinors, and is
consequently invariant under half the supersymmetry transformations. This suggests
that we should interpret the extremal Reissner–Nordström solution as a BPS solution
of pure supergravity. This identification is given more support by the fact that the
Reissner–Nordström solution satisfies the mass bound M = |Q|, which is analogous
to the mass bound for BPS states M = |Z|. There are many other features that the
Reissner–Nordström exhibits that are analogous to BPS states, and so the identification
is understood to hold concretely [36]. More generally one can identify the Majumdar–
Papapetrou solutions as BPS states [37]. The central charge generates a local U(1)
phase symmetry, with the graviphoton as the gauge vector, and can be written as [100]

Z =
1

2π

∫
F− = P − iQ ,

where F− is the anti-self-dual part of the graviphoton field strength. It is clear that
for electric solutions we have |Z| = |Q|.

The Kerr–Newman solution may also be embedded into a theory of pure super-
gravity. However in this case the BPS bound (invariant under half supersymmetry
transformations) and the extremality bound (horizon disappears) are not the same. In
fact the BPS bound is stronger than the extremality bound, so BPS black holes are
said to be ‘over-rotating’ and have a naked singularity [101]. They necessarily have a
flat three-dimensional metric according to the decomposition given by (3.15).

Coupling vector multiplets to pure supergravity introduces a number of new scalar
and vector fields into the action according to (3.5), as previously discussed. One can
find many extremal black hole solutions analogous to the extremal Reissner–Nordström
black hole that can also be interpreted as BPS states [7]. However, these solutions will
generically not depend just on the electric and magnetic charges of the various gauge
fields, but will also contain contributions from the scalar fields. In this case one can
define a useful object, also called the central charge, by

Z = P IFI −QIXI .

This is a spacetime dependent function that is equal to the central charge of the super-
symmetry algebra when evaluated at spatial infinity, and gives the entropy of a BPS
black hole when evaluated on the horizon

S = 1
4A = π|Z|2hor . (3.16)
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The values of the scalar fields at the horizon are completely determined by the charges
through the expressions[

Z̄

(
XI

FI

)
− Z

(
X̄I

F̄I

)]
hor

= i

(
P I

QI

)
. (3.17)

This is known as the attractor mechanism [7, 39, 46], since as a dynamical system the
flow of the scalar fields exhibits fixed point behaviour which is attractive. The equations
themselves are called attractor equations or stabilisation equations, and follow directly
from the Killing spinor equations [39, 40]. Since the scalar fields are fixed in terms of the
charges on the horizon, the entropy of the black hole (3.16) is completely determined
by the charges.

As an example let us consider the STU model, which can be found in e.g. [102]. We
will come back to this model at several occasions later in this thesis. The STU model
consists of three vector multiplets coupled to supergravity, and is characterised by the
prepotential

F = −X
1X2X3

X0
.

The physical scalar fields are given by zA = XA/X0 and are often denoted by S =
z1, T = z2, U = z3 (which is where the model gets its name). We will consider solutions
in which XA are purely imaginary and X0 is purely real. In this case the static BPS
solution for the metric and scalar fields is given by

ds2 = − 1√
−4H0H1H2H3

dt2 +
√
−4H0H1H2H3

(
δijdx

idxj
)
, (3.18)

X0 =
(
−4H0H1H2H3

)1
4 , XA = iHAH0

(
−4H0H1H2H3

)−1
4 ,

where H0,HA are harmonic functions

H0 = h0 +
Q0

ρ
, HA = hA +

PA

ρ
.

Taking the near horizon limit ρ→ 0 the scalar fields clearly depend only on the charges,
and we observe attractor behaviour

zA =
iHAH0√

−4H0H1H2H3
−→ iPAQ0√

−4Q0P 1P 2P 3
.

The entropy of the black hole depends only on the charges and not on the value of the
moduli fields at infinity

S = 1
4A = π

√
−4Q0P 1P 2P 3 = |Z|2hor .

In the limit where the four harmonic functions are proportional to one another the
solution reduces to the standard extremal Reissner–Nordström black hole, which can
be seen by directly comparing the line element (3.14) with (3.18). The ADM mass is
given by

M =
Q0

4h0
− 3h0(p1h2h3 + p2h1h3 + p3h1h2) = |XIQI − FIP I |∞ = |Z|∞ ,

and so the BPS bound is satisfied. One may also check that the solution satisfies the
attractor equations (3.17).
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3.3 Dimensional Reduction

Classically dimensional reduction amounts to requiring that all fields are invariant under
the flow generated by some vector field ∂

∂x0
, which has orbits given by S1. Dimensional

reduction by integrating out the x0 dimension simply gives the space of orbits. In a
quantum theory a massless field may be Fourier expanded in a compact dimension into
a tower of massive fields, where the masses depend inversely on the size of the compact
dimension. In this case one may instead require that the compact dimension is small
enough such that any massive modes can be ignored in an effective theory. In either
case, the dimensional reduction procedure is the same, which we will now present in
detail. These calculations are based largely on a set of unpublished notes by Ulrich
Theis.

We will dimensionally reduce a theory of gravity coupled to the field strength of
a p-form gauge field over a single compact timelike (ε = +1) or spacelike (ε = −1)
dimension of radius λ. The main results of this section are as follows:

1. The Einstein–Hilbert action

ŜEH =

∫
d(n+1)x ê

[
1
2R̂
]
,

reduces to

SEH = 2πλ

∫
dnx e

[
1
2R−

1
2∂µφ∂

µφ+ 1
2ε e

( 2n−2
n−2 )

1/2
φVµνV

µν
]
, (3.19)

where we have made the metric decomposition

ĝ = −ε e
(

2(n−2)
n−1

) 1
2 φ

(dx0 + Vµdx
µ)2 + e

−
(

2
(n−2)(n−1)

) 1
2 φ
gµνdx

µdxν . (3.20)

2. The action of the field strength of an abelian gauge vector coupled to gravity

Ŝgauge =

∫
d(n+1)x ê

[
− 1

4 F̂µ̂ν̂F̂
µ̂ν̂
]
,

reduces to

Sgauge = 2πλ

∫
dnx e

[
ε e
−
(

2(n−2)
n−1

) 1
2 φ 1

2∂µb ∂
µb

− 1
4e

(
2

(n−2)(n−1)

) 1
2 (
Fµν − 2V[µ∂ν]b

) (
Fµν − 2V [µ∂ν]b

) ]
.

(3.21)

where we have made the decomposition

Â = b dx0 +Aµdx
µ . (3.22)

3. In four dimensions we may also include the topological term in the gauge sector

Ŝtop =

∫
d4x

[
1
8 F̂µ̂ν̂F̂ρ̂σ̂ ε̂

µ̂ν̂ρ̂σ̂
]
,

which, under the decomposition given above, reduces to

Stop = 2πλ

∫
d3x

[
1
2ε Fµν∂ρb ε

µνρ
]
. (3.23)
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3.3.1 The action and differential forms

Consider a Riemannian manifold (M, g) of dimension m and metric signature (f, g).
We will construct an action functional S = SEH + Sgauge, which consists of an Einstein
Hilbert term coupled to the field strength of a p-form gauge field, in terms of differential
forms. Our aim to recover the standard form of the action when written in components

SEH =

∫
dmx e

[
1
2R
]
,

Sgauge =

∫
dmx e

[
−1

2(p+ 1)!
(Fp+1)µ1...µp+1

(Fp+1)µ1...µp+1

]
.

Note that we are using a non-standard normalisation of the Einstein–Hilbert term (as
is common in the supergravity literature) in order to avoid factors of

√
2 at a later

stage.
Let us first construct the Einstein–Hilbert term. Since the Ricci scalar R is simply

a function, the Hodge star is given by

?R =
e

m!
Rεµ1...µmdx

µ1 ∧ . . . ∧ dxµm = (−)feRdx1 ∧ . . . ∧ dxm .

We can therefore write

SEH = (−)f
∫

1
2
?R .

It will be useful later to note that

εa1...amR
a1a2 ∧ ea3 ∧ . . . ∧ eam = εa1...am

(
1
2R

a1a2
bce

b ∧ ec
)
∧ ea3 ∧ . . . ∧ eam

= (−)f (m− 2)!R e1 ∧ . . . ∧ em ,

and therefore
?R =

1

(m− 2)!
εa1...am R

a1a2 ∧ ea3 ∧ . . . ∧ eam . (3.24)

Next we will focus on the field strength term. The field strength of a p-form Ap is
obtained by taking the exterior derivative

Fp+1 = dAp =
1

(p+ 1)!
(Fp+1)µ1...µp+1 dx

µ1 ∧ . . . ∧ dxµp+1 .

The Hodge dual of Fp+1 is an (m− p− 1)-form

?Fp+1 =
e

(p+ 1)!(m− p− 1)!
(Fp+1)ν1...νp+1

ε
ν1...νp+1

ρp+2...ρmdx
ρp+2 ∧ . . . ∧ dxρm .

Taking the wedge product of Fp+1 and ?Fp+1 we find

Fp+1 ∧ ?Fp+1 =
e

(p+ 1)!2(m− p− 1)!
(Fp+1)µ1...µp+1

(Fp+1)ν1...νp+1

× εν1...νp+1
ρp+2...ρmdx

µ1 ∧ . . . ∧ dxµp+1 ∧ dxρp+2 ∧ . . . ∧ dxρm

= (−)f
e

(p+ 1)!
(Fp+1)µ1...µp+1

(Fp+1)µ1...µp+1 dx1 ∧ . . . ∧ dxm .

We can now construct the Sgauge term in our action

Sgauge = (−)f
∫
−1

2Fp+1 ∧ ?Fp+1 .
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3.3.2 Decomposing the metric

We will now proceed to reduce an action of gravity coupled to a p-form from (n + 1)
dimensions to n dimensions. The compact dimension is taken to be a circle S1, and
can be a spacelike or timelike dimension which we keep track of by setting

ε =

{
+1 timelike ,

−1 spacelike .

Objects that live in (n + 1) dimensions will be distinguished by a hat, where hatted
indices run from 0, . . . , n and unhatted indices from 1, . . . n, e.g.

(n+ 1)-dimensional vielbeins êâ , â ∈ {0, . . . , n} ,
n-dimensional vielbeins ea , a ∈ {1, . . . , n} .

The signature of the (n + 1)-dimensional metric in the transverse dimensions may be
arbitrary, but for concreteness let us say there are f timelike and g spacelike directions,
so we can write the signature of the (n+ 1)-dimensional metric as

(−ε− . . .−︸ ︷︷ ︸
f -times

+ . . .+︸ ︷︷ ︸
g-times

) .

We take the compact dimension to be x0.
Let us begin by decomposing the metric into various n-dimensional components

ĝµ̂ν̂ =


−ε e2βφ −ε e2βφVµ

−ε e2βφVν e−2αφgµν − ε e2βφVµVν

 , (3.25)

where α and β are, for now, arbitrary numbers with β 6= 0. It will be useful to translate
this decomposition into a vielbein basis, which is defined by the transformation matrices
ê â
µ̂ satisfying

ĝµ̂ν̂ = ê â
µ̂ ê

b̂
ν̂ η̂âb̂ .

First, by considering the indices µ̂ = µ , ν̂ = ν we obtain the expressions

e−2αφgµν − ε e2βφVµVν = −ε ê 0
µ ê

0
ν + ê a

µ ê
b
ν ηab ,

and we have the freedom to choose the particular vielbein basis given by ê a
µ = e−αφe a

µ

and ê 0
µ = eβφVµ. Next, by considering the indices µ̂ = µ , ν̂ = 0 we obtain the

expression

−ε e2βφVµ = e−αφe a
µ ê

b
0 ηab − ε eβφVµê 0

0 ,

and we can choose ê b
0 = 0 and ê 0

0 = eβφ. We have now completely determined the
transformation matrices

ê â
µ̂ =


eβφ 0

eβφVµ e−αφe a
µ

 .
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From this expression one can immediately obtain formulae that relate the n- and (n+1)-
dimensional vielbeins

êa = e−αφea , ê0 = eβφ(V + dx0) .

Moreover, one also obtains the formula relating the determinant of the n- and (n+ 1)-
dimensional metric

det ĝ = −ε e2(β−nα)φ det g .

Accordingly, we define the epsilon symbol in n-dimensions to be

ε12...n = −ε ε̂012...n .

The inverse transformation matrices ê ν̂
â are uniquely determined through the ex-

pression ê â
µ̂ ê

ν̂
â = δν̂µ̂. For our particular choice of transformation matrices we find

ê µ̂
â =


e−βφ 0

−eαφVa eαφe µ
a

 .

The vector fields dual to the vielbein one-forms are then calculated to be

êa = eαφea − eαφVa
∂

∂x0
, ê0 = e−βφ

∂

∂x0
.

3.3.3 Reduction of Einstein–Hilbert term

The dimensional reduction of the Einstein–Hilbert term is greatly simplified if we make
the specific choices α = 0 and β = 1, so that

ê0 = eφ(V + dx0) , êa = ea ,

êa = ea − Va
∂

∂x0
, ê0 = e−φ

∂

∂x0
.

After dimensional reduction the metric will not be in the so-called ‘Einstein frame’,
which means we will have a non-constant factor in front of the Einstein–Hilbert term
in the action. However, one can always make a conformal transformation to bring the
metric to the Einstein frame. We will then be able to read off the values of α and β
that we could have chosen in order to reduce directly into this frame.

Recall from section 2.1.1 that the curvature two-form is given by

R̂âb̂ = dω̂âb̂ + ω̂ ĉ
â ∧ ω̂ĉb̂ .

We can decompose this into n-dimensional objects using the following expression for
the Levi-Civita one-form:

ω̂âb̂ = 1
2

(
η̂b̂ĉιêâ − η̂âĉιêb̂ − η̂ĉd̂ê

d̂ιêâιêb̂

)
dêĉ .

Considering the indices â = a , b̂ = b in the above expression we find

ω̂ab = ωab − 1
2ε e

2φ(V + dx0)Vab ,
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and by considering the indices â = a , b̂ = 0 we also have

ω̂a0 = −1
2ε e

φ(ιeadV ) + ε eφ(V + dx0)(ιeadφ) .

Taking the exterior derivative of ω̂ab we find

dω̂ab = dωab − 1
2ε e

2φVabdV +O(V + dx0) ,

where we have ignored terms containing the combination (V + dx0) for reasons that
will become clear shortly. Next, we must decompose the term

ω̂ ĉ
a ∧ ω̂ĉb = ω c

a ∧ ωcb + 1
4ε e

2φ(ιeadV ) ∧ (ιebdV ) +O(V + dx0) .

Putting these together we obtain the following decomposition of the Riemann curvature
tensor

R̂ab = Rab − 1
2ε e

2φ
(
VabdV − 1

2(ιeadV ) ∧ (ιebdV )
)

+O(V + dx0) .

We now repeat the process considering the indices â = a , b̂ = 0 in the expression for
the Riemann curvature tensor. The exterior derivative of the ω̂a0 components of the
Levi-Civita one-form are given by

dω̂a0 = ε dφ ∧ eφ(V + dx0)(ιeadφ)− ε eφ(V + dx0) ∧ d((ιeadφ)) + . . . ,

where we have ignored terms which do not contain the combination (V + dx0). Again,
we must decompose the term

ω̂ ĉ
a ∧ ω̂ĉ0 = 1

4e
3φ(V + dx0) ∧ V c

a (ιecdV ) + ε eφω c
a ∧ (V + dx0)(ιecdφ) + . . . ,

where in the first line we have used the fact that ω̂00 = 0. Putting these together we
find an expression for the 0th row (or column) of the Riemann curvature

R̂a0 = ε eφ
[
dφ(ιeadφ) + d((ιeadφ))− ω c

a (ιecdφ)− 1

4
ε e2φV c

a (ιecdV )

]
∧ (V + dx0) + . . . .

Recall that we can use (3.24) to write the Einstein–Hilbert action in terms of the
curvature two-form. This expression can be decomposed as follows:

ŜEH =

∫
−1

2(n− 1)!
ε̂0a1...an

[
2R̂0a1 ∧ ea2 + (n− 1)eφR̂a1a2(V + dx0)

]
× ea3 ∧ . . . ∧ ean ,

and substituting in the expression for R̂a1a2 and R̂a10 we have

SEH =

∫
dx0

∫
−ε (−)f

[
eφ 1

2
?R− 1

2ε e
3φdV ∧ ?dV

]
− 2ε (−)f

∫
d ?̂deφ .

Observe that the dφ term forms a total derivative which we can drop. We now integrate
out the compact dimension by performing the finite integral∫

dx0 =
8

16

G
(n+1)
N

Gn
N

.
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We can make a conformal rescaling in order to write the action in the so-called ‘Ein-
stein frame’, where the Einstein–Hilbert action takes the standard form. The conformal
transformation we need is

gµν −→ e(
−2
n−2)φgµν ,

so that the action becomes

SEH =

∫
−ε (−)f

[
1
2
?R−

(
n− 1

n− 2

)
dφ ∧ ?dφ+ 1

2ε e
( 2n−2
n−2 )φdV ∧ ?dV

]
.

Finally, we can properly normalise the kinetic term of the scalar field φ by making the
rescaling

φ −→
√

n− 2

2n− 2
φ ,

and we are left with the final form of the dimensionally reduced Einstein–Hilbert term

SEH =

∫
−ε (−)f

[
1
2
?R− 1

2dφ ∧
?dφ+ 1

2ε e
( 2n−2
n−2 )

1/2
φdV ∧ ?dV

]
.

We can now read off the values for α and β that we could have chosen in (3.25) in order
to reduce directly into the Einstein frame

α =
1√

2(n− 1)(n− 2)
, β = (n− 2)α .

3.3.4 Reduction of field strength term

An arbitrary p-form in (n+ 1) dimensions can be written as

ûp =
1

p!
(ûp)µ̂1...µ̂p dx

µ̂1 ∧ . . . ∧ dxµ̂p .

The one-form dx0 may appear at most once in each term. Splitting the expression into
the sum of terms with dx0 and those without, and using the symmetry to move dx0 to
the left, we can write

ûp =
1

p!
(ûp)µ1...µp dx

µ1 ∧ . . . ∧ dxµp +
p

p!
(ûp)0ν1...νp−1 dx

0 ∧ dxν1 ∧ . . . ∧ dxνp−1 ,

and defining

(up)µ1...µp := (ûp)µ1...µp , (up−1)µ1...µp−1 := (ûp)0µ1...µp−1 ,

we have the following decomposition of a p-form

ûp = up + dx0 ∧ up−1 . (3.26)

We will now consider the Hodge star of ûp. This time it is easier to use a vielbein
basis, in which we can write the Hodge star as

?̂ûp =
1

p!(n+ 1− p)!
(ûp)â1...âp ε̂

â1...âp

b̂p+1...b̂n+1
êb̂p+1 ∧ . . . ∧ êb̂n+1 .
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Precisely one of the indices of ε̂
â1...âp

b̂p+1...b̂n+1
must be 0, and so we can write this as

two distinct sums

?̂ûp =
(n+ 1− p)
p!(n+ 1− p)!

(ûp)a1...ap ε̂
a1...ap

0bp+1...bn
ê0 ∧ êbp+1 ∧ . . . ∧ êbn

+
p

p!(n+ 1− p)!
(ûp)0a1...ap−1 ε̂

0a1...ap−1

bp...bn
êbp ∧ . . . ∧ êbn .

(3.27)

Lets now consider the top and bottom lines separately.
First of all we consider the top line. Note that currently the components (ûp)α̂0...α̂p−1

are given with respect to the (n+ 1)-dimensional vielbein basis êa. We want to convert
these to components of the n-dimensional vielbein basis ea. We compute the compo-
nents in the n-dimensional vielbein basis as follows

(ûp)a1...apA
a1...ap =

[
ê µ̂1
a1 . . . ê

µ̂p
ap (ûp)µ̂1...µ̂p

]
Aa1...ap

=
[
− p epαφVa1(up−1)a2...ap + epαφ(up)a1...ap

]
Aa1...ap ,

where Aa1...ap is some anti-symmetric tensor. Here we have used the fact that all the
indices appear contracted with an antisymmetric tensor Aa1...ap so we can safely move
the 0-index to the left. We then need the fact that

ε̂
a1...ap

0bp+1...bn
= (−)pε̂

a1...ap
0 bp+1...bn

= −ε (−)pε
a1...ap

bp+1...bn
.

The wedge product of the vielbeins can be written as

ê0 ∧ êbp+1 ∧ . . . ∧ êbn = e(p−n)αφeβφ
(
V + dx0

)
∧ ebp+1 ∧ . . . ∧ ebn .

Combining these three elements, we deduce that the top line of (3.27) can be written
as

ε (−)pe(2p−n)αφeβφ
(
V + dx0

)
∧ ? (up − V ∧ up−1) . (3.28)

We now consider the bottom line of (3.27). Following a similar procedure to the top
line, we compute the components of (ûp) in terms of the n-dimensional vielbein basis:

(ûp)0a1...ap−1 = ê µ̂1
0 ê µ̂2

a1 . . . ê
µ̂p

ap−1 (ûp)µ̂1...µ̂p

= e(p−1)αφe−βφ(up−1)a1...ap−1 ,

where we used the fact that ê µ1
0 = 0. The epsilon symbols are related by

ε̂
0a1...ap−1

bp...bn
= −ε ε̂ a1...ap−1

0 bp...bn
= ε

a1...ap−1

bp...bn
,

and the vielbein basis decomposes as

êbp ∧ . . . ∧ êbn = e(p−1−n)αφ ebp ∧ . . . ∧ ebn .

Putting everything together, the bottom line of (3.27) can be written as

e(2p−n)αφe−(β+2α)φ?up−1 . (3.29)
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We can now substitute the expressions (3.28) and (3.29) into (3.27) to obtain a
formula for the decomposition of the Hodge-star of a p-form

?̂ûp = ε e(2p−n)αφ
[
e−(β+2α)φε ?up−1 + (−)peβφ

(
V + dx0

)
∧ ? (up − V ∧ up−1)

]
.

Taking the wedge product between an arbitrary p-form v̂p and the Hodge star of an
arbitrary p-form ?̂ûp we find

v̂p ∧ ?̂ûp = ε e(2p−n)αφ
[
vp + dx0 ∧ vp−1

]
∧
[
ε e−(β+2α)φ?up−1 + (−)peβφ

(
V + dx0

)
∧ ? (up − V ∧ up−1)

]
.

Only the terms which contain precisely one dx0 will survive. Using this fact and
expanding out the brackets we find

v̂p ∧ ?̂ûp = ε e(2p−n)αφdx0 ∧
[
ε e−(β+2α)φvp−1 ∧ ?up−1

+ eβφ(vp − V ∧ vp−1) ∧ ?(up − V ∧ up−1)
]
.

We now apply this decomposition to the Ŝgauge term in our Lagrangian. We then
perform the integration over the x0 direction, normalising the circumference to be∫
dx0 = 1. We are left with the dimensionally reduced matter term

Sgauge = (−)f
∫
e(2p−n)αφ

[
− e−(β+2α)φ 1

2Fp−1 ∧ ?Fp−1

− ε eβφ 1
2(Fp − V ∧ Fp−1) ∧ ?(Fp − V ∧ Fp−1)

]
.

This gives (3.21) when evaluating in terms of components and making the choice p = 2.

3.3.5 Reduction of F ∧ F term

If the original number of dimensions (n+ 1) is even and (p+ 1) =
(
n+1

2

)
is also even,

the action may admit a topological term of the form

Ŝtop =

∫
1
2 dÂp ∧ dÂp .

We can decompose this (p+ 1)-form into n-dimensional objects

dÂp = dAp + dx0 ∧ dAp−1 .

We can now substitute this back into the action

Ŝtop =

∫
1
2 (dAp + dx0 ∧ dAp−1) ∧ (dAp + dx0 ∧ dAp−1)

=

∫
dx0 ∧ dAp ∧ dAp−1 ,

where we used the fact that the action must contain precisely one dx0. Integrating out
the compact dimension we are left with

Stop =

∫
dAp ∧ dAp−1 ,

which gives (3.23) when expressed in components and choosing p = 1.



Chapter 4

The r-map

In this chapter we perform the dimensional reduction of a class of five-dimensional
theories of gravity coupled to scalar and vector fields over a timelike or spacelike di-
mension. The class of theories under consideration generalises that of 5d,N = 2 vector
multiplets coupled to supergravity in the sense that the scalar target manifold is only
required to be a generalised projective special real manifold, as defined in chapter 2.
Since the reduction of the supersymmetric theory goes by the name of the r-map, we
call the reduction of the generalised theory the ‘generalised r-map’. We then discuss
the geometry of the target manifold after dimensional reduction, and prove that for the
supersymmetric theory this is a projective special Kähler or projective special para-
Kähler manifold, depending on whether the reduction is over a spacelike or timelike
dimension. None of the results presented in this chapter are original work of the author,
and are based on the existing publications [27, 32]. However, the results are integral to
the author’s works [60, 59], which will be presented in the next chapter. A discussion
of the r-map also serves to complement our later chapter on the c-map (chapter 6),
which uses techniques that are similar in spirit to those presented here.

We will discuss generalisations of 5d,N = 2 supergravity coupled to vector mul-
tiplets in section 4.1, before dimensionally reducing this class of theories in 4.2. We
then prove the projective special Kähler and para-Kähler properties of spacelike and
timelike reduction in sections 4.3 and 4.4.

4.1 Generalisations of 5D, N = 2 supergravity

Our starting point is the Lagrangian of a five-dimensional theory of gravity coupled to
n scalar fields and (n+ 1) abelian vector fields that takes the form

e−1
5 L5 =

1

2
R5 −

3

4
āxy(φ)∂µ̂φ

x∂µ̂φy − 1

4
aIJ(φ)F̂ Iµ̂ν̂F̂

Jµ̂ν̂ + . . . , (4.1)

where spacetime indices run from µ̂ = 0, . . . , 3, and internal indices run from x =
1, . . . , n and I = 0, . . . , n. This Lagrangian is clearly of the same form as the bosonic
part of 5d, N = 2 vector multiplets coupled to supergravity (3.3). However, we shall
only impose weaker restrictions on the coupling matrices than those required by super-
symmetry, and by doing so obtain a direct generalisation of the supersymmetric theory.
The dots represent the fact that we leave open the option of including a Chern–Simons
term such as that which appears in the supergravity Lagrangian. We do this for two
reasons: first, it is not clear at present how we should deform this term away from the
supergravity limit, and second it vanishes for the field configurations we will consider in

53
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this thesis anyway. We may also include terms with fermionic fields in the Lagrangian,
but these will never play a role in constructing bosonic background solutions.

We require that the non-linear sigma model takes values in an n-dimensional gen-
eralised projective special real target manifold, as defined in chapter 2. We denote by
H the unique Hesse potential of the corresponding d-conic Hessian manifold that is
homogeneous of degree d. This Hesse potential completely determines the dynamics
of the Lagrangian. The scalar fields φx are required to parametrise the hypersurface
H(h0, . . . , hn) = 1, and we shall use the particularly convenient parametrisation given
by (2.14)

φx =
hx

h0
, h0 = H

(
1,
h1

h0
, . . . ,

hn

h0

)− 1
d

, (4.2)

where hI are special coordinates in the d-conic Hessian manifold. The matrix aIJ is
defined according to (2.13)

aIJ = −1

d

∂2

∂hI∂hJ
logH(h) , (4.3)

and can be written in terms of φx using (4.2). For the special case where the Hesse
potential is a cubic polynomial this Lagrangian (plus Chern–Simons term) represents
the bosonic part of the Lagrangian ofN = 2 supergravity coupled to n vector multiplets,
see section 3.1.2.

We prefer not to work with the coordinates φx, which parametrise the physical
hypersurface H = 1, but rather the special coordinates hI , which live in the larger
ambient space. To describe the same physics, it is understood that at some point we
must restrict these coordinates to the hypersurface by imposing the constraint

H(h0, . . . , hn) = 1 . (4.4)

In terms of the Lagrangian this means that we should make the replacement

āxy(φ)∂µ̂φ
x∂µ̂φy −→ aIJ(h)∂µ̂h

I∂µ̂hJ ,

while imposing the hypersurface constraint (4.4). Since the constraint fixes a symmetry
of the Lagrangian it is acceptable to impose it before or after calculating the equations
of motion. The full Lagrangian can then be written as

e−1
5 L5 = 1

2R5 − 3
4aIJ(h)∂µ̂h

I∂µ̂hJ − 1
4aIJ(h)F̂ Iµ̂ν̂F̂

Jµ̂ν̂ + . . . , (4.5)

where it is understood that the scalar fields are subject to the constraint (4.4). The
couplings for the scalar fields and vector fields are now identical, and are given directly
in terms of hI through (4.3).

4.2 Dimensional reduction

We will now reduce the Lagrangian (4.5) over a timelike or spacelike dimension, which
we keep track of by setting

ε =

{
+1 timelike ,

−1 spacelike .

Before we perform the calculation we shall impose two conditions that will greatly
simplify the procedure, and refer the reader to [27] for a full account of the reduction
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without making these assumptions. First, we shall impose that when we decompose the
gauge vectors according to the manner adapted to dimensional reduction (see (3.22))

ÂI =
√

3/2 bIdx0 + CIµdx
µ , (4.6)

the coefficients CIµ are constant. If the compact dimension is timelike then this corre-
sponds to selecting backgrounds which are purely electric. This is natural if one wishes
to consider black hole solutions, which in five dimensions carry only electric charge.
After imposing this condition any Chern–Simons term will vanish identically, and the
remaining field strength term simplifies according to

F̂ Iµ̂ν̂F̂
Jµ̂ν̂ = −ε 3e−2σ̃∂µ̂b

I∂µ̂bJ .

The second condition we will impose is that the isometry over which we dimensionally
reduce defines an integrable distribution. This can be phrased in three alternative
ways: (i) the compact dimension is orthogonal to a set of hypersurfaces that foliate
spacetime, (ii) the Kaluza–Klein vector vanishes, or (iii) the metric is static (for a
timelike distribution only). In any case, it means that we can always find coordinates
in which the metric has no mixed terms

ds2
5 = −ε e2σ̄(dx0)2 + e−σ̄gµνdx

µdxν , (4.7)

where we have decomposed the metric in accordance with the dimensional reduction
procedure (see (3.20)).

We now perform the dimensional reduction over the x0 dimension following the
prescription outlined in section 3.3. The resulting four-dimensional Lagrangian is given
by

e−1
4 L4 =

1

2
R4 −

3

4
∂µσ̃∂

µσ̃ − 3

4
aIJ(h)

(
∂µh

I∂µhJ − ε e−2σ̃∂µb
I∂µbJ

)
.

Recall that the scalars hI are still required to satisfy the hypersurface constraint (4.4).
It turns out that we can make a particular field redefinition that not only simplifies
the Lagrangian but also eliminates the need for any constraints. We can do this by
introducing new scalar fields σI , which we define by

σI := eσ̃hI . (4.8)

The equation that constrained the hI coordinates now reads

H(σ0, . . . , σn) = edσ̃ , (4.9)

which just gives an expression for the KK-scalar σ̃ in terms of the new coordinates. We
can interpret this as follows: the KK-scalar has reinstated the direction orthogonal to
H which was fixed by the hypersurface constraint, and so the new fields parametrise the
whole d-conic Hessian manifold. They are therefore not constrained to any particular
hypersurface.

We would like to write the four-dimensional Lagrangian in terms of the new scalar
fields. We first note that by differentiating the identity aIJ(h)hIhJ = 1 we find

aIJ(h)hI∂µ̂h
J = 0 ,

where we made use of the fact that the metric components aIJ(h) are homogeneous
functions of degree −2. It follows that

aIJ(h)∂µh
I∂µhJ = aIJ(σ)∂µσ

I∂µσJ − ∂µσ̃∂µσ̃ .
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The Lagrangian is therefore written in the new coordinates in a particularly neat form

e−1
4 L4 =

1

2
R4 −

3

4
aIJ(σ)

(
∂µσ

I∂µσJ − ε ∂µbI∂µbJ
)
, (4.10)

where all fields are unconstrained. In the next chapter we will use this formulation of
the Lagrangian to calculate new non-extremal black hole solutions.

The underlying four-dimensional spacetime has Lorentzian signature if ε = −1, and
Euclidean signature if ε = 1. The scalar fields σI , bI describe a non-linear sigma model
which maps four-dimensional spacetime into a 2(n + 1)-dimensional target manifold
with metric 3

4 [aIJ ⊕ (−ε aIJ)], where aIJ(σ) is a real, positive definite matrix that only
depends on half the coordinates. In the next two sections we will prove that in the
supergravity case (Hesse potential a cubic polynomial) the target manifold is projective
special Kähler if ε = −1, and projective special para-Kähler if ε = 1.

4.3 Projective special Kähler structure of spacelike reduc-
tion

For spacelike reduction we make the choice ε = −1. Using the expression (4.10) we can
write the Lagrangian as

e−1
4 L4 =

1

2
R4 −

3

4
aIJ(σ)

(
∂µσ

I∂µσJ + ∂µb
I∂µbJ

)
. (4.11)

The scalar fields describe a non-linear sigma model from four-dimensional spacetime
with Minkowski signature into a 2(n + 1)-dimensional target manifold with metric
g = gab dq

a ⊗ dqb, where we have gathered together the 2(n + 1) coordinates into
qa = (σI , bI)T . The components of the metric are given by

gab =
3

4

(
aIJ 0
0 aIJ

)
.

An almost complex structure is defined by simply taking the canonical almost complex
structure in any coordinate basis

Jab =

(
0 1(n+1)

−1(n+1) 0

)
,

with respect to which the metric is clearly Hermitian. A basis of the complexified
co-tangent bundle T ∗MC is then given by

dXI = dσI + idbI , dX̄I = dσI − idbI ,

where dXI and dX̄I are bases of T ∗1,0MC and T ∗0,1MC respectively. Since these
one-forms are exact the complex structure is integrable by virtue of the Newlander–
Nirenberg theorem. The fundamental two-form is closed

dω = 3
4d
(
aIJdσ

I ∧ dbJ
)

= 3
4

(
∂3
I,J,Ka

)
dσK ∧ dσI ∧ dbJ = 0 ,

and, hence, the target manifold is Kähler.
We will now show that for the supergravity r-map, i.e. when the Hesse potential

is a cubic polynomial, the target manifold has the property of being projective special
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Kähler. We will follow the argument given in [27]. The idea is to show that projective
special Kähler manifolds with prepotentials of the form

F (X) =
1

6

(CXXX)

X0
(4.12)

directly correspond to those obtained from the r-map. Here we have introduced the
notation (CXXX) = CABCX

AXBXC and (CXX)A = CABCX
BXC etc. First, the

derivatives of the prepotential with respect to XI are given by

F0 = −1

6

(CXXX)

(X0)2
, FA =

1

2

(CXX)A
X0

.

This implies that F , as defined in section 3.1.3, and zA = XA/X0 satisfy the expressions

F =
1

6
(Czzz) , FA =

1

2
(Czz)A .

The expression for e−K̄ , as defined in section 3.1.3, is given by

e−K̃ = −i
[

1

6

(
(Czzz)− (Cz̄z̄z̄)

)
− 1

2

(
zA − z̄A

) (
(Czz)A + (Cz̄z̄)A)

)]
= − i

6
CABC

(
zA − z̄A

) (
zB − z̄B

) (
zC − z̄C

)
= −8

6
(Cyyy) ,

where yA := Im(zA). The metric is then given through equation (3.8) by

g =

(
−3

2

(Cy)AB
(Cyyy)

+
9

4

(Cyy)A(Cyy)B
(Cyyy)2

)(
dxA ⊗ dxB + dyA ⊗ dyB

)
,

where xA := Re(zA). Compare this with the metric of the target manifold of the
sigma-model appearing in (4.11):

g =

(
−3

2

(Cσ)AB
(Cσσσ)

+
9

4

(Cσσ)A(Cσσ)B
(Cσσσ)2

)(
dσA ⊗ dσB + dbA ⊗ dbB

)
.

It is then clear that, by making the identification σA ↔ yA and bA ↔ xA, projective
special Kähler manifolds with prepotentials of the the form (4.12) give precisely the
same metrics as those obtained through the r-map. This completes the proof that the
target manifold in the image of the supergravity r-map is projective special Kähler.

Let us end with two remarks. First, one may interpret the supergravity r-map
geometrically as a map from a projective special real manifold into the tangent bundle.
For more details we refer the reader to [34, 9] and references therein. Second, one might
also wonder what the target manifold for the generalised r-map is, and not just in the
supersymmetric case. This is currently under investigation [28].

4.4 Projective special para-Kähler structure of timelike
reduction

For timelike reduction we make the choice ε = +1. Using expression (4.10) we can
write the Lagrangian as

e−1
4 L4 =

1

2
R4 −

3

4
aIJ(σ)

(
∂µσ

I∂µσJ − ∂µbI∂µbJ
)
. (4.13)
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The scalar part of the Lagrangian describes a non-linear sigma model into a 2(n+ 1)-
dimensional target manifold with metric g = gab dq

a⊗qb, where again we have gathered
together the 2(n + 1) coordinates into qa = (σI , bI)T . This time an additional minus
sign appears in the components of the metric

gab =
3

2

(
aIJ 0
0 −aIJ

)
,

which reflects the fact that the target manifold has neutral signature. We define an
almost para-complex structure by taking the canonical para-complex structure in any
coordinate basis

Jab =

(
0 1(n+1)

1(n+1) 0

)
.

The metric is clearly para-Hermitian with respect to this para-complex structure. A
basis of the co-tangent bundle T ∗M is given by

dXI = dσI + dbI , dX̄I = dσI − dbI ,

where dXI and dX̄I are bases of T ∗+M and T ∗−M respectively. Since these one-
forms are exact the para-complex structure is integrable by Frobenius’ theorem. The
fundamental two-form is closed

dω = 3
2d
(
aIJdσ

I ∧ dbJ
)

= 3
2

(
∂3
I,J,Ka

)
dσK ∧ dσI ∧ dbJ = 0 ,

and, hence, the target manifold is para-Kähler.
We will show that for the temporal version of the supergravity r-map the target

manifold has the property of being projective special para-Kähler. We follow again
the argument presented in [27], where the idea is to show that the para-holomorphic
prepotentials of the form

F (X) =
1

6

(CXXX)

X0
(4.14)

give rise to precisely those metrics which appear as target manifolds of (4.13). By an
identical calculation to the previous section, one can show that the metric corresponding
to the prepotential (4.14) is given by

g =

(
−3

2

(Cy)AB
(Cyyy)

+
9

4

(Cyy)A(Cyy)B
(Cyyy)2

)(
dxA ⊗ dxB + dyA ⊗ dyB

)
,

where yA := Im(zA) and xA := Re(zA). Compare this with the target manifold of the
reduced Lagrangian (4.13)

g =

(
−3

2

(Cσ)AB
(Cσσσ)

+
9

4

(Cσσ)A(Cσσ)B
(Cσσσ)2

)(
dσA ⊗ dσB + dbA ⊗ dbB

)
.

It is clear by making the identification σA ↔ yA and bA ↔ xA that both metrics
agree. We conclude that the target manifold in the image of the temporal version of
the supergravity r-map is projective special para-Kähler.



Chapter 5

Five-dimensional black holes

In this chapter we will construct new black hole solutions to the class of theories in-
troduced in section 4.1, which generalises that of 5d, N = 2 supergravity coupled to
vector multiplets. Since we will only consider non-rotating black hole solutions we may
impose that backgrounds are static and purely electric. In this case we can take the
Lagrangian (4.13) as our starting point

e−1
4 L4 =

1

2
R4 −

3

4
aIJ(σ)

(
∂µσ

I∂µσJ − ∂µbI∂µbJ
)
. (5.1)

It is worth emphasising that this is an effective four-dimensional Lagrangian for static
and electric solutions of the full five-dimensional theory. This means that any solu-
tion of this Lagrangian corresponds to a static and electric solution of the original
five-dimensional theory and vica-versa. Since not all static and electric solutions will
correspond to black holes we must identify those which exhibit an event horizon and
asymptote to Minkowski space.

Some of the simplest types of solutions one may consider are extremal instantons.
We define these to be solutions that have a flat four-dimensional metric, and their
name comes from the fact that they lift to extremal black holes in five dimensions.
Such solutions can be found for generic models. A subclass of these solutions will
correspond to BPS black holes, as the BPS condition is stronger than the extremality
condition. This discussion on extremal solutions is not based on the author’s work,
but appears in [32]. We then go on to investigate non-extremal instanton solutions,
by deforming four-dimensional spacetime away from the flat limit. This discussion
is based on original works by the author [60, 59]. Since we construct non-extremal
solutions in a systematic way, we have a good understanding of their properties. One
interesting and novel feature that emerges is that in order for these solutions to lift to
non-extremal black holes in five dimensions with smooth scalar geometries the number
of independent integration constants must halve. This is similar to the extremal case,
and suggests that a first order rewriting of the solution is always possible, when in
general the equations of motion are second order. We also find a set of equations that
describe the near horizon geometry of the scalar fields, which directly generalise the
attractor equations for the extremal solution.

In section 5.1 we derive the equations of motion corresponding to the Lagrangian
(5.1). We then introduce a natural set of dual coordinates in which the equations of
motion take a particularly simple form. We then discuss extremal instanton solutions
(i.e. a flat four-dimensional metric) in 5.2. These solutions are shown to satisfy first
order equations and lift to extremal black holes in five dimensions. In section 5.3 we

59
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construct new non-extremal black hole solutions. We first consider STU -like models,
where we can integrate the second order equations of motion directly, and the general
solution can be found. We then investigate the criteria for solutions to lift to non-
extremal black holes in five dimensions. Finally, we discuss non-extremal solutions to
generic models, in which case we find solutions with as many independent scalar fields
as we have blocks in the metric. Since all metrics have at least one block this provides
a universal solution with constant scalar fields for all models, which is none other than
the Reissner–Nordström solution.

5.1 Equations of motion and dual coordinates

By considering the variation of (5.1) with respect to σI , bI and gµν , the equations of
motion are found to be

∇µ
[
aIJ∂µσ

J
]
− 1

2
∂IaJK

(
∂µσ

J∂µσK − ∂µbJ∂µbK
)

= 0 ,

∇µ
[
aIJ∂µb

J
]

= 0 ,

3

4
aIJ

(
∂µσ

I∂νσ
J − ∂µbI∂νbJ

)
=

1

2
Rµν .

The fact that the target manifold of the original theory is Hessian allows us to
introduce a natural set of dual coordinates σI , defined by

σI :=
∂

∂σI
H̃(σ) . (5.2)

For example in the STU model, where H = σ1σ2σ3, and therefore H̃ = −1
3 log σ1σ2σ3,

the dual coordinates are given by σI = −1
3(σI)−1. For supersymmetric theories (i.e.

when the Hesse potential is a cubic polynomial) the dual coordinates are always related
algebraically to the original coordinates. Note that by the chain rule we have

∂µσI = ∂2
I,JH̃(σ)∂µσ

J = aIJ∂µσ
J . (5.3)

For this reason it is often convenient to think of the metric aIJ as an operator which
raises and lowers indices; however one must be careful to note that an additional minus
sign is acquired when raising and lower the index of the coordinate compared to its
derivative

aIJσ
J = −σI , aIJ∂µσ

J = ∂µσI .

At the same time as introducing the dual coordinates for the σI fields, it is convenient
to define

∂µbI = aIJ∂µb
J . (5.4)

This places an integrability condition on the solutions to the bI fields, which will au-
tomatically be solved for all solutions presented in this thesis. Using the expressions
(5.3) and (5.4) we can write the remaining equations of motion as

∆σI +
1

2
∂Ia

JK(∂µσJ∂
µσK − ∂µbJ∂µbK) = 0 , (5.5)

∆bI = 0 , (5.6)

3

4
aIJ(∂µσI∂νσJ − ∂µbI∂νbJ) =

1

2
Rµν . (5.7)
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5.2 Extremal black holes

Recall that one particular feature of the four-dimensional extremal Reissner–Nordström
black hole is the fact that the three-dimensional part of the metric is flat (3.14). This
is therefore a natural metric ansatz to use when constructing extremal solutions [48].
In this case the Einstein equations (5.7) reduce to

1

4
aIJ(∂µσI∂νσJ − ∂µbI∂νbJ) = 0 . (5.8)

These can clearly be solved by setting

∂µσI = ±∂µbI , (5.9)

where the choice of sign is the same for all I. Upon making this ansatz the second
order equations of motion for both the σI and bI fields reduce to

∆σI = 0 .

Solutions can therefore be characterised in terms of the harmonic functions

HI := AI +
∑
α

QαI
|x− xα|2

, (5.10)

by setting σI = ±HI and ∂µbI = ∂µHI . Clearly the choice of sign corresponds to the
choice of sign in (5.9).

The solution given by (5.9) does not exhaust all the possibilities. A field rotation
matrix RIJ is defined to be a constant matrix that satisfies

aIJR
I
KR

J
L = aKL .

Clearly any field rotation matrix must be invertible, and we say it is trivial if R = ±1.
For example, since the metric of the STU model is diagonal a non-trivial field rotation
matrix is given by

R =

 ±1 0 0
0 ±1 0
0 0 ±1

 , (5.11)

where not all signs are equal. Geometrically the ansatz (5.9) corresponds to selecting a
totally isotropic submanifold of the target space, and a field rotation matrix corresponds
to a discrete isometry of this submanifold that is of the form

σI → σI , bI → RIJb
J .

The existence of non-trivial field rotation matrices depends on the particular model in
question, and they are not guaranteed to exist generically. However, when a non-trivial
field rotation matrix does exist we can generalise the solution (5.9) to

∂µσI = R J
I ∂µbJ , (5.12)

where R J
I is the inverse transpose of RIJ . These solutions can be written in terms

of the harmonic functions (5.10) by setting σI = R J
I HJ and ∂µbI = ∂µHI . Now we

see why the field rotation matrix gets its name: it rotates the charges of the solution
relative to the scalar fields. When lifting solutions to black holes in five dimensions,
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switching on a non-trivial field rotation matrix deforms a BPS solution into a non-BPS
solution [50, 31].

In order for these solutions (either with or without a field rotation matrix) to lift to
black holes in five dimensions we need to ensure that the solutions are asymptotically
Minkowski, i.e. eσ̃ → 1 as r → ∞. This places one constraint on the integration
constants AI . We are therefore left with a solution defined by n independent constants
of integration (the AI plus one constraint). This is half what one would expect from the
general solution to n second order differential equations obtained from the n physical
scalar fields. It suggests that extremal black hole solutions actually satisfy first order
differential equations (this is, of course, true since they are solutions to (5.9) or (5.12)).
For the BPS case this can be understood by the fact that they solve Killing spinor
equations, which are first order equations. Much has been discussed in the literature
about the relation between extremal black holes and first order equations, e.g. [56], and
it appears to be a common feature of all extremal solutions.

We will now show that the instanton solutions we have constructed to the four-
dimensional Euclidean theory lift to extremal black holes in five dimensions. This
amounts to retracing our steps in the dimensional reduction procedure. Firstly, the
Kaluza–Klein scalar can be read off from equation (4.9)

eσ̃ = H(σ0, . . . , σn)
1
d . (5.13)

Of course, to obtain a truly explicit formula for eσ̃ in terms of the solution σI = ±HI we
would need to solve equation (5.2), which relates the coordinates to the dual coordinates
and is model dependent. This amounts to solving what is referred to in the literature
as the ‘generalised stabilisation equations’, which describe the scalar fields in terms of
harmonic functions. Even for algebraic equations this may not be possible in closed
form, and so if we want to write down explicit solutions we must rely on known models
where these equations are solvable. We can substitute (5.13) into (4.7) to obtain an
expression for the five-dimensional line element. As discussed, imposing eσ̃ → 1 as
r →∞ ensures that this line element is asymptotically flat, and imposes one constraint
on the integration constants AI . The area of the event horizon only depends on the
charges, and we therefore observe attractor behaviour.

Now that we have an expression for the KK-scalar, we can find expressions for
the hI coordinates through (4.8). From these we obtain expressions for the physical
scalar fields φx using (4.2). The solutions to the gauge fields are given in terms of
harmonic functions through (5.4) and (4.6). This determines the solution of the five-
dimensional fields completely. Note that the five-dimensional dual scalar fields hI satisfy
the expression

e−σ̃hI = HI , (5.14)

which generalises the known form of the generalised stabilisation equations in five di-
mensions [45, 32].

Let us end with the example of the STU model, where we can write down a solution
explicitly [32]. For concreteness we shall consider the spherically symmetric solution
with just one centre

HI = AI +
QI
r2

,

where we are using coordinates such that r = 0 corresponds to the horizon. The BPS
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solution is given by

ds2 = −(H0H1H2)−
2
3dt2 + (H0H1H2)

1
3 δµνdx

µdxν ,

hI =
(H0H1H2)

1
3

HI
.

The physical scalar fields are given through (4.2) by

φ1 =
H0

H1
, φ2 =

H0

H2
.

On the horizon they take the values that depend only on the charges and not the values
at radial infinity, i.e. they exhibit attractor behaviour

φ1 −→
r→0

Q0

Q1
, φ2 −→

r→0

Q0

Q2
.

This behaviour can be characterised by the expressions

ZhI −→
r→0

QI ,

where we have defined the five-dimensional central charge Z := −hIQI . The above
expression is the standard form of the attractor equations in five dimensions [44, 45].
In order for the solution to asymptote to Minkowski space, i.e. eσ̃ → 1 as r → ∞, we
must impose the following constraint on the integration constants

A0A1A2 = 1 .

We are left with a solution characterised by the electric charges and two independent
integration constants, as we expected from our previous discussion. This solution is a
direct generalisation of the five-dimensional extremal Reissner–Nordström black hole,
which can be obtained in the limit where all three harmonic functions are proportional.
One may obtain non-BPS solutions to this model by introducing a non-trivial field
rotation matrix of the form (5.11).

5.3 Non-extremal black holes

In this section we present the non-extremal black hole solutions found in [60, 59] and
discuss their properties. We will first present solutions of STU -like models, which is
a class of models that includes the STU model and particular generalisations thereof.
For this class of models we find the general solution with a full set of independent scalar
fields. We then discuss solutions to generic models. By decomposing the target space
metric aIJ into block diagonal form (where possible) we obtain solutions with as many
independent scalar fields as there are blocks in the metric. Since all metrics can be said
to contain at least one block, this provides one universal solution with constant scalar
fields to all models, which is the Reissner–Nordström solution.

Since we are interested in non-extremal solutions we will not impose that the four-
dimensional metric is flat, but we will impose that all fields are spherically symmetric.
This is, in fact, enough to completely fix the four-dimensional metric. This can be seen
as follows: the four-dimensional part of a general spherically symmetric five-dimensional
metric can be written as [49]

ds2
4 = e6A(τ)dτ2 + e2A(τ)dΩ2

(3) ,
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where τ is an affine radial parameter, which means the Laplace operator takes the form

∆5 =
d2

dτ2
+ terms independent of τ .

Since we have imposed that solutions are spherically symmetric the LHS of the Einstein
equations when either µ 6= τ or ν 6= τ must vanish. On the RHS of these equations
there are terms proportional to Ä − 2e4A, which implies that Ä − 2e4A = 0. This can
be integrated once to get Ȧ2 = c2 + e4A, where we choose c2 to be positive so that we
avoid solutions periodic in the radial coordinate. By relabelling y = e−2A this can be
written as

ẏ = ±2
√
c2y2 + 1 ,

and the solution is given by

y(τ) =
sinh(±2cτ +D)

c
.

To ensure that y is strictly positive in the range 0 < τ < +∞ we choose the positive
sign and D = 0. We can then write the solution as

e−2A(τ) = y(τ) =
sinh(2cτ)

c
.

The four-dimensional line element then takes the form

ds2
4 =

c3

sinh3(2cτ)
dτ2 +

c

sinh(2cτ)
dΩ(3) . (5.15)

This is, in fact, nothing other than the four-dimensional part of the standard Reissner–
Nordsrtöm solution1. To see this we define the new radial coordinate r through the
expression

r2 =
ce2cτ

sinh(2cτ)
.

We can then write the four-dimensional line element as

ds2
4 = W−

1
2dr2 +W

1
2 r2dΩ2

3 ,

where

W = 1− 2c

r2
= e−4cτ . (5.16)

This is precisely the four-dimensional part of the five-dimensional non-extremal Reissner–
Nordström solution [60], according to the decomposition (4.7). When constructing so-
lutions it is often easier to work with the affine parameter τ rather than the standard
radial coordinate. This is valid in the range 0 < τ < +∞, where radial infinity is given
by the limit τ → 0+ and the outer horizon is given by τ → +∞. The radial coordinate
r is valid up to the inner horizon at r = 0, with the outer horizon located at r2 = 2c.
Harmonic functions with respect to the flat four-dimensional metric, which we shall
always denote by HI , can be written in terms of τ as

HI := AI +
QI
r2

=

(
AI +

QI
2c

)
− QI

2c
e−4cτ .

1This fact was first noted in the reduction from four to three dimensions in [30], and one may refer
to [49, 103] for the corresponding argument in arbitrary dimensions.
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Let us return to the equations of motion. We have seen that after imposing spherical
symmetry the four-dimensional line element reduces to (5.15), in which case the (τ, τ)
component of the Ricci tensor is given by Rττ = 6c2. The equations of motion can
therefore by written as

σ̈I +
1

2
∂Ia

JK(σ̇J σ̇K − ḃI ḃK) = 0 , (5.17)

b̈I = 0 , (5.18)

1

4
aIJ(σ̇I σ̇J − ḃI ḃJ) = c2 . (5.19)

The equations (5.17) and (5.18) follow from the effective one-dimensional action

L =
1

4
aIJ(σ)

(
σ̇I σ̇J − ḃI ḃJ

)
,

and must then be supplemented by (5.19), which can by interpreted as a Hamiltonian
constraint. The equations (5.17) can be solved immediately to give

ḃI = QI ,

where the QI are the constant electric charges carried by the solution.
We are left to find solutions to (5.17) and (5.18), which may lift to non-extremal

black holes in five dimensions. We should recover our extremal solutions by taking the
limit c→ 0. Unfortunately the presence of the non-extremality parameter c makes the
task of finding solutions considerably harder than the extremal case, as it entangles the
second order equations in a highly non-trivial manner. We will only be able to find a
complete set of independent solutions to STU -like models. However, we can still find
solutions to generic models where some scalar fields are proportional to each other.

5.3.1 STU-like models

We define an STU -like model to be a model with Hesse potential of the form

H(h0, . . . , hn) =
1

d(d− 1)
(h0h1 . . . hn)

d
(n+1) ,

or models that can be brought to this form by a linear transformation. We will only
consider coordinate patches where the coordinates hI are pointwise non-zero, and by
definition the Hesse potential is strictly positive. The supergravity STU model is given
by the special case n = 2, and d = 3.

For this class of models the dual coordinates are given by

σI = − 1

(n+ 1)σI
.

The metric aIJ is diagonal, and can be written in terms of the dual coordinates as

aIJ = (n+ 1)diag
(
σ2

0, . . . , σ
2
n

)
.

The derivative of the inverse is given by

∂Ia
JK = diag

(
− 2

σ0
, . . . ,− 2

σn

)
.
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We can therefore write the equations of motion (5.17) and (5.19) as

σ̈I −
[
(σ̇I)

2 − (QI)
2
]

σI
= 0 , (5.20)∑

I

[
(σ̇I)

2 − (QI)
2
]

(n+ 1)σ2
I

= 4c2 . (5.21)

Observe that for this class of models the second order equations of motion completely
decouple from one another, and, in fact, can be integrated explicitly to give the general
solution to this system of equations

σI = ±QI
BI

sinh

(
BIτ +BI

AI
QI

)
. (5.22)

Substituting this solution into the constraint equation (5.21) gives us an expression for
c in terms of the integration constants BI :

1

(n+ 1)
(B0)2 + . . .+

1

(n+ 1)
(Bn)2 = 4c2 . (5.23)

The solution (5.22) is invariant under the exchange BI ↔ −BI , and so without loss
of generality we may assume that the BI are non-negative. Taking the extremal limit
c → 0 at this stage forces the BI to vanish due to (5.23), and so the general solution
reduces to the spherically symmetric extremal solution.

We will now lift these solutions back up to five dimensions. The first task is to use
equation (4.9) to determine the KK-scalar for this solution

e−σ̃ = (−1)(n+1)(n+ 1)(σ0σ1 . . . σn)
d

(n+1) .

This is all we need to obtain the five-dimensional line element through (4.7)

ds2
5 = − 1

(n+ 1)2 (σ0 . . . σn)
2

(n+1)

dt2

+ (−1)(n+1)(n+ 1) (σ0 . . . σn)
1

(n+1)

(
c3

sinh3 2cτ
dτ2 +

c

sinh 2cτ
dΩ2

(3)

)
.

We now need to determine whether or not these solutions correspond to black holes.
Firstly, to ensure that the solutions are asymptotically Minkowski we must require that
eσ̃ → 1 as τ → 0+. This places one constraint on the integration constants AI . We
then need to check that the area of the horizon is finite. This is calculated to be

A = lim
τ→+∞

(−1)(n+1)(n+ 1) (σ0 . . . σn)
1

(n+1)
c

sinh 2cτ
.

Since the BI are non-negative the highest order term in the numerator is given by
exp( 1

(n+1)(B0 + . . . + Bn)τ). In order for the limit to converge this must cancel with

the highest order term in the denominator, which is given by exp(2cτ). We conclude
that in order to have a finite area we must require

1

(n+ 1)
(B0 + . . .+Bn) = 2c . (5.24)
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We now focus on the physical scalar fields, which can be written in terms of the dual
coordinates as

φx =
σ0

σx
.

In order for these fields to take finite values on the horizon the highest order term
in the numerator, exp(B0τ), must cancel with the highest term in the denominator,
exp(Bxτ). If we combine this with the requirement of having a finite area (5.24), we
conclude that the integration constants BI must all be equal to 2c

B0 = . . . = Bn = 2c . (5.25)

The solution (5.22) therefore reduces to

σI = ±QI
2c

sinh

(
2cτ + 2c

AI
QI

)
. (5.26)

This solution has n independent integration constants: the (n+1) constants AI subject
to the constraint eσ̃ → 1 at τ → 0+. One would naively expect a solution to n second
order equations of motion to have 2n independent integration constants. The fact that
the number of constants drops by half suggests that we can rewrite the solution in
terms of first order equations. This is certainly the case, as the solution (5.26) satisfies
the first order equations

σ̇I = ±
√
Q2
I + 4c2σ2

I .

We can also write the solution in terms of gradient flow equations by identifying a
generating function W =W(σI , QI , c) that satisfies

σ̇I = ∂IW .

Such a generating function is given by

W := ± 1

(n+ 1)

∑
I

√4c2 + (n+ 1)2Q2
Iσ

I2 + c log


√

4c2 + (n+ 1)2Q2
Iσ

I2 − 2c√
4c2 + (n+ 1)2Q2

Iσ
I2 + 2c

 ,

which takes a similar form as the STU model in the four-dimensional case [104]. In the
extremal limit the generating function reduces simply toW = ±σIQI , which reproduces
the result of [32].

Let us collect everything together and write down the final solution for STU -like
models that describes a non-extremal black hole. The line element is given by

ds2
5 = − W

(H0 . . .Hn)
2

(n+1)

dt2 + (H0 . . .Hn)
1

(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,

where

W = 1− 2c

r2
, HI = ∓(n+ 1)

QI
2c

sinh

(
2c
AI
QI

)
+
QIe

−2c
AI
QI

2

1

r2

 ,

and the scalar fields are given in terms of the radial coordinate r or τ by

φx =
σ0

σx
, σI =

−1

(n+ 1)

HI√
W

= ±QI
2c

sinh

(
2cτ + 2c

AI
QI

)
.



CHAPTER 5. FIVE-DIMENSIONAL BLACK HOLES 68

The constant parameters AI must satisfy the constraint

lim
τ→0+

eσ̃ = 1 .

For the case where n = 2 and d = 3 this reproduces the non-extremal black hole
solutions of 5D, N = 2 supergravity originally found in [105, 106]. Taking the extremal
limit c → 0 one recovers the spherically symmetric extremal solution, and we find no
free parameters other than c appearing in the non-extremal solution.

On the horizon the physical scalar fields no longer depend only on the charges, but
acquire a dependence on the value of the moduli at infinity

φx −→
r→0

Q0e
2c
A0
Q0

Qxe
2cAx
Qx

,

and the generalised stabilisation equations now read

e−σ̃hI =
HI√
W

.

The solution satisfies the expression

ZhI −→
r→0

QIe
2c
AI
QI ,

where we have defined Z = −hIQIe
2c
AI
QI . These equations can be said to generalise the

attractor equations to include non-extremal solutions. Note that the term ‘attractor
equations’ is now just a label – the non-extremal solutions no longer exhibit attractor
behaviour. Taking the extremal limit c → 0 we recover the known five-dimensional
attractor equations [44, 45]

5.3.2 Block diagonal models

We may classify any metric according to the number of blocks that appear when it is
written as a matrix, e.g. the following metric has two blocks:

aIJ =



∗ . . . ∗ 0 0 0
...

. . .
... 0 0 0

∗ . . . ∗ 0 0 0
0 0 0 ∗ . . . ∗

0 0 0
...

. . .
...

0 0 0 ∗ . . . ∗


.

One may, of course, perform row operations to bring a metric into a form where it has
as small blocks as possible. Such row operations correspond to taking general linear
combinations of the scalar fields. Generically a metric will only contain one block, but
for various classes of models it will split into more than one block. For example a Hesse
potential of the form

H(σ0, . . . , σn) = H1(σ0, . . . , σk−1)H2(σk, . . . , σn) ,

has a corresponding metric with at least two blocks: one of size k× k, and a second of
size l × l where l = (n + 1 − k). STU -like models have diagonal metrics, which have
the maximum number of blocks possible.
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For any model we can find solutions, based on the solutions to STU -like models
presented above, where the number of independent fields depends on the number of
blocks in the metric. As a concrete example we will consider a model which splits into
two blocks of sizes k× k and l× l, with k ≥ 2, as the generalisation to the case of more
blocks is straight-forward2. The first thing to do is to set all scalar fields within each
block proportional to one another

σ0 ∝ . . . ∝ σk−1 , σk ∝ . . . ∝ σn ,

which implies that the dual coordinates σI are also proportional to one another

σ(0) := σ0 ∝ . . . ∝ σk−1 , σ(1) := σk ∝ . . . ∝ σn .

This identification is motivated by the fact that if one takes the solution to STU -like
models (5.22) as an ansatz then the scalar fields in each block must be proportional
to one another [60]. We have labelled the two independent fields by σ(0) and σ(1), in
terms of which all other scalar fields can be deduced. We correspondingly fix the ratio
between the charges in each block by setting

Q(0) := Q0 =
σ1

σ0
Q1 = . . . =

σk−1

σ0
Qk−1 ,

Q(1) := Qk =
σk+1

σk
Qk = . . . =

σn
σk
Qn .

Since the first block contains h0 and has size k ≥ 2 the physical scalar fields in the first
block are all constant

φ1 =
σ1

σ2
φ2 = . . . =

σ1

σk−1
φk−1 = const .

There is only one independent physical scalar field corresponding to the second block

φ(1) := φk =
σk

σk+1
φk+1 = . . . =

σk

σn
φn .

After making these identifications between the fields in each block, the equations of
motion simplify to

σ̈(0) −
[
(σ̇(0))

2 − (Q(0))
2
]

σ(0)
= 0 , (5.27)

σ̈(1) −
[
(σ̇(1))

2 − (Q(1))
2
]

σ(1)
= 0 , (5.28)

ψ0

[
(σ̇(0))

2 − (Q(0))
2
]

σ2
(0)

+ ψ1

[
(σ̇(1))

2 − (Q(1))
2
]

σ2
(1)

= 4c2 , (5.29)

where ψ0 and ψ1 are constants depending on the particular ratios between the scalar
fields in each block, and must satisfy ψ0 + ψ1 = 1. The second order equations (5.27)
and (5.28) can be integrated to find

σ(0) = ±
Q(0)

B(0)
sinh

(
B(0)τ +B(0)

A(0)

Q(0)

)
, (5.30)

σ(1) = ±
Q(1)

B(1)
sinh

(
B(1)τ +B(1)

A(1)

Q(1)

)
. (5.31)

2If a model does not have at least one block of size 2× 2 then it automatically falls into the class of
STU -like models already discussed.
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Substituting these solutions into (5.29) places one constraint on the B(0,1) integration
constants

ψ0B
2
(0) + ψ1B

2
(1) = 4c2 . (5.32)

Let us now lift this solution to five dimensions. First, the KK-scalar is given through
(4.9) by

e−σ̃ = µ
(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1) ,

where µ is a constant that depends on the ratios between the scalar fields. The require-
ment that the solution is asymptotically Minkowski places one constraint on A(0,1).
The line element is given through (4.7) by

ds2
5 = − 1

µ
(
σ(0)

) 2k
(n+1)

(
σ(1)

) 2l
(n+1)

dt2

+ µ
(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

(
c3

sinh3 2cτ
dτ2 +

c

sinh 2cτ
dΩ2

(3)

)
.

We must now check if this describes a black hole. The area of the horizon is given by

A = lim
τ→+∞

µ
(
σ(0)

) k
(n+1)

(
σ(1)

) l
(n+1)

c

sinh 2cτ
.

In order for the limit to converge the highest order term in the numerator, given by

exp(
(

k
(n+1)B(0) + l

(n+1)B(1)

)
τ), must exactly cancel with the highest order term in the

denominator, given by exp(2cτ). This condition is only satisfied if

k

(n+ 1)
B(0) +

l

(n+ 1)
B(1) = 2c .

The single independent physical scalar field φ(1) is given by

φ(1) ∼
σ(0)

σ(1)
.

The physical scalars therefore only take finite values on the horizon if B(0) = B(1).
Combined with the requirement that the area is finite we conclude that

B(0) = B(1) = 2c .

Collecting everything together, we find that the full solution for our example of a metric
with two blocks is given by

ds2
5 = − W(

H(0)

) 2k
(n+1)

(
H(1)

) 2l
(n+1)

dt2 +
(
H(0)

) k
(n+1)

(
H(1)

) l
(n+1)

(
dr2

W
+ r2dΩ2

(3)

)
,

where

W = 1− 2c

r2
, H(0,1) = ±µ

Q(0,1)

2c
sinh

(
2c
A(0,1)

Q(0,1)

)
+
Q(0,1)e

−2c
A(0,1)
Q(0,1)

2

1

r2

 .

The scalar fields are given by

φ(1) ∼
σ(0)

σ(1)
, σ(0,1) =

1

µ

H(0,1)√
W

= ±
Q(0,1)

2c
sinh

(
2cτ + 2c

A(0,1)

Q(0,1)

)
.

Setting the size of the second block to zero corresponds to taking l = 0, k = (n+ 1)
and µ = ψ0 = 1. In this case the solution reduces simply to the five-dimensional non-
extremal Reissner–Nordström solution [60]. Since all metrics contain at least one block
this provides a universal solution with constant scalar fields for all models.



Chapter 6

The c-map

In this chapter we reduce a theory of 4d, N = 2 supergravity coupled to an arbitrary
number of vector multiplets over a timelike or spacelike dimension. This induces a
map from the target manifold of the four-dimensional theory to the target manifold of
the three-dimensional theory called the c-map. In the case of reduction over space the
target manifold in the image of the c-map is a quaternion Kähler manifold [26]. We
will present the proof, for the first time, that in the case of reduction over time the
target manifold in the image of the c-map is para-quaternion Kähler. This will appear
in a later publication [107].

We will actually present a new formulation of the c-map that is manifestly sym-
plectically covariant and presented entirely in terms of real Darboux coordinates. In
order to do so we must first reformulate the geometry of the target manifold before
reduction, i.e. projective special Kähler geometry, in terms of real coordinates. This is
a useful result in its own right, as this formulation of projective special Kähler geometry
is symplectically covariant, so long as a U(1) gauge symmetry is not fixed. It also gives
us another tool with which to study projective special Kähler geometry. This section
is based on the publication [19] by the author.

We will perform the dimensional reduction of 4d, N = 2 supergravity coupled to
an arbitrary number of vector multiplets over a timelike or spacelike dimension. This
is formulated initially using the standard special complex coordinates. We then make
a coordinate redefinition, analogous to the r-map, where we define new coordinates
that absorb a degree of freedom from the metric to lift a hypersurface constraint (the
D-gauge). Only then do we formulate the resulting three-dimensional Lagrangian in
terms of special real coordinates. We then investigate the geometry of the target
manifold of the reduction over a spacelike and timelike dimension separately. We first
recover the known result for spacelike reduction using the real formulation, before
proving the new result in the timelike case. Using our formalism we also prove that
two integrable and metric compatible complex structures exist on the target manifold
of both the spacelike and timelike c-map. One of these structures is associated with
the quaternion structure after spacelike reduction, while the other is associated with
the para-quaternion structure of timelike reduction.

We review the real formulation of affine special Kähler geometry in 6.1.1, before
providing a new real formulation of projective special Kähler geometry in 6.1.2. We
then perform the dimensional reduction of 4d,N = 2 supergravity coupled to vector
multiplets in section 6.2 using complex coordinates, and then formulate the resulting
target manifold geometry in terms of real coordinates. In section 6.3 we perform some
necessary technical calculations: we construct a basis of real vielbein one-forms on
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the co-tangent space of the target manifold both before and after reduction, and then
calculate the exterior derivatives of these one-forms. We use these calculations to
recover the results of Ferrara and Sabharwal in section 6.4, and go further to prove
that the timelike c-map has a para-quaternion Kähler target manifold in section 6.5.

6.1 Real formulation of special Kähler geometry

It is useful both physically and mathematically to consider the real formulation of
projective special Kähler geometry.

Physically it means that fields transform in a simpler way under symplectic trans-
formations, as special real coordinates transform as a vector and the metric in real
coordinates transforms as a tensor. It is therefore much easier to formulate special
Kähler geometry and the c-map in a symplectically covariant way. This, in turn,
greatly simplifies the task of finding stationary solutions to 4D, N = 2 supergravity.

Mathematically, the real formulation of affine special Kähler and projective special
Kähler geometry provides an alternative framework for studying the geometry of these
manifolds, which is often clearer than the standard complex formulation. It also has
clear advantages when considering the c-map. For the standard spacelike c-map it
will help expose some interesting new features, such as the existence of an additional
integrable complex structure. For the timelike c-map we will use it to prove that the
target manifold is be para-quaternion Kähler, and there exist two integrable complex
structures.

6.1.1 Real formulation of affine special Kähler geometry

We begin by decomposing a special holomorphic coordinate system XI and conjugate
coordinate system FI into real and imaginary parts

XI = xI + iuI(x, y) ,

FI = yI + ivI(x, y) .

Recall from remark 2.3 that the real functions xI , yI form a flat Darboux coordinate
system, which we shall call a special real coordinate system. We will now formulate
the properties of affine special Kähler geometry in terms of these real coordinates. It
will be useful to label xI , yI as a single set of coordinates

qa := (xI , yI)
T ,

which has the advantage that qa transforms linearly under symplectomorphisms. Affine
special Kähler manifolds admit not just one special connection but a whole S1 family
[11]. Parametrising S1 by α, the family is generated by the transformation

∇(α) = eαI ◦ ∇ ◦ e−αI .

Each connection in this family has its own adapted set of special real coordinates,
given by the real parts of eiα(XI , FI). Since neither physics nor geometry depend on
the choice of special connection we may just as well take any special real coordinates
in this family. For example we could take (uI , vI)

T as special real coordinates, which
are flat Darboux coordinates with respect to the ∇(−π/2) special connection.
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We would like to determine a formula for the metric in the special real coordinate
system, i.e. find a matrix Hab such that

gN = Re
(
NIJdX

I ⊗ dX̄J
)

= Habdq
a ⊗ dqb . (6.1)

Proposition 6.1 (Freed). The metric Hab is the Hessian of a real function H.

Proof. Since special real coordinates qa are Darboux coordinates the coefficients of the
symplectic form Ω are constant

Ω = 1
2Ωabdq

a ∧ dqb , Ωab :=

(
0 1n

−1n 0

)
.

The symplectic form is related to the metric by Ω = 1
2g(J ·, ·), which we can express in

components as
Hab = 2ΩacJ

c
b . (6.2)

We now take derivatives of the metric coefficients with respect to qd, and by making
use of (6.2) and the fact that ∇X(JY ) = ∇Y (JX) we get

∂

∂qd
Hab = 2Ωac

∂

∂qd
Jcb = 2Ωac

∂

∂qb
Jcd =

∂

∂qb
Had .

It follows from the standard theory of Hessian structures that we can locally write the
metric coefficients as

Hab =
∂2H

∂qa∂qb
,

for some real function H [70].

The Hesse potential is related to the holomorphic prepotential by a Legendre trans-
formation that replaces uI by yI as independent variables [108]

H(x, y) = 2ImF (X(x, y))− 2yIu
I(x, y) , (6.3)

and is also proportional to the Kähler potential [11]

−2H(x, y) = −i
(
XI(x, y)F̄I(x, y)− FI(x, y)X̄I(x, y)

)
. (6.4)

We need to take second derivatives of the Hesse potential in order to find the metric
coefficients Hab. Taking derivatives of the first term of (6.3) we find

∂

∂xI
2Im(F )

∣∣∣
x,u(x,y)

=

(
∂

∂xI
+
∂uJ

∂xI
∂

∂uJ

)
2Im(F )

∣∣∣
x,u

=

[(
∂

∂XI
+

∂

∂X̄I

)
+ i

∂uJ

∂xI

(
∂

∂XJ
− ∂

∂X̄J

)]
2Im(F )

∣∣∣
X,X̄

= 2vI + 2yI
∂uJ

∂xI
,

and

∂

∂yI
2Im(F )

∣∣∣
x,u(x,y)

=

(
∂uJ

∂yI

∂

∂uJ

)
2Im(F )

∣∣∣
x,u

= i
∂uJ

∂yI

(
∂

∂XJ
− ∂

∂X̄J

)
2Im(F )

∣∣∣
X,X̄

= 2yJ
∂uJ

∂yI
.
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Using these results, we find that the first derivatives of the Hesse potential are propor-
tional to uI , vI :

Ha :=
∂H

∂qa
=

(
∂H

∂xI
,
∂H

∂yI

)
=

(
2vI
−2uI

)
. (6.5)

Before we can take second derivatives of H we need to prove some identities. First,
from the fact that ∂∂F = 0 we have

(dxI + iduI) ∧ (dyI + idvI) = 0 .

The imaginary part of the above expression tells us that

∂vI
∂xJ

=
∂vJ
∂xI

,

∂vI
∂yJ

= −∂u
J

∂xI
,

∂uI

∂yJ
=
∂uJ

∂yI
.

Next, by computing the Jacobian of the transformation (X, X̄)↔ (x, u) we have

∂vI
∂uJ

=

(
∂

∂XJ
+

∂

∂X̄J

)
1

2i

(
FI − F̄I

)
= 1

2RIJ ,

∂yI
∂uJ

=

(
∂

∂XJ
+

∂

∂X̄J

)
1

2

(
FI + F̄I

)
= −1

2NIJ ,

∂uI

∂xJ
= − ∂vI

∂yJ
= −∂u

K

∂yJ

∂vI
∂uK

= N IKRKJ .

Using these expression we can compute the second derivatives of H

∂2H

∂xI∂xJ
= NIJ +RIKN

KLRLJ ,

∂2H

∂xI∂yJ
= −2NJKRKI ,

∂2H

∂yI∂yJ
= 4N IJ .

We can therefore write the components of the metric in terms of NIJ and RIJ as

Hab =

(
N +RN−1R −2RN−1

−2N−1R 4N−1

)
. (6.6)

It is also useful to note the relation between the differentials of the special holomorphic
and the special real coordinates:

dXM = dxM + i

(
∂uM

∂xK
dxK +

∂uM

∂yI
dyI

)
= dxM + i

(
NMIRIKdx

K − 2NMIdyI

)
. (6.7)

Using equations (6.6) and (6.7) it is straightforward to verify that Hab satisfies (6.1),
which shows that NIJ and Hab represent the same metric in terms of special holomor-
phic and special real coordinates respectively. The inverse metric is given by

Hab =

(
N−1 1

2N
−1R

1
2RN

−1 1
4(N +RN−1R)

)
.
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Using special real coordinates has the advantage that the metric is manifestly sym-
plectically covariant: Hab transforms as a rank two tensor while dqa transforms as a
covector. This is in contrast with FIJ , which transforms fractionally linearly [11].

We end this section by noting that since Ω = 1
2gJ it follows that

Ω−1 = 2J−1g−1 = −2Jg−1 ⇒ gΩ−1g = −2gJg−1g = −4Ω ,

which we can write in components as

HabΩ
bcHcd = −4Ωad . (6.8)

This also gives us a formula for the complex structure

J = −1
2Ω−1H = −1

2ΩabHbc ∂a ⊗ dqc . (6.9)

6.1.2 Real formulation of projective special Kähler geometry

We are now ready to formulate projective special Kähler geometry in terms of special
real coordinates. Rather than work at the level of the projective special Kähler mani-
fold, we prefer to work with horizontal fields on the corresponding conic affine special
Kähler manifold. This is in contrast to the real formulation presented in [22], which
works exclusively at the level of the projective special Kähler manifold. We will see
that the benefit of our approach is that full symplectic covariance is kept manifest, so
long as the U(1) symmetry is not fixed. Our aim will be to write the real part of the
tensor field

gIJ̄ dX
I ⊗ dX̄J =

(
− NIJ

X̄NX
+

(NX̄)I(NX)J
(X̄NX)2

)
dXI ⊗ dX̄J

in terms of special real coordinates qa = (xI , yI)
T . This tensor field can be projected

down to give the metric on the projective special Kähler manifold. Throughout this
section let N̄ denote a positive definite projective special Kähler manifold, and N the
corresponding conic affine special Kähler manifold.

We begin by noting that for a conic affine special Kähler manifold the Hesse poten-
tial is a homogeneous function of degree two, and so we have

Habq
b = Ha , Habq

aqb = 2H , qa = HabHb . (6.10)

Using the above expressions along with (6.8) one may calculate the following useful
identities:

HabΩ
bcHc = −4Ωabq

b , (6.11a)

HabHbcdΩ
de = −ΩabHbcdH

de . (6.11b)

Recall that on a conic affine special Kähler manifold we have a homothetic Killing
vector field ξ and Killing vector field Jξ. These are written in special real coordinates
as

ξ = qa
∂

∂qa
,

Jξ =
1

2
HaΩ

ab ∂

∂qb
.
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The next step is to find an expression for the matrix gIJ̄ in terms of special real
coordinates. Recall from (6.4) that the Hesse potential is related to the Kähler potential
by −2H = e−K, where K is defined as in section 2.3. Since gIJ̄ = ∂2

I,J̄
K we can write

this matrix as

gIJ̄ = − 1

H

∂2H

∂XI∂X̄J
+

1

H2

∂H

∂XI

∂H

∂X̄J
, (6.12)

which leaves us to calculate the derivatives of the Hesse potential with respect to X̄,X.
The first derivatives are calculated to be

∂H

∂XI
=
∂xJ

∂XI

∂H

∂xJ
+
∂yJ
∂XI

∂H

∂yJ

= 2vJ
∂xJ

∂XI
− 2uJ

∂yJ
∂XI

= vI − 1
2 (RIJ + iNIJ)uJ , (6.13)

and by a similar calculation

∂H

∂X̄I
= vI − 1

2 (RIJ − iNIJ)uJ . (6.14)

We can then calculate the second derivatives of the Hesse potential

∂2H

∂X̄J∂XI
= 1

2NIJ . (6.15)

Substituting (6.13), (6.14) and (6.15) into (6.12) we are left with the expression

gIJ̄ = − 1

2H
NIJ +

1

H2

(
vI − 1

2 (RIK + iNIK)uK
) (
vJ − 1

2 (RJL − iNJL)uL
)
. (6.16)

We shall now consider the real part of (6.16) contracted with dXI ⊗dX̄J . The first
term can be deduced simply from (6.1). For the second term we first use (6.10) and
(6.5) to write

xI = 2N IJvJ −N IJRJKu
I ,

yI = RIJN
JKvK −

1

2
(NIJ +RIKN

KLRLJ)uJ .

Using this together with (6.7) we find that

Re
{(
vI − 1

2(RIK + iNIK)uK
) (
vJ − 1

2(RJL − iNJL)uL
)
dXI ⊗ dX̄J

}
= (vIvJ + yIyJ)dxI ⊗ dxJ − (vIu

J + yIx
J)dxI ⊗ dyJ

− (uIvJ + xIyJ)dyI ⊗ dxJ + (uIuJ + xIxJ)dyI ⊗ dyJ .

This expression can be simplified by making the observation that

HaHb = 4

(
vIvJ −vIuJ
−uIvJ uIuJ

)
,

and

Ωacq
cΩbdq

d =

(
yIyJ −yIxJ
−xIyJ xIxJ

)
.



CHAPTER 6. THE C-MAP 77

We then have the simple expression

1

H2

(
(vIvJ + yIyJ)dxI ⊗ dxJ − (vIu

J + yIx
J)dxI ⊗ dyJ

− (uIvJ + xIyJ)dyI ⊗ dxJ + (uIuJ + xIxJ)dyI ⊗ dyJ
)

=

(
1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d

)
dqa ⊗ dqb .

Putting everything together, by defining the matrix

H
(0)
ab := − 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d ,

we finally obtain the desired expression:

Re
(
gIJ̄ dX

I ⊗ dX̄J
)

= H
(0)
ab dq

a ⊗ dqb . (6.17)

One can interpret H
(0)
ab as the horizontal lift of the projective special Kähler metric,

expressed in terms of special real coordinates. It is straightforward to check that H
(0)
ab

is degenerate along the directions ξ and Jξ.
Let us take a moment to analyse expression (6.17) for the projective special Kähler

metric in terms of real coordinates. The one-forms dual to the vector fields ξ and Jξ
are given by

ξ[ =
1

2H
Hadq

a , (Jξ)[ =
1

H
dqaΩacq

c ,

and plugging ξ into the metric on the conic affine special Kähler manifold gives gN (ξ, ξ) =
gN (Jξ, Jξ) = 2H. We can therefore write the expression (6.17) in a coordinate free
way as

H(0) = − gN
gN (ξ, ξ)

+ ξ[ ⊗ ξ[ + (Jξ)[ ⊗ (Jξ)[ .

The meaning of each term now becomes clear. The first term is a rescaling of the
metric, which turns the homothety ξ into an isometry, as can be seen by

Lξ
(

gN
gN (ξ, ξ)

)
=
LξgN
gN (ξ, ξ)

− gN
gN (ξ, ξ)2

(LξgN )(ξ, ξ) = 0 ,

where we used the fact that LξgN = 2gN . This ensures that it can be projected down
to give the metric on the projective special Kähler manifold. The second term ensures
that the H(0) is degenerate along the ξ direction, and the third term ensures it is also
degenerate along the Jξ direction. It is therefore clear that H(0) corresponds to the
horizontal lift of the metric on the projective special Kähler manifold N̄ .

At this point it is useful to introduce a new tensor field by first defining the function

H̃ := −1
2 log(2H) , (6.18)

and then taking second derivatives

H̃ab := ∂2
a,bH̃ .

This tensor is a non-degenerate rank two tensor field on N , and can therefore be
interpreted as a new Hessian metric. It is negative definite along all directions except
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ξ, where it is positive definite. Using the homogeneity properties of H we establish the
useful identity

H̃abq
aqb = 1 . (6.19)

We can write the tensor H(0) in terms of H̃ab as

H
(0)
ab = H̃ab −

1

4H2
HaHb +

1

H2
(Ωacq

c)(Ωbdq
d) ,

and so we have

Re
(
gIJ dX

I ⊗ dX̄J
)

=

[
H̃ab −

1

4H2
HaHb +

1

H2
(Ωacq

c)(Ωbdq
d)

]
dqa ⊗ dqb . (6.20)

We now turn our attention to the coupling matrix of the vector kinetic terms, which
can be written as (3.7)

NIJ = RIJ + iIIJ = F̄IJ + i
(NX)I(NX)J

XNX
. (6.21)

These matrices give the couplings of the gauge field terms in the Lagrangian of four-
dimensional supergravity coupled to vector multiplets, and will play an important role
later on when we consider the c-map. Rather than trying to calculate the matrix NIJ
in terms of special real coordinates, which does not give a particularly nice expression,
we will instead focus on the matrix

Ĥab :=

(
I +RI−1R −RI−1

−I−1R I−1

)
. (6.22)

This matrix appears as the coupling matrix of the vector kinetic terms after dimen-
sional reduction, and we will see that it can be written simply in terms of special real
coordinates. It is a non-degenerate rank two matrix on N and can therefore be inter-
preted as a metric (which is negative definite). Note that so far we have introduced
three different metrics on N , which have signatures

Hab H̃ab Ĥab

( −︸︷︷︸
ξ

−︸︷︷︸
Jξ

+ . . .+︸ ︷︷ ︸
{ξ,Jξ}⊥

) (+−− . . .−) (−−− . . .−) .

Proposition 6.2 . The three metrics Hab, H̃ab and Ĥab are related through the expres-
sion

H̃ab = − 1

2H
Hab +

1

2H2
HaHb

=
1

H
Ĥab −

2

H2
(Ωacq

c)(Ωbdq
d) . (6.23)

Proof. We begin by writing down the explicit relations between the real and imaginary
parts of FIJ = 1

2(RIJ + iNIJ) and the real and imaginary parts of NIJ = RIJ + iIIJ :

RIJ =
1

2
RIJ +

1

2

(
(NX)I(NX)J

XNX
− (NX̄)I(NX̄)J

X̄NX̄

)
,

IIJ = −1

2
NIJ +

1

2

(
(NX)I(NX)J

XNX
− (NX̄)I(NX̄)J

X̄NX̄

)
.
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We will now write every term in the block decomposition of ĤIJ given by expression
(6.22) in terms of special real coordinates. First, the inverse of IIJ is given by

IIJ = −2N IJ +
2

(XNX̄)

(
XIX̄J + X̄IXJ

)
= −2N IJ +

2

H

(
xIxJ + uIuJ

)
,

where we used 2H = X̄NX. This provides the bottom right term. Contracting this
with RIJ we find

−IIKRKJ = N IKRKJ −
2

(XNX̄)
(XI F̄J + X̄IFJ)

= N IKRKJ −
2

H
(xIyJ + uIvJ) ,

which provides the upper-right and bottom-left terms. Finally, for the upper-left term
we have

IIJ +RIKIKLRLJ = −1

2
NIJ −

1

2
RIKN

KLRLJ +
2

(XNX̄)
(FI F̄J + F̄IFJ)

= −1

2
NIJ −

1

2
RIKN

KLRLJ +
2

H
(yIyJ + vIvJ) .

Putting everything together we find(
I +RI−1R −RI−1

−I−1R I−1

)
=

(
−1

2N −
1
2RN

−1R RN−1

RN−1 −2N−1

)
+

2

H

(
yIyJ + vIvJ −(yIx

J + vIu
J)

−(xIyJ + uIvJ) xIxJ + uIuJ

)
,

which we can write as

Ĥab = −1

2
Hab +

2

H

(
1

4
HaHb + Ωacq

cΩbdq
d

)
.

From the definition of H̃ab we also have

H̃ab = − 1

2H
Hab +

1

2H2
HaHb ,

which completes the proof.

6.2 Dimensional reduction

Our starting point is the bosonic part of the Lagrangian of four-dimensional N = 2
supergravity coupled to n vector multiplets (with Lorentzian signature)

e−1
4 L4 = 1

2R4 − gAB̄∂µ̂zA∂µ̂z̄B + 1
4IIJ F̂

I
µ̂ν̂F̂

Jµ̂ν̂ + 1
4RIJ F̂

I
µ̂ν̂

˜̂
F Jµ̂ν̂ . (6.24)

Note that gAB̄ is positive definite and IIJ is negative definite, which ensures that both
the scalars and gauge fields have the standard sign in front of their kinetic terms. As in
the case of the r-map, we prefer not to work with the coordinates zA, which parametrise
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the physical co-dimension two hypersurface, but rather the special coordinates XI ,
which live in the larger ambient space. To describe the same physics we must at some
point restrict XI to the physical hypersurface by imposing two real constraints, which
fix dilatations and U(1) phase transformations. Since these are symmetries of the
Lagrangian this may be done before or after calculating the equations of motion. We
will fix the dilatations immediately by imposing the so-called D-gauge

−i(XI F̄I − FIX̄I) = 1 . (6.25)

For the U(1) symmetry we take a different approach. We could fix this symmetry by
applying any appropriate condition that fixes the overall phase of the XI coordinates,
e.g.

Im(X0) = 0 , (6.26)

however we will choose not to fix this symmetry until we solve the equations of motion.
The reason, as we shall see shortly, is that any U(1) gauge fixing condition that involves
just the XI coordinates will break the symplectic covariance of the Lagrangian. How-
ever, one may impose a symplectically covariant gauge fixing condition that involves
both the XI coordinates and certain components of the gauge fields, but since this
requires imposing part of the field equations we postpone this discussion until later. In
the Lagrangian we must make the replacement

gAB̄(z)∂µ̂z
A∂µ̂z̄B −→ gIJ̄(X, X̄)∂µ̂X

I∂µ̂X̄J .

We can now write the Lagrangian (6.24) as

e−1
4 L4 = 1

2R4 − gIJ∂µ̂XI∂µ̂X̄J + 1
4IIJ F̂

I
µ̂ν̂F̂

Jµ̂ν̂ − 1
8RIJ F̂

I
µ̂ν̂F̂

J
ρ̂σ̂e
−1
4 ε̂µ̂ν̂ρ̂σ̂ , (6.27)

where it is understood that the XI are subject to the constraint (6.25) and a U(1)
gauge fixing condition that will be imposed later. Here we have also written out the
fourth term explicitly. The coupling matrices are given directly in terms of XI , X̄I

through the expressions (3.7) and (3.8).
We will reduce the Lagrangian (6.27) over a timelike or spacelike dimension simul-

taneously using the ε notation

ε =

{
+1 timelike ,

−1 spacelike .

As we shall see, the only difference between reduction over a timelike or spacelike di-
mension will appear in the signs in front of the various terms in the reduced Lagrangian.
We begin by decomposing the metric in a manner adapted to the dimensional reduction
procedure (see (3.20))

ds2
4 = −ε eφ (dy + Vµdx

µ)2 + e−φgµνdx
µdxν . (6.28)

The three-dimensional metric gµν will have Lorentzian signature if we reduce over
space or Euclidean signature if we reduce over time. For the gauge fields we make the
decomposition (see (3.22))

ÂI = ζIdy +
(
V I
µ − ζIVµ

)
dxµ ,

where we have added a term proportional to Vµ to ensure that the reduced Lagrangian
is manifestly invariant under three-dimensional gauge transformations [19]. We now
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perform the dimensional reduction following the prescription outlined in section 3.3,
and obtain the three-dimensional Lagrangian

e−1
3 L3 = 1

2

(
R3 − 1

2∂µφ∂
µφ+ 1

4ε e
2φV µνVµν

)
− gIJ∂µXI∂µX̄J

+ 1
4e
φIIJ(F Iµν + ζIVµν)(F Jµν + ζJV µν)

− 1
2ε e
−φIIJ∂µζI∂µζJ − 1

2RIJ(F Iµν + ζIVµν)∂ρζ
Je−1

3 εµνρ .

(6.29)

In the first line we have collected together terms that descend from the Einstein–Hilbert
term and scalar kinetic term. Note that the scalar kinetic term is completely unaffected
by the reduction. Terms that descend from the gauge fields appear in the second and
third lines.

The above Lagrangian encodes the dynamics of the theory in terms of a three-
dimensional metric, scalar fields and gauge vectors. However, in three dimensions one
can dualise gauge fields into scalar fields, and we can therefore write a dual Lagrangian
that encodes the dynamics of the theory purely in terms of the metric and scalar fields.
One can determine this dual Lagrangian by adding to (6.29) the Lagrange multiplier
term

e−1
3 LLm = 1

2ε ε
µνρ
(
F Iµν∂ρζ̃I − Vµν∂ρ

(
φ̃− 1

2ζ
I ζ̃I

))
.

By taking the variation of L̃3 := L3 + LLm with respect to Vµν and F Iµν one obtains
the algebraic equations of motion

Vµν = 2e−2φεµνρ

(
∂ρφ̃+ 1

2(ζI∂ρζ̃I − ζ̃I∂ρζI)
)
,

F Iµν = −ε e−φIIJεµνρ(∂ρζ̃J −RJK∂ρζK)− ζIVµν .

These algebraic equations can be substituted back into L̃3 to obtain the dual Lagrangian
(dropping the tilde)

e−1
3 L3 = 1

2R3 − gIJ∂µXI∂µX̄J − 1
4∂µφ∂

µφ

− e−2φ
(
∂µφ̃+ 1

2(ζI∂µζ̃I − ζ̃I∂µζI)
)2

− 1
2ε e
−φ
[
IIJ∂µζI∂µζJ + IIJ

(
∂µζ̃I −RIK∂µζK

)(
∂µζ̃J −RJL∂µζL

) ]
.

(6.30)

The above three-dimensional Lagrangian is in the standard form that one often finds
in the literature. The scalar fields describe a non linear sigma model with a quaternion
Kähler target manifold equipped with the so-called Ferrara–Sabharwal metric [26].
However, inspired by our treatment of the r-map, we find it convenient to make a field
redefinition. This will not only simplify the Lagrangian but also eliminates the need to
impose the D-gauge. We must still impose a U(1) gauge or work with gauge invariant
quantities. This is achieved by introducing the new complex scalar fields Y I , defined
by

Y I := eφ/2XI . (6.31)

The constraint given by the D-gauge (6.25) now reads

−i(Y I F̄I − FI Ȳ I) = eφ ,

which just gives an expression for the KK-scalar eφ in terms of the new coordinates.
Note that since the matrices IIJ and RIJ are homogeneous of degree zero it follows
that

IIJ(X, X̄) = IIJ(Y, Ȳ ) , RIJ(X, X̄) = RIJ(Y, Ȳ ) .
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The matrix gIJ̄ is homogeneous of degree −2, and so

gIJ̄(X, X̄) = eφgIJ̄(Y, Ȳ ) .

It follows that the Lagrangian takes the same form as before

e−1
3 L3 = 1

2R3 − gIJ(Y, Ȳ )∂µY
I∂µȲ J − 1

4∂µφ∂
µφ

− e−2φ
(
∂µφ̃+ 1

2(ζI∂µζ̃I − ζ̃I∂µζI)
)2

− 1
2ε e
−φ
[
IIJ∂µζI∂µζJ + IIJ

(
∂µζ̃I −RIK∂µζK

)(
∂µζ̃J −RJL∂µζL

) ]
,

(6.32)

however the fields Y I are not constrained by the D-gauge, and the KK-scalar is a
dependent field φ = φ(Y, Ȳ ). There is still a U(1) symmetry of the Lagrangian that
corresponds to overall phase transformations of the Y I fields. As previously explained,
this symmetry will be gauge fixed only after we have calculated the equations of motion.

6.2.1 The real formulation

We will now rewrite the Lagrangian (6.32) in terms of the special real coordinates we
introduced in the previous section. The first step is to make the decomposition

Y I = xI + iuI(x, y) ,

FI = yI + ivI(x, y) ,

and then gather together xI , yI to form the special real coordinates qa := (xI , yI)
T .

Using (6.17) we can write the scalar kinetic term as

gIJ∂µY
I∂µȲ J =

[
− 1

2H
Hab +

1

4H2
HaHb +

1

H2
(Ωacq

c)(Ωbdq
d)

]
∂µq

a∂µqb . (6.33)

The Kaluza–Klein scalar can be related to the Hesse potential simply by

eφ = −i(Y I F̄I − FI Ȳ I) = −2H ,

and so the kinetic term for the KK-scalar can be written as

1
4∂µφ∂

µφ =

[
1

4H2
HaHb

]
∂µq

a∂µqb . (6.34)

We now consider the terms descending from the gauge fields. It is convenient to first
define q̂a := (1

2ζ
I , 1

2 ζ̃I)
T , which are related to the field strengths by

∂µζ
I = F̂ Iµ0 ,

∂µζ̃I = ĜI|µ0 .
(6.35)

In this case we can now write the terms descending from the gauge fields as

1
2ε e
−φ
[
IIJ∂µζI∂µζJ + IIJ

(
∂µζ̃I −RIK∂µζK

)(
∂µζ̃J −RJL∂µζL

) ]
= ε

1

H
Ĥab∂µq̂

a∂µq̂b .
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We can then use proposition 6.2 to write this in terms of the Hesse potential

ε
1

H
Ĥab∂µq̂

a∂µq̂b = ε

[
− 1

2H
Hab +

1

2H2
HaHb +

2

H2
(Ωacq

c)(Ωbdq
d)

]
∂µq̂

a∂µq̂b . (6.36)

Using the expressions (6.33), (6.34) and (6.36) we can write the Lagrangian (6.32) in
terms of special real coordinates as

e−1
3 L3 = 1

2R3 −
[
− 1

2H
Hab +

1

2H2
HaHb

](
∂µq

a∂µqb − ε ∂µq̂a∂µq̂b
)

− 1

H2

(
qaΩab∂µq

b
)2

+ ε
2

H2

(
qaΩab∂µq̂

b
)2

− 1

4H2

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)2

.

It is convenient at this stage to introduce the function H̃, as defined in equation (6.18),
and its second derivatives H̃ab = ∂2

a,bH̃. The Lagrangian now takes the simpler form

e−1
3 L3 = 1

2R3 − H̃ab

(
∂µq

a∂µqb − ε ∂µq̂a∂µq̂b
)

− 1

H2

(
qaΩab∂µq

b
)2

+ ε
2

H2

(
qaΩab∂µq̂

b
)2

− 1

4H2

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)2

.

(6.37)

This formula is one of the key results in this thesis, as it provides a new formulation of
the c-map in terms of special real coordinates and their corresponding Hesse potential.

Note that the Lagrangian (6.37) still has a U(1) gauge symmetry which descends
from overall phase transformations of the XI coordinates. This is encapsulated by the
fact that the ‘metric’ on the target manifold is degenerate along the Jξ direction. In
order for the coordinates qa, q̂a, φ̃ to parametrise the physical submanifold we must
gauge fix these U(1) transformations by imposing any appropriate constraint. This can
only be achieved in a symplectic covariant way by imposing some of the field equations,
and so we postpone the discussion of gauge fixing the U(1) until later.

6.3 Real vielbeins

In order to expose the geometry of the c-map target space M described target manifold
of the Lagrangian (6.37) we must first revisit the geometry of the projective special
Kähler base manifold N̄ . We will construct a real orthonormal basis of the co-tangent
bundle (i.e. a vielbein basis), and calculate certain properties of the transformation
matrices that map a real coordinate basis into a vielbein basis. We also compute the
Levi-Civita connection in terms of real coordinates.

We will use these results to construct a real vielbein basis of the co-tangent bundle
on the target space M after performing the c-map on N̄ . We end by calculating the
exterior derivatives of this vielbein basis, which will be used in the next two sections
to calculate the Levi-Civita connection in the case of spacelike and timelike reduction
respectively.

6.3.1 Real vielbein basis of the PSK base manifold

Let us consider a basis eM of the co-tangent bundle of a projective special Kähler (PSK)
manifold N̄ with dimR N̄ = 2n, in which the metric and complex structure are given
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by

ηMN =

(
1k,l 0
0 1k,l

)
, JMN =

(
0 1n

−1n 0

)
.

where 1k,l =

(
−1k 0

0 1l

)
and clearly k+ l = n. We will call such a basis of one-forms

a real vielbein basis. Here we are considering the real formulation of projective special
Kähler geometry as presented in section 6.1, so we work with horizontal objects on the
corresponding conic affine special Kähler (CASK) manifold. We define the matrices
P M
a as the projection matrices from a special real coordinate basis to the vielbein

basis, i.e.
P M
a dqa := eM .

These projection matrices will play an important role in what follows. Note that
the tangent space of the CASK manifold has 2n + 2 dimensions, where as a basis on
the PSK manifold only has 2n dimensions. Hence the matrices P M

a project out two
directions, which precisely correspond to the homothety ξ and isometry Jξ. This fact
is encapsulated in the following lemma:

Lemma 6.1 . The projection matrices P M
a satisfy the following properties:

(i) P M
a qa = 0 , and P M

a ΩabHb = 0 .

(ii) P M
a P N

b ηMN = − 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d .

(iii) P M
a HabP N

b = − 1

2H
ηMN .

Proof. Part (i) follows immediately from the fact that eM are tangent to the PSK
manifold, and so eM (ξ) = eM (Jξ) = 0. For part (ii) we recall from the discussion in
section 6.1.2 that the metric on the PSK manifold can be pulled back to given the
following horizontal rank two tensor field on the CASK manifold:

H(0) =

[
− 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d

]
dqa ⊗ dqb .

By definition the projection matrices satisfy

H
(0)
ab =

(
P M
a P N

b ηMN

)
dqa ⊗ dqb ,

which proves (ii).

For part (iii) we first contract H
(0)
cb with Hac to find

HacH
(0)
cb = Hac

[
− 1

2H
Hab +

1

4H2
HaHb +

1

H2
Ωacq

cΩbdq
d

]
= − 1

2H
δab +

1

4H2
qaHb +

1

H2
HacΩceq

eΩbdq
d

= − 1

2H
δab +

1

4H2
qaHb −

1

4H2
ΩacHcΩbdq

d ,

where in the last line we used the identity (6.11a). Contracting this with P M
a we find

P M
a HacH

(0)
cb = − 1

2H
P M
b ,
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where we have used part (i). Next we can use part (ii) to write this as

P M
a HacP N

c ηNPP P
b = − 1

2H
ηMNηNPP P

b ,

and since ηNPP P
b is of rank n we can remove it from both sides to get

P M
a HacP N

c = − 1

2H
ηMN .

The projection π from the CASK manifold N to the PSK manifold N̄ is holomor-
phic, and so by remark 2.2 the complex structures are related by dπ◦JCASK = JPSK◦dπ,
which we can write in components as

JMNP N
a = P M

b Jba .

It follows that the complex structure on N can be written as

JMP = HPMΩ−1PNηNP . (6.38)

It is straightforward to check that this indeed gives J2 = −IdTM .
The Levi-Civita connection one-form ωMN on the PSK manifold N̄ is uniquely

defined by being metric compatible and torsion-free. Recall from proposition 2.1 that
the metric compatibility condition is satisfied iff

ωMN ∈ so(2k, 2l) ⇒ ωMN = ωMQη
QN = −ωNM ,

while the torsion-free condition is given by

deM = −ωMN ∧ eN .

After performing the calculation, the Levi-Civita connection one-form is found to be

ωMP =
(
−(dqΩq)PMΩ−1PN +HdP M

a HabP N
b −HP M

a HabdP N
b

)
ηNP .

The Levi-Civita connection and the complex structure satisfy the identity

JMNω
N
P = ωMNJ

N
P , (6.39)

which will be particularly important later when transforming between real and complex
coordinates.

6.3.2 Real vielbein basis after performing the c-map

We now turn our attention to the target manifold M after performing the c-map with
base space N̄ . From the Lagrangian (6.37) we can read off the metric on M :

g = H̃ab

(
dqa ⊗ dqb − ε dq̂a ⊗ dq̂b

)
+

1

H2
(qΩdq)⊗ (qΩdq)− ε 2

H2
(qΩdq̂)⊗ (qΩdq̂)

+
1

4H2

(
dφ̃+ 2q̂Ωdq̂

)
⊗
(
dφ̃+ 2q̂Ωdq̂

)
.
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To expose the geometry it is more convenient to write the metric in terms of H
(0)
ab rather

that H̃ab

g = H
(0)
ab dq

a ⊗ dqb +
1

4H2

(
Hadq

a
)
⊗
(
Hbdq

b
)

− ε
[
H

(0)
ab dq̂

a ⊗ dq̂b +
1

4H2

(
Hadq̂

a
)
⊗
(
Hbdq̂

b
)

+
1

H2
(qΩdq̂)⊗ (qΩdq̂)

]
+

1

4H2

(
dφ̃+ 2q̂Ωdq̂

)
⊗
(
dφ̃+ 2q̂Ωdq̂

)
.

Let us define the following vielbein basis of the co-tangent bundle of M :

eM := P M
a dqa , êM := −P M

a dq̂a ,

u :=
1

2H
Hadq

a , û :=
1

2H
Hadq̂

a ,

w :=
1

2H

(
dφ̃+ 2q̂Ωdq̂

)
, v̂ :=

1

H
dq̂Ωq .

The metric can then be written in terms of these vielbeins as

g = eM ⊗ eNηMN + u⊗ u+ w ⊗ w − ε
(
êM ⊗ êNηMN + û⊗ û+ v̂ ⊗ v̂

)
.

It is also useful to define the one-form v in analogy with v̂, i.e.

v :=
1

H
dqΩq ,

however this one-form does not appear in the expression for metric.

Lemma 6.2 . The vector fields corresponding to the vielbein one-forms are given by(
eM
)−1

= −2HP M
a Hab ∂

∂qb
,

u−1 = qa
∂

∂qa
,

w−1 = 2H
∂

∂φ̃
,

(
êM
)−1

= 2HP M
a Hab ∂

∂q̂b
+ 4HP M

a HabΩbcq̂
c ∂

∂φ̃
,

û−1 = qa
∂

∂q̂a
− 2q̂aΩabq

b ∂

∂φ̃
,

v̂−1 = 1
2HaΩ

ab ∂

∂q̂b
+Haq̂

a ∂

∂φ̃
.

Proof. Direct calculation. Make use of lemma 6.1.

We would now like to take the exterior derivative of the elements of the vielbein
basis. First, let us define the functions

HMNP :=
(
−2HP Q

a HadηQM

)(
−2HP R

b HbeηRN

)(
−2HP S

c HcfηSP

)
Hdef .

Lemma 6.3 . The rank three tensor field HMNP satisfies the following identities:
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(i) P M
a P N

b P P
c HMNP = Habc ,

(ii) H
(
P M
a dHabP N

b

)
ηNP = − 1

4H η
MQHQNP e

N ,

(iii) HMNPJ
N
RJ

P
S = HMRS .

Proof. Direct calculation. Make use of lemma 6.1 and identities (6.8) and (6.11).

We are now in a position to calculate the exterior derivatives of the basis of real
vielbein one-forms

deM = −ωMP ∧ eP ,
du = 0 ,

dw = 2w ∧ u+ 2v̂ ∧ û+ JNP ê
P ∧ êQηNQ ,

dû = û ∧ u+ v ∧ v̂ + eN ∧ êQηNQ ,
dv̂ = v̂ ∧ u+ û ∧ v + JNP e

P ∧ êQηNQ ,
dêM = êM ∧ u+ eM ∧ û+ JMNe

N ∧ v̂ + JMN ê
N ∧ v

− ωMP ∧ êP −
1

4H
ηMQHQNP e

N ∧ êP .

From these simple expression we will be able to recover the celebrated result of Ferrara
and Sabharwal, while going on to prove that the timelike c-map is para-quaternion
Kähler. We will also prove the existence of two metric compatible integrable complex
structure in the image of both the spacelike and timelike c-map.

6.4 Quaternion Kähler structure of spacelike reduction

In this section we will specialise to the spacelike c-map, in which case we must make
the choice ε = −1 in the calculations of sections 6.2 and 6.3.

In [26] the following complex vielbein basis of the complexified co-tangent bundle
is defined:

uC := ie−φ/2
(
XIdζ̃I − FIdζI

)
,

vC := e−φ
[

1
2de

φ + i
(
dφ̃+ 1

2(ζIdζ̃I − ζ̃IdζI)
)]

,

ECA := −ie−φ/2P A
L NLI

(
dζ̃I −NIJdζJ

)
,

eCA := P A
I dXI = e A

i dzi .

We can write the complex one-forms in terms of the real vielbein one-forms, introduced
in the previous section, as:

uC = ie−φ
(
Y Idζ̃I − FIdζI

)
= −i 1

2H

[
xIdζ̃I − yIdζI + i

(
uIdζ̃I − vIdζI

)]
= −i 1

2H

[
2qaΩabdq̂

b + i (Hadq̂
a)
]

= û+ iv̂ ,

vC = − 1

2H

[
d(−H) + i

(
dφ̃+ 1

2(ζIdζ̃I − ζ̃IdζI)
)]

= u+ iw .
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ECA = −2i(δAM + iJAM )P M
a HabΩbcq̂

c

= −i(δAM + iJAM )P M
a Jab q̂

b

= −i(δAM + iJAM )JMNP N
a q̂a = (δAM + iJAM )êM ,

eCA = (δAM + iJAM )eM .

Gathering these together, we can write the complex vielbein basis in terms of the real
vielbein basis simply as

uC = û+ iv̂ , eCA = eA + iJANe
N ,

vC = u+ iw , ECA = êA + iJAN ê
N .

We would like to take the exterior derivatives of the complex vielbeins. Although
these have already been calculated using complex vielbeins in [26], we will choose to
calculate them independently using real vielbeins. If our calculations are correct then
we should recover the results of [26]. Firstly, we can write the derivative of uC as

duC = û ∧ u+ v ∧ v̂ + iv̂ ∧ u+ iû ∧ v + êN ∧ eN + iJNP e
P ∧ êN

=
(
− u− iv

)
∧ uC − ĒCA ∧ eCA .

Since

−iv =
X̄NdX −XNdX̄

2X̄NX
,

this is in agreement with [26]. The derivative of vC is given by

dvC = 2iw ∧ u+ 2iv̂ ∧ û+ iJNP ê
P ∧ êN

= uC ∧ ūC + vC ∧ v̄C + ECA ∧ ĒCA ,

which is again in agreement with [26]. The derivative of eCA is given by

deCA = −(δAM + iJAM )ωMN ∧ eN .

Comparing this to the complex connection

deCA = −ωCA
B ∧ eCB ,

we find the standard relation between the real and complex connections:

ωCA
B = 1

2(δAM + iJAM )ωMN (δNB − iJNB) .

Finally, taking derivatives of ECA we find

dECA =
(
− u+ iv

)
∧ ECA − ūC ∧ eCA − ωCA

B ∧ ECB

+
i

2X̄NX
δADF̄DBC ē

CB ∧ ĒCC .

This is again in agreement with [26]. In this calculation we used the fact that

(δMA + iJMA)(δNB + iJNB)(δPC + iJPC)HMNP = iF̄ABC

⇒ (δMA + iJMA)HMBP ê
P = iF̄ABCĒ

CC .
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Gathering everything together we can write the derivatives of the complex vielbeins as

duC =
(
− u− iv

)
∧ uC − ĒCA ∧ eCA ,

dvC = uC ∧ ūC + vC ∧ v̄C + ECA ∧ ĒCA ,

deCA = −ωCA
B ∧ eCB ,

dECA =
(
− u+ iv

)
∧ ECA − ūC ∧ eCA − ωCA

B ∧ ECB

+
i

2X̄NX
δADF̄DBC ē

CB ∧ ĒCC ,

which are in precise agreement with [26].
It is useful to gather together the complex vielbein one-forms into a 2 × (2n + 2)

matrix

UAm :=
1√
2

(
uC eCA v̄C ĒCA

vC ECA −ūC −ēCA
)
.

The metric can then be written as g = εABρmnUAm ⊗ UBn, where

εAB =

(
0 1
−1 0

)
, ρmn =

(
0 1n+1

−1n+1 0

)
.

The matrix UAm can be written as UAm = hA ⊗ Em where

hA =
1√
2

(1+ iI,K+ iJ) , Em = (e1, . . . , en+1,Ke1, . . . ,Ken+1) ,

e1, . . . , en+1 = û, eA

Ie1, . . . , Ien+1 = v̂, JAMe
M

Je1, . . . ,Jen+1 = w, JAM ê
M

Ke1, . . . ,Ken+1 = u, êA .

The endomorphisms I,J,K can then be completely determined by the above expres-
sions and the requirement that satisfy the quaternion relations I2 = J2 = K2 = −1
and IJ = K.

The Levi-Civita connection one-form Ω is uniquely defined through the expression

dUAm + ΩAmBn ∧ UBn = 0 ,

and the requirement that Ω ∈ so(4k, 4l + 4). For any quaternion Kähler manifold one
can decompose the Levi-Civita one-form as

Ω = p⊗ 12n+2 + 12 ⊗
(

q t
−t̄ q̄

)
. (6.40)

The matrices p, q, t satisfy the following properties:

Tr(p) = 0 , q† = −q ,
p† = −p , tT = t ,

which imply that

p ∈ sp(1) ,

(
q t
−t̄ q̄

)
∈ sp(n+ 1) .
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One can determine the matrices p, q, t through the expression

deAI + PABe
BI + qIJe

AJ + tIJε
ABēBJ = 0 , (6.41)

where

eAI =

(
uC vC

eCA ECA

)
, εABēBJ =

(
v̄C −ūC
ĒCA −ēCA

)
.

Theorem 6.1 (Ferrara–Sabharwal). The target manifold in the image of the space-
like c-map is quaternion Kähler.

Proof. The Levi-Civita connection takes the form (6.40), where the matrices p, q, t are
given by [26]

p =


1
4(vC − v̄C)− 1

4

X̄NdX − dX̄NX
X̄NX

−uC

ūC −1
4(vC − v̄C) + 1

4

X̄NdX − dX̄NX
X̄NX

 ,

q =


−3

4(vC − v̄C)− 1
4

X̄NdX − dX̄NX
X̄NX

ĒCA

−ECA ωCA
B −

1
4(vC − v̄C)δAB + 1

4

X̄NdX − dX̄NX
X̄NX

δAB

 ,

t =

 0 0

0
i

2X̄NX
δADF̄DBCĒ

CC

 .

Since Tr(p) = 0, q† = −q, p† = −p, and tT = t it follows that

p ∈ sp(1) ,

(
q t
−t̄ q̄

)
∈ sp(n+ 1) ,

and, hence, the Levi-Civita connection one-form Ω takes values in the Lie algebra
sp(n+ 1) · sp(1). By corollary 2.1 the Riemann holonomy group is given by Hol(D) ⊂
Sp(n+ 1) · Sp(1) and the manifold is quaternion Kähler.

We can write these in terms of real vielbeins as

p =

 i
2w + i

2v −û− iv̂

û− iv̂ − i
2w −

i
2v

 ,

q =

 −3i
2 w + i

2v
(
δAM − iJAM

)
êM

−
(
δAM + iJAM

)
êM (δAM + iJAM )ωMB −

i
2(w + v)δAB

 ,

t =

 0 0

0 −(δAM + iJAM ) 1
4HHMBP ê

P

 .
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The complex structure I acts on the complex one-forms by

I(uC) = iuC ,

I(vC) = −ivC ,
I(eCA) = ieCA ,

I(ECA) = −iECA .

Consider also a second complex structure, I′, defined by

I
′(uC) = iuC ,

I
′(vC) = ivC ,

I
′(eCA) = ieCA ,

I
′(ECA) = −iECA .

Note that the only difference between the two complex structures is in the action of
vC. The complex structure I is part of the quaternionic structure, but I′ is not.

Theorem 6.2 . The complex structures I and I′ are integrable.

Proof. Consider first I. A basis of T ∗(1,0)M is given by {uC, v̄C, eCA, ĒCA}. Since no
(0,2)-form appears in the exterior derivatives of these basis vectors the distribution is
integrable by the Newlander-Nirenberg theorem [35].

A basis of T ∗(1,0)M for I′ is given by {uC, vC, eCA, ĒCA}. Again by the Newlander-
Nirenberg theorem it is an integrable distribution.

6.5 Para-quaternion Kähler structure of timelike reduc-
tion

In this final section on the c-map we present the proof that the target manifold in
the image of the timelike c-map is para-quaternion Kähler by explicitly computing the
Levi-Civita connection one form.

In order to gain some intuition from the calculations of Ferrara and Sabharwal in
the spacelike case, we will first make a symplectic rotation of the vielbein basis so that
it is in a form more useful for comparison with timelike reduction.

6.5.1 Symplectic rotation of Ferrara–Sabharwal basis

We will now make the particular symplectic rotation of the Ferrara–Sabharwal basis
given by the symplectic matrices

T =
1

(1 + i)

(
i −i
1 1

)
, S =

1

(1 + i)



i i
−i i

−i i
−i i

−1 1
−1 −1

−1 −1
−1 −1


.
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Under such a rotation the vielbeins transform as

UAm −→ U ′Am =

1√
2

(
Im(vC) + iRe(uC) Im(eC) + iRe(EC) Re(vC)− iIm(uC) −Re(eC) + iIm(EC)
Re(vC) + iIm(uC) −Re(eC)− iIm(EC) −Im(vC) + iRe(uC) −Im(eC) + iRe(EC)

)
.

One can write this as a transformation of the individual vielbein one-forms, which
transform as

uC −→ u′C = Im(vC) + iRe(uC) = w + iû ,
vC −→ v′C = Re(vC) + iIm(uC) = u+ iv̂ ,
eCA −→ e′CA = Im(eCA) + iRe(ECA) = JAMe

M + iêA ,
ECA −→ E′CA = −Re(eCA)− iIm(ECA) = −eA − iJAM êM .

The benefit of making this rotation is that the vielbein basis is now better adapted to
the timelike version of the c-map.

Before the rotation the Levi-Civita connection one-form Ω is defined through the
expression

dUAm + ΩAmBn ∧ UBn = 0 .

After the rotation it is given by a new Ω′ defined by

dU ′Am + Ω′AmBn ∧ U ′Bn = 0 .

The two are related by the expression

Ω′AmBn = TABS
m
nΩBn Cr(T

−1)C D(S−1)r s .

Let us write the 2× 2 matrix p as

p =

(
x y
−ȳ −x

)
,

where x is purely imaginary. The matrix p satisfies Tr(p) = 0 and p† = −p. First, note
that

T−1 =
(1 + i)

2

(
−i 1
i 1

)
.

We can then write

p′ := TpT−1 =

(
−iIm(y) ix+ iRe(y)

−ix+ iRe(y) iIm(y)

)
.

The matrix p′ satisfies Tr(p′) = 0 and p′† = −p′ which implies that p′ ∈ sp(1).
Let us write the (n+ 1)× (n+ 1) matrices q and t as

q =


a α

−ᾱ A

 , t =


0 0

0 B

 ,
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where a is purely imaginary, A† = −A and BT = B. The matrices q and t satisfy
q† = −q and tT = t. The inverse of S is given by

S−1 =
(1 + i)

2



−i −1
i −1

i −1
i −1

−i 1
−i −1

−i −1
−i −1


.

Under the transformation

S

(
q t
−t̄ q̄

)
S−1 ,

the matrices q and t transform as

q −→ q′ =


0 −iIm(α)

−iIm(α) Re(A)− iIm(B)

 ,

t −→ t′ =


Im(a) −iRe(α)

−iRe(α) −Im(A) + iRe(B)

 .

One can easily show that the matrices q′ and t′ satisfy q′† = −q′ and t′T = t′.
We can now plug in the values of x, y, a, α,A,B, found in the previous section, to

obtain the connection in the rotated basis. These are given by

p′ =

 iv̂ −1
2(w + v)− iû

1
2(w + v)− iû −iv̂

 ,

q′ =

 0 iJAM ê
M

iJAM ê
M ωAB + i

4HJ
AMHMBP ê

P

 ,

t′ =

 −
3
2w + 1

2v −iêA

−iêA −JAMωMB −
i

4H δ
AMHMBP ê

P + 1
2(w + v)δAB

 .

6.5.2 Para-quaternion Kähler structure

We now specialise to the reduction over time, so we must make the choice ε = 1 in the
calculations of sections 6.2 and 6.3.
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Let us define the following real basis of the co-tangent bundle of the target manifold
in the image of the timelike c-map:

uR := −w + û , ūR := −w − û ,
vR := u+ v̂ , v̄R := u− v̂ ,
eRA := JAMe

M + êA , ēRA := JAMe
M − êA ,

ERA := −eA − JAM êM , ĒRA := −eA + JAM ê
M .

We can collect these into a 4n+ 4 component vielbein

UAm :=
1√
2

(
uR eRA v̄R ĒRA

vR ERA −ūR −ēRA
)
.

The metric can then be written as g = εABρmnUAm ⊗ UBn, where

εAB =

(
0 1
−1 0

)
, ρmn =

(
0 1n+1

−1n+1 0

)
.

The vielbein can be written as UAm = hA ⊗ Em, where

hA =
1√
2

(
1+ Ĩ, K̃+ J̃

)
, Em = (e1, . . . , en+1, K̃e1, . . . , K̃en+1) ,

e1, . . . , en+1 = −w, JAMeM

Ĩe1, . . . , Ĩen+1 = û, êA

J̃e1, . . . , J̃en+1 = v̂,−JAM êM

K̃e1, . . . , K̃en+1 = u,−eA .

The endomorphisms Ĩ, J̃, K̃ can be completely determined by requiring that they satisfy
the quaternion relations Ĩ2 = J̃2 = 1 , K̃2 = −1 and ĨJ̃ = K̃.

The Levi-Civita connection one-form Ω is uniquely defined through the requirement
that it is torsion-free

dUAm + ΩAmBn ∧ UBn = 0 ,

and that it is metric compatible, i.e. Ω ∈ so(2n+2, 2n+2). For any para-QK manifold
one can decompose the Levi-Civita one-form into

Ω = p⊗ 12n+2 + 12 ⊗
(

q t
−tT −qT

)
. (6.42)

The matrices p, q, t satisfy the following properties:

Tr(p) = 0 ⇒ p ∈ sl(2,R) ≈ sp(2,R) ,

t = tT ⇒
(

q t
−tT −qT

)
∈ sp(2n+ 2,R) .

Hence Ω ∈ sp(2,R).sp(2n+ 2,R) ⊆ so(2n+ 2, 2n+ 2).

Theorem 6.3 . The target manifold in the image of the timelike c-map is para-quaternion
Kähler.
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Proof. The Levi-Civita connection one-form decomposes according to (6.42), where
p, q, t are given by

p =

 v̂ −1
2(−w + v)− û

1
2(−w + v)− û −v̂

 ,

q =

 0 JAM ê
M

JAM ê
M ωAB + 1

4HJ
AMHMBP ê

P

 ,

t =

 3
2w + 1

2v −êA

−êA −JAMωMB − 1
4HHABP ê

P + 1
2(−w + v)δAB

 .

Since Tr(p) = 0 and t = tT we have

p ∈ sl(2,R) ,

(
q t
−tT −qT

)
∈ sp(2n+ 2,R)

and, hence, the Levi-Civita connection one-form Ω takes values in the Lie algebra
sp(2n + 2,R) · sp(2,R). By corollary 2.1 the Riemann holonomy group is given by
Hol(D) ⊂ Sp(2n+ 2,R) · Sp(2,R) and the manifold is para-quaternion Kähler.

Remark 6.1. On the para-quaternion Kähler manifold there exists the almost complex
structure K̃. This in fact coincides with the almost complex structure I′ defined in
the previous section K̃ = I′. We may also define the complex structure I as in the
previous section. Since the differentials of the complex vielbeins are the same for both
manifolds (since they are built out of the same real vielbeins), by theorem 6.2 these
complex structures are also integrable on the para-quaternion Kähler manifold. Both
structures are compatible with the metric, but this time it is I′ that is compatible with
the para-quaternion Kähler structure.



Chapter 7

Four-dimensional black holes

We will now apply the results of the previous chapter to the search for new stationary
black hole solutions. The definition of stationary backgrounds is that they admit a
timelike isometry of the spacetime metric. We can therefore dimensionally reduce over
this redundant dimension, which corresponds to making the choice ε = 1 in section 6.2.
Our starting point is the Lagrangian (6.37) of the dimensionally-reduced theory1

e−1
3 L3 =

1

2
R3 − H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b
)

− 1

H2

(
qaΩab∂µq

b
)2

+
2

H2

(
qaΩab∂µq̂

b
)2

− 1

4H2

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)2

.

(7.1)

This Lagrangian, despite being three-dimensional, encodes all the information about
stationary solutions to the full four-dimensional theory, i.e. there is a one-to-one cor-
respondence between instanton solutions of the above Euclidean Lagrangian and sta-
tionary solutions of the four-dimensional Lorentzian theory. Not all of these solutions
describe black holes with finite scalar fields, however, so we must be careful to identify
those solutions that have an event horizon, are asymptotically Minkowski and have
scalar fields that take finite values.

Unlike our previous discussion about five-dimensional black holes, we will not imme-
diately assume that solutions are static. This allows us to consider rotating solutions.
We find that if the three-dimensional metric is flat then we can find solutions to generic
models in terms of harmonic functions. Unfortunately these solutions do not have an
event horizon, and therefore do not correspond to black holes. Using this method we
recover the known rotating BPS solutions found in [62, 63, 41, 42]. We also observe
that by introducing a field rotation matrix the three-dimensional metric is no longer
flat, and so we cannot immediately adapt our ansatz to find non-BPS solutions. We
leave a detailed study of non-BPS rotating solutions for future work.

We then investigate static solutions. We begin by looking for extremal solutions,
which, from our experience of the extremal Reissner–Nordström solution (3.14), we
expect will have a flat three-dimensional metric. Solutions are characterised by har-
monic functions and BPS solutions can be found for generic models. We then show
that, as in the five-dimensional case, in the presence of a non-trivial field rotation ma-
trix BPS solutions can always be transformed into non-BPS solutions. However, such
field rotation matrices are not guaranteed to exist for generic models. We prove that

1We are using the compact notation
(
qaΩab∂µq

b
)2

=
∑
µ

(
qaΩab∂µq

b
) (
qcΩcd∂

µqd
)
.

96
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a non-trivial field rotation matrix always exists for axion-free configurations of a large
class of models that includes all models in the image of the spacelike r-map. We can
therefore construct new non-BPS solutions for this entire class of models.

Finally, we will discuss new non-extremal black hole solutions. This builds on our
understanding of non-extremal black holes in the five-dimensional case, and is new and
as yet unpublished work [61]. We will only consider axion-free solutions of a certain
class of models previously mentioned, which is a generalisation of the class of models
in the image of the r-map. We will first consider non-extremal solutions for STU -like
models, where the second order equations of motion can be integrated explicitly. We
demonstrate that for these solutions to lift to non-extremal black holes with finite scalar
fields the number of integration constants must reduce by half, which is suggestive of
a first order rewriting. For the STU model we recover the results of [104], while for
all other models in the STU -like class these non-extremal solutions are new. We then
discuss generic solutions in our class of models, and find that the number of independent
scalar fields depends on the number of blocks in the metric. Since all metrics of this
form have at least two blocks we find a universal solution with one non-constant physical
scalar field.

In section 7.1 we calculate the field equations for the Lagrangian (7.1), and introduce
a natural set of dual scalar fields. We investigate stationary solutions in section 7.2. We
then move on to static solutions in section 7.3, where we present new extremal black
hole solutions. We end in section 7.4 by constructing new non-extremal solutions.

7.1 Equations of motion and dual coordinates

We will now present the full set of field equations for the Lagrangian (7.1). We first
perform the variation with respect to the qa fields, and obtain the equation of motion

2∇µ
[
H̃ab∂µq

b
]
− ∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c
)

+ 2∇µ
[

1

H2
qcΩca

(
qdΩde∂µq

e
)]

− 2∂a

(
1

H
qc
)[

Ωcb∂µq
b 1

H

(
qdΩde∂µq

e
)
− 2Ωcb∂µq̂

b 1

H

(
qdΩde∂µq̂

e
)]

− ∂a
(

1

4H2

)(
∂µφ̃+ 2q̂cΩcd∂µq̂

d
)2

= 0 .

(7.2)

Next, by varying the q̂a fields we obtain

− 2∇µ
[
H̃ab∂µq̂

b
]

− 4∇µ
[

1

H2
qcΩca

(
qdΩde∂µq̂

e
)]

+∇µ
[

1

H2
q̂bΩba

(
∂µφ̃+ 2q̂cΩcd∂µq̂

d
)]

− 1

H2
Ωab∂µq̂

b
(
∂µφ̃+ 2q̂cΩcd∂µq̂

d
)

= 0 .

(7.3)

The variation of the φ̃ field, which descends from the Kaluza–Klein vector, gives us
simply

∇µ
[

1

4H2

(
∂µφ̃+ 2q̂cΩcd∂µq̂

d
)]

= 0 . (7.4)

Since we have dualised the Kaluza–Klein vector, which swaps the role of the field
equations and Bianchi identities, this equation gives us simply the Bianchi identity for
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the field strength of the Kaluza–Klein vector Vµν . Finally, from the variation of the
metric we find the Einstein equations

1

2
Rµν − H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
− 1

H2

(
qaΩab∂µq

b
)(

qcΩcd∂νq
d
)

+
2

H2

(
qaΩab∂µq̂

b
)(

qcΩcd∂ν q̂
d
)

− 1

4H2

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)(

∂ν φ̃+ 2q̂cΩcd∂ν q̂
d
)

= 0 .

(7.5)

Using the Hesse potential H̃ one may define a natural set of dual coordinates qa by
taking the first derivative of the Hesse potential

qa :=
∂H̃

∂qa
. (7.6)

From the chain rule we have

∂µqa = ∂2
a,bH̃∂µq

b = H̃ab∂µq
b ,

and so we can think of the metric as an operator that raises and lowers indices. One
must be careful, however, as an additional minus sign is acquired when lowering (or
raising) an index without a derivative

qa = −H̃abq
b .

Not only do the equations of motion simplify greatly (particularly in the static case)
when we use dual coordinates, they are also critical for obtaining multi-centred solutions
in terms of harmonic functions. Roughly speaking, the existence of the dual coordinates
provides an off-shell realisation of an integrability condition needed for the existence
of multi-centred solutions. The dual coordinates can also be related to uI , vI (the
imaginary parts of XI , FI) through the expression

qa = −Ha

2H
=

1

H

(
−vI
uI

)
. (7.7)

We can also interpret the dual coordinates as the components of −ξ[ in a special real
coordinate system

qa = −ξ[
(

∂

∂qa

)
.

The complex scalar fields Y I and their conjugates FI can now be written simply as

Y I = −
(
H̃Ib + iΩIbH

)
qb , (7.8a)

FI = ΩIbq
b + iHqI . (7.8b)

At this stage one may rewrite the equations of motion in terms of dual coordinates.
However, we will wait until we impose certain ansätze on the metric and scalar fields
such that many of the terms in the field equations directly cancel with one another.
These ansätze fall into three distinct categories depending on the particular type of
solution under consideration:

1. Isotropic ansatz, for rotating solutions.

2. Extremal ansatz, for static extremal black hole solutions.

3. Non-extremal ansatz, for static non-extremal black hole solutions.

We will discuss the precise properties of each ansatz in the next three sections.



CHAPTER 7. FOUR-DIMENSIONAL BLACK HOLES 99

7.2 Stationary solutions

The first class of solutions we will investigate are stationary solutions, which are also
the most complicated. We will need to solve the full set of equations of motion (7.2)
– (7.5). To make this job tractable we will impose what we call the isotropic ansatz.
This states that the three-dimensional metric is Ricci flat (and therefore flat), which,
from the Einstein equations (7.5), is equivalent to identifying isotropic distributions of
the para-quaternion Kähler target manifold.

Solutions to the isotropic ansatz are found for generic models, and are characterised
by harmonic functions. We will then focus on single-centred rotating (i.e. axially sym-
metric) solutions, which are one of the simplest types of stationary solution. Despite
the fact that solutions can be found for generic models they cannot always be written
down explicitly. This is because one has to invert a system of algebraic equations,
which is not always possible in closed form. We end by presenting the solution to the
STU model, which can be found explicitly.

7.2.1 Isotropic ansatz

We shall now present our isotropic ansatz, which is characterised by the requirement
that the three-dimensional metric is Ricci flat (the Ricci tensor vanishes), which in three
dimensions automatically implies that the metric is flat (the Riemann tensor vanishes).
From the Einstein equations (7.5) it is clear that this means we must find solutions
for which the energy-momentum tensor vanishes identically. Mathematically it means
that we must identify distributions D ⊂ TM in which the metric vanishes identically,
i.e.

gM (X,Y ) = 0 ∀X,Y ∈ Γ(D) .

Such distributions are called isotropic, which is where our ansatz gets its name.
Let us remain focussed on the Einstein equations (7.5) with a flat metric. Motivated

by our experience of constructing five-dimensional black holes, we impose the first part
of our isotropic ansatz, which is to make the identification

∂µq
a = ±∂µq̂a , (7.9)

where the choice of sign is fixed for all values of a. In this case the first line of the
Einstein equations vanishes identically. The second and third lines reduce to

1

4H2

(
∂µφ̃+ 2q̂qΩab∂µq

b
)2

=
1

H2

(
qaΩab∂µq

b
)2

.

The second part of our isotropic ansatz is now clear: we make the identification

1

2

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)

= qaΩab∂µq
b , (7.10)

where the choice of sign is important. Solving for φ̃ we have

φ̃ = 2(qa ∓ q̂a)Ωabq
b ,

where qq ∓ q̂a is constant in spacetime due to the first part of the ansatz (7.9).

Proposition 7.1 . After imposing the isotropic ansatz (7.9) and (7.10) all equations
of motion reduce to the Laplace equation

∆qa = 0 , (7.11)

where qa are the dual coordinates introduced in the previous section.
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Proof. By definition of the isotropic ansatz the Einstein equations are solved with a flat
spacetime metric. Let us now consider the equation of motion (7.4), which corresponds
to the variation φ̃. After imposing (7.9) and (7.10) this becomes simply

∇µ
[

1

H2

(
qaΩab∂µq

b
)]

= 0 . (7.12)

We will come back to this expression shortly. Next, consider the equation of motion
(7.2), which corresponds to the variation of qa. When we impose (7.9) and (7.10) the
second term vanishes, the third line simplifies, and due to (7.12) the derivative in the
second line will only act on qc. We are left with

2∇µ
[
H̃ab∂µq

b
]

+
2

H2
∂µq

cΩca

(
qdΩde∂

µqe
)

+ 2∂a

(
1

H
qc
)

Ωcb∂µq
b 1

H

(
qdΩde∂

µqe
)

− 2∂a

(
1

H

)
qcΩcb∂µq

b 1

H

(
qdΩde∂

µqe
)

= 0 .

It is clear that the fourth term cancels with the derivative acting on the Hesse potential
in the third term, and so we have

2∇µ
[
H̃ab∂µq

b
]

+

(
2

H2
∂µq

cΩca + 2
1

H2
Ωab∂µq

b

)(
qdΩde∂

µqe
)

= 0 .

Due to the antisymmetry of Ωab the second and third terms cancel, and writing the first
term in terms of the dual coordinates qa we are left with the Laplace equation (7.11).
We now consider the equation of motion (7.3), which corresponds to the variation of
q̂a. Using (7.12) the derivative in the second term will only act on qc, and the second
and third terms simplify

− 2∇µ
[
H̃ab∂µq̂

b
]
−
(

2

H2
∂µq

cΩca +
2

H2
Ωab∂µq

b

)(
qdΩde∂µq

e
)

= 0 .

From the antisymmetry of Ωab the second and third terms cancel, leaving us again with
the Laplace equation (7.11). Finally, we revisit the equation of motion for φ̃, which we
have already reduced to (7.12). Using the identity qaΩac = −1

4HaΩ
abHbc we can write

the left hand side as

∇µ
[

1

H2

(
qaΩab∂µq

b
)]

= −1

4
∇µ
[

1

H2

(
HaΩ

abHbc∂µq
c
)]

= −∇µ
[
H̃aΩ

abH̃bc∂µq
c
]

= −qaΩab∆qb .

This clearly vanishes for solutions of the Laplace equation (7.11), which completes the
proof.

We have shown that the isotropic ansatz is solved by (7.9), (7.10) and (7.11). So-
lutions are characterised by the harmonic functions

Ha :=

(
−HI
HI

)
, (7.13)
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where the scalar fields are given in terms of these harmonic functions by

qa = ±Ha , (7.14)

∂µq̂
a = H̃ab∂µHb . (7.15)

It is worth noting that these solutions may not be the most general isotropic solutions.
As we have seen, for these particular solutions the first line of the Einstein equations
vanishes independently of the second and third lines, and one could conceive of a
solution in which these terms do not vanish independently. We leave the investigation
of more complicated isotropic solutions for future work.

It is instructive to consider our isotropic ansatz in terms of four-dimensional fields.
The qa coordinates can be written as

qa =
1

2
eφ/2

(
XI + X̄I

FI + F̄I

)
,

and the derivatives of the q̂a coordinates can be written as

∂µq̂
a =

1

2

(
F Iµ0

GI|µ0

)
.

We can then write the first part of the isotropic ansatz (7.9) in terms of four-dimensional
fields as

∂µ(eφ/2(XI + X̄I)) = ±F Iµ0 = ±(F
I|+
µ0 + F

I|−
µ0 ) , (7.16a)

∂µ(eφ/2(FI + F̄I)) = ±GI|µ0 = ±(G+
I|µ0 +G−I|µ0) . (7.16b)

For supersymmetric solutions these are the well known BPS equations that follow from
the requirement that the variation of the gaugino vanishes. See for example [42]. In our
formalism they correspond to Bogomol’nyi equations associated with the first line of the
three-dimensional Lagrangian (7.1). Let us now consider the Laplace equation for the
dual coordinates (7.11). Using the expression (7.7) we can write the dual coordinates
in terms of four-dimensional fields as

qa = ie−φ/2
(
−(FI − F̄I)
XI − X̄I

)
,

and so the solution reads

e−φ/2(XI − X̄I) = −iHI , (7.17a)

e−φ/2(FI − F̄I) = −iHI . (7.17b)

These are nothing other than the well known black hole stabilisation equations. Here
they were derived directly from the field equations by imposing the isotropic ansatz
(7.9) and (7.10). They reduce to the attractor equations in the near horizon limit.

Let us end this section by commenting on U(1) gauge fixing. The Lagrangian and
equations of motion are invariant under the U(1) isometry, which up until now we had
not fixed. The isotropic ansatz (7.9) and (7.10) clearly breaks this symmetry, as it
relates the fields qa, which transform under the isometry, with the fields q̂a, φ̃, which do
not. Therefore the isotropic ansatz implicitly fixes the U(1) symmetry, and it does so
in a symplectically covariant way. The key was that we had to impose part of the field
equations. We can actually use the solution (7.11) to write the gauge fixing condition
explicitly. From the equations (7.17a) and (7.17b) and the D-gauge (6.25) we can write

XIHI − FIHI = e−φ/2 . (7.18)

This equation characterises the U(1) gauge fixing condition.
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7.2.2 Rotating solutions

The isotropic ansatz, presented above, provides stationary solutions for generic models
with flat three-dimensional metrics. These solutions are characterised by harmonic
functions (7.13) through (7.14) and (7.15). We will now focus on the subset of solutions
that are:

1. Single-centred,

2. Axially symmetric.

Such solutions represent rotating spacetimes. Unfortunately we will find that they
always contain a naked singularity, and can therefore not be called black holes. In
order to find legitimate rotating black hole solutions we must relax the condition that
the three-dimensional metric is flat. As this is a significant increase in the complexity
of our analysis we leave it for future work.

The solutions to the isotropic ansatz are given in terms of the dual coordinates
qa, and it is not always possible to write the solutions explicitly for the original four-
dimensional fields. To do so involves inverting the algebraic relations (7.6), and cor-
responds to solving the generalised stabilisation equations. This is always possible by
the inverse function theorem because H̃ab is invertible, but in practice it is not always
possible to solve such a set of equations in a closed form. In fact it is only possible for
a few simple examples. For this reason we will focus on the STU model, where explicit
solutions can be found.

The first task is to disentangle the four-dimensional metric from the solution given
by (7.10), (7.13), (7.14) and (7.15). To do so one simply retraces the dimensional
reduction procedure to find

gµν = δµν , (7.19a)

eφ = −2H , (7.19b)

∂µVν = 1
2εµνρ

(
HI∂ρHI −HI∂ρHI

)
. (7.19c)

The first equation simply tells us that the three-dimensional metric is flat. The second
equation is model dependent, and so we will postpone the discussion of this until later.
Let us focus on the third equation, (7.19c), which is independent of the particular
model. Since we are now focussing on axially symmetric solutions it is natural to use
a oblate spheroidal coordinates (a.k.a. Boyer–Lindquist coordinates), as discussed in
section 3.2.2, which are related to Cartesian coordinates through

x =
√
r2 + α2 sin θ cosϕ ,

y =
√
r2 + α2 sin θ sinϕ ,

z = r cos θ .

At this stage α is simply a constant parameter. Following the method for producing
rotating solutions outlined in [63, 41] we impose that solutions are axially symmetric
about the z coordinate. In these coordinates the flat three-dimensional metric is written
as

ds2
3 =

(
r2 + α2 cos2 θ

r2 + α2

)
dr2 + (r2 + α2 cos2 θ)dθ2 + (r2 + α2) sin2 θdϕ2 .



CHAPTER 7. FOUR-DIMENSIONAL BLACK HOLES 103

We can write (7.19c) in oblate spheroidal coordinates as

1

(r2 + α2) sin θ
∂θVϕ =

1

2

(
HI∂rHI −HI∂rHI

)
, (7.20)

− 1

sin θ
∂rVϕ =

1

2

(
HI∂θHI −HI∂θHI

)
. (7.21)

General single-centred harmonic functions in oblate spheroidal coordinates take the
form

HI = hI +
pIr +mIα cos θ

R
,

HI = hI +
qIr +mIα cos θ

R
,

where R = r2 + α2 cos2 θ, and (hI , hI ,m
I ,mI , p

I , qI) are independent integration con-
stants. We can interpret hI , hI as the values of the scalars at infinity, pI , qI as the
magnetic and electric charges, and mI ,mI as the dipole momenta [41].

We can integrate equations (7.20) and (7.21) to find an explicit expression for the
only non-zero component of the KK-vector

Vϕ =
1

2
(hIp

I − hIqI) cos θ

(
r2 + α2

R

)
+
α

2
(mIh

I −mIhI) sin2 θ
( r
R

)
+
α

4
(mIp

I −mIqI) sin2 θ

(
1

R

)
+ C ,

(7.22)

where C is an arbitrary constant. By gathering together the integration constants
to form the three symplectic vectors (hI , hI)

T , (pI , qI)
T and (mI ,mI)

T , one observes
that all three symplectic products appear in the above expression. One can interpret
the coefficient of the first line as the NUT charge n = 1

2(hIp
I − hIqI) by comparison

with [109, 110], and the coefficient of the second line as the angular momentum l =
α
2 (mIh

I−mIhI). The coefficient of the third line does not have a specific interpretation,
but has previously been observed in rotating solutions [109].

In order for the solution to be asymptotically flat the field strength of the KK-vector
must vanish at radial infinity. By inspection of (7.22) one can see that this is equivalent
to a vanishing NUT charge

n =
1

2
(hIp

I − hIqI) = 0 . (7.23)

This places one constraint on the integration constants (hI , hI). The only other re-
quirement for asymptotic flatness is that the KK-scalar approaches unity at radial
infinity

eφ −→
r→∞

1 . (7.24)

We will see that this places another constraint on the integration constants (hI , hI).
This makes sense because the solution at radial infinity should only depend on the
asymptotic values of the physical scalar fields zA, which have two fewer real dimensions
than (hI , hI).

We will now show that the solutions described by the isotropic ansatz are always
BPS. We do so by explicitly computing the ADM mass and showing that it equals the
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central charge. The formula for the ADM mass for axially symmetric solutions is given
by

16πMADM = 2

∮
S2
∞

d2Σre−φ∂rφ

= −2 lim
r→∞

∮
S2
r

d2Σr∂re
−φ .

The measure is given by

d2Σr = εrθϕdθ ∧ dϕ
= (r2 +O (r)) sin θ dθ ∧ dϕ ,

and we can expand the KK-scalar as

e−φ = 1 +O
(

1

r

)
.

Plugging this into the formula for the ADM mass we have

16πMADM = −2 lim
r→∞

∮
S2
r

(r2 +O (r)) sin θ dθdϕ ∂re
−φ

= −2 lim
r→∞

∮
S2
1

sin θ dθdϕ r2∂re
−φ .

We therefore find that the ADM mass has a particularly simple dependence on the
Hesse potential

MADM = − lim
r→∞

r2∂rH̃

= lim
r→∞

r2qa∂rqa .

Since the NUT charge vanishes one has r2qaΩab∂rq
b → 0 asymptotically, which implies

that r2qaΩ
ab∂rqb → 0. We can then write the mass as

MADM = lim
r→∞

r2
(
qa − iHΩabqb

)
∂rqa

= lim
r→∞

∣∣XIqI − FIpI
∣∣ = lim

r→∞
|Z| , (7.25)

which confirms that these solutions are BPS.
This is all we can say for generic models. To find explicit solutions for all the fields

it remains to write equation (7.19b) explicitly, which involves finding an expression for
the Hesse potential in terms of the dual coordinates, and to invert the relation (7.6).
This can be done explicitly for the STU model.

7.2.3 The STU model

As briefly mentioned in section 3.2.3, the STU model is characterised by the prepoten-
tial

F = −Y
1Y 2Y 3

Y 0
.
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The Hesse potential for the STU model in terms of uI , vI is given by (see appendix B)

H = −2
(
− (u.v)2 + 4v1u

1v2u
2 + 4v1u

1v3u
3 + 4v2u

2v3u
3

+ 4u0v1v2v3 − 4v0u
1u2u3

)1/2
.

(7.26)

The isotropic solution for the qa fields is given in terms of harmonic functions by
(7.13) and (7.14), and can be formulated in terms of uI , vI and the Hesse potential as2

1

H
uI = HI , 1

H
vI = HI .

From the expression eφ = −2H we can write the KK-scalar for the STU model explicitly
in terms of harmonic functions

e−φ =
(
− (HIHI)2 + 4H1H1H2H2 + 4H1H1H3H3 + 4H2H2H3H3

+ 4H0H1H2H3 − 4H0H1H2H3
)1/2

.
(7.27)

Using this formula we can find explicit expressions for uI , vI in terms of harmonic
functions

uI = −1
2e
φ/2HI , vI = −1

2e
φ/2HI . (7.28)

To ensure that the solution is asymptotically Minkowski we must impose the constraints
(7.23) and (7.24), which for this model correspond to

hIp
I − hIqI = 0 , (7.29a)

−(hIhI)
2 + 4h1h

1h2h
2 + 4h1h

1h3h
3 + 4h2h

2h3h
3

+4h0h1h2h3 − 4h0h
1h2h3 = 1 . (7.29b)

The KK-vector for the solution is given by (7.22), and together with (7.27) and (7.19a)
the four-dimensional line-element can be constructed according to the decomposition
(6.28).

We must also write the original four-dimensional complex scalar fields XI = e−
φ
2 Y I

in terms of the harmonic functions. To do this we could use the expression (7.8a),
which involves calculating the inverse metric and is rather involved. Luckily we can
adapt the results of [111] to obtain the result directly3

Y 0 =
1

U + Ū

(
2u3 + i2u0Ū

)
, Y 1 =

1

U + Ū

(
−2v2 + i2u1Ū

)
,

Y 2 =
1

U + Ū

(
−2v1 + i2u2Ū

)
, Y 3 = iUY 0 , (7.30)

where

U := i
v0u

0 + v1u
1 + v2u

2 − v3u
3

2 (v3u0 + u1v1)
±

√
v1v2 − v0u3

v3u0 + u1u2
− (v0u0 + v1u1 + v2u2 − v3u3)2

4(v3u0 + u1u2)2
.

(7.31)

Finally, we may obtain expressions for the gauge field strengths using (7.15) and (6.35),
or alternatively using (7.16).

2We will take the positive sign in equations (7.14), but it is understood that either sign is equivalent.
3In this reference they consider the near horizon limit in which case uI and vI are given by the

constant magnetic and electric charges pI and qI , but it is the algebraic expressions themselves that
we are interested in.
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7.3 Static extremal black holes

7.3.1 Extremal ansatz

We will now present an ansatz for finding extremal solutions. It is essentially the same
as the isotropic ansatz presented in the previous section but restricted to static four-
dimensional spacetimes. There is a subtle difference, however, in that the extremal
ansatz allows a generalisation which produces non-BPS extremal solutions.

As for the isotropic ansatz we try to identify field configurations in which the three-
dimensional metric is flat, and, hence, we are again looking to identify isotropic sub-
manifolds of the para-quaternion Kähler target manifold. This time we impose that
the four-dimensional metric is static, which in three-dimensional fields means that the
KK-vector vanishes. This corresponds to setting

1

2H

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)

= 0 . (7.32)

We now impose the first part of our extremal ansatz

qaΩab∂µq
b = qaΩab∂µq̂

b = 0 , (7.33)

which, given (7.32), is actually equivalent to imposing the second part of the isotropic
ansatz from the previous section in static backgrounds. Let us investigate the effect this
has on the equations of motion. All terms containing a factor of the above expressions
will vanish, and only the first line of (7.2), (7.3) and (7.5) is relevant (equation (7.4) is
clearly solved automatically). We are left with the truncated equations of motion

∇µ
[
H̃ab∂µq

b
]
− 1

2∂aH̃bc

(
∂µq

b∂µqc − ∂µq̂b∂µq̂c
)

= 0 , (7.34)

∇µ
[
H̃ab∂µq̂

b
]

= 0 , (7.35)

H̃ab

(
∂µq

a∂νq
b − ∂µq̂a∂ν q̂b

)
=

1

2
Rµν . (7.36)

It can be easily shown that these equations of motion derive from an effective action,
which is given by the first line of (7.1)

e−1
3 L3 =

1

2
R− H̃ab

(
∂µq

a∂µqb − ∂µq̂a∂µq̂b
)
.

Recall that the Lagrangian (7.1) and equations of motion (7.2) – (7.5) are still
invariant under U(1) phase transformations. The static ansatz (7.33) implicitly breaks
this symmetry as it relates the qa coordinates, which transform under this symmetry,
with the q̂a coordinates, which do not. This gauge fixing condition is characterised by
the expression

xIGI|µν − yIF Iµν = 0 . (7.37)

Let us focus on the Einstein equation (7.36) with a flat three-dimensional metric.
In order to solve this we impose the second part of our extremal ansatz

∂µq
a = ±∂µq̂a , (7.38)

where the choice of sign is fixed for all a. This ansatz will lead to BPS extremal black
hole solutions. We will later see that this part of the ansatz can be generalised to
include non-BPS solutions for models that allow for a field rotation matrix, but for
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now we focus simply on BPS solutions. After imposing (7.38) one can see by inspection
that the equations of motion (7.34), (7.35) and (7.36) reduce to the Laplace equation
when written in terms of dual coordinates

∆qa = 0 . (7.39)

Solutions are characterised in terms of harmonic functions

Ha :=

(
−HI
HI

)
, (7.40)

by setting

qa = ±Ha , (7.41)

∂µq̂
a = H̃ab∂µHb . (7.42)

For the extremal case we will consider multicentred harmonic functions of the form

HI = hI +
∑
α

pIα
|x− xα|

, (7.43a)

HI = hI +
∑
α

qIα
|x− xα|

. (7.43b)

The first part of the ansatz (7.33) places one constraint on the integration constants

hIp
I − hIqI = 0 . (7.44)

We also need the corresponding four-dimensional solution to be asymptotically Minkowski,
i.e. at radial infinity

eφ −→
r→∞

1 , (7.45)

which places another constraint on the hI , hI integration constants. We therefore have
a total of 2n integration constants from 2n second order equations of motion of the
physical scalar fields. This suggests that solutions always satisfy first order equations.
This is clear from the fact that the solutions solve (7.38).

We will now compute the ADM mass of the extremal solution (7.41), (7.42), and
show that it is equal to the central charge. This indicates that the solutions we have
found are always BPS solutions. The formula for the ADM mass for is given by

16πMADM = 2

∮
S2
∞

d2Σµe−φ∂µφ

= −2

∮
S2
∞

d2Σµ∂µe
−φ .

Here we used the fact that eφ → 1 at spatial infinity. We can write this in terms of the
Hesse potential as

MADM = − 1

4π

∮
S2
∞

d2Σµ∂µH̃

=
1

4π

∮
S2
∞

d2Σµqa∂µqa .
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From (7.33) we have that qaΩab∂µq
b = 0, which we can write in terms of dual coordi-

nates as qaΩ
ab∂µqb = 0. We can then write the ADM mass as

MADM =
1

4π

∮
S2
∞

d2Σµ
(
qa − iHΩabqb

)
∂µqa

=
1

4π

∮
S2
∞

d2Σµ
∣∣XI∂µHI − FI∂µHI

∣∣ = |Z∞| . (7.46)

These solutions are therefore always BPS.
We will now investigate various models for which multi-centred extremal black hole

solutions can be obtained explicitly using the procedure outlined above.

7.3.2 The STU model

The first model we will consider is the STU model. The solution (7.41) relates the
harmonic functions (7.43) to the dual coordinates uI , vI through the expressions

1

H
uI = HI , 1

H
vI = HI .

As for the rotating case, we can plug these equations into the formula for the Hesse
potential (7.26) and use the relation eφ = −2H to write the KK-scalar explicitly in
terms of harmonic functions (7.27). This in turn gives us the explicit expressions for
uI , vI in terms of the multi-centred harmonic functions

uI = −1
2e
φ/2HI , vI = −1

2e
φ/2HI . (7.47)

The requirement that solutions are static ensures that the KK-vector vanishes, while
the extremal ansatz by construction ensures that the three-dimensional metric is flat

gµν = δµν , Vµ = 0 .

These expressions together with (7.27) completely determine the four-dimensional met-
ric (6.28). As for the rotating case the asymptotic integration constants hI , hI satisfy
the two constraints (7.44) and (7.45)

hIp
I − hIqI = 0 ,

−(hIhI)
2 + 4h1h

1h2h
2 + 4h1h

1h3h
3 + 4h2h

2h3h
3

+4h0h1h2h3 − 4h0h
1h2h3 = 1 .

The original four-dimensional scalar fields are given by

XI = e−
φ
2 Y I ,

where Y I are given in terms of harmonic functions through (7.30) and (7.47). The
gauge fields can be determined through the expressions (7.42) or alternatively (7.16).

Note that one may use the rotating solution of the STU model given in the previous
section to obtain a static extremal black hole in the static limit α → 0. However, in
this case one ends up with the single-centred solution

HI = hI +
pI

r
, HI = hI +

qI
r
.
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7.3.3 Models of the form F = f(Y 1,...,Y n)
Y 0

The second class of models we shall consider are models with prepotential of the form

F (Y ) =
f(Y 1, . . . , Y n)

Y 0
, (7.48)

where f is the analytic extension of a real function, or in other words f is real when
evaluated on real fields. Since the prepotential F is homogeneous of degree two it
follows that f is homogeneous of degree three. Note that this includes the class of
prepotentials in the image of the spacelike supergravity r-map, which are given by
taking f to be a homogeneous polynomial of degree three with real coefficients (see
section 4.3). Moreover, if we consider the generalised spacelike r-map then the class of
models described by (7.48) precisely corresponds to those obtained by reducing five-
dimensional models where the Hesse potential is an arbitrary homogeneous function of
degree three (not necessarily a polynomial). Such models will play an important role
in our discussion of non-BPS and non-extremal solutions, which we will discuss later.

For this class of models we will only consider a restricted class of field configurations
that are defined by setting Y A purely imaginary and Y 0 purely real4. We will refer
to such configurations as ‘axion-free’ because in this case the physical scalar fields
zA = Y A/Y 0 are purely imaginary, and from models in the image of the r-map these
restrictions imply that all axion-like scalars vanish (see section 4.3). The requirement
can be written terms of special real coordinates as

y0 = xA = 0 , (7.49)

which immediately implies that
u0 = vA = 0 . (7.50)

The equations of motion simplify greatly if we impose the additional condition that the
corresponding parts of the gauge fields are constant

dζ̃0 = dζA = 0 , (7.51)

which from the decomposition of the metric (7.68), which shall be discussed later,
implies

H̃(n+1)bdq̂
b = H̃Abdq̂

b = 0 . (7.52)

From now on whenever we refer to axion-free configurations we will assume that the
conditions (7.49) and (7.51) are satisfied5. Geometrically speaking these conditions
select totally geodesic distributions in the para-quaternion Kähler target manifold that
have precisely half the number of dimensions.

The axion-free condition allows us to write Y I , FI explicitly in terms of uI , vI
through the expressions

Y 0 = λ , F0 = iv0 ,

Y A = iuA , FA = −fA(u1, . . . , un)

λ
,

(7.53)

4We are using the index convention that I, J ∈ {0, . . . , n} whereas A,B ∈ {1, . . . , n}.
5Technically speaking while the restrictions (7.49) imply that configurations are axion-free the con-

verse is not true. We will not consider such configurations in this thesis, however.
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where fA =
∂f

∂Y A
and

λ := −

√
f(u1, . . . , un)

v0
.

The real parts of Y I , FI can be read off from (7.53) as

x0 = λ , yA =
fA(u1, . . . , un)

λ
.

This is equivalent to solving the stabilisation equations and is the reason why we can
find explicit axion-free solutions for this class of models.

At the level of the equations of motion the axion-free conditions mean that extremal
solutions are characterised by only half the number of harmonic functions

HA = hA +
∑
α

pAα
|x− xα|

, H0 = h0 +
∑
α

q0α

|x− xα|
, (7.54)

and are therefore charged electrically under one U(1) gauge field and magnetically
under the n remaining U(1) gauge fields. In addition the first part of the extremal
ansatz (7.33) is solved automatically, which suggests that the axion-free condition is not
appropriate for rotating solutions. The static extremal solution for these configurations
is given in terms of the harmonic functions (7.54) by (7.41) and (7.42). Using the
expression for the Hesse potential (B.7) we can write the KK-scalar in terms of the
harmonic functions as

e−φ =
√

4H0f(H1, . . . ,Hn) . (7.55)

Since the three-dimensional metric is flat and the KK-vector vanishes this is all we need
to determine the four-dimensional metric through (6.28). In order for the solution to
be asymptotically Minkowski the integration constants hI , hI must therefore satisfy the
constraint

4h0f(h1, . . . , hn) = 1 .

We can write uA, v0 explicitly in terms of harmonic functions as

uA = −1

2
eφHA , v0 = −1

2
eφH0 . (7.56)

The original four-dimensional scalar fields XI = e−
φ
2 Y I can be written in terms of

harmonic functions through (7.53). The gauge fields can be determined through the
expressions (7.42) or (7.16).

7.3.4 The STU + aU3 model

We now turn to a specific one-parameter family of models of the form described in the
last section, which are characterised by the prepotential

F (Y ) = −Y
1Y 2Y 3 + a(Y 1)3

Y 0
.

This is a well-known deformation of the STU -model in which the corresponding pro-
jective special Kähler manifold is no longer a symmetric space. After imposing the
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axion-free conditions (7.49) and (7.51), we may use (7.53) to write the complex scalar
fields Y I , FI in terms of uI , vI as

Y 0 = λ , F0 = iv0 ,

Y 1 = iu1 , F1 =
u2u3 + 3a(u1)2

λ
,

Y 2 = iu2 , F2 =
u1u3

λ
,

Y 3 = iu3 , F3 =
u1u2

λ
,

(7.57)

where

λ = −

√
−u

1u2u3 + a(u1)3

v0
.

The KK-scalar is given in terms of the harmonic functions (7.54) by

e−φ =
√
−4H0(H1H2H3 + a(H1)3) , (7.58)

and recall that by the extremal ansatz the three-dimensional metric is flat and the KK-
vector vanishes. The asymptotic integration constants hI , hI must satisfy the constraint

−4h0(h1h2h3 + a(h1)3) = 1 .

We can write v0, u
A explicitly in terms of the harmonic functions using as

uA = −1

2
eφHA , v0 = −1

2
eφH0 , (7.59)

and the original four-dimensional complex scalar fields XI = e−
φ
2 Y I can be determined

using (7.57). The gauge fields are given by the expressions (7.42) or (7.16).

7.3.5 STU-like models

We will now consider models with prepotential of the from

F = −(Y 1 . . . Y n)
3
n

Y 0
.

Such models are direct generalisations of the STU model, similar to the generalisation
we considered for the five-dimensional STU model in chapter 5. They share the im-
portant feature that for axion-free configurations the metric is diagonal. Note that by
taking n = 3 we recover the STU model. This class of model is clearly of the form
described in section 7.3.3, and we can therefore find explicit axion-free solutions. These
models will be particularly important later when we consider non-extremal black holes.

We restrict ourselves to axion-free configurations by imposing (7.49) and (7.51), in
which case we use (7.53) to write the complex scalar fields Y I , FI in terms of uI , vI as

Y 0 =

√
−(u1 . . . un)

3
n

v0
, F0 = iv0 ,

Y A = iuA , FA =
3

n

1

uA

√
−v0(u1 . . . un)

3
n .

(7.60)
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The KK-scalar is given in terms of the harmonic functions (7.54) by

e−φ =

√
−4H0(H1 . . .H3)

3
n ,

and the integration constants must satisfy

−4h0(h1 . . . hn)
3
n = 1 .

As before, we can write v0, u
A explicitly in terms of the harmonic functions using

(7.56), and the original four-dimensional complex scalars XI = e−
φ
2 Y I can be deter-

mined through (7.60) and the expression for the KK-scalar. The gauge fields can be
determined through (7.42) or (7.16).

7.3.6 Field rotations and non-BPS solutions

In section 7.3.1 we presented a particular ansatz for finding extremal black holes. By
explicitly computing the ADM mass and comparing it with the central charge it was
shown that this ansatz always produces BPS solutions. However, since the BPS condi-
tion is stronger than the extremal condition we have not exhausted the search for all
possible extremal solutions. In this section we will show that for models which allow for
a ‘field rotation matrix’ we can modify the extremal ansatz to include a more general
class of extremal solutions. This is similar to the case in five dimensions, as discussed
in section 5.2. A field rotation matrix Rab is defined as any matrix that satisfies

H̃abR
a
cR

b
d = H̃cd , (7.61)

either on the whole para-quaternion Kähler target manifold or a totally geodesic sub-
manifold. We call a field rotation matrix trivial if R = ±1. For models that allow for
a non-trivial field rotation matrix one can generalise the second part of the extremal
ansatz (7.38) to become

∂µq
a = Rab∂µq̂

b . (7.62)

Clearly for the trivial solution R = ±1 we recover our previous extremal ansatz. Solu-
tions are again characterised by the harmonic functions (7.40), but they are now related
to the scalar fields through

∂µqa = R b
a Hb , (7.63)

∂µq̂
a = H̃ab∂µHb , (7.64)

where R b
a is the transpose inverse of Rab, i.e. RabR

c
a = δcb . From the above expressions

we see that the field rotation matrix rotates the charges and asymptotic integration
constants of the solution relative to the qa scalar fields [104].

Let us investigate what effect the field rotation matrix has on the four-dimensional
fields. If we first decompose R b

a into blocks

R b
a =

(
A B
C D

)
,

then we can replace the expressions (7.16a) and (7.16b) with the more general expres-
sions

∂µ(eφ/2(XJ + X̄J))A I
J + ∂µ(eφ/2(FJ + F̄J))CJI = ±(F

I|+
0µ + F

I|−
0µ ) , (7.65a)

∂µ(eφ/2(XJ + X̄J))BJI + ∂µ(eφ/2(FJ + F̄J))DJ
I = ±(G+

I|0µ +G−I|0µ) . (7.65b)
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This confirms that the charges therefore appear rotated with respect to the scalar fields.
Calculating the ADM mass of the solution we find that formula (7.46) gets modified in
the expected fashion:

MADM =
1

4π

∮
S2
∞

d2Σµ
∣∣∣XI

(
A J
I ∂µĤJ +BIJ∂µĤJ

)
− FI

(
CIJ∂µĤJ +DI

J∂µĤJ
) ∣∣∣ .

We conclude that introducing a non-trivial field rotation matrix into the solution will
generically result in non-BPS solutions. Of course, special choices of parameters may
exist for which one may still obtain a BPS solution.

A field rotation matrix is not guaranteed to exist for generic models, and therefore
we cannot guarantee that non-BPS solutions exist for all models. However, for certain
classes of models we can demonstrate the existence of a non-trivial field rotation matrix.
It has been known for some time that one can systematically find field rotation matrices
for models that are symmetric spaces [51, 52]. In work by the author it was shown that
for axion-free configurations of models of the form F = f(X1, . . . , Xn)/X0, as described
in section 7.3.3, a non-trivial field rotation matrix always exists [19]. An interesting
feature of these solutions is that the field rotation matrix does not satisfy (7.61) on the
whole para-quaternion Kähler manifold, but only on a totally geodesic submanifold.
The non-BPS solutions therefore have half the dimensionality of the full BPS solutions.
It is an open question as to how one can identify c-map spaces that allow for a field
rotation matrix either on the whole space or on totally geodesic submanifolds.

One may also wonder whether a field rotation matrix allows us to find non-BPS
rotating solutions. Unfortunately a field rotation matrix of the form (7.61) is not
enough in this case as the Einstein equations are no longer solved generically. This
suggests that in order to find non-BPS solutions one must not impose that the three-
dimensional metric is flat. This makes sense because for rotating solutions the BPS
bound corresponds to a flat three-dimensional metric, whereas the extremal bound
corresponds to a curved three-dimensional metric. This means that deforming away
from the BPS bound naturally requires a curved three-dimensional metric.

In the following section we will prove that a non-trivial field rotation matrix exists
for the models considered in section 7.3.3, and thus find new non-BPS solutions to the
whole class of models. We will then revisit the particular examples of the STU + aU3

model and STU -like models and present new non-BPS solutions.

7.3.7 Non-BPS solutions of F = f(Y 1,...,Y n)
Y 0 models

Let us revisit the class of models discussed in section 7.3.3, which were characterised
by prepotentials of the form

F =
f(Y 1, . . . , Y n)

Y 0
, (7.66)

where f is the analytic continuation of a real function. We will show that for axion-free
configurations a non-trivial field rotation matrix is guaranteed to exist. For simplicity
we will focus on the specific case where n = 3, as this is relevant for models descending
from the supergravity r-map, but one can extend the results to any n ≥ 1 without loss
of generality.
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For this class of models the first part of the axion-free condition (7.49) ensures that
the metric H̃ab can be decomposed according to

H̃ab =



∗ 0 0 0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0

∗ 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 ∗ ∗ ∗


, (7.67)

where a ∗ represents a possible non-zero entry. Let us show why this is true by consid-
ering the component H̃10 as an example. This component is given by

H̃10

∣∣∣
]

=

(
∂

∂x0

∂H̃

∂x1

)∣∣∣
]
,

where ] denotes the restriction to axion-free configurations. Since the field x0 does not
appear in the axion-free condition it does not matter in which order we perform the
partial derivative, and so we can write

H̃10

∣∣∣
]

=
∂

∂x0

∂H̃

∂x1

∣∣∣∣∣
]

 .

Since the axion free condition implies v1 = 0, which from (7.7) implies that
∂H̃

∂x1

∣∣∣
]

= 0,

we conclude that

H̃10

∣∣∣
]

=
∂

∂x0
(0) = 0 .

The same argument is true for any matrix element containing one index in {0, 5, 6, 7}
and one index in {1, 2, 3, 4}. Actually, the matrix H̃ab decomposes even further. Using
the formula for the Hesse potential (B.6) we observe that H̃ab takes the more restrictive
form

H̃ab =



1
4(x0)2

0 0 0 0 0 0 0

0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗


, (7.68)

where the entries in the bottom-right block depend only on y1, y2, y3. The complete
set of axion free conditions (7.49) and (7.50) ensure that the central block in the above
expression completely decouples from the equations of motion, and will therefore be of
no further relevance to the discussion.



CHAPTER 7. FOUR-DIMENSIONAL BLACK HOLES 115

We can conclude that after imposing that configurations are axion-free the metric
H̃ab admits a non-trivial field rotation matrix of the form

Rab = ±



−1 0 0

0 ±1n+1 0

0 0 1


, (7.69)

where the sign in the central block does not have any effect on the solution. We can
therefore generically construct non-BPS solutions for this class of models.

7.3.8 Non-BPS solutions of the STU + aU3 model

Since this model falls into the class of models considered above it admits the non-
trivial field rotation matrix (7.69), and we can obtain non-BPS solutions. The harmonic
functions for the non-extremal solutions are the same as before, and are given by (7.54).
The KK-scalar differs from the BPS case (7.58) by a sign inside the square root

e−φ =
√

4H0(H1H2H3 + a(H1)3) .

The asymptotic integration constants hI , hI satisfy the constraint

4h0(h1h2h3 + a(h1)3) = 1 .

From the above expression we see clearly that in order to obtain the correct sign in
the four-dimensional metric the integration constants h0, h

A must be chosen differently
from the BPS case. The values of the charges Q0, P

A may also need to be chosen
differently in order to avoid additional singularities in the metric. We can write v0, u

A

explicitly in terms of harmonic functions by

v0 = 1
2e
φH0 , uA = −1

2e
φHA , (7.70)

which differs from the BPS case (7.59) by the sign in front of the expression for v0.

The original four-dimensional complex scalars XI = e−
φ
2 Y I can then be determined

through the expressions (7.57), which one can write explicitly in terms of harmonic
functions using (7.70). The dependence of the gauge fields on the harmonic functions
remains the same as for the BPS case.

7.3.9 Non-BPS solutions of STU-like models

The last class of models for which we will consider non-BPS solutions are STU -like
models, as defined in section 7.3.5. Since these models also fall into the class of models
considered in section 7.3.3 we can find a non-trivial field rotation matrix of the form
given by (7.69). However, for these models we can actually find a more general field
rotation matrix. This is because for these models the metric can be explicitly calculated
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to be

H̃ab =



1
4(x0)2

0 0 0 0 0 0

0 ∗ ∗ 0 0 0

0
. . . 0 0 0

0 ∗ ∗ 0 0 0

0 0 0 0 1
4(y1)2

0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 1
4(yn)2


. (7.71)

This metric allows for a field rotation matrix of the form

Rab =



±1 0 0

0 ±1n+1 0

±1 0 0

0 0 0
. . . 0

0 0 ±1


, (7.72)

which is clearly more general than (7.69).
Non-BPS solutions are characterised by the harmonic functions (7.54), but now the

KK-scalar takes the form

e−φ =

√
±4H0(H1 . . .H3)

3
n ,

where the choice of sign depends on the particular sign choices in the field rotation
matrix (7.72). The asymptotic integration constants hI , hI must satisfy the constraint

±4h0(h1 . . . hn)
3
n = 1 .

This time it is possible to choose the same asymptotic integration constants as before
and still obtain the correct metric signature in four dimensions. We can write v0, u

A

explicitly in terms of harmonic functions by

v0 = ∓1
2e
φH0 , uA = ∓1

2e
φHA , (7.73)

where the sign depends on the sign choices of (7.72). As usual, the original four-

dimensional scalar fields XI = e−
φ
2 Y I can be determined using (7.60) and (7.73). The

expression for the gauge fields does not change in the non-BPS case.

7.4 Static non-extremal black holes

From our experience of the Reissner–Nordström black hole in section 3.2.2, and the
five-dimensional non-extremal solutions constructed in section 5.3, we no longer expect
the three-dimensional part of the metric to be flat. Also following the lead of these
examples we will impose that spacetime is spherically symmetric. We shall see that the
requirement of spherical symmetry is enough to completely fix the three-dimensional
part of the metric.

Unlike in the extremal case we cannot find non-extremal solutions for generic mod-
els. We will only consider axion-free solutions to models with prepotentials of the form
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F = f(X1, . . . , Xn)/X0, as described in section 7.3.3. We will first consider the sub-
class of these models given by STU -like models, since in this case we can explicitly
integrate the second order equations of motion and find the general solution. We then
investigate the criteria for these solutions to describe non-extremal black holes with
scalar fields that take finite values. We find that the number of integration constants
must reduce by half. We then discuss generic non-extremal solutions to the whole class
of models of the form F = f(X1, . . . , Xn)/X0, however we find that some scalar fields
must be proportional to one another. Like in the five-dimensional case in section 5.3.2,
we find that we can construct non-extremal solutions that have as many independent
scalar fields as there are blocks in the metric. Since all metrics for these models can
be split into at least two blocks (which is different to the models we considered in five
dimensions) we obtain a universal non-extremal solution that has one non-constant
physical scalar field. All non-extremal solutions presented in this section are new solu-
tions that will appear in a later publication [61], with the exception of the STU model
for which solutions were given in [104].

7.4.1 Non-extremal ansatz

We will now present an ansatz for finding non-extremal black hole solutions. This is
similar to the extremal ansatz, the only difference being that the three-dimensional
metric is no longer flat, but we do impose that it is spherically symmetric.

We begin by imposing that spacetime is static, in which case the KK-vector vanishes.
In terms of the fields appearing in the Lagrangian (7.1) this corresponds to setting

1

2H

(
∂µφ̃+ 2q̂aΩab∂µq̂

b
)

= 0 .

The first part of our non-extremal ansatz is the same as for the extremal ansatz, we set

qaΩab∂µq
b = qaΩab∂µq̂

b = 0 , (7.74)

which, as mentioned in section 7.3.1, is equivalent to imposing the second part of the
isotropic ansatz of section 7.2.1 for static backgrounds.

We will now show that by imposing spherical symmetry, the three-dimensional
part of the metric according to the decomposition (6.28) is always given by the three-
dimensional part of the Reissner–Nordström solution. The derivation is entirely analo-
gous to the five-dimensional case; see section 5.3. We start by imposing that spacetime
is spherically symmetric. We will parametrise the radial direction by an affine param-
eter τ , which has the property that

∆4 =
d2

dτ2
+ terms independent of τ .

The three-dimensional part of a general static and spherically symmetric metric can be
brought to the form [49]

ds2
3 = e4A(τ)dτ2 + e2A(τ)dΩ2

(2) .

Imposing that solutions are spherically symmetric implies that the LHS of the Einstein
equations (7.5) where µ 6= τ or ν 6= τ must vanish. Since the RHS of these equations
are proportional to Ä− e2A, this implies that Ä− e2A = 0. This can be integrated to
give Ȧ2 = c2 + e2A, where we have chosen the integration constant c2 to be positive in
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order to avoid solutions that are periodic in the radial coordinate. We relabel x = e−A

to write this as
ẋ = ±

√
c2x2 + 1 ,

which is solved by

x(τ) =
sinh(±cτ +D)

c
.

To ensure x is strictly positive in the range 0 < τ < +∞ we choose the positive sign
and D = 0, i.e.

e−A = x(τ) =
sinh(cτ)

c
.

The three-dimensional line element is then given by the three-dimensional part of the
Reissner–Nordström metric

ds2
3 =

c4

sinh4 cτ
dτ2 +

c2

sinh2 cτ
dΩ2

(2) . (7.75)

This is true more generally when reducing any four-dimensional sigma model over time
[30]. The (τ, τ) component of the Ricci tensor corresponding to this metric is given
by Rττ = 2c. Therefore, the equations of motion after imposing staticity, spherical
symmetry and the first part of our non-extremal ansatz (7.74) are given simply by

d

dτ

(
H̃abq̇

b
)
− 1

2
∂aH̃bc

(
q̇bq̇c − ˙̂qb ˙̂qc

)
= 0 , (7.76)

d

dτ

(
H̃ab

˙̂qb
)

= 0 , (7.77)

H̃ab

(
q̇aq̇b − ˙̂qa ˙̂qb

)
= c2 . (7.78)

The equations (7.76) and (7.77) follow from the variation of the one-dimensional effec-
tive action

L = H̃ab

(
q̇aq̇b − ˙̂qa ˙̂qb

)
,

which must then be supplemented by (7.78) which acts as a Hamiltonian constraint.
At this stage it is convenient to switch to the dual coordinates qa introduced in

section 7.1. We shall also define ˙̂qa := H̃ab
˙̂qb, which due to the equation of motion

(7.77) does not place any additional integrability condition on the q̂a. The equations
of motion now take the particularly simple form

q̈a +
1

2
∂aH̃

bc
(
q̇bq̇c − ˙̂qb ˙̂qc

)
= 0 , (7.79)

¨̂qa = 0 , (7.80)

H̃ab
(
q̇aq̇b − ˙̂qa ˙̂qb

)
= c2 . (7.81)

Notice the similarity with the analogous equations of motion in the five-dimensional
case (5.17) – (5.19). The equations of motion for the q̂a fields can immediately be
solved by setting

H̃ab
˙̂qb = Qa :=

(
−QI
P I

)
, (7.82)

where QI and P I are the constant electric and magnetic charges carried by the solution.
We are left to solve the equation of motion for the qa coordinates along with the Einstein
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equation

q̈a +
1

2
∂aH̃

bc (q̇bq̇c −QbQc) = 0 , (7.83)

H̃ab (q̇aq̇b −QaQb) = c2 . (7.84)

At the time of writing there exists no universal ansatz that solves (7.83) and (7.84)
for generic models, at least without setting all the scalar fields to be proportional to
one another. We therefore have to consider solutions for different classes of models
separately. In this thesis we will investigate axion-free solutions for two distinct classes
of models, both of which have prepotentials of the F = f(X1, . . . , Xn)/X0 as described
in section 7.3.3. First, we consider STU -like models (see section 7.3.5), where we
integrate the full second order equations of motion directly and find the general solution.
Second, we consider solutions to models that have block diagonal metrics, for which we
find solutions with as many independent scalar fields as there are blocks in the metric.
Since generic models of the form F = f(X1, . . . , Xn)/X0 always have at least two
blocks we can always find a universal solution with one non-constant physical scalar
field.

7.4.2 The STU-like models

For axion-free configurations of the generalised STU model we can actually find the
general solution to the equations (7.83) and (7.84). The Hesse potential for such con-
figurations is given in appendix B:

H(x, y) = −2
(
y0

(
x1 . . . xn

) 3
n

) 1
2
.

The equations of motion reduce to

q̈0 −
(
q̇2

0 −Q2
0

)
q0

= 0 ,

q̈n+1 −
(
q̇2
n+1 −Q2

n+1

)
qn+1

= 0 ,

... (7.85)

q̈2n+1 −
(
q̇2

2n+1 −Q2
2n+1

)
q2n+1

= 0 ,(
q̇2

0 −Q2
0

)
4q2

0

+
3
(
q̇2
n+1 −Q2

n+1

)
4nq2

n+1

+ . . .+
3
(
q̇2

2n+1 −Q2
2n+1

)
4nq2

2n+1

= c2 . (7.86)

The second order equations of motion (7.85) completely decouple from one another and
can be explicitly integrated to obtain the general solution

q0 = −± Q0

B0
sinh

(
B0τ +B0

h0

Q0

)
,

qn+2 = ±P
1

B1
sinh

(
B1τ +B1 h

1

P 1

)
,

... (7.87)

q2n+2 = ±P
n

Bn
sinh

(
Bnτ +Bn h

n

Pn

)
,



CHAPTER 7. FOUR-DIMENSIONAL BLACK HOLES 120

where h0, h
A, B0, B

A are (2n+2) independent integration constants. Since the solution
is invariant under B0, B

A → −B0,−BA we can assume without loss of generality that
the B0, B

A integration constants are non-negative. Choosing the signs in the above ex-
pressions has an effect on the extremal limit: choosing the same sign everywhere gives
BPS black holes, whereas different signs will give non-BPS black holes. For convenience
let us choose the positive sign in the all of the above expressions from now on. Plug-
ging these solutions into the Einstein equation (7.86) gives an algebraic relation that
determines the non-extremality parameter in terms of the B0, B

A integration constants

1

4
(B0)2 +

3

4n
(B1)2 + . . .+

3

4n
(Bn)2 = c2 . (7.88)

Let us now lift the solution described by (7.87) and (7.88) back up to four dimen-
sions. Since the KK-scalar is related to the Hesse potential through eφ = −2H we can
determine this to be

e−φ = 4

√
q0 (qn+1 . . . q2n+1)

3
n .

Using (6.28) the four-dimensional metric is determined to be

ds2
4 = eφdt2 + e−φ

(
c4

sinh4 cτ
dτ2 +

c2

sinh2 cτ
dΩ2

(2)

)
,

where

e−φ =

√
4q0 (qn+1 . . . q2n+1)

3
n .

The area A of the outer horizon located at τ → +∞ is given by

A = lim
τ→+∞

√
4q0 (qn+1 . . . q2n+1)

3
n

c2

sinh2 cτ
.

The highest term in the numerator is proportional to

e(
1
2
B0+ 3

2n
B1+... 3

2n
Bn)τ .

In order to have a non-vanishing area this must match precisely with the highest order
term in the denominator, given by e2cτ . We therefore have the expression

1

4
B0 +

3

4n
B1 + . . .

3

4n
Bn = c . (7.89)

The scalar fields Y I are given by (7.60). Recall that the physical scalars zA are given
by

zA :=
XA

X0
=
Y A

Y 0
= iuA

√
−v0

(u1 . . . un)
3
n

.

For these physical scalars to take on finite values at the horizon we must set

B0 = B1 = . . . = Bn ,

which combined with (7.89) means that

B0 = B1 = . . . = Bn = c .
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In addition, in order to obtain Minkowski space at radial infinity we need to ensure
that eφ → 1, which places one more constraint on the integration constants

−4
Q0

c
sinh

(
c
h0

Q0

)[
P 1

c
sinh

(
c
h1

P 1

)
. . .

Pn

c
sinh

(
c
hn

Pn

)] 3
n

= 1 .

The number of integration constants therefore reduces from (2n + 2) to n. This is
precisely half what one would expect from solving the second order equations of motion
for the n physical scalar fields zA. This suggests that the solution actually solves first
order equations.

Now let us consider the scalar fields. In terms of the dual scalar fields the solution
is written as

q0 = − H0√
W

, qn+2 =
H1

√
W

, . . . q2n+2 =
Hn√
W

,

where H0,HA and W are harmonic functions with respect to the flat metric on R3, and
can be written in terms of either τ or r by

H0 =
Q0

2c
e
c
h0
Q0 − Q0

2c
e
−2cτ−c h0

Q0 =
Q0

c
sinh

(
c
h0

Q0

)
− Q0e

−c h0
Q0

r
,

HA =
PA

2c
e
c h

A

PA − PA

2c
e
−2cτ−c h

A

PA =
PA

c
sinh

(
c
hA

PA

)
− PAe

−c h
A

PA

r
,

W = e−2cτ = 1− 2c

r
.

We can write v0, u
A in terms of harmonic functions as

v0 = −1

2
eφ
H0√
W

, uA = −1

2
eφ
HA√
W

,

and the original complex scalar fields XI = e−
φ
2 Y I can be obtained through (7.60).

The physical scalar fields are given by

zA = iHA
√

−H0

(H1 . . .Hn)
3
n

.

The integration constants h0, h
A must satisfy

−4
Q0

c
sinh

(
c
h0

Q0

)[
P 1

c
sinh

(
c
h1

P 1

)
. . .

Pn

c
sinh

(
c
hn

Pn

)] 3
n

= 1 .

The metric can now be written as

ds2
4 = − W√

−4H0(H1 . . .Hn)
3
n

dt2 +

√
−4H0(H1 . . .Hn)

3
n

(
dr2

W
+ r2dΩ2

(2)

)
.

The gauge fields are, as in the extremal case, given by the expressions (7.16a) and
(7.16b). The above metric is a direct generalisation of the non-extremal Reissner–
Nordström solution (3.13). Clearly if we set the harmonic functions H0,HA propor-
tional to one another we recover the Reissner–Nordström solution.

Note that by taking the limit c → 0 and we find precisely the extremal solutions,
either BPS or non-BPS, obtained in sections 7.3.5 and 7.3.9, which themselves generalise
the BPS solution to the STU model given by (3.18).
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7.4.3 Block diagonal models

For axion-free configurations of any model of the form F = f(X1, . . . , Xn)/X0 we may
classify the 2(n+ 1)×2(n+ 1) metric H̃ab according to the number of blocks appearing
in the bottom right n× n entries. For example, consider an 8× 8 metric of the form

H̃ab =



1
4(x0)2

0 0 0 0 0 0 0

0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 ∗


. (7.90)

This metric has two blocks in the bottom-right 3 × 3 entries. We may perform row
operations on the metric in order to write it using as small blocks in the bottom-right
as possible, which corresponds to taking general linear combinations of the special real
coordinates. Recall that by imposing the axion-free conditions (7.49) and (7.51) all en-
tries in the central block completely decouple from the equations of motion. Generically
metrics for axion-free configurations of models of the form F = f(X1, . . . , Xn)/X0 will
only contain one bottom-right block. However one can construct certain classes that
have smaller blocks. For example a model of the form

F =
f1(X1, X2)f2(X3)

X0
,

will have a corresponding metric with two bottom-right blocks, as considered above:
one of size 2× 2 and another of size 1× 1.

We will now present a solution where we set all scalar fields within each bottom-
right block proportional to one another. For concreteness we will suppose that the
bottom-right entries split into just two blocks of size k × k and l × l where k ≥ 1 and
l = n− k. We now set the scalar fields within each block proportional to one another

y1 ∝ . . . ∝ yk , yk+1 ∝ . . . ∝ yn , (7.91)

which implies that the vA are proportional to each other within each block

u1 ∝ . . . ∝ uk , uk+1 ∝ . . . ∝ un .

This means that the Hesse potential splits into two distinct factors

H = −4
√
v0f1(u1, . . . , uk)f2(uk+1 . . . un) .

Let us define the two independent dual scalar fields q(1) and q(2) by

q(1) :=
u1

H
, q(2) :=

uk+1

H
.

Here we have labelled the two independent scalar fields as q(1) and q(2). We shall also
fix the ratio between magnetic charges in each block to be

P (1) := P 1 =
u1

u2
P 2 = . . . =

u1

uk
P k , (7.92)

P (2) := P k+1 =
uk+1

uk+1
P k+2 = . . . =

uk+1

un
Pn . (7.93)
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The equations of motion now reduce to

q̈0 +

[
q̇2

0 −Q2
0

]
q̇0

= 0 , (7.94)

q̈(1) +

[
q̇2

(1) − P
(1)2
]

q̇(1)
= 0 , (7.95)

q̈(2) +

[
q̇2

(2) − P
(2)2
]

q̇(2)
= 0 , (7.96)

[
q̇2

0 −Q2
0

]
q̇2

0

+ ψ1

[
q̇2

(1) − P
(1)2
]

q̇2
(1)

+ ψ2

[
q̇2

(2) − P
(2)2
]

q̇2
(2)

= c2 , (7.97)

where ψ1 and ψ2 are constants that depend on the particular choice of proportionality
factors in (7.91), and must satisfy ψ1 + ψ2 = 0. The second order equations (7.94),
(7.95) and (7.96) can be solved immediately to give

q0 = ±Q0

B0
sinh

(
B0τ +B0

h0

Q0

)
, (7.98)

q(1) = ±P
(1)

B(1)
sinh

(
B(1)τ +B(1) h

(1)

P (1)

)
, (7.99)

q(2) = ±P
(2)

B(2)
sinh

(
B(2)τ +B(2) h

(2)

P (2)

)
. (7.100)

The Einstein equations (7.97) determine c in terms of the integration constants

Q0 + ψ1P
(1) + ψ2P

(2) = c2 .

The physical scalar fields zA are given by

z(1) := i
q0

q(1)
= z1 =

u1

u2
z2 = . . . =

u1

uk
zk , (7.101)

z(2) := i
q0

q(2)
= zk+1 =

uk+1

uk+2
zk+2 = . . . =

uk+1

un
zn . (7.102)

Let us now lift this solution back up to four dimensions. The KK scalar is given by

eφ = µ q0(q(1))
k
n (q(2))

l
n ,

where µ is a constant which depends on the factors in (7.91). The four-dimensional
metric is therefore given by

ds2
4 = − 1

µ q0(q(1))
k
n (q(2))

l
n

dt2

+ µ q0(q(1))
k
n (q(2))

l
n

(
c4

sinh4 cτ
dτ2 +

c2

sinh2 cτ
dΩ2

(2)

)
.

The area A of the outer horizon located at τ → +∞ is given by

A = lim
τ→+∞

ψ q0

(
q(1)

) k
n
(
q(2)

) l
n

c2

sinh2 cτ
.
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The highest term in the numerator is proportional to exp(
(
B0 + k

nB
(1) + l

nB
(2)
)
τ). In

order to have a non-vanishing area this must match precisely with the highest order
term in the denominator, given by exp(2cτ). We therefore have the expression

B0 +
k

n
B(1) +

l

n
B(2) = c . (7.103)

The physical scalar fields are given by (7.101) and (7.102). In order for these physical
scalar fields to be smooth on the horizon it is clear that we need

B0 = B(1) = B(2) ,

which combined with (7.103) gives

B0 = B(1) = B(2) = c .

In order for eφ → 1 at radial infinity we also need

ψ
Q0

c
sinh

(
c
h0

Q0

)(
P (1)

c
sinh

(
c
h(1)

P (1)

)) k
n
(
P (2)

c
sinh

(
c
h(2)

P (2)

)) l
n

= 1 .

Collecting everything together we can write the full solution to a metric with two
blocks in the bottom-right as

ds2
4 = − W

H0(H(1))
k
n (H(2))

l
n

dt2 +H0(H(1))
k
n (H(2))

l
n

(
dr2

W
+ r2dΩ2

(2)

)
,

where H0,H(1),H(2) and W are given by

H0 =
Q0

2c
e
c
h0
Q0 − Q0

2c
e
−2cτ−c h0

Q0 =
Q0

c
sinh

(
c
h0

Q0

)
− Q0e

−c h0
Q0

r
,

H1 =
1

µ

[
P (1)

2c
e
c h

(1)

P (1) − P (1)

2c
e
−2cτ−c h

(1)

P (1)

]
=

1

µ

P (1)

c
sinh

(
c
h(1)

P (1)

)
− P (1)e

−c h
(1)

P (1)

r

 ,

H2 =
1

µ

[
P (2)

2c
e
c h

(2)

P (2) − P (2)

2c
e
−2cτ−c h

(2)

P (2)

]
=

1

µ

P (2)

c
sinh

(
c
h(2)

P (2)

)
− P (2)e

−c h
(2)

P (2)

r

 ,

W = e−2cτ = 1− 2c

r
.

The scalar fields are given by

q0 = − H0√
W

, q(1) =
H1

√
W

, q(2) =
H2

√
W

,

and the physical scalars by

z(1) =

√
−H0

H(1)
, z(2) =

√
−H0

H(2)
.

Since every model of the form F = f(X1, . . . , Xn)/X0 has at least one block in the
bottom-right of the metric, we can give a universal solution for this class of models.
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This solution will be characterised by a single electric and magnetic charge, and one
non-constant scalar field. The full solution is given by

ds2
4 =

W

H0H1
dt2 +H0H1

(
dr2

W
+ r2dΩ2

(2)

)
.

where H0,H1 and W are given by

H0 =
Q

2c
e
c
h0
Q − Q

2c
e
−2cτ−ch0

Q =
Q

c
sinh

(
c
h0

Q

)
− Qe

−ch0
Q

r
,

H1 =
P

2c
ec

h1

P − P

2c
e−2cτ−ch

1

P =
P

c
sinh

(
c
h1

P

)
− Pe−c

h1

P

r
,

W = e−2cτ = 1− 2c

r
.

The one non-constant physical scalar field is given by z(1) =
√
−H0
H1 .



Chapter 8

Conclusion and outlook

In this thesis we developed our understanding of the r-map and c-map from a geomet-
rical point of view, and showed how both maps can be used to generate new stationary
solutions for theories of N = 2 supergravity coupled to vector multiplets in five and
four dimensions.

For the r-map we found that we could actually consider a more general theory
than 5d, N = 2 supergravity by relaxing the condition that the target manifold is a
projective special real manifold and only requiring that it is a generalised projective
special real manifold. This was characterised by the fact that the Hesse potential on the
corresponding d-conic Hessian manifold was only required to be a homogeneous function
rather than a homogeneous polynomial of degree three. We then reduced this theory
over a single spacelike or timelike dimension, and showed that for the supergravity
r-map the target manifold geometry is projective special Kähler or projective special
para-Kähler respectively.

We then investigated how the generalised r-map could be used to find extremal
solutions, and how these solutions could be deformed into new non-extremal solutions.
This deformation was obtained in a systematic way, and at every stage of the analysis
we could switch off the non-extremality parameter and recover the known extremal
solutions. We then investigated various properties of these non-extremal solutions. One
novel feature was that in order to obtain black hole solutions with scalar fields that
take finite values we needed the number of independent integration constants to halve.
This suggests that non-extremal black holes always satisfy first-order equations, similar
to their extremal counterparts. We also saw that both the generalised stabilisation
equations and the black hole attractor equations can be directly generalised to the
non-extremal case. It would be interesting to investigate the physical interpretation of
these equations in the future.

The treatment of the r-map and investigation of black hole solutions lead us natu-
rally to consider a similar approach toward the c-map, which is the more complicated
of the two. In order to make manifest the similarities between the r-map and c-map,
and also as an interesting study in its own right, we presented a new formulation of
projective special Kähler geometry based on real coordinates. One key feature was
that we worked at the level of the larger conic affine special Kähler manifold, and con-
sidered horizontal fields that could be projected down to the projective special Kähler
manifold. A major practical advantage is that full symplectic covariance can be kept
manifest at the level of the Lagrangian.

We then considered the c-map by reducing a theory of 4d, N = 2 supergravity
coupled to vector multiplets over a single spacelike or timelike dimension. After du-
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alising vector fields into scalar fields one is left with a three-dimensional Lagrangian
describing gravity coupled to a non-linear sigma model. We then used the real formu-
lation of projective special Kähler geometry to formulate this sigma model purely in
terms of real fields, which gave us a new formulation of the c-map. We were easily able
to use this to recover the result of Ferrara and Sabharwal that the target manifold is
quaternion Kähler when reduction is performed over a spacelike dimension. We went
on to prove the new result that the target manifold is para-quaternion Kähler when
reduction is performed over a timelike dimension. We also showed that the spacelike
c-map contained an additional integrable complex structure, separate from the known
integrable complex structure and the quaternion structure. The timelike c-map con-
tains two integrable complex structures, where again one integrable complex structure
is distinct from the para-quaternion structure.

As an application of the new formulation of the c-map we investigated new station-
ary solutions for the four-dimensional theory. Since the c-map in real coordinates takes
a very similar form to the r-map we were able to apply many of the same techniques
we had previously developed. We began by discussing rotating solutions, but unfortu-
nately they always contain a naked singularity and therefore cannot be classed as black
holes. These solutions corresponded to identifying totally geodesic and totally isotropic
submanifolds of the para-quaternion Kähler target manifold, and therefore produce so-
lutions with a flat three-dimensional part of the metric. We leave the investigation of
more complicated rotating solutions to future work.

After discussing rotating solutions we went on to investigate static solutions, for
which the equations of motion simplify considerably, and are extremely similar to the
equations of motion for the five-dimensional theory. We recovered the known extremal
BPS solutions and went on to construct new non-BPS solutions for a large class of
models, which contained, in particular, all models in the image of the r-map. Finally,
we considered non-extremal black hole solutions. For STU -like models we could inte-
grate the second order equations of motion directly and find the most general solution.
As in the five-dimensional case, we found that for these solutions to correspond to
non-extremal black holes in four dimensions with finite scalar fields the number of inte-
gration constants must halve. This suggests that the description of non-extremal black
holes in terms of first order equations is universal and independent of the number of
dimensions. We then went on to provide non-extremal solutions for generic models,
where the number of independent scalar fields is proportional to the number of blocks
in the metric. Since all metrics that we consider have at least two blocks we find a
universal non-extremal solution with one non-constant scalar field.

Let us now discuss some areas that are open to future work. The most obvious
extension of this work is to construct new solitonic supergravity solutions, other than
the new non-extremal solutions that will appear shortly in [61]. We have seen that our
formalism makes extensive use of the Hesse potential explicitly, and one limiting factor
at present is the lack of explicit examples of Hesse potentials. We will come back to this
point shortly. However, even for the STU model there is a realistic possibility of finding
new rotating solutions with non-constant scalar fields, which includes both extremal
non-BPS and non-extremal solutions. Another possibility is to look for solutions for
different theories. For example, the formalism presented here has already been used
to construct new non-BPS and non-extremal black hole solutions for various models in
Fayet-Iliopoulos gauged supergravity [20, 21]. It might also be interesting to look more
closely at how instantons are related to the solutions based in this thesis. By starting
in an Euclidean theory in four dimensions and reducing over space one may be able to
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construct new instantonic solutions of supergravity. The details of this reduction have
already been calculated and will appear shortly [28].

On the geometrical side it would be interesting to investigate further the implica-
tions of the real formulation of special geometry presented in this thesis. One con-
crete goal would be to establish a relationship between the triple derivatives of the
Hesse potential and the Riemannian curvature tensor, in a manner similar to the triple
derivatives of the prepotential [77]. On a related topic, it would also be useful to both
mathematicians and physicists to provide a dictionary between Hesse potentials and
homogeneous spaces in a manner similar to that which exists for homogeneous spaces
and the prepotential [24]. Another open question is whether projective special Kähler
geometry can be generalised in a similar way to projective special real geometry. This
would in turn open up the possibility of generalising the c-map, which may lead to new
examples of (para-)quaternion Kähler manifolds or generalisations thereof.



Appendix A

Non-linear sigma models

A non-linear sigma model is quite simply a Lagrangian of a set of scalar fields Φi that
takes the form

e−1
d Ld = Gij(Φ)∂µΦi∂µΦj .

The terminology ‘non-linear’ refers to the fact that the couplings Gij(Φ) need not be
linear in Φ, while ‘sigma model’ simply refers to the label of the scalar fields in the first
paper in which such Lagrangians were defined [112]. We can interpret the couplings
Gij(Φ) as a metric on some target manifold. Solutions are given by

∆Φi + Γijk(Φ)
∂Φj

∂xµ
∂Φk

∂xν
gµν = 0 ,

and are called harmonic maps. Note that here Γijk(Φ) are the components of the
Levi-Civita connection on the target manifold.

Harmonic maps also appear in the mathematics literature (see [113] for a useful
review), which we will now briefly discuss. Our aim will be to understand harmonic
maps in a geometrical way through the energy functional and tension field. Consider a
differentiable map Φ between two Riemannian manifolds (M, g) and (N,G)

Φ : (M, g) 7−→ (N,G) .

The differential of Φ at a point p ∈M is given by

dΦ : M −→ T ∗M ⊗ Φ−1TN ,

where Φ−1TN is the pull-back vector bundle over M with fibres TΦ(p)N at p ∈ M .
Consider a coordinate patch U ⊂ M and V ⊂ N with Φ(U) ⊂ V , with coordinates
(x1, . . . , xm) on U and Φ(x) = (y1, . . . , yn) on V . We can then write the differential of
Φ at the point p ∈M as

dΦp =
∂Φi

∂xµ
(p)dxµp ⊗

(
∂

∂yi

)
Φ(p)

∈ Γ(T ∗pM ⊗ TΦ(p)N) .

The inner product on T ∗M ⊗ Φ−1TN is defined as

〈α⊗A, β ⊗B〉 = g−1(α, β) G(A,B) , where α, β ∈ T ∗M ; A,B ∈ Φ−1TN ,

and we can then define the energy functional

e(Φ)(x) =
1

2
|dΦ(x)|2 =

1

2
gµνGij

∂Φi

∂xµ
∂Φj

∂xν
.
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The energy of the map Φ : M −→ N is then defined as

E(Φ) =

∫
M
dvolg e(Φ) .

A map is harmonic if it is an extremum of the energy functional. One can then interpret
a harmonic map as follows: The map Φ induces a natural vector field τ(Φ) ∈ Γ(Φ−1TN)
through

τ(Φ) = Tr ∇dΦ =
(
gµν∇µ∇νΦi

)︸ ︷︷ ︸
τ i(Φ)

∂

∂yi
◦ Φ .

This is called the tension field, and represents the direction in which the energy de-
creases most rapidly. We can write the components τ i(Φ) as

τ i(Φ) = gµν
(

∂2Φi

∂xµ∂xν
−MΓρµν(x)

∂Φi

∂xρ
+ NΓijk(Φ)

∂Φj

∂xµ
∂Φk

∂xν

)
= ∆Φi + NΓijk(Φ)

∂Φj

∂xµ
∂Φk

∂xν
gµν ,

and we can see that the tension field vanishes identically iff the map Φ is harmonic.



Appendix B

Hesse potentials

In this section we will present the Hesse potentials for various models. We will not go
through the details of each derivation, as these all appear in existing publications by
the author. As in the main text, we define

xI + iuI := Y I , yI + ivI := FI .

The F = −iY 0Y 1 model [20]:

H = −2
(
x0x1 + y0y1

)
. (B.1)

The F = −(Y 1)3

Y 0
model [20]:

H = −2
(
− y0x

0y0x
0 − 2y0x

0y1x
1 +

1

3
y1x

1y1x
1

+
4

27
x0(y1)3 − 4y0(x1)3

)1/2
.

(B.2)

The F = −2i
√
Y 0Y 1Y 2Y 3 model [21]:

H = −2
(
− (y0x

0 − y1x
1 − y2x

2 − y3x
3)2 + 4y1x

1y2x
2

+ 4y1x
1y3x

3 + 4y2x
2y3x

3 + 4y0y1y2y3 + 4x0x1x2x3
)1/2

.
(B.3)

The F = −Y
1Y 2Y 3

Y 0
model [19]:

H = −2
(
− (y.x)2 + 4y1x

1y2x
2 + 4y1x

1y3x
3 + 4y2x

2y3x
3

+ 4x0y1y2y3 − 4y0x
1x2x3

)1/2
.

(B.4)

Note that (B.3) and (B.4) are related by a symplectic transformation. Since the Hesse
potential is invariant under an overall U(1) phase transformation of Y I and FI , these
Hesse potentials can alternatively be expressed in terms of uI , vI by simply making the
substitutions xI ↔ uI and yI ↔ vI .

Let us now consider models of the form

F =
f(Y 1, . . . , Y n)

Y 0
, (B.5)
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where f is real when evaluated on real fields. Note that since F is homogeneous
of degree two we must have f homogeneous of degree three. In this case it is not
necessarily possible to calculate the Hesse potential explicitly, but for the submanifold
corresponding to Y 0 purely real and Y A purely imaginary one can show that the Hesse
potential takes the form [19]

H = −4
√
x0h(y1, . . . , yn) , (B.6)

where h is some specific but undetermined homogeneous function of degree three. The
Hesse potential can be expressed in terms of uI and vI by

H = −4
√
v0f(u1, . . . , un) , (B.7)

where f is the same function that appears in the prepotential. Note that the U(1)
symmetry corresponding to the overall phase of Y I and FI is explicitly broken by the
requirement that Y 0 is real and Y A are imaginary.

An important class of models of the form (B.5) is given by STU -like models, which
are characterised by prepotentials of the form

F = −(Y 1 . . . Y n)
3
n

Y 0
.

For configurations of such models where Y 0 is purely real and Y A purely imaginary
we may calculate the function h appearing in (B.6) explicitly, and so we can give the
Hesse potential explicitly in terms of xI , yI :

H = −4

√
−x0(y1, . . . , yn)

3
n . (B.8)

From (B.7) we can write the Hesse potential in terms of uI , vI as

H = −4

√
−v0(u1, . . . , un)

3
n . (B.9)
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