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Abstract

The quadrupole moments of strongly deformed, ultrahigh-spin bands in the nu-

cleus 154Er have been measured for the first time, providing a calibration for recent

measurements made for similar bands in 157Er and 158Er using the same method.

High-spin states up to ∼ 52 ħ have been populated using the fusion-evaporation

reaction 110Pd(48Ti,4nγ)154Er at a beam energy of 215MeV, in an experiment per-

formed at the ATLAS facility at Argonne National Laboratory, USA, using the

Gammasphere detector array.

Two new ultrahigh-spin bands, believed to be triaxially deformed, have been

observed in 154Er in addition to the known triaxial strongly deformed (TSD) band

and superdeformed (SD) axially symmetric prolate band. The quadrupole mo-

ments, Qt, of three of these bands have been measured using the Doppler-shift

attenuationmethod (DSAM), with values of 11.0±0.6 eb for the known TSD band,

19.5 ± 1.5 eb for the SD band and 10.0 ± 0.9 eb for one of the new bands.

Cranked Nilsson-Strutinsky (CNS) calculations are compared with results and

possible nucleon configurations are discussed. A configuration similar to that of

the yrast SD band of the isotone 152Dy is assigned to the 154Er SD band. Based on

theirQt, the triaxial bands appearmore consistentwith configurations correspond-

ing to a TSD shape with a negative γ deformation parameter. The Qt of ∼ 11 eb is

consistent with previous results for the four TSD bands in 157,158Er. These results

challenge theoretical calculations that predict positive-γ TSD shapes to be energet-

ically favoured over negative-γ shapes.



Whence and what art thou, execrable shape . . . ?

—Milton, Paradise Lost, Book ii



Contents

1 Introduction 1

2 Theory 8

2.1 Nuclear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The shell model . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 The Simple Harmonic Oscillator potential . . . . . . . . . . 10

2.1.3 Modified Harmonic Oscillator . . . . . . . . . . . . . . . . . 12

2.1.4 Anisotropic Harmonic Oscillator . . . . . . . . . . . . . . . 15

2.1.5 Triaxiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.6 Potential energy surfaces and the Strutinsky method . . . . 22

2.1.7 Cranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Rotational frequency . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Effective alignment . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Moments of inertia . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Quadrupole moments . . . . . . . . . . . . . . . . . . . . . . 26

3 Methods 28

i



CONTENTS ii

3.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Fusion-evaporation . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Gamma-ray detection . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 DSAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 DSAM analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Background subtraction . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Centroid measurement . . . . . . . . . . . . . . . . . . . . . 48

3.2.4 Doppler shift calculation . . . . . . . . . . . . . . . . . . . . 49

3.2.5 Calculation of β0 . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.6 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . 57

3.2.7 A preliminary fit of Qt . . . . . . . . . . . . . . . . . . . . . 60

3.2.8 Measurement of β0 using thin-target data . . . . . . . . . . 68

3.2.9 Error on Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 The search for new bands . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Results 80

4.1 New bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Quadrupole moments . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Feeding into the main level scheme . . . . . . . . . . . . . . . . . . . 89

5 Discussion 94

5.1 Deformation minima . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Strongly deformed bands . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Band 2 (Superdeformed) . . . . . . . . . . . . . . . . . . . . 98



CONTENTS iii

5.2.2 Band 1 (TSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Band 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.4 Band 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Alternative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 CRMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 Tilted-axis cranking . . . . . . . . . . . . . . . . . . . . . . . 113

Conclusion 114



List of Figures

1.1 The neutron-deficient rare-earth region of the nuclear chart indi-

cating nuclei with known strongly deformed bands. . . . . . . . . . 4

1.2 The known level scheme of 154Er prior to this work. . . . . . . . . . 6

2.1 Schematics of square well, Harmonic Oscillator andWoods-Saxon

potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Modified Harmonic Oscillator shells . . . . . . . . . . . . . . . . . . 14

2.3 Nilsson diagram for protons, 50 ≤ Z ≤ 82 . . . . . . . . . . . . . . . 17

2.4 Nilsson diagram for neutrons, 82 ≤ N ≤ 126 . . . . . . . . . . . . . . 18

2.5 Spin projection quantum numbers for a Nilsson orbital. . . . . . . 19

2.6 The Lund convention for the parametrisation of triaxial shapes. . . 21

2.7 Positive- and negative-γ TSD shapes. . . . . . . . . . . . . . . . . . . 22

3.1 The impact parameter b in a heavy-ion reaction. . . . . . . . . . . . 29

3.2 Statistical model calculations for a fusion-evaporation reaction . . 31

3.3 External and internal views of Gammasphere. . . . . . . . . . . . . 33

3.4 The main parts of a Gammasphere Ge detector module. . . . . . . 34

3.5 Fitted efficiency curve for the current experiment. . . . . . . . . . . 35

3.6 A schematic illustration of the DSAM. . . . . . . . . . . . . . . . . . 36

iv



LIST OF FIGURES v

3.7 An example of a Doppler-shifted peak . . . . . . . . . . . . . . . . . 38

3.8 Flowchart depicting the procedure followed by the sort program

using the spikeless sorting method. . . . . . . . . . . . . . . . . . . . 40

3.9 Doppler-corrected spectra for band 1 of 154Er resulting from mul-

tiple-fold gating of the thin-target data. . . . . . . . . . . . . . . . . 42

3.10 The variation of average peak area of band 1 of 154Erwith theDopp-

ler correction applied by the sort program. . . . . . . . . . . . . . . 43

3.11 An energy-dependent Doppler correction function. . . . . . . . . . 44

3.12 γ3-gated spectra for band 1 of 154Er before and after background

subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.13 A typical Gaussian peak fit to a spectrum. . . . . . . . . . . . . . . . 48

3.14 A weighted least-squares linear fit of centroid energy vs. cos θ data

for the 1033 keV transition in band 1. . . . . . . . . . . . . . . . . . . 51

3.15 A weighted least-squares linear fit of centroid energy vs. cos θ data

for two transitions with poor fits. . . . . . . . . . . . . . . . . . . . . 53

3.16 Cross-section for the reaction 110Pd(48Ti,4n)154Er calculated by pace

and calculated energy range of the beam in the target layer. . . . . 58

3.17 The paths of 10000 simulated recoils generated by srim. . . . . . . 59

3.18 The side-feeding of band 1 modelled by mltfit. . . . . . . . . . . . 62

3.19 A χ2 contour plot for band 1. . . . . . . . . . . . . . . . . . . . . . . . 63

3.20 Fits of bands 1 and 2 withQt,Qsf and Tsf free to vary and β0 = 0.02933. 65

3.21 Fits of bands 1 and 2 with Qsf = Qt, Tsf = 1 fs and β0 = 0.02933. . . . 67

3.22 Thin-target velocity and position measurements for transitions in

150Dy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.23 Doppler-shift measurements from the thin-target data. . . . . . . . 71



LIST OF FIGURES vi

3.24 A comparison of experimental and theoretical βex values . . . . . . 72

4.1 Spectra from individual detector rings and thin-target spectrum

for band 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Triple-gated coincidence spectra of bands 2–4 of 154Er. . . . . . . . 82

4.3 Measured F(τ) curves and quadrupole moments in 154Er. . . . . . 86

4.4 Simulated F(τ) curves for a range of Qt values. . . . . . . . . . . . . 87

4.5 Experimental band 1 results with a simulated curve (Qt = 7.4 eb),

if the srim simulation is modified to include a gap in the target layer. 89

4.6 Observed ND coincidences with in-band transitions for bands 1–4. 91

4.7 Relative intensities of transitions in the strongly deformed bands. . 92

5.1 Potential energy surface plots for 154Er, I = 0–30. . . . . . . . . . . . 96

5.1 (continued) Potential energy surface plots for 154Er, I = 40–70. . . 97

5.2 Single-particle routhians for the SD minimum. . . . . . . . . . . . . 100

5.3 Dynamic moment of inertia, J (2), of the bands in 154Er compared

with similar bands in neighbouring nuclei. . . . . . . . . . . . . . . 101

5.4 Experimental and theoretical effective alignment for band 2 using

a 152Dy reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Qt as a function of spin for favoured configurations. . . . . . . . . . 103

5.6 The evolution of single-particle orbitals with ε2, γ and ω towards

the positive-γ TSD minimum. . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Comparison of experimental and theoretical level energies as a func-

tion of spin for band 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Theoretical deformation values of candidate TSD configurations in

154Er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



LIST OF FIGURES vii

5.9 Theoretical J (2)moment of inertia for candidate configurations in

154Er compared with the experimental data for band 1. . . . . . . . 109

5.10 The dynamic moment of inertia of band 4 compared with three

theoretical configurations. . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Tables

3.1 Detector angle θ for each ring of Gammasphere andmean detector

angle θeff after summing of the indicated rings. . . . . . . . . . . . . 50

3.2 Probabilities associated with linear fits to bands 1 and 2 . . . . . . . 54

3.3 Error on β(= F(τ)β0) for the transitions in band 3, indicating

where the jackknife method has been used or outliers have been

deleted from the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Preliminary results using a three-parameter fit. . . . . . . . . . . . . 64

3.5 Preliminary results using a single free parameter and a conven-

tional uncertainty calculation. . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Energies and intensities for the two previously known strongly de-

formed bands in 154Er. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Energies and intensities for the newly observed strongly deformed

bands in 154Er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Final quadrupole moments for bands 1–3 in 154Er. . . . . . . . . . . 85

5.1 Summary of the favouredTSDconfigurations fromCNS calculations. 110

viii



Acknowledgements

I am indebted to my supervisors Eddie Paul and Paul Nolan, Xiaofeng Wang and

Mark Riley at Florida State University, John Simpson at STFC Daresbury, the staff

at Argonne National Laboratory, Ingemar Ragnarsson at Lund for his invaluable

theoretical input, and all the members of our collaboration.

Thank you to the members of the Nuclear Structure group at the University of

Liverpool, in whose company it has been a pleasure to work and with whom I have

had many enlightening discussions (not always about nuclear physics).

Thank you to my family and friends.

Finally, I am very grateful to the STFC for funding my postgraduate research

studentship.

ix



Chapter 1

Introduction

This thesis describes themeasurement of physical properties of the nucleus erbium-

154 (154Er). These properties are, more specifically, those of the nucleus when it

adopts certain strongly deformed shapes that occur (with only a very low proba-

bility) when it is given a large amount of angular momentum (spin).

Strongly deformed nuclei are a well-established phenomenon. They were first

observed in the 1960s in actinide nuclei at low spin [1] and were later predicted

to occur in the lighter A ∼ 150 region at high spin. This was confirmed in 1984

by Nyakó et al. with the observation of an experimental signal consistent with

a strongly deformed shape in 152Dy [2]. Since then, dozens of nuclei with these

superdeformed (SD) states have been observed. The term ‘superdeformed’ refers

specifically to nuclei that have a long-to-short axis ratio of 2:1 (i.e. nuclei that are

twice as long as they are wide) and are symmetric about the long axis, making them

resemble a rugby ball.

However, in the last few decades, evidence has mounted for the existence of

rather different, triaxial strongly deformed (TSD) states in some nuclei. Whereas a

1



Ch. 1 INTRODUCTION 2

superdeformed nucleus has a long axis and two short axes of equal length, a triaxial

nucleus has a long, a short and an intermediate axis and so resembles, to extend the

analogy, a rugby ball squashed at its sides, or a kiwi fruit. Strongly deformed triaxial

shapes have long been proposed [3], but the first compelling evidence for themwas

discovered by Ødegård et al. in 163Lu [4]. Several series of states linked by cascades

of gamma rays (referred to as bands) were observed with features characteristic of

a predicted ‘wobbling’ excitation that is unique to triaxial nuclei.

Triaxial bands have now been identified in a number of nuclei in this region

of the nuclear chart, including 161−165,167Lu [4–8], 168,170,174Hf [9–11], 160Yb [12],

160,161,163Tm [13, 14] and 154,157−160Er [15–17]. These are consistent with triaxial

shapes that are predicted by a range of theoretical models to become energetically

favoured at high spin.

However, recent measurements of the quadrupole moment (a measure of the

asymmetry of charge distribution within the nucleus) of four TSD bands in 157Er

and 158Er suggest that the nuclear shape corresponding to these bands is indeed

triaxial, but with rotation occurring around the intermediate axis rather than the

short axis as predicted [18]. Hence, by making the samemeasurements in 154Er, we

hope to elucidate this rather perplexing result.

The atomic nucleus, measuring ∼ 10−15 m, cannot be observed directly with

any microscope. Instead, its properties must be deduced indirectly using a range

of probes. This can involve, for example, creating a nucleus in an excited state and

measuring the radiation it emits as it decays, or firing particles at the nucleus and

observing the physical properties of scattered particles.

For the work presented in this thesis, we have created the nucleus of interest in

an excited state with high spin and measured the energies of gamma rays (hence-
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forth written as ‘γ rays’) emitted by the nucleus as it loses angular momentum and

decays down to its ground state.The details of the reaction used to create the nuclei

and the apparatus used to measure the emitted γ rays are given in Section 3.1.

Deducing the shape of the nucleus from the γ rays it emits involves a complex

series of measurements and calculations. Synonymous with the nuclear shape is

its deformation (see Chapter 2 for a description of nuclear deformation parame-

ters). The further a nucleus is from a non-deformed, spherical shape, the higher its

quadrupole moment will be. A high quadrupole moment in turn leads to shorter

lifetimes. The lifetime is the average time for which a nucleus remains in a quan-

tum state before decaying to a less excited state, which in the scope of this analysis

involves the emission of a γ ray.

Thus, in order to determine the nuclear shape, we design an experiment that

allows us to measure the length of time between γ-ray emissions and thereby work

backwards to calculate the deformation parameters of the nucleus when it was in

the state that decayed. The way in which this was done is described in Section 3.2.

The nucleus 154Er is interesting for a number of reasons. On the nuclear chart, it

straddles two regions where the two types of deformationmentioned, SD and TSD,

prevail (Fig. 1.1). Accordingly, it had (prior to this work) two known bands, which

were believed to be variously of SD and TSD character based on their measured

moments of inertia.

Measuring the quadrupole moments, Qt, of these two bands should allow us to

calibrate the results of the 157,158Ermeasurements, obtained using theDoppler-shift

attenuationmethod (DSAM).The calculation of nuclear lifetimes from γ-ray ener-

gies uses certain theoretical quantities relating to the slowing down of the nucleus

within the layers of material in which it is created. These quantities – the stopping
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Figure1.1 The neutron-deficient rare-earth region of the nuclear chart indicating
nuclei with known strongly deformed bands. Solid grey denotes superdeformed
bands, while hatched lines denote triaxial strongly deformed bands. Black indicates
stable nuclei.

powers of the material – are a large source of error, and have indeed caused some

difficulty in this analysis (see Section 3.2). The theoretical description of SD bands

is now relatively well-established and their quadrupole moments can be predicted

with some certainty. How well the experimental quadrupole moment for the SD

band in 154Er agrees with its predicted value therefore indicates the accuracy of the

theoretical stopping powers used in the DSAM analysis.

Additionally, the coexistence of SD and TSD bands allows us to better compare

and contrast the underlying microscopic behaviour of the nucleus’ constituent nu-

cleons (neutrons and protons) that lead to the two types of macroscopic deforma-
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tion. Details of the theoretical models used to interpret this behaviour are given in

Chapter 2, while a comparison of the latest theoretical predictions with the exper-

imental findings is given in Chapter 5.

Lastly, we hoped that the data provided by this experiment would lead to the

identification of additional strongly deformed bands in the nucleus that had not

been identified thus far because the likelihood of their being populated was so low.

We have indeed discovered two such bands in 154Er, and we present these in Chap-

ter 4. The method we used for obtaining them is described in Section 3.3.

Fig. 1.2 is a level scheme containing all the states and γ-ray transitions between

them known in 154Er prior to this work [15, 19, 20]. The widths of the transitions,

represented by arrows, are proportional to the intensity with which they are ob-

served experimentally, while their lengths indicate their energy in thousands of

electron volts (keV).The height of a state is thus a measure of its excitation energy,

and the γ rays below it are the ways by which the nucleus can lose this excitation

energy and decay to its ground state. At this point, it should perhaps be noted that

although the experiment involves creating a nucleus at high spin and observing its

decay, it is often more convenient talk about the nucleus in terms of how it builds

up its spin from a state of low excitation.

The main part of the 154Er level scheme consists of low-deformation oblate

(discus-shaped) states that carry most of the intensity. These states, and their tran-

sitions, will be referred to as ‘normally-deformed’ (ND) in this thesis. To the left

of these states are two ‘floating’ bands - the two known strongly deformed bands.

Their placement is approximate, since the transitions that link them to the ND

states have not been observed. Their spins, and the point at which they feed into

the main level scheme, have been inferred by Lagergren et al. [15] from ND transi-
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tions observed in coincidence with in-band transitions.

There is a striking difference in appearance between the ND and strongly de-

formed bands. With the exception of the first few states up to spin I = 6, the former

are rather disorganised, while the latter are regularly spaced with a gradual, almost

constant increase in transition energy with spin. These are manifestations of two

different kinds of excitation – single-particle and collective – for which nuclei in this

region are an ideal testing ground. Single-particle excitations involve the interac-

tions between individual nucleons (protons and neutrons), which in a nucleus with

many nucleons can lead to a complex system of quantum states. Collective exci-

tations, such as rotation and vibration, involve the nucleus as whole and tend to

result in a simple arrangement of states like those in our strongly deformed bands.

However, the interaction between the two kinds of excitation will be crucial in un-

derstanding the underlying structure of these bands.



Chapter 2

Theory

A theoretical description of the nucleus that accounts for all the interactions be-

tween individual nucleons rapidly becomes intractable as the number of nucleons

is increased. This has led to the development of theoretical models that simplify

calculations by using approximations of certain properties of the nuclear system.

In this chapter, we discuss models of increasing sophistication leading up to the

Cranked Nilsson-Strutinsky (CNS) model that was used to produce the theoretical

results in Chapter 5.

The levels shown in Fig. 1.2 illustrate the existence of discrete quantum states

with specific angular momentum and excitation energy. This is as opposed to the

situation in a classical system, for example a spinning top, which experiences a

continuous range of angularmomenta and energies. We shall see that these discrete

levels arise naturally from a quantum-mechanical treatment of the nucleons.

8
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2.1 Nuclear models

2.1.1 The shell model

A successful nuclear model must recreate the shell structure of nuclei observed ex-

perimentally. This idea posits that nucleons occupy discrete energy levels that are

clustered in shells separated by energy gaps, analogous to the way electrons orbit-

ing an atom occupy electron shells. In the case of electrons, the occupation of these

shells gives rise to trends in the chemical properties of atoms across the periodic

table. Similarly, the variation in certain physical properties of nuclei across the

nuclear chart is consistent with the existence of ‘magic numbers’ of neutrons and

protons (N and Z, respectively) that correspond to filled shells.

For example, the neutron separation energy (the energy required to remove a

neutron from the nucleus) shows a sudden drop after a magic number [21], sug-

gesting that nuclei added beyond this number occupy a higher, less tightly-bound

shell. The magic numbers for nuclei near stability are

2, 8, 20, 28, 50, 82, 126. (2.1)

The grouping of orbitals, together with the discrete orbitals themselves, appear

if each nucleon is treated as if it is moving in a potential energy well. This poten-

tial serves as an approximation of the net attractive force resulting from the other

nucleons, and as such it is referred to as amean field potential.
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Square Well

r = 0 r = R0
V = −V 0

V = 0

Harmonic Oscillator
Woods-Saxon

Figure 2.1 Three possibilities for the nuclear potential: a simple square well po-
tential with V(r) = −V , r ≤ R; V(r) = 0, r > R; a Simple Harmonic Oscillator
of the form given in Eq. 2.2; a more realistic Woods-Saxon potential, similar to the
Nilsson potential given in Eq. 2.6, of the form V(r) = −V 0[1 − (r/R0)2].

2.1.2 The Simple Harmonic Oscillator potential

We begin with a simple potential, the Harmonic Oscillator (Fig. 2.1), of the form

Vosc(r) = 12kr2 = 12mω2r2, (2.2)

where r is the three-dimensional position coordinate, k is the classical spring con-

stant, m is mass and ω is the harmonic oscillator frequency. We incorporate this

into the nuclearHamiltonian, the quantum-mechanical operator that describes the
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energy of the system, which is of the form

H(r) = − ħ
2m
∇2 + V(r), (2.3)

where the first term is the particle’s kinetic energy. The energy eigenvalues corre-

sponding to the solutions to the Hamiltonian are given by

EN = (N + 32)ħω, N ≥ 0 (2.4)

where the integer N is the oscillator quantum number. An important property of

the orbitals, the parity π, emerges at this point. For the Simple Harmonic Oscilla-

tor, π = (−1)N , where π = 1 is positive parity and π = −1 negative parity. In physical

terms, the parity signifies whether the particle’s wavefunction is symmetric or an-

tisymmetric with respect to a reflection of spatial coordinates through the origin,

corresponding to positive and negative parity, respectively.

The energy eigenvalues and their corresponding N are shown on the left of

Fig. 2.2. The levels are degenerate, meaning that multiple eigenstates have the same

energy. The number of degenerate states gives the occupancy of each level, i.e. the

number of nucleons that can fill the level. This is limited by the Pauli exclusion

principle, which states that no two particles can have the same quantum numbers.

The quantumnumbers that define the harmonic oscillator orbitals are l , the angular

momentum quantum number, and n, which counts the total number of orbitals

with a given l . Their allowed values are governed by the rules

2(n − 1) + l = N , N ≥ 0, 0 ≤ l ≤ N . (2.5)
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The nl orbitals that make up each N shell are given in Fig. 2.2, using the conven-

tional lettering system for l values (s = 0, p = 1, d = 2, f = 3, g = 4, h = 5, i = 6).

The parity of the orbitals is now given by π = (−1)l (Eq. 2.5 ensures that this is

consistent with (−1)N).

Further degeneracy is present due to the fact that nucleons have an intrinsic

angularmomentum s, which hasmagnitude 1⁄2 .The quantities l and s sum together

to the total angular momentum j. The vectors l and s can be both aligned or anti-

aligned, and so j = l ± 12 , resulting in the nl j orbitals listed on the right of Fig. 2.2.

(We see will why these orbitals are split in the next section.)

Still further degeneracy results from the fact that each j-value hasmagnetic sub-

states with quantum number m. This is the projection of j along the quantisation

axis of the nucleus, and can have the values j, j − 1, . . . − j. Thus each nl j orbital

has 2 j + 1 substates which, following the Pauli principle, can only contain 2 j + 1

nucleons.

In this way, we obtain the final occupancy numbers for theHarmonicOscillator

potential levels. The running total of these (Fig. 2.2) gives the Harmonic Oscillator

magic numbers. As can be seen, only the first three empirical magic numbers are

reproduced correctly.

2.1.3 Modified Harmonic Oscillator

The Modified Harmonic Oscillator (MHO) or Nilsson potential introduces addi-

tional terms to theHarmonicOscillator potential thatmake itmore realistic, giving

VMHO = Vosc − κħω0 [2l ⋅ s + µ(l2 − ⟨l2⟩N)] . (2.6)
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where ω0 is defined as

ħω0 = 41A−1/3(1 ± N − Z
3A
) MeV, (2.7)

using a plus sign for neutrons and a minus sign for protons [22]. The last term

in Eq. 2.6, in l2, flattens out the bottom of the potential, bringing it closer to a

square well potential (Fig. 2.1). The degeneracy of the Harmonic Oscillator shells is

partly broken, with higher-l orbitals being brought down lower in energy (Fig. 2.2,

centre).

The second term on the right of Eq. 2.6 is an l ⋅ s or spin-orbit term, arising

from the coupling between the intrinsic and orbital angularmomenta. This further

breaks the degeneracy of the orbitals into their j = l + 12 and j = l − 12 components,

which are respectively lowered and raised in energy (Fig. 2.2, right). The parame-

ters κ and µ are adjustable and can be fit to experimental data. For calculations in

the present work, A ∼ 150 parameters were used [24].

Following these modifications, we see that new groups of orbitals separated by

energy gaps are formed. The total occupancy at these new shells closures corre-

sponds to the empirically observed magic numbers. The first term on the right of

Eq. 2.6 is, for a spherical nucleus, simply 12mω20r2. However, we deal extensively

in this thesis with deformed (i.e. non-spherical) nuclei for which the potential is

not the same in all directions (or anisotropic). The next section details how the Vosc

term in the Nilsson potential accounts for axially-deformed nuclei.
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Figure 2.2 The effect of adding l2 and l ⋅ s terms to the Simple Harmonic Oscil-
lator (SHO) potential on level energy and degeneracy. Magic numbers are shown
in bold. Adapted from Ref. [23].
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2.1.4 Anisotropic Harmonic Oscillator

The Anisotropic Harmonic Oscillator (AHO) potential has separate oscillator fre-

quencies for the symmetry axis, z, and perpendicular axes, x and y, since the nu-

clear radius is no longer the same along these axes in a deformed nucleus. Thus the

potential becomes

Vosc = 12m[ω2⊥(x2 + y2) + ω2zz2]. (2.8)

We can parametrise the deformation by transforming into a ‘stretched’ coordinate

system [25], defined by

ξ = x
√

mωx

ħ
; η = y

√
mωy

ħ
; ζ = z

√
mωz

ħ
, (2.9)

where ωx = ωy = ω⊥. Then, if we define the quantities

ρ2 = ξ 2 + η2 + ζ2; cos θt = ζ/ρ, (2.10)

the potential can be rewritten as [25]

Vosc = 12ħω⊥ξ 2 + 12ħω⊥η2 + 12ħωzζ2 (2.11)

= 12ħω0(ε2)ρ2 [1 − 23ε2P2(cos θt)] , (2.12)

where P2 is the second Legendre polynomial and ε2 is the deformation parameter,

which we use in this thesis for theoretical descriptions of the nucleus. The value of

ω0, defined for a spherical shape in Eq. 2.7, must be adjusted slightly as a function
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of ε2 to conserve the volume of the nuclear shape. Higher-order deformations of

the form ελρ2Pλ(cos θ t)may be added to the potential, and indeed we use a value

of ε4 = 16ε22 for the calculations in Chapter 5.

As ε2 is increased or decreased from zero, the energies of the orbitals change

(see Figs. 2.3 and 2.4). At certain deformations, orbitals of similar character ap-

proach each other in energy and undergo amixing of their wavefunctions. Beyond

this deformation, the character of the wavefunctions has been exchanged. Effec-

tively, this means that the nlj quantum numbers used so far are not conserved as

deformation is varied – they are not ‘good’ quantum numbers. For this reason, we

use the asymptotic quantum numbers,

[NnzΛ]Ωπ ,

whereN is the oscillator shell as before, nz is the number of oscillation quanta along

the deformation axis z, Λ is the projection of l along z, Ω the projection of j and

π is the parity. Λ and Ω are illustrated in Fig. 2.5. Σ, the projection of s along z, is

equal to ±12 and so Ω = Λ ± 12 (Σ is omitted from the label since it can be deduced

from Ω and Λ).

As can be seen in Figs. 2.3 and 2.4, the deformation breaks the degeneracy of

the spherical orbitals. As ε2 becomes more negative, Nilsson orbitals with higher

values of Ω are brought down in energy, while those with lower Ω are raised in

energy. In the positive-ε2 direction, the opposite is true.

The reasons for this can be understood intuitively if one considers the physical

trajectories of the orbitals around the deformed nucleus. Negative ε2 represents an

oblate, ‘discus’ shape flattened along the z axis. A Nilsson orbital with a given j
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Figure 2.4 Nilsson diagram for neutrons, 82 ≤ N ≤ 126 (ε4 = ε22/6). Solid lines
indicate π = + and dashed lines π = −. Reprinted from Ref. [26].
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Figure 2.5 Spin projection quantum numbers for a Nilsson orbital. Here, z is the
deformation axis of the nucleus and x the rotation axis.

and the maximum Ω, i.e. Ω = j, must have an orbit almost perpendicular to the

deformation axis and close to where the nuclear potential is at its widest. Hence, its

energy is lowered for greater oblate deformation. By the same reasoning, a Nilsson

orbital with the same j but the minimum Ω, i.e. Ω = 12 , orbits the narrowest part

of the nuclear potential, and so its energy increases for greater oblate deformation.

Analogous arguments can be applied to positive ε2 deformation, which repre-

sents a prolate or ‘cigar’ shape that is stretched along the z axis. Here, the increase

in deformation has the opposite effect on the energies of orbitals with different Ω,

with low-Ω orbitals being brought down in energywhile high-Ω orbitals are raised.

As ε2 is increased and the Nilsson orbitals are rearranged, the spherical shell

gaps disappear to be replaced by shell gaps with different values of N and Z. It

is these deformed shell gaps that lead to relatively stable highly deformed and su-

perdeformed shapes. We continue this idea in the following sections, where the
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orbitals are further rearranged by triaxial deformation and collective rotation, cre-

ating the possibility of stable triaxial shapes at high spin.

2.1.5 Triaxiality

The potential in Eq. 2.8 only allows one to specify shapes with axial symmetry, i.e.

shapes that are symmetrical about the deformation axis z. We would like to go

further and consider triaxial shapes, for which ωx ≠ ωy ≠ ωz. The AHO potential

then becomes

Vosc = 12m[ω2xx2 + ω2y y2 + ω2zz2]. (2.13)

The ratio of the three axes can be specified by a triaxiality parameter γ (in ○) in

accordance with the Lund convention shown in Fig. 2.6. The harmonic oscillator

frequencies along each axis in terms of ε2 and γ are

ωx = ω0(ε2, γ) [1 − 23ε2 cos(γ + 2π/3)] , (2.14)

ωy = ω0(ε2, γ) [1 − 23ε2 cos(γ − 2π/3)] , (2.15)

ωz = ω0(ε2, γ) [1 − 23ε2 cos(γ)] . (2.16)

The length of the principle axis i = x , y, z is then inversely proportional to ωi . In

this work we investigate the possible existence of TSD shapes with positive and

negative γ. Examples of these two shapes are shown in Fig. 2.7, with slightly larger

values of (ε2, γ) than are predicted for 154Er in order to emphasise their differences.

Using the stretched coordinates defined in Eqs. 2.9, Eq. 2.13 can be rewritten
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Figure 2.6 The Lund convention for the parametrisation of triaxial shapes using
γ and ε2 [27].

according to Ref. [28] as

Vosc = 12ħω0ρ2 [1 − 23ε2
√

4π
5
{cos γ Y02 − 1√

2
sin γ (Y22 + Y−22 )}] , (2.17)

where Ym
l are spherical harmonics. Asmight be expected, increasing or decreasing

γ from 0○ induces further changes to the energies of the Nilsson orbitals, leading to

triaxial shell gaps. The effect on proton and neutron orbitals of increasing γ from

0○ to 20○ is shown in Fig. 5.6.
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Figure 2.7 Positive- and negative-γ TSD shapes with ε2 = 0.4. The x-axis corre-
sponds to the rotation axis.

2.1.6 Potential energy surfaces and the Strutinsky method

In Chapter 5 we present a plane in deformation space, like that in Fig. 2.6, onto

which a potential energy surface (PES) is superimposed, giving the total energy of

the nucleus at any value of (ε2, γ).Thus, minima on this surface indicate values of ε2

and γ belonging to relatively stable nuclear shapes for the nucleus of interest. These

minima form the basis of subsequent calculations that give favoured configurations

of occupied orbitals. These are also presented in Chapter 5.

Themethod for producing PES plots, described in Ref. [29], essentially involves

calculating the total energy for each point on a ‘mesh’ in the (ε2, γ) plane and inter-

polating between these points. The total energy is calculated from the liquid-drop

model (LDM) energy [30], which is able to reproduce the the bulk properties of

the nucleus, plus a correction term [31] that accounts for the shell structure of the

single-particle orbitals, calculated using the Nilsson potential.
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2.1.7 Cranking

Finally, we introduce the cranking model, which deals with the effects of collective

rotation on the nucleus.The crankingHamiltonian or Routhian is the Hamiltonian

for the system in the intrinsic frame of reference [29], given by

Hω = H0 − ωIx =∑ hω , (2.18)

whereH0 is the sumof all the single-particle staticHamiltonians, ω is the rotational

frequency, Ix is the projection of the total angularmomentumonto the rotation axis

and the single-particle Hamiltonians are given by

hω = h0 − ωix . (2.19)

The −ωIx term is analogous to the classical Coriolis and centrifugal forces.

At I = 0, eachNilsson orbital is doubly degenerate, with pairs of nucleons occu-

pying symmetrical time-reversed orbits. Under rotation, time-reversal symmetry

is broken and orbitals are split into partners with opposite values of the signature

exponent quantum number α. This quantum number comes from the eigenvalue of

the rotation operatorRx(π), which represents a rotation of the particle wavefunc-

tion by 180○ around the rotation axis, or

Rx(π)ψ = exp(−iπIx)ψ = rψ, (2.20)

where r is the signature quantum number and is related to α by

r = e−iπα . (2.21)
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For single-particle orbitals, r is a phase factor of ±i, and so α = ±12 .

As the nucleus is rotated, the energies of opposite-signature orbitals are affected

differently and a further rearranging of orbitals together with the appearance of

new shell gaps may be observed (Fig. 5.6). This has the effect that deformation

minima change as a function of spin, and deformed shapes that are not stable at

low spins become more stable as spin is increased.

2.2 Observables

This section describes physical quantities that are directly measurable or easily

derivable from the experimental data. They are not only useful in that they tell us

something about the properties of the nucleus, but also because they can be com-

pared with theoretical values in order to determine the accuracy of a theoretical

model or a specific nucleon configuration assignment.

2.2.1 Rotational frequency

The rotational frequency of a collectively rotating nucleus at a particular value of

excitation energy E and spin I is given by

ω = dE
dI
≈ ∆E

∆I
=
Eγ

2ħ
, (2.22)

where the right-hand side holds true for ∆I = 2 transitions, which is assumed to be

the case for the transitions in the strongly deformed bands of 154Er. The quantity

ωħ is therefore half the transition energy. This is particularly useful in our case,

since we do not know the absolute spins of the bands of interest.
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2.2.2 Effective alignment

Auseful conceptwhen comparing strongly deformed bands in neighbouring nuclei

is the additivity of energy and spin contributions from the occupation of individual

orbitals [32]. The effective alignment, ieff, between two bands is defined as

ieff = I1(ω) − I2(ω), (2.23)

where I1(ω) and I2(ω) are the spins of the bands being compared at a given ω.

Following the principle of additivity, the value of ieff is the sum of the individual

spin contributions from additional particles in band 1 with respect to band 2. This

is helpful when making configuration assignments, such as in Chapter 5 where we

use ieff to compare the 154Er SD band with the ‘yrast’ SD band of 152Dy.

2.2.3 Moments of inertia

The kinematic and dynamic moments of inertia are defined as

J (1) = I {dE
dI
}
−1 = I

ω
(2.24)

and

J (2) = I {d2E
dI2
}
−1 = dI

dω
= J (1) + ωdJ (1)

dω
(2.25)

≈ 4
Eγ(I + 2→ I) − Eγ(I → I − 2)

(2.26)

in units of in units of ħ2MeV−1. The J (2)moment of inertia describes the response

of the nucleus to a torque [33]. It is very sensitive to internal changes of structure,
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and its value gives an indication of the deformation of the nucleus – large J (2)

generally indicates large deformation. As with the rotational frequency, the J (2)

moment of inertia does not require knowledge of the absolute spins of the band.

2.2.4 Quadrupole moments

The ultimate goal of this work is tomeasure the electric quadrupolemoments of the

two strongly deformed bands. This quantity is a measure of how much the charge

distribution in the nucleus deviates from spherical symmetry [34]. The quadru-

pole moment we measure in this work is referred to as the transition quadrupole

moment, Qt, and can be expressed in terms of the density distribution along the

principle axes (x, y and z) [18] as

Qt = e
√
83 ∣Q22(x̂)∣, (2.27)

whereQ22(x̂) is theQ22 component of the quadrupolemoment around the rotation

axis [3], given by

Q22(x̂) =
√
32 ⟨y2 − z2⟩ . (2.28)

Hence Qt is proportional to the difference in the nuclear radius between the two

axes perpendicular to the rotation axis. This means that a triaxial shape rotating

about its intermediate axis (i.e. negative γ), with the y-axis corresponding to the

short axis, will have a larger Qt than the same shape rotating about its short axis

(positive γ), with the y-axis corresponding to the intermediate axis. This result

allows us to identify the nuclear shape for a strongly deformed band by comparing
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its experimental Qt with the theoretical value for the positive- and negative-γ TSD

shapes.

Experimentally, we measure Qt by (indirectly) measuring the lifetimes of the

states in the strongly deformed bands. These two quantities can be related in the

following way [35]:

τ = Bγ
821.0565

Q2tE5γ ⟨IK20∣I − 2K⟩2
, (2.29)

where τ is in femtoseconds (1 fs = 10−15 s), Bγ is the branching ratio of the level,

⟨IK20∣I − 2K⟩ is the Clebsch-Gordan coefficient for the transition with a value

of roughly (38)1⁄2 , Qt is in electron-barns and Eγ is in MeV. The measurement of

τ forms the basis of the Doppler-shift attenuation method (DSAM) described in

Chapter 4.



Chapter 3

Methods

3.1 Experimental details

The experiment that provided the data used in this thesis was performed at the

ATLAS facility in Argonne National Laboratory, USA, using the Gammasphere

detector array. The following sections include a description of the reaction used

to populate high-spin states in 154Er, details of Gammasphere, and a description of

the target setup necessary for the DSAM.

3.1.1 Fusion-evaporation

High-spin states in 154Er were populated using the fusion-evaporation reaction

110Pd(48Ti,4nγ)154Er. A 215MeV 48Ti ion beam supplied by the ATLAS accelerator

with a beam current of 20–30 enA bombarded a 110Pd target, forming the com-

pound nucleus 158Er. 154Er was then formed through the evaporation of four neu-

trons.

The intensity patterns of SD bands generally show a steep increase as the bands

28
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b
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Figure 3.1 A schematic illustration of a heavy-ion reaction showing the impact
parameter b.

decay from their highest spin followed by a levelling off, in contrast to the gradual

gain in intensity for ND bands [36], indicating that strongly deformed bands are

fed primarily at high spins. It is therefore crucial that the reaction is designed to im-

part the resulting nuclei (or ‘recoils’) with the greatest possible amount of angular

momentum.

The angular momentum transferred to the compound nucleus by a beam with

linear momentum p = mv is l = b × p, where b is the impact parameter, shown in

Fig. 3.1. Hence the angular momentum, l = mvb, can be increased by raising the

momentum of the beam particle or increasing the impact parameter. In practice,

fusion only occurs for small values of b. For larger values, other reaction processes

such as Coulomb excitation and inelastic scattering dominate.

The linear momentum of the projectile, mv, increases with the projectile mass

and beam energy. However, this quantity is also limited by competitionwith fission

such that the maximum angular momentum increases with beam energy up to a

critical value [37]. This critical value, in its turn, reaches a maximum of around

77 ħ at A ≈ 140 [38] (for greater masses, Coulomb repulsion makes fission more

favourable and the critical angular momentum is lowered). This makes the rare

earth region of the nuclear chart particularly well-suited to the study of high-spin

behaviour.
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When fusion occurs, it takes 10−20 s for the compound nucleus to reach ther-

modynamic equilibrium, after which its formation history has no influence on its

behaviour.This is followed by particle evaporation, with theCoulomb barriermak-

ing neutron emissionmore likely than proton emission in this region of the nuclear

chart. Neutrons carry away 8–10MeVof excitation energy but only 1–2 ħ of angular

momentum, effectively ‘cooling’ the nucleus, until a low enough excitation energy

is reached for γ-ray emission to become more energetically favourable. Statistical

model calculations for this process are shown for Fig. 3.2.

Initial γ decays are via competing quadrupole and dipole γ rays emitted from

a quasicontinuum of high-energy states [40]. The γ rays have a continuous range

of energies and therefore cannot be resolved experimentally, appearing instead as

background ‘bumps’. Eventually, the quasicontinuum transitions come to populate

discrete yrast (lowest energy for a given spin) or near-yrast states, namely the ND

and strongly deformed states shown in Fig. 1.2.

Cross-section calculations performed using the fusion-evaporation simulation

program pace [41] served as a guide by which to choose an appropriate beam en-

ergy for the reaction. However, in this case, we have used an identical beam and

target to those successfully used by Lagergren et al. to study 154Er [15], hence the

same beam energy of 215MeV was used.

3.1.2 Gamma-ray detection

Since the strongly deformed bands in 154Er make up less than 1% of the total in-

tensity of the 4n channel, an efficient γ-ray detection system is essential. As will

be seen in Section 3.2.1, we isolate the γ rays of interest by imposing the condi-
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Figure 3.2 Statistical model calculations performed by Hillis et al. [39] for
the reaction 124Sn(40Ar,xn)164−xEr, displaying similar features to the reaction
110Pd(48Ti,xn)158−xEr in the present experiment. The central plot indicates regions
of spin versus excitation energy populated by the nucleus after the emission of 1–5
neutrons. Regions where γ decay competes with neutron emission are shown in
grey, together with their predicted entry lines (dotted), and population intensity as
a function of excitation energy (left) and spin (bottom).
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tion that each group of γ rays (or event) incremented into a spectrum comprises a

minimum number of γ rays with energies known to belong to the band of interest.

This means that the detector system should be capable of detecting several γ rays

emitted in rapid succession.

This was achieved using Gammasphere (pictured in Fig. 3.3), a spherical array

of Compton-suppressed, high-purity germanium (Ge) detectors [42]. Gammas-

phere can accommodate up to 110 detectors with solid angle coverage of 47% of

4π [43]. ‘Compton suppression’ is the reduction of unwanted background events

resulting from a γ ray Compton scattering out of the Ge detector, thereby failing

to deposit all of its energy. The Ge detector is surrounded by bismuth germanate

(BGO) scintillation detectors (Fig. 3.4) that pick up γ rays Compton scattering out

of the Ge detector. A γ ray recorded in the Ge detector in coincidence with a γ ray

in the BGO shield can be assumed not to have deposited its full energy and is ex-

cluded from the recorded data, drastically reducing the peak-to-background ratio

of resulting spectra [44].

A total of 101 detectors were in use for the experiment. Most of those not used

belonged to the foremost ring of detectors at 17.3○, which was removed for sepa-

rate experiments involving the Fragment Mass Analyzer located down-beam from

Gammasphere. The 110Pd target foils were fixed to a target ladder at the centre of

the target chamber, oriented at an angle of 27○ to the vertical. The front of the Ge

detectors are 25.4 cm from centre of the target chamber.

We have performed an efficiency calibration of the array using 182Ta, 152Er,

243Am and 56Co sources. A fitted curve is shown in Fig. 3.5, of the form

ε(Eγ) = exp{[(A+ Bx + Cx2)−G + (D + Ey + Fy2)−G] −1/G} , (3.1)
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Figure 3.3 (Top) External view of Gammasphere. (Bottom) The two hemi-
spheres of Gammasphere separated, exposing the detectors, the target chamber
at the centre, the horizontal beam pipe and the target ladder mechanism entering
the target chamber from below at an angle of 27○ to the vertical.
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Figure 3.4 The main parts of a Gammasphere Ge detector module.

where x = Eγ/100 and y = Eγ/1000 with Eγ in keV, and A–G are the fitted parame-

ters. While this calibration is not essential for the DSAM, it is needed to correctly

measure the relative intensities of transitions, given in Chapter 4, which in turn

provide an estimate of the intensity of side-feeding bands, shown in Fig. 3.18, in the

Monte Carlo simulation used to fit Qt.

Since the isolation of γ rays of interest requires several γ-ray energies in each

event (at least four in the present analysis), the condition for the recording of an

event was set to aminimumof four energies (fold 4 events).This also has the practi-

cal advantage of minimising both the disk space required to store the experimental

data, and the processing time needed to sort through it.

3.1.3 DSAM

Two targets were used in the present experiment. A thin target consisting of two

stacked, self-supporting 500 µg/cm2 110Pd foils was also used for a short time, al-

lowing spectra to be directly compared with those of Lagergren et al., who used an

identical target. Additionally, the absence of a gold backingmeans that the slowing

of recoils is minimal and all γ rays are Doppler shifted to roughly the same extent,

allowing coincidence relationships between ND and strongly deformed transitions
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Figure 3.5 Fitted efficiency curve for the current experiment.

to be investigated (see Section 4.3).

Themain target, used in theDSAM, consisted of a 1mg/cm2 layer of 110Pd evap-

orated onto a 10mg/cm2 layer of 197Au. A 0.07mg/cm2 layer of aluminium was

placed between these two layers to prevent migration of palladium atoms into the

gold backing due to heating of the target.

In the present ‘centroid-shift analysis’ version of the DSAM, the lifetimes of

states in a strongly deformed band are derived from the velocity of the nucleus

at the point when it emits γ rays from these states. A simulation of the slowing

down process gives the time at which a particular velocity is reached. Hence, the

lifetime of a state is obtained by subtracting the time at which the nucleus reached

the state’s decay velocity by the time at which it reached the previous state’s decay

velocity. These calculations are described in detail in Section 3.2.7.
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Figure 3.6 A schematic illustration of the DSAM. An incoming 48Ti ion fuses
with a 110Pd target nucleus to form 158Er, which evaporates four neutrons to become
154Er. The recoil continues into the gold backing where it is slowed down to a stop
while emitting γ rays.

The ability to measure lifetimes using this method therefore relies on the fact

that, for lifetimes of the order 10−15 to 10−13 s, the recoil nucleus experiences a sig-

nificant slowing down within the target between decays. It cannot be used to mea-

sure, for example, the much longer lifetimes of the ND states, since the nucleus has

invariably slowed to a stop by the time these states decay.

Fig 3.6 is a schematic illustration of a recoil nucleus being created in the 110Pd

layer and emitting a γ ray at some angle θ to the beam direction. The velocity of the

nucleus is measured from the Doppler shift of the emitted γ ray. A γ ray emitted

from a nucleus travelling at velocity β = v/c relative to the detector (where c is the
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speed of light) has energy

E′γ =
Eγ0

γ(1 − β)
(3.2)

= Eγ0
√

1 + β
1 − β

(3.3)

where E0 is the γ-ray energy measured in the inertial frame of the nucleus and γ is

the Lorentz factor 1/
√
1 − β2. Performing a series expansion of Eq. 3.3 up to the first

power of β and replacing β with β cos θ (its component perpindicular to a detector

at angle θ) one obtains

E′γ = Eγ0 (1 + β cos θ). (3.4)

In the DSAM, β is commonly expressed as a fraction F(τ) of the initial velocity β0,

and so Eq. 3.4 becomes

E′γ = Eγ0 (1 + F(τ) β0 cos θ). (3.5)

An example of a Doppler-shifted peak, taken from the present data, is shown in

Fig. 3.7. For θ = 90○, the component of the beamvelocity in the nucleus-to-detector

direction is zero, and so detected γ rays are unshifted. For θ = 35○ (a forward

angle), a large component of the beam velocity points towards the detector, the γ-

ray frequency is increased and E′γ = 1053 keV, while the opposite is true of θ = 145○

(a backward angle), for which E′γ = 1012 keV.
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Figure 3.7 An example of a Doppler-shifted peak: the 1033 keV transition from
band 1 of 154Er seen at different detector angles.

3.2 DSAM analysis

A total of 3.9 × 109 events of fold four or higher were collected using the backed

target over almost six days of beam time. Additionally, 8×108 events were collected

using the thin target over 134 days of beam time. This section describes how Qt

values were extracted from the backed-target data.

3.2.1 Sorting

In order to measure the Doppler shift of transitions within a strongly deformed

band, we must first sort the data to produce spectra containing those transitions.

The ideal spectrum contains as little contamination as possible from transitions
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outside the band, and as many counts as possible from those in the band.

This is difficult for strongly deformed bands in 154Er, as the intensity of even the

strongest band is only a small fraction of the intensity of the 4n decay channel. In

the raw, unsorted spectrum containing all the individual γ-ray energies recorded in

the experiment (the full projection), the peaks from the strongly deformed bands

are completely obscured by the rest of the data, even when the energies are cor-

rected to account for the broadening effect of Doppler shift.

This is wherewe canmake use of the high fold of recorded events. In the sorting

procedure, a sort program compares the γ-ray energies within each event with a list

of energy gates corresponding to the γ rays in the band. Events with a minimum

number of matching energies are kept, and the others rejected. In this way, we

increase the proportion of events resulting from multiple decays within the band

of interest.

Themtsort package [45] was used to sort the data. The raw data were first pre-

sorted to remove any unwanted events or energies, i.e. events/energies detected

outside of a given time window after the beam pulse, very low energies, and pileup.

The presort also converted events from Gammasphere to Eurogam format [46].

Events in the latter format essentially comprised a list of detected γ rays, with each

γ ray represented by its detector number and energy. The data were then re-sorted,

with gating conditions applied, to produce the spectra used in the DSAM analysis.

The sort program used a ‘spikeless’ sorting method [47] to ensure that each

γ-ray energy is incremented only once into any particular spectrum.1 The basic

procedure followed by the sort program is shown in Fig. 3.8.
1This is an alternative to sortmethods inwhich higher-fold events are first ‘unpacked’ into lower-

fold sub-events. Each γ ray then appears in multiple sub-events, creating the possibility that it will
be incremented into a spectrum more than once.
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Figure 3.8 Flowchart depicting the procedure followed by the sort program us-
ing the spikeless sorting method.
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Fig. 3.9 shows the effect of an increasing number of successive gates, corre-

sponding to the energies of band 1 in 154Er, applied to the experimental data. With

each gate added, the intensities of the peaks of interest increase relative to the back-

ground and the other peaks in the spectrum.

Obtaining the best quality spectra for analysis required the optimisation of

three parameters: the number of gates, gate width and Doppler correction. Al-

though increasing the number of gates will increase the number of counts in the

spectra, gates with Eγ ≲ 875 keV are in a region of high contamination, so we must

take care that their inclusion is not counteractive. For the final spectra, 13 gates

were used with energies 735–1300 keV.

We can apply similar reasoning to the choice of gate width. Increasing the gate

width beyond a certain value has a detrimental effect on spectrumquality, such that

it is preferable to exclude the low-intensity tails of the peaks from the gate range.

A width of 18 channels (≡ 6 keV) was used for the final spectra.

Finally, a Doppler correction must be applied to the gates, since the positions

of the peaks being gated on vary with detector angle. In the mtsort language this

is more easily achieved in reverse, i.e. a single unshifted gate is declared for each

transition, while a Doppler correction,

Eγ0 =
E′γ

1 + β cos θ
. (3.6)

is applied to each γ-ray energy E′γ before it is tested against the gate list. For band

1, an optimum value of β ∼ 0.0243 was determined by observing the variation in

peak area for a range of values (see Fig. 3.10).

More sophisticatedmethods were also tested to try andmatch the Doppler cor-
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Figure 3.9 Doppler-corrected spectra for band 1 of 154Er (black points) resulting
from multiple-fold gating of the thin-target data.
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Figure 3.10 The variation of average peak area of band 1 of 154Er (734–1243 keV
transitions) with the Doppler correction applied by the sort program. Peaks were
fitted using the procedure described in section 3.2.3.

rection more closely with the experimentally observed decrease in Doppler shift

with decreasing spin (and hence γ-ray energy). The optimum constant Doppler

correction is merely an average of the F(τ) values of the gated transitions. An

energy-dependentDoppler correction that follows the experimental F(τ) curve should

therefore produce better spectra.

To this end, two alternative sort methods were tested. The first used an energy-

dependent function of the form

F(Eγ) = 1 −
a

1 + e(Eγ−b)/c
(3.7)
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Figure 3.11 The function described by Eq. 3.7 with parameter values a = 0.6,
b = 2000 and c = 1000.

where a, b and c are parameters determining the shape of the curve (Fig. 3.11). The

problem with this approach is that the Doppler-shift equation becomes

E′γ = Eγ0 (1 + F(Eγ0) β cos θ) (3.8)

and so the Doppler correction, equivalent to Eq. 3.6, becomes:

Eγ0 =
E′γ

1 + F(Eγ0) β cos θ
. (3.9)
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But F(Eγ0) is not known. One could instead use the approximation

Eγ0 ≈ E′′γ =
E′γ

1 + F(E′γ) β cos θ
. (3.10)

However, for forward angles E′γ > Eγ0 and so F(E′γ) > F(Eγ0). E′γ is therefore over-

corrected, i.e. E′′γ < Eγ0. For backward angles E′γ < Eγ0, therefore F(E′γ) < F(Eγ0)

and E′γ is under-corrected, but again this leads to E′′γ < Eγ0.

This problem can be solved by noting that E′′γ is nevertheless closer to Eγ0 than

is E′γ, which in turn means that F(E′′γ ) is a better approximation of F(Eγ0) than is

F(E′γ), and in practice

Eγ0 ≈
E′γ

1 + F(E′′γ ) β cos θ
(3.11)

is correct to well within 1⁄3 keV.

A second sort method is to leave the γ-ray energies uncorrected and shift the

gates according to detector angle. While a list of one-dimensional gates cannot be

modified in mtsort, the set of all shifted gates can be calculated beforehand to

construct two-dimensional gates in channel vs. ring number ‘space’, e.g.,

GATEMAP 2D gates1[8192,18]
(2234 2 2232 3 2224 4 2219 5 2210 6 2203 7 2202 8
2195 9 2187 10 2185 11 2177 12 2169 13 2164 14 2157 15
2154 16 2149 17 2167 17 2172 16 2175 15 2182 14 2187 13
2195 12 2203 11 2205 10 2213 9 2220 8 2221 7 2228 6
2237 5 2242 4 2250 3 2252 2)

for the 734 keV gate. The numbers in parentheses consist of pairs of channel num-

bers and ring numbers, respectively. Together, these points describe a polygonal

2d gate, against which both γ-ray energy and ring number were tested in-sort.
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The two sort methods are, in principle, equivalent and indeed produce simi-

lar results. However, the latter method is somewhat faster as it does not need to

perform a Doppler correction calculation each time a γ-ray energy is tested. It is

also more flexible since the Doppler shift of each gate can take on any value rather

than that determined by a function. Nevertheless, Eq. 3.11 is useful for producing

a Doppler-corrected spectrum once an event has passed the gating conditions.

3.2.2 Background subtraction

While the γ4-gated spectrum in Fig. 3.9 is the cleanest, it contains ∼1 order of mag-

nitude fewer counts than the γ3-gated spectrum. Indeed, a more precise centroid

measurement may be made using the γ3-gated spectrum following the subtraction

of a background spectrum, such that the number of counts in channel i of the final

spectrum S is given by

Si = Ui − f Bi , (3.12)

where Ui and Bi are the number of counts in the ith channel of the unsubtracted

and background spectra, respectively, and f is a normalisation factor to ensure

a flat background of ∼ 0 counts in the final spectrum. The γn−1-gated spectrum

usually provides a good background spectrum for the γn-gated spectrum, being of

a similar shape to the latter except for the peaks of interest, which are weaker. Thus,

these peaks are accentuated in the resulting spectrum (see Fig. 3.12).
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Figure 3.12 γ3-gated spectra for band 1 of 154Er (black points) at detector angle
130○ (a) before background subtraction and (b) after the subtraction of the corre-
sponding γ2-gated spectrum with a normalisation factor of 4%.
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Figure 3.13 A typical fit to a spectrum (grey line). Each peak is fitted with a
Gaussian function (solid black line), while a quadratic function (dotted line) is
fitted to the background. An additional peak (dashed line) not belonging to the
band was included to obtain the correct background fit.

3.2.3 Centroid measurement

Once sufficiently clean spectra were obtained, the centroids of the in-band transi-

tions were measured in the one-dimensional spectrum analysis program gf3 [48],

which is part of the radware software package. Centroids were measured by fit-

ting a Gaussian to each peak, as in Fig. 3.13. To obtain a true fit with correct errors,

weighting spectra [48] were first produced according to

Wi = Ui + f 2Bi (3.13)

whereWi is the number of counts in the ith channel of the weighting spectrum and

Ui , Bi and f are as defined in Eq. 3.12.
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3.2.4 Doppler shift calculation

This section describes how the Doppler shift of each transition was calculated from

the measured centroids using a linear least-squares fit. The χ2 of some of the fits

was found to be quite high, which in bands 1 and 2 was due to the presence of one

or two outliers. Although the inclusion of these points does not greatly influence

the fitted Doppler shifts, the difficulty of fitting Qt values to these Doppler shifts in

later sections warrants the need for extra care to ensure that their accuracy is not in

doubt. As such, criteria were applied to test for outliers, which in some cases were

deleted from the data.

For band 3, where the quality of the spectra was much lower than for bands 1

and 2, removing a single outlier was in one case not sufficient to lower the χ2 of the

fit to an acceptable value. A more robust fitting procedure known as jackknifing is

introduced in this section to deal with this case.2

The angles of certain pairs of detector rings are close enough for there to be little

difference in the Doppler shifts of the γ rays they detect. As such, the spectra from

these pairs of rings were summed together, producing spectra with an effective

angle θeff of

cos(θeff) =
N1 cos(θ1) + N2 cos(θ2)

N1 + N2
(3.14)

where N1 and N2 are the total number of counts measured in the full projection

spectrum at angles θ1 and θ2, respectively. The effective angles are summarised in

Table 3.1.

Once all the centroids for a particular transition have been measured, F(τ) for
2The jackknife method will also be applied in the parametric fit ofQt to produce sensible errors.



Ch. 3 METHODS 50

Ring θ (○) θeff (○)

1a 17.3 17.3
2 31.7 } 35.33 37.4
4 50.1 50.1
5 58.3 58.3
6 69.8 69.8
7 79.2 } 79.98 80.7
9 90.0 90.0
10 99.3 } 100.111 100.8
12 110.2 110.2
13 121.7 121.7
14 129.9 129.9
15 142.6 } 145.216 148.3
17 162.7 162.7

aRing 1 detectors not used in experiment.

Table 3.1 Detector angle θ for each ring of Gammasphere and mean detector
angle θeff after summing of the indicated rings.

that transition can be calculated. Rearranging Eq. 3.5 slightly, we obtain

E′γ = Eγ0 F(τ) β0 cos θ + Eγ0, (3.15)

from which it can be seen that a plot of centroid energy vs. cos θ should produce a

straight line with gradient Eγ0 F(τ) β0 and intercept Eγ0. Hence,

F(τ) = gradient
β0 × intercept

. (3.16)

A weighted least-squares fit was applied to the data in order to determine these
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Figure 3.14 A weighted least-squares linear fit (solid line) of centroid energy vs.
cos θ data (squares) for the 1033 keV transition in band 1.

quantities. An example is shown in Fig. 3.14.

All the centroids in Fig. 3.14 lie close to the best-fit line. The χ2 of the fit is

χ2 =∑
N

[yi − y(xi)]2
σi2

, (3.17)

where yi is the independent variable (in this case E′γ), xi is the dependent variable

(here, cos θ), y(xi) is the value predicted by the fit and σi is the error on yi . For
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the case of the 1033 keV transition in the figure, χ2 = 3.8. The probability that χ2

exceeds this value for the given number of degrees of freedom ν, or P(χ2 ≥ χ2fit, ν),

is an indicator of the goodness of the fit. For 1033 keV, P = 0.96. The ideal value for

P is 0.5, so the errors in this particular fit may have been over-estimated.

In Fig. 3.15a, by contrast, one of the data points deviates much more from the

best-fit line than the rest. As a result, χ2 = 23.3 and P = 0.01. The minimum

acceptable value of P is conventionally 0.05 and so, if we adopt this standard, the

fit must be rejected. It is tempting to immediately dismiss the deviating point as an

outlier – possibly due to contamination in the spectrum or a random fluctuation

in the background – and delete it from the data set.

However, the situation is less clear in other cases, such as 1206 keV in band 2

(Fig. 3.15b). Again, the fit has a low P-value (P = 0.007), but this time there is no

single obvious outlier. The need arises for a systematic method of outlier rejection,

and indeed there exist a number of tests to identify outliers. Although some tests

are more sophisticated than others, there is no absolute definition of an outlier, so

all tests are essentially based on some arbitrary rule.

One relatively simple test is Chauvenet’s criterion [49, 50]. This criterion states

that if the expected number ofmeasurements that are at least as deviant as themea-

surement being tested is less than one-half, then that measurement can be consid-

ered for rejection. This number can be expressed as

n = N × erfc(∣yi − y(xi)∣√
2σi

) , (3.18)

where N is the number of measurements in the data set and erfc is the complimen-

tary error function.
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Figure 3.15 A weighted least-squares linear fit (solid line) of centroid energy vs.
cos θ data for (a) the 1243 keV transition in band 1 and (b) the 1206 keV transition
in band 2. Both fits have an unacceptably large χ2.
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Eγ (keV) P-value

Band 1
824 0.05
875 0.14a
928 0.28
980 0.08
1033 0.96
1086 0.07
1138 0.20
1191 0.24
1243 0.90a
1300 0.50

Band 2
878 0.23
924 0.23
971 0.14
1018 0.28
1064 0.13a
1112 0.60a
1159 0.18
1206 0.18a

aOne outlier deleted from data.

Table 3.2 Probabilities associated with linear fits to bands 1 and 2

We have applied Chauvenet’s criterion to the data conservatively, i.e. only if

P < 0.05. For the transitions in bands 1 and 2, the deletion of the data point with

the highest χ2 was in all cases sufficient to raise P above 0.05. The final P-values

for these two bands are summarised in Table 3.2.

The spectra for band 3 were of much lower quality than those of bands 1 and

2 and were therefore harder to fit peaks to. As a result, the deletion of the data

point with the largest χ2 was sometimes not enough to bring P above 0.05. For

the 898 keV transition, a visible contamination peak at ∼ 921 keV was deemed to
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Eγ (keV) Comments Error on β (10−3)

847 1.9
898 Three outliers deleted 0.4
951 0.6
1005 One outlier deleted 0.6
1059 One outlier deleted 0.8
1114 0.7
1169 Jackknife 2.8
1223 0.8

Table 3.3 Error on β(= F(τ)β0) for the transitions in band 3, indicating where
the jackknife method has been used or outliers have been deleted from the data.

be the cause of high-χ2 points at forward detector angles, and three points were

deleted from the fit. For the 1169 keV transition, however, deviant points were not

localised around a particular part of the spectra, so the same reasoning could not

be applied. Deleting a second data point based purely on its deviation from the

fit is generally discouraged [49, 50], so for this point the jackknifemethod of error

estimation [51, 52] was employed. The method was used in this work principally to

determine the errors on Qt, and so it is discussed in more detail in Section 3.2.9.

‘Jackknifing’ generally results in a larger error on β than the conventional estimate

(seeTable 3.3), ensuring that the β values calculated from the poor fit to the 1169 keV

centroids are given less weight in the final Qt fit.

3.2.5 Calculation of β0

We can see from Eq. 3.16 that the initial velocity of the nucleus, β0, is needed to cal-

culate F(τ). In previous DSAM experiments, a satisfactory β0 has been obtained

from a straightforward calculation using the theoretical stopping power for the
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beam in the target, and the target thickness. This calculation is presented in the

current section. However, evidence will be presented in Section 3.2.7 suggesting

that this theoretical value is incorrect, and an alternative value of β0 will be pro-

posed.

In the theoretical calculation, it is assumed that the average recoil nucleus is

produced in the centre of the target. The beam energy at this position is

Eb,mid = E0 −
d
2
dE
dx

(3.19)

where E0 is the initial beam energy, d is the thickness of the target layer and dE/dx

is the theoretical stopping power for the beam ion in the target, which is assumed

not to vary significantly over the range of beam energies involved. By conservation

of angular momentum and using a non-relativistic approximation,

mbvb = mcvc = (mb +mt)vc (3.20)

where m is mass, v is velocity and the subscripts b, t and c signify the beam, target

and compound nuclei, respectively. The beam energy is equal to

Eb = 12mbv2b (3.21)

⇒ vb =
√
2Eb/mb. (3.22)
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Substituting Eq. 3.22 into Eq. 3.20,

mb
√
2Eb/mb = (mb +mt)vc (3.23)

⇒ vc,mid =
√
2Eb,midmb

mb +mt
. (3.24)

The 158Er compound nucleus must lose four neutrons to become 154Er, with each

emitted neutron carrying away some kinetic energy in the centre-of-mass frame.

This means that individual recoils will in general have a velocity different from

vc,mid. However, evaporated neutrons are assumed to be emitted in all directions

with equal probability in the centre-of-mass frame, meaning that the average recoil

velocity in the lab frame is equal to vc,mid, and so β0 = vc,mid/c.

Using the theoretical dE/dx calculated by the program srim 2008 by Ziegler

[53] in Eq. 3.19, one obtains β0 = 0.02933. F(τ) for all measured transitions can

then be calculated from Eq. 3.16.

3.2.6 Monte Carlo simulations

This section describes how the Monte Carlo program srim was used to simulate

the slowing down of several thousand recoil nuclei in the target. The data obtained

from this simulation were used to fit the parameters Qt, Qsf and Tsf using a χ2-

minimisation program, as described in Section 3.2.7.

Srim allows the initial positions, energies and directions of individual ions to

be specified by an input file. This means that the simulated ions can have differ-

ent values of these parameters, as they would in the experiment. The first step is

therefore to generate the desired number of ions, each with an energy, position and
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Figure 3.16 The cross-section for the reaction 110Pd(48Ti,4n)154Er calculated by
pace, together with the calculated energy range of the beam in the target layer.

velocity chosen randomly from an appropriate distribution.

First, the reaction beam energy is selected from a probability distribution that

follows the specified reaction cross-section (Fig. 3.16), giving an initial β from Eq.

3.24. For previousDSAManalyses performedby the collaboration, the cross-section

profile has not been taken account (i.e. the reaction is assumed to occur with equal

probability at all beam energies) without causing any apparent problems. This as-

sumption was used to calculate the preliminary results presented in Section 3.2.7.

However, it will be shown in Section 3.2.8 that the reaction cross-sectionmust have

a strong influence on the initial recoil velocity and therefore should be taken into

account.
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Figure 3.17 The paths of 10000 simulated recoils generated by srim. The grey
dashed and solid lines delineate the 110Pd target layer and the paths through it,
respectively.

The chosen beam energy corresponds to a unique target depth (cf. Eq. 3.19),

giving the initial recoil position. Four neutrons are then evaporated with energies

chosen randomly fromaMaxwellian distribution (see e.g. [54, p. 931]). Momentum

conservation is applied to give the residual nucleus a ‘kick’ after each evaporation,

changing its velocity by a small amount in a direction that is, likewise, randomly

chosen, this time from an isotropic probability distribution. This has the effect of

widening the ‘cone’ of recoils in the target (Fig. 3.17).

The next step is to run the srim simulation. The program calculates the paths

of the nuclei as they slow down in the target and backing. The stopping power of a
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material is the sum of its nuclear and electronic stopping powers,

dE
dx
= (dE

dx
)
n
+ (dE

dx
)
e
, (3.25)

resulting from interactions with atomic nuclei and electrons, respectively. Follow-

ing each interaction, the energy and position of the recoil are recorded. When the

simulation is complete, energy and position are translated into velocity and time

via kinematic calculations. In this way, the velocity of every simulated recoil at

any time from its creation can be ‘looked up’ for the χ2-minimisation calculations

described in the next section.

3.2.7 A preliminary fit ofQt

This section describes how the decays of the simulated recoils were modelled in

order to calculate a theoretical F(τ) curve, and how a χ2 minimisation procedure

was used to determine the values of the model parameters that produce the best fit

to the data. However, we will see that the values obtained are physically unrealistic,

and that certain assumptions must be made to get around the problem.

With each iteration of the χ2 minimisation program, mltfit [55], a trial value

of each fit parameter is compared with the experimental results. This is done by

calculating the decay time of each transition from the parameter values, and then

looking up the nucleus’ β at those times in srim’s output. F(τ) is then simply β/β0.

Fig. 3.18 is a schematic of the decay scheme used to model the feeding and sub-

sequent decay of band 1. The main band, which has transition quadrupole mo-

ment Qt, is fed by several bands with an average transition quadrupole moment

Qsf. Energies in the side-feeding bands are calculated from Eq. 2.25 assuming that
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the bands’ J (2) moment of inertia is equal to that of the states being fed. A side-

feeding delay, Tsf, is included to represent any decay of states above thosemodelled.

Mltfit uses the trial Qt together with input information on the transition en-

ergies and relative intensities within the band to calculate τ for each state using

Eq. 2.29. The same is done for the side-feeding bands using Qsf. To simulate decay

times in an individual nucleus, mltfit selects a random side-feeding band from

which to begin, and then generates a random decay time for each consecutive state

based on its average lifetime τ. Finally, the F(τ) of the nucleus for each state at the

time of its decay is looked up from the srim data and added to a running average

for that state. In this way, the program is able to calculate an average F(τ) curve for

a large set of nuclei with realistic formation and decay properties.

When the calculation is complete, the χ2 of the trial parameters is calculated

using Eq. 3.17 with the experimental and simulated F(τ) in place of yi and y(xi),

respectively. The calculation is then repeated with different parameter values while

a χ2 minimisation algorithm attempts to find the Qt, Qsf and Tsf that give the low-

est χ2. Mltfit uses both the simplex and migrad algorithms from the minuit

statistical analysis package [56].

Once the best-fit parameters have been obtained, their uncertainties must be

calculated. For a multi-parameter fit, this can be done by noting that an increase in

the χ2 of 1 from χ2min is equivalent one standard deviation [50, p. 211]. Hence, in a

surface plot of χ2 for parameter values around χ2min, the uncertainties are delimited

by the χ2min + 1 contour (Fig. 3.19). For simplicity, Fig. 3.19 shows the case for only

two free parameters, Qt and Qsf. The full χ2min + 1 contour, taking into account Tsf,

is three-dimensional and produces larger errors on Qt and Qsf.
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Figure 3.18 The side-feeding of band 1 modelled by mltfit. Simulated γ rays
are shown in grey.
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Figure 3.19 A χ2 contour plot for band 1. The black point indicates the lowest
value, χ2min, while the first (bold) contour has a value of χ2min + 1. Successive con-
tours (dotted lines) represent χ2min+10,+20, . . . ,+80. The dashed lines indicate the
uncertainty limits on the fitted parameters. This plot is for a fixed value of Tsf – the
complete error analysis involves calculating the χ2min + 1 contour in an additional
dimension, corresponding to the Tsf parameter.
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Band Qt (eb) Qsf (eb) Tsf (fs)

1 12.8+0.9−0.8 18+30−5 54+4−6
2 15.9+1.1−0.8 69+>11−57 11+4−11
3 12+>18−3 6.8+3−1.3 1.4+13−0.4

Table 3.4 Preliminary results using a three-parameter fit. A ‘>’ indicates the
uncertainty exceeds the maximum value allowed by the fitting program.

Presented in Table 3.4 are the preliminary results, calculated using the method

described thus far, while Fig. 3.20 compares experimental and theoretical F(τ)

curves for bands 1 and 2.

Fig. 3.20 illustrates a number of problems with the fit that are reflected in the

numerical results. Firstly, some of the points (particularly 1086 keV in band 1) are

very far from the best-fit value, and as such the χ2 of the fit is 28.2, with an associated

probability of 9× 10−5. This problem will be discussed in Section 3.2.9. The second

problem is that the best-fit curve approaches an initial F(τ) that is significantly less

than 1. This is because the fitted value of the side-feeding delay Tsf is 54 fs.

There is no physical reason for Tsf to be greater than a few femtoseconds. In-

deed, for the majority of DSAMmeasurements performed to date, either good re-

sults have been obtained using the assumption that Tsf ∼ 0 fs (e.g. [57]), or Tsf has

been fitted at no more than a few femtoseconds [58–60]. Two exceptions are band

1 of 152Dy with Tsf = 24.0+1.5−4.5 fs [61] and band 2 of 194Hg with Tsf = 28+3−6 fs [62, 63].

No satisfactory explanation has been put forward for either result, and in the case

of 152Dy, a DSAM experiment performed under very similar conditions found no

delay for the same band [57].

A third problem is that despite the F(τ) values of bands 1 and 2 being markedly

different, the Qt values of the two bands are only ∼ 3 eb apart. At 15.9 eb, the Qt
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Figure 3.20 Fits of bands 1 and 2 with Qt, Qsf and Tsf free to vary and β0 =
0.02933. Parameter values are given in Table 3.4.

of band 2 is rather low compared to theoretical predictions. It may seem rather

fallacious to use a result as evidence to discount the method used to obtain it, but

we should remember that the motivation for studying 154Er is that the SD band can

be used to calibrate the Qt of the TSD band. Similarly, and although the Qt of TSD

bands in 157,158Er have been found to exceed predictions, the Qt of band 1 is far in

excess of the theoretical Qts presented in Chapter 5.

The Qsf values for bands 1 and 2 are also extremely high, although their large

uncertainties allow for values close to Qt. Indeed, such large error limits make the

inclusion of aQsf parameter rather redundant and possibly even a hindrance, since

the additional parameter has a tendency to increase the error on Qt.
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In light of these problems, a number of changes to themodel are proposed. One

overriding problem is that the model was developed assuming that

“[. . . ] these types of measurements are no longer limited by the statis-

tical accuracy of the measurement [. . . ]” [63]

in which case one can afford to use a sophisticated model with three free param-

eters. The above assertion was true at the time, when a new generation of high-

resolution detector arrays, such as Gammasphere, had only recently come online

and an unprecedented amount of data could now be collected for relatively intense

SD bands. However, we are now still using the same generation of detector ar-

rays for DSAM experiments, while experimental boundaries have been extended

to very weak bands such as those in 154Er. In other words, the statistical accuracy

of our measurements is worse than that of the measurements to which the side-

feeding model were first applied. There are too many free parameters to produce a

meaningful result from the limited data that we have.

We therefore propose to reduce the number of free parameters from three to

only one: Qt. In order to do this, we must make certain assumptions about the val-

ues of the two parameters we wish to eliminate. First, we can fix Qsf by assuming

that the side-feeding bands have the same quadrupole moments as the main band.

This is a reasonable assumption, and is borne out by previousmeasurements where

Qsf has been allowed to vary freely. In these cases, Qsf has usually been found to be

roughly equal toQt [9, 18, 57, 64] or slightly lower than it [57, 61, 65–67]. Occasion-

ally, Qsf has been found to be significantly lower than Qt [63, 68, 69]. However, the

constraint that Qsf ∼ Qt is not unprecedented [70–72], and indeed Ur et al. resort

to it in Ref. [72] when allowing Qsf to vary freely gives unreasonable results, as is
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Figure 3.21 Fits of bands 1 and 2 with Qsf = Qt, Tsf = 1 fs and β0 = 0.02933. For
band 1, Qt = 10.0 eb and for band 2, Qt = 15.6 eb.

the case here.

We can then use the fact that very large values of Tsf are, as noted above, both

very rare and seemingly unphysical to justify fixing Tsf at a small value, e.g. 1 fs.

Fig. 3.21 shows the revised fit with only the Qt parameter free. This time, the Qt

for band 1 is 10 eb – closer to the range of values predicted for the TSD minima in

Chapter 5. However, the Qt of band 2, 15.6 eb, has changed little and is still far from

the values predicted for any minima. More importantly, one can see by inspection

that the fit to band 1 is very poor, which is confirmed by a χ2min value of 201.

It would seem, then, that the large Tsf is justified, empirically if not physically.

However, the ‘gap’ between F(τ) = 1 and highest measured transitions in band 1
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would be reduced if β0 were lower than calculated. This is plausible, since β0 is

theoretical (see Eq. 3.19 and 3.24). The next problem is therefore to find a better

way of calculating β0. The next section describes an attempt at doing this using

data collected using the thin target.

3.2.8 Measurement of β0 using thin-target data

The thin target consisted of two stacked self-supporting 110Pd foils of total thickness

1 mg/cm2. The main idea behind using the data collected from it to determine β0 is

that nuclei created in the target are not stopped within it as with the backed target.

The nuclear velocity upon exiting the target, which will be denoted βex, depends on

the stopping powers of the nuclei in the targetmaterial. If we canmeasure βex using

the DSAM, we can compare the theoretical and experimental exit velocities and

hopefully deduce something about the true stopping power of the target material.

Figure 3.22 shows the measured v/c and average nucleus position as a function

of spin for the normally-deformed states in the level scheme. The nucleus’ posi-

tion along the beam path can be calculated using the fact that the detector angles

relative to the nucleus will change as it travels away from the target. We can then

perform a fit of cos θ versus centroid energy as in Fig. 3.14 but with θ allowed to

vary depending upon a free parameter, the position along the beam path. The fit

with the minimum χ2 should give the nuclear position.

The measurements in Fig. 3.22 for 150Dy clearly show that the nucleus exits the

back of the target before it has decayed to its ground state. We can calculate βex

by averaging all the measured velocities below the ‘exit spin’, which in this example

is I ∼ 19. For 150Dy, we obtain βex = 0.0256. All measurable values of βex for the
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Figure 3.22 Thin-target measurements for transitions in 150Dy. There is a clear
flattening of the nuclear velocity (top panel) below spin ∼ 19 (dotted line). The
average of these points is taken to be the exit velocity βex (solid line). The position
measurement (bottom panel) shows the opposite trend, with a constant position
above spin ∼ 19, the average of which (dashed line) is consistent with the nominal
target position of 0.254m.
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current experiment are shown in Fig. 3.23. It was not possible to measure βex for

all reaction channels in this experiment, due variously to no clear flattening of β at

low spin; doublets causing the value of β to be the average of two values, leading to

an insufficient number of data points; or simply too low an intensity to preform a

reliable centroid-shift measurement.

Shown in Fig. 3.24 is a comparison of the measured βex and theoretical values

calculated using different parameters. The parameters for Fig. 3.24b are those used

thus far, i.e. a constant relative cross-section for each reaction channel at all beam

energies. In such a case, the only difference in βex between reaction channels is due

to the difference in stopping powers of the recoil nuclei in 110Pd. Since all the nuclei

have approximately the same A and Z, the terms on the right of Eq. 3.25 show little

varation and so, by consequence, do the values of βex. This is clearly not the case in

the experimental data (Fig. 3.24a), where the range in βex is an order of magnitude

greater. We must conclude that the variation in cross-section with beam energy

should be taken into account when calculating β0.

If this is done, using cross-sections calculated by pace, the values of βex shown

in Fig. 3.24c result. The relative placement of the values is roughly correct, and the

relative placement of isotopes of the same element is always correct, although the

magnitude of the difference is overestimated for holmium and dysprosium. How-

ever, it is apparent that these values are consistently greater than the experimental

values, and it is this fact that allows us to make the case for β0 being lower than

the theoretical value. If the velocity of nuclei exiting the target is lower than pre-

dicted, it is reasonable to suppose that they are also created with a velocity lower

than predicted (although we shall see that it is not necessarily the case).

The next question is whether the data can be used to determine a new β0. As
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Figure 3.23 Doppler-shift measurements from the thin-target data. The v/c val-
ues indicated by unfilled squares were averaged to calculate βex (dotted line).
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Figure 3.24 A comparison of (a) experimental and (b–d) theoretical velocities
of nuclei exiting the thin target (βex). The calculations use (b) a constant reac-
tion cross-section at all beam energies and dE/dx from srim, (c) cross-sections
calculated by pace and dE/dx from srim and (d) cross-sections from pace and
dE/dxbeam increased by a factor of 2.

stated at the end of the last section, β0 is theoretical and relies on the value of dE/dx

for 48Ti in 110Pd provided by srim. A higher value of dE/dx would lead the recoils

to be created with a lower average energy (see Eq. 3.19) and therefore a lower β0.

We can indeed determine a new value of dE/dx by performing a χ2 minimisation.

Here, dE/dx is the free parameter and the χ2 comes from the difference between

the resulting βex and the experimental βex.

The best-fit dE/dx is 21MeVmg−1 cm2, or twice the srim value. The resulting

βex are shown in Fig 3.24d, and they agree fairly well with experiment. The β0 for
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154Er calculated using this new dE/dx is 0.0286, or 97.5% of the previous value.This

is consistent with the largest βmeasured in 154Er of 0.02853 for 1208 keV in band 2.

However, it should be noted that an inaccurate dE/dx for the beam is not the

only explanation for the βex results. So far we have only considered the slowing

down of the beam nuclei in the target, but of course the recoils continue to slow

down after they have been created. If we accept that dE/dxbeam is greater than

predicted, there is no reason that dE/dxrecoil could not also be greater. Indeed, if

we have an additional free parameter in the χ2 fit consisting of a correction factor

to dE/dxrecoil, we obtain a lower χ2 by multiplying dE/dxbeam by 0.7 and dE/dxrecoil

by 1.4. Of course, this would leave β0 slightly higher than the preliminary value

and we would no longer have an explanation for the unphysical results.

Likewise, if the targetwere thicker than the nominal 1mg/cm2, wewould expect

βex to be lower while β0 would change only slightly. The thin target was not made

with this type of analysis in mind, and it is not known how close the true target

thickness is to the nominal thickness. However, allowing target thickness alone to

vary produces a poor fit to the βex data.

Nevertheless, since an increased dE/dxbeam is the only way to explain a lower

β0, and since this new β0 of 0.0286 is consistent with the highest β measured in

154Er, we use this value to obtain the final Qt measurements. Because of the prob-

lems encountered in the present analysis, we suggest that it might be worthmaking

reliable dE/dx measurements as part of future DSAM experiments, using for ex-

ample the ‘semi-thick target’ method (see e.g. Ref. [73] and references therein).
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3.2.9 Error onQt

While fits of bands 1 and 2 using β0 = 0.0286 and Qt as the only free parameter

look reasonable to the eye (see Fig. 4.3 in Chapter 4), there remains the problem of

a very high χ2. If we didn’t have previous knowledge of how the F(τ) values were

obtained, we could surmise that the large χ2 means that the errors on F(τ) have

been underestimated (in other words, the denominator in Eq. 3.17 is too small.)

However, we already made sure in Section 3.2.4 that the fits used to calculate F(τ)

had acceptable χ2s, and hence, through error propagation, the errors on F(τ) are

in principle correct.

This implies that the F(τ) curve of band 1 really does follow the trend in Fig. 3.21,

i.e. there is a ‘dip’ around 1100 keV. While the possibility that this reflects a real

physical phenomenon is discussed in Chapter 4, we will conclude in that chapter

that there is no satisfactory explanation for the dip, and so we are forced to fit the

data as they are presented.

We could choose to simply ignore the large χ2, but it poses a problem when

calculating the uncertainty on Qt. Using the one-dimensional equivalent of the

method illustrated in Fig. 3.19, we find that for a large χ2min, χ2 rises rapidly for

a small change in the free parameter Qt. Hence, we obtain unreasonably small

uncertainties on Qt, given in Table 3.5.

This is where we reintroduce the jackknife method [51, 52] briefly discussed

in Section 3.2.4. It is useful for estimating the errors on parameters in parametric

fits when it is impossible or inconvenient to calculate them analytically. The basic

procedure is:

1. Delete point i from the set of N data points.
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Band Qt (eb)

1 11.00+0.11−0.13
2 19.5± 0.7
3 10.0± 0.4

Table 3.5 Preliminary results using a single free parameter,Qt, and uncertainties
calculated using the method presented in Section 3.2.7.

2. Refit the parameters using this subset of N − 1 data points.

3. Repeat 1 and 2 for all N data points.

4. The jackknife estimate of the standard error on a parameter p̂ is then

σJ(p̂) =

¿
ÁÁÀN − 1

N

N

∑
i=1
(p̂(.) − p̂(i))2 (3.26)

where

p̂(.) = 1
N

N

∑
i=1

p̂(i) (3.27)

and p̂(i) is the best-fit parameter value resulting from step 2.

The jackknife standard error σJ given in Eq. 3.26 essentiallymeasures the scatter

of the data points, weighted by their uncertainties. For example, if an F(τ) value is

far from the line of best fit and has a relatively small uncertainty, its exclusion will

lead to a large change in the fittedQt and it will therefore make a large contribution

to the squared term in Eq. 3.26. This method was used to calculate the final errors

given in Chapter 4.
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3.3 The search for new bands

This section details how new strongly deformed bands were found in the data. The

main difficulty arises from the fact that these bands are difficult to see when gating

on transitions in the main, ‘normally-deformed’ level scheme. In the case of 154Er,

this is mostly because the bands have a relative intensity of a few per cent down to

fractions of a per cent, and as such are drowned out by other transitions.

Additionally, most of the data in this experiment came from the thick target. In

the thick target, the nucleus is still moving when it emits γ rays from the strongly

deformed states (which is essential for the DSAM), but it has already stopped by

the time it reaches theND states, since these aremuch longer-lived. Hence aDopp-

ler correction is required to align peaks from the strongly deformed states (such as

those shown in Fig. 3.7), while no Doppler correction is required to align peaks

from the ND states. Consequently, when data are sorted with no Doppler cor-

rection so that the ND transitions can be gated on, any peaks from the strongly

deformed states will be too broadened to see.

3.3.1 Cubes

The solution makes use of the regular energy spacing that is typical of strongly de-

formed rotational bands. The data must first be sorted into a form from which

spectra can be rapidly extracted by the placing of energy gates. Currently, one of

the best ways of doing this is to create a multi-dimensional histogram of the data

using software included in the radware package [74, 75]. A histogram with a sin-

gle dimension – simply a spectrum, of which there aremany examples in this thesis

– tells us the number of γ rays in a data set that fall inside a particular energy bin. A
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histogram with two dimensions, called a matrix, has an additional energy dimen-

sion, so it can tell us, for each energy bin, what γ rays were detected in coincidence

with γ rays of that energy. Effectively, each energy bin has its own one-dimensional

histogram, so that by gating on a particular energy in the matrix we can produce a

spectrum of coincident peaks. In this way, we can deduce a level scheme by iden-

tifying which γ rays follow on from each other, and which do not.

Inevitably, confusionmay arisewhenmore thanone transition in a level scheme

has the same energy, or when more than one nucleus in the data set has transitions

of a certain energy. Gating on an energy will produce a spectrum with peaks that

are coincident with all γ rays of that energy, so that peaks from different parts of a

level scheme or different nuclei may be mixed together.

To overcome this we can create histograms with three dimensions (cubes) or

even four dimensions (hypercubes), allowing us to simultaneously gate on up to

two or three energies, respectively. The resulting spectra are extremely clean, and

the ability to gate on multiple transitions provides additional information in the

deduction of the level scheme. The idea here is to use the characteristic spacing of

γ rays in strongly deformed bands to ‘guess’ the energies of unknown bands. The

cleanliness of the multiple-gating technique should allow us to see even very weak

bands if we guess the energies correctly.

Additionally, radware is able to produce spectra from a large number of mul-

tiple gates in amatter of seconds, compared to a few hours for themtsort sorts that

produced the DSAM spectra. This allows us to perform a thorough and systematic

search of the data in a reasonable amount of time.

To search for new bands in the current data set, several cubes were made with

different Doppler corrections applied to the data. As illustrated in Fig. 3.10, the
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quality of the spectra depends on howwell the peaks from individual detector rings

are aligned i.e. howwell the Doppler correctionmatches the Doppler shifts of tran-

sitions in the band. Since we have no information about the Doppler shifts of the

bands we are searching for, we must sort the data with different Doppler correc-

tions and test each case.

The radware program levit8r, used for analysing cubes, has an ‘SD search’

function [76] which allows cubes to be tested for strongly deformed bands using

lists of energy gates specified by the user. The program sets the gates and calculates

a ‘figure of merit’ for the resulting spectrum based on the number of counts in the

spectrum and how close these counts are to the energies in the list. So, for example,

if we wanted to look for bands with an energy spacing of 50 keV, our gate list file

might resemble the following:

List 1
800
850
900
950

1000
1050
1100
1150
1200

List 2
801
851
901
951...

⋮

List 50
849
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899
949
999

1049
1099
1149
1199
1249

Thus any bands with a 50 keV energy spacing and transitions in the ∼ 800–1250 keV

region should be picked up by the search routine.

Similar searches were performed for energy spacings of 30–60 keV, which is

what we would reasonably expect for these kinds of bands. This procedure was

followed for cubes with a range of Doppler corrections, i.e. β = 70–100% at 10%

intervals. In this way, we have performed a comprehensive, systematic search of

strongly deformed bands in the data. The results are presented in the following

chapter.



Chapter 4

Results

4.1 New bands

We have found two new strongly deformed bands in the data which we believe be-

long to 154Er.These are shown in Fig. 4.2.The γ-ray energies and relative intensities

of the known and new strongly deformed bands in 154Er, as measured in the cur-

rent data, are given in Tables 4.1 and 4.2, respectively. The maximum intensity of

band 1 relative to that of the 4n channel, taken to be equivalent to the intensity of

the 2+ → 0+ 560 keV transition, was measured at 0.6%. This is in agreement with

previously published values [15, 20]. Band 2 was measured to have approximately

half the intensity of band 1, and bands 3 and 4 half again.

As with the two previously known bands, we could not link the new bands

definitively to the ND level scheme. We instead base the assignment on the ob-

servation of ND transitions in spectra produced by gating on the bands, shown in

Fig. 4.6. These spectra and their implications regarding where the bands feed into

the main level scheme are discussed in Section 4.3.

80
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Figure 4.1 Typical spectra from individual detector rings (top panels) showing
the Doppler shifted peaks in band 1. Spectra were obtained from the backed-target
data by imposing three successive gates (γ3) from a list of all in-band energies be-
tween 734 keV and 1300 keV, followed by a background subtraction as described in
Section 3.2.2. (Bottom panel)Thin-target, γ3-gated coincidence spectrum for band
1 produced in the radware program 4dg8r. Black points indicate ND transitions.
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Figure 4.2 Backed-target spectra of (a) band 2 and the newly observed (b) band
3 and (c) band 4 of 154Er. Spectra were produced in the radware program levit8r
by applying γ2 gates from a gate list of the indicated energies to three-dimensional
energy histograms (cubes). The γ-ray energies in the cubes were first Doppler cor-
rected by v/c = 2.80% for band 2 and v/c = 2.62% for bands 3 and 4.
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Eγ (keV) Relative intensity Ii → If
Band 1 696.5(3) 13.8(24) (26+ → 24+)

734.39(8) ≡ 100(5) (28+ → 26+)
777.09(8) 97(5) (30+ → 28+)
824.29(7) 69(4) (32+ → 30+)
875.09(7) 89(3) (34+ → 32+)
926.98(7) 62.6(28) (36+ → 34+)
980.19(7) 69.2(28) (38+ → 36+)
1032.79(8) 66.9(28) (40+ → 38+)
1085.53(8) 63.7(29) (42+ → 40+)
1138.24(11) 56(3) (44+ → 42+)
1191.09(13) 45(3) (46+ → 44+)
1242.65(18) 39(3) (48+ → 46+)
1299.5(4) 19(4) (50+ → 48+)
1350.3(7) 13(3) (52+ → 50+)

Band 2 743.02(21) 79(6) (28+ → 26+)
789.17(16) ≡ 100(5) (30+ → 28+)
832.69(17) 45(3) (32+ → 30+)
879.25(13) 65(3) (34+ → 32+)
924.93(14) 68(3) (36+ → 34+)
971.51(12) 73.3(29) (38+ → 36+)
1018.25(13) 75(3) (40+ → 38+)
1065.22(13) 75.6(28) (42+ → 40+)
1111.80(13) 76.6(27) (44+ → 42+)
1159.11(17) 61.4(27) (46+ → 44+)
1206.71(22) 51.5(27) (48+ → 46+)
1254.0(5) 22.8(26) (50+ → 48+)
1303.8(6) 16.3(26) (52+ → 50+)

Table 4.1 Energies and intensities for the two previously known strongly de-
formed bands in 154Er. Proposed spin assignments are from the analysis in Sec-
tion 4.3.
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Eγ (keV) Relative intensity Iπi → Iπf
Band 3 847.4(4) 49(6) (28+ → 26+)

898.07(27) 70(5) (30+ → 28+)
951.0(4) 45(5) (32+ → 30+)
1005.01(21) ≡ 100(6) (34+ → 32+)
1059.4(3) 71(6) (36+ → 34+)
1114.4(3) 64(6) (38+ → 36+)
1169.4(8) 30(6) (40+ → 38+)
1223.3(9) 27(6) (42+ → 40+)
1277.7(7) 36(5) (44+ → 42+)
1331.6(7) 37(6) (46+ → 44+)

Band 4 931.0(4) 57(10) (32+ → 30+)
998.60(23) ≡ 100(7) (34+ → 32+)
1064.94(28) 85(7) (36+ → 34+)
1131.7(3) 76(7) (38+ → 36+)
1199.8(3) 50(6) (40+ → 38+)
1270.1(3) 46(6) (42+ → 40+)
1343.5(5) 31(5) (44+ → 42+)
1423.8(6) 27(5) (46+ → 44+)

Table 4.2 Energies and intensities for the newly observed strongly deformed
bands in 154Er. Proposed spin assignments are from the analysis in Section 4.3.
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Band Qt (eb)

1 11.0 ± 0.6
2 19.5 ± 1.5
3 10.1 ± 0.9a

aThis error is rather small. See text for further discussion.

Table 4.3 Final quadrupole moments for bands 1–3 in 154Er.

4.2 Quadrupole moments

The final values for the quadrupolemoments of bands 1–3 are presented in Table 4.3

and the final fits are shown in Fig. 4.3. One issue with these results is the small error

on the quadrupole moment of band 3. Its value is 4⁄3 that of the error on the Qt of

band 1, yet the points are significantly more scattered, and the errors on F(τ) much

larger. The error on the Qt of band 2 is almost twice as large, despite the smaller

errors on F(τ). This is partly because the experiment is inherently more sensitive

to lower Qts (see Fig. 4.4). While the errors on F(τ) are smaller for band 2 and the

points appear to be less scattered, they encompass a large range of Qt values.

We can compare these errorswith errors calculated using an alternativemethod

that is more sensitive to the scatter of the points. Now that the number of fit pa-

rameters has been reduced to one, we can obtain a Qt from a single F(τ) value. If

we fit each F(τ) value in the band to get a quadrupole moment and an error, we can

calculate a weighted mean with a standard error. Using this method, the values of

Qt for bands 1–3 are, respectively, 10.3 ± 0.4, 20 ± 3 and 8 ± 4. These uncertainties

seem intuitively more sensible.

However, they are partly a result of Qt being arbitrarily limited to a value of

30 eb (larger values than this are physically unlikely). Indeed, theQt of the 1223 keV
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transition in band 2 reaches this limit. If mltfit is rewritten to allow a higher limit

of, for example, 80 eb, we find that theQt exceeds even this value, leaving the uncer-

tainty of themeanQt in excess of 11 eb. Since the uncertainties calculated using this

method are so sensitive to an arbitrary value written into the fitting program, we

prefer to continue using the jackknife standard error, but treat the error on band 3

with some doubt.The initial aim of this experiment was after all themeasure theQt

of bands 1 and 2, and any additional information is a bonus. We can deduce from

the F(τ) values, J (2) and optimum Doppler correction that band 3 has a similar

deformation to band 1, but 10.1 ± 0.9 eb is almost certainly too precise.

Next is the problem that there seems to be a significant dip in of F(τ) curve of

band 1, reaching its lowest point relative to the fitted curve at 1086 keV.We have al-

ready ensured in Section 3.2.4 that the fit that produced this F(τ) value is acceptable.

One possibility is that the spectra used in the Doppler-shift measurement contain

some contamination. The presence of a contaminating peak close in energy to an

in-band peak would shift the fitted centroid towards the contaminating peak and

therefore affect the measured shift. However, the presence of such contamination

is difficult to prove, and none is apparent in the spectra.

Another possibility is that the band does not have a constant Qt. A lower Qt at

the top of the band, increasing at ∼ 1033 keV, would result in the observed trend.

However, such a change in Qt would be reflected in a change in the J (2) moment

of inertia. An inspection of J (2) (Fig. 5.3) reveals that it is fairly constant at inter-

mediate rotational frequencies (corresponding to the middle of the band).

A third, admittedlymore far-fetched possibility is a defect in the target. If some-

thing were to cause the nucleus to slow down less than predicted below 1086 keV,

there would be a flattening of F(τ) like that observed. Fig 4.5 shows the simulated
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Figure 4.5 Experimental band 1 results with a simulated curve (Qt = 7.4 eb), if
the srim simulation is modified to include a gap in the target layer.

F(τ) curve for Qt = 7.4 eb if a 1.5 µm vacuum gap is placed at a depth of 0.8 µm in

the target, resulting in a good agreement with the measured F(τ). However, there

is no supporting evidence for such a defect, and it was not possible to inspect the

target used in the experiment. Additionally, the fittedQt for band 2 using themod-

ified simulation is ∼ 15 eb, which is much lower than predicted for the SD band.

In summary, we are unable to determine why the data produce such a poor fit.

We have nevertheless obtained reasonableQt values that follow the overall trend of

the F(τ) values after some modifications to the established analysis method. How-

ever, the error on the Qt of band 3 seems rather small and will be treated cautiously

in Chapter 5.

4.3 Feeding into the main level scheme

As stated, we have not identified any transitions linking the strongly deformed

bands to the ND states. This leads to some uncertainty in the band spins, and
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makes it more difficult for us to assign configurations to the bands. Lagergren et al.

[15] have suggested spins on 24+ and 26+ for the bottoms of bands 1 and 2, respec-

tively, based on observed coincidences between in-band transitions and transitions

between ND states.

We perform a similar analysis here for all four strongly deformed bands. A

radware hypercube was created from the thin-target data, which had first been

Doppler-corrected to align the peaks from different detector rings. Although we

have made use of the change in β with spin in Section 3.2.8, the change is rela-

tively small, and a Doppler correction of β ∼ 2.7% aligns both high- and low-spin

transitions sufficiently well.

Spectra were produced by triple-gating on transitions in the band of interest

(Fig. 4.6). The peaks in the spectra should therefore correspond to transitions be-

tween ND states populated below the point at which the strongly deformed bands

feed into the main level scheme. We can estimate the spin of the lowest level in a

band by determining the highest-spin ND transition in the spectrum. The relative

intensities at the bottom of the band (Fig. 4.7) indicate whether we expect the band

to feed out gradually or through the bottom state only.

Band 1 appears to feed into the ND level scheme between Iπ = 19− and 25−,

in agreement with Lagergren et al. The feeding-out of this band is gradual (i.e.

through the bottom two states), making it difficult to determine where the bottom

of the TSDband is relative to these levels. Assuming E1multipolarity for the linking

transitions, the 24+ of Lagergren et al. seems reasonable.

Band 2 is more straightforward, since almost all the intensity appears to feed

out after the bottom transition. Again, we cannot see any higher than Iπ = 25− in

the ND transitions, but this time the 25− → 23− transition (318 keV) is much more
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intense. This suggests that there is a strong linking transition between the bottom

of the SD band and the 25− state, and so we agree with the 26+ of Lagergren et al.

For band 3, there is some contamination from 151Dy in the spectrum. The two

most intense contaminating peaks (378 keV and 182 keV) are indicated in the figure.

The relative intensities of the ND peaks are somewhere between those for bands 1

and 2, but closer to band 2. There may be a 26− → 25− peak (dotted line), but there

is certainly no 27− → 25− peak. It is difficult to say from either Fig. 4.6 or Fig. 4.7

whether band 3 feeds out gradually. Putting all this together, we suggest 26+ for the

bottom of the band.

The band 4 spectrum has a clear peak at ∼ 563 keV in this spectrum, corre-

sponding to the 28+ → 27− transition. This is close to the 2+ → 0+, 560 keV transi-

tion, which could be what we are seeing. However, we know that the latter should

have around the same intensity as the 4+ → 2+, 601 keV transition, which in the

spectrum is barely above the background 1. There are also peaks for the 27− → 25−

and 26− → 25− transitions, and there appears to be a small 30+ → 28+, 920 keV

peak. The 29+ → 28+, 625 keV transition is difficult to identify because it is a dou-

blet with 20− → 19−. Likewise, the 32+ → 30+, 561 keV transition is too close the

aforementioned 28+ → 27− and 2+ → 0+ transitions. It certainly does not feed in

any higher than 32+ since there is no 33− → 32+, 279 keV peak. Based on this, we

estimate that the bottom of the band has a spin of 30+ to 32+.

1This is due to their being an isomeric 11− state with T1⁄2 = 35 ns, meaning that γ rays emitted
below the isomer are not detected in coincidence with those above.



Chapter 5

Discussion

We have measured the transition quadrupole moment of the two triaxial bands to

be 11.0 ± 0.6 eb and ∼ 10 eb. These are consistent with the values of 10.9+0.6−0.5 eb and

11.1+1.2−0.9 eb for TSD bands 1 and 2 of 157Er, respectively, and 11.7+0.7−0.6 eb and 11.1+1.3−1.0 eb

for bands 1 and 2 of 158Er [18].

For those nuclei and for 154Er, as we shall see in the following section, these

values are too large to correspond to the theoretically favoured positive-γ TSD

shape, and are more consistent with the negative-γ shape predicted to be signif-

icantly higher in energy. Thus, our results support those of Wang et al., providing

both a calibration of the experimental technique through the SD band, and a con-

tinuation of the puzzling discrepancy between experiment and theory through the

TSD band.

In this chapter, we compare the properties of the four 154Er bands with those

of other nuclei, as well as Cranked Nilsson-Strutinsky predictions, and attempt to

deduce their underlying single-particle structure.

94
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5.1 Deformation minima

Shown in Fig. 5.1 are potential energy surface (PES) plots resulting from CNS cal-

culations at different spin values [77]. These are in general agreement with the total

Routhian surface plots presented by Lagergren et al. [15] resulting from cranking

calculations with a Woods-Saxon potential. At I = 0, the yrast minimum has a

low-deformation non-collective oblate shape (γ = 60○). Another low-deformation

minimum at γ ∼ 45○ briefly becomes yrast at I = 10, and the γ ∼ 60○ minimum

becomes yrast once more at I = 20–50.

At I = 60, 70, the SDminimum at ε2 = 0.6, γ ∼ 0○ becomes yrast. There are two

local TSD minima at 0.3≤ ε2≤0.4, 20○ ≤γ ≤ 30○ and 0.3≤ ε2≤0.37, −20○ ≤γ ≤−15○.

In keeping with the work of Wang et al. involving similar minima in 158Er [18], we

refer to the positive- and negative-γminima as TSD1 and TSD2, respectively. TSD1

appears to split into two minima at I = 60, but we do not observe a shift to larger

deformation referred to as TSD3 by Wang et al.

From our experience with classical spinning tops, we intuitively expect the

negative-γ triaxial shape illustrated in Fig. 2.7 to be less stable than the positive-

γ shape. Indeed, TSD2 is consistently higher in energy than TSD1, and this also

the case for 157,158Er [18]. The lower energy of TSD1 means that we would expect

band 1, being the most intense, to originate from this minimum, with the weaker

bands possibly belonging to TSD2.

One apparent discrepancy between these minima and our observations is that

neither of the TSD minima ever become yrast, instead being ‘bypassed’ in favour

of the SD band. Indeed, earlier calculations using the Nilsson potential predict the

same trend [78]. However, we havemeasured the intensity of the TSDband, band 1,
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to be twice that of the SD band, so wemight expect the TSD to be yrast at some spin

value. In contrast, Woods-Saxon calculations do predict that the TSD1 minimum

becomes yrast at high spin [15, 79], which is also true of the similar TSDminimum

in 152Dy [60, 80]. In fact, Beck et al. predict TSD1 to be lower in energy than

the SD minimum up to I = 80 [79]. On the other hand, our calculations predict

that, while TSD1 may not be the lowest in energy, it is lower in energy than the SD

minimum up to I = 50. Since our analysis in Section 4.3 puts the highest measured

spin at I = 52, it is only to be expected that the TSD band is observed with a greater

intensity than the SD band.

5.2 Strongly deformed bands

5.2.1 Band 2 (Superdeformed)

We begin by discussing band 2, since it is believed to arise from a configuration in

the theoretically well-established superdeformed minimum, and as such it is the

‘calibration’ band. The measured Qt of 19.5 eb confirms this assignment, as this is

the magnitude of Qt that we would expect for SD bands in this region [81].

As with neighbouring SD bands, we compare the configuration of band 2 with

the ‘doubly magic’ yrast SD band in 152Dy (SD-1), since this band has been exten-

sively studied and is linked to the low-spin level scheme [82], meaning that its spins

are known and its configuration reasonably certain. In terms of high- j orbitals, this

configuration consists of four protons in the deformation-driving i13/2 orbital, eight

neutrons in the i13/2 orbital and two neutrons in the j15/2 orbital [57], or

π{(i13/2)4} ⊗ ν{(i13/2)8( j15/2)2}.
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Such configurations are often given as simply the number of nucleons in the N =

6, 7 orbitals [83], and so we refer to the favoured configuration as π64ν6872 in this

thesis.

The configurations of SD bands in neighbouring nuclei can be regarded as a

number of particles or holes relative to the 152Dy SD ‘core’ [30, 84, 85]. For 154Er, the

favoured configurations resulting fromCNS calculations involve the occupation of

N = 4 or N = 5 orbitals by the two additional protons relative to 152Dy. As can be

seen in Fig. 5.2, these orbitals ([411]32 , [413]52 , [530]12and [532]32) are close to the

proton Fermi surface (the boundary between occupied and unoccupied states) at

Z = 68. We also see that the SD shell gap at N = 86, which is responsible for the

doubly magic nature of 152Dy, persists for 154Er.

Fig. 5.3 shows the dynamic moment of inertia of band 2 compared with that

of 152Dy SD-1. The bands follow one another closely, and indeed their energies

are consistent to within 2–5 keV [86]. While this supports our configuration as-

signment, it makes the tentative spin assignment made in Section 4.3 and previ-

ously by Lagergren et al. problematic. We have assigned initial-to-final-state spins

of 28+ → 26+ to the lowest-spin transition, 743 keV. However, the corresponding

transition in 152Dy SD-1 of 738 keV is known to be 32+ → 30+, hence these would

be the minimum spins assigned to the 743 keV transition if band 2 were based on

the same configuration. Furthermore, the proposed occupation of N = 4 orbitals

by the two additional protons would contribute an effective alignment of approxi-

mately 1 ħ, while the occupation of N = 5 orbitals would contribute approximately

2 ħ. Fig. 5.4 shows the effective alignment of band 2 with 152Dy SD-1 as a reference

assuming values of 30 or 32 for the bandhead spin, compared with the predicted

effective alignment from the N = 4, 5 protons. Despite the large number of known
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SD bands, few have been definitively linked to normally deformed states [81] and

so the nature of these linking transitions is not well-known. Hence, we cannot dis-

count the possibility that the spins are much higher than estimated. Regardless of

the spin, the value of ieff is remarkably flat, further supporting the assignment of a

similar configuration to the 152Dy band.

Figure 5.5 shows the predicted Qt for one of the favoured π64ν6872 configura-

tions, which is representative of configurations of this type. The Qt in the exper-

imental spin range is ∼ 20 eb, consistent with our result (with the caveat that we

have used this value as a basis to reject our preliminary results.)
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5.2.2 Band 1 (TSD)

Fig. 5.6 shows proton and neutron single-particle diagrams for the positive-γmin-

imum, with ε2 = 0.312, γ = 20.2○ and ε4 = 0.016. The trends observed in these

diagrams are representative of both TSD minima. The TSD configurations can be

considered as particles outside a 14664Gd82 closed core.1 At Z = 68 and low ω, four

pairs of h11/2 orbitals are filled. As ω increases, strongly down-sloping f7/2 and i13/2

orbitals go below Fermi surface, while a pair of h11/2 orbitals rises above it, and a

gap appears at Z = 68.

For neutrons at N = 86, up-sloping h11/2 and N = 4 orbitals increase in energy

as ε2 is increased, to the point where they cross the Fermi surface, while the lowest

down-sloping i13/2 orbitals go beneath it. Hence favoured configurations in 154Er

are of the form

π(h11/2)p1(h9/2 f 7/2)p2(i13/2)p3 ⊗ ν(N = 4)−n1(h11/2)−n2(i13/2)n3 ,

where p is the number of protons and n the number of neutrons (or neutron holes)

in the orbitals indicated relative to the 146Gd core.These configurations are denoted

[p1(p2p3), (n1n2)n3] in this thesis.

The dynamicmoment of inertia of band 1 (Fig. 5.3) lies very close to that of band

3 in 152Dy [88]. This has been proposed to be a TSD band based on itsJ (2)moment

of inertia of 70 to 78 ħ2/MeV in the 0.45–0.65MeV/ħ frequency range [89], which

is close in magnitude to the J (2) of the TSD bands in 163,164,165Lu [6, 90].

At ħω = 0.55–0.60MeV, theJ (2) of band 1 (and that of the 152Dy TSD band) ex-
1An appreciable shell gap has been shown to exist at Z = 64 in addition to the magic numbers

listed in Chapter 2 [87].
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periences a slight rise, consistent with the positive-signature ν[651]32 orbital falling

below the Fermi surface at the same frequency, supplanting the positive-signature

[400]12 orbital.This rise is followed by a sudden discontinuity not seen in the 152Dy

band, with no obvious explanation. A disadvantage of usingJ (2) is that it can be too

sensitive to the measured transition energy, showing irregularities when energies

cannot be measured precisely. However, for J (2) to be smooth at this frequency,

the 1300 keV transitionwould have to be approximately 3 keV lower thanmeasured,

well outside the ±0.4 keV uncertainty.

A key feature of the triaxial bands in 163−165Lu is believed to be the occupation

of the πi13/2 subshell, as with the SD band, and indeed this is a feature of several

of the favoured configurations resulting from CNS calculations. The energies of

four candidate TSD configurations [77], minus a rotating liquid drop reference,

are shown in Fig. 5.7. These are compared with the energies of band 1 assuming a

spin appropriate to the configuration (using arguments similar to those applied to

band 2 in the previous section).

The [6(21),(42)4] configuration is the lowest in energy over the whole spin

range, although it competes with [7(10),(42)4] if only the experimental spin ranges

are considered. However, as can be seen from Fig. 5.7 (bottom panel), [6(21),(42)4]

is in better agreement with the experimental energies. The next best agreement is

for [6(22),(42)4], but this configuration is predicted to be relatively high in energy.

In terms of the implied bandhead spin of these configurations, the addition of

each proton to the h9/2 f 7/2 and i13/2 orbitals adds 2–3 ħ of alignment, and so the

bandhead spin, I0, increases from 22 for [7(10),(42)4] to 30 for [6(22),(42)4]. The

best agreement with experiment is for [6(11),(42)4] with I0 = 25. When evaluating

the theoretical configurations based on spin values, we should remind ourselves
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that the linking transitions between the bands and the ND level scheme have not

been observed and the true spin may be significantly higher than our estimates.

Fig. 5.8 shows the location of these configurations in deformation space, to-

gether with two more configurations that are generally lower in energy but have

low Qt. The Qt of the configurations as a function of spin is shown in Fig. 5.5. As

we predicted from Eq. 2.28, configurations originating from TSD2 have larger Qt

than those fromTSD1, with [6(11),(42)4] havingQt ≈ 10.7 eb and [7(10),(42)4] hav-

ing Qt ≈ 10.2 eb, both consistent with the measured Qt of 11.0 ± 0.6 eb. The TSD1

configurations, on the other hand, have lower Qt. For [6(22),(42)4], Qt ≈ 9.7 eb

while [6(21),(42)4] has Qt ≈ 8.3 eb, both inconsistent with our result.

Finally, the theoretical J (2)moment of inertia for the four strongest-candidate
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configurations are shown in Fig. 5.9, compared with the experimental value. The

behaviour of all configurations except [6(11),(42)4] is rather erratic, although they

fluctuate around a value close to the experimental one. Conversely, the [6(11),(42)4]

configuration varies smoothly and follows the same downward trend as the exper-

imental value, but is ∼ 10 ħ2/MeV too low.

The properties of the four configurations are summarised in Table 5.1. Overall,

each configuration has a feature that prevents it from being assigned definitively

to band 1. However, the measured Qt suggests the band belongs to the negative-γ

minimum – a puzzling result considering its energetically unfavoured nature.
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TSD ECNS − Eyrast ECNS − Eexpt.
Configuration minimum Qt (eb) I0 (MeV) (MeV)

[7(10),(42)4] TSD2 10.2 22 1.0 0.36
[6(11),(42)4] TSD2 10.7 25 1.5 0.31
[6(21),(42)4] TSD1 8.3 27 0.9 0.04
[6(22),(42)4] TSD1 9.7 30 2.1 0.17

Table 5.1 Summary of the favoured TSD configurations from CNS calculations.
ECNS−Eyrast and ECNS−Eexpt. are the average difference between the theoretical en-
ergies and, respectively, the yrast band energy and the experimental band 1 energy
over the spin range I0 + 28, with I0 taking the same values as in Fig. 5.7.

5.2.3 Band 3

The measured Qt of 10 eb suggests that this is a TSD band. The slightly lower value

than for band 1 is mirrored by a slightly lower J (2) moment of inertia. We there-

fore expect band 3 to belong to one of the remaining favoured TSD configurations

given in the previous section. A possible scenario, then, is that band 1 belongs

to the [6(11),(42)4] configuration with the higher Qt, while band 3 belongs to the

[7(10),(42)4], with a proton in an h11/2 orbital rather than an i13/2. However, the

latter configuration is generally closer to the yrast line in the spin range considered

(Fig. 5.7), contradicting the observed relative intensities of the two bands.

5.2.4 Band 4

The J (2) moment of inertia of this band is considerably lower than either the SD

or TSD bands. As such, it may be a moderately deformed ‘TD’ (triaxial deformed)

band like those observed in 152Dy and 153Ho [89, 91]. Indeed, the J (2) of the 153Ho

TD1 band shown in Fig. 5.3 is very close to that of band 4. The J (2) of TD1 and

TD2 in 152Dy are also close in magnitude, although the former shows a gradual
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upward trend and the latter a sudden rise above 0.6 /MeV/ħ, contrary to the gradual

decrease observed for band 4.

These bands are believed to be associatedwith the occupation of only twodefor-

mation-driving i13/2 orbitals [89], two lower than our favoured TSD configurations

and consistent with a lower deformation. Fig. 5.10 compares the J (2) moment of

inertia of band 4 with that of a favoured TSD configuration and similar positive-γ

configurations with fewer i13/2 neutrons and N = 4 holes. We see that the experi-

mental value is intermediate between the two sets of theoretical values. It therefore

seems reasonable to suggest that the band 4 configuration is intermediate also, for

example [6(11),(42)3].



Ch. 5 DISCUSSION 112

5.3 Alternative models

Wefinish by discussing recently published work that attempts to reconcile the large

quadrupole moments of the 158Er TSD bands with theory using alternatives to the

CNS model. The results can equally be applied to 154Er, with the exception that

154Er does not appear to have a TSD3 minimum.

5.3.1 CRMF

Afanasjev et al. have recenly performed Cranked Relativistic Mean-Field (CRMF)

calculations for 158Er [92] in an attempt to explain the large Qt values observed.

These calculations predict positive- and negative-γ TSD configurations analogous

to TSD1 and TSD2, although with lower γ deformations of ±10○, as well as TSD3

configurations with γ ∼ 13○ and near-prolate configurations with ∣γ∣ ≤ 6○.

As with CNS calculations, TSD1 configurations have Qt ≤ 9 eb and are gener-

ally calculated to be lower in energy than TSD2 configurations, but TSD2 is found

to compete in energy with TSD1 for certain parameterisations of the theoretical

potential.

Overall, the TSD3 configurations, predicted to compete in energy at higher

spins, are the favoured interpretation for the 158Er bands, with Qt values of ∼ 11 eb.

However, as with the CNS calculations for 154Er, the TSD3 assignment necessitates

amuch higher spin assignment than is estimated experimentally, with one configu-

ration requiring the highest-spin state to be at 77 ħ – the highest spin ever recorded.
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5.3.2 Tilted-axis cranking

It was mentioned at the beginning of this chapter that we would intuitively expect

a classical spinning top with negative γ to be unstable. Using the parameters ε2 and

γ, one is limited to shapes with their rotation axes corresponding to one of their

three principle axes and so the possibility that the negative-γ shape might ‘tilt over’

to positive γ is not addressed. The tilted-axis cranking method [93], on the other

hand, permits a reorientation of the rotational axis, allowing the stability of the

nuclear shape with regard to such reorientations to be investigated. This method

has recently been applied to 158Er by Shi et al. [94].

Using the tilted-axis approach, an increase in γ from its TSD2 value (−15○) to its

TSD1 value (22○) (effectively ‘squashing’ the nucleus from one to the other), results

in two energy minima around these values, just as in the conventional CNS calcu-

lations. However, when the magnitude of γ is fixed and the rotational axis allowed

to tilt from negative to positive γ, a continuous decrease in energy is observed, and

so TSD2 is found to be a saddle point rather than a minimum. Thus, according

to these calculations, a negative-γ TSD shape is unstable to a reorientation of the

rotational axis and would not be observed experimentally.

While configurations with high Qt (∼ 10.5 eb) have been proposed by Shi et al.,

they are calculated to be significantly higher in energy than lower-Qt configura-

tions with Qt ≈ 7.5 eb. Hence, the Qt values of ∼ 11 eb in 157,158Er and now 154Er are

not sufficiently accounted for by the titled-axis method.



Conclusion

We have succeeded in measuring the quadrupole moments of the SD and TSD

band in 154Er, together with a tentative value for a third, newly discovered band. A

fourth, new band has also been observed with a moment of inertia consistent with

a TSD band.

The quadrupolemoment of 19.5 eb for the SDband is consistentwith theoretical

predictions, validating the Doppler-shift attenuation method used to measure the

quadrupole moments of the TSD bands in 154Er, as well as those in 157,158Er.

The quadrupole moments of the TSD bands in all three of these nuclei have

values of ∼ 11 eb. In 154Er, this is consistent with a triaxial shape rotating around its

intermediate axis rather than around its short axis as favoured by theoretical pre-

dictions. This is also the case with 157,158Er, with configurations from the a more

highly deformed, but theoretically unfavoured, positive-γ TSD minimum also be-

ing candidates.

However, we should not overlook the fact a number of modifications to the

analysis procedure were necessary to produce satisfactory results. Even after these

modifications, some problems remain, notably the fact that many F(τ) points de-

viate significantly from the fitted Qt curve. This highlights the difficulty of using

the DSAM, which relies on the assumption that the theoretical stopping power of

114
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the target material is correct. We therefore suggest that future experiments using

the DSAM, especially those looking at very weakly populated bands, devote some

beam time to measuring the stopping power of the target material.

Nevertheless, our results deepen the mystery of the unexpectedly high quad-

rupole moments measured in erbium TSD bands and show that there is still much

to be understood about the structure of nuclei in the ultrahigh-spin regime. Fur-

ther experiments - or new theoretical developments - will provide the answers, and

indeed results are currently being analysed of a DSAM experiment performed by

our collaboration to measure the quadrupole moment of the candidate TSD band

in 160Yb, which has two more protons than 158Er.
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