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Abstract 

Zircon is a key mineral in understanding tectonothermal overprinting in metagranitoid 

rocks of the continental crust, principally through radiometric dating. Exposed examples of 

such rocks are often Precambrian in age and have undergone multiple tectonothermal 

events. This thesis aims to understand the overprinting effects of deformation and 

metamorphism in multiple tectonothermal events on zircon, using the Precambrian 

Lewisian Gneiss Complex (LGC) of Northwest Scotland as a case study.  

Deformation of zircon at the grain-scale, in the form of distortion of the crystal lattice, 

was found to heterogeneously affect Ti, Rare Earth Elements (REEs) and U-Pb systematics. 

Ti and REE abundances increased or decreased as dislocation planes caused by distortion 

enabled diffusion of elements in or out of the crystal lattice. Pb isotopes were also lost, 

resulting in discordant young ages relative to undistorted zircon. Zircons with lattice 

distortion may therefore record information about tectonothermal events not recorded in 

undistorted zircon.  

Investigating the effects of multiple metamorphic episodes on zircons from the LGC 

revealed that different metamorphic events could not be reliably distinguished due to the 

occurrence of volume diffusion of Pb. A ~600Ma concordant age spread was interpreted to 

have been caused by volume diffusion; all other possible explanations were eliminated and 

age patterns from individual zircon crystals supported this hypothesis. Volume diffusion 

would have required ~3-500Myr at temperatures of 875-975°C. 

 As well as these more generic findings about the effects of overprinting on zircon, 

zircon U-Th-Pb, REE and Ti data were analysed to investigate meta-igneous gneisses and 

metasediments of the Assynt Terrane, a key part of the LGC.  The oldest cores yield a mean 

age of 2958±7Ma, a possible magmatic protolith crystallisation age but volume diffusion of 

Pb in zircon may have affected these zircon core ages. The period of volume diffusion of Pb 

in zircon is interpreted to have ended at ~2482Ma with the peak of granulite-facies 

metamorphism shortly before this. Zircons in the metasediments have relatively flat 

chondrite-normalised heavy REE profiles (low Yb/Gd ratios) which suggest they equilibrated 

with granulite-facies metamorphic garnet. Ti-in-zircon thermometry records average 

crystallisation temperatures of 790°C for zircons from the magmatic protolith to the meta-

igneous gneisses and 823°C for zircons from the metasediment. The zircons in the 

metasediments are interpreted to be detrital and the calculated temperatures are 

interpreted to record zircon crystallisation in a currently unknown protolith. 
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1. Introduction 

Definitions and Importance 

Radiometric dating is crucial to understanding the evolution of Precambrian high grade 

metamorphic regions, where meta-igneous rocks dominate and relict metasediments are 

unfossiliferous. Such regions can have complicated histories including protolith igneous 

rocks of various ages as well as multiple tectonothermal (metamorphism and/or 

deformation) events, each ‘overprinting’ previous mineral assemblages and structures. It is 

important to understand these rocks and their history as they may be a window into the 

evolution of the early Earth and a possible analogue for current processes in the lower 

continental crust. Zircon is the key mineral chronometer in understanding high-grade 

Precambrian complexes and has several attributes desirable for recording complex high-

grade tectonothermal histories: 

 it is widespread in the dominant metagranitoid rocks 

 it incorporates a range of trace elements and their isotopes in its crystal lattice 

which record aspects of the geological history 

 it is a relatively mechanically- and chemically-durable mineral so can often partially 

withstand high-grade tectonothermal activity and retain pre-existing element and 

isotopic compositions; a high enough grade of tectonothermal event will often also 

be recorded in the resetting of part of the existing zircon or growth of some new 

zircon 

The trace elements incorporated allow a range of interpretations to be made about the 

zircon and its host rock. The U4+ cation can occupy the Zr site in the zircon lattice while Pb is 

largely excluded due to its incompatible charge and ionic radius. With little Pb present on 

crystallisation, most of the Pb present is radiogenic daughter Pb isotopes from the decay of 

the radioactive U; measurement of ratios of U and Pb isotopes allows calculation of a 

radiometric age (e.g. Davis et al., 2003; Ireland and Williams, 2003; Kosler and Sylvester, 
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2003; Parrish and Noble, 2003). As well as its importance for radiometric dating, zircon 

incorporates a range of other trace elements which allow for other interpretations of the 

geological history. These include: Ti which is proportional to crystallisation temperature 

depending on rutile activity (Watson et al., 2006); Lu-Hf which can be used to infer the 

origin of the source melt and to calculate melt extraction model ages (Kinny and Maas, 

2003); and Rare Earth Elements (REEs) which can be used to distinguish crystal zones of 

different age (Whitehouse and Kamber, 2003) and link them to major phases such as garnet 

which also sequester REEs (Kelly et al., 2006; Taylor et al., 2007). Isotopes of oxygen may 

also be used to infer the origin of the melt (Valley, 2003). 

Zircon is therefore a key mineral in understanding many rock types, including 

Precambrian meta-igneous complexes. Radiometric dating has been a major step forward 

in building a chronology of large- and small-scale geological events in the Precambrian, 

while the insights from other trace elements in zircon has supplemented the picture and 

can support and inform interpretation of radiometric ages. 

The Problem 

In Precambrian meta-igneous complexes which have undergone high temperature 

metamorphism and high strain deformation (often on multiple occasions), zircon evolves in 

multifaceted ways to the changing conditions. Metamorphism and deformation are often 

heterogeneous in their intensity and distribution and zircon may respond heterogeneously 

via a range of mechanisms with different geochemical characteristics. This results in a 

complex record of zircon U-Pb ages, which do not clearly relate to the relative chronology 

constructed from mineral assemblages and structures observed in the field. The rocks for 

this case study, the Lewisian Gneiss Complex (LGC) of northwest Scotland, are a good 

example of the difficulty of interpretation of radiometric age patterns (e.g. Kinny et al., 

2005; Park, 2005 and references therein; Corfu, 2007). 
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The Aims 

The overall aim of this PhD is to undertake a detailed and systematic characterisation of the 

response of zircon to overprinting by metamorphism and deformation. Under this, there 

are both process- and regionally-motivated objectives: 

 a generic understanding of how radiometric ages and other geochemical systems in 

zircon are affected by multiple episodes and varying intensities of metamorphism 

and deformation i.e. process-motivated 

 a better understanding of the formation and evolution of the case study rocks, the 

Lewisian Gneiss Complex, through geological mapping, petrography, microstructure 

and element/isotope zircon measurements i.e. regionally-motivated 

The first of these objectives will be addressed by obtaining a suite of element and isotope 

measurements from zircons from samples that have been carefully characterised by 

detailed field mapping, petrography and microstructural analysis so as to provide a clear 

framework on which to base zircon interpretations. This framework will show the 

metamorphic and deformation history of the host rocks, which will be the context for 

examining the effects of overprinting on zircon. Detailed examination of the different zircon 

response mechanisms and their geochemical characteristics will be made and linked to the 

tectonothermal context. To what extent does metamorphism have an effect on the zircons 

and how do they respond to more than one episode of elevated temperature? How does 

deformation at the grain-scale affect zircon? These questions will be asked in tackling this 

process-motivated objective. 

The second objective has arisen from a desire to understand the host rocks of the 

LGC better. Despite many field, geochemical and geochronological studies, the geological 

history of this classic Precambrian high-grade region remains unclear. Radiometric dating of 

zircon (Friend and Kinny, 1995; Kinny and Friend, 1997; Friend and Kinny, 2001; Kinny et al., 

2005; Friend et al., 2007; Love et al., 2010) has challenged the traditional structural and 
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metamorphic interpretation (Sutton and Watson, 1951) and continues to generate lively 

debate (e.g. Park et al., 2005). It is hoped that combining radiometric zircon dating with 

field, geochemical, petrographic and microstructural constraints, and supporting evidence 

from other trace elements in zircon, in this project will improve understanding of the 

tectonothermal evolution of the LGC. 

The Location 

The rocks of the Lewisian Gneiss Complex (LGC) of northwest Scotland are the case study 

for this project and are reviewed in detail in Chapter 2.2. The protolith was dominantly a 

tonalite-trondhjemite-granodiorite (TTG) suite, with minor mafic and sedimentary rocks. In 

the TTG gneisses, the oldest mineral assemblage is a granulite-facies assemblage, termed 

the Badcallian (Park, 1970), of orthopyroxene, clinopyroxene, plagioclase and quartz 

(Sutton and Watson, 1951) with gneissic layering and granoblastic texture; it is unclear 

whether this is simply the same as the original TTG mineralogy or was formed during a 

granulite-facies tectonothermal event. It is only preserved in part of the LGC and there is no 

evidence for it in the majority of the complex. An age of either ~2730Ma (Corfu et al., 1994) 

or ~2490Ma (Friend and Kinny, 1995; Kinny and Friend, 1997) has been assigned to this 

assemblage based on U-Pb zircon dating. A subsequent tectonothermal event, the Inverian 

(Evans, 1965), heterogeneously overprints Badcallian structures in the form of discrete 

shear zones up to several kilometres wide. The timing of large areas of static retrogression 

of orthopyroxene and clinopyroxene to hornblende is still unclear. The Inverian event has 

been assigned U-Pb zircon ages of either 2490Ma (Corfu et al., 1994) or 2490-2400Ma 

(Kinny et al., 2005). The heterogeneity of distribution and differing interpretation of zircon 

and monazite (Zhu et al., 1997) dates of both these two events has led to some 

controversy. The traditional model of Sutton and Watson (1951), based on field criteria 

around which later zircon U-Pb dates were fitted, invokes a single block of crust undergoing 

a common history with the heterogeneity in distribution of assemblages and structures of 
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each event being attributed to different levels of the crust. A more recent interpretation, 

based mainly on the heterogeneity of zircon dates across the complex, has suggested that 

the LGC comprises many disparate terranes with different tectonothermal histories (Kinny 

et al., 2005). Following the Inverian event, there was an episode of mafic dyke intrusion 

(the Scourie dykes) and another amphibolite-facies tectonothermal event, termed the 

Laxfordian (Sutton and Watson, 1951), which overprinted much of the exposed LGC. The 

Scourie dykes and Laxfordian are common to the whole complex but the distribution of the 

earlier events and the terrane hypothesis are still disputed. 

Thesis Structure 

This thesis is structured around three distinct but interlinked manuscripts (chapters 5-7) 

which address the aims outlined above. These manuscripts have been or will be submitted 

to internationally-recognised peer-review journals and as there are common themes 

between the three manuscripts, there are overlaps in content including geological 

background and methodology. In this thesis, these manuscripts have figures and tables 

embedded in the text but are otherwise formatted for journal submission. Each of the three 

manuscripts contains only a brief description of the geological setting, methodology 

employed and sample petrography, which are largely the same or at least overlapping, as 

the focus of each manuscript is on zircon. Not all samples and not all analytical techniques 

were necessarily used in each of the three manuscripts. As a result, there are dedicated 

chapters comprehensively describing: the geological setting (chapter 2b); all methodologies 

deployed in sample characterisation and in the manuscripts (chapter 3); and detailed 

characterisation of all samples from which zircons were analysed in each manuscript 

(chapter 4). Chapter 8 synthesises the themes from the three manuscripts and suggests 

further work. As there are common themes running through all chapters, references are 

frequently used in more than one chapter. As a result, references from all chapters and 

collated in a single list at the end. 
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A brief synopsis of each chapter is now given: 

Chapter 2: Reviews. This chapter is split in two parts, the first reviewing the properties and 

geological applications of the mineral zircon, and the second reviewing the rocks which 

have been used a case study for the investigations carried out during the PhD.  

Chapter 3: Methodology. A wide range of methods has been deployed ranging from 

geological field mapping through to micro-beam isotope analysis. Each technique is 

described in much more detail than is required for peer-review publication so as to provide 

a more thorough account of the analytical techniques used than that which is given in the 

manuscript chapters. 

Chapter 4: Sample Characterisation. This chapter is split into three parts: the first gives 

detailed descriptions of the field localities and the petrography of samples taken from them 

which have been analysed; the second part analyses the whole-rock and mineral chemistry 

of these samples; and the third part discuss the heterogeneity of the rocks of the Lewisian 

Gneiss Complex and the representativeness of the samples.  

Chapter 5: The Effects of Crystal Lattice Distortion on Trace Element Mobility and U-Pb 

Isotope Systematics in Zircon: Examples from the Lewisian Gneiss Complex, Northwest 

Scotland. This manuscript investigates the effects of crystal lattice distortion on a 

population of zircons as would typically be used in a geochronological/geochemical study. 

Electron backscatter diffraction (EBSD) analysis identified crystal lattice distortion in a small 

but significant percentage of zircons in the population. This was found to disturb U-Pb, REE 

and Ti geochemical systems heterogeneously. Weighted Burgers vectors (WBV) analysis 

suggested that the lattice distortion formed either during crystallisation of the zircons or 

through post-crystallisation plastic deformation. U-Pb data suggests that distorted zircons 
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could be used to approximately date amphibolite-facies tectonothermal activity not 

recorded by undistorted zircons. 

Chapter 6: Volume Diffusion of Pb in Zircons from the Lewisian Gneiss Complex, Northwest 

Scotland. Evidence is presented for the occurrence of volume diffusion of Pb in zircons, a 

phenomenon generally regarded as impossible in normal crustal conditions. Other possible 

explanations for a spread of concordant U-Pb ages are eliminated and the age and chemical 

zoning patterns of individual grains are used to illustrate the occurrence of volume 

diffusion.  

Chapter 7: New Insights on the Assynt Terrane of the Lewisian Gneiss Complex of NW 

Scotland from Zircon U-Th-Pb, REEs and Ti-Thermometry. This manuscript brings together 

the zircon U-Th-Pb, rare earth element (REE) and Ti data collected during the PhD and 

applies it in a regional context. Volume diffusion of Pb in zircon (see chapter 6) renders 

protolith and metamorphic ages unsafe which informs the controversy over Lewisian 

chronology. REEs indicate zircons in the meta-igneous gneisses were a relatively closed-

system through tectonothermal activity but zircons in metasediments interacted with 

garnet. Ti-in-zircon thermometry is used to calculate a crystallisation temperature range for 

the magmatic protolith. 

Chapter 8: Synthesis and Further Work. The final chapter in this thesis summarises the main 

points from the manuscripts in Chapters 5-7 in the context of the initial thesis aims. 

Although advances in understanding have been made through the work presented here, it 

has inevitably raised further questions which could not be addressed due to the time 

constraints of a PhD. Some such points are discussed in this final chapter. 

Manuscript Status 

The manuscripts for submission to peer‐review journals are listed below along with the 

authors and their contributions and the status of the manuscript at the time of thesis 

submission. 
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The Effects of Crystal Lattice Distortion on Trace Element Mobility and U-Pb Isotope 

Systematics in Zircon: Examples from the Lewisian Gneiss Complex, Northwest Scotland 

(Chapter 5) has been submitted to Contributions to Mineralogy and Petrology and has 

been peer-reviewed. Reviewers’ comments are currently being acted upon prior to 

publication. 

John MacDonald – data collection and processing, interpretation and discussion of 

data, principal author 

John Wheeler – Burgers vectors modelling, discussion and manuscript review 

Kathryn Goodenough – discussion and manuscript review 

Quentin Crowley – discussion and manuscript review 

Simon Harley – discussion and manuscript review 

Elisabetta Mariani – discussion and manuscript review 

Daniel Tatham – discussion and manuscript review 

Volume Diffusion of Pb in Zircons from the Lewisian Gneiss Complex, Northwest 

Scotland (Chapter 6) will benefit from further work (modelling of Pb diffusion and 

possible TOFSIMS analysis), which will be carried out in future before submission to a 

journal (possibly Earth and Planetary Science Letters). 

John MacDonald – data collection and processing, interpretation and discussion of 

data, principal author 

John Wheeler –discussion and manuscript review 

Kathryn Goodenough – discussion and manuscript review 

Quentin Crowley – discussion and manuscript review 

Simon Harley – discussion and manuscript review 

Elisabetta Mariani – discussion and manuscript review 

Daniel Tatham – discussion and manuscript review 
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New Insights on the Assynt Terrane of the Lewisian Gneiss Complex of NW Scotland 

from Zircon U-Th-Pb, REEs and Ti-Thermometry (Chapter 7) will be updated with Hf 

isotope data and submitted to a journal (Precambrian Research) in the near future. 

John MacDonald – data collection and processing, interpretation and discussion of 

data, principal author 

John Wheeler – discussion and manuscript review 

Kathryn Goodenough – discussion and manuscript review 

Quentin Crowley – discussion and manuscript review 

Simon Harley – discussion and manuscript review 

Elisabetta Mariani – discussion and manuscript review 

Daniel Tatham – discussion and manuscript review 
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2. Chapter 2 – Reviews 

2a: Zircon 

What is Zircon and Why is it Useful? 

 Zircon is a tetragonal orthosilicate with the chemical formula ZrSiO4 (Fig. 2.1). It is 

the main mineral with Zr as a structural component and is the host for significant whole-

rock percentages of the elements Hf, U, Th and the REEs (Hoskin and Schaltegger, 2003). 

The lattice is composed of SiO4 tetrahedra and ZrO8 dodecahedra; the space group is 

I41/amd (Finch and Hanchar, 2003). It has a hardness of 6.5 on the Mohs scale and is 

chemically durable in resisting volume diffusion and incorporation of trace elements which 

makes it an important mineral for geochronological and petrogenetic investigations of a 

wide range of rocks. It originates dominantly in Si-saturated igneous rocks and is recycled 

into, or occasionally grows in, a range of metamorphic and sedimentary rocks; it is an 

accessory mineral where present and although it occurs in low abundances, it is 

widespread. 

For these reasons zircon is commonly analysed in geochronological and 

petrogenetic studies. Zircon chemical zoning and microstructure can be imaged in a 

scanning electron microscope (see chapter 3) and high-precision and high spatial-resolution 

geochemical and isotopic data can be obtained by a variety of methods. These techniques 

are discussed in detail later in this chapter.  

Formation of Zircon  

 Zircon can form through a variety of mechanisms involving new growth or 

recrystallization of pre-existing zircon. Each mechanism has a range of physical and 

chemical characteristics, which may allow it to be distinguished; this can be important 

contextual information when interpreting geochemical data. 
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Fig.  2.1 Zircon crystallographic structure. 

Magmatic Growth 

 Primary zircon forms from intermediate to silica-saturated magmas when these 

magmas reach saturation in Zr (Hoskin and Schaltegger, 2003). Primary zircon crystallisation 

is dependent on both the concentration of Zr in the magma, the water content and the 

temperature and this allows crystallisation temperatures to be calculated based on Zr 

saturation conditions (Hanchar and Watson, 2003). Zircon can also be resorbed in Si- and 

Zr-undersaturated melts and can be altered sub-solidus with changes in temperature and 

water content (e.g. metamorphic events). Primary magmatic zircon can be euhedral to 

anhedral depending on how early Zr saturation conditions are reached in the magma. 

Magmatic zircons usually contain internal growth zoning; this is most clearly seen in 

cathodoluminescence (CL) imaging (see chapter 3) where the growth zones are seen as 
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alternating CL-bright and CL-dark stripes, starting at the core and moving outwards, often 

mimicking the polygonal crystal shape. This feature is known commonly as oscillatory 

zoning patterns (OZPs) and is thought to form from varying Zr-saturating conditions in the 

magma (Vavra, 1993). Recorded U-Pb ages usually reflect the age of crystallisation of the 

magma, unless later thermal (lattice diffusion) or microstructural effects (brittle fracturing 

or plastic lattice distortion) cause radiogenic Pb to move around the crystal or be lost 

altogether. Magmatic zircon typically has a chondrite-normalised REE pattern of increasing 

abundance from light REEs to heavy REEs but with a positive Ce anomaly and negative Eu 

anomaly. Ce exists as a 4+ cation (as well as as the standard 3+ REE valency) and so more of 

it is incorporated into the lattice than other 3+ cations. Eu commonly exists as a 2+ cation, 

which is unsuited to the zircon lattice structure and strongly partitions into plagioclase 

(Hoskin and Schaltegger, 2003). Magmatic zircons with high concentrations of U can 

become metamict; as radioactive U decays to Pb, the lattice is strained to the extent that it 

loses its crystallinity and eventually become amorphous (Ewing et al., 2003). With 

metamictisation comes redistribution of trace elements, which renders such zircons useless 

for dating and other petrogenetic studies. 

Anatectic Growth 

 Primary zircon may also grow from anatectic melts, either nucleating as a new 

ovoid-shaped (sometimes termed ‘soccerball’) crystal or more commonly forming as a rim 

around pre-existing zircon. Anatectic zircon grows when small volumes of partial melt reach 

Zr-saturation conditions. In CL imaging, ‘fir-tree’ or ‘sector’ zoning are common textures 

(Hoskin and Schaltegger, 2003). REE patterns and abundances in anatectic growth zircon 

are likely to be different to earlier magmatic cores and may be distinguished thus. Anatectic 

zircon REE patterns may alter from the typical magmatic zircon pattern depending on the 

other phases present when the anatectic zircon is forming. For example, it will have a flat 
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heavy REE pattern on a typical Matsuda plot when grown in the presence of garnet 

(Rubatto, 2002; Whitehouse and Platt, 2003; Kelly et al., 2006; Harley and Kelly, 2007). U-

Pb ages derived from anatectic growth rims should be younger than from magmatic or 

inherited cores, unless some Pb-loss mechanism has occurred during the high-temperature 

anatexis. 

Growth in Net-Transfer Reactions 

 Some other minerals may contain significant levels of Zr, such as baddeleyite, or are 

present in rocks at high modal percentages such that they contain a significant percentage 

of the total Zr in the whole rock. Garnet (Degeling et al., 2001), hornblende (Fraser et al., 

1997), biotite (Vavra et al., 1996) and ilmenite (Bingen et al., 2001) have all been shown to 

contain high levels of Zr. When these minerals break down, new zircon can form in net-

transfer reactions. Degeling et al. (2001) showed that when garnet, sillimanite and quartz 

reacted to form cordierite, the Zr in the garnet could not be incorporated into the 

cordierite and so was released and formed new zircon. Fraser et al. (1997) calculated that 

new zircon could form from net-transfer reactions involving hornblende breakdown 

although they did not ground-truth their models using real rocks. Bingen et al. (2001) used 

careful petrographic observation to show that zircon had formed from breakdown of 

magmatic ilmenite during granulite-facies metamorphism. These examples show that net-

transfer reactions may be a significant source of new zircon growth during metamorphism. 

Coupled Dissolution-Reprecipitation 

 Zircon can also become altered in sub-solidus conditions through recrystallization, 

which can occur in three different ways. Recrystallisation by coupled dissolution-

reprecipitation (Geisler et al., 2007) occurs when a fluid or melt comes into contact with 

metastable zircon. Zircon will naturally incorporate assorted trace elements but these do 

not necessarily sit well in the lattice; radiogenic Pb2+ and trivalent REEs sitting in tetravalent 
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sites cause a certain degree of lattice strain while in order to achieve equilibrium the zircon 

must be pure zircon. Without interaction with a catalyst such as fluid or melt, the zircon is 

essentially metastable; but when a fluid or melt does come along, the outer parts of the 

zircon are able to dissolve and topotactically recrystallize. Variable amounts of trace 

elements diffuse out of the recrystallizing zircon so analyses of zircon rims with low REE 

abundances are suggestive of coupled dissolution-reprecipitation (Geisler et al., 2007). As U 

is also expelled, these rims are also characterised by bright CL intensity; CL often reveals 

irregular inward-penetrating zones as pre-existing zircon of certain composition has been 

preferentially dissolved. 

Diffusion-Driven Recrystallization of Radiation-Damaged Zircon  

 Diffusion-driven recrystallization of radiation-damaged zircon (Geisler et al., 2007) 

is similar to coupled dissolution-reprecipitation in that it involves the metastable zircon 

lattice moving towards equilibrium on contact with a fluid. Decay of radioactive U and 

emission of alpha and beta particles causes strain in the crystal lattice, which may become 

slightly amorphous and effectively metastable. Contact with fluid is the catalyst that allows 

diffusion of ions to recover the crystallinity of the lattice, although temperature is also an 

important factor. Zones in which this process has occurred are characterised by irregular 

curved inward-penetrating zones visible in CL while pattern quality in EBSD microstructural 

analysis is poor reflecting amorphisation of the lattice. Chemically, formula elements such 

as Hf, U, REEs etc are often retained in a memory of the original zircon composition while 

there are also high levels of non-formula elements such as Ca, Fe, Ba and common Pb, 

relative to other zircon-forming mechanisms (Geisler et al., 2007). 

Solid-State Recrystallisation 

 Solid-state recrystallization (Hoskin and Black, 2000) involves internal 

rearrangement of ions in the crystal lattice, again with the objective of achieving 
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equilibrium. Reaction fronts sweep through the crystal lattice by grain boundary migration 

or lattice defect diffusion and trace elements are concentrated on these reaction fronts. 

This mechanism is characterised by CL-bright zones (often rims) transgressing earlier zoning 

patterns such as OZPs; the reaction front itself is seen as a very CL-bright narrow line, which 

reflects the high concentrations of trace elements concentrated on that front. The 

recrystallized zircon behind the reaction front is closer to equilibrium than before. 

Recrystallisation is not always efficient, which can result in mixed U-Pb ages due to partial 

‘memory’ of the pre-existing composition. This form of recrystallization can be isochemical 

but there is often some limited exchange of ions with the surrounding rock. 

What Geological Information Can Be Extracted From Trace Elements in Zircon? 

 There are several factors that make zircon amenable to geochemical investigation 

of a range of processes and rocks. Although only an accessory phase in most rocks, it is 

widespread in the crust. It incorporates a range of useful trace elements including U, Hf, Ti 

and the REE, the uses of which are discussed in detail below. Many minerals contain these 

trace elements but what marks out zircon is its physical and chemical durability. It is able to 

withstand high mechanical stress and has a widespread presence in highly strained lower 

crustal rocks. Its ability to withstand high temperatures makes it a very useful mineral in 

investigating high temperature rocks, particularly from the Precambrian. Cherniak and 

Watson (2003) measured volume diffusion of most elements in zircon and found that it is 

very unlikely for any of them to diffuse under normal geological conditions. Radiogenic Pb 

can move by volume diffusion in crystalline zircon but periods of around 100Myr at 

>1000°C are required, depending on crystal size; the effective closure temperature for Pb is 

around 800-900°C but for other trace elements it is higher still. Elements can move in the 

zircon lattice by other mechanisms such as by diffusion through distorted lattice or by 

recrystallization. In general though, zircon is able to preserve its chemical and isotopic 

composition for long periods of time through episodes of high temperature and pressure 
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(Finch and Hanchar, 2003). Zircon incorporates a range of other trace elements, which 

allow for various interpretations on the geological history of the zircons and their host 

rocks, which are described below. 

U-Pb Dating 

 Radiometric ‘dating’ produces an end result that can mean different things in 

different contexts. Isotopic clocks such as U-Pb record the age at which they last dropped 

below a certain temperature when the isotopes can no longer diffuse, i.e. the closure 

temperature (Faure and Mensing, 2005). Different mineral chronometers have different 

closure temperatures so the age of crystallisation, cooling and closure can all be recorded in 

a single sample. Isotopic systems such as K-Ar or U-Th-He record ages of cooling and cooling 

rates in high-grade metamorphic rocks as they have a relatively low closure temperature. 

Zircon on the other hand, with its U-Pb isotopic clock, has a much higher closure 

temperature and generally records crystallisation ages of magmatism and high-

temperature metamorphism (Faure and Mensing, 2005). It is generally regarded as the best 

mineral chronometer for high-grade rocks (e.g. Hoskin and Schaltegger, 2003). 

The decay of radioactive isotopes of uranium to stable daughter lead is the most 

commonly used, best understood and highest precision geological dating system (Faure and 

Mensing, 2005). The principle radioactive isotopes of uranium are 238U and 235U, while the 

stable uranium isotope is 234U. 238U decays to 206Pb with a half-life of 4.468x10-9 years (a 

decay constant of 1.55125x10-10 per year) while 235U decays to 207Pb with a half-life of 

0.7038x109 years (a decay constant of 9.8485x10-10 per year). 204Pb is the non-radiogenic 

stable isotope of lead. Both 238U and 235U have complex decay systems where there are a 

number of intermediate daughter isotopes, which are themselves radioactive, before the 

final radiogenic daughter lead isotope forms (Fig. 2.2).  
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Fig.  2.2 Radioactive decay chains of 238U and 235U. 

Certain conditions must be satisfied before reliable results can be obtained from 

the dating process. The mineral must remain closed to uranium and lead, and all 

intermediate daughters, since formation (or the last event that is to be dated) as loss or 

gain of any of these will yield meaningless ages. The isotopic composition of the uranium 

present must be normal (238U/235U = 137.818, Hiess et al. (2012)) and should not have been 
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altered by isotope fractionation or by the occurrence of natural fission of 235U. In the 

analytical stage, correct values must be used for the initial lead isotope ratios and any 

analyses with contamination discarded (Faure and Mensing, 2005).  

Zircon is the most widely used mineral for U-Pb dating (Faure and Mensing, 2005). 

U4+ ions are substituted into the lattice for Zr4+ as both have a similar ionic radius of ~1Å 

and the same charge; Pb2+ ions on the other hand have a different charge and a larger ionic 

radius so are excluded. This means that zircon has high initial U/Pb ratios and is therefore a 

sensitive geochronometer. It has a high effective closure temperature for volume diffusion 

of Pb of >900°C (Lee and Tromp, 1995) so is more resistant to resetting and isotopic 

disturbance than any other mineral chronometer. As a result of this, zircon may date high-

grade metamorphism whereas the closure temperatures of the other minerals are too low 

and their isotopic systems would be disturbed. However, with high U content, zircon suffers 

from radiation damage, which leads to lead-loss and discordant results.  

Rare Earth Element Profiling  

 The trivalent rare-earth element (REE) cations substitute into the Zr site in the 

zircon lattice in a coupled substitution with phosphorus (Harley and Kelly, 2007). By 

measuring the concentration of each of the REEs and plotting a graph of atomic number 

against chondrite-normalised concentration (Anders and Grevesse, 1989; McDonough and 

Sun, 1995), a REE profile can be constructed. A typical chondrite-normalised zircon REE 

profile has increasing concentration with increasing atomic number, a positive Ce anomaly 

and negative Eu anomaly (e.g. Whitehouse and Kamber, 2003; Kelly and Harley, 2005a; 

Harley and Kelly, 2007). Whitehouse and Kamber (2003) analysed the concentrations of 

REEs from complexly zoned zircons from the Amitsoq Gneisses of southwest Greenland and 

found that individual zircon zones had different REE profiles. This proved that the REE 

chemistry of the melts from which the zircon had grown or recrystallised were distinct and 

in conjunction with CL imaging could be used to interpret a crystallisation history for 
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individual zircon. REEs are one of the main generators of cathodoluminescence (CL) in 

zircon (Nasdala et al., 2003). 

REE patterns appear the most promising method of evaluating the metamorphic 

character and timing of zircon growth (Harley et al., 2007). This can be done by determining 

the equilibrium distribution of REEs between zircon and coexisting metamorphic minerals, 

which may enable the correlation of zircon growth zones to metamorphic mineral fabrics in 

the host rock. Experimental data on REE distribution are limited at present but that 

between zircon and high-temperature garnet is well known (Whitehouse and Platt, 2003); 

zircon grown or recrystallised contemporaneously with high-temperature garnet shows a 

flat heavy REE profile and strong depletion in europium (Rubatto and Hermann, 2007). 

There are still problems with this though as existing empirical estimates of distribution 

coefficients of REEs into zircon and garnet vary widely between different high-temperature 

and high-pressure rocks (Harley et al., 2007). It must also be remembered that these are 

equilibrium distribution coefficients and therefore careful interpretation of textural 

relationships between the minerals is essential. Furthermore, Rubatto (2002) pointed out 

that the amount of available elements may affect the composition of zircon over time, i.e. 

with ongoing metamorphism and garnet growth, the reservoir from which zircon takes REEs 

is depleted.  

Harley and Kelly (2007) applied the technique to ultra high-temperature gneisses 

from Antarctica from which U-Pb data indicated magmatic protoliths at ~2840Ma and 

zircon resetting at ~510Ma while the rocks preserved a granulite-facies mineralogy. The REE 

distribution between zircon and the granulite-facies garnet indicated that the zircon had 

been unaffected by the granulite-facies event but had been altered by post-peak fluid 

infiltration at ~510Ma (Harley and Kelly, 2007). Clark et al. (2009) combined REE profiling 

with U-Pb dating and Ti-in-zircon thermometry (see below) to try to determine the P-T-t 

path and tectonic evolution of a Gondwanan suture. Distribution coefficients were 
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calculated from experimental and natural rock data for zircon/garnet and indicated that 

zircon grew from garnet breakdown at a certain time in the evolution of the suture. U-Pb 

ages and Ti-in-zircon thermometry complemented this to enable the construction of a 

tectonic model for the Gondwanan collision.  

The Titanium-In-Zircon Geothermometer 

The amount of titanium in zircon, representing the uptake of titanium during crystal 

growth, can be used as a geothermometer. Watson et al. (2006) grew synthetic zircons 

from silicate melts at a range of preset temperatures and pressures. This enabled 

calibration of a thermometer, which, along with analysis of natural zircons in equilibrium 

with rutile, has shown that the titanium content of zircon, together with the zirconium 

content of rutile, are temperature dependent – the more titanium, the higher the 

temperature. Titanium is present in zircon at up to 120ppm as a 4+ cation substituting for 

zirconium 4+ in the crystal lattice without any coupled substitution. The results of the study 

of Watson et al. (2006) showed that titanium concentration in zircon is relatively insensitive 

to pressure but is highly temperature-dependent with the potential to return temperatures 

of +/-10° or better for temperatures of ~400-1000°C. If the zircon crystallised in the 

presence of rutile (TiO2) then the calculated temperature can be accurate to 10°C but if 

rutile is absent then the activity of Ti is reduced and zircon will not be able to take in an 

abundance of Ti proportional to the true temperature; even in this scenario, the 

thermometer will still record a minimum temperature. Relative temperature changes 

across different zones of a single grain are subject to analytical uncertainty only, which 

depends on the titanium content and the analytical instrument (either ion- or electron- 

microprobe) (Watson et al., 2006). Electron microprobe analysis is suitable for zircons with 

high titanium contents while an ion microprobe is necessary for precise determination of 

low titanium zircons.  
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Watson and Harrison (2005) used the technique to find out the crystallisation 

temperatures of the Jack Hills zircons from Western Australia – the oldest known terrestrial 

objects. The temperatures obtained were around 700°C suggesting growth in a granitoid 

melt, hence indicating that crust formation and recycling was operative as early as 4.35Ga. 

However, Watson et al. (2006) caution that titanium present in detrital zircon (e.g. Jack 

Hills) grain coatings or necessary coatings applied for microprobe analysis may result in 

erroneously high temperatures being calculated and hence care must be taken before 

analysis.      

Subsequently, Ferry and Watson (2007) revised the thermometer calibrations to 

take into account the independently variable phase components ZrO2 and TiO2 in zircon. 

New experimental data confirmed titanium content increased with decreasing uptake of 

SiO2 and hence the primary substitution of titanium is for silicon in the zircon lattice (Tailby 

et al., 2011). These new calibrations enable the titanium-in-zircon geothermometer to be 

used reliably for rocks without rutile, provided the activity of TiO2 and SiO2 can be 

independently constrained.  

Fu et al. (2008) tested the thermometer by measuring titanium concentrations of 

484 zircons from various different types of igneous rocks. They found temperatures to be 

lower than modelled and suggested a few factors that may affect the reliability of the 

geothermometer; perhaps the most important is that titanium does not remain immobile in 

the lattice through a complex geological evolution of the crystal. They also suggest that 

titanium behaviour may be influenced by the presence of other trace elements in the zircon 

lattice, as well as the possibility of non-equilibrium zircon crystallisation, e.g. in late evolved 

hydrous melts. Further issues regarding the thermometer’s systematics were raised by 

Glikson (2006) and Nutman (2006) who questioned the reliability of the thermometer for 

melts at temperatures above ~800°C that are zircon-undersaturated. Zircon should not 
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crystallise until melt fractionation is well underway although Watson and Harrison (2006) 

argue against this on the basis of variable initial zirconium content in the melts. 

Most of the application of the titanium-in-zircon geothermometer has been on 

igneous rocks, but Baldwin et al. (2007) applied it to ultra-high temperature metamorphic 

rocks. They analysed zircons from Brazilian granulites and South African lower crustal 

xenoliths using an electron microprobe for high titanium zircons and LA-ICP-MS for the 

lower (<20ppm) titanium zircons. Where zircons were zoned, they recorded different 

temperatures from different growth zones and applied the thermometer to zircon growth, 

which was interpreted to be metamorphic from textural relationships. The temperatures 

calculated are again lower than phase equilibria estimates but as they are higher than those 

recorded by Fu et al. (2008), Baldwin et al. (2007) interpreted that their calculations had 

not suffered from the problems that affected Fu et al. (2008) and that zircons can retain 

temperatures from more than one geological event. 

Hafnium Isotope Petrogenetic Tracing 

 Hf is an abundant trace element in zircon, often reaching weight percent levels. 

There are both stable and radiogenic Hf isotopes in zircon: 176Lu decays by beta emission to 

176Hf but does not easily incorporate into the zircon lattice; the stable isotope 177Hf, 

however, does substitute into the crystal. This results in very low Lu/Hf ratios (Patchett, 

1983), typically around 0.002 (Kinny and Maas, 2003). The lutetium-hafnium decay system 

is useful as it gives both a dating method and an isotopic tracer. Crystallisation of new 

zircon locks the hafnium into the lattice and hence preserves the ratio of the different 

isotopes as it was at the time; this renders it a useful tracer for the origin of lower crustal 

rocks (Faure and Mensing, 2005).  

 Patchett and Tatsumoto (1980) constructed a chondritic uniform reservoir line 

(CHUR) of the 176Hf/177Hf ratios against time, against which rocks derived from the mantle 

could be compared. This relationships is expressed using ε notation, the comparison 
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between the 176Hf/177Hf ratios of the sample against CHUR; positive ε(Hf) values indicate 

that the sample is enriched in 176Hf compared to CHUR while negative ε(Hf) values are the 

opposite (Faure and Mensing, 2005). In fingerprinting the source of a melt from which a 

rock formed, an ε(Hf) value of zero falls on the CHUR line, which reflects undepleted 

mantle; highly positive ε(Hf) values represent a depleted mantle source while a negative 

value is the signature of crustal derivation or subducted ocean crust; a slightly positive or 

slightly negative value indicates a melt derived from depleted mantle but contaminated on 

ascent by crystal melts or xenoliths (Kinny and Maas, 2003). Zircon is resistant to 

contamination by more hafnium even during metamorphism and so even if the crystal has 

been subjected to high-grade metamorphism, the original ε(Hf) should be preserved (Kinny 

and Maas, 2003). Patchett et al. (1981) analysed the 176Hf/177Hf ratio from many rocks of 

different ages and found that the growth of continental crust was episodic and started at 

least 2.9Ga. Corfu and Noble (1992) examined hafnium isotope ratios from the 3.0Ga 

Superior Province in Canada and found that its source was depleted mantle indicating that 

the mantle had started to fractionate by this time. In the Gawler craton of Australia, 

Belousova et al. (2009) used the hafnium tracer to determine which of many episodes of 

zircon growth were from crustal sources and which were from depleted mantle sources, 

thus building up a picture of local crustal evolution.  As well as an isotopic tracer, hafnium 

isotopes can also be used to calculate model ages: the age when the hafnium in a zircon 

separated from CHUR or Depleted Mantle and entered into the zircon crystal (Faure and 

Mensing, 2005). 
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2b: The Lewisian Gneiss Complex 

Early Work  

The Lewisian Gneiss Complex crops out along the northwest coast of the Scottish 

Highlands and on the Outer Hebrides island chain. It is unconformably overlain by 

Proterozoic Torridonian sediments and Cambro-Ordovician sediments and occurs west of 

the Moine thrust belt (Fig. 2.3). The existence of an early basement gneiss was 

acknowledged by the likes of MacCulloch in the first half of the nineteenth century but the 

first detailed investigation of the Lewisian gneiss and its component parts was carried out 

by the Geological Survey in the period 1883 to 1907 when the regional memoir The Geology 

and Structure of the Northwest Highlands of Scotland was published (Peach et al., 1907). 

Their fieldwork had led to the identification of a “Fundamental Complex” comprising a 

variety of banded gneisses, which they presciently recognised as being “of probably 

plutonic origin”, with minor metasediments, all intruded by a suite of basic dykes (Peach et 

al., 1907). Teall (1885) examined the dykes in particular and documented their 

metamorphism from dolerite to hornblende-schist. Peach et al. (1907) also described 

foliations and lineations and although quantitative structural geology had yet to be 

invented, some temporal relationships of deformation and its heterogeneous nature were 

identified (Peach et al., 1907).  

In the next fifty years or so, further research into the Lewisian Gneiss Complex was 

fairly limited. Jehu and Craig (1923-1934)(1923-1934) documented the Lewisian of the 

Outer Hebrides in five parts (Jehu and Craig, 1924; Jehu and Craig, 1925; Jehu and Craig, 

1926; Jehu and Craig, 1927; Jehu and Craig, 1934) while Davidson (1944) looked at South 

Harris in particular. It was not until the seminal paper of Sutton & Watson (1951) that 

investigations into the Lewisian took off in earnest. Both authors conducted detailed 

observations on small parts of the outcrop so as to try and deduce the relative chronology 

of tectonothermal events in the Lewisian. Based on their field observations, they 
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introduced new chronology: the Scourian event, which preceded the intrusion of the 

metadolerite Scourie Dyke Swarm (they were assumed to have intruded in a single pulse), 

which was in turn followed by the Laxfordian event (Sutton and Watson, 1951). The use of 

the dykes as time markers proved crucial in the recognition of polyphase deformation as in 

places they cross-cut an existing gneissic foliation while in others were themselves foliated. 

Sutton and Watson (1951) also subdivided the Lewisian into three regions: Northern and 

Southern, which were pervasively deformed by the amphibolite-facies Laxfordian event 

(characterised by hornblende) and the Central region where Scourian pyroxene-bearing 

gneisses (referred to as ‘charnockites’) were locally preserved from the effects of the 

Laxfordian (Sutton and Watson, 1951). These chronological observations and the three-

region model remained largely unchallenged until the terrane model proposed by Kinny et 

al. (1997; 2005), which is discussed below, and are the framework for a description of the 

general geology. 

Geological Summary 

The three-region model applies to the mainland Lewisian outcrop only (Fig. 2.4) and 

was proposed on metamorphic grounds (Sutton and Watson, 1951). The Central Region 

contains a large proportion of granulite-facies tonalite-trondhjemite-granodiorite (TTG) 

gneisses that contain two pyroxenes, along with more mafic gneisses and metasediments 

(Johnstone and Mykura, 1989). Some of the TTG gneisses in the Central Region have 

statically recrystallised under amphibolite-facies conditions or they were deformed and 

retrogressed in discrete shear zones. In both cases, the pyroxenes are progressively 

replaced by amphibole and biotite (Johnstone and Mykura, 1989).  

The Northern Region gneisses have all been deformed at amphibolite-facies and 

there is no indication that they were ever subjected to an early granulite-facies 

metamorphic event. They are dominantly quartzofeldspathic and often migmatitic 

(Johnstone and Mykura, 1989). The Laxford Shear Zone was interpreted by Sutton and 
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Watson (1951) to be a metamorphic front that demarcated the southern edge of 

amphibolite-facies metamorphism in the Northern Region and the start of the Central 

Region of preserved granulite-facies gneisses. The Northern Region shows pervasive 

Laxfordian deformation (Johnstone and Mykura, 1989).  

 
 
Fig.  2.3 Location and outcrop area of the foreland Lewisian Gneiss Complex with key 
localities mentioned in the text.  
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Fig.  2.4 The geographical distribution of the three-region model for the mainland Lewisian 
proposed by Sutton and Watson (1951). After Johnstone and Mykura (1989). 

 The Southern Region is also composed of amphibolite-facies gneisses although 

there are some areas of low strain and less migmatisation. Hornblende-gniesses are the 

dominant rock type with subordinate mafic and ultramafic gneisses (Johnstone and 

Mykura, 1989). The Southern Region contains a large metasedimentary and metavolcanic 

package – the Loch Maree Group. It is composed of metabasic sheets interleaved with 



47 
 

metasediments including garnet-mica-schists, semipelites and rare marbles (Park, 2002). 

They are interpreted to be Palaeoproterozoic but their contacts with surrounding gneisses 

are highly tectonised so the field relationships are unclear (Johnstone and Mykura, 1989).  

Throughout the mainland LGC, a suite of mafic dykes – the Scourie Dyke Swarm 

(Sutton and Watson, 1951) – cut across the gneisses. They are mainly doleritic in 

composition although some picrite and olivine-gabbro dykes occur in the Assynt area, east 

of Lochinver (Tarney, 1973). In the Central Region, some retain their igneous mineral 

assemblages and textures but in areas affected by Laxfordian metamorphism and/or 

deformation, they are retrogressed to hornblende and plagioclase and may be deformed 

and transposed into sheets.  

 Along with the three-region model, Sutton and Watson (1951) suggested  a 

chronology  for the Lewisian Gneiss Complex. Soon after the formation of the protolith 

rocks, they were subjected to early Scourian granulite-facies metamorphism, termed the 

Badcallian event (Park, 1970); this was then followed by amphibolite-facies metamorphism 

and deformation – the late Scourian (Sutton and Watson, 1951) event, termed the Inverian 

by Evans (1965). These events can be distinguished by their respective metamorphic 

mineralogies. Sutton and Watson’s most important insight was the use of the Scourie dykes 

as time markers. They used the dykes to distinguish between amphibolite-facies Inverian 

structures and the post-dyke Laxfordian event (also amphibolite-facies), which appear 

similar. The dykes cross-cut Inverian structures but are deformed by Laxfordian fabrics.  

The above models apply to the mainland only but the Lewisian Gneiss Complex 

crops out elsewhere. There are occasional patches of hornblende gneiss east of, and within, 

the Moine thrust belt, which have sometimes been interpreted as inliers of Lewisian 

basement, but these will not be dealt with here as they have been subjected to post-

Laxfordian orogenic episodes and their relationships with the main Lewisian outcrop are 

unknown (Johnstone and Mykura, 1989). Lewisian gneiss also crops out in the Hebrides (see 
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Fig. 2.3 for locations). The whole of the island of Rona and the northern part of Raasay are 

composed of biotite-hornblende gneisses, locally migmatitic, with mafic sheets interpreted 

to be transposed dykes (Lyon et al., 1973). They are very similar to the rocks around 

Kenmore, nearby on the mainland at the southern tip of the mainland Lewisian outcrop, 

and are interpreted to be contiguous (Johnstone and Mykura, 1989). Migmatitic 

hornblende gneisses, metasediments and amphibolite dykes crop out on the island of Iona 

and are interpreted to be Lewisian (Muir et al., 1994; Whitehouse and Russell, 1997) 

although correlation is difficult and they are interpreted to have been very close to, and 

therefore affected by, a major extensional structure (Potts et al., 1995). The islands of Tiree 

and Coll are also Lewisian. They are mostly typical migmatitic Laxfordian gneisses but 

western Tiree is pyroxene-bearing suggesting that granulite-facies metamorphism did occur 

(Westbrook, 1972a; Drury, 1973; Drury, 1974). Both islands are unusually abundant in 

metasedimentary bands, including garnet-biotite schists, siliceous schists and a variety of 

calc-silicates and marbles. Correlation is difficult due to the islands’ remoteness from the 

main Lewisian outcrops although Westbrook (1972b) suggested a history of: granulite-

facies metamorphism (Badcallian equivalent); dyke intrusion (Scourie dykes); amphibolite-

facies metamorphism (Laxfordian).  

 The Outer Hebrides are almost exclusively composed of Lewisian gneiss of various 

types (Fig. 2.5). The main lithology is biotite- and hornblende-bearing TTG gneiss (Johnstone 

and Mykura, 1989; Fettes et al., 1992). A Laxfordian foliation and lineation is widespread, 

while the Inverian is represented by discrete shear zones yp to several kilometres wide 

(Fettes et al., 1992; Mason, 2012). The Scourie dykes also appear to be represented in the 

form of transposed mafic sheets as seen in the Northern and Southern regions of the 

mainland. Pyroxene- and garnet-bearing dioritic gneisses are found in eastern South Uist 

and eastern Barra although their contacts with other gneisses are tectonised so their 

relationships are unclear (Fettes et al., 1992). A granite vein complex occurs in west Lewis 
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and western North Harris and is composed of a network of granite veins and sheets ranging 

from centimetres to hundreds of metres in thickness (Myers, 1971). South Harris has the 

most diverse assemblage of the Outer Hebrides (Fig. 2.6). There is a central igneous 

complex of metadiorite, metatonalite, metagabbro and an older meta-anorthosite. This is 

flanked to the north and south by mafic metavolcanics and metasediments comprising 

pelitic- and graphitic-schists, quartzite and marble (e.g. Johnstone and Mykura, 1989). 

 
Fig.  2.5 Map of structures and lithologies of the Outer Hebrides, from Johnstone and Mykura 
(1989). 
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Fig.  2.6 Detailed map of the rocks of South Harris, from Johnstone and Mykura (1989). 

This summarises the geological outline of the Lewisian Gneiss Complex based 

around the work of Sutton and Watson (1951). In the decades that followed, many 

advances were made in the more detailed understanding of the Lewisian Gneiss Complex, 

and geology in general, in the fields of structural analysis, geochemistry and 

metamorphism, and geochronology.   

Structure 

Sutton and Watson (1951) used structural features and structural relationships to 

define a chronology for the Lewisian. In the following decades, other workers mapped and 

described structures and structural relationships over a wider area of the Lewisian Gneiss 

Complex. Detailed mapping in the Diabaig area led Cresswell (1972) to suggest nine 

generations of structures, and hence nine different deformation events, between the early 

Scourian and late Laxfordian. Five generations of structures were pre-Scourie dyke and four 
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were post-dyke, while he recognised that large-scale Laxfordian structure and dyke 

emplacement were controlled by the pre-existing Inverian large-scale structure (Cresswell, 

1972). Park (1973) took a wider view of the entire mainland Southern region, which he 

defined as a “Laxfordian belt”. He recognised that pre-Laxfordian structures were preserved 

in isolated blocks such as Ruadh-mheallan and Creag-mhor Thollaidh (Park, 1973). Park and 

Cresswell (1973) found that the Scourie dykes were concordant with, and were affected by, 

the Laxfordian foliation while they were discordant with, and cross-cut, the Inverian 

foliation. Concordant dykes are thinner and more frequently branched and they 

emphasised the structural control of pre-existing features on subsequent ones (Park and 

Cresswell, 1973).  

Sheraton et al. (1973b) gave detailed descriptions of different generations of 

structures in the Assynt area. In this area, the dominant early Scourian structure was a flat-

lying gneissic layering that had flattened some even earlier folds. Inverian deformation took 

the form of large monoclinal folds. Laxfordian deformation was concentrated in discrete 

shear zones (Sheraton et al., 1973b). They recognised that deformation was very 

heterogeneous and less intense from the Inverian onwards due to the rocks here being 

quite rigid, possibly due to geochemical depletion of heat-producing elements (Sheraton et 

al., 1973b). Further north between Scourie and Loch Laxford, Davies (1976) suggested 

thrusting had occurred prior to Scourie dyke emplacement, followed by multiple episodes 

of folding. Beach et al. (1974) found pre-dyke amphibolite-facies upright isoclinal folds just 

south of the Laxford Shear Zone (LSZ). Following dyke intrusion, deformation north of the 

LSZ took the form of a pervasive foliation while to the south it was concentrated in discrete 

shear zones, and a further episode of folding occurred only to the north (Beach et al., 

1974). Further north still, Chowdhary and Bowes (1972) found the structure of the 

Northern Region between Loch Laxford and Rhiconich to be a steep, southwest-dipping 

Laxfordian fabric while to the north of Rhiconich the fabric flattens out into a series of 
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rolling folds until the major Strath Dionard antiform (Dash, 1969) where the fabric then dips 

steeply to the northeast up to the coast at Durness (Johnstone and Mykura, 1989). 

In the 1960s and ‘70s, there was much development of structural ideas with the 

relating of foliation and lineation to strain (Flinn, 1965), and the realisation of the 

importance of shear zones as a style of deformation (Ramsay and Graham, 1970). This led 

to various workers introducing these concepts to their analyses of Lewisian structures. 

Graham and Coward (1973) made a point of describing the methods by which they 

identified heterogeneities in strain in their study of the Outer Hebrides. They found that 

strain variation can be attributed to lithology and ductility, for example pyroxene-bearing 

rocks were less deformed than amphibole-bearing rocks (Graham and Coward, 1973). 

Furthermore, they recognised that strain is often concentrated at the contacts between 

rocks of different lithology and/or ductility, for example the Scourie dykes were often highly 

deformed at their margins but pyroxene was preserved in the centre (Graham and Coward, 

1973).  

Wheeler et al. (1987) focussed on the major shear zone at Diabaig and detailed 

mapping revealed that it was in fact composed of multiple anastomosing shear zones 

separating low-strain lozenges.  Shearing was suggested to have been initiated in the 

Inverian with individual shear zones having opposing senses: sinistral-reverse and dextral-

normal (Wheeler et al., 1987). The shearing was thought to have been reactivated in the 

Laxfordian but strain was concentrated in the dykes, which Wheeler et al. (1987) suggested 

would have been more ductile.  

Attfield (1987) suggested that the Canisp Shear Zone in Assynt was initiated in the 

Inverian as a broad belt of steep southeast-dipping foliation bounded to the south by the 

north limb of the Lochinver antiform, a major monoclinal fold. The Inverian lineation 

plunges steeply southeast indicating reverse-sense dip slip movement with a minor 

component of dextral strike-slip (Attfield, 1987). Laxfordian reactivation occurred in narrow 
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zones and the lineation plunges more shallowly to the southeast indicating dextral 

transpression again but strike-slip movement was dominant. Beach et al. (1974) described a 

similar scenario for the Laxford Shear Zone. Wynn (1995) mapped the discrete Laxfordian 

shear zones south of the Laxford Shear Zone and concluded that movement took place 

under sinistral transtension and interpreted them as accommodation structures, 

accommodating stress by simple shear and block rotation. 

A further step in structural interpretation of the Lewisian Gneiss Complex was the 

attribution of structural features to wider tectonic processes and environments. Coward 

(1984) interpreted the offset of Scourie dykes to indicate that shear on the Laxford Shear 

Zone was sinistral with a small component of normal movement. Many of the major shear 

zones of the Lewisian were initiated in the Inverian and reactivated in the Laxfordian, which 

had various explanations: two collision events with the same movement direction; one 

large event with multiple movements; the shear zone acted to decouple the lithosphere 

(Coward, 1984). Further to this, the Central Region was interpreted to have been thrust 

obliquely northwards over the Northern Region in the Inverian then to have slid back down 

to the south in Laxfordian (Coward, 1990). He interpreted the exposed part of the Laxford 

Shear Zone to originally have been in the mid-to-lower crust (Coward, 1990).  

Coward and Park (1987) interpreted the dominant flat-lying foliation of the 

Northern Region, Kenmore and other parts of the Southern Region, and the Outer Hebrides 

(Coward, 1975) to reflect a major mid-crustal flat that descended beneath the Central 

Region on northwest-southeast oriented shear zone ramps such as the Laxford Shear Zone. 

They divided the mainland Lewisian into blocks bounded by major shear zones – the 

Northern Region and Kenmore are lower crust while the Central Region is upper crust 

hence the shear zones are “mid-crustal” (Coward and Park, 1987). Goodenough et al. 

(2010) also interpreted that the Laxford Shear Zone was initiated in the Inverian by 

combining field structural observations with geochemical and geochronological data. 
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Coward and Park (1987) focussed on the Kenmore area and used kinematic indicators to 

interpret that the tectonic environment had undergone major changes during the evolution 

of the Lewisian – dextral-transpressional to dextral-transtensional to dextral-

transpressional to sinistral strike-slip. On a crustal scale, Wheeler (2007) suggested the 

major shear zone at Diabaig may in fact deform by pure shear accommodated by localised 

simple shear in the component anastomosing shear zones. He also sounded a note of 

caution in showing that metre-to-kilometre scale shear does not always relate directly to 

this crustal-scale shearing (Wheeler, 2007). 

Geochemistry and Metamorphism 

Sutton and Watson (1951) recognised the importance of metamorphism in 

determining the history of the Lewisian Gneiss Complex. They interpreted the Laxfordian of 

the Northern and Southern Regions to be retrogression of the Scourian rocks still seen in 

the Central Region. This view has been challenged on geophysical and geochemical grounds 

by various workers who doubted the Laxfordian areas were cogenetic with the Central 

Region and that they were in fact a supracrustal sequence deposited on Scourian basement 

and had ever been to granulite-facies (e.g. Bott et al., 1972; Holland and Lambert, 1973; 

Bowes, 1978).  

 In the 1970s and ‘80s, detailed petrological analysis and geochemical 

measurement in conjunction with experimental work led to a new understanding of the 

origin and evolution of the Lewisian Gneiss Complex. Making detailed observations of 

mineral textures, Beach (1973) was able to deduce metamorphic reactions and their 

implications. He observed that biotite was the common ferromagnesian mineral in discrete 

Laxfordian shear zones that had formed from hydrous retrogression of hornblende (Beach, 

1973). Thus he was able to say that the shearing brought about a metamorphic change as 

the shear zones were conduits for fluid flow, and that therefore fluid played a major role in 

the Laxfordian event (Beach, 1976).  
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 In the Central Region, pyroxene granulites (a term for pyroxene-bearing gneisses 

that had been metamorphosed at granulite-facies which was fashionable around this time) 

were preserved from amphibolite-facies retrogression as they were a sufficient distance 

away from the shear zones and their fluids (Beach, 1974). Gneisses pervasively deformed in 

the Laxfordian have, without fail, undergone hydrous retrogression (Beach, 1974). 

Cresswell and Park (1973) related metamorphic features to the three main tectonothermal 

events (Badcallian, Inverian and Laxfordian) by correlating them with structures that could 

be tied to each event. They found that original mineral segregation banding and some 

migmatisation occurred in the Badcallian, formation of amphibolite-facies mineralogy and 

further migmatisation occurred in the Inverian, and further amphibolite-facies 

metamorphism, late greenschist-facies retrogression and alkali metasomatism occurred in 

the Laxfordian (Cresswell and Park, 1973).  

 Tarney (1973) investigated Scourie dykes with a picritic composition in Assynt and 

interpreted three stages of metamorphism affecting these dykes (and therefore the host 

gneisses too). First, they underwent amphibolitisation and metasomatism with little or no 

associated deformation. Discrete Laxfordian shearing brought about deformation and 

recrystallisation at amphibolite-facies where the dykes were affected. Evidence for this 

second phase can be seen in mineral alteration textures from anthophyllite to talc, and the 

presence of other lower temperature minerals such as tremolite (Tarney, 1973). Late 

serpentinisation, possibly Caledonian in age, was found in brittle, fracturable dykes, 

especially close to the Moine Thrust (Tarney, 1973). Tarney (1973) interpreted that 

hornblende in picritic dykes was magmatic, suggesting that the dykes were intruded into 

hot, deep country rock and that metamorphism was not standard prograde regional 

metamorphism as the first event was at amphibolite-facies (Tarney, 1973).  

Detailed geochemical analyses of rock samples also led to new and more detailed 

interpretations of the origin and evolution of the Lewisian. Sheraton et al. (1973a) 
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conducted extensive sampling of all lithologies in areas at Drumbeg and Rhiconich to 

compare the geochemistry of Scourian and Laxfordian gneisses respectively. There is little 

or no difference between the geochemistry of samples from Drumbeg, whether at 

granulite-facies (Badcallian) or amphibolite-facies (Inverian) (Sheraton et al., 1973a) 

suggesting the latter was a reworked equivalent of the former. This suggested that the 

geochemical system has remained closed since this time (Sheraton et al., 1973a). The minor 

element geochemistry of the Laxfordian gneisses at Rhiconich was considered to be too 

different to be a reworked equivalent of the those at Drumbeg and Rhiconich and so was 

suggested to be a fairly typical segment of upper crust subsequently juxtaposed with the 

lower crustal Assynt gneisses (Sheraton et al., 1973a). The Drumbeg (Assynt) gneisses in 

general were found to be slightly enriched (relative to Rhiconich and other areas including 

Lewis and Greenland) in Ca, Mg, Fe, Cr and Ni (reflecting their predominantly more mafic 

chemistry) while being very strongly depleted in K2O, Rb, Th and U (Sheraton et al., 1973a). 

They were found to have high K/Rb and Ba/Rb ratios and very low Rb/Sr, K/Sr and K/Rb 

ratios while being slightly depleted in Ce, La and Pb (Sheraton et al., 1973a). The relative 

depletion of these elements is to be expected as their host minerals plagioclase and 

aluminous hornblende are not stable at granulite-facies (Sheraton et al., 1973a). They 

suggest that the Assynt pyroxene granulite gneisses are fairly standard lower crust rocks 

that tend to be depleted in the aforementioned elements, but they suggest a permeable 

aqueous phase could be the reason for the extreme depletion seen (Sheraton et al., 1973a).  

In a previous paper, (Sheraton, 1970) suggested that, based on geochemistry, the 

Assynt gneisses were originally a potash-poor basalt-andesite-dacite-rhyolite sequence with 

intercalated sediments. Sheraton et al. (1973a) give some rather unconvincing evidence to 

support this theory. Holland and Lambert (1973) examined the geochemical evidence for 

possible origins for the Assynt gneisses (their ‘Scourie Assemblage’). They disregarded the 

origin as being sedimentary or a volcanic sequence (Sheraton et al., 1973a) due to the K/Pb 
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ratio and Sr and Pb levels (Holland and Lambert, 1973). Instead they favoured a plutonic 

origin, drawn directly from the mantle with multiple fractionation events leading to 

depletion of granitic constituents (Holland and Lambert, 1973).   

In this paper, Holland and Lambert (1973) also conducted an extensive geochemical 

survey of the entire mainland Lewisian and divided it into ‘assemblages’ on petrological and 

geochemical grounds. They agreed with Sheraton et al (1973a) that the Laxfordian rocks 

cannot be reworked Scourian equivalents (Holland and Lambert, 1973). They suggested 

Gruinard and Scourie are cogenetic based on broadly similar geochemical signatures, 

although they have slightly differing silica and alkali levels (Holland and Lambert, 1973).  

Tarney (1973) made some geochemical measurements of the Scourie Dykes in Assynt and 

divided them into several groups based on petrography and geochemistry. Olivine gabbros 

are enriched in Fe and S while bronzite-picrites are enriched in Cr and Ni (Tarney, 1973). 

These more mafic types are found mainly in the Assynt area while the more common 

quartz-dolerite dykes are found throughout the complex, metamorphosed to amphibolites 

in varying degrees.  

Rollinson and Windley (1980) investigated the geochemistry of a variety of gneisses 

from the Scourie/Badcall area of the Central Region. Major element data suggested that the 

mafic granulites were tholeiitic in composition and the tonalite, trondhjemite and granite 

gneisses were calc-alkaline (Rollinson and Windley, 1980). As deformation is minimal in this 

area, they argued that these chemistries were primary magmatic and not caused by 

retrogression (Rollinson and Windley, 1980). Major and minor element geochemistry 

indicated that the mafic gneiss could not be a residue after fractionation of the tonalite 

from the same source, hence they are unrelated and the source of the dominant tonalites 

was unknown (Rollinson and Windley, 1980). Quartz/feldspar relationships and chemistries 

suggested that the tonalite was parental to the trondhjemite and the trondhjemite parental 

to the granite, both via fractional crystallisation, while rare earth element (REEs) 
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concentrations indicate that the trondhjemite was strongly fractionated compared to the 

tonalite (Rollinson and Windley, 1980). These interpretations were backed up by field 

relationships (Rollinson and Windley, 1980).  

The granites show a variation between samples of Ce and Y which cannot be 

explained by partial melting of the tonalite, hence Rollinson and Windley (1980) proposed 

they formed from fractional crystallisation of the trondhjemite. Evidence for this included a 

smooth quartz-feldspar compositional trend between the two and the gradation of one to 

the other in the same sheet (Rollinson and Windley, 1980). This model would require a 

plagioclase-rich residue and, in support, an anorthosite sheet is found at Scourie; Ce and Y 

preferentially partition into a granitic melt rather than plagioclase explaining their relative 

enrichment in the granites (Rollinson and Windley, 1980).  It had previously been suggested 

that the trondhjemites were derived by partial melting of the tonalites but Rollinson and 

Windley (1980) argued that sharp cross-cutting field relationships between the two and a 

lack of evidence of melting textures in the tonalites precluded this idea and that fractional 

crystallisation was the method involved. Rollinson and Windley (1980) suggested that 

hornblende and plagioclase were the main phases fractionating from the tonalite, which 

indicated a depth of >45km, >10% H2O and dehydration in subsequent granulite-facies 

metamorphism. They do not seem to have considered the possibility of magma mixing in 

their investigations.  

Tarney and Weaver (1987) found much the same geochemistry in their 

measurements of Scourian granulites as Rollinson and Windley (1980) did, and agreed with 

the suggestion that the depletion in U, Th and Rb was a primary magmatic feature. They 

suggested a model where hydrothermal fluids removed the relevant elements from a 

subducting ocean slab and because Archaean subduction is believed to be shallow, there 

was no mantle wedge to re-enrich the subsequent plutonic material (Tarney and Weaver, 

1987). They suggested that slight enrichment of REEs in the mafic granulites indicated an 
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undepleted mantle source, such as oceanic crust, hence agreeing with their model (Tarney 

and Weaver, 1987). They also found that intermediate granulites were enriched in light 

REEs relative to tonalitic granulites, which were also more depleted in heavy REEs, and 

trondhjemitic granulites were relatively depleted in all but the lightest REEs, while 

amphibolite-facies gneisses showed similar concentrations for all REEs. They used this to 

argue for depletion as a magmatic feature as opposed to via granulite-facies 

metamorphism (Tarney and Weaver, 1987).  

Unlike some previous workers (e.g. Holland and Lambert, 1973; Sheraton et al., 

1973a) who sampled widely and tried to come up with an origin and evolution for the 

whole of the complex, Rollinson and Fowler (1987) focused on one specific area and 

combined detailed field mapping with geochemistry to try and understand the Scourian 

rocks. They investigated Gruinard, at the southern tip of the Central Region, and field 

mapping showed agmatite trains with amphibolitic, ultramafic and tonalitic gneiss enclaves 

enclosed in later widespread trondhjemitic and granitic gneiss, all of of which were 

subsequently metamorphosed at hornblende-granulite-facies and later retrogressed 

(Rollinson and Fowler, 1987). Geochemical analyses of the amphibolites revealed variations 

in immobile elements like Zr and Ni and high Ti/Zr ratios that indicated a variety of 

compositions for their magmatic source; the amphibolites were therefore interpreted not 

to be a simple comagmatic suite though still derived from a similar mantle source region 

(Rollinson and Fowler, 1987). REE measurements, however, suggest a heterogeneous 

mantle source; this could be due to crustal contamination though the authors thought this 

was unlikely. Generally, the amphibolites were thought to have a MORB-like source, based 

on their geochemistry, but uncertainty of Archaean tectonic processes means further 

interpretation is difficult (Rollinson and Fowler, 1987).  The authors used these 

geochemical data to model conditions of magma generation: the tonalites were interpreted 

to have formed from a wet partial melt (30% melting) of a basaltic source, leaving a 
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garnetiferous residue; the trondhjemite was modelled to have formed by partial (20-30%) 

melting of a geochemically evolved basaltic source, possibly the amphibolites, followed by 

fractional crystallisation of hornblende; the granitic gneiss was interpreted to also be 

formed by partial (10%) melting but under drier conditions and with addition of light REEs 

(Rollinson and Fowler, 1987). The tonalite and trondhjemite could both therefore have 

formed from the amphibolites but the granite was not derived from either (Rollinson and 

Fowler, 1987). The tonalite and trondhjemite both require melting under wet conditions so 

Rollinson and Fowler (1987) suggested a shallow-dipping subducting slab, agreeing with 

Tarney and Weaver (1987) and Rollinson and Windley (1980) who suggested this for the 

Scourie area.  

As well as trying to understand how the protolith LGC rocks formed, various 

wokers have investigated how the protoliths evolved and gave rise to new bodies of rock. 

Castro (2004) showed that partial melting of the dominate tonalite gneiss in the Central 

Region could only form small amounts of granitic melt. The granite sheets in this area are K-

rich and there is not enough K in the tonalites to generate them. He suggested mafic 

ferrodiorite sheets in the Northern Region may have contributed K and other elements in 

partial melting to form the granite sheets around the Laxford Shear Zone. Watkins et al. 

(2007) experimentally melted samples of typical amphibolite-facies biotite tonalite and 

hornblende tonalite from the region of the Laxford Shear Zone which were interpreted to 

berepresentative of the tonalites at the time of potassic granite formation. They also found 

that the potassic granite sheets from here could not have formed from partial melting of 

the tonalites. 

Johnson et al. (2012) showed that the Central Region gneisses partially melted 

during the Badcallian tectonothermal event. They found evidence for this partial melting 

from the field relationships, petrography and geochemistry of large layered mafic-

ultramafic bodies. Felsic sheets and quartz-feldspar pegmatites with coarse peritectic 
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clinopyroxene record are records of migmatisation of the metagabbroic rocks as they cross-

cut layering in the mafic bodies. Whole-rock geochemistry linked these felsic melts with the 

source metagabbros and with the ultra-high temperature conditions in the Badcallian 

event, the partial melting of large volumes of TTG and mafic gneiss was inevitable. Field and 

petrographic evidence for this migmatisation in the TTG gneisses has been obscured by 

later reworking but the dry refractory nature of the large mafic-ultramafic bodies 

prevented them from being extensively reworked and enabled the preservation of the 

relationships of the felsic sheets and clinopyroxene-pegmatites to their host metagabbros. 

 Advances in understanding of metamorphic reactions and mineral stability fields 

and experimental work to create geothermometry and geobarometry systems allowed for 

estimates of pressures (P) and temperatures (T) of metamorphism in the Lewisian Gneiss 

Complex. Much work has been done to establish PT conditions in the Lewisian (e.g. 

Rollinson, 1979; Savage and Sills, 1980) using a variety of geothermometers and 

geobarometers (Wood and Banno, 1973; Wells, 1977; Lindsley, 1983) but only a few will be 

described here. Barnicoat (1983) deduced granulite-facies metamorphism in the Scourian 

rocks exceeded 1000°C and 8.5kbar from garnet-clinopyroxene ion-exchange 

thermometry, although he warned of problems with incomplete re-equilibration of 

thermometer minerals such as garnet, orthopyroxene and clinopyroxene as a result of very 

slow cooling after peak metamorphism. O’Hara and Yarwood (1978) found that PT 

conditions yielded by geothermobarometry were not necessarily peak metamorphic 

temperatures but reflected conditions at which diffusion stopped.  

 Sills and Rollinson (1987) used a variety of geothermometers and geobarometers 

on various lithologies to try and get PT estimates for Scourian metamorphism. Dependent 

on the calibration, the two-pyroxene geothermometer gave temperatures of 700-900°C for 

ultramafic granulites and 600-825°C for tonalitic granulites (Sills and Rollinson, 1987). 

Again, different calibrations gave a range of temperatures on the garnet-pyroxene 
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thermometer in ultramafic granulites while mineral textures were important here too: 

mineral grain cores gave temperatures of 700-900°C while symplectic overgrowths were 

around 600°C (Sills and Rollinson, 1987). Garnet-pyroxene can also be used as a 

geobarometer but requires quartz so Sills and Rollinson (1987) applied it to structurally 

related metasediments near Scourie and obtained pressures of 6.8-8.5kbar. Pressure 

estimates for the ultramafic granulites using less reliable geobarometers yielded a wide 

range of pressures from 1.8-12.2kbar; the authors suggest a range of 7.7-8.5kbar may be 

about right (Sills and Rollinson, 1987). Textural and geothermobarometric evidence 

suggested that the garnet-pyroxene system was ‘frozen’ at 750-800°C and 7-8kbar so the 

peak metamorphic conditions would have been slightly higher than this (Sills and Rollinson, 

1987). They also investigated cogenetic Scourian tonalites and trondhjemites: ilmenite-

magnetite oxygen thermometry indicated a magmatic temperature of 890-1030°C while 

hypersolvus feldspars gave a temperature of 1000°C (Sills and Rollinson, 1987). Cartwright 

and Barnicoat (1987) estimated granulite-facies metamorphism at Stoer in the Central 

Region from metasediments as having peak temperatures of 925-990°C and peak pressure 

of >11kbar.  

 Most of the PT estimate work has concentrated on the Scourian granulite-facies 

metamorphic event while relatively little has been done on later metamorphic events. Sills 

and Rollinson (1987) suggested Inverian retrogression occurred at ~600°C and tentatively 

estimated >500°C for Laxfordian metamorphism from muscovites in shear zones. Droop et 

al. (1999) used metasediments and other rocks from the Loch Maree Group to estimate 

Laxfordian PT conditions more precisely. They estimated 630°C and 6.5kbar from 

metapelites and 530°C from other rocks (Droop et al., 1999). Baba (1998) estimated PT 

conditions in the Proterozoic granulite-facies rocks of South Harris. From mineral textures 

he determined a metamorphic history of: prograde metamorphism with temperature 

increase the dominant factor; prograde metamorphism with pressure increase the 
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dominant factor; decompression retrogression; retrogression with shearing (Baba, 1998). 

He estimated peak metamorphic conditions of 800°C and 13-14kbar from metasediments 

(Baba, 1998). Baba (1999) subsequently found sillimanite inclusions in orthopyroxene 

indicating a peak temperature of 950°C.  

Barnicoat (1987) proposed a new model for the cause of Scourian high-grade 

metamorphism – enhanced heat flow in the base of the crust from radionuclide decay 

together with tectonic crustal thickening. This went against previous suggestions that high-

grade metamorphism is caused by enhanced mantle heat flow and an increase in 

magmatism (e.g. Oxburgh and Turcotte, 1974; Schuiling and Kreulen, 1979). In the Lewisian, 

it was previously suggested that intrusion of the tonalitic magmas were the cause of high-

grade metamorphism but Barnicoat (1987) disagrees as he argues that the time elapsed 

between major magmatic activity and peak metamorphism (~200Ma) was too long. It 

should be noted though that this assumption is based on old Sm-Nd geochronology that 

may be incorrectly interpreted. His thermal models suggest a slow cooling rate as does the 

extent of re-equilibration of Scourian granulites (Barnicoat, 1987). He also argues against 

the alternative idea that mantle-derived CO2 degassing was the cause of metamorphism as 

he calculated that the amount of CO2 necessary would completely dehydrate the rocks and 

make stable isotope ratios homogeneous, neither of which is seen (Barnicoat, 1987). He 

pointed to the repeated sequence of metasediments and ultramafics mapped by Davies 

(1976) as evidence for the thrusting which caused tectonic thickening (Barnicoat, 1987). 

The model suggests a peak metamorphic temperature of 750-1075°C at 35km depth, 

dependent on the amount of radiogenic heat flow and that the Scourian rocks could have 

remained at a temperature of >900°C for more than 100Ma with a slow cooling rate of 1-

2°C/Ma (Barnicoat, 1987). 

The most recent (at time of thesis submission) attempts to constrain PT 

conditions in the LGC have involved using mineral equilibria modelling. Johnson and White 
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(2011) constructed pseudosections in THERMOCALC (Holland and Powell, 1998) for the bulk 

composition of a metagabbro and a metapyroxenite from near Scourie. Both have 

granulite-facies metamorphic assemblages so the calculated PT estimates are interpreted 

to reflect peak Badcallian conditions. They calculated conditions of 8.5-11.5kbar and 875-

975°C. Furthermore, they interpreted near-isothermal decompression to pressures of 7-

9kbar from the metamorphic peak as garnet in the metagabbro had decompression rims of 

plagioclase, orthopyroxene and magnetite. Their Badcallian PT estimates broadly agree 

with previous work. Zirkler et al. (2012) followed a similar approach in combining mineral 

equilibria modelling with petrographic observation to determine peak Badcallian conditions 

of >900°C and 13-16kbar from metasedimentary gneisses at Stoer, from the same suite of 

rocks analysed by Cartwright and Barnicoat (1987). The pressures are relatively high 

compared to the peak Badcallian pressure estimates of Johnson and White (2011) from 

metabasic rocks at Scourie, indicating that further work is required to properly constrain 

peak Badcallian PT condition. Petrographic characterisation of the metasediments by Zirkler 

et al. (2012) showed that there was hydrous retrogression of the peak granulite-facies 

assemblage, evidenced by retrograde growth of hornblende, biotite and other hydrous 

minerals. This retrogressive assemblage indicated PT conditions of 5-6.5kbar and 520-

550°C; this was interpreted to reflect the Inverian event. 

Geochronology 

 Another side of continued research into the Lewisian Gneiss Complex, which largely 

superceded geochemical and metamorphic investigations from the 1990s onwards, was 

isotope geochronology. The first geochronological investigation into the Lewisian Gneiss 

Complex was by Giletti (1959) who dated Laxfordian TTG gneiss and pegmatite from 

Laxford Bridge, yielding ages of ~1300-1500Ma, and a Scourian pegmatite from south of 

Scourie at ~2670-2770Ma, both by Rb-Sr dating. Giletti et al (1961) followed this up by 

using Rb-Sr and K-Ar decay systems to obtain dates of >2460Ma and ~1600Ma for a 
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Scourian pegmatite and  Laxfordian rocks respectively. We now know that ages generated 

by these methods must be viewed with care: Ar is easily lost from the crystal lattice; Rb-Sr 

systems generally record cooling ages, which can of course vary widely with the ambient 

conditions, as well as being lost very easily from the crystal lattice (e.g. Wheeler et al., 

2010); and Rb-Sr isochrons must also be constructed from undisturbed comagmatic rocks, 

not easily determinable in the Lewisian.  For these reasons, these decay systems have 

largely fallen out of favour in studies of the Lewisian due to its polymetamorphic history, 

although some workers have subsequently tried it as a check for other systems (e.g. 

Chamberlain et al., 1986; Waters et al., 1990; Cliff et al., 1998). Pidgeon and Bowes (1972) 

made one of the earliest attempts at dating zircons using the U-Pb decay system, which was 

advantageous due to its high closure temperature and the robust nature of zircon. They 

obtained an age of 2700±20Ma for granulite-facies rocks from the Central Region (Pidgeon 

and Bowes, 1972). This technique was to come to the forefront in later decades. 

The 1980s brought on a fresh pulse of dating work as isotopic systems became 

better understood and it was Sm-Nd that was at the forefront.  Sm-Nd analysis can be 

performed on single minerals (if there is a spread in Sm/Nd ratios) or whole-rock analyses 

so it is relatively easy to carry out (Whitehouse et al., 1996). Hamilton et al. (1979) were the 

first to apply the Sm-Nd decay system to the Lewisian. They measured isotopic ratios in 

mafic and felsic gneisses from the Northern and Central regions and constructed a 

regression line to give an age of 2920±50Ma, which was interpreted as a protolith age. 

Humphries and Cliff (1982) also obtained an age of 2920±50Ma although this was solely 

from Scourian granulites. The Sm-Nd isotopes also gave an age of 2490±30Ma for the 

breakdown of garnet, interpreted as a cooling age, which suggests the isotopic system was 

still open and therefore liable to be affected, yielding isochrons of dubious importance 

(Whitehouse et al., 1996).  
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Sm-Nd dating led to detailed interpretations of crustal differentiation and growth, 

for example Burton et al. (1994) obtained mineral ages of ~3300Ma for hornblendite and 

~2490Ma for trondhjemite at Gruinard. Whitehouse et al. (1996) later showed that many of 

the ages previously obtained from Sm-Nd dating (e.g. Waters et al., 1990; Cohen et al., 

1991; Whitehouse, 1993; Burton et al., 1994; Whitehouse and Robertson, 1995) were of 

dubious importance due to the effects of later metamorphism, very large uncertainties and 

construction of spurious isochrons (‘errorchrons’) from non-cogenetic rocks. An important 

factor in dating magmatic protolith formation by single mineral dating is that the mineral 

must be in equilibrium with the parent magma but in the Lewisian, most minerals are in 

disequilibrium due to subsequent polyphase tectonothermal activity (Whitehouse et al., 

1996). Rollinson and Gravestock (2012) investigated rare earth element (REE) patterns 

(including Sm and Nd) in clinopyroxenes from LGC mafic rocks and showed that they had 

been variably altered during the Badcallian granulite-facies metamorphism. This showed 

the potential unreliability of Sm-Nd dating of protolith formation and offered an 

explanation for the scattered pattern of whole rock isochron ages. 

Whitehouse et al. (1996) constructed whole-rock isochrons from mafic gneisses and 

trondhjemites from Gruinard that they believed to be cogenetic from field evidence and 

obtained ages of 2943±91Ma and 2795±28Ma respectively. They interpreted that their 

whole-rock isochrons represented magmatic crystallisation while the mineral isochrons of 

previous workers either represented cooling ages or were affected by subsequent 

reopening of the Sm-Nd system by later tectonothermal activity (Whitehouse et al., 1996). 

Cliff et al. (1998) measured Sm-Nd ratios from the Outer Hebrides but they too 

encountered problems: in some samples, mineral data did not plot on an isochron with the 

whole-rock data and the authors acknowledged ambiguity in the closure behaviour of the 

Sm-Nd system.  
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As described above, the Sm-Nd dating technique is not without its problems. Dating 

using lead isotopes became the main approach to dating events in the Lewisian from the 

late 1980s onwards. At first it was used for comparison with Sm-Nd ages (Whitehouse, 

1993; Whitehouse and Robertson, 1995; Whitehouse et al., 1997b). All early U-Pb dating 

work and much of the more up-to-date work was done by the thermal ionisation mass 

spectrometry (TIMS) technique, which involves extracting a particular part of a zircon and 

ionising it before mass spectrometry analysis (Parrish and Noble, 2003). By the late 1980s, 

however, the secondary ionisation mass spectrometry (SIMS) technique had been 

developed and was starting to be used for dating the Lewisian. This technique involves 

analysing isotopic composition using an ion microprobe (Ireland and Williams, 2003). SIMS 

has a good spatial resolution (~30µm) allowing it to analyse tiny parts of a zircon grain but 

the precision of dates obtained is not as good as TIMS which can achieve very small 

uncertainties although it does not have the spatial resolution of SIMS (Ireland and Williams, 

2003).  

SIMS made it possible to date individual chemical domains within zircons (e.g. 

cores, overgrowths), identified using cathodoluminescence imaging. Technological 

advances meant that this could be done by TIMS too though, by abrading or micro-milling 

out the relevant parts of the zircon (e.g. Krogh, 1982; Mattinson, 2005). Corfu et al. (1994) 

dated zircons from the Central Region by TIMS. They yielded ages of >2710Ma, interpreted 

as the timing of the granulite-facies event, and ~2480-2490Ma, interpreted to be the pre-

dyke Inverian event (Corfu et al., 1994). Field evidence had suggested that the Inverian 

event was amphibolite-facies but Corfu et al. (1994) suggested it may have been granulite-

facies to have caused the significant zircon U-Pb resetting. The authors also suggest that an 

influx of fluid in the Inverian event (field evidence from abundant pegmatites) may have 

aided zircon recrystallisation at upper amphibolite facies (Corfu et al., 1994). Field evidence 

suggested that the post-dyke Laxfordian event was amphibolite-facies and as zircon was 
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not believed to be affected at such pressure-temperature conditions, Corfu et al. (1994) 

used titanite and rutile to date this event, again by the U-Pb system. Granite sheets on the 

boundary of the Northern and Central Regions yielded titanite ages of >1754Ma while rutile 

and titanite from banded gneiss deformed in the Laxfordian produced an age of ~1670-

1690Ma (Corfu et al., 1994). These minerals contained unusually high levels of uranium, 

thorium and lead which led the authors to conclude that metasomatism played a large part 

in the Laxfordian event (Corfu et al., 1994).  

Whitehouse et al. (1997b) used the U-Pb system to try and resolve the controversy 

arising from the variance in Sm-Nd ages obtained from Gruinard (Burton et al., 1994; 

Whitehouse et al., 1996). SIMS Pb isotope data yielded an age cluster of ~2850-2750Ma 

reflecting a high-grade tectonothermal event that broadly correlated with the Sm-Nd work 

of Whitehouse et al. (1996). Corfu et al. (1998) also dated (using TIMS) rocks at Gruinard, 

which was interpreted to be at the southern limit of the Central Region based on the 

presence of a few patches of granulite-facies pyroxene-bearing gneisses. They suggested a 

granulite-facies event dated at ~2730Ma while the U-Pb data yielded no significant age to 

match the Inverian previously dated in the Scourie area of the Central Region (Corfu et al., 

1998). The correlation of high-grade event dates led them to affirm the presence of 

Gruinard in the Central Region while they explained the lack of a date for the Inverian event 

at Gruinard as down to shielding from the amphibolite-facies rehydrating fluids (Corfu et 

al., 1998).  

Another mineral that has been used for dating with the U-Pb system is monazite. 

Zhu et al. (1997) obtained monazite crystals that were trapped as inclusions inside large 

metamorphic garnets from a metasediment near Scourie. They argued that the garnet 

acted as a buffer, protecting the monazite from later amphibolite-facies reworking (i.e. the 

Laxfordian) and would date granulite-facies metamorphism (Zhu et al., 1997). SIMS dating 

of monazites yielded two age clusters at ~2740Ma and ~2400-2500Ma, which were 
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interpreted as two granulite-facies events (Zhu et al., 1997). Monazites that were not 

protected by garnet yielded Laxfordian ages of ~1750Ma (Zhu et al., 1997).  

U-Pb dating was used by Heaman and Tarney (1989) on baddeleyite to date the 

intrusion of the Scourie Dykes. This dating by TIMS yielded age clusters of 2418+7/-4Ma for 

norites and bronzite picrites and 1992+3/-2Ma for olivine gabbros and Fe-rich dolerites 

(Heaman and Tarney, 1989). The reliability of these ages is uncertain as the behaviour of 

baddeleyite in complex geological environments is poorly understood. Furthermore, field 

evidence shows that the 2418Ma picrite dykes actually cross-cut the 1992Ma Fe-dolerite 

dykes (Tarney, 1973). 

As more and more isotope dating work was carried out, the traditional three-region 

model with granulite-facies Badcallian and amphibolite-facies Inverian pre-dyke events and 

the post-dyke amphibolite-facies Laxfordian was beginning to be questioned. This mainly 

stemmed from U-Pb ion microprobe (SIMS) dating from the mid-1990s onwards (Friend and 

Kinny, 1995; Kinny and Friend, 1997; Friend and Kinny, 2001; Love et al., 2004; Kinny et al., 

2005; Love et al., 2010). Kinny and Friend (1997) suggested that the Lewisian Gneiss 

Complex was composed of distinct crustal blocks and redefined them as disparate terranes 

separated by crustal-scale shear zones (Friend and Kinny, 2001). Their work initially 

focussed on the Northern and Central Regions and their boundary at the Laxford Shear 

Zone (LSZ) (Kinny and Friend, 1997).  They obtained protolith ages of ~2680-2840Ma from 

the north and ~2960-3030Ma from the south (Kinny and Friend, 1997); granulite-facies 

metamorphism was dated to the south of the LSZ at ~2490Ma, while the Northern Region 

was never believed to have reacged granulite-facies metamorphic conditions (Friend and 

Kinny, 2001).  

Kinny and Friend (1997) suggested that the first common dateable event from 

either side of the LSZ was the Laxfordian at ~1750Ma. They used this to argue against the 

previously-held view that the Northern Region rocks were the same as the Central Region 
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but had suffered pervasive Laxfordian reworking (Kinny and Friend, 1997). Assuming that 

metabasic sheets seen in the Northern Region were transposed equivalents of the Scourie 

Dykes, they suggested that the two crustal blocks docked some time between the Inverian 

event (no geochronological evidence for it in the Northern Region) and the intrusion of the 

Scourie Dykes (Kinny and Friend, 1997). Friend and Kinny (2001) subsequently proposed 

that the terrane docking event was what caused Laxfordian metamorphism and 

deformation. This was based on isotopic ages of 1854±13Ma for granite sheets that they 

believed occurred only on the north side of the LSZ.  

Friend and Kinny (2001) interpreted that two terranes amalgamated during the 

Laxfordian tectonothermal event. Goodenough et al. (2010) later showed that the granite 

sheets dated by Friend and Kinny (2001) actually occur south of the LSZ as well and the 

shear zone itself showed two generations of structures interpreted to be Inverian and 

Laxfordian. This led to the suggestion that the blocks amalgamated in the Inverian with 

some reactivation in the Laxfordian (Goodenough et al., 2010).  Friend & Kinny (2001) 

tested U-Pb zircon isotope data to see if correlations could be made between the mainland 

and the Lewisian of the Outer Hebrides. They obtained an age of 1672±8Ma for granite 

sheets in North Harris and suggested that they therefore should not be correlated with 

those of the Northern Region on the mainland, which were dated at 1854±13Ma (Friend 

and Kinny, 2001). They suggested that the ~1740Ma Laxfordian event occurred in much of 

the Outer Hebrides but that South Harris (interpreted to be a separate terrane due to 

granulite-facies metamorphism at ~1880Ma) accreted some time after ~1675Ma, the age 

for one of its bounding shear zones (Friend and Kinny, 2001). 

Love et al. (2004), using the same ion microprobe technique, dated rocks from 

Gruinard to try and prove if the Lewisian rocks there could be correlated with the rest of 

the Central Region. They obtained a protolith age from Gruinard of ~2820-2850Ma with 

high-grade metamorphism at ~2730Ma and no isotopic evidence for an event around 
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~2490Ma (Love et al., 2004). From Badcall Bay in the northern part of the Central Region, 

they struggled to obtain any clear dates as isotopic disturbance was extreme at ~2480Ga 

interpreted to be due to a granulite-facies tectonothermal event (Love et al., 2004). This led 

them to interpret that Badcall and Gruinard were from different terranes with the 

boundary being the Strathan Line, a 15m-wide shear zone just south of Lochinver (Love et 

al., 2004). They dated rocks from either side of this structure and interpreted the isotopic 

data to show that this was indeed the boundary. The rocks to the south of the Strathan Line 

correlate with Gruinard while those to the north appear to correlate with Badcall (Love et 

al., 2004). The authors suggest that terrane accretion between Gruinard and Assynt was the 

Inverian event despite the fact that there was no isotopic signature at such a time from 

Badcall or Gruinard (Love et al., 2004) and one would expect terrane docking to generate 

deformation and metamorphism which would be recorded in the isotopic systems. 

Furthermore, the Inverian event is believed to be more widespread than the Lochinver 

area, with Inverian fabrics recognised at Torridon in the Southern Region (e.g. Cresswell, 

1972; Wheeler et al., 1987) and the Laxford Shear Zone between the Northern and Central 

Regions (Goodenough et al., 2010).  

Commenting on Love et al. (2004), Corfu (2007) suggests that the isotope 

regression lines for Badcall indicate that there must be a tectonothermal event at ~2800-

2600Ma if the ~2480Ma event identified by Love et al. (2004) is a ‘real’ event. Corfu et al. 

(1994) specifically suggested this was at ~2720Ma. He also points to the monazite data of 

Zhu et al. (1997) as further evidence of a granulite-facies metamorphism around this time 

(Corfu, 2007). As for Gruinard, Corfu (2007) suggests that Love et al. (2004) have 

misinterpreted both field evidence and zircon morphology and emphasises the complexity 

of zoning and poorly understood nature of zircon, and the problem of linking zircon data 

directly to field relationships. In reply, Friend et al. (2007) defend their interpretation (Love 

et al., 2004) of no inheritance in the zircons from Gruinard as the trondhjemites in which 
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they are found are undersaturated in zirconium so any inherited zircons would recrystallise 

as new magmatic zircons and inheritance is therefore unlikely. Corfu (2007) argues that 

SIMS cannot validate the precise ages obtained by TIMS while Friend et al. (2007) contend 

that TIMS can yield mixed ages as it cannot always distinguish between distinct zircon 

zones. 

Following all this ion microprobe dating work (Friend and Kinny, 1995; Kinny and 

Friend, 1997; Friend and Kinny, 2001; Love et al., 2004), Kinny et al. (2005) formalised a 

model where the Lewisian Gneiss Complex is composed of disparate terranes with different 

formation and metamorphic histories which amalgamated during a common 

tectonothermal event. In this paper they offered revised definitions of some existing 

nomenclature while suggesting the abandonment of many other names that had become 

obsolete, were essentially duplicates or did not fit their new model (Kinny et al., 2005). 

They presented a map (Fig. 2.7) showing all their different terranes and essential dates 

related to each as well as brief descriptions of each terrane and their sutures (Kinny et al., 

2005).  

Park (2005), in commenting on this model, lauded the authors for attempting to 

rationalize the terminology associated with the Lewisian but disagreed with their 

suggestion that the term ‘Laxfordian’ should be applied only to a ~1740Ma metamorphic 

event and instead preferred its traditional use as covering all events following the Scourie 

Dyke intrusion. He also prefers to use the term ‘block’ as opposed to ‘terrane’  as used by 

Kinny et al. (2005) as ‘terrane’ implies great amounts of translational movement for which 

there is no evidence (Park et al., 2005). In the discussion, Park (2005) tentatively suggests a 

two-plate model with subduction in the Palaeoproterozoic (evidenced by arc material e.g. 

the ~2000Ma Loch Maree Group (Whitehouse et al., 1997a)) with rearrangement into 

crustal blocks during the Laxfordian event. He suggests that the present geochronological 
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data fail to show any major distinction between different parts of the Lewisian Gneiss 

Complex with the exception of Assynt (Park et al., 2005).  

 

Fig.  2.7 Terrane model for the Lewisian suggested by Kinny et al. (2005). 

In reply, Kinny et al. (2005) defended their redefinition of the term ‘Laxfordian’ and 

maintained that its blanket use for anything postdating the dykes can lead to confusion of 

wholly separate events and features. They argue that the lack of Palaeoproterozoic plutonic 

rocks precludes the idea that the Lewisian Gneiss Complex was involved directly in 

subduction (Park et al., 2005). They instead suggest that the ‘terranes’ of the Lewisian were 

somewhere outboard of the subduction zone and the arc is no longer visible, analogous the 
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Cordilleras of North America (Park et al., 2005). As for the two-plate model, Kinny et al. 

(2005) point to a lack of granulite-facies gneisses in possible lower-plate areas as a problem 

with that model, as well as Sm-Nd isotope data suggesting crustal differentiation at 

different times in different parts of the Lewisian (e.g. Whitehouse, 1989).  

Park (2005) subsequently expanded on his two-plate model by assigning the 

terranes of Kinny et al. (2005) to either an upper or lower plate or as Palaeoproterozoic arc 

complexes (Fig. 2.8). He defined upper plate blocks as being characterised by retrogressed 

granulite-facies Archaean rocks with localised Laxfordian deformation while the lower plate 

blocks were amphibolite-facies, originating at a higher crustal level. The upper plate blocks 

are Gruinard, Ruadh-mheallan, Tiree-Coll and East Uist while Assynt (which yielded older 

protolith ages than elsewhere) was interpreted to have joined them in the Inverian event. 

The lower plate blocks are Rhiconich, Carnmore-Tollie, Rona, West Uist and Tarbert (Fig. 

2.9). SIMS dating by Kelly et al. (2008) supports correlation within the Lewisian and less in 

the way of disparate terranes but they suggest Tarbert may be correlated with Gruinard as 

the share a tectonothermal event at ~2730Ma. Kinny et al. (2005) thought Tarbert and 

Rhiconich could not be correlated due to different ages of the granite sheets in each 

terrane although Park (2005) suggests that the differing ages may be caused by different 

melt phases. In terms of the Palaeoproterozoic arc rocks, the structure of the Roineabhal 

terrane is synformal so the Tarbert and West Uist blocks are interpreted to be contiguous, 

backed up by U-Pb isotope TIMS dating by Mason et al. (2004) who, despite some 

ambiguities in the isotopic data, suggested protolith ages for both as being ~2800Ma. The 

Nis terrane also has a synformal structure so may be contiguous with the Roineabhal 

terrane (Fig. 2.10). Park (2005) also interpreted that the Loch Maree Group could also have 

been part of the same block with later disruption by the Outer Hebrides and Minch faults. 

The synformal structures may have been caused by late Laxfordian folding. Park (2005) 

suggests that one terrane may have multiple TTG protolith ages from multiple intrusive 
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events, as well as effects on ages from magmatic assimilation & fractionation, something 

not considered by Kinny et al. (2005). Furthermore, care must be taken when using 

tectonothermal events for correlation as lithology, strain variation and amount of fluid may 

be heterogeneous but could all influence interpretation.  

 

 
 
Fig.  2.8 Revised terrane model from Park (2005) showing upper plate (type A), lower plate 
(type B) and Palaeoproterozoic arc complex areas. 

 
Fig.  2.9 Structural relationships between upper plate (type A) and lower plate (type B) blocks 
in the Southern mainlaind Lewisian, from Park (2005). 
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Fig.  2.10 Wider structure of the mainland and Outer Hebrides Lewisian and possible 
correlation, from Park (2005). 

Another aspect of research into the Lewisian Gneiss Complex has been looking for 

comparisons with other similar geological areas. This was recognised in the title and 

content of the proceedings of the 2nd Lewisian conference of 1972. In this volume are 

several articles on Precambrian rocks in Greenland and attempts were made to correlate 

them with the Scottish Lewisian Gneiss Complex. The geology of southern Greenland is 

composed of a central Archaean block, which was last affected by regional metamorphism 

at ~2500-2700Ma, flanked to the north by the Nagssugtoqidian mobile belt and to the 

south by the Ketilidian mobile belt, both of which were most recently deformed at ~1700-

1900Ma (Andrews et al., 1973). All three are composed of polymetamorphic TTG gneisses 

and have a dolerite dyke suite that separates early and late regional metamorphism 

(Andrews et al., 1973). Individual rock types of the Angmagssalik area of southeast 

Greenland are very similar to equivalents in the Lewisian such as folded supracrustals 

correlating with South Harris or the Loch Maree Group (Wright et al., 1973). The Archaean 

gneisses at Angmagssalik belong to the Nagssugtoqidian, which is petrologically and 

geochronologically (Andrews et al., 1973) similar to the Laxfordian gneisses of the Lewisian 

(Wright et al., 1973). Andrews et al. (1973) considered the gneisses around Frederikshab in 
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southwest Greenland, part of the Archaean block, to be very similar to the Central Region 

of the mainland Lewisian.  

The 3rd Lewisian conference of 1985 brought about further insights into correlations 

with Greenland and further afield. Myers (1987) correlated the Lewisian with the 

Nagssugtoqidian mobile belt of Greenland as they share a similar history, deduced from 

field relationships and recorded in isotopic ages. The Nagssugtoqidian formed around 

~2900-2700Ma with metamorphism and deformation around ~2600-2300Ma, followed by 

intrusion of a mafic dyke suite and then further regional metamorphism at ~1900-1700Ma 

which reflects the evolution of the Lewisian fairly closely (Myers, 1987; Kalsbeek et al., 

1993). Korstgard et al. (1987) appear to correlate the central Archaean block of Greenland 

with the Lewisian on a map in their paper, despite not making any specific references to the 

Lewisian Gneiss Complex. The Lewisian and southern Greenland were also correlated with 

the Nain Province of Labrador in Canada (Korstgard et al., 1987). Park (1994) looked for 

wider correlations in the North Atlantic region. He found that many of the Precambrian 

shield regions in this area shared metamorphic and deformation histories or were in 

tectonically-related settings. All recorded an orogenic event at ~1900-1600Ma, which was 

interpreted to have been caused by the collision of the Malin block with Laurentia and 

Baltica (Fig. 2.11).  
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Fig.  2.11 Speculative plate kinematic models for the periods 2000-1800Ma (A) and 1800-
1600Ma (B), after Park (1994). Abbreviations: EGC=E Greenland craton; KAR=Karelia craton; 
Lap-Kol=Lapland-Kola belt; Rin=Rinkian terrain; Tor= Torngat belt; Mal= Matin block; NAC= 
N Atlantic craton; Mak= Makkovik; Ket= Ketilidian; Nag= Nagssugtoqidian; 
Amm=Ammassalik; Lew= Lewisian; Svec= Svecofennian; TIB= Trans-Scandinavian igneous 
belt; GGF= Great Glen fault; HBF= Highland Boundary fault; B= BABEL deep seismic 
reflection line. At 1900-1800Ma: cratons, open stipple; tectonically active intracontinental 
belts, close stipple; magmatic arc terrain at the active continental margin, oblique ruling. 
Arrows represent main directions of upward tectonic transport within the Early Proterozoic 
belts; black triangles indicate inferred dip of margins of continental blocks. (B) At 1800-
1600Ma: cratons and active intracontinental belts ornamented as in (A).  
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In his reinterpretation of the Kinny et al. (2005) terrane model, Park (2005) offered 

some further suggestions on wider North Atlantic correlations and palaeogeography (Fig. 

2.12). In his upper- and lower-plate model, he suggests that the two plates that collided 

were the Central Greenland Craton and North Atlantic Craton and that the Lewisian is 

equivalent to Nagssugtoquidian of Greenland, which were both caught up in this orogeny, 

which caused the Laxfordian event in the Lewisian. He put forward the following sequence 

of events:- 1) the Palaeoproterozoic arc rocks (Roineabhal & Nis terranes, Loch Maree 

Group) accreted to upper plate at ~1900Ma; 2) Plate collision and subduction at ~1870Ma 

generating the calc-alkaline plutonic rocks of Roineabhal, Nis and Loch Maree with early 

Laxfordian metamorphism; 3) Malin arc collides with Lewisian at ~1740Ma generating 

widespread metamorphism and deformation, causing disruption of plates and 

rearrangement into present situation along major shear zones.   
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Fig.  2.12 The Lewisian in its wider Precambrian context, from Park (2005). CGC, central 
Greenland craton; Goth, Gothian belt; Kar, Karelia craton; Ket, Ketilidian belt; Kol, Kola 
craton; Lap-Kol, Lapland–Kola belt; Lew, Lewisian; NAC, North Atlantic craton; Nag, 
Nagssugtoqidian belt; NI, north Ireland; NS, north Scotland. (A) Distribution of cratons and 
orogenic belts during the Mesoproterozoic. (B) At 2000Ma: subduction and creation of a 
volcanic arc in oceanic crust between two continental plates (NAC and CGC/Kol) followed 
by accretion of oceanic/arc elements along the leading edge of the NAC. (C) At 1870Ma: 
collision of the two continents followed by underthrusting of the CGC/Kol craton beneath 
the NAC, causing the early Laxfordian deformation and metamorphism. At the same time, 
collision occurs in the Lapland/Kola belt to the SE caused by collision with the Karelia 
craton. Note the NW–SE movement direction. (D) At 1800Ma: development of a volcanic 
arc in oceanic crust SW of the amalgamated continent created in B. (E) At 1750Ma: collision 
between the ‘Malin arc’ and the continent, causing late Laxfordian deformation, 
metamorphism and granitic melt formation in the Lewisian complex. 
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3. Methodology 

 A variety of analytical techniques were used during the PhD work and all are fully 

described in this chapter. These range from basic geological mapping through to chemical 

microanalysis. The provisional workflow at the commencement of the project was: 

mapping, sampling, optical/SEM petrography, EBSD, ion microprobe analysis. Other 

analytical techniques have subsequently been used and the workflow has not been a step-

by-step process – multiple techniques were often used concurrently as different samples 

were at different stages of the workflow. Each analytical technique is described in the 

following sections.  

Mapping 

 Field mapping was an essential part of the project as the general geology and field 

relationships must be understood so as to give further analysis a clear context. Lithology, 

mineral assemblages, mineral fabrics and other structures build up a picture of the 

geological history of the rock; once this is known, the results of geochemical and 

microstructural analysis can be linked to the mapped rocks to show how zircons responds 

under different geological conditions. 

 Mapping was generally of relatively small areas, between ~1km2 and 35m2. Some  

mapped localities were sites described in the literature while others were identified as 

suitable for this study by ground reconnaissance of large areas. The criterion for choosing 

localities to map was unambiguously-displayed field relationships between lithologies and 

structures of different age, where the relative ages were clear.  

 Mapping was carried out either by traditional means, using a paper base-map and 

GPS, or using the SigmaMobile software from the British Geological Survey on an iXplore 

tablet computer. The tablet computer enables mapping at a variety of scales on the same 

base-map, which is very useful for detailed maps of very small areas while also making a 
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larger context map for that detail map. Multiple base-maps can be used and all can be geo-

referenced, which, along with the built-in GPS system, means that the position of the user, 

and hence their map, is always known. The GPS system is precise to 1m and accuracy was 

consistently checked by comparison of the GPS location marker to the topographical 

surroundings of the user’s position. For some of the very detailed small-scale maps, a 

measuring tape and graph paper were used as the detail was beyond the resolution of the 

GPS and any base-map. 

Sampling 

 As well as recording the geological history of each locality, detailed field mapping 

also provided a framework for strategic sampling for further analysis. Samples were taken 

mainly from the rocks that were most likely to contain zircons: felsic-intermediate meta-

igneous gneisses and metasediments. Occasionally samples were taken from mafic 

lithologies if their identity was unclear in the field and required petrological investigation.  

 Once a rock had been selected for sampling, a suitable part of the outcrop was 

sought. Every effort was made to collect samples of similar sizes and homogeneous 

composition but this was difficult, again due to the hard and often isotropic nature of the 

rocks. Samples were ~1000-2000cm3 in size. Before the sample was broken off, an 

orientation mark was marked on a surface of the sample in black marker pen. The dip and 

strike of this mark was measured and noted. This enabled future analysis where a kinematic 

reference frame was required.  

Sample Preparation 

 It was desired that zircons would be analysed in-situ where possible to give a 

petrographic context to to the isotopic and trace element data acquired from the zircons. 

This required preparation of thin and thick sections. Samples were cut using a rock-saw 

with a slow diamond grinding blade at the University of Liverpool. Thin-section sized pieces 
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of the samples were sent to be made into standard 30µm-thick polished thin sections at the 

University of Birmingham or University of Keele. Comparable pieces were also made into 

polished thick sections at University of Liverpool; these were manually polished with 

carborundum powder at 400-1200 grade then with 1-6µm Buehler Metadi Diamond 

Suspension on a Kent 3 Automatic Lapping and Polishing Unit. Thin and thick sections which 

were subject to electron backscatter diffraction (EBSD, see below) analysis were also 

polished with 0.25µm Syton™ colloidal silica solution.  

Petrography 

 Thin sections were analysed with a Vickers polarising transmitted light optical 

polarising microscope for petrographic textures in order to build up a history of the sample. 

Photomicrographs of important mineral textures were taken using a Nikon Coolpix 4500 

digital camera attached to a Zeiss polarising transmitted light optical microscope. 

Mechanical zircon separation 

 In order to augment analysis of in-situ zircons, samples were also crushed and 

zircons separated from them at Trinity College Dublin. Samples were broken using a 

hydraulic rock splitter followed by a jaw crusher which reduced them to sand grade. The 

sand was the sieved to <500µm size and saturated with water; this was then run across a 

vibrating Wilfley water table to separate heavy and light grains. Following overnight drying 

in the oven, the heavy fractions were passed through methylene iodide separating grains 

heavier (such as zircon) and lighter than a specific gravity of 3.3. The heavy fraction was 

caught in filter paper, allowing the methylene iodide to pass through and be recycled; it 

was then thoroughly washed in acetone to remove any that may have remained attached 

to the grains. Magnetically susceptible grains such as magnetite were removed with a hand 

magnet and the remaining fraction was passed through a Frantz isodynamic separator 

which separated titanite and any quartz, feldspar and apatite grains that got through the 
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separation process. Zircon grains were then hand-picked out of the separates for analysis 

under a Leica DMLP reflected light microscope at the University of Edinburgh; large, 

fracture- and inclusion-free translucent grains were selected. These grains were mounted in 

Epothin epoxy resin in a one-inch diameter aluminium holder. This grain mount was then 

polished with 400-1200 grade Struers Silicon Carbide grinding paper, Buehler Metadi 

Diamond Suspension at 1-6µm and 0.25µm Syton colloidal silica solution. 

Scanning Electron Microscope Analysis 

 Before analysis, samples were coated with a very thin layer of graphite and earthed 

using colloidal graphite paint. Samples were analysed using a Philips XL30 Scanning Electron 

Microscope (SEM) at the University of Liverpool. The Philips SEM is a ‘conventional’ SEM 

that has a vertical column and horizontal stage, which can be tilted if necessary thus making 

it versatile for a number of different types of imaging. The electron beam is generated from 

a tungsten filament, which passes electrons through a condenser lens, an objective lens, 

and between the scan coils before passing through the final aperture and the pole piece 

into the chamber. Each lens focuses the beam magnetically and the aperture reduces the 

intensity of the beam. The scan coils of the microscope alter the angle of the beam in a 

systematic fashion; this enables the software to reconstruct an image based on where the 

beam was pointing and what intensity was detected at any given point in time. The 

interaction of the electron beam with the near surface of the minerals in the specimen 

produces a suite of electrons and other radiation that can be used to characterise the 

sample (e.g. Lloyd and Hall, 1981; Prior et al., 1999). A different volume of the sample – the 

activation volume – is responsible for the generation of each type of radiation and each 

type can be ‘imaged’ using different detectors. Backscattered electrons and 

cathodoluminescence are two types of interactions that were used to image samples in this 

project.  
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BSE Imaging 

 In-situ zircons were located using backscattered electron (BSE) imaging. 

Backscattered electrons have a high energy and therefore travel in straight lines from the 

sample surface. They are generated by scattering of the electron beam by a single large 

interaction or several smaller interactions within the sample but retain most of their energy 

and are able to exit the specimen (Lloyd and Hall, 1981). Solid‐state detectors are mounted 

on either side of the pole piece and enable imaging of electrons scattered directly back 

from the sample. Atoms with a larger atomic number (proton number) have more electrons 

so there are more electrons to scatter those from the beam making heavier elements 

appear brighter. Since the unit cell of the material in the sample surface is usually smaller 

than the diameter of the electron beam and the activation volume, the brightness of the 

response is averaged over all the different types of atom in the sample producing images of 

mean atomic number (Z‐contrast). As a result, minerals containing elements with a high 

atomic number appear brighter than those without; for example, zircon with its high 

concentration of element 40, zirconium, appears much brighter than plagioclase where the 

heaviest formula element is element 20, calcium. In most samples, the presence of 

zirconium meant that zircons were the brightest mineral in the sample and could therefore 

be located easily. Photo images were taken at a working distance of ~22mm, accelerating 

voltage of 20kV and an emission current of ~3nA. BSE imaging was also used to show 

major-phase mineral textures, which elucidated the textural history of the sample.  

Cathodoluminescence Imaging 

 All zircons were imaged using cathodoluminescence (CL). When the SEM electron 

beam hits the sample surface, as well as scattering electrons, electromagnetic radiation is 

produced. When electrons in the outer shell of an atom are displaced, photons of visible 

light – cathodoluminescence – are produced. CL emmittance can be ‘quenched’ by the 

presence of Fe2+ so ferromagnesian minerals do not luminesce. The activation of CL in other 
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minerals is variably understood. In zircon, it is thought to arise from lattice defects and 

vibration of the uranyl ion but mainly from trivalent rare earth elements, particularly Dy3+ 

(Corfu et al., 2003). CL is traditionally used to show internal chemical zoning in zircon – the 

brighter and darker CL responses due to varying levels of REEs are interpreted to represent 

different growth or recrystallization domains. This zoning is used as a guide for ion 

microprobe analysis (see below) – analytical ablation spots should not overlap different 

zones so that the data gathered represent a single event. CL images were taken at a 

working distance of 21-23mm, accelerating voltage of 10kV and spot size of and an 

emission current of ~3nA.  

Energy Dispersive X-Ray Spectroscopy 

 Another SEM-hosted technique used was Energy Dispersive X-Ray Spectroscopy 

(EDS). X‐ray radiation is emitted when the incident electron beam hits the sample; the 

spectrum of energies of the X‐rays emitted is characteristic of the elements present and the 

number emitted for given conditions is proportional to the concentration of each element. 

Measurement can be qualitative or quantitative if calibrated against known standards. EDS 

records the energy of the X-rays produced from a point using a Li‐doped Si crystal. Electron 

holes are created in this semi‐conducting crystal when an x‐ray hits it; the number of holes 

is proportional to the energy of the X-rays. Applying a potential allows a current to flow 

that is proportional to the number of holes, thereby measuring the energy of the last X‐ray 

to strike the crystal. After counting X-rays for a given time the spectrum is analysed for 

peaks. Once the peaks are identified the size of each peak is measured against the standard 

calibration to calculate the concentration of each element. All the X-rays are measured on 

the same spectrometer so one analysis records all elements.  

 EDS was carried out using the Philips XL30 SEM at the University of Liverpool. 

Qualitative analysis was widely used for confirming whether bright crystals imaged in BSE 

were in fact zircons. Semi-quantitative EDS was conducted on major phases in various 
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samples to determine the major element chemistry and provide further information about 

the sample history. Repeat analyses of a cobalt standard were conducted throughout the 

analytical session to ensure beam conditions were stable. Measured spectra were 

compared to standards to determine element abundances. Detection limits for the major 

elements measured were ~0.5wt%. Analytical precision was generally <10% (95% 

confidence levels) for concentrations >1wt% but higher for concentrations <1wt%. 

EBSD 

 Electron backscatter diffraction (EBSD) analysis was carried out in a CamScan X500 

Crystal Probe SEM at the University of Liverpool. The CamScan SEM varies from the 

aforementioned Philips SEM as it uses a field emission gun to generate the electron beam 

and the column is angled at 70° to the sample surface. This layout is not very flexible for 

different types of analysis but is instead optimised for EBSD. When the incident electron 

beam interacts with the activation volume, cones of electrons are diffracted off the lattice 

planes and onto a phosphor screen detector. The pattern of bands (Kikuchi bands) 

generated by electrons hitting the phosphor screen are referred to as electron backscatter 

patterns (EBSPs). These patterns are then digitally indexed by software to determine the 

phase and crystallographic orientation quantitatively.  EBSPs were acquired with Flamenco 

software which processes the EBSPs with a series of algorithms and compares them to a 

database of match units to identify the phase. Each crystal or area of sample was acquired 

individually using the automatic mapping function in Flamenco software where the beam 

rasters across a specified area. Acquisition parameters including binning, Hough space and 

V/H ratio were refined for each map; match units for mineral phases were taken from the 

American Mineralogist library preloaded in the Flamenco program. The spatial resolution of 

the Camscan SEM is ~0.5µm for zircon while the precision in measuring the crystallographic 

angles is ±0.5° and accuracy is ±2°. 
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 Once acquired, raw data files were processed in CHANNEL5 software, mainly using 

the Tango module. This allows a map of the data of the acquisition area to be constructed 

showing different datasets: band contrast – the pattern quality of the Kikuchi bands for 

each pixel; all-euler angles – the crystallographic angles of each pixel; and Texture 

Component – a plot of crystallographic orientation relative to a reference point. The 

Texture Component function was particularly useful in highlighting intracrystal lattice 

misorientation. Tango allows the dataset to be cleaned-up – pixels of poor pattern quality 

can be removed, single pixels of misindexed data can be removed and interpolation 

between good data points can be used to improve coverage and subsequent interpretation.  

X-Ray Fluorescence Analysis 

 X-Ray Fluorescence (XRF) analysis was carried out at the University of Edinburgh in 

order to determine the bulk chemistry of the rocks from which analysed zircons were 

taken. Samples were taken adjacent to those that had already been processed for zircon 

analysis. The XRF methodology largely follows that of Fitton et al. (1998) and is described 

below. The samples were cut into small pieces with a diamond-tipped saw, saw marks were 

ground away on a diamond wheel, and the fragments were rinsed in clean water. They 

were then dried before being ground to a fine powder in an agate Tema barrel. Agate was 

used in preference to tungsten carbide to avoid contamination with Ta and Co. Major-

element concentrations were determined after fusion with a lithium borate flux containing 

La2O3 as a heavy absorber, similar to Fitton et al. (1998).  

 The rock powder was dried at 110°C for at least one hour, and a nominal but 

precisely weighed 1g aliquot was ignited at 1100°C so as to determine loss on ignition (LOI). 

The residue was then mixed with Johnson Matthey Spectroflux 105 in a sample-to-flux ratio 

of 1:5, based on the unignited sample mass, and fused at 1100°C in a muffle furnace in a 

Pt5%Au crucible. After the initial fusion, the crucible was reweighed and any flux weight 

loss was made up with extra flux. After a second fusion over a Meker burner, the molten 
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mixture was swirled several times to ensure homogeneity, cast onto a graphite mould, and 

flattened with an aluminium plunger into a thin disk. The mould and plunger were 

maintained at a temperature of 220°C on a hotplate. Trace-element concentrations were 

determined on pressed-powder samples. Six grams of rock powder were mixed thoroughly 

with four drops of a 2% aqueous solution of polyvinyl alcohol. The mixture was formed into 

a 38-mm disc on a 40-mm diameter polished tungsten carbide disc, backed and surrounded 

by aluminium, and compressed in a hydraulic press at 0.6 tons/cm2. 

 The fused and pressed samples were analyzed using a Philips PW2404 automatic X-

ray fluorescence spectrometer with a Rh-anode X-ray tube. Corrections for matrix effects 

on the intensities of major-element lines were made using theoretical alpha coefficients 

calculated online using the Philips software. The coefficients were calculated to allow for 

the amount of extra flux replacing volatile components in the sample so that analytical 

totals should be 100%, less the measured LOI. Intensities of the longer-wavelength trace-

element lines (La, Ce, Nd, Cu, Ni, Co, Cr, V, Ba, and Sc) were corrected for matrix effects 

using alpha coefficients based on major-element concentrations measured at the same 

time on the powder samples. Matrix corrections were applied to the intensities of the other 

trace-element lines by using the count rate from the Rh Kα Compton scatter line as an 

internal standard (Fitton et al., 1998). Line-overlap corrections were applied using synthetic 

standards. 

 The analytical reproducibility and precision of major elements (Si, Al, Fe, Mg, Ca, 

Na, Ti, Mn, K, P) were tested against the BHVO-1 standard by comparing measured values 

to those of Govindaraju (1994) (Table 3.1) while trace elements (U, Th, Pb, Zr, Y, Nb, Sr, Rb, 

Zn, Cu, Ni, Cr, V, Ba, Sc, La, Ce, Nd) were tested against the BCR, BEN, BHVO-1 and BIR 

standards (Table 3.2). Analytical error was generally <2% (95% confidence levels) for major 

elements although it was <10% for Na and P; precision was generally better than 5% (95% 

confidence levels) but Na (22%) and P (11%) were higher. For trace elements, analytical 
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error was generally <10% (95% confidence levels) but varied between the different 

standards used. Detection limits are given in Table 3.3 and were 0.2wt% or lower for major 

elements and 10ppm or lower for trace elements. 

EMPA 

 Electron microprobe analyses (EMPA) were carried out at the University of 

Manchester using a Cameca SX100 electron microprobe. EMPA is a quantitative version of 

EDS analysis. Carbon coated thin section and 1” rounds were bridged to the sample holder 

with silver paint. Beam conditions of ~20nA current and an acceleration voltage of 15kV 

produced a spot size of ~1µm. There are five wavelength dispersive detectors, each 

equipped with a choice of diffracting crystals, allowing simultaneous quantitative analyses 

of up to five different elements at chosen points across the sample. Transects of points 

were set up and stored so that analysis could be done in automated mode. A range of 

standards were used to calibrate peaks in the Kα line including: fayalite for Fe; periclase for 

Mg; wollastonite for Ca and Si; rutile for Ti; chromite for Cr; corundum for Al; jadeite for Na; 

tephroite for Mn; and potassium feldspar for K. Detection limits for the major elements 

measured were <0.1wt%. Analytical precision was  better than 1% (95% confidence levels) 

for concentrations of >10wt% and  better than 20% (95% confidence levels) for 

concentrations of <10wt%. 
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BHVO-1 

Element Ave. (n=136) 2σ Precision (% at 2σ) Std. value Reproducibility (% at 2σ) 

SiO2 50.23 0.81 1.61 49.94 0.58 

Al2O3 13.69 0.33 2.44 13.80 0.78 

Fe2O3 12.37 0.12 0.98 12.23 1.12 

MgO 7.18 0.18 2.53 7.23 0.68 

CaO 11.45 0.21 1.86 11.40 0.40 

Na2O 2.47 0.53 21.54 2.26 8.39 

K2O 0.527 0.01 2.42 0.520 1.38 

TiO2 2.726 0.04 1.54 2.710 0.60 

MnO 0.170 0.01 3.82 0.168 1.03 

P2O5 0.292 0.03 11.20 0.273 6.65 

Table 2.1 Precision and accuracy of XRF spectrometer for major elements during analytical 
session; reproducibility calculated from comparison of measured values of BHVO-1 
standard with those of Govindaraja (1994) (Std. value column). 

 

 

 

 BCR 

Element Ave. (n=3) 2σ Precision (% at 2σ) Std. value Reproducibility (% at 2σ) 

U 1.93 0.34 17.58 1.75 9.48 

Th 6.67 0.50 7.48 5.98 10.30 

Pb 14.13 0.47 3.34 13.60 3.77 

Nb 12.74 0.24 1.88 14.00 9.00 

Zr 191.34 2.23 1.17 190.00 0.70 

Y 38.16 0.60 1.58 38.00 0.42 

Sr 333.19 5.75 1.73 330.00 0.96 

Rb 47.73 0.69 1.44 47.20 1.11 

Zn 124.47 0.81 0.65 129.50 3.89 

Cu 19.63 0.09 0.48 19.00 3.23 

Ni 10.00 1.57 15.75 13.00 23.08 

Cr 10.30 1.32 12.81 16.00 35.63 

V 404.47 2.64 0.65 407.00 0.62 

Ba 667.00 4.01 0.60 681.00 2.06 

Sc 33.17 0.84 2.53 32.60 1.71 

La 24.63 0.90 3.65 24.90 1.07 

Ce 55.13 2.74 4.98 53.70 2.60 

Nd 30.10 0.59 1.96 28.80 4.32 

(continued) 
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BEN 

Element Ave. (n=3) 2σ Precision (% at 2σ) 
Std. 

value Reproducibility (% at 2σ) 

U 3.07 0.34 11.08 2.40 21.74 

Th 12.10 0.28 2.34 10.40 14.05 

Pb 4.17 0.41 9.86 4.00 4.00 

Nb 117.05 0.68 0.58 105.00 10.29 

Zr 271.52 2.09 0.77 260.00 4.24 

Y 29.80 0.31 1.04 30.00 0.67 

Sr 1384.40 9.31 0.67 1370.00 1.04 

Rb 47.77 0.44 0.92 47.00 1.61 

Zn 130.03 1.06 0.82 120.00 7.72 

Cu 74.50 1.02 1.37 72.00 3.36 

Ni 271.23 1.47 0.54 267.00 1.56 

Cr 370.93 0.50 0.13 360.00 2.95 

V 236.80 4.75 2.01 235.00 0.76 

Ba 1031.20 10.38 1.01 1025.00 0.60 

Sc 22.50 1.02 4.53 22.00 2.22 

La 89.30 0.16 0.18 82.00 8.17 

Ce 157.10 1.42 0.91 152.00 3.25 

Nd 70.07 1.84 2.62 67.00 4.38 

(continued) 

 

 

 BHVO-1 

Element Ave. (n=3) 2σ Precision (% at 2σ) Std. value Reproducibility (% at 2σ) 

U 0.80 0.33 40.82 0.42 47.50 

Th 0.13 0.62 463.68 1.08 87.65 

Pb 2.23 0.09 4.22 2.60 14.10 

Nb 19.34 0.13 0.69 19.00 1.76 

Zr 174.53 1.20 0.69 179.00 2.50 

Y 27.43 0.42 1.53 27.60 0.62 

Sr 390.86 1.68 0.43 403.00 3.01 

Rb 9.49 0.29 3.05 11.00 13.73 

Zn 105.53 1.18 1.12 105.00 0.51 

Cu 134.83 0.75 0.56 136.00 0.86 

Ni 117.17 0.50 0.43 121.00 3.17 

Cr 289.60 2.24 0.78 289.00 0.21 

V 309.10 2.21 0.71 317.00 2.49 

Ba 141.97 2.96 2.09 139.00 2.09 

Sc 33.67 1.32 3.92 31.80 5.54 

La 12.43 0.74 5.92 15.80 21.31 

Ce 39.70 1.45 3.66 39.00 1.76 

Nd 26.47 0.19 0.71 25.20 4.79 

(continued) 
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BIR 

Element Ave. (n=3) 2σ Precision (% at 2σ) Std. value Reproducibility (% at 2σ) 

U 0.13 0.19 141.42 0.01 92.50 

Th -1.03 0.82 -79.54 0.03 102.90 

Pb 3.33 0.25 7.48 3.00 10.00 

Nb 0.63 0.09 14.89 0.60 5.26 

Zr 17.47 1.02 5.86 15.50 11.26 

Y 16.62 0.39 2.32 16.00 3.74 

Sr 109.02 0.58 0.53 108.00 0.94 

Rb 0.50 0.16 32.66 0.25 50.00 

Zn 66.33 0.34 0.51 71.00 6.57 

Cu 125.00 0.99 0.79 126.00 0.79 

Ni 150.47 0.25 0.17 166.00 9.36 

Cr 368.63 1.18 0.32 382.00 3.50 

V 325.27 2.22 0.68 313.00 3.77 

Ba 11.07 1.09 9.83 7.00 36.75 

Sc 41.87 1.05 2.51 44.00 4.85 

La 1.43 1.64 114.12 0.62 56.74 

Ce 2.03 3.77 185.64 1.95 4.10 

Nd 2.90 1.07 36.93 2.50 13.79 

Table 2.2 Precision and accuracy of XRF spectrometer for trace elements during analytical 
session; reproducibility calculated from comparison of measured values of BCR, BEN, BHVO-
1 and BIR standards with those of Govindaraja (1994) (Std. value column). Analyses marked 
in red have high analytical error (2σ), analyses marked in blue are below detection limits of 
machine.  

 

Major Si Al Fe Mg Ca Na K Ti Mn P 

wt% 0.20 0.10 0.06 0.10 0.06 0.10 0.01 0.01 0.01 0.01 

Trace Rb Ba Th U Pb Nb La Ce Sr Nd 

ppm 0.6 10.0 0.8 0.8 0.8 0.2 2.0 3.0 1.0 2.0 

Trace Zr Y Zn Cu Ni Sc Cr V   

ppm 0.8 0.8 1.0 1.0 2.0 1.0 2.0 4.0   

Table 2.3 Detection limits for major and trace element on the XRF spectrometer. 

 

Ion Microprobe Analysis 

 For ion microprobe analysis, samples had to be prepared in one inch rounds to fit 

the sample holder. The epoxy grain mount was already in this format but thin and thick 

sections had to be cut to size. Small chips of thin section were cut using a steel rule and 

Stanley knife and edges were ground down to smooth off corners. These chips were then 
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attached to a one inch diameter glass round with Epothin epoxy resin. They were then re-

polished to ensure the top surface was completely level and sputter-coated with pure gold 

to avoid electrostatic charging.  

 Ion microprobe analysis was conducted at the Edinburgh Ion Microprobe Facility at 

the University of Edinburgh. Analyses were carried out on two different ion microprobes. U-

Pb isotope analysis was conducted using a Cameca IMS 1270 ion microprobe. The 1270 has 

a ~4nA O2
- primary ion source with 22.5 keV net impact energy; the beam is focussed using 

Köhler illumination, which ensures uniform beam density. The primary beam is mass 

analysed to ensure a pure beam of O2
- ions and eliminate any O2H

- from the duoplasmatron 

source. An additional lens immediately after the ion source enables a constant beam 

density and current to be maintained despite changes in the source over long timescales. 

The primary beam alignment gives ellipsoidal analysis pits (~25 μm max. dimension) with 

sharp edges and flat bottoms. Clean analysis pits are considered essential to reduce 

peripheral contamination and allow even sputtering over the entire analysed area. Further 

effects of peripheral contamination are minimised by a field aperture that restricts the 

secondary ion signal to a ~15µm square at the centre of the analysis pit.  

 The Plesovice (Slama et al., 2008) zircon standard was used for calibration of U/Pb 

ratios. During the analytical session, the standard yielded a mean 206Pb/238U ratio of 

0.05359±0.00023 (MSWD = 2.4; 95% conf.; Fig. 3.1; 340.5±4.8Ma; n = 62). Calculation and 

calibration of ratios and data reduction were conducted using in-house software developed 

by Richard Hinton at the University of Edinburgh. The detection limits for individual 

isotopes were typically <0.15ppb. A common Pb correction was also applied in-house. A 

common Pb contribution to analyses is believed to be derived from either surface 

contamination of the sample (i.e. from preparation) or from within the zircon lattice itself. 

Common Pb surface contamination was reduced by rastering the sample with the ion 

microprobe beam immediately prior to isotope measurement and by production of flat-
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bottom analysis pits through carefully tuned beam conditions. Correction for in-situ 

common Pb was made using measured 204Pb counts above that of the detector background 

(typically ~0.2 to 1.5ppb). In the analyses for this project, measured common Pb was 

generally <5ppb, although occasionally analyses were much higher than this, likely the 

result of contamination on the sample surface and in exposed cracks.  

 

 

Fig.  2.13 Weighted average plot of 206Pb/238U in the Plesovice standard zircon, illustrating 
analytical reproducibility during the analytical session. 

 Total element abundances (REEs, Ti, Hf, Ba, Zr, Y) were measured with a Cameca 4f 

ion microprobe. The 4f has a duoplasmatron O2
- ion source with 14.5 keV net impact 

energy; detection limits for the different elements are given in Table 3.4. The 91500 zircon 

standard and NIST SRM610 glass standard were used to calibrate trace element 

concentrations between analyses of unknowns. The analyses from the 91500 zircon show 

an expected, smooth increase in chondrite-normalised values of trivalent REEs as ionic 
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radius decreases from La to Lu, together with large positive Ce anomaly and small negative 

Eu anomaly (Fig. 3.2). Good agreement is obtained between the SIMS measurements for 

zircon 91500 presented here and those of Whitehouse and Platt (2003) and Hoskin (1998). 

There is some variation in REE concentrations in the analyses of 91500 (Table 3.5), also 

encountered by Hoskin (1998). For most REEs (particularly the heavier ones), the average 

analytical error is <10% (2σ) but for some for the lighter REEs which have lower 

concentrations, it can be significantly higher. This interpreted to be partly due a lack of 

reproducibility from the spectrometer but also from heterogeneity in the 91500 standard 

as noted above. Errors on Hf, Ti, Y and Zr are ~4-14% (2σ) while Ba is much higher (±49%) 

due to its low concentration. Analytical reproducibility against the NIST SRM610 glass 

standard was   better than 7% (2σ) for elements analysed (Table 3.5). Raw data was 

reduced using the JCION6 software written by John Craven at the University of Edinburgh. 

REE data was chondrite-normalised against the values of McDonough and Sun (1995). 

Element Detection limit (ppm) 

Ti 0.12  

Y 0.01  

Zr 0.12  

Hf 0.17  

Ba 0.03  

La 0.02 0.08 

Ce 0.03 0.05 

Pr 0.02 0.22 

Nd 0.19 0.42 

Sm 0.16 1.08 

Eu 0.04 0.71 

Gd 0.07 0.35 

Tb 0.03 0.83 

Dy 0.12 0.49 

Ho 0.03 0.55 

Er 0.1 0.63 

Tm 0.03 1.21 

Yb 0.18 1.12 

Lu 0.03 1.22 

Table 2.4 Detection limits for trace elements measured on the 4f ion microprobe; numbers in 
italics denote chondrite-normalised detection limits (ppm) for rare earth elements, 
presented here as chondrite-normlaised values are given in data tables in chapters 5-7. 
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Fig.  2.14 Chondrite-normalised REE values for analyses of Geostandards 91500 zircon 
standard showing analytical reproducibility during analytical session. 
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NIST SRM610 

Analysis ID 1 2 3 27 54 85 102 126 Average Error (%, 2σ) 

Si 327210 327210 327210 327210 327210 327210 327210 327210 327210 0 

Y  414 415 403 414 414 414 414 414 412.9 1.0 

Zr 500 454 436 500 500 500 500 500 486.4 5.4 

Ba 500 455 427 500 522 500 500 500 488.2 6.3 

Hf 500 463 422 500 522 500 500 500 488.5 6.4 

Ti 437 412 403 437 442 437 437 437 430.5 3.3 

La 510 489 471 510 520 510 510 510 503.9 3.2 

Ce 524 505 487 524 532 524 524 524 518.1 2.9 

Pr 501 490 470 501 512 501 501 501 496.8 2.5 

Nd 532 535 515 532 545 532 532 532 531.8 1.5 

Sm 516 528 511 516 529 516 516 516 518.4 1.2 

Eu 518 517 504 518 528 518 518 518 517.3 1.3 

Gd 506 565 559 506 510 506 475 506 516.5 5.9 

Tb 500 509 493 500 509 500 506 500 502.4 1.1 

Dy 500 501 496 500 507 500 500 500 500.6 0.6 

Ho 500 517 497 500 510 500 500 500 503.1 1.3 

Er 500 518 500 500 515 500 500 500 504.4 1.5 

Tm 500 509 493 500 513 500 500 500 502.0 1.2 

Yb 500 510 490 500 503 500 500 500 500.6 1.1 

Lu 500 506 486 500 508 500 500 500 500.2 1.3 

(continued) 
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Geostandards 91500           

Analysis ID 5 15 29 48 56 69 87 128 185 Average Error (%, 2σ) 

Si 149577 149580 149580 149580 149580 149580 149580 149580 149580 149579.7 0.0 

Y  133 133 140 132 139 142 135 138 150 138.1 4.1 

Zr 480494 488830 562520 537750 558310 569400 554279 557890 570100 542174.8 6.3 

Ba 0.609 0.446 0.289 0.320 0.096 0.434 0.758 0.298 0.326 0.397 48.915 

Hf 5065 4963 6148 5533 6033 6252 5624 6043 7828 5943.0 14.2 

Ti 5.16 4.41 5.42 5.14 5.72 4.49 4.82 4.90 5.74 5.09 9.48 

La 0.055 0.018 0.056 0.031 0.037 0.116 0.057 0.038 0.115 0.058 60.454 

Ce 3.06 2.83 3.18 2.70 3.14 3.26 2.89 3.29 3.65 3.11 9.15 

Pr 0.057 0.052 0.040 0.055 0.035 0.064 0.038 0.036 0.022 0.044 30.238 

Nd 0.259 0.406 0.413 0.338 0.269 0.303 0.268 0.179 0.273 0.301 24.807 

Sm 0.481 0.457 0.479 0.408 0.485 0.476 0.602 0.646 0.570 0.512 15.040 

Eu 0.326 0.279 0.265 0.239 0.267 0.294 0.262 0.295 0.313 0.282 9.753 

Gd 2.37 2.22 2.29 1.95 2.55 2.32 2.24 2.03 2.65 2.29 9.70 

Tb 0.835 0.763 0.821 0.830 0.853 0.812 0.835 0.884 0.953 0.843 6.209 

Dy 12.1 11.4 12.0 10.3 11.4 12.5 11.5 12.2 12.7 11.8 6.2 

Ho 4.88 4.77 5.08 4.56 5.02 5.00 4.72 4.96 5.59 4.95 5.88 

Er 27.7 27.0 29.1 24.6 27.6 29.2 26.6 27.0 29.3 27.6 5.5 

Tm 6.82 6.26 6.96 6.35 7.49 7.61 6.60 6.93 7.95 7.00 8.28 

Yb 69.1 65.4 66.9 58.7 65.0 65.0 61.7 67.3 71.9 65.7 5.9 

Lu 14.8 14.0 15.4 13.9 14.9 16.2 14.4 15.3 17.0 15.1 6.7 

Table 2.5 Measured values of REEs in 91500 zircon standard and NIST SRM610 glass standard during analytical session showing analytical error.  
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4. Sample Characterisation 

Zircons from many samples from the Lewisian Gneiss Complex (LGC) of Northwest Scotland 

have been analysed as part of this study. Findings from the zircons are reported in chapters 

5-7. This chapter will give a comprehensive characterisation of the samples from which 

zircons have been analysed. Data from samples which are not discussed in chapters 5-7 are 

provided in the Thesis Appendix.  

4a: Field Relationships and Sample Petrography 

In this section, the field relationships of lithologies, structures and mineral assemblages at 

the sample localities, and the petrography of the samples, are described and interpreted in 

the context of the existing understanding of the tectonothermal evolution of the LGC 

(reviewed in chapter 2b). The samples were all collected from the Assynt terrane/Central 

Region of the LGC, mostly in the vicinity of Scourie village (Fig. 4.1). Samples were collected 

from five localities: Badcall Point, Duartmore Point, Sithean Mor, Geisgeil and Scourie Mor 

(Fig. 4.1). 

 

Fig.  4.1 a Map showing the outcrop area of the LGC and location of map b, inset shows 
location within British Isles; b Map showing location of field localities and nearby 
settlements. 
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Badcall Point 

Field Relationships  

The Badcall Point field area is located at UK grid reference NC146414, ~ 3km SSW of Scourie 

village. Exposure is excellent and is above the high tide line (Fig. 4.2a). The major rock type 

here is a variably-deformed grey TTG gneiss, typical of the Assynt terrane/Central Region 

(e.g. Sutton and Watson, 1951; Tarney and Weaver, 1987). The oldest recognised structure 

is a gneissic layering fabric (Fig. 4.2b) with ~5-20mm wide layers of mafic and felsic 

minerals. A sample (JM09/BP02) of this was taken at NC 14562 41558. Field inspection 

suggests the pale white-grey felsic layers are composed of quartz and feldspar while the 

dark-grey mafic layers are amphibole or pyroxene. No mineral lineations were observed. 

The gneissic layering generally dips to the southwest but there are tight to open folds of 

<10m wavelength present (Fig. 4.2b). Occasional pods of 2cm-5m long mafic rock are 

wrapped by the gneissic layering. As the oldest recognised structure, the gneissic layering is 

interpreted to have formed in the Badcallian tectonothermal event; the gneissic layering is 

attributed to the Badcallian elsewhere in the Assynt terrane/Central Region (e.g. Park, 

1970; Friend and Kinny, 1995; Whitehouse and Kemp, 2010).  

 At NC 14564 41555, the Badcallian gneissic layering is cross-cut by a 20cm-wide 

zone of another fabric (Fig. 4.2c&d). It is similar in appearance to the Badcallian gneissic 

layering and again no lineations were observed. Sample JM09/BP01 was taken from here. 

Both this fabric and the Badcallian gneissic layering are cross-cut by a member of the 

Scourie Dyke Swarm (Fig. 4.2b). This means that the fabric in sample JM09/BP01 pre-dates 

Scourie dyke intrusion but post-dates the Badcallian gneissic layering, therefore it is 

interpreted that it formed during the Inverian tectonothermal event. In the Assynt 

terrane/Central Region, the Inverian is normally characterised by shear zones yp to several 

kilometres wide such, as the Canisp Shear Zone (e.g. Evans, 1965; Evans and Lambert, 1974; 

Jensen, 1984; Attfield, 1987), so this 20cm-wide zone would be an unusual structural 
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feature to develop in the Inverian. However, the relative chronology of the field 

relationships suggests it is likely to be Inverian in age. 

 A ~20m-wide northwest-trending discrete shear zone cross-cuts the Scourie dyke 

and the earlier fabrics in the grey TTG gneiss (Fig. 4.2b). As it post-dates the Scourie dyke, 

this shear zone will have formed during the Laxfordian tectonothermal event. This size of 

shear zone is a typical structural feature of Laxfordian deformation in the Assynt 

terrane/Central Region (Wynn, 1995). Compositional layering of mafic and felsic minerals in 

the grey TTG gneiss are still present but are narrower (~3mm wide) than in the Badcallian 

gneissic layering; mineral aggregate lineations of hornblende or plagioclase were observed. 

Sample JM09/BP06 was taken from this shear zone  at NC 14565 41561. The Laxfordian 

shear zone cuts across the Scourie dyke at a low angle and follows the contact between the 

dyke and the grey TTG gneiss for ~100m (Fig. 4.2b). Where the dyke is deformed by the 

shear zone, a composite L-S tectonite fabric is developed with elongate hornblende mineral 

aggregates clearly visible. Garnets with what appears to be sigmoid plagioclase tails are 

visible at NC 14565 41560 (Fig. 4.2e) and indicate sinistral movement on the shear zone. 

There is a ~10m wavelength reclined fold in the Laxfordian shear zone at NC 14566 41566; 

sample JM09/BP04 was taken from here. The fold post-dates the shear zone as the south- 

to southwest-plunging mineral lineation of the shear zone is rotated to plunge southeast on 

the fold limb (Fig. 4.2c). The fold is therefore interpreted to be late-Laxfordian in age. The 

latest structure in the relative chronology of the Badcall Point locality is a ~30-50cm wide 

pegmatitic granite vein which cross-cuts all earlier structures (Fig. 4.2c), therefore it is also 

interpreted to be late-Laxfordian in age.  
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Fig.  4.2 a Photograph of the Badcall Point locality; b Field map of main lithologies and 
structures at the locality; c Detailed field map showing all generations of structures with 
sample locations marked; d Photograph showing the zone of possible Inverian fabric cross-
cutting the Badcallian gneissic layering, compass clinometer is 10cm long; e Photograph of 
garnets with apparent sigmoid tails indicating sinistral shear sense, handlens is 3cm long. 
Numbered pale grey lines on field maps denote UK Ordnance Survey grid lines. 
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Sample Petrography 

Four samples from Badcall Point are used in chapters 5-7 of this thesis: JM09/BP02, 

JM09/BP01, JM09/BP06 and JM09/BP04. Thin sections (Figs. 4.3,6,10&12) of each sample 

was made so that the petrography could be well-constrained by optical- and scanning 

electron-microscopy. Detailed petrographic descriptions are given in tables 4.1-4 and 

images of key mineral textures from each sample are shown in figures 4.4-5,7-9,11&13. 

Sample JM09/BP02 

 

Fig.  4.3 PPL scan of the thin section from sample JM09/BP02. 

 

 

Fig.  4.4 Photomicrograph of plagioclase with zoned extinction in sample JM09/BP02 (plag = 
plagioclase). 
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Modal Mineralogy 

 ~50% plagioclase 

 ~40% hornblende 

 ~10% quartz 

 Minor minerals: 
o sub-mm equant epidotes, very high relief and birefringence with straight 

extinction 
o high-relief speckly-brown sub-mm equant titanites 

~50% plagioclase 

 Irregular xenomorphic ~2mm crystals 

 Widespread sericitisation to varying degrees, lamellar twinning usually still visible, 
sometimes in what appears to be albite-pericline twinning  

 Zoned extinction common, sometimes sub-concentric (Fig. 4.4) 

~40% hornblende  

 Occurs in a sieve texture with quartz as pseudomorphs after pyroxene (Fig. 4.5) 

 Aggregates of sub-mm equant crystals 

 Crystals within a single pseudomorph undergo pleochroic colour change from green 
to colourless at the same microscope stage rotation angle but this is not the case 
between different pseudomorphs  

 Aggregated with sub-mm equant quartz crystals in the middle of the pseudomorphs 
but only hornblende around the edge 

~10% quartz  

 Occurs in a sieve texture with hornblende as pseudomorphs after pyroxene 

 Sub-mm equant crystals 

 Present in the centre of the pseudomorphs, not at the edge 

 Rare xenomorphic ~2mm crystals not associated with sieve texture 

General Comments 

 Weakly-developed banding of mafic and felsic minerals visible at the thin section 
scale, no mineral lineations 

Interpretation Comments 

 Although Badcallian gneissic layering is the structural feature in this sample, sieve-
textured hornblende and quartz shows that the Badcallian granulite-facies 
assemblage has been statically retrogressed to amphibolite-facies.  

 The sericitisation of plagioclase may be linked to the retrogression of pyroxene but 
it may also have been caused by fluids associated with the late-Laxfordian 
pegmatitic granite vein which is located <1m from this sample, although other 
samples further from the vein (as well as samples from other localities without a 
pegmatitic granite vein) also have sericitised plagioclase. 

Table 4.1 Petrographic description of sample JM09/BP02. 
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Fig.  4.5 Photomicrograph of sieve-textured hornblende and quartz in a pseudomorph after 
pyroxene in sample JM09/BP02, dashed line denotes the trace of a pyroxene cleavage 
preserved in the pseudomorph (plag = plagioclase, hbl = hornblende, qtz = quartz). 

 

Sample JM09/BP01 

 

Fig.  4.6 PPL scan of the thin section from sample JM09/BP01. 

 

Fig.  4.7 Photomicrograph of plagioclase with zoned extinction in sample JM09/BP01, dashed 
white line denotes crystal boundary (plag = plagioclase). 
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Modal Mineralogy 

 ~45% plagioclase 

 ~40% quartz 

 ~10% hornblende 

 ~5% chloritised biotite 

~45% plagioclase 

 1-3mm stubby xenomorphic crystals 

 Patchy sericitisation to varying degrees, lamellar twinning sometimes well-
preserved, often possible albite-pericline twinning (Fig. 4.7) 

 Zoned extinction common, sometimes vaguely sub-concentric 
~40% quartz 

 Sub-2mm stubby xenomorphic crystals in matrix, larger ones occasionally have 
undulose extinction  

 Occurs in a sieve texture with hornblende as pseudomorphs after pyroxene, sub-
mm equant crystals present in the centre of the pseudomorphs but not at the edge 

~10% hornblende 

 Aggregates of sub-mm equant crystals with sub-mm equant quartz crystals in a 
typical sieve texture as pseudomorphs after pyroxene, where quartz and 
hornblende are in the middle of the pseudomorphs but only hornblende around 
the edge (Fig. 4.8) 

 Crystals within a single pseudomorph undergo pleochroic colour change from green 
to colourless at the same microscope stage rotation angle but this is not the case 
between different pseudomorphs  

 Also occasionally occurs in the matrix as xenomorphic-subidiomorphic 1-2mm 
crystals 

~5% chloritised biotite 

 Clusters of laths/prisms at various orientations, individual crystals up to 1mm long 

 Straight extinction and one strong edge-parallel cleavage 

 Slightly pleochroic pale yellow-green in PPL but first-ordder dark blue-grey 
birefringence indicates chloritisation of original biotite (Fig. 4.9) 

General Comments 

 Gneissic layering not obvious at the thin section-scale 

Interpretation Comments 

 Sieve-textured hornblende and quartz indicates static retrogression of (Badcallian) 
pyroxene; this may have occurred in the Inverian tectonothermal event which 
would agree with the observation that the planar fabric visible in the field formed 
between the Badcallian and intrusion of the Scourie dykes.  

 The sericitisation of plagioclase may be linked to the retrogression of pyroxene but 
it may also have been caused by fluids associated with the late-Laxfordian 
pegmatitic granite vein which is located <1m from this sample, although other 
samples further from the vein (as well as samples from other localities without a 
pegmatitic granite vein) also have sericitised plagioclase.  

Table 4.2 Petrographic description of sample JM09/BP01. 
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Fig.  4.8 Photomicrograph of sieve-textured hornblende and quartz in a pseudomorph after 
pyroxene in sample JM09/BP01, chloritised biotite also shown (hbl = hornblende, qtz = 
quartz). 

 

Fig.  4.9 Photomicrograph of laths of chloritised biotite in sample JM09/BP01 with sieve-
textured hornblende and quartz after pyroxene also shown (hbl = hornblende, qtz = quartz). 

 

Sample JM09/BP06 

 

Fig.  4.10 PPL scan of the thin section from sample JM09/BP06. 
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Modal Mineralogy 

 ~75% plagioclase 

 ~20% hornblende 

 ~5% quartz 

 Minor minerals: 
o sub-mm equant epidotes, very high relief and birefringence with straight 

extinction 
o generally xenomorphic opaques 

~75% plagioclase 

 Pervasively sericitised (Fig. 4.12) 

 Sub-2mm subidiomorphic crystals 

 Some larger crystals remain unsericitised in the centre and have zoned extinction 

~20% hornblende 

 Elongate but rather xenomorphic stubby crystals, sub-mm and often aggregated 

 Different crystals undergo pleochroic colour change from green to colourless at the 
same microscope stage rotation angle  

 1-2 cleavages occasionally visible 

~5% quartz 

 Slightly elongated subidiomorphic crystals up to 1mm long 

 Simple extinction 

General Comments 

 Coarse cm-scale banding of felsic and mafic minerals 

 Moderately well-developed hornblende and plagioclase aggregate mineral 
stretching lineations 

Interpretation Comments 

 The presence of planar and linear fabrics with an amphibolite-facies mineralogy is 
in agreement with the interpretation from field relationships that this is a 
Laxfordian shear zone.  

 The sericitisation of plagioclase is likely caused by fluids flowing along the shear 
zone. It is possible that it may be associated with the late-Laxfordian pegmatitic 
granite vein which is located ~1m from this sample, although samples from other 
localities without a pegmatitic granite vein also have sericitised plagioclase.  

Table 4.3 Petrographic description of sample JM09/BP06. 

 

Fig.  4.11 Photomicrograph of sericitised plagioclase (plag = plagioclase) in sample 
JM09/BP06, the speckly pale-brown patches. 
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Sample JM09/BP04 

 

Fig.  4.12 PPL scan of the thin section from sample JM09/BP04. 

 

 

Fig.  4.13 Photomicrograph of sericitised plagioclase (plag = plagioclase) in sample 
JM09/BP04, the speckly pale-brown patches. 
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Modal Mineralogy 

 ~55% quartz 

 ~20% plagioclase 

 ~20% hornblende 

 ~5% biotite 

 Minor minerals: 
o sub-mm xenomorphic elongate epidotes, very high relief, grey-yellow 

birefringence, straight extinction 

~55% quartz 

 Sub-2mm grains, often aggregated, larger crystals have undulose extinction 

~20% plagioclase 

 Widespread sericitisation (Fig. 4.13) 

 Lamellar twinning rarely still visible and concentric zoned extinction sometimes 
visible through sericitisation 

 Sub-1mm stubby xenomorphic crystals 

~20% hornblende 

 Sub-2mm elongate xenomorphic crystals, often aggregated 

 Different crystals undergo pleochroic colour change from green to colourless at the 
same microscope stage rotation angle 

~5% biotite 

 Elongate brown laths to 1mm, occasionally aggregated 

 Laths strongly aligned with very consistent pleochroism 

General Comments 

 Poorly-developed cm-scale banding of felsic and mafic minerals 

 Moderately well-developed hornblende and biotite aggregate mineral stretching 
lineations 

Interpretation Comments 

 The presence of planar and linear fabrics with an amphibolite-facies mineralogy is 
in agreement with the interpretation from field relationships that this is a 
Laxfordian shear zone.  

 The sericitisation of plagioclase may be linked to the retrogression of pyroxene but 
it may also have been caused by fluids associated with the late-Laxfordian 
pegmatitic granite vein which is located <1m from this sample, although other 
samples further from the vein (as well as samples from other localities without a 
pegmatitic granite vein) also have sericitised plagioclase.  

 Although field evidence suggested that this sample is a folded equivalent of sample 
JM09/BP06, the modal mineralogy of the sample is quite different. This is 
interpreted to reflect compositional heterogeneity in the rocks over distances a few 
metres. 

Table 4.4 Petrographic description of sample JM09/BP04. 
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Duartmore Point 

Field Relationships 

The Duartmore Point field area is located on an isolated coastal headland at NC178359, 

~5km WNW of Kylesku village. The mapped area is on a wave-washed rock platform so 

there is almost 100% exposure (Fig. 4.14a). As at Badcall Point, the major rock type here is 

the typical Assynt terrane/Central Region variably-deformed grey TTG gneiss. The oldest 

recognised structure at this locality is a gneissic layering fabric (Fig. 4.14b) with ~5-20mm 

wide layers of mafic or felsic minerals. A sample (JM09/DP03) of this was taken at NC 17881 

35957. Field inspection suggests the pale white-grey felsic layers are composed of quartz 

and feldspar while the dark-grey mafic layers are amphibole or pyroxene. In some places, 

the mafic minerals have a brownish colour suggesting the presence of orthopyroxene and 

therefore a granulite-facies metamorphic assemblage. No mineral lineations were 

observed. The gneissic layering generally dips gently to the north but on the southern tip of 

the headland it dips gently to the southwest (Fig. 4.14b). As the oldest recognised structure, 

the gneissic layering is interpreted to have formed in the Badcallian tectonothermal event, 

the same as that found at the Badcall Point locality.  

 On the southeast edge of the headland, a ~5m-wide northwest-trending Scourie 

dyke cross-cuts the Badcallian gneissic layering. This is cross-cut by a west-trending ~10m-

wide shear zone. The dyke is deflected from its northwesterly orientation into a westerly 

orientation (Fig. 4.14b); it is strongly deformed and narrows to an indistinguishable 

compositional layer in the core of the shear zone. The shear zone clearly post-dates the 

dyke and is therefore Laxfordian in age. The Laxfordian shear zone has a closely spaced (~2-

5mm) planar shear zone fabric with a well-developed plagioclase mineral aggregate 

stretching lineation. The orientation of the shear zone planar fabric and the gneissic 

layering on the north side of the shear zone is the same but on the south side of the shear 

zone, the southwest-dipping gneissic layering can clearly be seen to bend back on itself into 
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the shear zone (Fig. 4.14a&b), indicating a sinistral movement sense. A sample 

(JM09/DP02) of the grey TTG gneiss from the Laxfordian shear zone was taken at NC 17923 

35972. On either side of the shear zone, there is a ~5-10m wide zone where the brown 

orthopyroxene of visible elsewhere in the gneissic layering is not seen; the mafic mineral is 

amphibole. It is interpreted that fluids flowing along the shear zone percolated into the 

granulite-facies gneiss and retrogressed it to amphibolite-facies. A sample (JM09/DP01) 

from this zone was taken at NC 17907 35965. 

 

Fig.  4.14 a Photograph of the Duartmore Point locality showing the Laxfordian shear zone 
and the Badcallian gneissic layering deflected into the shear zone; b Detailed field map 
showing structures and metamorphic assemblages with sample locations marked. 
Numbered pale grey lines on field maps denote UK Ordnance Survey grid lines. 

Sample Petrography 

Three samples from Duartmore Point are used in chapters 5-7 of this thesis: JM09/DP03, 

JM09/DP01 and JM09/DP02. Thin sections (Figs. 4.15,18&21) of each sample was made so 

that the petrography could be well-constrained by optical- and scanning electron-
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microscopy. Detailed petrographic descriptions are given in tables 4.5-7 and images of key 

mineral textures from each sample are shown in figures 4.16-17,19-20&22. 

Sample JM09/DP03 

 

Fig.  4.15 PPL scan of the thin section from sample JM09/DP03. 

 

Fig.  4.16 Photomicrograph of pale-green clinopyroxene in sample JM09/DP03. 

 

Fig.  4.17 Photomicrograph of altered pyroxene in sample JM09/DP03 with distinctive brown 
staining. 
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Modal Mineralogy 

 ~60% pyroxene and alteration products 

 ~30% plagioclase 

 ~10% quartz 

 Minor minerals: 
o Xenomorphic opaques in mafic band 

~60% pyroxene and alteration products 

 In the more felsic band on this slide, there are many sub-2mm subidiomorphic 
equant pale green clinopyroxenes (Fig. 4.16), often showing one good cleavage and 
with first-order pink-blue birefringence. There are similar crystals here which are 
browner in colour and have lower birefringence, interpreted to be orthopyroxene. 
Some of the pyroxenes have narrow hornblende rims 

 In the more mafic band on the slide, crystals are 1-3mm subidiomorphic equant; 
there are four types: 

o Highly fractured, green-colourless pleochroism, first-order blue 
birefringence, distinctive brown staining in PPL (Fig. 4.17) – possibly 
hornblende replacing pyroxene 

o Colourless and speckly, remnant of one cleavage, speckly first-oreder blue-
grey birefringence 

o Pale green and speckly, remnant of one cleavage, speckly first-order grey 
birefringence, occurs at boundary between mafic and felsic bands 

o Pale muddy yellow colour, often one strong cleavage, extinction parallel to 
cleavage, first-order grey-yellow birefringence – probably epidote replacing 
pyroxene 

~30% plagioclase 

 Subidiomorphic 1-2mm crystals 

 Patchy sericitisation 

 Zoned extinction common, often vaguely sub-concentric  

 Lamellar twinning common, possible albite-pericline twinning common 

~10% quartz 

 1-2mm subidiomorphic crystals with undulose extinction 

General Comments 

 Weakly-developed cm-scale banding of mafic and felsic minerals visible at the thin 
section scale, no mineral lineations 

Interpretation Comments 

 The patchy/partial retrogression of pyroxenes in the mafic band on this slide 
suggests an influx of fluid as the retrogression products (interpreted as hornblende 
and epidote) are hydrous phases. Field relationships suggested this sample was 
collected from an area with a granulite-facies assemblage, beyond the reach of 
fluids from the Laxfordian shear zone but thin section petrography suggests 
perhaps some of this fluid did indeed reach, and react, with this sample. 

 The occasional sericitisation of plagioclase may be linked with the fluid which 
caused partial retrogression of pyroxene. 

Table 4.5 Petrographic description of sample JM09/DP03. 

 



117 
 

Sample JM09/DP01 

 

Fig.  4.18 PPL scan of the thin section from sample JM09/DP01. 

 

Fig.  4.19 Photomicrograph of plagioclase with zoned extinction in sample JM09/DP01, 
dashed white line denotes crystal boundary (plag = plagioclase). 

 

Fig.  4.20 Photomicrograph of sieve-textured hornblende and quartz in a pseudomorph after 
pyroxene in sample JM09/DP01 (hbl = hornblende, qtz = quartz). 
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Modal Mineralogy 

 ~40% plagioclase 

 ~40% quartz 

 ~20% hornblende 

 Minor minerals: 
o Biotite laths and xenomorphic opaques associated with sieve texture 

~40% plagioclase 

 1-2mm stubby xenomorphic crystals 

 Occasionally weakly sericitised 

 Occasional lamellar twinning, possible albite-pericline twinning common (Fig. 4.19) 

 Zoned extinction common, often sub-concentric 

~40% quartz 

 1-2mm equant subidiomorphic crystals 

 Undulose extinction common 

~20% hornblende 

 Aggregates of sub-mm equant crystals with sub-mm equant quartz crystals in a 
typical sieve texture as pseudomorphs after pyroxene, where quartz and 
hornblende are in the middle of the pseudomorphs but only hornblende around 
the edge (Fig. 4.20) 

 Crystals within a single pseudomorph undergo pleochroic colour change from green 
to colourless at the same microscope stage rotation angle but this is not the case 
between different pseudomorphs  

 Rare sub-mm biotites and opaques occur throughout the pseudomorph with rare 
remnant pyroxene in the centre. The pyroxene is colourless in PPL with blue 
birefringence. Variably-oriented biotite laths undergo a pleochroic colour change 
from brown to colourless but at different microscope stage rotation angles. 

General Comments 

 Weakly-developed banding of mafic and felsic minerals visible at the thin section 
scale, no mineral lineations 

Interpretation Comments 

 Although Badcallian gneissic layering is the structural feature in this sample, sieve-
textured hornblende and quartz shows that the Badcallian granulite-facies 
assemblage has been statically retrogressed to amphibolite-facies. This agrees with 
the interpretation based on field relationships that there is a zone of static 
retrogression on either side of the Laxfordian shear zone. 

 The sericitisation of plagioclase may be linked to the retrogression of pyroxene but 
it is not widely developed suggesting that any fluid escaping from the adjacent 
shear zone may have reacted with pyroxene first and that there was not enough to 
sericitise much of the plagioclase. 

Table 4.6 Petrographic description of sample JM09/DP01. 
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Sample JM09/DP02 

 

Fig.  4.21 PPL scan of the thin section from sample JM09/DP02. 

 

Modal Mineralogy 

 ~50% hornblende 

 ~45% plagioclase 

 ~5% quartz 

 Minor minerals: 
o generally xenomorphic opaques 

~50% hornblende 

 Sub-1mm crystals, laths or subidiomorphic rhombs, often aggregated and a bit 
ragged 

 Different crystals undergo pleochroic colour change from green to colourless at the 
same microscope stage rotation angle 

~45% plagioclase 

 Considerable and widespread sericitisation (Fig. 4.22) 

 Stubby xenomorphic sub-mm crystals 

 Occasional sub-concentric zoned extinction 

 Rare faint remnant of lamellar twinning 

~5% quartz 

 Elongate aggregates of xenomorphic sub-mm crystals 

 Usually simple extinction, rarely undulose 

General Comments 

 Coarse cm-scale banding of felsic and mafic minerals 

 Well-developed hornblende and plagioclase aggregate mineral stretching lineations 
Interpretation Comments 

 The presence of planar and linear fabrics with an amphibolite-facies mineralogy is 
in agreement with the interpretation from field relationships that this is a 
Laxfordian shear zone.  

 The sericitisation of plagioclase is likely caused by fluids flowing along the shear 
zone.  

Table 4.7 Petrographic description of sample JM09/DP02. 
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Fig.  4.22 Photomicrograph of sericitised plagioclase (plag = plagioclase) in sample 
JM09/BP04, the speckly pale-brown patches. 
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Sithean Mor 

Field Relationships 

The Sithean Mor field area is located at NC149461, ~1.5km NW of Scourie village. The 

locality is on moorland 80-100m above sea-level with patchy rock exposures. At this locality 

is an assemblage of generally flaggy, friable schistose rocks enclosed in the typical Assynt 

terrane/Central Region grey TTG gneisses described from Badcall Point and Duartmore 

Point (Fig. 4.23). These schistose rocks have been described by Beach (1973), Okeke et al. 

(1983) Barnicoat et al. (1987) and Zhu et al. (1997) and are interpreted to be 

metasediments. The metasediment assemblage is heterogeneous in appearance, with some 

parts having a brownish colour and very friable texture, suggesting the presence of a large 

percentage of biotite; other parts are less friable and have a white-grey colour suggesting 

they are quartz-rich. There is a variably developed planar fabric, most notable as 

compositional layering in the more biotite-rich schistose parts; no lineations were 

observed. The contact between the metasediments and the grey TTG gneiss is not exposed 

anywhere at this locality but the trend of the planar fabric in the metasediments suggests it 

would cross-cut the lithological contact (Fig. 4.23). In the grey TTG gneiss, there is a gneissic 

layering fabric (Fig. 4.23) with ~5-20mm wide layers of mafic and felsic minerals. Field 

inspection suggests the pale white-grey felsic layers are composed of quartz and feldspar 

while the dark-grey mafic layers are amphibole or pyroxene. No mineral lineations were 

observed. The strike of both the gneissic layering and the planar schistose fabric in the 

metasediments is highly variable. An undeformed northwest-trending Scourie dyke passes 

~20m to the northeast of the metasediment outcrop. The fact that the Scourie dyke is 

undeformed indicates that the fabric in the surrounding grey TTG gneiss is older, either 

Badcallian or Inverian. In the Assynt terrane/Central Region, Inverian deformation is 

generally characterised by kilometre-wide shear zones such as the Canisp Shear Zone (e.g. 

Evans, 1965; Evans and Lambert, 1974; Jensen, 1984; Attfield, 1987), unlike the variably 
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oriented gneissic layering at this locality. This, in conjunction with the similarity of the 

gneissic layering here to that at Badcall Point and Duartmore Point, suggests that the fabric 

in the TTG gneiss is Badcallian in age. As the fabrics in the grey TTG gneiss and 

metasediment outcrop both appear to cross-cut the lithological contact, they are 

interpreted to be the same age and therefore the fabric in the metasediment is also 

Badcallian in age (Fig. 4.23). 

 

Fig.  4.23 Field map of structures and lithologies at the Sithean Mor locality with sample 
locations marked. Numbered pale grey lines on field maps denote UK Ordnance Survey grid 
lines. 
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Sample Petrography 

Three samples from Sithean Mor are used in chapters 5-7 of this thesis: JM08/22, JM08/23 

and JM09/ST02. Thin sections (Figs. 4.24,27&29) of each sample was made so that the 

petrography could be well-constrained by optical- and scanning electron-microscopy. 

Detailed petrographic descriptions are given in tables 4.8-10 and images of key mineral 

textures from each sample are shown in figures 4.25-26,28&30. 

Sample JM08/22 

 

Fig.  4.24 PPL scan of the thin section from sample JM08/22. 

 

Fig.  4.25 Variably-oriented laths of pleochroic brown-colourless biotite in sample JM08/22.  
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Modal Mineralogy 

 ~60% plagioclase  

 ~25% biotite 

 ~10% quartz 

 ~5% garnet 

~60 plagioclase  

 Sub-1mm subidiomorphic equant crystals 

 Widespread partial sericitisation  

 Poorly-preserved lamellar twinning and concentric zoned extinction in rare larger 
crystals 

~25% biotite 

 Laths and stubby crystals, 0.5-1mm 

 No obvious lineation defined by laths (Fig. 4.25) 

 Different crystals undergo pleochroic colour change from brown to colourless at 
different microscope stage rotation angle 

~10% quartz 

 Fairly idiomorphic equant, sub-1mm 

 Undulose extinction common 

~5% garnet 

 Relict porphyroblasts up to 3mm 

 Now broken into fragments which are themselves heavily fractured (Fig. 4.26) 

 Quartz and biotite grow among fragments of garnet but do not define an obvious 
reaction texture like a rim 

General Comments 

 Weakly-developed compositional layering, no mineral stretching lineations 

Interpretation Comments 

 Garnets are interpreted to reflect an early metamorphic event but have been 
fractured and partially altered in a subsequent metamorphic event. The general 
lack of fabrics indicates that metamorphism was static. 

 The weakly-developed compositional banding may have formed in an early 
tectonothermal, analogous to the formation of gneissic layering in the surrounding 
grey TTG gneisses.  

Table 4.8 Petrographic description of sample JM08/22. 

 

Fig.  4.26 Broken up and heavily-fractured garnet porphyroblast in sample JM08/22, dashed 
white line denotes crystal boundary. 
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Sample JM08/23 

 

Fig.  4.27 PPL scan of the thin section from sample JM08/23. 

 

 
 

Fig.  4.28 High-relief kyanite crystals in sample JM08/23. 
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Modal Mineralogy 

 ~40% quartz (in fine groundmass and aggregates) 

 ~25% feldspar  (in fine groundmass and as large individual crystals) 

 ~20% muscovite (in fine groundmass) 

 ~15% aluminosilicates 

 Minor minerals: 
o Xenomorphic opaques 

~55% fine groundmass 

 ~0.1-0.2mm equant quartz crystals 

 ~0.2-0.5mm feldspars, often partially sericitised and occasionally zoned 

 muscovite needles ~0.5mm long which form a weak planar fabric and bend around 
larger crystals, first-order pink to blue interference colours 

~20% Quartz aggregates 

 Aggregates have fairly irregular shapes, occasionally lensoid or arcuate, ~2x5mm 

 Constituent crystals are fairly equant, ~0.5mm in diameter 

~15% kyanite 

 generally sub-idiomorphic equant crystals, ~0.2-1mm in diameter, occasionally 
show one faint cleavage, rarely another possible one at right angles, first-order 
yellow to orange-brown interference colours, usually have overgrowths and 
inclusions of quartz. Also occurs as idiomorphic needles, 0.5-1.2mm long with 
straight extinction and first-order brown interference colours (Fig. 4.28) 

~10% large feldspar crystals 

 Fairly equant, ~0.5-2mm in diameter 

 Occasional partial sericitisation, often invaded by other crystals round edges 

 Lamellar twinning prominent,  often as possible albite-pericline twins, indicating 
plagioclase 

General Comments 

 Weakly-developed planar fabric defined by muscovite needles 

Interpretation Comments 

 The quartz aggregates could be recrystallized porphyroclasts. 

 Generally an unusual rock and difficult to interpret.  

Table 4.9 Petrographic description of sample JM08/23. 
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Sample JM09/ST02 

 

Fig.  4.29 PPL scan of the thin section from sample JM09/ST02. 

 

 

Fig.  4.30 Broken up and heavily-fractured garnet porphyroblast in sample JM09/ST02, 
dashed white line denotes crystal boundary. 
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Modal Mineralogy 

 ~30% plagioclase  

 ~30% quartz 

 ~30% biotite 

 ~10% garnet 

~30% plagioclase  

 Sub-2mm equant xenomorphic crystals 

 Usually well-sericitised but some remnant lamellar twinning 

 Zoned extinction common 

 Smallest crystals aggregate with quartz in a ~2-5mm ovoid shape, giving the 
appearance of a porphyroclast 

~30% quartz 

 Equant xenomorphic crystals, sub-2mm 

 Undulose extinction common, but no consistent orientation 

 Occurs in aggregates with plagioclase (porphyroclast?)  

~30% biotite 

 Laths or xenomorphic crystals,  to 1mm 

 Weakly-developed fabric defined by laths 

 Pleochroic colour change from  brown to colourless; different crystals undergo 
pleochroic colour change at different microscope stage rotation angles 

 Usually associated with garnet 

~10% garnet 

 Relict porphyroblasts up to 3mm (Fig. 4.30) 

 High relief, isotropic 

 Now broken into sub-mm fragments which are themselves heavily fractured 

 Quartz and biotite grow among fragments of garnet but do not define an obvious 
reaction texture like a rim 

General Comments 

 Weakly-developed compositional layering, no mineral stretching lineations 

Interpretation Comments 

 Garnets are interpreted to reflect an early metamorphic event but have been 
fractured and partially altered in a subsequent metamorphic event. The general 
lack of fabrics indicates that metamorphism was static. 

 The weakly-developed compositional banding may have formed in an early 
tectonothermal, analogous to the formation of gneissic layering in the surrounding 
grey TTG gneisses.  

Table 4.10 Petrographic description of sample JM09/ST02. 
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Geisgeil 

Field Relationships 

The Geisgeil field area is located at UK grid reference NC179410, ~ 3km SE of Scourie 

village. The locality is on moorland 60-120m above sea-level with patchy rock exposures 

(Fig. 4.31a). As at Badcall Point and Duartmore Point, the major rock type here is the typical 

Assynt terrane/Central Region variably-deformed grey TTG gneiss. The oldest recognised 

structure is a gneissic layering fabric (Fig. 4.31b) with ~5-20mm wide layers of mafic and 

felsic minerals. A sample (JM08/GG09) of this was taken at NC 17947 41005. Field 

inspection suggests the pale white-grey felsic layers are composed of quartz and feldspar 

while the dark-grey mafic layers are amphibole or pyroxene. No mineral lineations were 

observed. The strike of the gneissic layering is highly variable (Fig. 4.31b). As the oldest 

recognised structure, the gneissic layering is interpreted to have formed in the Badcallian 

tectonothermal event, the same as that found at the Badcall Point and Duartmore Point 

localities.  

 A 5-10m wide member of the Scourie Dyke Swarm cuts the Badcallian gneissic 

layering (Fig. 4.31b&c). This dyke is then cut by a ~20m-wide west-trending discrete shear 

zone (Fig. 4.31b). As it post-dates the Scourie dyke, this shear zone will have formed during 

the Laxfordian tectonothermal event. This size of shear zone is a typical structural feature 

of Laxfordian deformation in the Assynt terrane/Central Region (Wynn, 1995). 

Compositional layering of mafic and felsic minerals in the grey TTG gneiss are still present 

but are narrower (~3mm wide) than in the Badcallian gneissic layering; mineral aggregate 

stretching lineations of quartz were observed. The dyke is deflected from its northwesterly 

orientation into a westerly orientation (Fig. 4.31b); it is strongly deformed and narrows to 

an indistinguishable compositional layer in the core of the shear zone. Following the shear 

zone to the east for ~150m from the point where the dyke enters the shear zone, a Scourie 

dyke exits the shear zone on its south side; if this is the same dyke, the displacement on the 
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shear zone would be constrained to ~150m. The geometry of the dyke deflection indicates 

a sinistral movement on the shear zone.  

 

Fig.  4.31 a Photograph of the Geisgeil locality with the Laxfordian shear zone marked by 
dashed white line; b Field map of lithologies and structures at the locality with sample 
location marked. Numbered pale grey lines on field maps denote UK Ordnance Survey grid 
lines; c Photograph showing the undeformed Scourie dyke cross-cutting Badcallian gneissic 
layering in the grey TTG gneiss, notebook is 21cm long. 
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Sample Petrography 

One sample from Geisgeil (JM08/GG09) is used in chapter 5 of this thesis. A thin section 

(Fig. 4.32) of this sample was made so that the petrography could be well-constrained by 

optical- and scanning electron-microscopy. A detailed petrographic description is given in 

table 4.11 and images of key mineral textures are shown in figure 4.33. 

Sample JM08/GG09 

 

Fig.  4.32 PPL scan of the thin section from sample JM08/GG09. 

 

 

Fig.  4.33 Photomicrograph showing hornblende (hbl = hornblende) in sample GG09. 
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Modal Mineralogy 

 ~40% hornblende  

 ~30% plagioclase  

 ~30% quartz 

 Minor minerals: 
o Biotite laths and xenomorphic opaques generally associated with 

hornblende 

~40% hornblende 

 Prismatic crystals ~0.5-1mm, often quite idiomorphic but do not define a shape 
fabric, aggregated into irregularly-shaped clumps (Fig. 4.33) 

 2 cleavages at 120° occasionally visible 

 Different crystals undergo pleochroic colour change from green to colourless at 
different microscope stage rotation angles  

~30% plagioclase 

 Fairly equant crystals ~0.2-0.6mm 

 Lamellar twinning often well preserved 

 Occasional concentric zoned extinction 

 Occasional partly sericitised crystal 

~30% quartz 

 Equant ~0.1mm 

General Comments 

 Gneissic layering of mafic and felsic minerals not visible at the thin section scale, no 
mineral lineations 

Interpretation Comments 

 Although Badcallian gneissic layering is the structural feature in this sample, the 
presence of hornblende but not pyroxene suggests that the Badcallian granulite-
facies assemblage has been statically retrogressed to amphibolite-facies.  

Table 4.11 Petrographic description of sample JM08/GG09. 
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Scourie Mor 

Field Relationships 

The Scourie Mor field area is located at UK grid reference NC141442, ~ 1km W of Scourie 

village. Exposure is generally wave-washed platforms in the intertidal zone and some above 

the high tide line with occasional isolated inland crags and pavements. As at Badcall Point 

and Duartmore Point, the major rock type here is the typical Assynt terrane/Central Region 

variably-deformed grey TTG gneiss. The oldest recognised structure is a gneissic layering 

fabric (Fig. 4.34) with ~5-20mm wide layers of mafic and felsic minerals. A sample 

(JM09/SM09) of this was taken at NC 14146 44175. Field inspection suggests the pale 

white-grey felsic layers are composed of quartz and feldspar while the dark-grey mafic 

layers are amphibole or pyroxene. No mineral lineations were observed. The gneissic 

layering generally dips moderately steeply to the WSW (Fig. 4.34). As the oldest recognised 

structure, the gneissic layering is interpreted to have formed in the Badcallian 

tectonothermal event, the same as that found at the Badcall Point, Duartmore Point and 

Geisgeil localities.  

 Two northwest-trending <1m-wide members of the Scourie Dyke Swarm cut the 

Badcallian gneissic layering (Fig. 4.34). They join up and into one body which is deflected 

into a southwesterly orientation by a ~5m-wide discrete shear zone (Fig. 4.34). The dyke is 

strongly deformed and narrows to an indistinguishable compositional layer in the core of 

the shear zone. As it post-dates the Scourie dyke, this shear zone will have formed during 

the Laxfordian tectonothermal event. This size of shear zone is a typical structural feature 

of Laxfordian deformation in the Assynt terrane/Central Region (Wynn, 1995). 

Compositional layering of mafic and felsic minerals in the grey TTG gneiss are still present 

but are narrower (~3mm wide) than in the Badcallian gneissic layering and the shear zone 

fabric is flaggy; mineral aggregate stretching lineations of plagioclase and quartz were 

observed. Various other lithologies are present at this locality, including mafic and 



134 
 

ultramafic gneiss, a schistose calc-silicate gneiss and an Inverian pegmatitic granite vein. 

These other lithologies have been described previously (Cohen et al., 1991; Corfu et al., 

1994). 

 

Fig.  4.34 Field map of structures and lithologies at the Sithean Mor locality with sample 
location marked. Numbered pale grey lines on field maps denote UK Ordnance Survey grid 
lines. 
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Sample Petrography 

One sample from Scourie Mor (JM09/SM09) is used in chapters 5-7 of this thesis. A thin 

section (Fig. 4.35) of this sample was made so that the petrography could be well-

constrained by optical- and scanning electron-microscopy. A detailed petrographic 

description is given in table 4.12 and images of key mineral textures are shown in figure 

4.36. 

Sample JM09/SM09 

 

Fig.  4.35 PPL scan of the thin section from sample JM09/SM09. 

 

 

Fig.  4.36 Photomicrograph showing pale green clinopyroxene, reddish-brown orthopyroxene 
and granoblastic to sub-granoblastic texture in sample JM09/SM09 (cpx = clinopyroxene, 
opx = orthopyroxene, plag = plagioclase). 
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Modal Mineralogy 

 ~55% plagioclase  

 ~30% clinopyroxene  

 ~10% quartz 

 ~5% orthopyroxene 

 Minor minerals: 
o Subidiomorphic equant opaques  

~55% plagioclase  

 Stubby subidiomorphic 1-4mm crystals 

 Lamellar twinning always well-preserved 

 Zoned extinction common, linear or sub-concentric 

~30% clinopyroxene 

 Stubby crystals 1-3mm 

 Non-pleochroic, pale green (Fig. 4.36) 

 Often fractured 

 First-order yellow birefringence, oblique extinction 

~10% quartz 

 Stubby subidiomorphic crystals, sub-2mm 

 Occasional undulose extinction 

~5% orthopyroxene 

 Stubby ~1mm crystals 

 High relief, often fractured 

 Pale red in colour (Fig. 4.36) with weak pleochroism to pale green 

 First-order yellow-blue birefringence, straightish extinction 

General Comments 

 Weakly-developed gneissic layering of mafic and felsic minerals visible at the thin 
section scale, no mineral lineations 

 Granoblastic to sub-granoblastic texture (Fig. 4.36) 

Interpretation Comments 

 2 pyroxene-plagioclase-quartz assemblage with granoblastic texture – classic 
pristine Badcallian assemblage (e.g. Sutton and Watson, 1951).  

Table 4.12 Petrographic description of sample JM09/SM09. 
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4b: Sample Geochemistry 

Further insight into the nature of the samples was gained from geochemical analysis of the 

sample whole-rock composition and mineral chemistry.  

Sample Whole Rock Composition 

Major and trace element composition of 10 of the 12 samples was determined by X-ray 

fluorescence analysis (see Chapter 3 for a description of analytical methods) and the results 

are shown in Table 4.13. Major element contents of samples from the grey TTG gneiss were 

used to calculate CIPW norms and a name was derived for each sample using the 

Streckeisen (1974) classification for plutonic rocks (Table 4.14, Fig. 4.37). The CIPW norm is 

used with caution only to ascribe a name to the interpreted parent magmatic rock and 

assumes that the parent rock was anhydrous. Most of the samples now contain hornblende 

and some other hydrous minerals which have formed through metamorphic reactions 

involving water through the Inverian and Laxfordian tectonothermal events. The fact that 

some samples record up to three metamorphic events since the protolith would suggest 

that they will have undergone at least some bulk chemical change and therefore the names 

ascribed using the QAP classification may be inaccurate. Primitive mantle-normalised 

(Hofmann, 1988) whole rock trace element contents of the grey TTG gneiss are plotted 

against the range and average of late-Archaean (3.4-2.5Ga) high-Al TTG samples compiled 

by Condie (2005) (Fig. 4.38).  
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Majors 
(Wt.%) 

JM09/
BP02 

JM09/
BP01 

JM09/
BP06 

JM09/ 
BP04 

JM09/ 
DP03 

JM09/ 
DP01 

JM09/ 
DP02 

JM09/
SM09 

JM08/
22 

JM08/
23 

SiO2 46.87 60.30 64.38 62.33 49.55 53.69 62.54 51.33 61.14 56.04 

Al2O3 15.69 16.56 15.67 16.57 16.45 14.36 14.99 14.46 18.04 19.28 

FeOT 11.14 6.01 5.22 5.28 9.45 8.40 6.44 11.66 8.07 10.71 

MgO 7.06 3.46 2.64 2.56 6.90 7.35 3.80 6.78 2.11 2.55 

CaO 10.56 5.75 4.64 5.14 9.98 8.62 5.04 10.93 1.35 3.23 

Na2O 2.51 4.61 4.72 4.94 3.30 3.61 4.18 3.03 2.15 3.25 

K2O 1.32 0.91 0.73 0.62 1.15 0.68 0.78 0.45 2.43 1.21 

TiO2 1.14 0.62 0.51 0.62 1.02 0.40 0.53 0.85 0.77 1.09 

MnO 0.16 0.10 0.08 0.07 0.12 0.11 0.11 0.21 0.06 0.20 

P2O5 0.96 0.23 0.12 0.19 0.53 0.27 0.13 0.08 0.03 0.03 

LOI 2.01 1.19 1.00 1.09 1.18 2.05 1.16 0.16 3.56 2.21 

Total 99.41 99.74 99.70 99.41 99.63 99.54 99.70 99.94 99.72 99.79 

Traces (ppm)          

Rb 36.7 21.7 8.7 5.4 4.5 3 9 3.7 36.9 12.9 

Ba 542.1 263.5 290.7 151.9 313.8 149.7 221 213.4 923.9 836.6 

Th 11.4 bd bd bd 3.6 bd bd bd bd bd 

U bd bd bd bd bd bd bd bd bd bd 

Pb 6.3 10.1 6.6 2.6 4.9 6.4 8.3 4.5 14.8 19.6 

Nb 7.6 5 3.3 3.4 7.2 1.4 4.2 3 11.5 12 

La 135.2 25.6 17.4 15.2 60.2 22.8 23.5 14.4 14.4 30.5 

Ce 270.2 55 35.7 36.4 127.6 60.6 49.7 36.5 25.4 48.2 

Sr 540.9 517.3 597.2 452.8 560 421.8 448.9 268.9 236.4 505.3 

Nd 133.1 24.1 15.3 19.8 71.2 42.3 20.9 20.1 6.9 10.3 

Zr 215.1 125.7 87.7 118.9 233.4 182 125.9 62.3 118.1 607.4 

Y 38.5 12.3 9.1 12.8 23.4 22.4 10.7 26.6 9.8 23.1 

Zn 133.3 88.8 54 74.5 122 156.3 63.7 97.4 74.3 128.1 

Cu 44.7 35.9 48.4 35.5 15.4 26.2 38.6 57.9 138.8 145.1 

Ni 161.5 75.7 51.1 62.8 89.6 121.1 56.5 272.4 23.9 34.1 

Sc 38.6 15.8 16.1 21.6 30.6 34.6 13.1 41 20.4 28.5 

Cr 200.1 92.5 78.6 182.8 305 709 42.8 243.4 233.4 426.6 

V 246 114 102.6 119.1 204.9 122.2 106 279.7 218.5 280.6 

Table 4.13 Whole rock major and trace element composition for samples described in 
Chapter 4a; bd denotes below detection limits; FeOT denotes total iron oxide concentration. 
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Volume % 
JM09/ 
BP02 

JM09/ 
BP01 

JM09/ 
BP06 

JM09/ 
BP04 

JM09/ 
DP03 

JM09/ 
DP01 

JM09/ 
DP02 

JM09/ 
SM09 

Quartz 0.00 12.63 20.11 16.48 0.00 2.27 18.65 0.00 

Anorthite 30.50 22.41 19.67 21.66 28.75 22.85 20.47 26.82 

Albite 24.88 42.44 42.87 45.12 31.88 35.18 38.59 29.62 

Orthoclase 9.87 6.23 4.98 4.21 8.28 4.91 5.31 3.32 

Diopside 14.14 3.83 2.15 2.26 14.39 14.91 3.17 21.73 

Hypersthene 4.87 9.67 8.03 7.75 2.91 16.36 11.20 13.91 

Olivine 8.98 0.00 0.00 0.00 8.73 0.00 0.00 0.07 

Ilmenite 1.40 0.71 0.57 0.70 1.22 0.48 0.61 1.03 

Magnetite 3.17 1.59 1.36 1.39 2.63 2.36 1.71 3.28 

Apatite 2.13 0.47 0.24 0.39 1.15 0.59 0.27 0.18 

Zircon 0.03 0.02 0.01 0.02 0.03 0.02 0.02 0.01 

Chromite 0.03 0.01 0.01 0.02 0.03 0.09 0.01 0.04 

Total 99.99 100.01 100.00 100.00 100.00 100.02 100.01 100.01 

Normalised QAP 
       M 27.99 13.50 10.18 10.01 26.03 31.27 14.37 35.71 

Q 0.00 15.09 22.95 18.84 0.00 3.48 22.46 0.00 

A 15.13 7.44 5.68 4.81 12.02 7.53 6.40 5.56 

P 84.87 77.47 71.37 76.35 87.98 88.99 71.14 94.44 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

QAP Field 9 10* 5 10* 9 10 5 10 

Sample QAP Field Rock Name 

BP02 9 hypersthene monzodiorite  

BP01 10* hypersthene diorite 

BP06 5 hypersthene tonalite  

BP04 10* hypersthene diorite 

DP03 9 hypersthene monzodiorite 

DP01 10 hypersthene diorite 

DP02 5 hypersthene tonalite  

SM09 10 hypersthene diorite 

Table 4.14 CIPW normative mineralogy and name for parent rocks of the grey TTG gneiss 
samples. The CIPW normative mineralogies of the samples all contained hypersthene, 
therefore the names are from the charnockite classification. 
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Fig.  4.37 QAP ternary diagram with fields named after the classification of Streckeisen 
(1974). The CIPW normative mineralogies of the grey TTG gneiss samples all contained 
hypersthene, therefore the names are from the charnockite classification. 
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Fig.  4.38 Spider diagram of trace element concentrations of the grey TTG gneiss samples; 
TTG range and Average TTG values from the compilation of late-Archaean (3.4-2.5Ga) high-
Al TTG samples in Condie (2005); all values normalised to the primitive mantle values of 
Hofmann (1988). 

 
Mineral Chemistry 

Further characterisation of the chemistry of the samples was gained from SEM-EDS and 

EMPA (see Chapter 3 for a description of analytical methods) analysis of major and some 

minor minerals. Semi-quantitative single analyses of minerals in each sample were made by 

SEM-EDS; the results are shown in Tables 4.15-4.19. Oxide weight per cent totals for some 

analyses are high, likely due to a lack of beam stability or instrument precision. However, 

the cation counts calculated from these analyses make up stoichiometric mineral formulae 

so these analyses have still been included. 
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Sample JM09/BP02 JM09/BP01 JM09/BP06 JM09/BP04 

Mineral Hbl Plag Hbl Plag Hbl Plag Hbl Plag 

SiO2 46.93 60.61 42.55 66.13 49.00 68.37 36.07 62.34 

TiO2 0.59 bd 0.67 bd 0.55 bd 1.50 bd 

Al2O3 9.12 26.37 12.96 23.15 9.32 20.43 17.50 25.91 

FeOT 13.31 bd 19.43 bd 14.46 bd 21.37 bd 

MnO bd bd bd bd bd bd bd bd 

MgO 14.10 bd 10.43 bd 14.28 bd 14.71 bd 

CaO 11.89 6.87 11.81 1.34 12.09 0.25 bd 6.23 

Na2O 1.25 8.53 1.71 9.57 1.53 11.60 bd 8.44 

K2O 0.51 bd 1.13 1.66 0.54 0.28 5.14 bd 

Total 97.70 102.38 100.69 101.85 101.77 100.93 96.29 102.92 

No. of oxygens 23 8 23 8 23 8 23 8 

Si 6.86 2.64 6.28 2.86 6.89 2.96 5.59 2.69 

Ti 0.06 0.00 0.07 0.00 0.06 0.00 0.17 0.00 

Al 1.57 1.36 2.25 1.18 1.55 1.04 3.20 1.32 

Fe 1.63 0.00 2.40 0.00 1.70 0.00 2.77 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 3.07 0.00 2.29 0.00 3.00 0.00 3.40 0.00 

Ca 1.86 0.32 1.87 0.06 1.82 0.01 0.00 0.29 

Na 0.35 0.72 0.49 0.80 0.42 0.97 0.00 0.71 

K 0.10 0.00 0.21 0.09 0.10 0.02 1.02 0.00 

Total 15.51 5.04 15.87 5.00 15.53 5.01 16.15 5.00 

XMg 0.65 
 

0.49 
 

0.64 
 

0.55 
 XAn   0.31   0.07   0.01   0.29 

Table 4.15 EDS analyses of major phases in samples from the Badcall Point locality; FeOT denotes total 
iron oxide content; bd denotes below detection limits; Hbl = hornblende, Plag = plagioclase. 
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Sample JM09/DP03 JM09/DP01 JM09/DP02 

Mineral Hbl Plag Cpx Hbl Plag Hbl Plag 

SiO2 38.97 61.69 57.86 48.14 58.84 44.05 65.08 

TiO2 bd bd bd bd bd bd bd 

Al2O3 23.28 28.25 3.07 11.70 25.86 14.36 24.11 

FeOT 12.71 1.26 10.39 13.68 bd 17.43 bd 

MnO bd bd bd bd bd bd bd 

MgO 5.42 bd 14.61 13.88 bd 11.06 bd 

CaO 20.75 3.49 25.54 12.80 7.71 12.48 0.81 

Na2O bd 6.55 0.91 1.36 7.44 1.74 8.64 

K2O bd 4.33 bd 0.52 bd 0.65 2.41 

Total 101.13 105.57 112.38 102.08 99.85 101.77 101.05 

 
23 8 6 23 8 23 8 

Si 5.60 2.64 1.93 6.73 2.63 6.33 2.84 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 3.94 1.42 0.12 1.93 1.36 2.43 1.24 

Fe 1.53 0.05 0.29 1.60 0.00 2.10 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 1.16 0.00 0.73 2.89 0.00 2.37 0.00 

Ca 3.20 0.16 0.91 1.92 0.37 1.92 0.04 

Na 0.00 0.54 0.06 0.37 0.65 0.48 0.73 

K 0.00 0.24 0.00 0.09 0.00 0.12 0.13 

Total 15.43 5.04 4.04 15.53 5.01 15.75 4.98 

XMg 0.43 
 

0.71 0.64 
 

0.53 
 XAn   0.23     0.36   0.05 

Table 4.16 EDS analyses of major phases in samples from the Duartmore Point locality; FeOT denotes 
total iron oxide content; bd denotes below detection limits; Hbl = hornblende, Plag = plagioclase. 
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Sample JM08/22 JM08/23 JM09/ST02 

Mineral Grt Bt Plag Msc Ky (needle) Ky (basal) Grt Bt Plag 

SiO2 38.33 38.45 64.61 50.49 38.91 37.91 42.29 40.37 65.02 

TiO2 bd 2.20 bd 2.50 bd bd bd 2.29 bd 

Al2O3 21.99 19.96 25.73 38.40 65.29 64.97 23.94 20.60 27.55 

FeOT 30.39 14.76 bd 3.05 bd bd 38.33 19.62 0.99 

MnO 5.52 bd bd bd bd bd 2.95 bd bd 

MgO 4.50 13.75 bd 0.72 bd bd 4.75 13.64 bd 

CaO 2.71 bd 3.60 bd bd bd 2.86 bd 1.16 

Na2O bd bd 8.84 1.21 bd bd bd bd 7.52 

K2O bd 9.23 1.63 10.66 bd bd bd 7.34 4.31 

Total 103.44 98.35 104.41 107.03 104.20 102.88 115.12 103.86 106.55 

No. of oxygens 12 22 8 22 5 5 12 22 8 

Si 2.96 5.47 2.75 6.03 1.00 0.99 2.96 5.48 2.73 

Ti 0.00 0.24 0.00 0.22 0.00 0.00 0.00 0.23 0.00 

Al 2.00 3.35 1.29 5.40 1.99 2.01 1.97 3.30 1.36 

Fe 1.96 1.76 0.00 0.30 0.01 0.00 2.24 2.23 0.03 

Mn 0.36 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 

Mg 0.52 2.92 0.00 0.13 0.00 0.00 0.50 2.76 0.00 

Ca 0.22 0.00 0.16 0.00 0.00 0.00 0.21 0.00 0.05 

Na 0.00 0.13 0.73 0.28 0.00 0.00 0.00 0.00 0.61 

K 0.00 1.67 0.09 1.62 0.00 0.00 0.00 1.27 0.23 

Total 8.04 15.53 5.02 14.00 3.00 3.00 8.06 15.27 5.01 

XAn 
  

0.18 
     

0.08 

XAlm 0.64 
     

0.72 
  XPyr 0.17 

     
0.16 

  XGrs 0.07 
     

0.07 
  XSps 0.12           0.06     

Table 4.17 EDS analyses of major phases in samples from the Sithean Mor locality; FeOT denotes total iron oxide content; bd denotes below detection limits; Grt = garnet, Bt 
= biotite, Plag = plagioclase, Msc = muscovite, Ky = kyanite. 
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Sample JM09/GG09 

Mineral Hbl Plag 

SiO2 49.37 68.01 

TiO2 0.68 bd 

Al2O3 14.13 29.81 

FeOT 21.54 bd 

MnO bd bd 

MgO 10.96 bd 

CaO 13.79 8.29 

Na2O 1.42 8.56 

K2O 0.43 bd 

Total 112.32 114.67 

No. of oxygens 23 8 

Si 6.47 2.64 

Ti 0.07 0.00 

Al 2.18 1.37 

Fe 2.36 0.00 

Mn 0.00 0.00 

Mg 2.14 0.00 

Ca 1.94 0.35 

Na 0.36 0.64 

K 0.07 0.00 

Total 15.59 5.00 

XMg 0.48 
 XAn   0.35 

Table 4.18 EDS analyses of major phases in samples from the Geisgeil locality; FeOT denotes total iron 
oxide content; bd denotes below detection limits; Hbl = hornblende, Plag = plagioclase. 
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Sample JM09/SM09 

Mineral Opx Cpx Ilm Plag 

SiO2 53.85 54.70 bd 61.79 

TiO2 bd bd 57.32 bd 

Al2O3 2.13 3.54 bd 28.98 

FeOT 27.14 10.93 47.59 bd 

MnO 0.79 bd bd bd 

MgO 22.22 14.00 bd bd 

CaO 0.53 24.39 bd 10.03 

Na2O bd bd bd 6.62 

K2O bd bd bd 0.31 

Total 106.66 107.56 104.91 107.73 

No. of oxygens 6 6 3 8 

Si 1.92 1.90 0.00 2.57 

Ti 0.00 0.00 1.03 0.00 

Al 0.09 0.15 0.00 1.42 

Fe 0.81 0.32 0.95 0.00 

Mn 0.02 0.00 0.00 0.00 

Mg 1.18 0.73 0.00 0.00 

Ca 0.02 0.91 0.00 0.45 

Na 0.00 0.04 0.00 0.53 

K 0.00 0.00 0.00 0.02 

Total 4.04 4.04 1.97 4.99 

XMg 0.59 0.70 
  XAn       0.46 

Table 4.19 EDS analyses of major phases in samples from the Scourie Mor locality; FeOT denotes total 
iron oxide content; bd denotes below detection limits; Hbl = hornblende, Plag = plagioclase, Cpx = 
clinopyroxene. 
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 At Badcall Point, hornblende has a variable composition between samples. XMg 

ranges from 0.49-0.65 with 8-9 Si p.f.u. The hornblende in sample JM09/BP04 is relatively 

Si-poor (5.59 p.f.u.) and Al-rich (3.2 p.f.u) but K-rich (1.02) with no Na or Ca. Plagioclase 

from the Badcall Point samples are generally albitic with XAn ranging from 0.31 down to 0.01 

in sample JM09/BP06. There is also variability in hornblende composition between samples 

from Duartmore Point with XMg ranging from 0.43 to 0.64. Hornblende from sample 

JM09/DP03 (statically retrogressed Badcallian gneissic layering) is relatively Ca-rich (3.20 

p.f.u.) while hornblendes from JM09/DP01 (shear zone margin) and JM09/DP02 (the 

Laxfordian shear zone) are Mg-rich (2.89 and 2.37 p.f.u. respectively). Like at Badcall Point, 

plagioclase is albitic with XAn ranging from 0.36 to 0.05. Clinopyroxene in the Badcallian 

assemblage in JM09/DP03 is diopsidic with 0.91 p.f.u. Ca and XMg of 0.71. 

 Almandine is the main component in garnets from the garnet- and biotite-bearing 

metasediments from Sithean Mor (samples JM08/22 and JM09/ST02; 0.64 and 0.72 p.f.u. 

respectively). Plagioclase from these two samples is albitic with XAn of 0.18 and 0.08 

respectively. Hornblende from sample JM09/GG09 from Geisgeil has similar concentrations 

of Fe, Mg and Ca (2.36, 2.14 and 1.94 p.f.u. respectively). Plagioclase in this sample has an 

XAn of 0.35. Plagioclase from sample JM09/SM09 (granulite-facies Badcallian assemblage) 

from Scourie Mor has the highest anorthite component in plagioclase of any of the samples 

analysed by EDS (XAn of 0.46). Clinopyroxene in this sample is diopsidic with 0.91 p.f.u. Ca 

and XMg of 0.70; orthopyroxene is enstatitic (XMg of 0.59). 

 In order to determine if there was significant intracrystal geochemical variability, 

EMPA compositional traverses were made of major minerals in selected samples – 

JM09/SM09, JM09/BP01, JM09/DP01 and JM09/DP02 (transect locations on the thin 

sections are shown in Fig. 4.39). These samples were chosen as they were interpreted to 

reflect typical examples of the Badcallian granulite-facies metamorphic assemblage 

(JM09/SM09), possible Inverian deformation (JM09/BP01), a Laxfordian shear zone 
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(JM09/DP02) and statically retrogressed granulites (JM09/DP01). Plagioclase, 

orthopyroxene, clinopyroxene and hornblende were analysed (Tables 4.20-4.23). In the 

case of hornblende from JM09/DP01 and JM09/BP01, where hornblende is associated with 

quartz in a sieve texture, some analytical spots were discarded where they had clearly 

sampled quartz or a mixture of hornblende and quartz. Plots of XAn for plagioclase and XMg 

for hornblende, orthopyroxene and clinopyroxene show little or no chemical zoning within 

the minerals (Fig. 4.40); average compositions for each transect is given in Tables 4.24-4.27. 

 

 

Fig.  4.39 Location of EMPA compositional transects on PPL scans of thin sections. Black lines denote 
transect lines, a or b denote a transect name suffix where more than one transect was made of  single crystal. 
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Crystal: SM09_PX1a 

 Transect data points 

SiO2 56.35 56.11 55.66 56.77 55.95 56.69 56.62 55.79 56.98 56.13 56.44 55.19 

Al2O3 26.54 26.29 26.25 26.18 26.45 26.13 26.35 26.54 26.49 26.46 26.44 27.19 

CaO 8.71 8.34 8.50 8.56 8.34 8.34 8.36 8.62 8.35 8.54 8.70 9.32 

FeOT 0.08 0.06 0.06 bd 0.06 0.08 0.06 bd 0.08 0.06 0.08 0.14 

Na2O 6.67 6.80 6.72 6.79 6.83 6.84 6.77 6.64 6.81 6.78 6.65 6.42 

K2O 0.32 0.30 0.30 0.32 0.32 0.33 0.36 0.35 0.30 0.31 0.26 0.21 

Total  98.67 97.91 97.49 98.62 97.94 98.41 98.52 97.95 99.02 98.27 98.56 98.47 

Cations p.f.u. for 8 oxygens          

Si 2.57 2.57 2.57 2.58 2.57 2.59 2.58 2.56 2.58 2.57 2.57 2.52 

Al 1.42 1.42 1.43 1.40 1.43 1.40 1.41 1.43 1.41 1.43 1.42 1.47 

Ca 0.42 0.41 0.42 0.42 0.41 0.41 0.41 0.42 0.41 0.42 0.42 0.46 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Na 0.59 0.60 0.60 0.60 0.61 0.60 0.60 0.59 0.60 0.60 0.59 0.57 

K 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 

Total  5.03 5.03 5.03 5.02 5.03 5.02 5.02 5.03 5.02 5.03 5.02 5.03 

XAn 0.42 0.40 0.41 0.41 0.40 0.40 0.41 0.42 0.40 0.41 0.42 0.45 
 

            
(continued) 
             

Crystal: SM09_PX1b 

 Transect data points 

SiO2 56.07 55.71 55.62 56.48 56.82 56.62 56.91 55.44 

Al2O3 26.36 26.34 26.35 26.27 26.47 26.35 26.23 26.28 

CaO 8.60 8.32 8.45 8.26 8.43 8.36 8.48 8.71 

FeOT 0.09 0.07 0.08 0.08 0.07 0.08 0.09 0.13 

Na2O 6.65 6.79 6.65 6.80 6.67 6.65 6.79 6.69 

K2O 0.38 0.36 0.31 0.31 0.34 0.33 0.31 0.30 

Total  98.15 97.58 97.46 98.20 98.80 98.38 98.81 97.56 

Cations p.f.u. for 8 oxygens 
     Si 2.57 2.57 2.56 2.58 2.58 2.58 2.58 2.56 

Al 1.42 1.43 1.43 1.41 1.42 1.42 1.40 1.43 

Ca 0.42 0.41 0.42 0.40 0.41 0.41 0.41 0.43 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Na 0.59 0.61 0.59 0.60 0.59 0.59 0.60 0.60 

K 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Total  5.03 5.03 5.03 5.02 5.02 5.01 5.02 5.04 

XAn 0.42 0.40 0.41 0.40 0.41 0.41 0.41 0.42 
 

            

(continued)             
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Crystal: SM09_PX2a 

Transect data points 

SiO2 57.68 58.11 58.01 57.83 57.95 58.47 59.08 58.39 57.30 58.62 59.22 58.17 58.62 59.15 58.90 

Al2O3 26.65 26.32 26.51 26.55 26.18 26.35 26.06 26.12 27.13 26.50 25.97 26.14 25.95 26.11 26.21 

CaO 8.32 7.83 8.06 8.18 7.71 8.15 7.57 7.70 8.96 7.92 7.76 7.89 7.76 7.73 7.88 

FeOT bd 0.07 0.06 0.07 bd 0.06 bd 0.07 0.07 0.23 0.15 0.12 bd 0.07 0.07 

Na2O 6.85 7.20 7.10 7.13 7.19 7.05 7.36 7.47 6.64 7.19 7.29 7.23 7.12 7.25 7.17 

K2O bd 0.33 0.29 0.27 0.35 0.29 0.35 0.35 0.29 0.33 0.35 0.34 0.37 0.38 0.35 

Total  99.50 99.86 100.02 100.02 99.38 100.36 100.43 100.11 100.39 100.79 100.74 99.89 99.82 100.69 100.58 

Cations p.f.u. for 8 oxygens 
            Si 2.59 2.61 2.60 2.59 2.61 2.61 2.63 2.61 2.56 2.61 2.63 2.61 2.63 2.63 2.62 

Al 1.41 1.39 1.40 1.40 1.39 1.39 1.37 1.38 1.43 1.39 1.36 1.38 1.37 1.37 1.37 

Ca 0.40 0.38 0.39 0.39 0.37 0.39 0.36 0.37 0.43 0.38 0.37 0.38 0.37 0.37 0.38 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 

Na 0.60 0.63 0.62 0.62 0.63 0.61 0.64 0.65 0.58 0.62 0.63 0.63 0.62 0.62 0.62 

K 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Total  5.00 5.02 5.02 5.02 5.02 5.01 5.01 5.03 5.02 5.02 5.01 5.02 5.01 5.01 5.01 

XAn 0.40 0.38 0.39 0.39 0.37 0.39 0.36 0.36 0.43 0.38 0.37 0.38 0.38 0.37 0.38 

(continued)             
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Crystal: SM09_PX2b 

Transect data points 

SiO2 57.67 58.75 57.70 59.24 58.20 58.69 58.76 59.02 58.84 59.35 59.03 58.89 58.84 58.31 58.46 58.45 

Al2O3 26.67 26.17 26.98 25.98 26.22 26.01 26.37 26.13 26.14 25.81 25.83 25.44 25.96 26.13 25.95 26.56 

CaO 8.49 7.99 8.75 7.70 7.88 7.63 8.15 7.97 7.74 7.59 7.67 7.43 7.49 7.79 7.62 8.12 

FeOT 0.11 0.07 0.07 0.08 0.08 0.10 bd 0.06 0.06 0.06 0.06 0.07 0.06 0.10 0.07 0.17 

Na2O 6.89 7.23 6.76 7.34 7.24 7.37 7.05 6.97 7.27 7.24 7.27 7.23 7.11 7.26 7.16 7.15 

K2O 0.33 0.37 0.31 0.34 0.37 0.38 0.30 0.69 0.32 0.43 0.41 0.41 0.37 0.38 0.37 0.38 

Total  100.15 100.57 100.56 100.69 99.98 100.18 100.63 100.84 100.37 100.48 100.28 99.47 99.82 99.97 99.63 100.83 

Cations p.f.u. for 8 oxygens 
             Si 2.58 2.62 2.57 2.63 2.61 2.62 2.61 2.62 2.62 2.64 2.63 2.65 2.63 2.61 2.62 2.60 

Al 1.41 1.37 1.42 1.36 1.38 1.37 1.38 1.37 1.37 1.35 1.36 1.35 1.37 1.38 1.37 1.39 

Ca 0.41 0.38 0.42 0.37 0.38 0.37 0.39 0.38 0.37 0.36 0.37 0.36 0.36 0.37 0.37 0.39 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Na 0.60 0.62 0.58 0.63 0.63 0.64 0.61 0.60 0.63 0.62 0.63 0.63 0.62 0.63 0.62 0.62 

K 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Total  5.02 5.02 5.02 5.01 5.02 5.02 5.01 5.01 5.01 5.01 5.01 5.01 5.00 5.02 5.01 5.02 

XAn 0.41 0.38 0.42 0.37 0.38 0.36 0.39 0.39 0.37 0.37 0.37 0.36 0.37 0.37 0.37 0.39 

(continued)             
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Crystal: SM09_P6a 

Transect data points 

SiO2 57.31 56.64 56.56 57.27 56.97 56.16 56.01 55.82 56.49 55.10 

Al2O3 26.79 26.70 26.82 26.63 26.78 26.63 26.75 26.43 26.32 26.57 

CaO 8.53 8.50 8.38 8.60 8.54 8.56 8.57 8.44 8.46 8.59 

FeOT 0.12 0.10 0.07 0.07 0.07 bd 0.07 0.10 0.10 0.15 

Na2O 6.77 6.75 6.73 6.84 6.88 6.69 6.81 6.65 6.84 6.66 

K2O 0.29 0.29 0.29 0.29 0.27 0.26 0.27 0.27 0.27 0.26 

Total  99.81 98.97 98.85 99.69 99.51 98.30 98.47 97.69 98.49 97.32 

Cations p.f.u. for 8 oxygens 
       Si 2.58 2.57 2.57 2.58 2.57 2.56 2.56 2.56 2.58 2.55 

Al 1.42 1.43 1.43 1.41 1.42 1.43 1.44 1.43 1.41 1.45 

Ca 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.41 0.43 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Na 0.59 0.59 0.59 0.60 0.60 0.59 0.60 0.59 0.60 0.60 

K 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Total  5.02 5.02 5.02 5.02 5.03 5.02 5.03 5.02 5.03 5.04 

XAn 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 

(continued)             
 

Crystal: SM09_P6b  

Transect data points 

SiO2 56.28 55.20 55.92 55.97 56.21 

Al2O3 26.30 26.54 26.36 26.54 26.17 

CaO 8.44 8.50 8.46 8.66 8.63 

FeOT 0.11 0.07 bd 0.10 0.08 

Na2O 6.63 6.73 6.67 6.92 6.78 

K2O 0.28 0.30 0.29 0.30 0.30 

Total  98.04 97.34 97.70 98.50 98.15 

Cations p.f.u. for 8 oxygens 
  Si 2.58 2.55 2.57 2.56 2.57 

Al 1.42 1.44 1.43 1.43 1.41 

Ca 0.41 0.42 0.42 0.42 0.42 

Fe 0.00 0.00 0.00 0.00 0.00 

Na 0.59 0.60 0.59 0.61 0.60 

K 0.02 0.02 0.02 0.02 0.02 

Total  5.02 5.04 5.02 5.04 5.03 

XAn 0.41 0.41 0.41 0.41 0.41 

(continued)             
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Crystal: BP01_P3a  

Transect data points 

SiO2 58.14 57.77 58.63 58.86 59.50 58.02 57.97 58.68 59.53 59.49 61.68 60.65 59.39 58.73 59.13 59.96 59.34 60.02 

Al2O3 25.45 25.34 25.38 25.24 25.40 25.02 24.86 25.18 24.92 25.17 23.79 24.34 25.00 25.46 25.07 25.06 25.28 25.23 

CaO 6.50 6.86 7.10 6.71 6.43 6.58 6.66 6.59 6.48 6.66 6.15 6.23 6.57 6.69 6.57 6.57 6.80 6.67 

FeOT bd bd bd bd bd bd bd bd bd bd 0.07 bd 0.06 bd bd bd bd bd 

Na2O 7.42 7.76 7.59 7.76 7.89 7.76 7.96 8.18 7.95 8.06 7.48 7.85 8.08 7.94 8.08 8.08 8.17 7.99 

K2O 0.18 0.18 0.15 0.17 0.18 0.17 0.17 0.18 0.19 0.18 0.20 0.18 0.22 0.18 0.19 0.20 0.19 0.16 

Total  97.68 97.91 98.86 98.74 99.39 97.54 97.62 98.81 99.05 99.56 99.36 99.25 99.31 98.99 99.04 99.87 99.78 100.08 

Cations p.f.u. for 8 oxygens 
               Si 2.65 2.64 2.65 2.66 2.67 2.65 2.65 2.65 2.68 2.67 2.75 2.71 2.67 2.65 2.66 2.68 2.66 2.67 

Al 1.37 1.36 1.35 1.34 1.34 1.35 1.34 1.34 1.32 1.33 1.25 1.28 1.32 1.35 1.33 1.32 1.33 1.32 

Ca 0.32 0.34 0.34 0.32 0.31 0.32 0.33 0.32 0.31 0.32 0.29 0.30 0.32 0.32 0.32 0.31 0.33 0.32 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.66 0.69 0.66 0.68 0.69 0.69 0.71 0.72 0.69 0.70 0.65 0.68 0.70 0.69 0.71 0.70 0.71 0.69 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.00 5.03 5.01 5.01 5.01 5.02 5.04 5.04 5.01 5.02 4.95 4.99 5.03 5.03 5.03 5.02 5.04 5.01 

XAn 0.33 0.33 0.34 0.32 0.31 0.32 0.32 0.31 0.31 0.31 0.31 0.30 0.31 0.32 0.31 0.31 0.31 0.32 

(continued)             
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Crystal: BP01_P3b  

Transect data points 

SiO2 59.16 59.46 59.81 59.18 59.89 60.71 61.04 60.93 61.36 61.40 61.03 59.77 59.96 

Al2O3 25.33 25.31 24.83 25.47 24.67 24.70 24.64 24.30 24.26 24.31 24.39 25.09 25.07 

CaO 6.51 6.44 6.46 6.85 6.43 6.54 6.44 6.37 6.41 6.37 6.40 6.50 6.56 

FeOT bd bd bd 0.06 bd 0.07 bd bd bd bd bd bd bd 

Na2O 8.05 7.92 8.11 7.53 8.08 7.90 7.71 7.64 7.80 7.75 7.66 8.13 8.01 

K2O 0.16 0.17 0.18 0.21 0.18 0.14 0.17 0.16 0.13 0.12 0.16 0.21 0.17 

Total  99.21 99.31 99.40 99.28 99.26 100.05 100.00 99.40 99.96 99.95 99.64 99.70 99.76 

Cations p.f.u. for 8 oxygens 
          Si 2.66 2.67 2.68 2.66 2.69 2.70 2.71 2.72 2.73 2.73 2.72 2.67 2.68 

Al 1.34 1.34 1.31 1.35 1.31 1.29 1.29 1.28 1.27 1.27 1.28 1.32 1.32 

Ca 0.31 0.31 0.31 0.33 0.31 0.31 0.31 0.30 0.30 0.30 0.31 0.31 0.31 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.70 0.69 0.71 0.66 0.70 0.68 0.66 0.66 0.67 0.67 0.66 0.70 0.69 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.03 5.01 5.02 5.00 5.02 5.00 4.98 4.97 4.98 4.97 4.98 5.02 5.01 

XAn 0.31 0.31 0.31 0.33 0.31 0.31 0.32 0.32 0.31 0.31 0.32 0.31 0.31 

(continued)             
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Crystal: BP01_P4a  

Transect data points 

SiO2 59.11 58.84 59.76 59.79 58.34 58.60 58.77 59.18 59.27 59.54 58.93 59.20 59.34 58.27 59.12 59.86 59.91 59.96 58.75 59.65 

Al2O3 25.00 25.13 24.89 25.15 24.72 24.90 24.81 25.11 24.97 24.94 24.97 24.92 24.96 25.10 24.93 25.11 24.45 24.81 25.28 24.89 

CaO 6.38 6.42 6.54 6.32 6.63 6.40 6.47 6.39 6.47 6.41 6.62 6.53 6.65 6.49 6.57 6.69 6.36 6.28 6.58 6.06 

FeOT bd bd bd 0.06 0.06 bd bd bd 0.06 bd bd bd bd bd bd 0.06 bd bd bd 0.07 

Na2O 7.95 7.95 8.00 8.02 8.07 7.91 8.15 7.98 7.94 7.85 7.89 7.86 7.99 7.96 7.81 7.98 7.89 7.85 7.94 7.97 

K2O 0.15 0.18 0.19 0.18 0.17 0.17 0.18 0.11 0.18 0.18 0.18 0.17 0.17 0.18 0.19 0.18 0.17 0.16 0.16 0.24 

Total  98.60 98.52 99.37 99.52 97.98 97.98 98.37 98.76 98.87 98.91 98.58 98.68 99.12 98.00 98.62 99.87 98.78 99.06 98.71 98.88 

Cations p.f.u. for 8 oxygens 
                 Si 2.67 2.66 2.68 2.68 2.66 2.67 2.67 2.67 2.67 2.68 2.67 2.67 2.67 2.65 2.67 2.67 2.70 2.69 2.65 2.68 

Al 1.33 1.34 1.32 1.33 1.33 1.34 1.33 1.33 1.33 1.32 1.33 1.33 1.32 1.35 1.33 1.32 1.30 1.31 1.35 1.32 

Ca 0.31 0.31 0.31 0.30 0.32 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.30 0.32 0.29 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.70 0.70 0.70 0.70 0.71 0.70 0.72 0.70 0.69 0.68 0.69 0.69 0.70 0.70 0.68 0.69 0.69 0.68 0.70 0.70 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.02 5.02 5.02 5.01 5.04 5.02 5.03 5.02 5.02 5.01 5.02 5.01 5.02 5.03 5.01 5.02 5.00 5.00 5.02 5.01 

XAn 0.31 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.31 0.31 0.31 0.30 

(continued)             
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Crystal: BP01_P4b  

Transect data points 

SiO2 58.87 59.13 59.16 58.51 58.74 59.46 59.70 58.79 59.11 

Al2O3 24.96 24.79 25.39 25.02 24.91 24.94 25.51 25.05 25.22 

CaO 6.48 6.47 6.55 6.57 6.64 6.53 6.23 6.58 6.45 

FeOT bd bd 0.00 bd bd bd bd bd bd 

Na2O 7.88 7.93 7.87 7.94 7.93 8.08 7.88 7.99 7.94 

K2O 0.18 0.17 0.19 0.18 0.19 0.17 0.27 0.17 0.20 

Total  98.37 98.48 99.15 98.22 98.41 99.17 99.58 98.57 98.91 

Cations p.f.u. for 8 oxygens 
      Si 2.67 2.68 2.66 2.66 2.66 2.67 2.67 2.66 2.66 

Al 1.33 1.32 1.35 1.34 1.33 1.32 1.34 1.34 1.34 

Ca 0.31 0.31 0.32 0.32 0.32 0.31 0.30 0.32 0.31 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.69 0.70 0.69 0.70 0.70 0.70 0.68 0.70 0.69 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 

Total  5.02 5.02 5.02 5.03 5.03 5.02 5.01 5.03 5.02 

XAn 0.31 0.31 0.32 0.31 0.32 0.31 0.30 0.31 0.31 

(continued)             
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Crystal: DP01_PX1a  

Transect data points 

SiO2 60.02 59.88 60.24 60.18 60.44 60.89 62.15 62.22 60.58 60.65 60.34 60.28 61.01 60.67 60.17 

Al2O3 26.24 26.25 26.17 26.12 25.94 26.03 25.32 25.24 25.84 26.18 26.15 26.24 26.24 26.35 26.12 

CaO 7.49 7.31 6.97 7.10 7.13 7.31 6.05 6.15 7.17 7.18 7.14 7.25 7.15 7.47 7.40 

FeOT 0.10 bd bd bd bd bd bd bd bd 0.06 bd bd bd bd 0.08 

Na2O 7.60 7.60 7.86 7.71 7.89 7.93 8.38 8.61 7.71 7.91 7.83 7.80 7.81 7.82 7.70 

K2O 0.14 0.17 0.18 0.17 0.16 0.16 0.17 0.18 0.17 0.16 0.17 0.17 0.15 0.16 0.13 

Total  101.60 101.21 101.42 101.29 101.55 102.32 102.06 102.40 101.47 102.14 101.63 101.74 102.35 102.47 101.60 

Cations p.f.u. for 8 oxygens 
            Si 2.64 2.64 2.65 2.65 2.66 2.66 2.71 2.70 2.66 2.65 2.65 2.64 2.66 2.64 2.64 

Al 1.36 1.36 1.36 1.36 1.34 1.34 1.30 1.29 1.34 1.35 1.35 1.36 1.35 1.35 1.35 

Ca 0.35 0.35 0.33 0.33 0.34 0.34 0.28 0.29 0.34 0.34 0.34 0.34 0.33 0.35 0.35 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.65 0.65 0.67 0.66 0.67 0.67 0.71 0.73 0.66 0.67 0.67 0.66 0.66 0.66 0.66 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.01 5.01 5.01 5.01 5.01 5.02 5.00 5.02 5.00 5.02 5.01 5.01 5.00 5.01 5.01 

XAn 0.35 0.35 0.33 0.34 0.33 0.34 0.29 0.28 0.34 0.33 0.34 0.34 0.34 0.35 0.35 

(continued)             
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Crystal: DP01_PX1b  

Transect data points 

SiO2 59.68 58.29 59.64 59.42 59.41 59.25 61.19 59.78 59.45 59.41 58.96 61.39 59.04 59.01 59.48 59.82 

Al2O3 26.08 26.15 26.09 26.03 26.35 25.66 25.00 26.02 26.18 25.98 26.13 24.36 26.05 26.52 26.29 26.51 

CaO 7.38 7.27 7.24 7.19 7.32 6.63 5.82 7.21 7.30 7.25 7.29 4.62 7.18 7.28 7.33 7.58 

FeOT 0.18 bd bd bd bd 0.06 bd bd bd bd bd bd bd bd bd bd 

Na2O 7.71 7.77 7.72 7.61 7.65 8.19 8.55 7.93 7.73 7.74 7.77 9.23 7.96 7.68 7.56 7.60 

K2O 0.13 0.13 0.14 0.14 0.14 0.17 0.18 0.16 0.17 0.14 0.15 0.09 0.18 0.16 0.18 0.14 

Total  101.15 99.60 100.81 100.38 100.88 99.95 100.73 101.10 100.82 100.52 100.30 99.68 100.40 100.65 100.84 101.64 

Cations p.f.u. for 8 oxygens 
             Si 2.64 2.62 2.64 2.64 2.63 2.65 2.70 2.64 2.63 2.64 2.63 2.73 2.63 2.62 2.63 2.63 

Al 1.36 1.38 1.36 1.36 1.37 1.35 1.30 1.35 1.37 1.36 1.37 1.28 1.37 1.39 1.37 1.37 

Ca 0.35 0.35 0.34 0.34 0.35 0.32 0.28 0.34 0.35 0.35 0.35 0.22 0.34 0.35 0.35 0.36 

Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.66 0.68 0.66 0.66 0.66 0.71 0.73 0.68 0.66 0.67 0.67 0.80 0.69 0.66 0.65 0.65 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.02 5.03 5.01 5.01 5.02 5.04 5.02 5.03 5.02 5.02 5.03 5.03 5.04 5.02 5.01 5.01 

XAn 0.35 0.34 0.34 0.34 0.35 0.31 0.27 0.33 0.34 0.34 0.34 0.22 0.33 0.34 0.35 0.36 

(continued)             
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Crystal: DP01_PX2a  

Transect data points 

SiO2 59.83 60.90 59.76 60.53 60.68 60.85 60.44 60.51 60.36 60.68 

Al2O3 26.91 26.13 26.38 26.33 26.39 26.45 26.29 26.33 26.17 26.08 

CaO 7.79 7.29 7.44 7.33 7.25 7.50 7.26 7.38 7.23 7.29 

FeOT bd bd bd 0.07 bd bd bd bd bd bd 

Na2O 7.45 7.65 7.67 7.72 7.90 7.88 7.88 7.74 7.86 7.84 

K2O 0.16 0.21 0.17 0.19 0.18 0.18 0.20 0.21 0.20 0.17 

Total  102.13 102.17 101.41 102.17 102.40 102.85 102.07 102.17 101.82 102.04 

Cations p.f.u. for 8 oxygens 
       Si 2.62 2.66 2.63 2.64 2.64 2.64 2.64 2.64 2.65 2.65 

Al 1.39 1.34 1.37 1.36 1.36 1.35 1.36 1.36 1.35 1.34 

Ca 0.37 0.34 0.35 0.34 0.34 0.35 0.34 0.35 0.34 0.34 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.63 0.65 0.65 0.65 0.67 0.66 0.67 0.66 0.67 0.66 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Total  5.01 5.00 5.02 5.01 5.02 5.02 5.02 5.01 5.02 5.01 

XAn 0.37 0.34 0.35 0.34 0.34 0.34 0.34 0.35 0.34 0.34 

(continued)             
 
 

Crystal: DP01_PX2b  

Transect data points 

SiO2 59.98 60.76 69.98 60.18 60.20 60.06 59.69 59.21 58.14 

Al2O3 26.52 26.25 20.98 25.86 26.22 26.20 26.38 26.04 27.27 

CaO 7.49 7.13 0.15 7.09 7.34 7.28 7.27 7.14 7.34 

FeOT bd 0.07 bd bd bd 0.06 bd bd 0.07 

Na2O 7.69 8.03 11.30 7.80 7.69 7.78 7.86 7.83 6.98 

K2O 0.16 0.21 0.20 0.17 0.21 0.18 0.14 0.19 0.62 

Total  101.83 102.44 102.62 101.10 101.66 101.56 101.34 100.42 100.42 

Cations p.f.u. for 8 oxygens 
      Si 2.63 2.65 2.97 2.65 2.64 2.64 2.63 2.63 2.59 

Al 1.37 1.35 1.05 1.34 1.36 1.36 1.37 1.37 1.43 

Ca 0.35 0.33 0.01 0.34 0.35 0.34 0.34 0.34 0.35 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.65 0.68 0.93 0.67 0.65 0.66 0.67 0.68 0.60 

K 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 

Total  5.02 5.02 4.97 5.01 5.01 5.02 5.02 5.03 5.01 

XAn 0.35 0.33 0.01 0.33 0.35 0.34 0.34 0.34 0.37 

Table 4.20 Compositional transects (EMPA) of plagioclase from samples JM09/SM09, JM09/BP01 and 
JM09/DP01; bd denotes below detection limits. 
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Crystal: SM09_OPX3a      Crystal: SM09_OPX3b   

Transect data points  Transect data points 

SiO2 51.44 50.41 51.33 51.35 51.45 51.53 
 

51.65 51.88 51.59 51.62 51.98 

TiO2 0.04 0.06 bd bd bd bd 
 

bd bd bd 0.14 bd 

Al2O3 1.82 2.58 1.99 2.06 2.04 1.84 
 

1.86 1.96 2.01 2.03 2.07 

Cr2O3 0.04 bd bd bd bd 0.04 
 

0.04 bd bd bd bd 

MgO 21.32 21.21 21.20 21.04 21.03 20.90 
 

21.10 21.00 20.99 21.05 21.29 

CaO 0.35 0.42 0.50 0.60 0.40 0.36 
 

0.44 0.49 0.46 0.55 0.53 

MnO 0.61 0.63 0.67 0.69 0.72 0.68 
 

0.64 0.65 0.69 0.69 0.71 

FeOT 24.37 24.61 24.70 24.87 24.96 24.84 
 

24.88 25.09 24.94 24.76 24.67 

Na2O bd 0.05 0.10 bd bd bd 
 

bd bd 0.07 bd bd 

Total 99.99 99.97 100.49 100.60 100.61 100.19 
 

100.60 101.06 100.75 100.83 101.24 

Cations p.f.u. for 6 oxygens 
         Si 1.94 1.91 1.93 1.93 1.93 1.94 

 
1.94 1.94 1.93 1.93 1.94 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 

Al 0.08 0.12 0.09 0.09 0.09 0.08 
 

0.08 0.09 0.09 0.09 0.09 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 

Mg 1.20 1.20 1.19 1.18 1.18 1.17 
 

1.18 1.17 1.17 1.17 1.18 

Ca 0.01 0.02 0.02 0.02 0.02 0.01 
 

0.02 0.02 0.02 0.02 0.02 

Mn 0.02 0.02 0.02 0.02 0.02 0.02 
 

0.02 0.02 0.02 0.02 0.02 

Fe 0.77 0.78 0.78 0.78 0.78 0.78 
 

0.78 0.78 0.78 0.78 0.77 

Na 0.00 0.00 0.01 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 

Total 4.02 4.04 4.03 4.03 4.02 4.02 
 

4.02 4.02 4.02 4.02 4.02 

XMg 0.61 0.61 0.60 0.60 0.60 0.60 
 

0.60 0.60 0.60 0.60 0.61 
 

      

Table 4.21 Compositional transects (EMPA) of orthopyroxene from sample JM09/SM09; bd denotes 
below detection limits. 
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Crystal: SM09_cpx_trans2a 

         

 
Transect data points 

SiO2 51.54 51.29 52.29 52.55 50.78 50.82 50.33 50.31 48.61 50.29 50.17 50.36 

TiO2 0.25 0.31 0.08 0.10 0.43 0.41 0.42 0.41 2.82 0.47 0.41 0.38 

Al2O3 3.05 2.95 1.61 1.76 3.50 3.48 3.68 3.67 3.10 3.70 3.74 3.69 

Cr2O3 0.04 0.04 0.04 0.04 0.05 bd 0.06 0.05 0.05 0.04 0.06 0.05 

MgO 13.93 13.22 14.28 14.32 12.68 12.41 12.37 12.14 12.38 12.26 12.12 12.35 

CaO 22.07 22.79 22.90 23.09 22.43 21.09 21.78 22.11 18.51 21.51 21.89 21.01 

MnO 0.29 0.30 0.27 0.27 0.31 0.38 0.33 0.29 0.38 0.35 0.32 0.35 

FeOT 8.37 8.41 7.70 7.36 9.16 10.41 9.92 9.51 13.94 10.21 9.88 10.46 

Na2O 0.62 0.69 0.51 0.50 0.83 0.78 0.77 0.79 0.74 0.79 0.79 0.75 

Total 100.16 100.01 99.67 99.99 100.18 99.78 99.64 99.25 100.51 99.62 99.38 99.40 

Cations p.f.u. for 6 oxygens 
         Si 1.92 1.92 1.95 1.95 1.90 1.91 1.90 1.90 1.85 1.90 1.90 1.91 

Ti 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.08 0.01 0.01 0.01 

Al 0.13 0.13 0.07 0.08 0.15 0.15 0.16 0.16 0.14 0.16 0.17 0.16 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.77 0.74 0.80 0.79 0.71 0.70 0.70 0.68 0.70 0.69 0.68 0.70 

Ca 0.88 0.91 0.92 0.92 0.90 0.85 0.88 0.90 0.75 0.87 0.89 0.85 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fe 0.26 0.26 0.24 0.23 0.29 0.33 0.31 0.30 0.44 0.32 0.31 0.33 

Na 0.04 0.05 0.04 0.04 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 

Total 4.03 4.03 4.03 4.02 4.04 4.03 4.03 4.03 4.03 4.03 4.03 4.03 

XMg 0.75 0.74 0.77 0.78 0.71 0.68 0.69 0.69 0.61 0.68 0.69 0.68 

(continued)             
 
 
 



162 
 

 
 
Crystal: SM09_cpx_trans2a (continued) 

 
Transect data points 

SiO2 50.82 50.06 50.39 50.30 50.29 50.33 50.43 49.92 50.15 50.75 50.37 51.40 51.13 

TiO2 0.46 0.42 0.42 0.48 0.44 0.47 0.43 0.42 0.43 0.41 0.39 0.35 0.34 

Al2O3 3.77 3.66 3.70 3.70 3.73 3.67 3.69 3.59 3.51 3.52 3.26 3.35 3.23 

Cr2O3 0.05 0.05 0.05 0.06 0.04 0.05 0.05 bd 0.06 0.04 0.04 0.05 bd 

MgO 12.52 12.27 12.28 12.35 12.28 12.35 12.11 12.28 12.18 12.41 12.45 12.63 12.62 

CaO 21.43 21.21 21.50 21.58 21.93 21.39 21.77 21.14 21.87 21.30 20.83 21.68 22.16 

MnO 0.32 0.33 0.35 0.34 0.32 0.35 0.33 0.33 0.32 0.33 0.32 0.32 0.31 

FeOT 10.35 10.27 9.85 10.26 9.70 10.53 9.66 10.17 9.77 10.52 10.52 10.26 9.27 

Na2O 0.81 0.76 0.86 0.77 0.79 0.81 0.84 0.86 0.78 0.85 0.71 0.73 0.78 

Total 100.52 99.02 99.40 99.85 99.50 99.95 99.30 98.70 99.06 100.13 98.89 100.76 99.82 

Cations p.f.u. for 6 oxygens 
          Si 1.90 1.90 1.90 1.90 1.90 1.90 1.91 1.90 1.90 1.91 1.92 1.92 1.92 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.17 0.16 0.16 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.14 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.70 0.70 0.69 0.69 0.69 0.69 0.68 0.70 0.69 0.70 0.71 0.70 0.71 

Ca 0.86 0.86 0.87 0.87 0.89 0.86 0.88 0.86 0.89 0.86 0.85 0.87 0.89 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fe 0.32 0.33 0.31 0.32 0.31 0.33 0.31 0.32 0.31 0.33 0.33 0.32 0.29 

Na 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 

Total 4.03 4.03 4.03 4.03 4.03 4.04 4.03 4.04 4.03 4.03 4.03 4.03 4.03 

XMg 0.68 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.68 0.69 0.71 

(continued)             
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Crystal: SM09_cpx_trans2b 
          

 
Transect data points 

SiO2 51.04 50.85 50.87 51.22 50.91 50.52 50.51 50.60 50.65 50.28 50.67 50.23 

TiO2 0.27 0.32 0.38 0.37 0.39 0.42 0.44 0.44 0.25 0.45 0.39 0.44 

Al2O3 2.89 3.26 3.63 3.75 3.42 3.64 3.69 3.63 3.09 3.73 3.55 3.45 

Cr2O3 bd 0.05 0.06 0.04 0.04 bd 0.05 0.05 bd 0.04 0.04 bd 

MgO 12.75 12.78 12.55 11.58 13.07 12.30 12.37 12.26 15.69 12.27 12.33 12.94 

CaO 21.43 20.89 21.57 20.19 19.85 21.58 21.61 21.69 10.88 21.83 22.10 18.51 

MnO 0.32 0.36 0.31 0.38 0.41 0.33 0.32 0.31 0.63 0.33 0.34 0.42 

FeOT 9.78 10.37 10.08 11.47 11.54 9.95 9.86 9.96 18.67 9.76 9.51 12.87 

Na2O 0.80 0.75 0.83 0.63 0.70 0.85 0.84 0.77 0.40 0.82 0.81 0.68 

Total 99.27 99.63 100.27 99.63 100.33 99.60 99.68 99.71 100.25 99.51 99.75 99.53 

Cations p.f.u. for 6 oxygens 
          Si 1.93 1.92 1.91 1.93 1.91 1.91 1.90 1.91 1.91 1.90 1.91 1.91 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.13 0.14 0.16 0.17 0.15 0.16 0.16 0.16 0.14 0.17 0.16 0.15 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.72 0.72 0.70 0.65 0.73 0.69 0.69 0.69 0.88 0.69 0.69 0.73 

Ca 0.87 0.84 0.87 0.82 0.80 0.87 0.87 0.88 0.44 0.88 0.89 0.75 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 

Fe 0.31 0.33 0.32 0.36 0.36 0.31 0.31 0.31 0.59 0.31 0.30 0.41 

Na 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.03 0.06 0.06 0.05 

Total 4.03 4.03 4.03 4.00 4.03 4.03 4.03 4.03 4.02 4.03 4.03 4.03 

XMg 0.70 0.69 0.69 0.64 0.67 0.69 0.69 0.69 0.60 0.69 0.70 0.64 

(continued) 
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Crystal: SM09_cpx_trans2b (continued) 

 
Transect data points 

SiO2 50.60 49.51 50.51 50.90 50.77 50.41 50.68 50.13 50.59 50.65 51.33 

TiO2 0.42 0.42 0.47 0.46 0.46 0.46 0.44 0.44 0.40 0.40 0.31 

Al2O3 3.72 4.21 3.78 3.72 3.67 3.62 3.58 3.56 3.48 3.41 3.09 

Cr2O3 0.05 0.05 0.05 0.04 bd bd 0.05 bd bd bd bd 

MgO 12.38 12.47 12.25 12.26 12.14 12.34 12.39 12.59 12.34 12.50 12.72 

CaO 21.85 20.82 21.76 22.06 22.16 21.33 21.62 20.52 22.11 22.03 21.76 

MnO 0.32 0.35 0.35 0.31 0.33 0.31 0.32 0.30 0.34 0.34 0.31 

FeOT 9.71 10.76 10.12 10.04 9.73 10.24 10.12 10.72 9.92 9.80 9.68 

Na2O 0.83 0.81 0.79 0.78 0.80 0.83 0.84 0.76 0.85 0.76 0.77 

Total 99.88 99.40 100.06 100.58 100.05 99.54 100.04 98.99 100.03 99.87 99.97 

Cations p.f.u. for 6 oxygens 
         Si 1.90 1.88 1.90 1.90 1.91 1.90 1.91 1.90 1.90 1.91 1.93 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.16 0.19 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.14 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.69 0.71 0.69 0.68 0.68 0.70 0.69 0.71 0.69 0.70 0.71 

Ca 0.88 0.85 0.88 0.88 0.89 0.86 0.87 0.84 0.89 0.89 0.87 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fe 0.31 0.34 0.32 0.31 0.31 0.32 0.32 0.34 0.31 0.31 0.30 

Na 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

Total 4.03 4.04 4.03 4.03 4.03 4.03 4.03 4.03 4.04 4.03 4.03 

XMg 0.69 0.67 0.68 0.69 0.69 0.68 0.69 0.68 0.69 0.69 0.70 

(continued) 
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Crystal: SM09CPX3a 
      

 
Transect data points 

SiO2 51.94 51.20 51.71 49.96 51.40 51.42 51.00 51.32 

TiO2 0.25 0.29 0.30 0.38 0.32 0.29 0.31 0.25 

Al2O3 2.79 2.85 2.95 3.02 2.85 2.98 2.93 2.82 

Cr2O3 bd bd bd bd bd bd bd bd 

MgO 13.02 12.58 12.59 12.71 12.73 12.67 12.52 13.01 

CaO 21.31 22.50 21.95 21.32 21.58 21.93 21.71 20.72 

MnO 0.34 0.34 0.36 0.32 0.36 0.31 0.30 0.36 

FeOT 10.95 10.01 10.42 9.50 11.38 10.63 10.13 11.13 

Na2O 0.71 0.77 0.83 0.80 0.72 0.79 0.76 0.71 

Total 101.31 100.53 101.12 98.01 101.32 101.02 99.67 100.33 

Cations p.f.u. for 6 oxygens 
      Si 1.93 1.92 1.92 1.91 1.92 1.92 1.92 1.93 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.12 0.13 0.13 0.14 0.13 0.13 0.13 0.12 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.72 0.70 0.70 0.73 0.71 0.70 0.70 0.73 

Ca 0.85 0.90 0.88 0.88 0.86 0.88 0.88 0.83 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fe 0.34 0.31 0.32 0.30 0.35 0.33 0.32 0.35 

Na 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.05 

Total 4.03 4.04 4.03 4.04 4.04 4.04 4.03 4.03 

XMg 0.68 0.69 0.68 0.70 0.67 0.68 0.69 0.68 

(continued) 
             

Crystal: SM09CPX3b 
     

 
Transect data points 

SiO2 51.36 51.32 51.28 51.59 51.19 51.46 51.27 

TiO2 0.28 0.26 0.31 0.34 0.34 0.30 0.33 

Al2O3 2.79 2.87 2.94 2.85 2.91 2.88 2.83 

Cr2O3 bd bd bd bd bd bd bd 

MgO 12.60 12.59 12.73 12.69 12.85 12.77 12.97 

CaO 22.11 22.23 21.35 22.03 20.75 21.70 22.11 

MnO 0.34 0.31 0.34 0.37 0.35 0.38 0.33 

FeOT 10.24 10.24 10.94 10.12 11.16 10.80 10.61 

Na2O 0.72 0.75 0.83 0.70 0.68 0.75 0.75 

Total 100.42 100.55 100.70 100.69 100.24 101.03 101.20 

Cations p.f.u. for 6 oxygens 
     Si 1.93 1.92 1.92 1.93 1.92 1.92 1.91 

Ti 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Al 0.12 0.13 0.13 0.13 0.13 0.13 0.12 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.70 0.70 0.71 0.71 0.72 0.71 0.72 

Ca 0.89 0.89 0.86 0.88 0.84 0.87 0.88 

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fe 0.32 0.32 0.34 0.32 0.35 0.34 0.33 

Na 0.05 0.05 0.06 0.05 0.05 0.05 0.05 

Total 4.03 4.03 4.04 4.03 4.03 4.04 4.04 

XMg 0.69 0.69 0.67 0.69 0.67 0.68 0.69 

Table 4.22 Compositional transects (EMPA) of clinopyroxene from sample JM09/SM09; bd denotes 
below detection limits. 
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Crystal: BP01_H1a1 

         
Crystal: BP01_H2a1 

 
Transect data points 

 
Transect data points 

SiO2 39.84 40.32 41.05 40.44 39.72 39.11 40.19 39.43 41.76 40.05 
 

39.36 40.10 
 TiO2 0.49 0.51 0.51 0.55 0.51 0.44 0.54 0.57 0.49 0.56 

 
0.51 0.52 

 Al2O3 12.26 12.30 12.18 13.18 12.86 12.95 12.98 13.01 10.99 13.19 
 

13.11 12.65 
 Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
0.00 0.00 

 MgO 9.51 9.88 9.52 9.55 9.50 9.37 9.50 9.69 9.71 9.47 
 

9.60 9.73 
 CaO 11.65 11.41 11.34 11.54 11.59 11.54 11.54 11.69 11.28 11.62 

 
11.48 11.38 

 MnO 0.31 0.33 0.29 0.32 0.30 0.33 0.26 0.29 0.31 0.30 
 

0.35 0.33 
 FeOT 17.97 18.04 18.16 17.60 18.30 18.02 18.02 17.72 18.45 18.11 

 
17.96 17.74 

 Na2O 1.55 1.59 1.47 1.56 1.52 1.57 1.57 1.42 1.59 1.44 
 

1.58 1.45 
 K2O 1.14 1.06 1.18 1.25 1.31 1.26 1.23 1.29 1.09 1.28 

 
1.26 1.19 

 Total 94.71 95.44 95.71 95.98 95.61 94.58 95.83 95.11 95.66 96.03 
 

95.21 95.08 
 Cations p.f.u. for 23 oxygens 

           Si 6.26 6.28 6.36 6.25 6.20 6.17 6.24 6.17 6.48 6.21 
 

6.16 6.26 
 Ti 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.07 0.06 0.07 

 
0.06 0.06 

 Al 2.27 2.26 2.23 2.40 2.36 2.41 2.37 2.40 2.01 2.41 
 

2.42 2.33 
 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
0.00 0.00 

 Mg 2.23 2.29 2.20 2.20 2.21 2.20 2.20 2.26 2.25 2.19 
 

2.24 2.26 
 Ca 1.96 1.90 1.88 1.91 1.94 1.95 1.92 1.96 1.88 1.93 

 
1.93 1.90 

 Mn 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 
 

0.05 0.04 
 Fe 2.36 2.35 2.35 2.27 2.39 2.38 2.34 2.32 2.39 2.35 

 
2.35 2.32 

 Na 0.47 0.48 0.44 0.47 0.46 0.48 0.47 0.43 0.48 0.43 
 

0.48 0.44 
 K 0.23 0.21 0.23 0.25 0.26 0.25 0.24 0.26 0.22 0.25 

 
0.25 0.24 

 Total 15.89 15.88 15.80 15.85 15.92 15.94 15.87 15.91 15.80 15.87 
 

15.93 15.85 
 XMg 0.49 0.49 0.48 0.49 0.48 0.48 0.48 0.49 0.48 0.48 

 
0.49 0.49 

 (continued) 
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Crystal: BP01_H3a 

       
Crystal: BP01_H3b 

   

 
Transect data points 

 
Transect data points 

SiO2 39.89 40.48 39.38 39.67 40.87 39.39 40.02 39.78 40.13 
 

40.63 41.62 39.63 40.38 42.96 40.83 

TiO2 0.57 0.53 0.56 0.50 0.52 0.63 0.59 0.65 0.69 
 

0.53 0.37 0.58 0.52 0.44 0.54 

Al2O3 12.54 11.71 11.82 12.33 11.52 12.36 12.73 12.92 12.93 
 

12.27 8.91 12.71 11.93 9.96 12.68 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 0.00 

MgO 9.57 9.57 9.65 9.43 9.82 9.66 9.35 9.32 9.47 
 

9.82 11.61 9.43 9.75 10.03 9.72 

CaO 11.33 11.25 11.40 11.37 11.19 11.33 11.46 11.56 11.49 
 

11.33 10.91 11.41 11.28 11.06 11.55 

MnO 0.36 0.29 0.30 0.31 0.32 0.29 0.28 0.35 0.34 
 

0.36 0.27 0.30 0.29 0.30 0.33 

FeOT 18.20 18.37 18.16 18.02 18.22 18.27 17.84 17.84 17.77 
 

17.56 17.94 18.12 18.24 18.26 17.60 

Na2O 1.66 1.60 1.72 1.53 1.37 1.65 1.60 1.65 1.62 
 

1.72 1.39 1.70 1.63 1.58 1.72 

K2O 1.13 1.06 1.06 1.14 1.11 1.20 1.22 1.22 1.16 
 

1.05 0.96 1.13 1.07 0.84 1.06 

Total 95.25 94.86 94.06 94.30 94.93 94.77 95.09 95.29 95.59 
 

95.27 93.98 95.02 95.09 95.43 96.05 

Cations p.f.u. for 23 oxygens 
             Si 6.24 6.35 6.25 6.26 6.39 6.21 6.26 6.21 6.24 

 
6.32 6.57 6.21 6.32 6.65 6.30 

Ti 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.08 0.08 
 

0.06 0.04 0.07 0.06 0.05 0.06 

Al 2.31 2.17 2.21 2.29 2.12 2.30 2.35 2.38 2.37 
 

2.25 1.66 2.35 2.20 1.82 2.30 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 0.00 

Mg 2.23 2.24 2.28 2.22 2.29 2.27 2.18 2.17 2.19 
 

2.28 2.73 2.20 2.27 2.31 2.24 

Ca 1.90 1.89 1.94 1.92 1.88 1.91 1.92 1.94 1.91 
 

1.89 1.85 1.92 1.89 1.83 1.91 

Mn 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 
 

0.05 0.04 0.04 0.04 0.04 0.04 

Fe 2.38 2.41 2.41 2.38 2.38 2.41 2.33 2.33 2.31 
 

2.28 2.37 2.38 2.39 2.36 2.27 

Na 0.50 0.49 0.53 0.47 0.41 0.50 0.49 0.50 0.49 
 

0.52 0.42 0.52 0.49 0.48 0.52 

K 0.22 0.21 0.22 0.23 0.22 0.24 0.24 0.24 0.23 
 

0.21 0.19 0.23 0.21 0.17 0.21 

Total 15.90 15.85 15.95 15.88 15.80 15.95 15.87 15.89 15.86 
 

15.86 15.87 15.91 15.88 15.71 15.85 

XMg 0.48 0.48 0.49 0.48 0.49 0.49 0.48 0.48 0.49 
 

0.50 0.54 0.48 0.49 0.49 0.50 

(continued) 
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Crystal: DP01_H1_a1 

     
Crystal: DP01_H2a 

  

 
Transect data points 

 
Transect data points 

SiO2 45.88 44.59 45.12 52.41 46.20 47.42 
 

54.33 54.12 54.12 52.00 51.03 

TiO2 0.46 0.41 0.27 0.00 0.00 0.00 
 

0.27 0.35 0.26 0.34 0.17 

Al2O3 10.76 11.94 11.70 8.57 9.01 9.23 
 

5.30 4.75 4.38 5.70 5.62 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.06 0.04 0.05 0.05 0.00 

MgO 14.51 13.91 13.70 14.23 16.07 15.69 
 

15.38 17.79 18.14 17.20 18.43 

CaO 11.80 11.79 11.62 10.94 10.44 11.73 
 

11.69 12.25 12.02 12.20 10.50 

MnO 0.33 0.29 0.30 0.34 0.30 0.34 
 

0.28 0.30 0.30 0.25 0.27 

FeOT 12.64 12.86 12.57 11.53 12.03 10.90 
 

9.89 9.43 9.45 10.88 10.36 

Na2O 1.13 1.37 1.24 0.95 0.88 0.93 
 

0.57 0.48 0.41 0.62 0.44 

K2O 0.56 0.53 0.55 0.27 0.26 0.36 
 

0.20 0.14 0.13 0.19 0.15 

Total 98.07 97.68 97.07 99.22 95.19 96.59 
 

97.97 99.65 99.25 99.43 96.97 

Cations p.f.u. for 23 oxygens 
         Si 6.68 6.54 6.63 7.35 6.86 6.92 

 
7.66 7.52 7.54 7.32 7.32 

Ti 0.05 0.04 0.03 0.00 0.00 0.00 
 

0.03 0.04 0.03 0.04 0.02 

Al 1.84 2.06 2.03 1.42 1.58 1.59 
 

0.88 0.78 0.72 0.95 0.95 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.01 0.00 0.01 0.01 0.00 

Mg 3.15 3.04 3.00 2.98 3.56 3.41 
 

3.23 3.68 3.77 3.61 3.94 

Ca 1.84 1.85 1.83 1.64 1.66 1.83 
 

1.77 1.82 1.79 1.84 1.61 

Mn 0.04 0.04 0.04 0.04 0.04 0.04 
 

0.03 0.04 0.04 0.03 0.03 

Fe 1.54 1.58 1.54 1.35 1.49 1.33 
 

1.17 1.10 1.10 1.28 1.24 

Na 0.32 0.39 0.35 0.26 0.25 0.26 
 

0.16 0.13 0.11 0.17 0.12 

K 0.10 0.10 0.10 0.05 0.05 0.07 
 

0.04 0.02 0.02 0.03 0.03 

Total 15.56 15.63 15.55 15.09 15.50 15.45 
 

14.96 15.13 15.13 15.27 15.26 

XMg 0.67 0.66 0.66 0.69 0.70 0.72 
 

0.73 0.77 0.77 0.74 0.76 

(continued) 
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Crystal: DP01_H2b 
        

Crystal: DP02_H1a 
      

 
Transect data points 

 
Transect data points 

SiO2 51.64 58.69 53.08 52.34 53.21 52.87 52.75 50.50 56.49 
 

42.60 42.35 42.15 46.89 43.21 43.22 43.65 42.64 43.80 

TiO2 0.16 0.21 0.29 0.26 0.21 0.25 0.23 0.24 0.23 
 

0.37 0.53 0.45 0.45 0.45 0.46 0.50 0.54 0.63 

Al2O3 5.88 4.65 4.98 5.14 4.75 5.22 4.77 6.80 6.53 
 

10.33 13.91 14.05 12.16 14.07 14.01 13.50 13.63 13.90 

Cr2O3 0.00 0.05 0.06 0.05 0.05 0.04 0.05 0.04 0.06 
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MgO 17.12 15.48 18.02 17.81 18.22 17.42 17.69 16.45 14.04 
 

12.43 10.54 10.38 10.26 10.75 10.55 11.21 10.60 10.73 

CaO 11.95 10.91 12.04 12.03 12.02 11.89 11.95 10.26 10.71 
 

8.47 11.51 11.37 10.38 11.93 11.60 11.83 11.62 11.66 

MnO 0.24 0.26 0.25 0.28 0.27 0.32 0.25 0.30 0.29 
 

0.46 0.27 0.25 0.26 0.29 0.24 0.24 0.23 0.27 

FeOT 10.49 8.88 9.82 9.94 9.69 9.85 10.10 12.20 10.11 
 

18.95 16.62 16.52 15.84 15.72 15.68 15.51 16.34 15.11 

Na2O 0.63 0.47 0.51 0.53 0.45 0.49 0.67 0.53 0.68 
 

1.15 1.61 1.56 1.87 1.24 1.13 1.40 1.54 1.35 

K2O 0.21 0.16 0.15 0.16 0.13 0.17 0.14 0.20 0.27 
 

0.32 0.47 0.46 0.45 0.48 0.49 0.48 0.46 0.51 

Total 98.33 99.75 99.17 98.53 99.00 98.51 98.60 97.51 99.41 
 

95.07 97.81 97.18 98.55 98.14 97.38 98.31 97.60 97.96 

Cations p.f.u. for 23 oxygens 
                Si 7.33 7.99 7.43 7.39 7.46 7.45 7.45 7.26 7.79 

 
6.57 6.32 6.32 6.83 6.38 6.42 6.43 6.37 6.45 

Ti 0.02 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.02 
 

0.04 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.07 

Al 0.98 0.75 0.82 0.85 0.79 0.87 0.79 1.15 1.06 
 

1.88 2.45 2.48 2.09 2.45 2.45 2.34 2.40 2.41 

Cr 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 3.62 3.14 3.76 3.75 3.81 3.66 3.72 3.52 2.88 
 

2.86 2.35 2.32 2.23 2.37 2.34 2.46 2.36 2.36 

Ca 1.82 1.59 1.81 1.82 1.80 1.80 1.81 1.58 1.58 
 

1.40 1.84 1.83 1.62 1.89 1.85 1.87 1.86 1.84 

Mn 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 
 

0.06 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 

Fe 1.25 1.01 1.15 1.17 1.14 1.16 1.19 1.47 1.17 
 

2.44 2.07 2.07 1.93 1.94 1.95 1.91 2.04 1.86 

Na 0.17 0.12 0.14 0.15 0.12 0.13 0.18 0.15 0.18 
 

0.34 0.46 0.45 0.53 0.35 0.33 0.40 0.44 0.38 

K 0.04 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.05 
 

0.06 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.10 

Total 15.26 14.69 15.20 15.24 15.20 15.17 15.23 15.23 14.77 
 

15.65 15.67 15.65 15.38 15.56 15.51 15.59 15.64 15.51 

XMg 0.74 0.76 0.77 0.76 0.77 0.76 0.76 0.71 0.71 
 

0.54 0.53 0.53 0.54 0.55 0.55 0.56 0.54 0.56 

(continued) 
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Crystal: DP02_H1b 
    

Crystal: DP02_H2a Crystal: DP02_H2b 
  

 
Transect data points 

 
Transect data points 

 
Transect data points 

SiO2 42.78 42.46 42.92 44.99 42.59 
 

44.09 49.19 
 

42.85 43.10 44.21 51.34 43.48 

TiO2 0.59 0.49 0.50 0.51 0.65 
 

0.55 0.18 
 

0.58 0.51 0.57 0.13 0.52 

Al2O3 13.08 13.81 14.13 13.70 13.43 
 

12.52 5.86 
 

13.02 13.61 13.27 2.62 12.90 

Cr2O3 0.04 0.00 0.00 0.00 0.00 
 

0.06 0.05 
 

0.05 0.06 0.07 0.06 0.08 

MgO 10.99 10.63 10.52 10.41 10.64 
 

11.44 11.69 
 

11.31 11.34 10.78 11.36 11.12 

CaO 11.68 11.40 11.41 11.07 11.37 
 

11.24 11.38 
 

11.30 11.61 11.41 11.96 11.46 

MnO 0.24 0.23 0.27 0.21 0.26 
 

0.24 0.79 
 

0.24 0.26 0.24 1.21 0.26 

FeOT 16.25 16.35 16.56 16.67 16.35 
 

14.71 17.21 
 

15.99 14.48 16.03 18.52 15.56 

Na2O 1.40 1.38 1.45 1.53 1.51 
 

1.20 1.03 
 

1.41 1.31 1.20 0.53 1.25 

K2O 0.53 0.44 0.47 0.46 0.56 
 

0.46 0.16 
 

0.50 0.46 0.50 0.08 0.51 

Total 97.57 97.18 98.22 99.55 97.35 
 

96.51 97.53 
 

97.23 96.74 98.27 97.80 97.13 

Cations p.f.u. for 23 oxygens 
           Si 6.39 6.36 6.36 6.54 6.37 

 
6.57 7.31 

 
6.41 6.42 6.51 7.65 6.48 

Ti 0.07 0.06 0.06 0.06 0.07 
 

0.06 0.02 
 

0.06 0.06 0.06 0.01 0.06 

Al 2.30 2.44 2.47 2.35 2.37 
 

2.20 1.03 
 

2.29 2.39 2.30 0.46 2.27 

Cr 0.00 0.00 0.00 0.00 0.00 
 

0.01 0.01 
 

0.01 0.01 0.01 0.01 0.01 

Mg 2.45 2.37 2.32 2.26 2.37 
 

2.54 2.59 
 

2.52 2.52 2.37 2.52 2.47 

Ca 1.87 1.83 1.81 1.72 1.82 
 

1.79 1.81 
 

1.81 1.85 1.80 1.91 1.83 

Mn 0.03 0.03 0.03 0.03 0.03 
 

0.03 0.10 
 

0.03 0.03 0.03 0.15 0.03 

Fe 2.03 2.05 2.05 2.03 2.05 
 

1.83 2.14 
 

2.00 1.80 1.97 2.31 1.94 

Na 0.41 0.40 0.42 0.43 0.44 
 

0.35 0.30 
 

0.41 0.38 0.34 0.15 0.36 

K 0.10 0.08 0.09 0.09 0.11 
 

0.09 0.03 
 

0.10 0.09 0.09 0.02 0.10 

Total 15.64 15.61 15.61 15.49 15.64 
 

15.48 15.32 
 

15.63 15.55 15.49 15.19 15.55 

XMg 0.55 0.54 0.53 0.53 0.54 
 

0.58 0.55 
 

0.56 0.58 0.55 0.52 0.56 

Table 4.23 Compositional transects (EMPA) of hornblende from samples JM09/BP01, JM09/DP01 and JM09/DP02; bd denotes below detection limits. 
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Fig.  4.40 XAn and XMg from EMPA compositional traverses of major minerals in samples JM09/SM09, 
JM09/BP01, JM09/DP01 and JM09/DP02. 
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Plagioclase  

Sample JM09/SM09 

Crystal SM09_PX1a SM09_PX1b SM09_PX2a SM09_PX2b SM09_P6a SM09_P6b 

n= 12 
 

8 
 

15 
 

16 
 

10 
 

5 
 SiO2 56.22 0.52 56.21 0.57 58.37 0.57 58.64 0.49 56.43 0.69 55.91 0.43 

Al2O3 26.44 0.27 26.33 0.07 26.32 0.31 26.15 0.37 26.64 0.16 26.38 0.16 

CaO 8.56 0.28 8.45 0.15 7.96 0.34 7.88 0.36 8.52 0.07 8.54 0.10 

FeOT 0.06 0.04 0.09 0.02 0.07 0.06 0.08 0.04 0.08 0.04 0.07 0.04 

Na2O 6.73 0.12 6.71 0.07 7.15 0.20 7.16 0.17 6.76 0.08 6.75 0.11 

K2O 0.31 0.04 0.33 0.03 0.31 0.09 0.38 0.09 0.28 0.01 0.30 0.01 

Total  98.32 
 

98.12 
 

100.17 
 

100.28 
 

98.71 
 

97.95 
 Cations p.f.u. for 8 oxygens 

         Si 2.57 0.02 2.57 0.01 2.61 0.02 2.62 0.02 2.57 0.01 2.56 0.01 

Al 1.42 0.02 1.42 0.01 1.39 0.02 1.38 0.02 1.43 0.01 1.43 0.01 

Ca 0.42 0.01 0.41 0.01 0.38 0.02 0.38 0.02 0.42 0.00 0.42 0.00 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.60 0.01 0.60 0.01 0.62 0.02 0.62 0.01 0.60 0.01 0.60 0.01 

K 0.02 0.00 0.02 0.00 0.02 0.01 0.02 0.01 0.02 0.00 0.02 0.00 

Total  5.03 
 

5.02 
 

5.02 
 

5.01 
 

5.03 
 

5.03 
 XAn 0.41 

 
0.41 

 
0.38 

 
0.38 

 
0.41 

 
0.41 

 (continued) 
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Plagioclase    

Sample JM09/BP01 
 

Sample JM09/DP01 

Crystal BP01_P3a BP01_P3b BP01_P4a BP01_P4b 
 

Crystal DP01_PX1a DP01_PX1b DP01_PX2a DP01_PX2b 

n= 18 
 

13 
 

20 
 

9 
  

n= 15 
 

16 
 

10 
 

9 
 SiO2 59.19 1.00 60.28 0.82 59.21 0.52 59.05 0.37 

 
SiO2 60.65 0.70 59.57 0.77 60.45 0.39 60.91 3.48 

Al2O3 25.06 0.42 24.80 0.42 24.95 0.18 25.09 0.24 
 

Al2O3 26.03 0.33 25.96 0.56 26.35 0.23 25.75 1.83 

CaO 6.60 0.22 6.48 0.12 6.46 0.15 6.50 0.12 
 

CaO 7.08 0.42 6.99 0.75 7.38 0.17 6.47 2.37 

FeOT 0.01 0.02 0.01 0.02 0.02 0.03 0.00 0.00 
 

FeOT 0.02 0.03 0.01 0.05 0.01 0.02 0.02 0.03 

Na2O 7.89 0.22 7.87 0.20 7.95 0.08 7.94 0.06 
 

Na2O 7.88 0.27 7.90 0.43 7.76 0.14 8.11 1.23 

K2O 0.18 0.01 0.17 0.03 0.17 0.02 0.19 0.03 
 

K2O 0.16 0.01 0.15 0.02 0.19 0.02 0.23 0.15 

Total  98.94 
 

99.61 
 

98.76 
 

98.76 
  

Total  101.81 
 

100.59 
 

102.12 
 

101.49 
 Cations p.f.u. for 8 oxygens 

      
Cations p.f.u. for 8 oxygens 

     Si 2.67 0.03 2.69 0.03 2.67 0.01 2.67 0.01 
 

Si 2.66 0.02 2.64 0.03 2.64 0.01 2.67 0.11 

Al 1.33 0.03 1.31 0.03 1.33 0.01 1.33 0.01 
 

Al 1.34 0.02 1.36 0.03 1.36 0.01 1.33 0.11 

Ca 0.32 0.01 0.31 0.01 0.31 0.01 0.31 0.01 
 

Ca 0.33 0.02 0.33 0.04 0.35 0.01 0.31 0.11 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.69 0.02 0.68 0.02 0.70 0.01 0.69 0.01 
 

Na 0.67 0.02 0.68 0.04 0.66 0.01 0.69 0.09 

K 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 
 

K 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 

Total  5.02 
 

5.00 
 

5.02 
 

5.02 
  

Total  5.01 
 

5.02 
 

5.01 
 

5.01 
 XAn 0.32 

 
0.31 

 
0.31 

 
0.31 

  
XAn 0.33 

 
0.33 

 
0.34 

 
0.31 

 Table 4.24 Average composition of plagioclase crystals analysed by EMPA traverses from samples JM09/SM09, JM09/BP01 and JM09/DP01; values in italics denote 1 
standard deviation on the average values to their left. 
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Orthopyroxene 

     Sample JM09/SM09 

Crystal SM09_OPX3a 
 

SM09_OPX3b 

n= 6 
  

5 
 

SiO2 51.25 0.42 
 

51.74 0.17 

TiO2 0.02 0.03 
 

0.03 0.06 

Al2O3 2.06 0.28 
 

1.98 0.08 

Cr2O3 0.01 0.02 
 

0.01 0.02 

MgO 21.12 0.15 
 

21.08 0.12 

CaO 0.44 0.10 
 

0.49 0.04 

MnO 0.67 0.04 
 

0.68 0.03 

FeOT 24.72 0.21 
 

24.87 0.16 

Na2O 0.02 0.04 
 

0.01 0.03 

Total 100.31 
  

100.89 
 Cations p.f.u. for 6 oxygens 

   Si 1.93 0.01 
 

1.94 0.00 

Ti 0.00 0.00 
 

0.00 0.00 

Al 0.09 0.01 
 

0.09 0.00 

Cr 0.00 0.00 
 

0.00 0.00 

Mg 1.19 0.01 
 

1.18 0.01 

Ca 0.02 0.00 
 

0.02 0.00 

Mn 0.02 0.00 
 

0.02 0.00 

Fe 0.78 0.01 
 

0.78 0.01 

Na 0.00 0.00 
 

0.00 0.00 

Total 4.03 
  

4.02 
 XMg 0.60 

  
0.60 

 Table 4.25 Average composition of orthopyroxene crystals analysed by EMPA traverses from sample 
JM09/SM09; values in italics denote 1 standard deviation on the average values to their left. 
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Clinopyroxene 
        Sample JM09/SM09 

Crystal SM09_cpxtrans2a SM09_cpxtrans2b SM09CPX3a SM09CPX3b 

n= 25 
 

23 
 

8 
 

7 
 SiO2 50.63 0.79 50.63 0.38 51.24 0.59 51.35 0.13 

TiO2 0.48 0.50 0.40 0.06 0.30 0.04 0.31 0.03 

Al2O3 3.37 0.56 3.55 0.28 2.90 0.08 2.87 0.05 

Cr2O3 0.04 0.02 0.03 0.02 bd 
 

bd 
 MgO 12.61 0.64 12.58 0.74 12.73 0.19 12.74 0.14 

CaO 21.64 0.88 20.87 2.35 21.63 0.53 21.75 0.54 

MnO 0.32 0.03 0.35 0.07 0.34 0.02 0.34 0.02 

FeOT 9.86 1.22 10.64 1.91 10.52 0.63 10.59 0.40 

Na2O 0.76 0.09 0.77 0.10 0.76 0.05 0.74 0.05 

Total 99.70 
 

99.81 
 

100.41 
 

100.69 
 Cations p.f.u. for 6 oxygens 

      Si 1.91 0.02 1.91 0.01 1.92 0.01 1.92 0.00 

Ti 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 

Al 0.15 0.03 0.16 0.01 0.13 0.00 0.13 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.71 0.03 0.71 0.04 0.71 0.01 0.71 0.01 

Ca 0.87 0.03 0.84 0.09 0.87 0.02 0.87 0.02 

Mn 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 

Fe 0.31 0.04 0.34 0.06 0.33 0.02 0.33 0.01 

Na 0.06 0.01 0.06 0.01 0.06 0.00 0.05 0.00 

Total 4.03 
 

4.03 
 

4.03 
 

4.03 
 XMg 0.69 

 
0.68 

 
0.68 

 
0.68 

 Table 4.26 Average composition of clinopyroxene crystals analysed by EMPA traverses from sample 
JM09/SM09; values in italics denote 1 standard deviation on the average values to their left; bd 
denotes below detection limits. 
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Hornblende 
               Sample JM09/BP01 

 
JM09/DP01 

Crystal BP01_H1a1 BP01_H2a1 BP01_H3a BP01_H3b 
 

DP01_H1_a1 DP01_H2a DP01_H2b 

n= 10 
 

2 
 

9 
 

6 
  

6 
 

5 
 

9 
 SiO2 40.19 0.77 39.73 0.52 39.96 0.49 41.01 1.15 

 
46.93 2.85 53.12 1.51 53.51 2.52 

TiO2 0.52 0.04 0.51 0.01 0.58 0.06 0.50 0.08 
 

0.19 0.22 0.28 0.07 0.23 0.03 

Al2O3 12.59 0.68 12.88 0.32 12.32 0.53 11.41 1.59 
 

10.20 1.46 5.15 0.57 5.41 0.80 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.04 0.02 0.04 0.02 

MgO 9.57 0.15 9.66 0.09 9.54 0.16 10.06 0.78 
 

14.69 0.97 17.39 1.21 16.92 1.38 

CaO 11.52 0.14 11.43 0.07 11.38 0.12 11.26 0.23 
 

11.39 0.57 11.73 0.72 11.53 0.70 

MnO 0.30 0.02 0.34 0.01 0.32 0.03 0.31 0.03 
 

0.31 0.02 0.28 0.02 0.27 0.02 

FeOT 18.04 0.25 17.85 0.16 18.08 0.22 17.95 0.31 
 

12.09 0.76 10.00 0.62 10.12 0.90 

Na2O 1.53 0.06 1.51 0.09 1.60 0.10 1.62 0.13 
 

1.08 0.20 0.50 0.09 0.55 0.09 

K2O 1.21 0.09 1.23 0.05 1.14 0.06 1.02 0.10 
 

0.42 0.14 0.16 0.03 0.18 0.04 

Total 95.47 
 

95.15 
 

94.91 
 

95.14 
  

97.30 
 

98.65 
 

98.76 
 Cations p.f.u. for 23 oxygens 

             Si 6.26 0.10 6.21 0.07 6.27 0.06 6.39 0.17 
 

6.83 0.29 7.47 0.15 7.51 0.23 

Ti 0.06 0.00 0.06 0.00 0.07 0.01 0.06 0.01 
 

0.02 0.02 0.03 0.01 0.02 0.00 

Al 2.31 0.13 2.37 0.06 2.28 0.09 2.10 0.29 
 

1.75 0.26 0.85 0.10 0.90 0.14 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

0.00 0.00 0.00 0.00 0.00 0.00 

Mg 2.22 0.03 2.25 0.02 2.23 0.04 2.34 0.20 
 

3.19 0.24 3.65 0.26 3.54 0.32 

Ca 1.92 0.03 1.92 0.02 1.91 0.02 1.88 0.03 
 

1.78 0.10 1.77 0.09 1.73 0.11 

Mn 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 
 

0.04 0.00 0.03 0.00 0.03 0.00 

Fe 2.35 0.04 2.33 0.03 2.37 0.04 2.34 0.05 
 

1.47 0.11 1.18 0.08 1.19 0.12 

Na 0.46 0.02 0.46 0.03 0.49 0.03 0.49 0.04 
 

0.31 0.06 0.14 0.02 0.15 0.02 

K 0.24 0.02 0.25 0.01 0.23 0.01 0.20 0.02 
 

0.08 0.03 0.03 0.01 0.03 0.01 

Total 15.87 
 

15.89 
 

15.88 
 

15.85 
  

15.47 
 

15.15 
 

15.11 
 XMg 0.49 

 
0.49 

 
0.48 

 
0.50 

  
0.68 

 
0.76 

 
0.75 

 (continued) 
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Hornblende 

        Sample JM09/DP02 

Crystal DP02_H1a DP02_H1b DP02_H2a DP02_H2b 

n= 9 
 

5 
 

4 
 

3 
 SiO2 43.39 1.43 43.14 1.04 44.81 2.97 46.34 4.35 

TiO2 0.49 0.07 0.55 0.07 0.45 0.19 0.40 0.24 

Al2O3 13.28 1.26 13.63 0.40 11.25 3.62 9.60 6.04 

Cr2O3 0.00 0.00 0.01 0.02 0.05 0.01 0.07 0.01 

MgO 10.83 0.66 10.64 0.22 11.44 0.17 11.09 0.29 

CaO 11.15 1.10 11.39 0.22 11.38 0.16 11.61 0.30 

MnO 0.28 0.07 0.24 0.02 0.38 0.27 0.57 0.55 

FeOT 16.25 1.12 16.44 0.17 15.60 1.26 16.70 1.59 

Na2O 1.43 0.24 1.46 0.06 1.24 0.16 0.99 0.40 

K2O 0.46 0.06 0.49 0.05 0.40 0.16 0.36 0.24 

Total 97.55 
 

97.98 
 

97.00 
 

97.74 
 Cations p.f.u. for 23 oxygens 

      Si 6.46 0.16 6.40 0.08 6.68 0.43 6.88 0.67 

Ti 0.05 0.01 0.06 0.01 0.05 0.02 0.05 0.03 

Al 2.33 0.21 2.38 0.07 1.98 0.64 1.68 1.05 

Cr 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 

Mg 2.40 0.18 2.35 0.07 2.54 0.03 2.45 0.08 

Ca 1.78 0.16 1.81 0.05 1.82 0.03 1.85 0.06 

Mn 0.04 0.01 0.03 0.00 0.05 0.03 0.07 0.07 

Fe 2.02 0.17 2.04 0.01 1.94 0.16 2.07 0.20 

Na 0.41 0.07 0.42 0.02 0.36 0.05 0.29 0.12 

K 0.09 0.01 0.09 0.01 0.08 0.03 0.07 0.05 

Total 15.58 
 

15.60 
 

15.50 
 

15.41 
 XMg 0.54 

 
0.54 

 
0.57 

 
0.54 

 Table 4.27 Average composition of hornblende crystals analysed by EMPA traverses from samples JM09/BP01, JM09/DP01 and JM09/DP02; values in italics denote 1 
standard deviation on the average values to their left. 
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4c: Representativeness of the Samples 

 This PhD initially set out to investigate how U-Pb isotopic ages are affected by 

metamorphic and deformational overprinting in a typical Precambrian tonalite-

trondhjemite-granodiorite (TTG) complex. Zircon trace element chemistry, whole rock 

composition and mineral chemistry were analysed to enable links to be made between 

zircons and the rocks they were in. In particular, comparison of zircons from inside and 

outside Laxfordian shear zones was to illustrate the effects of shear zone formation on 

zircon chemistry and microstructure. However, subsequent sample characterisation 

(chapters 4a and 4b) indicate the compositional heterogeneity of the samples collected 

here. Field observation shows that the samples are compositionally heterogeneous at the 

hand specimen scale due to gneissic layering or compositional layering in shear zone rocks. 

This is the case throughout the Lewisian Gneiss Complex (LGC) and other TTG complexes 

across the world (Windley and Bridgwater, 1971; Martin, 1994). The whole rock 

composition of the 8 grey TTG gneiss samples analysed is variable. SiO2 contents range from 

47wt% in JM09/BP02 (statically retrogressed Badcallian gneissic layering) to 65wt% in 

JM09/BP06 (Laxfordian shear zone) while Na is higher in the more felsic samples and Ca, Fe 

and Mg higher is the more mafic samples.  

 Several suites of whole rock analyses of TTG gneisses from the Central 

Region/Assynt Terrane have been conducted previously (Holland and Lambert, 1973; 

Sheraton et al., 1973a; Beach, 1976; Rollinson and Windley, 1980) and are correlated in 

Table 4.28 and Fig. 4.41. Sample JM09/SM09 (the granulite-facies Badcallian assemblage 

from Scourie Mor) has 10wt% less SiO2 than average value of the equivalent pyroxene 

granulite of Holland and Lambert (1973) and has higher CaO, MgO and FeOT contents than 

this and the average pyroxene granulite of Sheraton et al. (1973a). Beach (1976) analysed 

typical TTG gneisses from inside and outside shear zones in the Scourie area; his data show 

a 21wt% range in SiO2 content of samples from outside shear zones and a 22wt% range 
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inside shear zones (Table 4.28). This further illustrates the compositional heterogeneity of 

the TTG gneisses of the LGC at small scales. Taking the grey TTG gneiss samples of this study 

as a whole, they plot within the wide compositional ranges for most major elements 

although K2O is lower than many previously published analyses (Fig. 4.41). 

 CIPW normative mineralogy shows that the possible protoliths to the TTG gneisses 

of (Holland and Lambert, 1973; Sheraton et al., 1973a; Beach, 1976; Rollinson and Windley, 

1980) plot in a range of fields (Table 4.29, Fig. 4.42). The presence of hypersthene in the 

normative mineralogy of all samples indicates charnockitic protoliths. The average 

pyroxene granulite of Holland and Lambert (1973) is a hypersthene tonalite while the 

average pyroxene granulite of Sheraton et al. (1973a) is a hypersthene diorite, as is sample 

JM09/SM09 so even prior to hydrous retrogression, there was heterogeneity in rock 

chemistry, likely inherited from the protolith. The average retrogressed TTG gneiss of 

Sheraton et al. (1973a) is a hypersthene tonalite while the analogous TTG gneisses from 

outside Laxfordian shear zones of Beach (1976) have a range of compositions from 

hypersthene-diorite, -granodiorite and -monzodiorite. Analogous samples in this study are 

JM09/BP02 (hypersthene monzodiorite) and JM09/DP01 (hypersthene diorite). Three of the 

four ‘tonalites’ analysed by Rollinson and Windley (1980) are in fact tonalites but the fourth 

is a hypersthene diorite.  

 The average TTG gneiss from Laxfordian shear zones of Sheraton et al. (1973a) is a 

hypersthene diorite while those of Beach (1976) range from hypersthene-monzodiorite and 

-granodiorite to hypersthene-monzonite and -syenite, relatively alkalic compositions. The 

Laxfordian shear zone samples in this study (JM09/DP02, JM09/BP06 and JM09/BP04) are 

all hypersthene tonalites. The CIPW normative mineralogy of many of the samples in this 

study is closer to “P” in a QAP triangle than samples from previous studies. The range in 

normative mineralogies shown by the samples in this study and those of (Holland and 

Lambert, 1973; Sheraton et al., 1973a; Beach, 1976; Rollinson and Windley, 1980) may be 
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partly due to heterogeneity in the composition of the protolith rocks but also partly due to 

metasomatic changes in rocks which have undergone hydrous retrogression (Beach, 1973; 

Beach, 1974; Beach, 1976). CIPW normative mineralogy calculations do not account for the 

presence of hydrous minerals but it is possible that there was igneous hornblende in these 

rocks. This may explain some of the heterogeneity in normative modal mineralogies. 

 

Fig.  4.41 Harker plots of major element oxide whole rock compositions against silica of various frey 
TTG gneisses from the Central Region/Assynt Terrane; data from this study, Holland and Lambert 
(1973), Sheraton et al. (1973a), Rollinson and Windley (1980) and Beach (1976); values are in wt%. 
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Sample/Source Tectonothermal Setting in LGC SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 LOI Total 

JM09/BP02 Just outside Laxfordian shear zone 46.87 1.14 15.69 11.14 0.16 7.06 10.56 2.51 1.32 0.96 2.01 99.41 

JM09/BP01 Possible Inverian structure 60.30 0.62 16.56 6.01 0.10 3.46 5.75 4.61 0.91 0.23 1.19 99.74 

JM09/BP06 Laxfordian shear zone 64.38 0.51 15.67 5.22 0.08 2.64 4.64 4.72 0.73 0.12 1.00 99.70 

JM09/BP04 Laxfordian shear zone 62.33 0.62 16.57 5.28 0.07 2.56 5.14 4.94 0.62 0.19 1.09 99.41 

JM09/DP03 Badcallian assemblage 49.55 1.02 16.45 9.45 0.12 6.90 9.98 3.30 1.15 0.53 1.18 99.63 

JM09/DP01 Just outside Laxfordian shear zone 53.69 0.40 14.36 8.40 0.11 7.35 8.62 3.61 0.68 0.27 2.05 99.54 

JM09/DP02 Laxfordian shear zone 62.54 0.53 14.99 6.44 0.11 3.80 5.04 4.18 0.78 0.13 1.16 99.70 

JM09/SM09 Badcallian assemblage 51.33 0.85 14.46 11.66 0.21 6.78 10.93 3.03 0.45 0.08 0.16 99.94 

Holland and Lambert (1973) Badcallian assemblage 61.40 0.68 15.80 7.10 0.12 3.90 6.90 3.30 1.00 na na 100.20 

Sheraton et al. (1973) Badcallian assemblage 54.89 0.69 16.27 8.10 0.12 5.31 8.83 3.41 0.89 0.13 1.59 100.23 

Sheraton et al. (1973) Statically retrogressed Badcallian 61.89 0.53 15.68 5.26 0.07 3.09 5.27 4.39 0.93 0.20 1.93 99.24 

Sheraton et al. (1973) Laxfordian shear zone 60.75 0.55 15.29 6.04 0.08 3.45 5.27 4.64 0.88 0.18 1.85 98.98 

Rollinson and Windley (1980) Badcallian assemblage 62.38 0.53 14.47 5.96 0.11 3.33 7.42 3.84 0.37 0.19 na 98.60 

Rollinson and Windley (1980) Badcallian assemblage 66.07 0.48 16.90 3.57 0.05 1.01 5.45 4.81 0.35 0.10 na 98.79 

Rollinson and Windley (1980) Badcallian assemblage 64.27 0.54 17.30 3.77 0.06 1.39 5.73 5.05 0.26 0.10 na 98.47 

Rollinson and Windley (1980) Badcallian assemblage 57.27 0.68 16.69 6.67 nd 4.55 8.28 4.64 0.70 0.15 na 99.63 

Beach (1976) U6973 Just outside Laxfordian shear zone 54.30 1.20 16.30 13.90 0.20 4.60 4.10 2.40 0.90 0.10 1.40 99.40 

Beach (1976) U6994 Just outside Laxfordian shear zone 57.20 1.00 16.00 11.10 0.20 4.30 3.10 3.90 1.00 0.10 1.30 99.20 

Beach (1976) U7159 Just outside Laxfordian shear zone 55.90 1.00 17.30 10.20 0.20 3.90 3.50 2.80 2.60 0.20 2.60 100.20 

Beach (1976) U6856 Just outside Laxfordian shear zone 56.20 1.00 17.00 10.00 0.20 4.30 4.50 3.70 0.80 0.10 1.50 99.30 

Beach (1976) U7156 Just outside Laxfordian shear zone 71.20 0.10 16.60 1.60 nd 0.50 2.80 4.80 2.20 nd 0.50 100.30 

Beach (1976) U7308 Just outside Laxfordian shear zone 50.00 0.70 11.10 10.50 0.20 12.80 8.50 2.10 1.30 0.10 1.80 99.10 

(continued) 
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Sample/Source Tectonothermal Setting in LGC SiO2 TiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O P2O5 LOI Total 

Beach (1976) S6854 Laxfordian shear zone 52.90 1.20 20.50 10.00 0.20 3.10 2.00 4.20 3.90 0.10 2.00 100.10 

Beach (1976) SS7165 Laxfordian shear zone 62.80 0.80 16.80 7.80 0.20 2.00 1.60 3.40 3.00 nd 2.20 100.60 

Beach (1976) SS7164 Laxfordian shear zone 61.20 0.90 17.80 6.90 0.10 2.40 1.40 4.30 2.80 0.10 1.50 99.40 

Beach (1976) SS7166 Laxfordian shear zone 58.80 0.90 19.30 6.50 0.10 2.30 2.50 5.30 1.60 0.20 1.80 99.30 

Beach (1976) SS7155 Laxfordian shear zone 69.90 0.30 16.20 1.90 nd 0.70 2.30 4.80 2.40 0.10 0.80 99.40 

Beach (1976) SS7309 Laxfordian shear zone 48.60 0.30 8.40 8.60 0.20 18.50 6.40 0.40 4.50 0.10 4.90 100.90 

Beach (1976) SS7168 Laxfordian shear zone 64.20 1.40 16.90 4.80 0.10 1.40 4.10 4.90 1.30 0.30 0.70 100.10 

Beach (1976) SSS7157 Laxfordian shear zone 69.40 0.50 15.50 4.20 0.10 1.40 2.00 3.00 2.00 0.30 1.10 99.50 

Beach (1976) SSS7158 Laxfordian shear zone 55.60 1.10 19.20 9.80 0.20 2.60 2.90 3.80 2.40 0.10 1.60 99.30 

Beach (1976) SSS7154 Laxfordian shear zone 71.60 0.40 14.80 2.50 0.10 0.90 1.60 4.30 2.60 0.10 1.30 100.20 

Beach (1976) SSS7310 Laxfordian shear zone 49.80 0.40 8.70 8.10 0.20 18.30 5.70 0.30 4.50 0.10 2.00 98.10 

Beach (1976) SSS7170 Laxfordian shear zone 60.00 0.70 16.70 6.50 0.10 3.20 3.90 4.10 1.60 0.30 2.00 99.10 

Beach (1976) SSS7171 Laxfordian shear zone 57.70 0.80 17.60 7.40 0.20 3.00 3.50 4.70 1.50 0.20 2.70 99.30 

Table 4.28 Major element oxide whole rock compositions of various grey TTG gneisses from the Central Region/Assynt Terrane; data from this study, Holland and Lambert 
(1973), Sheraton et al. (1973a), Rollinson and Windley (1980) and Beach (1976); values are in wt%; na denotes not available, nd denotes none detected. 

 
 
  



184 
 

 
 
 

Sample/Source Qtz An Ab Or Dio Hyp Olv Ilm Mag Apt Total Q A P QAP Field Name 

JM09/BP02 0.00 30.50 24.88 9.87 14.14 4.87 8.98 1.40 3.17 2.13 99.93 0 15 85 9 Hypersthene Monzodiorite 

JM09/BP01 12.63 22.41 42.44 6.23 3.83 9.67 0.00 0.71 1.59 0.47 99.98 15 7 77 5 Hypersthene Tonalite 

JM09/BP06 20.11 19.67 42.87 4.98 2.15 8.03 0.00 0.57 1.36 0.24 99.98 23 6 71 5 Hypersthene Tonalite 

JM09/BP04 16.48 21.66 45.12 4.21 2.26 7.75 0.00 0.70 1.39 0.39 99.96 19 5 76 5 Hypersthene Tonalite 

JM09/DP03 0.00 28.75 31.88 8.28 14.39 2.91 8.73 1.22 2.63 1.15 99.94 0 12 88 9 Hypersthene Monzodiorite 

JM09/DP01 2.27 22.85 35.18 4.91 14.91 16.36 0.00 0.48 2.36 0.59 99.91 3 8 89 10* Hypersthene Diorite 

JM09/DP02 18.65 20.47 38.59 5.31 3.17 11.20 0.00 0.61 1.71 0.27 99.98 22 6 71 5 Hypersthene Tonalite 

JM09/SM09 0.00 26.82 29.62 3.32 21.73 13.91 0.07 1.03 3.28 0.18 99.96 0 6 94 10* Hypersthene Diorite 

Holland and Lambert (1973) 17.90 25.99 30.25 6.71 6.32 10.16 0.00 0.77 1.88 0.00 99.98 22 8 70 5 Hypersthene Tonalite 

Sheraton et al. (1973) 5.89 28.15 32.43 6.22 12.03 11.94 0.00 0.81 2.22 0.28 99.98 8 9 83 10* Hypersthene Diorite 

Sheraton et al. (1973) 17.56 21.05 40.66 6.32 3.31 8.66 0.00 0.61 1.40 0.42 99.99 21 7 72 5 Hypersthene Tonalite 

Sheraton et al. (1973) 14.56 19.10 43.36 6.04 4.87 9.40 0.00 0.64 1.62 0.38 99.97 18 7 75 10* Hypersthene Diorite 

Rollinson and Windley (1980) 20.43 21.93 35.62 2.62 10.28 6.50 0.00 0.61 1.59 0.40 99.98 25 3 71 5 Hypersthene Tonalite 

Rollinson and Windley (1980) 24.06 23.50 43.03 2.39 2.11 3.23 0.00 0.53 0.92 0.20 99.97 26 3 72 5 Hypersthene Tonalite 

Rollinson and Windley (1980) 20.20 23.96 45.51 1.83 2.88 3.81 0.00 0.60 0.98 0.20 99.96 22 2 76 5 Hypersthene Tonalite 

Rollinson and Windley (1980) 4.96 23.48 43.03 4.80 12.39 8.44 0.00 0.78 1.78 0.31 99.97 7 6 87 10* Hypersthene Diorite 

Beach (1976) U6973 18.17 22.03 23.77 6.55 0.00 20.65 0.00 1.47 3.96 0.22 96.82 26 9 65 4 Hypersthene Granodiorite 

Beach (1976) U6994 14.90 16.08 37.63 7.07 0.00 17.52 0.00 1.19 3.08 0.22 97.69 20 9 71 9* Hypersthene Monzodiorite 

Beach (1976) U7159 14.21 17.49 26.96 18.06 0.00 15.87 0.00 1.19 2.83 0.43 97.04 19 24 58 9* Hypersthene Monzodiorite 

Beach (1976) U6856 13.06 23.47 35.51 5.66 0.00 16.59 0.00 1.19 2.76 0.22 98.46 17 7 76 10* Hypersthene Diorite 

Beach (1976) U7156 27.63 13.64 41.61 13.78 0.00 2.04 0.00 0.11 0.40 0.00 99.20 29 14 57 4 Hypersthene Granodiorite 

Beach (1976) U7308 0.00 19.29 21.30 9.60 18.89 18.56 8.16 0.88 3.07 0.23 99.98 0 19 81 9 Hypersthene Monzodiorite 

(continued) 
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Sample/Source Qtz An Ab Or Dio Hyp Olv Ilm Mag Apt Total Q A P QAP Field Name 

Beach (1976) S6854 0.97 10.05 40.01 26.72 0.00 13.47 0.00 1.42 2.74 0.21 95.59 1 34 64 8 Hypersthene Monzonite 

Beach (1976) SS7165 23.69 8.42 31.61 20.10 0.00 9.54 0.00 0.92 2.09 0.00 96.38 28 24 48 4 Hypersthene Granodiorite 

Beach (1976) SS7164 17.88 6.72 40.07 18.81 0.00 9.54 0.00 1.04 1.85 0.21 96.12 21 23 56 4 Hypersthene Granodiorite 

Beach (1976) SS7166 12.08 11.78 49.56 10.86 0.00 9.05 0.00 1.04 1.75 0.42 96.55 14 13 73 9* Hypersthene Monzodiorite 

Beach (1976) SS7155 27.04 10.76 42.27 15.26 0.00 2.48 0.00 0.33 0.48 0.20 98.82 28 16 56 4 Hypersthene Granodiorite 

Beach (1976) SS7309 0.00 8.88 4.08 32.99 18.01 7.44 25.44 0.38 2.53 0.23 99.98 0 72 28 7 Hypersthene Syenite 

Beach (1976) SS7168 20.19 18.61 43.91 8.48 0.00 4.94 0.00 1.55 1.24 0.60 99.53 22 9 69 4 Hypersthene Granodiorite 

Beach (1976) SSS7157 39.37 8.28 27.35 13.19 0.00 5.66 0.00 0.56 1.10 0.61 96.13 45 15 40 4 Hypersthene Granodiorite 

Beach (1976) SSS7158 11.71 14.88 36.35 16.58 0.00 12.34 0.00 1.30 2.70 0.21 96.07 15 21 64 9* Hypersthene Monzodiorite 

Beach (1976) SSS7154 32.01 7.35 37.96 16.56 0.00 3.34 0.00 0.44 0.63 0.20 98.48 34 18 48 4 Hypersthene Granodiorite 

Beach (1976) SSS7310 0.00 10.30 3.05 32.89 14.32 17.57 18.74 0.50 2.37 0.23 99.97 0 71 29 7 Hypersthene Syenite 

Beach (1976) SSS7170 16.44 18.41 38.41 10.88 0.00 11.34 0.00 0.81 1.75 0.63 98.67 20 13 68 9* Hypersthene Monzodiorite 

Beach (1976) SSS7171 11.14 17.21 44.53 10.32 0.00 11.70 0.00 0.94 2.02 0.42 98.27 13 12 74 9* Hypersthene Monzodiorite 

Table 4.29 Normative mineralogy (CIPW) of whole rock compositions of various grey TTG gneisses from the Central Region/Assynt Terrane; data from this study, Holland and 
Lambert (1973), Sheraton et al. (1973a), Rollinson and Windley (1980) and Beach (1976); values are in %; QAP field and rock name are determined using the classification of 
Streckeisen (1974); Qtz = quartz, An = anorthite, Ab = albite, Or = orthoclase, Dio = diopside, Hyp = hypersthene, Olv = olivine, Ilm = ilmenite, Mag = magnetite, Apt = 
apatite. 
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Fig.  4.42 QAP diagram of normative mineralogy (CIPW) of whole rock compositions of various grey TTG 
gneisses from the Central Region/Assynt Terrane; QAP field and rock name are determined using the 
classification of Streckeisen (1974). 

 
 As well as variation in normative mineralogy, there is also heterogeneity in the 

current modal mineralogy of the samples. Quartz content ranges from ~5% to ~55% while 

plagioclase ranges from ~20% to ~75%. Beach (1973) recorded plagioclase content as low as 
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10% from a Laxfordian shear zone, also from the Scourie area. His shear zone samples 

generally have a greater percentage of biotite with less hornblende than the equivalent 

samples described in chapter 4a (Table 4.30). Those from just outside shear zones are 

within range of equivalent samples in this study but are still variable in modal mineralogy. 

The chemistry of the modal minerals is also variable between samples, even over small 

distances although the compositional transects presented in chapter 4b indicated there was 

minimal intracrystal chemical variability. At Badcall Point, where the four samples were 

located within a few metres of each other, hornblende and plagioclase in each sample can 

have quite different compositions (Table 4.15). A similar scenario occurs at Duartmore 

Point (Table 4.16). Beach (1973) also records variable composition between hornblende, 

plagioclase and biotite between samples. 

 While every effort was made to collect homogeneous samples, the compositional 

heterogeneity of the rocks meant that the part of the sample that went to make the thin 

section could have a different composition to the part that went for whole rock XRF 

analysis. For example, the modal percentage of quartz, estimated from the thin section, in 

sample JM09/BP06 is ~5% but the XRF analysis measured 64.38wt% SiO2. Similarly, 

JM09/DP02 also has ~5% quartz in the modal mineralogy estimated from the thin section 

but 62.54wt% SiO2. Again this illustrates the heterogeneity of the rocks, even at the hand 

specimen scale. In summary, this makes achieving the initial aim of this PhD – 

understanding how tectonothermal overprinting affects zircon ages and chemistry by 

analysing samples inside and outside shear zones – rather difficult as the geochemical 

framework (i.e. the host rock) is different for different zircons/samples. As a result, the 

project has evolved and the manuscripts in the chapters 5-7 reflect investigations into the 

effects of tectonothermal overprinting in zircon which are not so heavily tied to the sample 

geochemistry. 
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Identifier Hornblende Plagioclase Quartz Biotite Clinopyroxene Epidote K-feldspar Muscovite 

Shear zones 

This Study 

JM09/BP06 20 75 5 
  

minor 
  JM09/BP04 20 20 55 5 

 
minor 

  JM09/DP02 50 45 5 
     

Beach 1973 Table 1  

6824 9.5 52.8 24.2 13.3 
    7001 15.7 54.0 19.4 8.0 
    6964 2.2 48.6 15.6 23.5 
 

5.0 
  6995 50.5 9.9 8.8 26.3 

    6923 45.2 38.8 7.1 
     6819 

 
52.8 28.6 8.4 

  
4.0 6.1 

Adjacent to shear 
zones 

This Study 

JM09/BP02 40 50 10 
  

minor 
  JM09/DP01 20 40 40 minor 

    JM09/GG09 40 30 30 minor 
    

Beach 1973 Table 1  

6825 21.3 51.1 17.5 
 

7.5 
   7000 33.1 40.3 25.2 

     6818 
 

55.0 32.0 6.0 
  

6.9 
 Table 4.30 Comparison between modal mineralogies of equivalent grey TTG gneisses of the Central Region/Assynt Terrane between this study and Beach (1973); the range 

in modal mineralogy between equivalent samples indicates the heterogeneity of the rocks. 
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Abstract   Zircon is a key mineral in geochemical and geochronological studies in a range of 

geological settings as it is mechanically and chemically robust. However, distortion of its 

crystal lattice can change the abundance and distribution of key elements such as U and Pb. 

Our Electron Backscatter Diffraction (EBSD) analysis of ninety-nine zircons from the 

Lewisian Gneiss Complex (LGC) of northwest Scotland has revealed five zircons with lattice 

distortion. The distortion can take the form of gradual bending of the lattice or division of 

the crystal into subgrains. Weighted Burgers Vectors analysis of EBSD data lends support to 

mailto:jmacd@liv.ac.uk
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the observation that the zircon lattices have been distorted either by post-crystallisation 

plastic distortion or possibly as a growth microstructure. Three of the five distorted zircons, 

along with many of the undistorted zircons in the population, were analysed by ion 

microprobe to measure U and Pb isotopes, Ti and REEs. Comparison of Th/U ratio, 

207Pb/206Pb age, REE pattern and concentration, and Ti abundance between zircons with 

and without lattice distortion indicates that the distortion heterogeneously affects these 

elements and isotopes within single crystals, within samples and between localities. Th/U 

ratios in distorted zircons ranges from 0.3-3.2 while REE patterns vary heterogeneously, 

sometimes depleted in heavy REEs or lacking a Eu anomaly. Ti-thermometry records 

temperatures that were either low (~700°C) or high (~900°C) relative to undistorted zircons. 

One distorted zircon records apparent 207Pb/206Pb isotopic ages (-3.0% to +0.3% 

discordance) in the range of 2420-2450Ma but this does not correlate with any previously 

dated tectonothermal event in the LGC. Two other distorted zircons give discordant ages of 

2331±22Ma and 2266±0Ma, defining a discordia lower intercept within error of a late 

amphibolite-facies tectonothermal event. This illustrates that Pb may be mobilised in 

distorted zircons at lower metamorphic grade than in undistorted zircons. These findings 

show the advantages in testing for lattice distortion by EBSD prior to micro-beam analysis 

so as to avoid making false geological interpretations based on such grains, and also that 

distorted lattices record information on otherwise cryptic events. 

 

Keywords – zircon, lattice distortion, trace elements & isotopes, EBSD 

 

Introduction 

 Zircon is a common accessory mineral in a wide range of sedimentary, igneous and 

metamorphic rocks. It has a high volume diffusion closure temperature of typically >900°C 

for radiogenic Pb (Cherniak and Watson, 2003) and is regarded as a mechanically and 
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chemically robust mineral (Finch and Hanchar, 2003), suitable for geochemical investigation 

of Precambrian geological events. The primary incorporation of uranium but not lead 

makes it ideal for radiometric dating; it also contains other elements such as hafnium, 

titanium and the rare earth elements (REE), which allow a range of geological 

interpretations to be made.  

 Populations of zircons are routinely analysed to determine the tectonothermal 

evolution of rocks throughout the world, generally involving U-Pb isotopic measurements. 

Recent research, however, has indicated that some of this isotopic and trace element 

analysis could be compromised by plastic deformation of the zircon crystal lattice (Reddy et 

al., 2006; Timms et al., 2006a; Timms et al., 2006b; Timms et al., 2011). Plastic deformation 

occurs when forces applied to a grain cause the crystal lattice to bend and distort through 

movement of lattice dislocations; crystals may also grow with defects and therefore have a 

distorted lattice from the time of their initial formation. High spatial resolution zircon 

analysis has conventionally been guided by backscattered electron (BSE) and 

cathodoluminescence (CL) imaging in a scanning electron microscope. CL reveals internal 

chemical zoning, xenocrysts, overgrowths, inclusions and metamictisation while BSE 

imaging highlights fractures. Fractures are generally avoided in subsequent analysis as they 

may contain contamination or may have lost or gained key elements, which would result in 

data giving meaningless geological interpretations. While BSE and CL can show brittle 

deformation (fracturing) of the crystal lattice, they do not show plastic lattice distortion.  

 The technique required to reveal lattice distortion is electron backscatter 

diffraction (EBSD) (Prior et al., 1999; Prior et al., 2009). EBSD mapping is conducted inside a 

scanning electron microscope. The electron beam rasters across the sample surface and at 

each point a Kikuchi (diffraction) pattern is obtained. EBSD software automatically indexes 

prominent lattice planes from the diffraction pattern, which are controlled by the crystal 

lattice orientation (Prior et al., 1999). If there is variation in the crystallographic orientation 
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across a crystal (lattice distortion), this will be shown by an EBSD map. Reddy et al. (2006) 

first showed that lattice distortion, in the form of low-angle boundaries from the plastic 

deformation of zircon, acted as enhanced diffusion pathways for trace elements. CL 

imaging of a single zircon megacryst from an Indian Ocean gabbro revealed narrow lines of 

reduced CL emittance, corresponding with the low-angle boundaries revealed by EBSD. Ion 

microprobe analysis of REEs indicated that in the part of the megacryst that had been 

plastically deformed, REE abundance had been modified from that in the undeformed part; 

REE patterns showed a relative enrichment in middle REEs and depletion in heavy REEs. 

Timms et al. (2006b) investigated the effects of lattice distortion formed by plastic 

deformation on the U-Th-Pb system in a zircon megacryst from the Lewisian Gneiss 

Complex (LGC) of Northwest Scotland (the same host rocks as the zircon population in this 

study). They found that, as with REEs, low-angle boundaries within the zircon megacryst 

acted as enhanced diffusion pathways for U and Th; the highest measured concentrations 

and Th/U ratios were found to be in these microstructures. 207Pb/206Pb ages were uniform 

across the megacryst, which led the authors to infer that plastic deformation had occurred 

shortly after crystallisation. Timms et al. (2011) examined another zircon megacryst, this 

time from a Siberian xenolith. As with the zircons from the LGC and Indian Ocean, this 

megacryst contained subgrains separated by low-angle boundaries. They determined that 

Ti is also affected by lattice distortion, as with REE and U-Th-Pb in their previous studies. 

The low-angle boundaries were depleted in Ti relative to the subgrains and this could not 

be explained by volume diffusion alone – the low-angle boundaries were acting as fast 

diffusion pathways.  

 The previous work documented examples of plastic deformation in single zircon 

megacrysts several millimetres in diameter; in this contribution we investigate the 

frequency, effects and causes of plastic deformation across a large population of zircons of 

more normal size (<200µm length) of the type routinely used for U-Pb dating and other 
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geochemical analyses. Our multigrain study comprises fifty-five zircons located on thin 

sections and rock chips and forty-four mechanically separated grain-mounted zircons, all of 

which we have analysed by EBSD; a subset of zircons with and without lattice distortion 

were analysed by ion microprobe for U-Th-Pb, REE and Ti and we document the effect of 

the lattice distortion on the mobility of these elements and isotopes. These were chosen 

based on whether they were large enough for subsequent ion microprobe analysis to 

measure the effects of lattice distortion. Our aim is to understand the frequency, effects 

and causes of lattice distortion in a zircon population, in the context of the tectonothermal 

evolution of the LGC. We highlight the advantages of conducting EBSD analysis prior to ion 

microprobe analysis – it allows the identification of zircons with lattice distortion, which 

may yield different trace element and isotope data to undeformed zircons and therefore 

record different aspects of the formation and tectonothermal evolution of their host rocks. 

 

Geological Setting 

 Rocks from the Lewisian Gneiss Complex (LGC) of northwest Scotland were chosen 

for this study. The LGC crops out along the coastal strip of the northwest mainland as well 

as most of the Outer Hebrides (Fig. 5.1a). The LGC is composed dominantly of tonalite-

trondhjemite-granodiorite (TTG) gneisses with subordinate mafic and metasedimentary 

units, cross-cut by the mafic Scourie Dyke Swarm and minor granite and pegmatite sheets 

(e.g. Peach et al., 1907; Tarney and Weaver, 1987). Sutton and Watson (1951) distinguished 

two tectonothermal events, one before and one after intrusion of the Scourie Dykes; the 

later of these two events, the Laxfordian, comprised static and dynamic amphibolite-facies 

retrogression and heterogeneous deformation across the LGC. Sutton and Watson named 

the pre-Scourie dyke event the ‘Scourian’ but it has since been subdivided into the 

Badcallian (Park, 1970) and the Inverian (Evans, 1965). Both the Badcallian and Inverian are 

heterogeneously overprinted by the Laxfordian and are only preserved in certain areas of 
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the complex, most notably the ‘Central Region’ of Sutton and Watson (1951), the area 

around Scourie (Fig. 5.1b). Field mapping and petrography showed that the Inverian 

assemblage is also amphibolite-facies, whilst the earlier Badcallian is granulite-facies.  

 U-Pb dating of zircon has been widely applied to the LGC. Different workers have 

recorded a range of ages from different parts of the LGC (e.g. Corfu et al., 1994; Corfu et al., 

1998; Whitehouse and Bridgwater, 2001; Kelly et al., 2008; Whitehouse and Kemp, 2010) 

but it has proved difficult to match zircon ages confidently to the field geology. It has also 

been suggested that the LGC is composed of discrete terranes based on U-Pb zircon ages 

(Friend and Kinny, 1995; Kinny and Friend, 1997; Friend and Kinny, 2001; Love et al., 2004; 

Kinny et al., 2005; Love et al., 2010) but the complex age patterns are difficult to interpret 

and there remains the problem of linking zircon data to field relationships. Due to the only 

very recent deployment of the EBSD technique on zircon, it is possible that lattice distortion 

may have played a role in these complex age patterns and may yield further information 

not stored in undistorted zircons. 

 

 

Fig.  5.1 Location maps: a: Outline map of NW Scotland, shaded areas denote LGC outcrop 
and dotted box denotes location of map b; location within British Isles in inset; b: Map of 
Scourie area showing the location and geological context of the field localities. 
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Methodology 

 Detailed field maps of localities in the LGC were made to provide a field context of 

deformation conditions at the whole-rock scale and a framework for sampling. Thin 

sections and rock chips (~3mm thickness) were cut from samples so that there was a 

petrographic context for any distorted zircons which could allow speculation as to the 

cause of lattice distortion. Thin sections and rock chips were polished to 0.25µm grade 

using progressively finer diamond paste and finally colloidal silica solution. For SIMS 

analysis, the thin sections were cut up and the relevant parts were mounted onto a one 

inch glass round with epoxy resin suitable for the ion microprobe sample holder. Zircons 

were also mechanically separated (see chapter 3 for further details) from the same samples 

to increase the zircon population size. 

 BSE and CL imaging were carried out in a Philips XL30 SEM at the University of 

Liverpool. BSE images were taken at 20kV while CL images were taken at 10kV, both at an 

emission current of ~3nA in the XL30 SEM. EBSD was conducted on a CamScan X500 crystal 

probe with a thermionic field emission gun, also at the University of Liverpool. 

Crystallographic orientation data were automatically indexed using the program Flamenco, 

part of the CHANNEL5 suite from HKL software. Working conditions were: 20kV 

acceleration voltage, 20µA beam current and 25mm working distance. A raster step size of 

0.5-2µm was used; analytical errors on diffraction angles are ~0.5°. EBSD analytical 

parameters broadly follow that of Mariani et al. (2009) and Bestmann et al. (2006). The 

Tango module of CHANNEL5 was used to clean up the data by removing misindexed points 

and interpolating around good data. The datasets were then displayed as maps in Tango. 

The maps used here are composites of band contrast (the pattern quality of the EBSD data) 

and texture component (a false-colour map of crystallographic orientation relative to a 

given point). EBSD maps are interpreted qualitatively, and quantitatively using a Burgers 
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Vector analysis, to elucidate possible dislocation types responsible for lattice distortion 

(Wheeler et al., 2009) – this is the first published use of this method on a mineral. 

 SIMS analysis of zircon was carried out at the NERC Ion Microprobe Facility, 

University of Edinburgh. Trace elements were measured using a Cameca ims-4f ion 

microprobe while U-Th-Pb isotopic measurements were made using a Cameca 1270 ion 

microprobe. Analytical and correction procedures follow those outlined by Kelly and Harley 

(2005a) and Kelly et al. (2008). Analytical reproducibility of U/Pb ratios during and between 

analytical periods was calibrated against the 91500 (Wiedenbeck et al., 1995), SL1 (Maas et 

al., 1992) and Plesovice (Slama et al., 2008) zircon standards. Plesovice was the primary 

standard and yielded a mean 206Pb/238U ratio of 0.05359±0.00023 (MSWD = 2.4; 95% conf.; 

340.5±4.8Ma; n = 62). U-Pb age plots and calculation were made using the computer 

program Isoplot 4.11 (Ludwig, 2003). All 207Pb/206Pb ages are quoted at 2σ. Analytical 

reproducibility of trace elements was calibrated against the 91500 zircon standard. For Ti 

and most REEs (particularly the heavier ones), the average analytical error was <10% (2σ) 

but for some for the lighter REEs which have lower concentrations, it was higher. Analytical 

reproducibility against the NIST SRM610 glass standard (Hinton, 1999) was <7% (2σ) for all 

trace elements analysed. 

 

Results 

 Twenty-one samples of tonalitic gneisses and three samples of metasemipelites 

were collected from localities around the village of Scourie (Fig. 5.1b). These samples were 

chosen as they recorded a range of different tectonothermal histories: some preserved 

early Badcallian or Inverian assemblages and structures while others were pervasively 

altered in the Laxfordian. A population of fifty-five in-situ zircons and forty-four grain-

mounted zircons from the twenty-four samples were analysed by EBSD to test for lattice 

distortion. Some zircons contained fractures that were visible in BSE while most zircons in 
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the population exhibited no lattice distortion; examples of zircons with no lattice distortion 

and zircons with brittle fractures are shown in Fig. 5.2. EBSD analysis showed that five 

zircons out of the ninety-nine have internal lattice distortions of at least 3°. The five 

distorted zircons are described below in the context of their host rocks; three of these were 

analysed by ion microprobe for U-Th-Pb, Ti and REEs (Tables 5.1 & 5.2) and compared 

against undistorted zircons from the same population. Table 5.3 summarises the results for 

each distorted zircon.  

 

Fig.  5.2 BSE images, lattice misorientation maps and misorientation profiles of examples of zircons 
without lattice distortion (a) and zircons with fractures (b). 
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Table 5.1 Ion microprobe U-Th-Pb data for zircons with and without lattice distortion 

Spot U (ppm) Th (ppm)  Th/U 
204

Pbc (ppb) 
207

Pb/
206

Pb 2σ 
206

Pb/
238

U 2σ 
207

Pb/
235

U 2σ 
207

Pb/
206

Pb Age 2σ Disc. (%) 

Lattice Distortion                           

BP06ChZ3-1 97.1 267.5 2.82 0.3 0.16 0.002 0.46 0.010 10.17 0.237 2453 16 0.26 

BP06ChZ3-2 101.6 177.4 1.79 0.3 0.16 0.001 0.48 0.011 10.39 0.259 2437 12 -3.02 

BP06ChZ3-3 128.3 400.8 3.20 0.2 0.16 0.001 0.46 0.010 10.05 0.243 2437 14 -0.24 

BP06ChZ3-4 114.3 302.7 2.72 0.2 0.16 0.002 0.47 0.010 10.11 0.252 2422 20 -2.10 

BP06ChZ3-5 133.5 370.5 2.85 0.2 0.16 0.001 0.46 0.010 10.16 0.225 2440 12 -0.84 

DP02Z2-2 86.1 41.3 0.49 0.5 0.15 0.002 0.40 0.010 8.27 0.229 2331 22 6.28 

DP02Z7-1 47.1 13.0 0.28 0.7 0.14 0.003 0.38 0.010 7.49 0.263 2266 40 8.49 

Undistorted                           

BP06ChZ1-2 421.3 294.9 0.72 0.0 0.22 0.001 0.58 0.012 17.41 0.365 2956 8 -0.12 

BP06ChZ2-1 72.8 66.1 0.93 0.1 0.22 0.003 0.59 0.014 17.67 0.500 2973 24 0.12 

GMBP06Z1-2 20.4 20.2 1.01 0.2 0.18 0.003 0.49 0.016 12.40 0.456 2668 32 2.87 

GMBP06Z2-1 24.4 31.3 1.32 0.3 0.17 0.003 0.48 0.013 11.11 0.1360 2526 30 -0.54 

GMBP06Z3-1 18.0 12.5 0.71 0.0 0.17 0.004 0.49 0.015 11.70 0.477 2595 42 1.29 

GMBP06Z3-2 21.5 12.9 0.61 0.6 0.16 0.003 0.48 0.012 10.69 0.329 2485 30 -1.01 

GMBP06Z4-2 19.4 20.2 1.07 0.3 0.18 0.007 0.51 0.015 12.56 0.636 2643 68 -0.34 

GMBP06Z4-3 19.8 20.8 1.08 0.3 0.18 0.008 0.51 0.017 12.52 0.684 2650 70 0.53 

GMBP06Z6-2 34.0 39.4 1.19 0.1 0.20 0.008 0.53 0.017 14.79 0.756 2848 64 3.86 

DP01Z10-2 14.5 5.1 0.36 0.2 0.18 0.008 0.48 0.015 12.21 0.677 2685 74 5.50 
(continued) 
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Table 5.1 (cont) Ion microprobe U-Pb data for zircons with and without lattice distortion 

Spot U (ppm) Th (ppm)  Th/U 
204

Pbc (ppb) 
207

Pb/
206

Pb 2σ 
206

Pb/
238

U 2σ 
207

Pb/
235

U 2σ 
207

Pb/
206

Pb Age 2σ Disc. (%) 

DP01Z4-1 15.3 2.2 0.15 0.0 0.17 0.004 0.46 0.013 10.63 0.369 2522 36 2.74 

DP01Z4-2 14.0 2.1 0.16 0.2 0.19 0.006 0.51 0.014 13.34 0.541 2725 48 1.82 

DP01Z6-1 18.3 11.0 0.62 0.1 0.17 0.003 0.45 0.014 10.61 0.390 2551 30 5.39 

DP01Z6-2 17.2 8.8 0.52 0.2 0.17 0.004 0.47 0.014 10.73 0.417 2521 38 1.83 

DP01Z6-3 58.0 87.2 1.54 0.0 0.17 0.004 0.46 0.012 10.56 0.359 2521 36 3.21 

DP01Z6-4 14.7 9.6 0.67 0.0 0.18 0.005 0.48 0.015 11.73 0.515 2625 50 3.67 

DP01Z6-5 18.6 8.9 0.49 0.3 0.17 0.004 0.46 0.014 10.91 0.407 2565 36 4.30 

GMDP01Z1-1 36.5 20.8 0.58 0.2 0.17 0.002 0.46 0.011 10.60 0.298 2523 22 3.05 

GMDP01Z1-2 27.2 10.4 0.39 0.2 0.16 0.003 0.47 0.012 10.68 0.341 2502 32 0.59 

GMDP01Z3-1 15.1 7.1 0.48 0.2 0.19 0.010 0.51 0.020 13.63 0.898 2780 86 4.71 

GMDP01Z4-1 14.8 7.8 0.54 0.5 0.16 0.003 0.47 0.015 10.53 0.381 2494 28 1.01 

GMDP01Z4-2 12.3 6.0 0.56 0.3 0.16 0.004 0.49 0.017 11.12 0.482 2506 44 -2.41 

GMDP01Z6-1 5.4 3.2 0.61 0.8 0.20 0.009 0.52 0.019 14.44 0.822 2849 70 5.83 

GMDP01Z6-3 65.7 61.0 0.95 0.1 0.20 0.003 0.55 0.016 15.23 0.475 2836 20 0.58 

GMDP01Z7-1 14.7 7.4 0.52 0.3 0.18 0.008 0.49 0.045 12.01 1.237 2624 78 1.71 

GMDP01Z8-2 71.0 72.2 1.04 0.2 0.16 0.002 0.45 0.011 10.33 0.281 2505 20 3.55 
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Table 5.2  Ion microprobe trace element data; element abundances in ppm. REEs are chondrite-normalised against the values of Sun and McDonough (1995). Temperatures 
are calculated using the Ti-in-zircon  geothermometer of Watson et al. (2006). 

Spot La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Ti Temp (°C) 

Lattice 
Distortion                                 

 BP06ChZ3-1 0.51 84.82 3.65 6.56 16.09 13.42 33 57 102 172 296 448 597 1003 18.3 6.91 709 

BP06ChZ3-2 0.55 67.68 2.42 6.26 14.26 9.99 33 58 104 182 316 491 656 1026 20.0 5.72 694 

BP06ChZ3-3 0.83 125.39 6.00 13.32 22.66 20.04 34 38 52 73 128 180 233 383 6.8 6.19 700 

BP06ChZ3-4 0.61 117.50 6.08 11.13 18.82 18.51 29 44 70 129 223 345 487 804 16.6 10.64 746 

BP06ChZ3-5 3.12 116.67 7.82 12.41 19.15 23.16 36 54 81 131 234 335 479 708 13.4 8.10 723 

DP02Z2-2 0.81 24.42 2.55 4.03 11.36 11.91 27 34 39 44 60 67 101 137 3.8 20.83 810 

DP02Z7-1 0.75 22.10 1.68 3.39 12.57 11.26 35 67 102 166 268 400 494 773 14.1 46.56 897 

Undistorted                                 
 BP06ChZ2-1 0.26 25.21 1.06 2.83 21.87 16.19 92 169 294 476 756 1012 1267 1750 13.7 15.84 793 

BP06ChZ2-2 3.20 22.34 1.74 3.08 14.79 15.24 58 109 192 319 531 681 893 1297 15.3 14.53 783 

BP06ChZ2-3 0.38 31.64 3.98 12.83 57.67 29.24 160 263 437 677 1040 1338 1684 2406 10.6 18.16 796 

BP06ChZ1-2 0.46 46.71 1.57 5.18 20.96 19.17 62 104 180 298 516 814 1178 1977 18.9 14.64 776 

GMBP06Z6-2 0.27 34.02 2.36 5.45 19.88 10.68 67 119 186 320 500 636 821 1259 12.3 21.12 811 

GMBP06Z3-1 0.29 27.06 0.52 1.65 5.15 4.64 42 67 121 179 295 375 464 740 11.2 15.39 780 

GMBP06Z3-3 0.29 26.77 0.52 3.05 8.84 3.43 47 93 138 235 316 476 529 768 11.2 16.38 786 

GMBP06Z1-1 0.47 29.77 1.70 4.34 18.42 9.20 58 91 148 235 370 498 690 922 12.0 18.62 799 

GMBP06Z1-2 0.33 28.59 1.65 2.79 13.86 8.16 41 62 106 159 262 340 445 621 10.9 17.87 795 

GMBP06Z1-3 0.41 23.33 0.60 2.25 8.85 6.16 44 68 132 213 323 453 580 786 13.2 15.66 782 

GMBP06Z4-2 0.32 27.08 1.23 3.03 12.24 7.06 38 59 97 151 241 335 442 622 11.5 15.78 783 

(continued) 
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Table 5.2 (cont.) Ion microprobe trace element data; element abundances in ppm. REEs are chondrite-normalised against the values of Sun and McDonough (1995). 
Temperatures are calculated using the Ti-in-zircon  geothermometer of Watson et al. (2006). 

Spot La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Ti Temp (°C) 

GMBP06Z4-3 0.31 27.13 1.29 3.79 16.51 11.17 50 82 132 206 331 447 548 818 11.0 13.78 770 

BP06ChZ2-9 1.98 69.42 3.62 5.50 19.07 11.54 51 84 143 224 364 543 693 1042 13.6 17.58 793 

GMBP06Z2-1 0.28 39.11 1.84 7.05 20.41 13.06 60 97 168 272 386 508 647 1095 10.9 16.72 788 

GMBP06Z3-2 0.06 24.41 0.87 1.63 10.50 4.91 36 57 105 156 270 375 393 698 10.9 14.84 777 

DP01Z10-1 0.83 32.35 2.10 4.01 15.13 16.79 40 62 97 142 219 280 373 540 9.4 20.28 807 

DP01Z10-2 0.38 25.58 1.35 3.44 13.46 9.75 40 60 98 150 221 319 393 565 9.9 19.81 805 

DP01Z4-1 0.25 35.50 0.99 2.66 15.05 8.67 55 95 167 257 424 570 725 1074 13.1 17.78 794 

DP01Z4-2 0.33 32.36 0.89 2.25 13.18 7.37 49 84 146 232 389 510 626 932 12.9 16.39 786 

DP01Z6-1 0.58 29.46 1.80 4.10 16.78 12.57 53 73 118 181 277 365 446 671 8.5 17.14 791 

DP01Z6-2 0.35 27.62 1.51 4.11 15.71 12.36 47 74 114 167 262 363 435 648 9.2 15.90 783 
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Table 5.3 Summary table of data for each zircon with lattice distortion 

Zircon  Distortion Pattern CL Th/U 207Pb/206Pb Age (Ma) Ti REE Pattern 

Zircon GG09Z1 from 
sample JM08/GG09 
from Geisgeil 

Bending at one 
corner of the grain 

Narrow very bright rim, dark and light zones 
partially overprinting  earlier oscillatory 
zoning. Two narrow dark lines pass through 
the area of plastic distortion but do not 
appear related to the microstructure 

- - - - 

 Zircon ST02Z2 from 
sample JM09/ST02 
from Sithean Mor 

Fairly gentle lattice 
bending across the 
crystal 

Generally quite dark with some irregular 
lighter patches unrelated to microstructure 

- - - - 

Zircon BP06ChZ3-1 
from sample 
JM09/BP06 from 
Badcall Point 

Lattice bent in one 
half of the crystal 
into a series of 
subgrains 

Generally quite dark with patchy slightly 
brighter rim, low density of sinuous dark 
lines 

2.8 - much higher 
than zircons without 
lattice distortion 

2453±16Ma - concordant but 
slightly younger than youngest ages 
from zircons without lattice 
distortion 

6.9ppm - well below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon BP06ChZ3-2 
from sample 
JM09/BP06 from 
Badcall Point 

Lattice bent in one 
half of the crystal 
into a series of 
subgrains 

As BP06ChZ3-1 1.8 - higher than 
zircons without 
lattice distortion 

2437±12Ma - concordant but 
slightly younger than youngest ages 
from zircons without lattice 
distortion 

5.7ppm - well below the 
main cluster of Ti 
concentrations 

Typical zircon 
pattern 

Zircon BP06ChZ3-3 
from sample 
JM09/BP06 from 
Badcall Point 

Lattice bent in one 
half of the crystal 
into a series of 
subgrains 

As BP06ChZ3-1 but with a high density of 
sinuous black lines 

3.2 - about 3x 
higher than zircons 
without lattice 
distortion 

2437±14Ma - concordant but 
slightly younger than youngest ages 
from zircons without lattice 
distortion 

6.2ppm - well below the 
main cluster of Ti 
concentrations 

Elevated Pr, 
depleted in heavy 
REE (Yb/Gd = 6.8) 

Zircon BP06ChZ3-4 
from sample 
JM09/BP06 from 
Badcall Point 

Lattice bent in one 
half of the crystal 
into a series of 
subgrains 

As BP06ChZ3-1, this spot covers some of the 
brighter rim 

2.7 - much higher 
than zircons without 
lattice distortion 

2422±20Ma - concordant but 
slightly younger than youngest ages 
from zircons without lattice 
distortion 

10.6ppm - below the 
main cluster of Ti 
concentrations 

Subdued Eu 
anomaly, elevated 
Pr 

Zircon BP06ChZ3-5 
from sample 
JM09/BP06 from 
Badcall Point 

Lattice bent in one 
half of the crystal 
into a series of 
subgrains 

As BP06ChZ3-1 but with a high density of 
sinuous black lines 

2.8 - much higher 
than zircons without 
lattice distortion 

2440±12Ma - concordant but 
slightly younger than youngest ages 
from zircons without lattice 
distortion 

8.1ppm - well below the 
main cluster of Ti 
concentrations 

Subdued Eu 
anomaly, elevated 
Pr 

Zircon DP02Z2 from 
sample JM09/DP02 
from Duartmore Point 

Folded pattern 
across crystal with 
possibly patchy 
development of 
subgrain walls 

Medium grey emittance, very bright spot 
near centre, some irregular dark lines 
possibly related to microstructure 

0.5 - within range of 
zircons without 
lattice distortion but 
below average 

2331±22Ma – 6.3% discordance, 
likely due to Pb-loss during the 
Laxfordian tectonothermal event, 
enabled by earlier lattice distortion 

20.9ppm - at the higher 
end of Ti concentrations 
recorded by undistorted 
zircons 

Subdued Eu 
anomaly,  
relatively flat 
heavy REE pattern 
(Yb/Gd = 3.8) 

Zircon DP02Z7 from 
sample JM09/DP02 
from Duartmore Point 

Unusual cross-
hatched pattern 

Very dark core, very bright rim with dark 
fracture lines 

0.3 - within range of 
zircons without 
lattice distortion but 
well below average 

2266±40Ma – 8.5% discordance, 
likely due to Pb-loss during the 
Laxfordian tectonothermal event, 
enabled by earlier lattice distortion 

46.6ppm – 25ppm 
higher than any other 
recorded Ti 
concentrations 

Subdued Eu 
anomaly  
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Distorted Zircons 

 Zircon GG09Z1 was located on a thin section from sample JM08/GG09, collected at 

UK Grid Reference NC 17947 41005, ~4.5km southeast of Scourie village (Geisgeil, Fig. 

5.1b). At this locality, weakly-banded amphibolite-facies TTG gneiss is cut by a Scourie Dyke, 

which is in turn cut by a Laxfordian shear zone (Fig. 5.3a). Sample JM08/GG09 is from the 

pre-dyke banded tonalitic gneiss and is composed of ~40% hornblende aggregates, ~30% 

plagioclase, ~30% quartz and accessory biotite and opaques; there are no mineral shape 

fabrics in this rock (Fig. 5.4). It is interpreted to be a Badcallian granulite-facies gneiss that 

was subsequently pervasively statically retrogressed. Zircon GG09/Z1 (Fig. 5.5a) is a large 

and unusually squarish-shaped crystal, approximately 200x200µm in size; the lattice 

distortion is confined to one corner of the crystal, where the lattice gradually bends 

through 5° out to the tip. The CL pattern for this zircon is irregular – a narrow bright rim 

partially surrounds a CL-dark zone and fairly uniform lighter zone, which appears to have 

partially overprinted some earlier oscillatory zoning (Fig. 5.5a). Zircon GG09Z1 was the only 

zircon found at this locality and so in the absence of undistorted zircons to compare it to, it 

was not analysed by ion microprobe. 

 Zircon ST02Z2 was located on a thin section from sample JM09/ST02, collected at 

UK Grid Reference NC 14970 46124, ~1.5km northwest of Scourie village (Sithean Mor, Fig. 

1b). At this locality, an enclave of metasemipelite is surrounded by TTG gneiss; the field 

relationships suggest the fabric in the metasemipelite may be pre-dyke as the fabric in the 

surrounding TTG gneiss is cross-cut by a Scourie dyke (Fig. 5.3b). Sample JM09/ST02 is from 

the metasemipelite and is composed of ~30% plagioclase, ~30% quartz aggregates, ~30% 

biotite laths and relict garnet porphyroblasts. There is a coarse mineral layering and the 

quartz aggregates define a shape fabric; biotite laths are not aligned and the garnet 

porphyroblasts are heavily fractured and retrogressed to biotite around the rims (Fig. 5.4). 

Zircon ST02Z2 (Fig. 5.5b) is roughly elliptical and approximately 100µm in length along its 
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long axis; there is lattice misorientation across the crystal of around 3° (Fig. 5.5b). BSE 

imaging reveals a brittle fracture, which correlates to a certain degree with the 

microstructure shown in the EBSD map but there is still apparent lattice distortion on either 

side of this (Fig. 5.5b). The zircon is largely CL-dark with irregular patches of lighter CL 

response (Fig. 5.5b).  

 

Fig.  5.3 Maps of field areas from which analysed zircons were obtained; a: Geisgeil; b: Sithean Mor; c: 
Badcall Point; d: Duartmore Point; UK grid references given for each locality. 
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Fig.  5.4 Petrographic context of the distorted zircons: plane polarised light photomicrographs of each 
sample containing a distorted zircon; Hbl = hornblende, Plag – plagioclase, Qtz = quartz, Grt = garnet, 
Bt = biotite, Opq = opaque iron oxide. 

 Zircon BP06ChZ3 was located on a thin section from sample JM09/BP06, collected 

at UK Grid Reference NC 14565 41561, ~3.5km south-southeast of Scourie village (Badcall 

Point, Fig. 5.1b). At this locality, an early Badcallian gneissic layering in tonalitic gneiss is cut 

by a narrow band of possibly Inverian fabric; this is cut by a Laxfordian shear zone, which 

also cuts a Scourie Dyke (Fig. 5.3c). Sample JM09/BP06 is from the Laxfordian shear zone 

and is composed of ~75% sericitised plagioclase, ~20% hornblende and ~5% quartz with 

accessory allanite, titanite, ilmenite and rutile. Sub-millimetre hornblende crystals 

aggregate to define a moderate mineral aggregate shape fabric (Fig. 5.4). Zircon BP06ChZ3 

(Fig. 5.5c) is large and irregularly-shaped, approximately 300x150µm in size; lattice 

distortion occurs in one half of this elongate crystal, up to 10° from the centre to the tip. 

The stepped nature of the misorientation profile indicates that this crystal is split into 

subgrains. BSE imaging shows a small fracture along one edge of the crystal, which is also 
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picked up by EBSD but is unrelated to the lattice distortion shown by the EBSD (Fig. 5.5c).  

 

Fig.  5.5 BSE images, CL images, lattice misorientation maps and misorientation profiles of the five 
zircons with lattice distortion. The lattice misorientation maps were generated using the “Texture 
Component” function in the “Tango” module of Channel5 software and illustrate crystallographic 
orientation relative to a given point. The misorientation profiles show this relative change along a 
transect. The location of the misorientation profiles are shown by the lines on the associated lattice 
misorientation maps. Ellipses denote ion microprobe analytical spot locations; on zircon BP06ChZ3, 
numbers denote spot numbers referred to in the text. a GG09Z1; b ST02Z2; c BP06ChZ3; d DP02Z2; e 
DP02Z7. 
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The CL pattern is irregular – it is generally CL-dark with a slightly brighter rim (Fig. 5.5c). A 

brighter linear feature (a fracture) passes through the crystal but appears unrelated to the 

lattice distortion. There are many sinuous CL-dark lines sub-parallel to the subgrain walls 

shown by EBSD; these are similar to features noted by Reddy et al. (2006) and Timms et al. 

(2011), which they interpret to be subgrain walls. Five ion microprobe analytical spots were 

made on this zircon (see Fig. 5.5c), two of which (4 & 5) were placed on subgrain walls with 

the other three in different microstructural domains of the crystal; the spot locations were 

checked after ion microprobe analysis with CL imaging. For the five spots, Th/U ratios range 

from 1.7-3.1 (Fig. 5.6a) while the 207Pb/206Pb ages fall between 2422Ma and 2453Ma (Fig. 

5.6b). The five ages are well within error of each other, with discordance of -3.02% to 

+0.26%. Ti concentrations are between 5.7 and 10.7ppm (Fig. 5.7). Four of the five spots 

show typical zircon REE patterns (Fig. 5.8); zircons are enriched in heavy REEs relative to 

light REEs but also have a positive Ce anomaly and a negative Eu anomaly (Kelly and Harley, 

2005a; Kelly and Harley, 2005b). However, spot 3 is depleted in heavy REEs with a Lu 

abundance of only 383ppm; this illustrated by the low Yb/Gd ratio of 6.8 relative to >9 for 

most undistorted zircons (Table 5.2). Numerous other zircons were found in this sample, 

including some located within a few millimetres of zircon BP06ChZ3, but all were 

undistorted. 

 Zircons DP02Z2 and DP02Z7 were located on a thin section from sample 

JM09/DP02, collected at UK Grid Reference NC 17923 35972, ~6km west-northwest of 

Kylesku village (Duartmore Point, Fig. 5.1b). At this locality, a Scourie Dyke cuts across 

Badcallian granulite-facies tonalitic gneisses but is rotated and sheared by a Laxfordian 

shear zone (Fig. 5.3d). Sample JM09/DP02 is from the Laxfordian shear zone and is 

composed of ~60% hornblende aggregates, ~35% sericitised plagioclase and ~5% quartz 

with accessory rutile, titanite, ilmenite and apatite. Sub-millimetre hornblende crystals 

aggregate to define strong mineral shape and location fabrics (Fig. 5.4). Only two zircons  
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Fig.  5.6 U-Th-Pb data: a Plot showing Th (ppm) against U (ppm) with Th/U ratio contoured of 
distorted and undistorted zircons; b Wetherill concordia plot showing the age relationship of 
distorted zircons BP06ChZ3, DP02Z2 and DP02Z7 and undistorted comparison zircons from samples 
JM09/DP01 and JM09/BP06; c Concordia plot showing a discordia chord through the ellipses for 
DP02Z2 and DP02Z7 which has a lower intercept within error of the age of the Laxfordian 
tectonothermal event.  
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Fig.  5.7 Bar chart showing the concentrations of Ti in zircon in distorted and undistorted zircons. 

 

Fig.  5.8 Matsuda diagram showing Rare Earth Element patterns and concentrations. Shaded area 
denotes analyses of undistorted comparison zircons, solid lines denote distorted zircons. Values are 
normalised against chondrite (McDonough and Sun, 1995).  
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were found in this sample big enough for ion microprobe analysis, and both show lattice 

distortion. Zircon DP02Z2 (Fig. 5.5d) is a small elliptical zircon, approximately 80µm in 

length along its long axis; there is up to 7° misorientation in a band running diagonally 

across the crystal with one fairly sharp boundary suggesting a subgrain wall; BSE imaging 

does not clearly suggest this as a fracture.  

 Due to the small size of the zircon, it was difficult to get a high-resolution CL image 

but it shows many sinuous dark lines, as in zircon BP06ChZ3; some of these correlate with 

lines of dark blebs shown by BSE imaging and with the lattice distortion pattern, and 

therefore may represent subgrain walls. There is also a bright spot in the centre of the 

grain, which does not correspond with the microstructure (Fig. 5.5d). Just one ion 

microprobe analysis was made for this zircon due to its small size. The Th/U ratio is 0.48 

(Fig. 5.6a) while the 207Pb/206Pb age of 2331±22Ma is discordant by 6.3%, plotting well 

below concordia (Fig. 5.6b). Ti abundance is 21ppm (Fig. 5.7). Light REEs form a typical 

zircon pattern but there is no Eu anomaly (concentration of Eu is higher than Sm). The 

heavy REEs show a flatter profile relative to undistorted zircons (Fig. 5.8), illustrated by a 

very low Yb/Gd ratio of 3.8; the concentration of Lu is only 137ppm.  

  Zircon DP02Z7 (Fig. 5.5e) is a squat, slightly elliptical crystal, approximately 

100x80µm in size; there is up to 15° variation in lattice orientation across the crystal, with 

the most extreme deformation occurring in opposite corners. The EBSD analysis also 

highlights an unusual cross-hatched pattern in lattice orientation in one part of the crystal, 

with misorientation of up to 7° here (Fig. 5.5e). BSE imaging shows the core of the grain to 

have some concentric zoning with fractures emanating from this (Fig. 5.5e). CL imaging 

shows the core to be very CL-dark which suggests high U content; the rim, including area of 

cross-hatched lattice distortion, is CL-bright (Fig. 5.5e). High U concentrations can induce 

metamictisation, which causes volume increase resulting in a radial fracture pattern (Corfu 
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et al., 2003). While the rim has clearly formed before the metamictisation, it is difficult to 

say whether the cross-hatched lattice distortion occurred before the metamictisation or is 

related to it. Just one ion microprobe analysis was made for this zircon due to its small size; 

the spot was placed in an unfractured part of the CL-bright rim showing cross-hatched 

lattice distortion. The Th/U ratio is 0.28 (Fig. 5.6a) while the 207Pb/206Pb age of 2266±40Ma 

is discordant by 8.5%, plotting well below concordia (Fig. 5.6b). Ti concentration is 46ppm 

(Fig. 5.7). The REE pattern is typical of that expected for zircon (Kelly and Harley, 2005a) 

(Fig. 5.8).  

 

Undistorted Zircons 

 Ion microprobe U-Th-Pb, Ti and REE data from three of the five distorted zircons 

were compared to undistorted zircons to illustrate the effects of lattice distortion on trace 

element mobility and isotope systematics, and the geological conclusions drawn from 

them. The samples to which the distorted zircons were compared, and the reasons why, are 

given in Table 5.4. Undistorted zircons from sample JM09/BP06 displayed a range of CL 

patterns comprising dark cores, oscillatory zoning patterns, bright overgrowths and various 

other patterns. Th/U ratios ranged from 0.2-1.3 (Fig. 5.6a) while 207Pb/206Pb ages ranged 

from 2485±30Ma to 2973±24Ma (Fig. 5.6b); discordance ranged from -1% to +5% (Table 

5.1). Ti concentrations were 13-21ppm (Fig. 5.7). The REE patterns are typical of that 

expected for zircon (Kelly and Harley, 2005a) (Fig. 5.8).  

 Only two zircons were located and analysed from sample JM09/DP02 and these 

both had distorted lattices. In order to investigate the effects of lattice distortion on their 

trace elements and isotopes, undistorted zircons from sample JM09/DP01 were used. This 

sample was located ~1m away from JM09/DP02 in the marginal part of the shear zone. 

Sample JM09/DP01 is composed of ~40% quartz, ~40% plagioclase and ~20% sieve-textured 

hornblende and quartz, after pyroxene, with accessory rutile, allanite, magnetite and 
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apatite. There is no mineral stretching lineation, only weak gneissic layering and the sample 

is therefore much less intensely deformed than sample JM09/DP02. Undistorted zircons 

from sample JM09/DP01 displayed a range of CL patterns comprising dark cores, oscillatory 

zoning patterns, bright overgrowths and various other patterns. Th/U ratios ranged from 

0.1-1.5 (Fig. 5.6a) while 207Pb/206Pb ages ranged from 2494±28Ma to 2849±70Ma (Fig. 5.6b); 

discordance ranged from -2% to +6% (Table 5.1). Ti concentrations were 8-20ppm (Fig. 5.7). 

The REE patterns are typical of that expected for zircon (Kelly and Harley, 2005a) (Fig. 5.8). 

 

Discussion 

Comparison of Distorted and Undistorted Zircons 

U-Th-Pb  

 As U-Pb zircon dating is a widely used technique, it is important to understand the 

effects of lattice distortion on U-Th-Pb systematics. Th/U ratios of 1.7-3.1 in zircon 

BP06ChZ3 were up to three times higher than those of the undistorted comparison zircons 

from the same sample (generally in the range of 0.7-1.2) (Fig. 5.6a). The bulk U and Th 

contents in this zircon were among the highest in the whole population but this is not 

interpreted to be related to lattice distortion – an undistorted zircon located ~8mm away 

also has high Th and U and this is interpreted to be a due to local Th and U availability 

during growth or metamorphic recrystallization. Zircons DP02Z2 and DP02Z7 had Th/U 

ratios of 0.28 and 0.48, respectively, which fall within the range of the comparison zircons 

from sample JM09/DP01 (0.15-1.54) but are lower than the average of 0.63 (Fig. 5.6a).  

 The 207Pb/206Pb ages calculated from distorted zircons are younger than ages from 

undistorted zircons (Fig. 5.6b). The five ages from zircon BP06ChZ3 are discordant by +0.5% 

to -3%. Timms et al. (2006b) noted that reverse discordance may be explained by U loss 

through open-system behaviour during bending of the lattice. In this study, however, the 

discordance is within error of concordia at 2σ confidence levels. The five ages from this 
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zircon are slightly younger than previously published ages of ~2490Ma for a tectonothermal 

event in the Central Region/Assynt Terrane (Corfu et al., 1994; Friend and Kinny, 1995). A 

small amount of Pb-loss from the lattice during plastic deformation would give an age 

slightly younger than crystallisation, suggesting plastic deformation occurred at ~2490Ma.  

 Sample from which undistorted comparison zircons were obtained 
Distorted 
Zircon 

For U-Pb dating For Th/U For REEs For Ti 

BP06ChZ3 JM09/BP06 – 
same sample, and 
JM09/DP01 – 
records same age 
spectrum as 
JM09/BP06 

JM09/BP06 – same 
sample 

JM09/BP06 – same 
sample, and 
JM09/DP01 – records 
same compositional 
range as JM09/BP06 

JM09/BP06 – same 
sample 

DP02Z2 JM09/BP06 – also 
a Laxfordian 
shear zone, 
located 6km 
away, interpreted 
to have 
underwent same 
tectonothermal 
history as 
JM09/DP02, and 
JM09/DP01 – 
records same age 
spectrum as 
JM09/BP06 

JM09/DP01 – 
located only one 
metre from 
JM09/DP02. While 
the host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

JM09/DP01 – located 
only one metre from 
JM09/DP02. While the 
host rock is 
heterogeneous in 
composition, these 
zircons are the closest 
geographically and are 
interpreted to offer 
the best comparison of 
trace element 
chemistry, and 
JM09/BP06 – records 
same compositional 
range as JM09/DP01 

JM09/DP01 – 
located only one 
metre from 
JM09/DP02. While 
the host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

DP02Z7 JM09/BP06 – also 
a Laxfordian 
shear zone, 
located 6km 
away, interpreted 
to have 
underwent same 
tectonothermal 
history as 
JM09/DP02, and 
JM09/DP01 – 
records same age 
spectrum as 
JM09/BP06 

JM09/DP01 – 
located only one 
metre from 
JM09/DP02. While 
the host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

JM09/DP01 – located 
only one metre from 
JM09/DP02. While the 
host rock is 
heterogeneous in 
composition, these 
zircons are the closest 
geographically and are 
interpreted to offer 
the best comparison of 
trace element 
chemistry, and 
JM09/BP06 – records 
same compositional 
range as JM09/DP01 

JM09/DP01 – 
located only one 
metre from 
JM09/DP02. While 
the host rock is 
heterogeneous in 
composition, these 
zircons are the 
closest 
geographically and 
are interpreted to 
offer the best 
comparison of trace 
element chemistry 

Table 5.4 Samples from which undistorted zircons have been used for comparison with distorted 
zircons and the justification for sample choice. 
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 Zircons DP02Z2 and DP02Z7 give ages that are younger than all the other analysed 

zircons in this study, with or without lattice distortion. They are more discordant than any 

other zircon analyses and plot well below concordia (Fig. 5.6b). CL images of these two 

zircons do not show any young overgrowths (Fig. 5.5) which the ion microprobe spots could 

have sampled. Their discordant position on the concordia plot (Fig. 5.6b) is therefore 

interpreted to be due to Pb-loss. The position and spatial relationship of the ellipses for 

DP02Z2 and DP02Z7 on a concordia plot line up on a discordia chord with an upper 

intercept through a cluster of concordant (+5% to -1%) ages of ~2500Ma from undistorted 

zircons from samples JM09/DP01 and JM09/BP06. This discordia has an upper intercept at 

2571±51Ma and a lower intercept at 1631±250Ma with a MSWD of 2.5 at 2σ confidence 

levels (Fig. 5.6c). The age cluster at ~2500Ma is interpreted to be the age of a 

tectonothermal event – it is the youngest concordant zircon age recorded in the whole 

dataset and is also close to the ~2490Ma tectonothermal event (the Inverian of Corfu et al. 

(1994) and the Badcallian of Kinny et al. (2005)). Although the lower intercept has a large 

error, it is within error of published ages for the lower amphibolite-facies Laxfordian 

tectonothermal event. Kinny and Friend (1997) and Corfu et al. (1994) give 207Pb/206Pb ages 

of 1750-1670Ma from rutile and titanite for the Laxfordian. Therefore, these two zircons 

appear to be recording the Laxfordian event in their U-Pb systematics. An increase in 

temperature in the Laxfordian may have allowed volume diffusion of Pb out of the zircon 

and the inherent lattice distortions will have helped this. Laxfordian ages are not recorded 

in any undistorted zircons in this study or in previous studies which suggests that lattice 

distortion allows Pb diffusion at lower temperatures than in undistorted zircon, effectively 

locally lowering the closure temperature.  
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Ti Thermometry 

  Ti content in zircon is proportional to the crystallisation temperature – this 

forms the basis of the Ti-in-zircon geothermometer derived by Watson et al. (2006). The 

accuracy of the temperatures calculated with the Ti-in-zircon thermometer is controlled by 

aTiO2 – excess rutile in the rock indicates that the aTiO2 = 1 and Ti content in zircon was 

buffered. In this case, the calculated temperatures will be accurate. If there is no rutile 

present during zircon crystallisation, the system is not buffered and the calculated 

temperature will be a minimum. Quartz and accessory rutile is present in samples BP06, 

DP02 and DP01 so all zircon temperatures calculated in this study are interpreted to be 

accurate.  

 Zircon DP02Z2 yields a crystallisation temperature of 810°C; this is slightly higher 

than the highest of the temperatures recorded in undistorted zircons from sample 

JM09/DP01 but is not strikingly different so lattice distortion is interpreted not to have had 

any extreme or obvious effects on this particular crystal. In zircon DP02Z7, however, the 

temperature recorded is 897°C, at least 85° higher than the other analysed zircons. The Ti-

in-zircon thermometer gives accurate crystallisation temperatures only when buffered by 

rutile. If rutile is not present and the TiO2 activity is unconstrained, minimum temperatures 

will be calculated. The high temperature recorded by zircon DP02Z7 could reflect local Ti 

buffering with the other zircons only recording minimum temperatures. The temperature 

recorded by zircon DP02Z7 is in the range of that calculated by Johnson and White (2011) of 

875-975°C from major phase equilibrium modelling in mafic gneisses approximately 10km 

away from our sample JM09/DP02. However, zircon DP02Z2, located ~8mm from DP02Z7 

records a temperature 87° lower; this hypothesis would therefore require a considerable 

variation over that short distance in Ti availability which seems unlikely. Furthermore, 

accessory rutile is present in samples JM09/DP01 and JM09/DP02 so the thermometer 

temperatures are interpreted to be accurate.  
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 A more likely explanation is that Ti has moved into the zircon lattice from the 

matrix along lattice dislocations, perhaps during a thermal event. Impurities in the lattice of 

a material migrate into lattice dislocations to reduce the stress field around the dislocation 

(Cottrell and Bilby, 1949) and were found to occur in olivine by Ando et al. (2001) but this 

concept applies to intracrystal movement. It may be that the grain boundary network was 

relatively enriched in Ti, perhaps by the breakdown of an adjacent Ti-bearing phase and 

subgrain walls in the distorted lattice were connected to the grain boundary network. Given 

that Ti abundance appears to be affected by the presence of lattice dislocations in other 

zircons, including BP06ChZ3 in this study and the zircon megacryst investigated by Timms et 

al. (2011), this latter explanation would seem more appropriate.  

 

REEs 

 The zircons with no lattice distortion from samples JM09/BP06 and JM09/DP01 

show a typical chondrite-normalised zircon REE pattern of increasing abundance from light 

to heavy REE, with positive Ce anomaly and negative Eu anomaly (Kelly and Harley, 2005a). 

Abundances of the different REEs normally vary by less than half an order of magnitude 

between analytical spots. The data from samples JM09/BP06 and JM09/DP01 were 

therefore pooled for comparison against the zircons with lattice distortion. Zircon 

BP06ChZ3 follows the normal pattern but with some deviation and heterogeneity within 

the crystal: spot 3 has a relatively low concentration of heavy REEs and a slightly flatter 

heavy REE profile (Yb/Gd = 6.83); all 5 spots are slightly enriched in Pr relative to 

undistorted zircons; and the Eu anomaly is subdued, with spot 5 actually having more Eu 

than Sm, the previous element.  

 The REE abundances of zircon DP02Z7 fall within the range of zircons with no lattice 

distortion and it has a similar REE pattern but with a subdued Eu anomaly – the negative Eu 

anomaly is not as pronounced as in undistorted zircons (Fig. 5.8). Zircon DP02Z2 also has a 
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subdued Eu anomaly, with more Eu than Sm. It is strongly depleted in heavy REEs: the 

concentration of Lu, the heaviest REE, was only 137ppm compared to >700ppm among 

most comparison zircons; it has a relatively flat heavy REE pattern, illustrated by a very low 

Yb/Gd ratio of 3.8. The variations in REE abundances between zircon DP02Z2 and the 

comparison undistorted zircons shown in Figure 5.8 are much greater than have been 

documented previously in distorted zircons. 

 Cherniak et al. (1997) show that heavy REEs diffuse faster than lighter REEs in an 

undistorted zircon lattice. Diffusion rates would increase with the enhanced volume 

diffusion pathways created by lattice distortion and result in the flattening of the middle-

heavy REE pattern. The driver for this heavy REE loss is unclear. A change in partition 

coefficient due to changing pressure-temperature conditions is unlikely as zircon DP02Z7, 

located no more than a centimetre away from zircon DP02Z2, does not have the same REE 

pattern. Re-equilibration with another REE-sequestering phase during metamorphism is 

also a possible driver but garnet is the main metamorphic mineral that incorporates heavy 

REEs (Kelly and Harley, 2005b; Kelly et al., 2006) and garnet has not been documented in 

the TTG gneisses of the LGC. Fluids circulating through the rock may also have been a driver 

for heavy REE loss. Pal et al. (2011) showed that heavy REEs are more strongly complexed 

with fluorine-rich fluids than light REEs. 

 

Nature of the Lattice Distortion 

 Crystals with lattice distortion may have grown with defects and therefore have 

had a distorted lattice from the time of their initial formation; alternatively, post-

crystallisation plastic deformation may occur when forces applied to a grain cause the 

crystal lattice to bend and distort through movement of lattice dislocations. Little is known 

about zircon deformation so we draw upon the general appearance of microstructures in 

other minerals to aid our interpretation. We also apply a new method of analysing lattice 
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distortion, which gives some information on the Burgers vectors of the geometrically 

necessary dislocations responsible for distortion (Wheeler et al., 2009). In brief, the 

“integration” version of this method gives the net Burgers vector of all the dislocations 

passing through any chosen area on an EBSD map. These dislocations may be uniformly 

distributed, non-uniformly distributed or form subgrain walls. The Weighted Burgers Vector 

(WBV) is expressed crystallographically, and is best presented normalised to the area of the 

loop (Fig. 5.9 and Table 5.5), so it is measured in (µm)-2 or 1012 m-2 (we find the former unit 

more convenient). An example of the meaning of the WBV in Table 5.5 is as follows. 

Suppose we have a loop of square outline 10 µm x 5 µm, with a WBV of (1, 0, 4) (µm)-2. This 

could mean that we have 50 dislocation lines with Burgers vector [100] and 200 lines with 

Burgers vector [001] passing through the square. Or, it could mean we have 50 dislocation 

lines with Burgers vector [104]. The WBV is an average over the areas of the loop and the 

types of dislocation threading through that loop – it proves useful, in trigonal, tetragonal 

and hexagonal phases, for distinguishing Burgers vectors lying in the basal plane from 

others. In what follows we focus on the relative magnitudes of the (symmetrically 

equivalent) a and b components, and the c component which lies parallel to the 4-fold 

symmetry axis. 

WBV data are overlaid on Texture Component EBSD maps for each of the distorted 

crystals (Fig. 5.9). Zircons GG09Z1 and BP06ChZ3 both have lattice distortion patterns 

suggestive of plastic deformation: the WBV shows variable directions probably due to a mix 

of dislocations with different Burgers vectors, and there are irregularly shaped subgrain 

walls. The irregular shapes are indistinguishable from subgrain wall morphologies seen in 

quartz (e.g. Gleason et al., 1993; Stipp and Tullis, 2003; Heilbronner and Tullis, 2006) and 

olivine (e.g. Drury, 2005). The distortion of one tip of zircon GG09Z1 suggests that particular 

part of the crystal has been bent, showing that strain uptake in the zircon lattice was 

heterogeneous in its distribution. In zircon BP06ChZ3, the subgrain structure with parallel 
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subgrain walls also indicates bending of the lattice in a similar fashion. Zircon ST02Z2 may 

also have had its lattice bent by plastic deformation. In zircon DP02Z2, there is a crude 

radial pattern of subgrain walls around a slightly misoriented part. This could be a 

deformation microstructure influenced by the strength heterogeneity caused by the 

misoriented part, or it is conceivably caused by growth defects. The cross-hatched 

misorientation pattern in zircon DP02Z7 is most unusual, with straight parallel subgrain 

walls, and it is difficult to see how it can be explained by plastic deformation. In addition 

the WBV measurements are dominated by components lying in the a and b plane (the basal 

plane). We speculate that the cross-hatched misorientation pattern in zircon DP02Z7 is a 

growth microstructure as the the Burgers vectors are anomalous. Boyle et al. (1998) found 

similar “checkerboard” microstructures in pyrite which they interpreted as being formed by 

slip parallel to the [100] planes. This suggests that the microstructure in zircon DP02Z7 may 

alternatively be a deformation microstructure but the origin of the microstructure remains 

unclear at present. 

 

Heterogeneous Response of Trace Elements and Isotopes to Lattice Distortion 

 Reddy et al. (2006), Timms et al. (2006b) and Timms et al. (2011) found that, in 

general, lattice distortion allowed enhanced volume diffusion along fast pathways such as 

subgrain walls; this generally led to depletion of trace elements in the zircon. In this study, 

however, we find that lattice distortion causes heterogeneous behaviour within crystals, 

within samples and between different localities: trace elements and isotopes are depleted 

in some analyses but enriched in others. Table 5.6 summarises the differences in response. 

It would appear that zircons where the crystal may have grown with lattice distortion 

(DP02Z2 and DP02Z7) are more amenable to later Pb-loss while Ti is not easily lost and may 

even be gained. However, the effect of this form of lattice distortion on REEs is in itself 

heterogeneous as shown by the differences in pattern and abundance between zircons 
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DP02Z2 and DP02Z7. This difference may be due to very local conditions, such as other 

phases and elements available in the grain boundary network. In zircons where the lattice 

distortion is caused by plastic deformation, Ti is lost more easily and yet Pb is not while 

there is variation in REEs even within zircon BP06ChZ3. This variability in chemical response 

to lattice distortion within grains, within samples and between localities emphasises the 

need to analyse zircon populations with EBSD prior to trace element and isotope analysis. 

Zircon WBV components (µm)
-2

 

  a b c 

DP02Z7 5.82 -1.53 0.73 

DP02Z7 0.67 3.06 -0.66 

DP02Z7 -1.54 2.29 0.28 

DP02Z7 3.69 -1.09 0.05 

DP02Z7 -1.95 -1.00 0.44 

DP02Z7 3.47 -0.40 -0.64 

  
   BP06ChZ3 -0.39 0.08 -0.47 

BP06ChZ3 0.90 0.46 -1.58 

BP06ChZ3 -0.06 -0.25 -2.65 

BP06ChZ3 -0.82 -0.28 0.05 

BP06ChZ3 -1.27 -0.29 -2.05 

  
   ST02Z2 -0.14 0.04 -0.96 

ST02Z2 -0.35 0.30 0.09 

ST02Z2 -0.56 0.72 -1.46 

ST02Z2 0.30 -0.22 -0.29 

  
   DP02Z2 0.59 -0.33 -0.08 

DP02Z2 -2.53 1.25 -0.11 

DP02Z2 -2.20 1.15 -4.35 

DP02Z2 -1.81 1.04 -0.44 

DP02Z2 -0.51 -1.30 0.37 

  
   GG09Z1 0.03 -0.01 0.13 

GG09Z1 -0.09 0.35 0.19 

GG09Z1 1.00 0.17 0.77 

GG09Z1 0.06 -0.15 -0.22 

GG09Z1 -0.20 0.31 -0.18 

Table 5.5 Weighted Burgers Vectors (WBV) components. 
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Fig.  5.9  Lattice distortion maps (as in Fig. 5.3) together with the WBV for some example rectangular 
subareas. The three numbers listed are the a, b and c components of the WBV, measured in (µm)

-2
. 
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Zircons  Distortion Th/U 
207

Pb/
206

Pb 
Age (Ma) 

Ti REE Pattern 

Badcall Point 
– zircon 
BP06ChZ3 

Plastic 
Deformation 

Relatively 
high 

Concordant 
but slightly 
young 

Relatively 
low 

Intracrystal 
heterogeneity in  Pr 
and Eu content and 
heavy REE pattern 
and abundance 

Duartmore 
Point – 
zircons 
DP02Z2 and 
DP02Z7 

Distortion 
during crystal 
growth 

Relatively 
low 

Very 
discordant, 
young 

Variable – 
average or 
relatively 
high 

No Eu anomaly, 
heterogeneity 
between crystals in 
heavy REE pattern 
and abundance 

Table 5.6 Summary table of the general and heterogeneous effects of zircon lattice distortion on trace 
elements and isotopes from Badcall Point and Duartmore Point. 

 

Context of Plastic Deformation 

 Three of the five distorted zircons were found in samples from Laxfordian shear 

zones. These are strongly deformed rocks and it would be reasonable to infer that there is a 

link between deformation at the whole-rock scale and lattice distortion of the zircons. 

However, the lattice distortion in zircons DP02Z2 and DP02Z7 does not appear to be caused 

by plastic deformation and is therefore unrelated to the shear zone deformation. Zircon 

BP06ChZ3 is also from a Laxfordian shear zone and does appear to have been distorted by 

plastic deformation. However, the link to shearing is not clear as there are plenty of 

undeformed zircons from the same sample while the other two plastically deformed zircons 

(GG09Z1 and ST02Z2) are from non-shear zone rocks. There is, therefore, no simple link 

between macro-scale deformation and intracrystalline zircon distortion.  

 

Conclusions 

 Analysis of a range of trace elements and isotopes in a population of zircons from 

the LGC of northwest Scotland has raised the following key points: 

1. Five of ninety-nine zircons analysed were found to have distorted lattices, a small 

but significant proportion, which suggests that lattice distortion of zircon may be 

more widespread than realised and contests the commonly held assumption that 
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zircon is mechanically robust. 

2. Burgers Vectors analysis suggests that three of the five distorted zircons have 

undergone post-crystallisation plastic deformation to distort their crystal lattices; 

the other two have lattice distortion patterns not convincingly explained by plastic 

deformation and may in fact have grown with distorted lattices. 

3. There is heterogeneity in chemical response to lattice distortion within grains, 

within samples and between localities. Zircon BP06ChZ3 has high Th/U ratios and 

slightly young ages reflecting minor Pb loss, relative to zircons from the same 

sample with no lattice distortion. There is intracrystal heterogeneity in Ti content 

but it is generally relatively low while some analytical spots measure relatively flat 

chondrite-normalused heavy REE patterns and others no Eu anomaly. Zircons 

DP02Z2 and DP02Z7 differ from BP06ChZ3 in that Th/U ratios are low and Pb-loss 

significant. There are differences between zircons DP02Z2 and DP02Z7, however: 

DP02Z7 has a significantly higher Ti content while DP02Z2 has a relatively flat heavy 

REE pattern. The flat heavy REE pattern is due to the faster diffusion of the smaller 

heavy REE ions than their larger light and middle REE neighbours, although the 

driver for the heavy REE loss is unclear. The variations in REE abundances between 

zircon DP02Z2 and the comparison undistorted zircons are much greater than have 

been documented previously in distorted zircons. These heterogeneous effects are 

summarised in Table 5.3. 

4. Discordant 207Pb/206Pb ages of 2331±22Ma and 2266±40Ma from two distorted 

zircons define a discordia lower intercept within error of the previously recorded 

age of the lower-amphibolite-facies Laxfordian tectonothermal event. Undistorted 

zircons do not record Laxfordian ages. This suggests that lattice distortion allows Pb 

diffusion at lower temperatures than in undistorted zircon. 

Overall, these findings illustrate the significant and heterogeneous effects of crystal lattice 
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distortion on trace element mobility and isotope systematics in zircon. It highlights the 

advantages of conducting EBSD analysis prior to ion microprobe analysis to determine if any 

zircons in the target population have distorted lattices. Rather than discarding such zircons, 

they may record information about the thermal evolution of the host rocks not otherwise 

recorded in undistorted zircons.  
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Abstract 

A population of internally complex zircons from the Lewisian Gneiss Complex (LGC), 

Northwest Scotland, records a continuous spread of concordant U-Pb ages over a period of 

~600myr. We show that this spread of ages has been caused by volume diffusion of 

radiogenic Pb within and out of the zircon lattice. Eight zircons were found to have a 

decoupling of chemical zoning pattern and U-Pb ages, which could only be explained by 

volume diffusion of Pb.  This decoupling either took the form of younger cores surrounded 

by older rims, or single zircon zones recording multiple ages not within uncertainty. 

Decoupling of age and zoning pattern is only seen in eight grains but may well have 
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occurred in more as the most concordant data-points in the population (with or without 

explicit evidence for volume diffusion) define a Pb-loss trajectory on concordia plot. The 

occurrence of volume diffusion indicates that the host rocks of the LGC were at 

temperatures of 875-975°C for anything from 3Myr to 500Myr. The widespread occurrence 

of 207Pb/206Pb ages of ~2500Ma in zircon rims in the population suggests this may be a 

significant age and may be the age around which volume diffusion occurred. 

 

Keywords: volume diffusion, Pb, zircon, Lewisian Gneiss Complex 

 

1. INTRODUCTION 

In this study, we illustrate the apparent occurrence of volume diffusion of Pb in zircons 

from polymetamorphic Archaean-Palaeoproterozoic gneisses of the Lewisian Gneiss 

Complex (LGC) of Northwest Scotland. Zircon is a key mineral for investigating crustal 

formation and tectonothermal evolution through its incorporation of geochemical tracers 

such as the rare earth elements (REEs) and Hf (Kinny et al., 1991; Kinny and Maas, 2003; 

Whitehouse and Kamber, 2003; Whitehouse and Platt, 2003; Kelly and Harley, 2005a; 

Gerdes and Zeh, 2009), Ti for geothermometry (Watson et al., 2006), and most notably U 

for U-Pb isotopic dating (e.g. Davis et al., 2003; Ireland and Williams, 2003; Parrish and 

Noble, 2003 and references therein). As well as containing these elements, zircon is also 

able to preserve internal element and isotopic variations through its general physical and 

chemical durability and its relative insolubility in crustal fluids and melts allowing it to 

record multiple generations of geochemical information (Cherniak and Watson, 2003).  

Radiometric dating using isotopes of U and Pb is probably the most common analysis 

conducted on zircon. The daughter Pb isotopes have a 2+ valency but sit in a 4+ cation site 

and have an atomic radius of 1.54Å whereas the U it replaces, and the other tetravalent 

cations in zircon, have radii nearer 2Å. As a result of this poor fit, Pb will escape from the 
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lattice if given a chance, for example along fractures or during recrystallisation. This Pb-loss 

phenomenon results in variable levels of calculated age discordance; in polymetamorphic 

rocks, such as the Lewisian Gneiss Complex, this can result in a complex U-Pb age spectrum. 

 

1.1. Causes of Pb-loss 

Recrystallisation may allow zircon to re-equilibrate with surrounding phases and this 

open-system process may allow loss of Pb from the zircon lattice. There are three types of 

recrystallisation: coupled dissolution-reprecipitation; diffusion-driven recrystallisation of 

radiation-damaged zircon; and solid-state recrystallisation. Coupled dissolution-

reprecipitation (Geisler et al., 2007) occurs when a fluid or melt comes into contact with 

metastable zircon. Zircon will naturally incorporate assorted trace elements but these do 

not necessarily sit well in the lattice. Radiogenic Pb2+ and trivalent REEs sitting in tetravalent 

sites cause a certain degree of lattice strain. Without interaction with a catalyst such as 

fluid or melt, the zircon is essentially metastable; but when a fluid or melt is available, the 

outer parts of the zircon may dissolve and topotactically recrystallize. The recrystallised 

zircon will often have low REE and U abundances (Geisler et al., 2007). 

Cathodoluminescence (CL) imaging often reveals irregular inward-penetrating CL-bright 

zones as pre-existing zircon of certain composition has been preferentially dissolved.  

Diffusion-driven recrystallization of radiation-damaged zircon (Geisler et al., 2007) is 

similar to coupled dissolution-reprecipitation in that it involves metastable zircon lattice 

moving towards equilibrium on contact with a fluid. Decay of radioactive U and emission of 

alpha and beta particles causes strain in the crystal lattice, which may become slightly 

amorphous and effectively metastable. Contact with fluid is the catalyst that allows 

diffusion of ions to recover the crystallinity of the lattice, although temperature is also an 

important factor. This process is characterised by irregular curved inward-penetrating zones 
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visible in CL while pattern quality in Electron Backscatter Diffraction microstructural 

analysis is poor, reflecting amorphisation of the lattice.  

Solid-state recrystallization (Hoskin and Black, 2000) involves internal rearrangement 

of ions in the crystal lattice, again with the objective of achieving equilibrium. Reaction 

fronts sweep through the crystal lattice by grain boundary migration or lattice defect 

diffusion and trace elements are concentrated on these reaction fronts. This mechanism is 

characterised by CL-bright zones (often rims) transgressing earlier zoning patterns such as 

oscillatory zoning patterns (OZPs) which are characteristic of magmatic zircon growth. The 

reaction front itself is seen as a very CL-bright narrow line which reflects the high 

concentrations of trace elements concentrated on that front.  

As well as recrystallisation, Pb can also be lost through distortion of the zircon lattice. 

Brittle fractures facilitate loss of Pb and other elements from the lattice as they act as fast 

diffusion pathways (Rimsa et al., 2007). Similarly, plastically deformed zircon lattice has 

been shown to facilitate fast diffusion of elements (see Chapter 5, Reddy et al., 2006; 

Timms et al., 2011) and should be tested for with Electron Backscatter Diffraction (EBSD) 

analysis (Prior et al., 1999).  

Metamictisation of zircon promotes easier diffusion of elements (Geisler et al., 2007) 

but is generally easily visible in CL imaging. Damage accumulates in zircon before complete 

metamictisation and this is not visible in CL imaging but is unlikely to occur in zircons with 

less than 700ppm U (Williams, 1992) and can be tested for with EBSD; radiation-damaged 

zircon will have poor crystallinity and therefore EBSD pattern quality will be low. Similarly, 

metamictisation is easily recognised by Raman shift in Raman Spectroscopy (Nasdala et al., 

2003).  

The other possible explanation of Pb-loss in zircon is through volume diffusion of Pb. A 

range of experimental studies have investigated diffusion of Pb in zircon (e.g. Bogomolov, 

1991; Cherniak et al., 1991). Lee et al. (1997) noted an effective closure temperature of 
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>900°C, broadly in agreement with field-based estimates (e.g. Black et al., 1986; Williams, 

1992) while Cherniak and Watson (2001; 2003) noted that closure temperature in 

crystalline zircon was dependent on a range of factors including temperature, time and 

distance for ions to diffuse. In their experiments, Cherniak and Watson (2003) analysed the 

percentage of Pb ‘lost’ by volume diffusion from crystalline zircons of given radii; they 

illustrated that as temperature increases, a shorter duration at that temperature is required 

to instigate volume diffusion, and that the higher the temperature and the longer the 

duration of time at that temperature, the more Pb is lost (Figure 15, Cherniak and Watson, 

2003). 

Due to the high closure temperatures determined from the above experimental 

studies, volume diffusion of Pb in zircon has been regarded as insignificant and unlikely at 

most crustal conditions in crystalline zircon and may only occur in metamict zircons (e.g. 

Mezger and Krogstad, 1997; Cherniak and Watson, 2003; Kooijman et al., 2011). However, 

Ashwal et al. (1999) reported a spread of concordant ages over ~80Myr from a granulite-

facies meta-anorthosite from Madagascar and attributed at least some of this age spread to 

volume diffusion caused by slow cooling at a deep crustal level; this indicates that it can 

occur at high temperatures for long periods of time, agreeing with the experimentally 

determined data. 

 There are, therefore, various explanations for complex age patterns within 

individual grains. In this paper, we set out criteria for determining if volume diffusion has 

occurred and illustrate the evidence for volume diffusion of Pb in zircons from the Lewisian 

Gneiss Complex. 
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2. GEOLOGICAL SETTING  

The Lewisian Gneiss Complex (LGC) of Northwest Scotland (Fig. 6.1a) is composed 

dominantly of tonalite-trondhjemite-granodiorite (TTG) gneisses with subordinate mafic 

and metasedimentary units, cross-cut by the mafic Scourie Dyke Swarm (e.g. Sutton and 

Watson, 1951; Tarney and Weaver, 1987; Goodenough et al., 2010; Wheeler et al., 2010). 

Three tectonothermal events affected the LGC: the Badcallian event (Park, 1970) was 

characterised by granulite-facies metamorphism and gneissification of the TTG protoliths; 

the Inverian event (Evans, 1965) was characterised by regional-scale amphibolite-facies 

shear zones; and the Laxfordian event (Sutton and Watson, 1951) was characterised by 

static and dynamic amphibolite-facies metamorphism and heterogeneous deformation 

across the LGC, either as  discrete shear zones several metres wide or as a pervasive 

composite planar and linear fabric. The Badcallian and Inverian fabrics and assemblages 

demonstrably pre-date the Scourie Dyke Swarm while the Laxfordian was post-Scourie 

dyke. Badcallian and Inverian features are best preserved in the Central Region (Sutton and 

Watson, 1951) (Fig. 6.1b) of the mainland outcrop while the Northern and Southern 

Regions have been pervasively overprinted in the Laxfordian. U-Pb dating of zircon has 

allowed precise ages to be attributed to the tectonothermal history of the LGC: protolith 

crystallisation ~2890-3040Ma (Friend and Kinny, 1995; Whitehouse and Kemp, 2010); 

Badcallian tectonothermal event ~2710Ma (Corfu et al., 1994); Inverian tectonothermal 

event ~2490Ma (Corfu et al., 1994). 

U-Pb zircon dating, specifically by ion microprobe, has led to the suggestion of an 

alternative history of the LGC. Analysis of a large population of zircons from across the LGC 

indicated that different areas had different age spectra (Friend and Kinny, 1995; Kinny and 

Friend, 1997; Friend and Kinny, 2001; Love et al., 2004; Friend et al., 2007; Love et al., 

2010). This was interpreted as meaning that the LGC was composed of disparate terranes 

(Fig. 6.1c), which possibly accreted in the Inverian event (Goodenough et al., 2010).  
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Fig.  6.1 a) Map showing location of the outcrop of the Lewisian Gneiss Complex (LGC) in Northwest 
Scotland, inset map shows location within British Isles; b) map showing the three-region model of 
Sutton and Watson (1951) for the mainland LGC; c) map showing the terrane model defined by 
zircon U-Pb dating, after Kinny et al. (2005); d) map of the northern part of the Assynt Terrane 
showing the location of the two localities where the samples used in this study were obtained. 

 

It is clear therefore that U-Pb dating of zircons is key to understanding the 

tectonothermal formation and evolution of Precambrian basement complexes such as the 

LGC. In this study, we analyse a population of zircons from the Assynt Terrane and to try 

and further understand the temporal evolution of the LGC. The zircon population was 



236 
 

compiled from seven samples of felsic-intermediate TTG gneisses that reflect the complex 

tectonothermal history of this part of the LGC. Three samples were taken from Duartmore 

Point (UK Grid Reference NC 178 359) (Fig. 6.1d): DP01, DP02 and DP03. These reflect 

Laxfordian shear zone margin, Laxfordian shear zone and pyroxene-bearing Badcallian 

metamorphic assemblage, respectively. Four samples were taken from Badcall Point (UK 

Grid Reference NC 146 414) (Fig. 6.1d): BP01 (Inverian), BP02 (statically retrogressed 

Badcallian), BP04 and BP06 (both Laxfordian shear zone). Detailed field relationships, 

petrography and geochemistry for all the samples are given in chapter 4 and will not be 

repeated here.  

 

3. METHODOLOGY 

Zircons were located in thin sections of the samples using backscatter electron (BSE) 

imaging on a Philips XL30 scanning electron microscope (SEM) at the University of 

Liverpool. To supplement the dataset, the samples were crushed and zircons mechanically 

and chemically separated using conventional separation procedures. Large crack- and 

inclusion- free grains were picked from the separated fractions under a reflected light 

microscope; these were then mounted in an epoxy grain mount and polished to 0.25µm 

grade with Syton™ colloidal silica. 

Zircons were imaged in BSE on the Philips SEM to determine the position of fractures 

so they could be avoided in subsequent analysis. Electron backscatter diffraction (EBSD) 

analysis (Prior et al., 1999)  was conducted to determine plastic lattice distortion and to test 

the crystallinity of the zircons as a check for radiation damage. This was done on a Camscan 

X500 crystal probe SEM with a thermionic field emission gun and data were collected with 

Flamenco module of HKL CHANNEL5 software and processed in the Tango module. 

Analytical procedures broadly follow that of Mariani et al. (2009) and Bestmann et al. 

(2006).  
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Cathodoluminescence (CL) imaging was conducted in the Philips SEM to show 

internal chemical zoning within zircon grains. This also acted as a guide for U-Pb dating, 

which was carried out on a Cameca ims1270 ion microprobe at the NERC Ion Microprobe 

Facility at the University of Edinburgh; analytical and correction procedures follow those of 

Kelly et al. (2008). The Plesovice (Slama et al., 2008) zircon standard was used for 

calibration of U/Pb ratios. During the analytical session, the standard yielded a mean 

206Pb/238U ratio of 0.05359±0.00023 (MSWD = 2.4; 95% conf.; Fig. 3.1; 340.5±4.8Ma; n = 62). 

Calculation and calibration of ratios and data reduction were conducted using in-house 

software developed by Richard Hinton at University of Edinburgh. Correction for in-situ 

common Pb was made using measured 204Pb counts above that of the detector background 

(typically ~0.2 to 1.5ppb). In the analyses for this project, measured common Pb was 

generally <5ppb, although occasionally analyses were much higher than this, likely the 

result of contamination on the sample surface and in exposed cracks.  

 

4. ZIRCON ANALYSIS 

The zircons showed a range of CL zoning patterns including cores, oscillatory zoning 

patterns (indicative of zircon grown in magma (Corfu et al., 2003) and metamorphic rims 

along with irregular CL patterns not clearly ascribable to any particular formation 

mechanism. Each of the seven samples displayed a range of CL zoning patterns and no 

pattern was confined to a particular sample (Table 6.1).  

Ion microprobe data (Table 6.1) were filtered to remove analyses that hit fractures, or 

were from zircons that had been found to have distorted lattices; analyses with >10ppb 

common 204Pb were also removed as levels higher than this are unlikely to be naturally 

included in zircon. This resulted in the only two zircons from sample DP02 being analysed. 

207Pb/206Pb ages range from 2384±46Ma to 3017±56Ma, a span of ~600Myr (Fig. 6.2a); even 

with conservative discordance limits of ±2% (as Halpin et al., 2012), there is still a ~600Myr 
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spread of concordant ages (Fig. 6.2b). These minor discordances could easily be caused by 

volume diffusion (e.g. Mezger and Krogstad, 1997; Kooijman et al., 2011) but the temporal 

resolution of SIMS analysis and therefore the size of error ellipses on a resulting concordia 

curve make the data appear relatively concordant, particularly as error ellipses have been 

plotted at 2σ here.  

The dataset of apparent 207Pb/206Pb ages was subdivided according to sample to 

determine if the age spread was due to the temporal evolution in tectonothermal history of 

the different samples but this failed to show any pattern (Fig. 6.2c). The dataset was also 

subdivided according to the type of CL zoning pattern at each analytical spot but this too 

failed to show any age clustering (Fig. 6.2d). If all the ages obtained are real, this implies 

continuous zircon growth and/or recrystallisation. However, ~600Myr is a very long period 

for continuous zircon growth to occur; it would require elevated temperatures/pressures 

and the zircon saturation conditions to be maintained at the right level for continuous 

growth over this long timescale. Recrystallisation would tend to destroy earlier ages and 

result in more clustering of zircon ages. All zircons were analysed by EBSD to determine 

whether there was any plastic lattice distortion present; only three were found to have this 

and were eliminated from the dataset. The remainder were all found to have good EBSD 

pattern quality indicating good crystallinity and a lack of lattice radiation damage. U 

contents of the zircons ranged from tens of parts per million to ~450ppm – well below the 

700ppm level suggested by Williams (1992) needed to cause radiation damage of the 

lattice. Furthermore, no zircons were found to have a mottled CL zoning pattern or radial 

fractures indicative of metamictisation (Corfu et al., 2003). The elimination of 

microstructural defects, common Pb contamination, metamictisation and radiation damage 

in the zircon population leaves volume diffusion of Pb as the only known possible 

mechanism for Pb-loss and the spread of concordant ages. 
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Sample/spot CL Zoning Pattern 
U 

(ppm) 
Th 

(ppm) 
Pb 

(ppm) 
Th/U 

204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 

235U 
2σ 

206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb Age 2σ 

Volume diffusion zircons 
               

GMBP02Z1-1 sp 33.10 82.63 27.88 2.56 4.49 0.188 0.006 13.332 0.587 0.514 0.017 0.732 1.86 2725 48 

GMBP02Z1-2 sp 33.55 85.05 31.31 2.60 1.66 0.205 0.005 15.957 0.644 0.564 0.018 0.791 -0.50 2868 40 

BP06ChZ2-1 ozp 72.76 66.12 54.21 0.93 2.57 0.219 0.003 17.668 0.500 0.585 0.014 0.850 0.12 2973 24 

BP06ChZ2-4 dr 165.93 101.29 101.28 0.63 6.75 0.190 0.003 13.543 0.366 0.518 0.012 0.846 1.79 2739 24 

BP06ChZ2-5 ir 35.73 30.51 24.17 0.88 1.61 0.195 0.008 14.633 0.831 0.545 0.020 0.655 -0.82 2782 68 

BP06ChZ2-7 ir 29.38 49.56 24.71 1.73 4.38 0.197 0.005 15.864 0.646 0.584 0.018 0.771 -5.76 2802 42 

BP06ChZ2-8 ozp 151.28 156.14 110.55 1.06 3.53 0.204 0.002 15.925 0.387 0.566 0.012 0.877 -1.12 2859 18 

GMBP06Z4-1 r 32.61 39.32 22.51 1.24 2.37 0.203 0.007 14.444 0.640 0.517 0.014 0.621 5.65 2847 56 

GMBP06Z4-2 bc 19.40 20.18 12.59 1.07 1.62 0.179 0.007 12.560 0.636 0.509 0.015 0.573 -0.34 2643 68 

GMBP06Z4-3 bc 19.78 20.79 12.78 1.08 1.22 0.180 0.008 12.520 0.684 0.505 0.017 0.624 0.53 2650 70 

GMBP06Z4-4 r 22.60 22.98 12.94 1.04 8.06 0.153 0.004 9.690 0.351 0.458 0.011 0.670 -1.96 2384 46 

GMDP03Z1-1 br 65.61 52.17 42.71 0.82 2.19 0.188 0.002 13.819 0.379 0.533 0.013 0.881 -1.04 2725 22 

GMDP03Z1-2 br 42.13 28.79 26.59 0.70 6.27 0.189 0.003 13.758 0.448 0.528 0.015 0.859 0.00 2733 28 

GMDP03Z1-3 ozp 82.66 71.55 47.02 0.89 1.82 0.162 0.001 10.409 0.255 0.466 0.011 0.959 0.29 2475 12 

GMDP03Z1-4 br 34.50 24.66 21.87 0.73 1.97 0.194 0.006 14.015 0.578 0.525 0.015 0.700 1.85 2772 48 

DP01Z4-1 sp 15.29 2.24 7.41 0.15 0.00 0.166 0.004 10.629 0.369 0.463 0.013 0.788 2.74 2522 36 

DP01Z4-2 sp 14.04 2.12 7.69 0.16 0.75 0.188 0.006 13.338 0.541 0.514 0.014 0.664 1.82 2725 48 

DP01Z10-1 br 13.87 5.02 7.16 0.37 1.67 0.178 0.007 11.415 0.536 0.465 0.014 0.625 6.53 2634 60 

DP01Z10-2 br 14.54 5.07 7.79 0.36 0.79 0.184 0.008 12.208 0.677 0.482 0.015 0.574 5.50 2685 74 

DP01Z10-3 br 15.54 6.57 7.58 0.43 4.85 0.158 0.004 9.575 0.368 0.441 0.012 0.725 3.14 2430 44 

DP01Z10-4 dc 39.05 35.39 22.26 0.93 5.30 0.182 0.004 11.457 0.439 0.457 0.014 0.803 9.16 2670 38 

GMDP01Z2-1 br 15.09 11.70 12.08 0.80 0.00 0.225 0.008 19.960 1.007 0.643 0.023 0.715 -6.12 3017 56 

GMDP01Z2-2 dc 89.07 105.38 53.54 1.21 2.28 0.163 0.001 10.372 0.264 0.463 0.011 0.942 1.23 2482 14 

GMDP01Z2-4 dc 149.86 173.21 103.04 1.19 2.17 0.192 0.002 13.849 0.360 0.524 0.013 0.952 1.59 2758 12 

GMDP01Z2-5 br 21.17 8.45 12.12 0.41 0.26 0.187 0.006 13.130 0.580 0.509 0.016 0.710 2.42 2717 52 

GMDP01Z6-1 br 5.41 3.20 3.31 0.61 1.08 0.203 0.009 14.440 0.822 0.516 0.019 0.651 5.83 2849 70 

GMDP01Z6-2 br 24.23 19.41 16.76 0.82 1.15 0.200 0.003 15.491 0.506 0.561 0.016 0.882 -1.60 2827 24 

GMDP01Z6-3 dc 65.70 61.02 45.59 0.95 2.38 0.201 0.003 15.229 0.475 0.549 0.016 0.916 0.58 2836 20 

(continued) 
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Sample/spot CL Zoning Pattern 
U 

(ppm) 
Th 

(ppm) 
Pb 

(ppm) 
Th/U 

204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 
235U 

2σ 
206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

Other zircons 
                

GMBP02Z2-1 ir 51.03 59.13 32.96 1.19 1.06 0.179 0.003 12.224 0.360 0.495 0.012 0.857 1.98 2644 26 

GMBP02Z2-2 ir 49.84 61.14 33.11 1.26 1.44 0.182 0.004 12.579 0.441 0.502 0.014 0.805 1.71 2668 34 

BP01Z1-1 ir 47.98 26.41 26.43 0.56 2.61 0.169 0.003 11.200 0.331 0.480 0.012 0.854 0.85 2549 26 

BP01Z1-2 ir 44.44 23.85 24.32 0.55 1.13 0.172 0.004 11.339 0.369 0.477 0.011 0.731 2.58 2581 36 

GMBP01Z2-1 ir 171.81 272.79 113.48 1.63 2.30 0.167 0.002 10.839 0.285 0.471 0.012 0.931 1.49 2526 16 

BP06ChZ1-1 br 49.48 38.36 27.89 0.80 2.48 0.170 0.003 10.953 0.333 0.468 0.012 0.810 3.09 2554 30 

BP06ChZ1-2 ozp 421.30 294.94 299.81 0.72 0.00 0.217 0.001 17.415 0.365 0.583 0.012 0.977 -0.12 2956 8 

BP06Z3-1 ir 88.81 4.38 50.43 0.05 2.22 0.195 0.002 14.604 0.375 0.543 0.013 0.934 -0.31 2786 14 

BP06Z3-2 ir 24.46 3.43 15.87 0.14 0.73 0.223 0.008 18.255 0.910 0.594 0.019 0.653 -0.10 3002 60 

BP06Z3-3 ir 23.45 9.87 13.17 0.43 5.10 0.179 0.008 12.310 0.631 0.500 0.014 0.542 1.04 2640 70 

BP06Z3-4 ir 2.61 0.99 1.39 0.39 0.77 0.169 0.009 11.213 0.796 0.480 0.022 0.637 0.98 2552 90 

BP06Z3-5 ir 209.28 8.36 124.24 0.04 2.45 0.208 0.002 16.112 0.398 0.563 0.012 0.886 0.31 2887 18 

GMBP06Z1-2 br 20.42 20.19 12.79 1.01 1.00 0.182 0.003 12.399 0.456 0.495 0.016 0.858 2.87 2668 32 

GMBP06Z2-1 ir  24.40 31.31 15.62 1.32 1.51 0.167 0.003 11.107 0.360 0.483 0.013 0.820 -0.54 2526 30 

GMBP06Z2-2 ozp 30.23 39.97 22.13 1.36 0.12 0.189 0.004 14.106 0.514 0.543 0.015 0.757 -2.38 2729 40 

GMBP06Z3-1 br 18.00 12.48 10.42 0.71 0.00 0.174 0.004 11.699 0.477 0.488 0.015 0.778 1.29 2595 42 

GMBP06Z3-2 br 21.50 12.85 11.81 0.61 2.73 0.163 0.003 10.688 0.329 0.476 0.012 0.808 -1.01 2485 30 

GMBP06Z5-1 br 12.79 7.76 6.94 0.62 2.48 0.170 0.004 10.923 0.467 0.467 0.016 0.785 3.14 2552 44 

GMBP06Z5-2 dc 52.42 111.53 41.06 2.18 1.21 0.186 0.006 12.960 0.532 0.506 0.013 0.609 2.29 2703 54 

GMBP06Z6-1 ir 37.75 40.14 25.22 1.09 1.49 0.219 0.006 15.330 0.592 0.508 0.015 0.741 10.90 2972 42 

GMBP04Z1-1 br 35.34 48.52 24.83 1.41 5.24 0.189 0.006 13.421 0.576 0.515 0.015 0.669 2.08 2734 52 

GMBP04Z1-2 br 35.24 49.49 27.80 1.44 4.20 0.213 0.005 16.677 0.565 0.568 0.015 0.776 0.90 2927 34 

GMBP04Z2-1 br 23.51 24.05 13.66 1.05 6.27 0.167 0.005 10.594 0.434 0.460 0.012 0.628 3.54 2528 54 

GMBP04Z2-2 br 35.08 32.98 20.40 0.96 1.47 0.168 0.003 10.807 0.326 0.468 0.010 0.742 2.33 2533 34 

(continued) 
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Sample/spot CL Zoning Pattern 
U 

(ppm) 
Th 

(ppm) 
Pb 

(ppm) 
Th/U 

204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 
235U 

2σ 
206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

Other zircons (cont.)                

GMBP04Z3-1 bc 16.46 21.09 10.03 1.31 0.49 0.173 0.007 10.886 0.583 0.457 0.015 0.615 6.02 2583 70 

GMBP04Z3-2 bc 21.05 25.57 13.85 1.25 3.94 0.173 0.005 11.932 0.450 0.501 0.013 0.709 -1.41 2583 44 

GMBP04Z4-1 br 23.11 29.88 13.83 1.33 0.10 0.168 0.004 10.430 0.364 0.449 0.011 0.702 5.89 2541 42 

GMBP04Z4-2 br 21.63 26.78 13.27 1.27 2.43 0.160 0.004 10.352 0.366 0.468 0.011 0.650 -0.66 2459 46 

GMBP04Z4-3 dc 127.60 55.92 66.72 0.45 4.59 0.163 0.001 10.516 0.239 0.469 0.010 0.948 0.10 2482 12 

GMBP04Z5-1 sp 20.13 24.51 15.47 1.25 1.53 0.201 0.008 15.977 0.997 0.577 0.027 0.738 -3.69 2832 68 

GMBP04Z5-2 sp 28.26 24.28 18.60 0.88 1.17 0.190 0.008 13.890 0.750 0.531 0.016 0.572 -0.32 2738 72 

GMBP04Z6-1 br 15.38 14.35 9.58 0.96 0.76 0.179 0.007 12.277 0.625 0.499 0.016 0.623 1.24 2640 64 

GMBP04Z6-2 ozp 34.99 49.14 28.31 1.44 1.73 0.211 0.009 16.985 0.888 0.584 0.019 0.634 -1.83 2912 64 

GMBP04Z7-1 sp 18.32 19.41 10.71 1.09 1.69 0.167 0.004 10.582 0.431 0.459 0.014 0.753 3.61 2528 44 

GMBP04Z7-2 sp 12.54 9.88 7.24 0.81 2.17 0.164 0.003 10.849 0.362 0.481 0.012 0.775 -1.45 2494 34 

GMBP04Z7-3 sp 16.48 18.01 10.64 1.12 4.32 0.167 0.005 11.649 0.536 0.505 0.018 0.791 -4.19 2530 46 

GMBP04Z7-4 sp 30.80 41.16 21.78 1.37 2.11 0.191 0.005 13.705 0.512 0.521 0.014 0.720 1.54 2747 42 

GMBP04Z8-2 sp 13.39 8.05 7.78 0.62 2.27 0.206 0.009 13.864 0.861 0.487 0.021 0.680 11.02 2876 74 

GMBP04Z8-3 sp 28.76 20.31 16.61 0.72 1.92 0.179 0.006 11.960 0.511 0.484 0.013 0.615 3.94 2647 54 

GMBP04Z9-1 sp 21.87 29.00 16.12 1.36 3.31 0.188 0.007 14.128 0.900 0.546 0.028 0.799 -3.33 2720 62 

GMBP04Z9-2 sp 30.11 20.81 17.56 0.71 3.67 0.185 0.010 12.413 0.829 0.488 0.018 0.546 4.93 2694 90 

GMDP03Z2-1 ozp 33.96 12.58 21.94 0.38 0.93 0.219 0.010 17.060 0.974 0.564 0.019 0.599 3.00 2974 74 

DP03Z2-1 sp 439.84 358.71 257.43 0.84 4.50 0.178 0.002 11.763 0.303 0.480 0.011 0.926 4.09 2633 16 

DP01Z6-1 br 18.27 11.02 9.64 0.62 0.35 0.169 0.003 10.605 0.390 0.454 0.014 0.866 5.39 2551 30 

DP01Z6-2 br 17.20 8.79 9.14 0.52 0.59 0.166 0.004 10.734 0.417 0.468 0.014 0.793 1.83 2521 38 

DP01Z6-3 dc 57.95 87.23 36.86 1.54 0.32 0.166 0.004 10.556 0.359 0.460 0.012 0.780 3.21 2521 36 

DP01Z6-4 br 14.72 9.57 8.34 0.67 0.00 0.177 0.005 11.725 0.515 0.480 0.015 0.733 3.67 2625 50 

DP01Z6-5 br 18.57 8.94 9.75 0.49 1.25 0.171 0.004 10.911 0.407 0.463 0.014 0.797 4.30 2565 36 

(continued) 
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Sample/spot CL Zoning Pattern 
U 

(ppm) 
Th 

(ppm) 
Pb 

(ppm) 
Th/U 

204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 
235U 

2σ 
206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

Other zircons (cont.)                

GMDP01Z1-1 br 36.48 20.76 19.37 0.58 1.29 0.167 0.002 10.596 0.298 0.461 0.011 0.885 3.05 2523 22 

GMDP01Z1-2 br 27.15 10.41 14.10 0.39 1.14 0.164 0.003 10.677 0.341 0.471 0.012 0.800 0.59 2502 32 

GMDP01Z3-1 sp 15.12 7.08 8.83 0.48 0.72 0.194 0.010 13.629 0.898 0.508 0.020 0.594 4.71 2780 86 

GMDP01Z4-1 sp 14.84 7.77 7.87 0.54 1.52 0.164 0.003 10.532 0.381 0.467 0.015 0.876 1.01 2494 28 

GMDP01Z4-2 sp 12.34 6.70 6.89 0.56 0.96 0.165 0.004 11.116 0.482 0.489 0.017 0.782 -2.41 2506 44 

GMDP01Z5-1 dc 81.03 33.84 50.53 0.43 5.62 0.198 0.002 14.929 0.398 0.548 0.013 0.916 -0.44 2805 18 

GMDP01Z5-2 br 11.57 6.02 6.12 0.53 0.30 0.168 0.004 10.783 0.389 0.464 0.011 0.673 3.29 2542 44 

GMDP01Z7-1 sp 14.67 7.37 8.24 0.52 0.98 0.177 0.008 12.006 1.237 0.492 0.045 0.887 1.71 2624 78 

GMDP01Z8-1 br 19.81 13.34 11.37 0.69 0.86 0.184 0.007 12.209 0.578 0.482 0.012 0.542 5.59 2686 66 

GMDP01Z9-3 ir 58.50 27.94 30.01 0.49 1.33 0.164 0.002 10.285 0.281 0.456 0.011 0.898 2.88 2493 20 

Table 6.1 U-Th-Pb zircon data for zircons analysed in this study; ‘volume diffusion zircons’ are those where age and cathodoluminescence zoning pattern are clearly 
decoupled while ‘other zircons’ are those where they are not decoupled; in the ‘CL zoning pattern’ column: sp = single phase, ozp = oscillatory zoning pattern, dr = dark rim, 
br = bright rim, dc = dark core, bc = bright core, ir = irregular, r = rim. 
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Fig.  6.2 a) Wetherill concordia plot of zircon U-Pb ages from the zircon population analysed in this 
study; b) as a) but with 98-102% concordance limits imposed; c) plot showing spread of ages in 
different samples collected; d) plot showing lack of correlation between age and 
cathodoluminescence zoning pattern. 

 
Explicit evidence for volume diffusion of Pb in the zircons was sought by examining the 

relationship between 207Pb/206Pb ages and CL zoning patterns in individual zircon crystals. 

The main criterion for determining that volume diffusion of Pb has occurred in zircon is 

decoupling of 207Pb/206Pb ages from CL zoning patterns. This decoupling can take one of two 

forms. It may be a zone of uniform CL intensity, interpreted to reflect a single age, but with 

multiple 207Pb/206Pb ages recorded that are not within error of each other. This zone may be 

a rim or a whole crystal. The other form is where 207Pb/206Pb ages are older at the edge of a 

crystal than those in the centre. Normally, the centre of a grain would be expected to be 

the oldest part of the crystal with the edge being the youngest. However, with volume 

diffusion of Pb, it is possible to have a core with a younger age than its surrounding rim. If a 

new low U rim grows around a core in which some of the U has already decayed to Pb, Pb 
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will then diffuse from the core to the new rim, which will have started with no Pb. After 

diffusion stops, Pb will continue to build up in both the rim and the core but because the 

rim has gained Pb and the core lost Pb, and because there is less U in the rim, the ratio of 

Pb to U will be higher causing an increase in percentage discordance values and older ages. 

As this evolves over time the 207Pb/206Pb ages will also show a decoupling from the core and 

rim zoning pattern.  

Of the 35 analysed zircon grains in the population, 9 had only a single analytical point 

(either due to their small size or to other points being excluded for high common Pb) and so 

the presence of volume diffusion could not be proven. 12 grains had what could be termed 

a ‘meaningful’ age/zoning pattern relationship where age and zoning pattern are coupled, 

for example a core with an old age surrounded by a bright rim with a younger age, or a 

uniform CL grain with two spots the same age. In this group of 12 zircons, there is clustering 

of ages from CL-bright rims at ~2500Ma (Fig. 6.3), suggesting this may be a real age for a 

metamorphic event. There were 6 grains where recrystallisation could potentially explain 

the decoupling between age and zoning pattern, or the CL pattern was unclear. In the 

remaining 8 grains, age was decoupled from zoning pattern but in such a way that 

recrystallisation cannot be invoked to explain the age/zoning pattern relationship. Many of 

the data-points from these zircons with volume diffusion are 98-102% concordant (Fig. 6.4). 

CL images annotated with 207Pb/206Pb ages of these eight grains are shown in Figure 6.5 and 

described below:  
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Fig.  6.3 Probability-density plot (2σ confidence levels) of 
207

Pb/
206

Pb ages from CL-bright zircon rims; 
the peak at ~2500Ma is interpreted to represent the age of a tectonothermal event. 

 

 

Fig.  6.4 Wetherill concordia plot of zircon U-Pb ages from the zircon population analysed in this 
study; red ellipses denote analyses from zircons with decoupling of age and cathodoluminescence 
zoning pattern; the blue line denotes a possible Pb-loss trajectory (line parameters in inset box), the 
lower intercept is interpreted to approximately mark the timing of the cessation of volume diffusion. 
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Fig.  6.5 Cathodoluminescence (CL) images of zircons, annotated with 
207

Pb/
206

Pb ages, where the 
decoupling between age and CL zoning is interpreted to have been caused by volume diffusion. 
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GMBP06Z4 CL imaging suggests some faint remnant zoning, possibly OZP around a 

homogeneous core. The oldest age of 2847Ma is recorded at the edge of the crystal while 

younger ages of ~2650Ma are recorded towards the centre. A young and moderately 

discordant age is recorded at one tip of the grain although the chemical zoning is irregular 

here.  

GMDP03Z1 CL imaging shows this zircon to have some well-preserved OZP surrounded by a 

mainly bright rim. Ages from this rim are within error of each other but are ~300myr older 

than that from the OZP domain.  

GMBP02Z1 This zircon is uniform in CL intensity suggesting a single age domain but the two 

ages recorded are ~150myr apart, even though they are located only 30µm from each 

other. This difference would surely require very local diffusion gradients for Pb, possibly 

controlled by local variations of Pb concentration at the grain boundary. 

GMDP01Z6 The core of this zircon is heterogeneous in CL response indicating it has not 

been swept by a recrystallisation front; it is surrounded by bright rim. One age from the 

core and two ages from the rim are all within error of each other. One possible explanation 

for this overlap in ages is that the rim formed as a late-magmatic feature hence the 

proximity of ages from core and rim. However, late-magmatic alteration in zircon tends to 

take the form of patchy internal replacement in CL (Corfu et al., 2003); CL-bright rims are 

much more commonly a metamorphic feature (Corfu et al., 2003), suggesting the proximity 

of ages between core and rim may be due to volume diffusion of Pb.  

DP01Z10 CL imaging shows this zircon has a plain dark core surrounded by a moderately 

bright rim. The age from the core is within error of two ages from the rim; this may be just 

 due to recrystallisation, and hence U-Pb resetting, of the core at the time of rim formation. 

However, the third age from the apparently single-event rim is ~200myr younger than the 

other rim ages. 
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DP01Z4 This zircon is uniform in CL intensity suggesting a single age domain but the two 

ages recorded are ~200myr apart, even though they are located only 40µm from each 

other. This difference would surely require very local diffusion gradients for Pb, possibly 

controlled by local variations of Pb concentration at the grain boundary. 

GMDP01Z2 CL imaging shows this zircon to have a dark core, possibly with some OZP, 

surrounded by a bright rim. There is heterogeneity of ages within the core of ~300myr and 

the two ages from the rim are older than one of the core ages. Indeed one of the CL-bright 

rim ages is 3017Ma – the oldest age recorded in the whole population although it is 

moderately normally discordant. 

BP06ChZ2 CL imaging shows this zircon has an early core, possibly with some OZP, 

surrounded by a domain of OZP which is in turn surrounded by a dark rim; there are some 

CL-bright replacement domains at the rim, likely from fluid alteration. Multiple ages from 

the main OZP zone are within error but they are older than the early core surrounded by 

the OZP domain; this does not make sense as innermost domains should be older than 

those around them. Furthermore, there is heterogeneity in age in the dark rim, even 

though CL suggests it should be a single age domain. 

In 4 of the 8 zircons (GMDP03Z1, GMDP01Z6, GMDP01Z2 and BP06ChZ2), total U 

concentration varied within a single CL zone. The variable U concentration did not affect 

the calculated age as Pb concentration varied accordingly; while this may suggest limited 

volume diffusion, intra-zone diffusion may be masked by uncertainties in the analysis. 

Variable U concentration was therefore not considered to be a factor in the overall 

age/zoning pattern relationship. If volume diffusion of Pb occurred in these 8 grains, then it 

would be expected to have occurred in all zircons in the population. Grains that have been 

affected by volume diffusion are not concentrated in a single sample and are located within 

millimetres of other zircons that show no direct evidence for volume diffusion. Volume 

diffusion cannot be disproved in the 8 grains with only a single analytical point but there 
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remain 20 grains in the population that show no clear evidence of volume diffusion. This 

type of phenomenon has been described previously as ‘variable’ Pb-loss, although not 

explicitly invoking volume diffusion (e.g. Friend and Kinny, 1995; Whitehouse and Kemp, 

2010; Halpin et al., 2012). If Pb-loss by volume diffusion occurred in all zircons in the 

population, one might expect to see a cluster of ages representing a cooling age (which 

there is not, see Fig. 6.2) or a correlation between grain size and age. The smallest zircons 

would record the youngest ages as there is a shorter distance for the Pb to diffuse out of 

the grain, therefore it would occur quicker than in larger grains, which would retain more 

Pb. This is not the case in this population (Fig. 6.6). One possible explanation for this 

‘variable’ volume diffusion is heterogeneous spatial distribution of Pb in the grain boundary 

network. If, for example, there was no Pb in the grain boundary network at one end of a 

prismatic zircon grain, the radiogenic Pb in the zircon would diffuse out of the zircon and 

into the grain boundary network. But, if at the other end of the zircon there was a high 

concentration of Pb in the grain boundary network, this would act as a buffer to volume 

diffusion of Pb out of the zircon. At present, this remains only a theory as Pb concentrations 

in other minerals in the host TTG gneisses such as iron-titanium oxides were below 

detection limit of the electron microprobe.  

However, with discordance limits of ±2%, a Pb-loss trajectory passes through the 

datapoints on concordia with intercepts at 2489±52Ma and 2889±51Ma (2σ confidence 

levels, MSWD = 0.76, probability of fit = 0.87) (Fig. 6.4). Friend and Kinny (1995) also 

proposed a Pb-loss trajectory from ~3000Ma to ~2500Ma through their apparently 

concordant dataset from LGC zircons, although they did not attribute it to volume diffusion. 

Even though there is not explicit evidence for volume diffusion (in the form of decoupling of 

age and CL zoning) in all zircons in this study, this chord suggests that many or all 

underwent Pb-loss which may have been caused by volume diffusion. 
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Fig.  6.6 Scatter plot of 
207

Pb/
206

Pb age against minimum crystal radius of zircons in the population in 
this study; lack of correlation indicates the age spread in Fig. 6.2 is not related to cooling. 

 

5. CONDITIONS FOR VOLUME DIFFUSION OF PB IN ZIRCON 

The experiments of Cherniak and Watson (2001; 2003) indicate that volume diffusion 

of Pb in zircon requires a combination of temperatures in excess of 700°C for millions to 

hundreds of millions of years, depending on grain size (the diffusion distance). In the eight 

zircons interpreted to have clear evidence of volume diffusion, Pb would have to travel at 

least 50µm in some grains to give the resultant age pattern. The hottest period in the 

history of the rocks of the Assynt Terrane, where the zircons in this study were sampled, 

was the Badcallian tectonothermal event. Johnson and White (2011) calculated peak 

Badcallian temperatures of 875-975°C by mineral equilibria modelling methods while Sills 

and Rollinson (1987) calculated a temperature range of ~750-1000°C using a range of ion 

exchange geothermometers. Using the modelling of Pb diffusion of Cherniak and Watson 

(2001; 2003) and a diffusion distance of 50µm, diffusion of Pb out of the zircons would have 

taken between 3Myr and 500Myr based on the temperature estimates of Johnson and 

White (2011) (Fig. 6.7). 500Myr at 875°C would allow diffusion of 50% of the Pb out of a 

zircon of 50µm diameter while only 3Myr would be required at 975°C for the same amount 

of diffusional Pb loss (Fig. 6.7).  
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Fig.  6.7 Percentage Pb lost over a diffusion distance of 50µm at variable temperatures and times, 
after Cherniak and Watson (2001); dashed lines denote the time taken for 50% Pb-loss at the 
temperature range of 875-975°C (Johnson and White, 2011). 

 

The time differences here are significant and the exact temperature-time history of the 

Assynt Terrane cannot be resolved further without more precise temperature estimates. 

The widespread occurrence of 207Pb/206Pb ages of ~2500Ma in CL-bright rims throughout 
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the zircon population is interpreted to represent a metamorphic event and may reflect the 

timing of the volume diffusion. Friend and Kinny (1995) interpreted a major metamorphic 

event to have occurred around this time and suggested this was the time at which the 

Badcallian granulite-facies metamorphic assemblage formed. Furthermore, the lower 

intercept of a Pb-loss trajectory (Fig. 6.4) is around the 2500Ma age. If the whole zircon 

population has been affected by volume diffusion then it must have been occurring at 

~2500Ma as volume diffusion cannot produce apparent ages younger than the time it is 

occurring at. However, it has also been suggested that the Badcallian ‘event’ occurred at 

~2730Ma (Corfu et al., 1994; Whitehouse and Kemp, 2010). These ages may perhaps 

represent the beginning and end of a period of elevated temperature. Given that the 

spread of ages along concordia in Figure 3 is ~500myr, it is possible that variable volume 

diffusion may have occurred over this length of time. It is, however, equally possible that 

the Badcallian was a short ultra-high temperature metamorphic event (e.g. Brown, 2007). 

Further constraints on peak Badcallian temperature would help to further elucidate the 

temperature-time history of the Assynt Terrane. 

 

6. CONCLUSIONS 

This study has shown that it is possible for volume diffusion of Pb to occur in natural 

crystalline zircon over long timescales at high temperatures. The example zircons from the 

Lewisian Gneiss Complex (LGC) of northwest Scotland exhibit a decoupling between the 

chemical zoning patterns and 207Pb/206Pb ages; methodical elimination of various possible 

explanations has indicated that this is due to volume diffusion of Pb. Direct evidence is only 

seen in eight grains but may well have occurred in more as the most concordant data-

points in the population (with or without explicit evidence for volume diffusion) define a 

Pb-loss trajectory on concordia plot. Volume diffusion of Pb in these zircons could 

represent anything between 3Myr and 500Myr at temperatures of 875-975°C in the Assynt 
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Terrane of the LGC. The widespread occurrence of 207Pb/206Pb ages of ~2500Ma in CL-bright 

zircon rims may reflect the occurrence of a short period of ultra-high temperature during 

which volume diffusion occurred or may reflect the end of a longer period at lower 

temperatures during which volume diffusion occurred. The latter scenario would entail a 

radically different interpretation of the tectonothermal history but this requires further 

work to constrain the temperature history of these rocks better.  
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ABSTRACT 

The Lewisian Gneiss Complex (LGC) of Northwest Scotland is a classic Precambrian 

basement gneiss complex. The LGC is divided into a number of terranes, the most well-

studied of which is the Assynt Terrane. Field evidence shows that it has a complex 

tectonothermal history comprising the Badcallian granulite-facies metamorphism followed 

by the Inverian and Laxfordian amphibolite-facies tectonothermal events. In this 

contribution we analyse zircons from tonalite-trondhjemite-granodiorite (TTG) gneisses and 

metasediments and supplement U-Th-Pb data with REE profiling and Ti thermometry which 
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help to constrain the geochemical and thermal history of the Assynt Terrane. We apply Ti-

in-zircon thermometry to the LGC for the first time and zircon REE profiling for the first time 

to the mainland LGC. Volume diffusion of Pb (see Chapter 6) in zircons across the analysed 

population has made it difficult to confidently interpret magmatic and metamorphic ages as 

zircon U-Pb data form a relatively concordant ~500Myr age spread. The oldest three cores 

yield a mean age of 2958±7Ma (MSWD = 1.00, probability = 0.37), a possible minimum 

magmatic protolith crystallisation age. The period of volume diffusion of Pb in zircon is 

interpreted to have ended at ~2482Ma with the peak of the Badcallian granulite-facies 

metamorphism shortly before this. Zircons in the metasediments have relatively flat 

chondrite-normalised heavy REE profiles (low Yb/Gd ratios) which suggest they equilibrated 

with Badcallian metamorphic garnet. Although the REE profiling links these zircons to the 

Badcallian metamorphic assemblage, volume diffusion of Pb means that the U-Pb 

systematics do not record an accurate age for the Badcallian tectonothermal event. Ti-in-

zircon thermometry records crystallisation temperatures of at least ~760-820°C for zircons 

in the magmatic protolith to the TTG gneisses. Zircons in the metasediments generally 

record higher minimum temperatures, with an average of 823°C compared to 790°C in the 

TTG gneisses. The zircons in the metasediments are interpreted to be detrital and the 

calculated temperatures record zircon crystallisation in a currently unknown protolith. 

Through this combination of zircon U-Th-Pb, REE and Ti data, this study provides further 

insight into the formation and tectonothermal evolution of the Assynt Terrane. 

 

Keywords: Lewisian Gneiss Complex, Assynt Terrane, zircon, U-Th-Pb, REEs, Ti-in-zircon 

thermometry 
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1. Introduction 

 The Lewisian Gneiss Complex (LGC) of Northwest Scotland (Fig. 7.1a) is a classic 

example of a basement gneiss complex and is an important location for understanding the 

tectonothermal evolution of lower crustal rocks. Field relationships and mineral 

assemblages allowed Peach et al. (1907) and Sutton and Watson (1951) to determine a 

relative chronology of events in the LGC, providing a framework for the large number of 

geochemical and geochronological investigations that have been carried out since then (as 

summarised by Wheeler et al., 2010). The dominant lithologies in the LGC are tonalite-

trondhjemite-granodiorite (TTG) gneisses, with subordinate mafic and ultramafic gneisses 

and rare metasediments. In the area around the village of Scourie (Fig. 7.1b), three major 

sets of structures and associated mineral assemblages have been recognised and attributed 

to three tectonothermal events. Sutton and Watson (1951) used the heterogeneous 

preservation of these structures and assemblages to subdivide the mainland outcrop of the 

LGC into three regions (Fig. 7.1a). The area around Scourie was termed the Central Region, 

bounded to the north and south by the Northern and Southern Regions, respectively.  

In parts of the Central Region, such as around Scourie, all three tectonothermal events 

are preserved. The earliest is expressed as granulite-facies gneissic layering, which 

represents the gneissification of the TTG magmatic protoliths, and is named the Badcallian 

(Park, 1970). The subsequent Inverian event is characterised by an amphibolite-facies 

assemblage and localised shear zones up to a few kilometres wide (e.g. Canisp (Evans, 

1965; Jensen, 1984; Attfield, 1987)). Following the Inverian event came the intrusion of the 

mafic Scourie Dyke Swarm, an important chronological marker. Post-dyke, the Laxfordian 

amphibolite-facies event heterogeneously overprinted earlier assemblages and structures 

(Sutton and Watson, 1951). Around Scourie, it is represented by discrete shear zones a few 

metres wide, or static overprinting of earlier granulite-facies assemblages. The terms 

Badcallian, Inverian and Laxfordian are used here to refer to the structures and mineral 
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assemblages and the tectonothermal activity they represent; the attributes of each are 

summarised in Table 7.1.  

 

 

Fig.  7.1 (a) Location of the outcrop area of the LGC (Lewisian Gneiss Complex) in Northwest Scotland, 
inset map shows location in the British Isles; mainland outcrop regions are after Peach et al. (1907). (b) 
Localities where zircons analysed in this study were taken from. (c) The terrane model of Kinny et al. 
(2005) showing the different terranes interpreted to make up the LGC. 

 
Table 7.1 Summary of the structures and mineral assemblages that characterise the Badcallian, 
Inverian and Laxfordian tectonothermal events in the Scourie area. 

Name Characteristics 

Badcallian Pyroxene-bearing granulite-facies mineral assemblage, gneissification of 
TTG protoliths and formation of gneissic layering, generally no lineation 

Inverian Kilometre-wide shear zones with amphibolite-facies planar and linear 
fabrics 

Laxfordian Discrete shear zones several metres wide with amphibolite-facies planar 
and linear fabrics, static retrogression of pyroxene to hornblende 

 
The relationship of the metasedimentary rocks, found mainly in the Central Region, to 

the rest of the LGC is not wholly clear. They tend to be spatially associated with mafic and 

ultramafic gneisses, which Davies (1976) interpreted to represent an ocean floor 

supracrustal package. Based on field evidence, Davies (1976) and Goodenough et al. (2010) 

suggested that the juxtaposition of the metasediments, whether depositional or tectonic, 

with the TTG gneisses pre-dated the Badcallian tectonothermal. In support of this, dating of 

monazites from the metasediments by Zhu et al. (1997) suggested they were 

metamorphosed in the Badcallian while detailed petrographic analysis by Zirkler et al. 

(2012) recorded partial melting of the metasediments in the Badcallian. 
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Early workers such as Peach and Horne (1907) and Sutton and Watson (1951) assumed 

that the LGC was a single block of crust and the three tectonothermal events had affected 

each of the three regions. Radiometric dating meant that precise ages could be attributed 

to these tectonothermal events. Corfu et al. (1994) obtained U-Pb zircon ages of ~2710Ma 

and ~2490Ma from near Badcall Point (Fig. 7.1b) which they attributed to the Badcallian 

and Inverian respectively. Corfu et al. (1994) and Kinny and Friend (1997) attributed U-Pb 

titanite ages of ~1750Ma to the Laxfordian event. However, a large suite of high spatial 

resolution ion microprobe U-Pb zircon dating from across the LGC has led to a new 

interpretation of the formation and tectonothermal evolution of the LGC (Friend and Kinny, 

1995; Kinny and Friend, 1997; Friend and Kinny, 2001; Love et al., 2004; Kinny et al., 2005; 

Love et al., 2010). At first, U-Pb zircon ages from the Central Region led Friend and Kinny 

(1995) to suggest a magmatic protolith age for the LGC of 2960-3030Ma with a major 

metamorphic event at ~2490Ma; they did not find a significant age cluster at ~2710Ma. This 

led them to interpret that the granulite-facies Badcallian event actually occurred at 

~2490Ma with the Inverian occurring soon after but not recorded in the zircons.  

 Following this, they obtained magmatic protolith ages of 2680-2840Ma from the 

Northern Region and no record of metamorphism at ~2490Ma (Kinny and Friend, 1997). 

The difference in age profile for magmatic protolith formation and subsequent 

tectonothermal activity led them to believe that the Northern Region and Central Region 

were separate crustal blocks. Friend and Kinny (2001) found that different parts of the 

Outer Hebrides also had different magmatic protolith formation and tectonothermal 

activity ages while Love et al. (2004) found that the southern part of the Central Region 

recorded different magmatic protolith formation and tectonothermal activity ages to those 

in the northern part of the Central Region found by Friend and Kinny (1995). These findings 

were formalised into a model of disparate terranes with different magmatic protolith ages 

and tectonothermal histories, which then accreted during or before the Laxfordian event 
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(Kinny et al., 2005) (Fig. 7.1c). Further work by Love et al. (2010) indicated that the 

Southern Region was also composed of multiple terranes with varying histories. The Central 

Region was re-named the Assynt Terrane, and the Northern Region the Rhiconich Terrane 

(Fig. 7.1c) (Kinny et al., 2005). Goodenough et al. (2010) investigated field relationships in 

the Laxford Shear Zone (Fig. 7.1a), the boundary between the Assynt and Rhiconich 

Terranes, and suggested that the two terranes were accreted during the Inverian event.   

Large U-Pb zircon datasets in studies such as those by Friend and Kinny (1995) and 

Whitehouse and Kemp (2010) show a spread of relatively concordant ages over several 

hundred million years. It is difficult to interpret magmatic and metamorphic ages from 

these data and this has fuelled debate over the details of the terrane model (Kinny et al., 

2005; Park, 2005; Park et al., 2005; Corfu, 2007). Understanding the formation and 

tectonothermal evolution of the LGC continues to be a challenge, with many pieces of 

incremental evidence contributing to the development of an overarching history. In this 

contribution we analyse zircons from TTG gneisses and metasediments and supplement U-

Pb data with REE and Ti concentration data which help to constrain the geochemical and 

thermal history of the Assynt Terrane. We apply Ti-in-zircon thermometry to the LGC for 

the first time and zircon REE profiling for the first time to the mainland LGC.  

 

2. Sample Characterisation 

 Zircons were collected from 8 samples, 6 from the TTG gneisses which dominate 

the Assynt Terrane, and 2 from the metasediments. The samples of TTG gneiss were taken 

from two localities: Badcall Point and Duartmore Point (Fig. 7.1b; 7.2a&b), and chosen to 

reflect the tectonothermal history of the Assynt Terrane. At Badcall Point, Badcallian 

gneissic layering is the dominant structure but the Badcallian granulite-facies metamorphic 

assemblage has been retrogressed, as is typical across much of the Assynt Terrane. Sieve-

textured hornblende and quartz have replaced pyroxenes; plagioclase is the other main 
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mineral. Sample JM09/BP02 was taken from this. The Badcallian gneissic layering is cross-

cut by a ~0.5m-wide zone of planar fabric, interpreted to be Inverian in age. Sieve-textured 

hornblende and quartz have replaced pyroxenes; plagioclase is the other main mineral. 

Sample JM09/BP01 was taken from this. The Inverian and Badcallian fabrics are cross-cut by 

a Laxfordian shear zone from which samples JM09/BP06 and JM09/BP04 were taken. Both 

have moderate to strong planar and linear fabrics and an amphibolite-facies 

hornblende+plagioclase+quartz assemblage. At Duartmore Point, the Badcallian gneissic 

layering retains granulite-facies clinopyroxene but orthopyroxene has largely been replaced 

by epidote and biotite; plagioclase and quartz are the other major minerals. Sample 

JM09/DP03 was taken from this. The Badcallian gneissic layering is cross-cut by a Laxfordian 

shear zone from which sample JM09/DP02 was taken. The shear zone has moderate to 

strong planar and linear fabrics and an amphibolite-facies hornblende+plagioclase+quartz 

assemblage. On either side of the shear zone is a zone where granulite-facies gneissic 

layering has been statically retrogressed to amphibolite-facies. Sample JM09/DP01 and was 

taken from this.  

 Two samples were taken from the body of metasediments at Sithean Mor (Fig. 7.1b 

& 7.2c). The package of metasediments is internally heterogeneous with biotite- and 

garnet-rich zones, and more quartzose areas. This outcrop of metasediments is enclosed by 

TTG gneisses with Badcallian gneissic layering. The strike of the layering runs into the 

metasediment outcrop and continues in the form of a moderately-developed planar fabric 

comprising biotite-rich and biotite-poor layers. Sample JM08/22 has a 

garnet+biotite+plagioclase+quartz assemblage. The garnet is highly fractured and partially 

replaced with biotite and quartz. Sample JM08/23 is composed of: lensoid- or arcuate- 

shaped quartz aggregates, 2-5mm long and composed of equant 0.5mm-diameter crystals, 

possibly porphyroclasts; large partially sericitised plagioclase crystals, possibly also 

porphyroclasts; a very fine matrix of quartz, feldspar and muscovite; and very high relief 
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kyanite. The kyanite is either acicular or equant in shape when viewed in thin section, with 

the different shapes representing different sections through the crystals. The kyanite 

indicates an amphibolite-facies overprint. Full details of sample petrography and 

geochemistry can be found in chapter 4. 

 

3. Results 

3.1. Analytical Methods 

 Internal chemical zoning in zircons was revealed by cathodoluminescence (CL) 

imaging. This was carried out in a Philips XL30 scanning electron microscope at the 

University of Liverpool (see Chapter 3 for full details). The zircons were then analysed by 

ion microprobe at the Edinburgh Ion Microprobe Facility (EIMF) at the University of 

Edinburgh. U-Pb isotope analysis was conducted using a Cameca IMS 1270 ion microprobe 

and analytical procedures follow those of Kelly et al. (2008). U/Pb ratios were calibrated 

against the Plesovice (Slama et al., 2008) zircon standard. During the analytical session, the 

standard yielded a mean 206Pb/238U ratio of 0.05359±0.00023 (MSWD = 2.4; 95% conf.; 

206Pb/238U age = 340.5±4.8Ma; n = 62). Calculation of ratios and data reduction were 

conducted using in-house software developed by Richard Hinton at University of Edinburgh. 

 A common Pb correction was also applied in-house. Common Pb surface 

contamination was reduced by rastering the sample with the ion microprobe beam 

immediately prior to isotope measurement and by production of flat-bottom analysis pits 

through carefully tuned beam conditions. Correction for in-situ common Pb was made using 

measured 204Pb counts above that of the detector background (typically ~0.2 to 1.5ppb). In 

the analyses for this project, measured common Pb was generally in the range of <5ppb, 

although occasionally analyses were much higher than this, likely the result of 

contamination on the sample surface and in exposed cracks; such analyses were discarded. 
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Uncertainties on all isotopic ratios and ages are quoted at the 2σ level. Plots and age 

calculations have been made using the computer program ISOPLOT (Ludwig, 2003). 

 

Fig.  7.2 Field maps showing structures, mineral assemblages and sample localities: (a) Badcall Point, 
with context map (left) and detail map (right); (b) Duartmore Point; (c) Sithean Mor. 
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 Trace elements were measured using a Cameca 4f ion microprobe, following the 

analytical procedures of Kelly and Harley (2005). Analytical reproducibility during the 

analytical session was tested by regular measurement of REEs and Ti in the 91500 zircon 

standard (Wiedenbeck et al., 1995) and NIST SRM610 glass standard. The analyses from the 

91500 zircon show an expected, smooth increase in chondrite-normalised values of 

trivalent REEs as ionic radius decreases from La to Lu, together with large positive Ce 

anomaly and small negative Eu anomaly. Good agreement is obtained between the SIMS 

measurements for zircon 91500 presented here and those of Whitehouse and Platt (2003) 

and Hoskin (1998) although there is some variation in REE concentrations in the analyses of 

91500, also encountered by Hoskin (1998). For most REEs (particularly the heavier ones), 

the average analytical error is <10% (2σ) but for some of the lighter REEs which have lower 

concentrations, it can be significantly higher. This is interpreted to be partly due to a lack of 

reproducibility from the spectrometer but also to heterogeneity in the 91500 standard as 

noted above. Error on Ti is ~10% (2σ). Analytical reproducibility against the NIST SRM610 

glass standard was <6% (2σ) for the elements analysed. Raw data were reduced using the 

JCION6 software written by John Craven at the University of Edinburgh. REE data were 

chondrite-normalised against the values of McDonough and Sun (1995).  

 

3.2. Zircon Cathodoluminescence 

 When imaged by CL, the population of zircons showed a range of chemical zoning 

patterns typical of complex zircons from high-grade metamorphic rocks (Fig. 7.3). Sub-

rounded cores, both CL-bright and CL-dark, are found in many crystals. Some cores have 

distinctive oscillatory zoning patterns (e.g. GMBP04Z6 and BP06ChZ1 in Fig. 7.3), indicative 

of growth from a magma (Corfu et al., 2003). Other cores may be homogenous in CL 

response (e.g. DP01Z6 in Fig. 7.3) or may show some irregular zoning. All cores tend to be 

surrounded by rims which are usually CL-bright (e.g. GMDP01Z2 and BP06ChZ1 in Fig. 7.3) 
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but may in some cases have medium or low CL response (CL-dark). Each rim is generally 

homogeneous in CL response and they are interpreted to have formed during 

metamorphism (Corfu et al., 2003). Some crystals do not have any discernible internal 

zoning patterns – these are termed single phase (e.g. GMBP04Z5 and GMBP02Z1 in Fig. 

7.3), although it cannot be ruled out that they contain distinct zones beneath the level of 

polishing. A number of crystals are irregular in their CL zoning pattern – they have no 

recognisable core or rim structures and cannot be assigned to any known formation 

mechanism (e.g. GM23Z2 and BP06Z3 in Fig. 7.3). For the purposes of analysing zircon U-Pb 

and trace elements to gain further insight into the formation and evolution of the Assynt 

Terrane, the CL zoning patterns were divided into four groups: cores (oscillatory-zoned, 

homogeneous or heterogeneous zoning, CL-bright or CL-dark);  rims (CL-bright or CL-dark); 

single phase; and irregular. Zircons in all the different samples have a range of zoning 

patterns (Table 7.2). 

 

3.3. Zircon U-Th-Pb 

 103 spot analyses in 44 zircon grains were conducted by ion microprobe for U-Th-

Pb. U contents range from a few to 440ppm while Th ranges from 1 to 360ppm, although 

the majority of analyses are 10-100ppm for both Th and U (Table 7.2). There is a wide range 

in Th and U contents within each sample although zircons from the metasedimentary rocks 

from Sithean Mor (samples JM08/22 and JM08/23) cluster towards the top of the range for 

Th and U (Fig. 7.4a; Table 7.2). There is no correlation between Th or U contents and CL 

zoning pattern; each of the four categories record a wide range (Fig. 7.4b; Table 7.2). Th/U 

is generally in the range 0.5-2, although some analyses from an irregularly-zoned zircon 

from sample JM09/BP06 are as low as 0.04 (Fig. 7.4a-b; Table 7.2). As well as a range in Th 

and U concentrations, there is also a range in 207Pb/206Pb ages from 2384±46Ma to 

3017±56Ma (Table 7.2). There is no correlation between age and U content or Th/U either 
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between samples or between CL zoning pattern category (Fig. 7.4c-f; Table 7.2). Each 

sample records a range of 207Pb/206Pb ages as do the zoning pattern categories (Fig. 

7.5a&b). The ages are mainly concordant (-2% to +5%) although some are more discordant 

(Table 7.2) and the data define a spread along concordia with no obvious clustering 

representing protolith or metamorphic ages (Fig. 7.5c&d). 

   

Fig.  7.3 Representative images showing the four cathodoluminescence (CL) categories of zircons 
from the population analysed in this study, with crystal names and ion microprobe spot numbers 
annotated. 
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Table 7.2 Ion microprobe U-Th-Pb data for zircons analysed in this study. CL (cathodoluminescence) zoning pattern identifiers: sp = single phase; ir = irregular; ir (emb) = 
irregular embayment; r = rim; r (br) = bright rim; r (dr) = dark rim; c (ozp) = oscillatory zoned core; c (bc) = bright core; c (dc) = dark core. 

Sample/spot 
CL Zoning 
Pattern 

U 
(ppm) 

Th 
(ppm) 

Pb 
(ppm) 

Th/U 
204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 

235U 
2σ 

206Pb/ 
238U 

2σ 
Error 
Corr. 

% Disc. 
207Pb/206

Pb Age 
2σ 

JM09/BP02 
                

GMBP02Z1-1 sp 33.10 82.63 27.88 2.56 4.49 0.188 0.006 13.332 0.587 0.514 0.017 0.732 1.86 2725 48 

GMBP02Z1-2 sp 33.55 85.05 31.31 2.60 1.66 0.205 0.005 15.957 0.644 0.564 0.018 0.791 -0.50 2868 40 

GMBP02Z2-1 ir 51.03 59.13 32.96 1.19 1.06 0.179 0.003 12.224 0.360 0.495 0.012 0.857 1.98 2644 26 

GMBP02Z2-2 ir 49.84 61.14 33.11 1.26 1.44 0.182 0.004 12.579 0.441 0.502 0.014 0.805 1.71 2668 34 

JM09/BP01 

                BP01Z1-1 ir 47.98 26.41 26.43 0.56 2.61 0.169 0.003 11.200 0.331 0.480 0.012 0.854 0.85 2549 26 

BP01Z1-2 ir 44.44 23.85 24.32 0.55 1.13 0.172 0.004 11.339 0.369 0.477 0.011 0.731 2.58 2581 36 

GMBP01Z2-1 ir 171.81 272.79 113.48 1.63 2.30 0.167 0.002 10.839 0.285 0.471 0.012 0.931 1.49 2526 16 

JM09/BP06 

                BP06ChZ1-1 r (br) 49.48 38.36 27.89 0.80 2.48 0.170 0.003 10.953 0.333 0.468 0.012 0.810 3.09 2554 30 

BP06ChZ1-2 c (ozp) 421.30 294.94 299.81 0.72 0.00 0.217 0.001 17.415 0.365 0.583 0.012 0.977 -0.12 2956 8 

BP06ChZ2-1 c (ozp) 72.76 66.12 54.21 0.93 2.57 0.219 0.003 17.668 0.500 0.585 0.014 0.850 0.12 2973 24 

BP06ChZ2-4 r (dr) 165.93 101.29 101.28 0.63 6.75 0.190 0.003 13.543 0.366 0.518 0.012 0.846 1.79 2739 24 

BP06ChZ2-5 ir (emb) 35.73 30.51 24.17 0.88 1.61 0.195 0.008 14.633 0.831 0.545 0.020 0.655 -0.82 2782 68 

BP06ChZ2-7 ir (emb) 29.38 49.56 24.71 1.73 4.38 0.197 0.005 15.864 0.646 0.584 0.018 0.771 -5.76 2802 42 

BP06ChZ2-8 c (ozp) 151.28 156.14 110.55 1.06 3.53 0.204 0.002 15.925 0.387 0.566 0.012 0.877 -1.12 2859 18 

BP06Z3-1 ir 88.81 4.38 50.43 0.05 2.22 0.195 0.002 14.604 0.375 0.543 0.013 0.934 -0.31 2786 14 

BP06Z3-2 ir 24.46 3.43 15.87 0.14 0.73 0.223 0.008 18.255 0.910 0.594 0.019 0.653 -0.10 3002 60 

BP06Z3-3 ir 23.45 9.87 13.17 0.43 5.10 0.179 0.008 12.310 0.631 0.500 0.014 0.542 1.04 2640 70 

BP06Z3-4 ir 2.61 0.99 1.39 0.39 0.77 0.169 0.009 11.213 0.796 0.480 0.022 0.637 0.98 2552 90 

BP06Z3-5 ir 209.28 8.36 124.24 0.04 2.45 0.208 0.002 16.112 0.398 0.563 0.012 0.886 0.31 2887 18 

GMBP06Z1-2 r (br) 20.42 20.19 12.79 1.01 1.00 0.182 0.003 12.399 0.456 0.495 0.016 0.858 2.87 2668 32 

GMBP06Z2-1 ir (emb) 24.40 31.31 15.62 1.32 1.51 0.167 0.003 11.107 0.360 0.483 0.013 0.820 -0.54 2526 30 

GMBP06Z2-2 c (ozp) 30.23 39.97 22.13 1.36 0.12 0.189 0.004 14.106 0.514 0.543 0.015 0.757 -2.38 2729 40 

GMBP06Z3-1 r (br) 18.00 12.48 10.42 0.71 0.00 0.174 0.004 11.699 0.477 0.488 0.015 0.778 1.29 2595 42 

GMBP06Z3-2 r (br) 21.50 12.85 11.81 0.61 2.73 0.163 0.003 10.688 0.329 0.476 0.012 0.808 -1.01 2485 30 

(continued) 

 



270 
 

 
 
 

Table 7.2 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

U 
(ppm) 

Th 
(ppm) 

Pb 
(ppm) 

Th/U 
204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 

235U 
2σ 

206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

JM09/BP06 (continued) 

GMBP06Z4-1 r 32.61 39.32 22.51 1.24 2.37 0.203 0.007 14.444 0.640 0.517 0.014 0.621 5.65 2847 56 

GMBP06Z4-2 c (bc) 19.40 20.18 12.59 1.07 1.62 0.179 0.007 12.560 0.636 0.509 0.015 0.573 -0.34 2643 68 

GMBP06Z4-3 c (bc) 19.78 20.79 12.78 1.08 1.22 0.180 0.008 12.520 0.684 0.505 0.017 0.624 0.53 2650 70 

GMBP06Z4-4 r 22.60 22.98 12.94 1.04 8.06 0.153 0.004 9.690 0.351 0.458 0.011 0.670 -1.96 2384 46 

GMBP06Z5-1 r (br) 12.79 7.76 6.94 0.62 2.48 0.170 0.004 10.923 0.467 0.467 0.016 0.785 3.14 2552 44 

GMBP06Z5-2 c (dc) 52.42 111.53 41.06 2.18 1.21 0.186 0.006 12.960 0.532 0.506 0.013 0.609 2.29 2703 54 

GMBP06Z6-1 ir 37.75 40.14 25.22 1.09 1.49 0.219 0.006 15.330 0.592 0.508 0.015 0.741 10.90 2972 42 

JM09/BP04 

                GMBP04Z1-1 r (br) 35.34 48.52 24.83 1.41 5.24 0.189 0.006 13.421 0.576 0.515 0.015 0.669 2.08 2734 52 

GMBP04Z1-2 r (br) 35.24 49.49 27.80 1.44 4.20 0.213 0.005 16.677 0.565 0.568 0.015 0.776 0.90 2927 34 

GMBP04Z2-1 r (br) 23.51 24.05 13.66 1.05 6.27 0.167 0.005 10.594 0.434 0.460 0.012 0.628 3.54 2528 54 

GMBP04Z2-2 r (br) 35.08 32.98 20.40 0.96 1.47 0.168 0.003 10.807 0.326 0.468 0.010 0.742 2.33 2533 34 

GMBP04Z3-1 c (bc) 16.46 21.09 10.03 1.31 0.49 0.173 0.007 10.886 0.583 0.457 0.015 0.615 6.02 2583 70 

GMBP04Z3-2 c (bc) 21.05 25.57 13.85 1.25 3.94 0.173 0.005 11.932 0.450 0.501 0.013 0.709 -1.41 2583 44 

GMBP04Z4-1 r (br) 23.11 29.88 13.83 1.33 0.10 0.168 0.004 10.430 0.364 0.449 0.011 0.702 5.89 2541 42 

GMBP04Z4-2 r (br) 21.63 26.78 13.27 1.27 2.43 0.160 0.004 10.352 0.366 0.468 0.011 0.650 -0.66 2459 46 

GMBP04Z4-3 c (dc) 127.60 55.92 66.72 0.45 4.59 0.163 0.001 10.516 0.239 0.469 0.010 0.948 0.10 2482 12 

GMBP04Z5-1 sp 20.13 24.51 15.47 1.25 1.53 0.201 0.008 15.977 0.997 0.577 0.027 0.738 -3.69 2832 68 

GMBP04Z5-2 sp 28.26 24.28 18.60 0.88 1.17 0.190 0.008 13.890 0.750 0.531 0.016 0.572 -0.32 2738 72 

GMBP04Z6-1 r (br) 15.38 14.35 9.58 0.96 0.76 0.179 0.007 12.277 0.625 0.499 0.016 0.623 1.24 2640 64 

GMBP04Z6-2 c (ozp) 34.99 49.14 28.31 1.44 1.73 0.211 0.009 16.985 0.888 0.584 0.019 0.634 -1.83 2912 64 

GMBP04Z7-1 sp 18.32 19.41 10.71 1.09 1.69 0.167 0.004 10.582 0.431 0.459 0.014 0.753 3.61 2528 44 

GMBP04Z7-2 sp 12.54 9.88 7.24 0.81 2.17 0.164 0.003 10.849 0.362 0.481 0.012 0.775 -1.45 2494 34 

GMBP04Z7-3 sp 16.48 18.01 10.64 1.12 4.32 0.167 0.005 11.649 0.536 0.505 0.018 0.791 -4.19 2530 46 

GMBP04Z7-4 sp 30.80 41.16 21.78 1.37 2.11 0.191 0.005 13.705 0.512 0.521 0.014 0.720 1.54 2747 42 

GMBP04Z8-2 sp 13.39 8.05 7.78 0.62 2.27 0.206 0.009 13.864 0.861 0.487 0.021 0.680 11.02 2876 74 

GMBP04Z8-3 sp 28.76 20.31 16.61 0.72 1.92 0.179 0.006 11.960 0.511 0.484 0.013 0.615 3.94 2647 54 

(continued) 
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Table 7.2 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

U 
(ppm) 

Th 
(ppm) 

Pb 
(ppm) 

Th/U 
204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 

235U 
2σ 

206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

JM09/BP04 (continued) 

GMBP04Z9-1 sp 21.87 29.00 16.12 1.36 3.31 0.188 0.007 14.128 0.900 0.546 0.028 0.799 -3.33 2720 62 

GMBP04Z9-2 sp 30.11 20.81 17.56 0.71 3.67 0.185 0.010 12.413 0.829 0.488 0.018 0.546 4.93 2694 90 

JM09/DP03 

                GMDP03Z1-1 r (br) 65.61 52.17 42.71 0.82 2.19 0.188 0.002 13.819 0.379 0.533 0.013 0.881 -1.04 2725 22 

GMDP03Z1-2 r (br) 42.13 28.79 26.59 0.70 6.27 0.189 0.003 13.758 0.448 0.528 0.015 0.859 0.00 2733 28 

GMDP03Z1-3 c (ozp) 82.66 71.55 47.02 0.89 1.82 0.162 0.001 10.409 0.255 0.466 0.011 0.959 0.29 2475 12 

GMDP03Z1-4 r (br) 34.50 24.66 21.87 0.73 1.97 0.194 0.006 14.015 0.578 0.525 0.015 0.700 1.85 2772 48 

GMDP03Z2-1 c (ozp) 33.96 12.58 21.94 0.38 0.93 0.219 0.010 17.060 0.974 0.564 0.019 0.599 3.00 2974 74 

DP03Z2-1 sp 439.84 358.71 257.43 0.84 4.50 0.178 0.002 11.763 0.303 0.480 0.011 0.926 4.09 2633 16 

JM09/DP01 

                DP01Z4-1 sp 15.29 2.24 7.41 0.15 0.00 0.166 0.004 10.629 0.369 0.463 0.013 0.788 2.74 2522 36 

DP01Z4-2 sp 14.04 2.12 7.69 0.16 0.75 0.188 0.006 13.338 0.541 0.514 0.014 0.664 1.82 2725 48 

DP01Z6-1 r (br) 18.27 11.02 9.64 0.62 0.35 0.169 0.003 10.605 0.390 0.454 0.014 0.866 5.39 2551 30 

DP01Z6-2 r (br) 17.20 8.79 9.14 0.52 0.59 0.166 0.004 10.734 0.417 0.468 0.014 0.793 1.83 2521 38 

DP01Z6-3 c (dc) 57.95 87.23 36.86 1.54 0.32 0.166 0.004 10.556 0.359 0.460 0.012 0.780 3.21 2521 36 

DP01Z6-4 r (br) 14.72 9.57 8.34 0.67 0.00 0.177 0.005 11.725 0.515 0.480 0.015 0.733 3.67 2625 50 

DP01Z6-5 r (br) 18.57 8.94 9.75 0.49 1.25 0.171 0.004 10.911 0.407 0.463 0.014 0.797 4.30 2565 36 

DP01Z10-1 r (br) 13.87 5.02 7.16 0.37 1.67 0.178 0.007 11.415 0.536 0.465 0.014 0.625 6.53 2634 60 

DP01Z10-2 r (br) 14.54 5.07 7.79 0.36 0.79 0.184 0.008 12.208 0.677 0.482 0.015 0.574 5.50 2685 74 

DP01Z10-3 r (br) 15.54 6.57 7.58 0.43 4.85 0.158 0.004 9.575 0.368 0.441 0.012 0.725 3.14 2430 44 

DP01Z10-4 c (dc) 39.05 35.39 22.26 0.93 5.30 0.182 0.004 11.457 0.439 0.457 0.014 0.803 9.16 2670 38 

GMDP01Z1-1 r (br) 36.48 20.76 19.37 0.58 1.29 0.167 0.002 10.596 0.298 0.461 0.011 0.885 3.05 2523 22 

GMDP01Z1-2 r (br) 27.15 10.41 14.10 0.39 1.14 0.164 0.003 10.677 0.341 0.471 0.012 0.800 0.59 2502 32 

GMDP01Z2-1 r (br) 15.09 11.70 12.08 0.80 0.00 0.225 0.008 19.960 1.007 0.643 0.023 0.715 -6.12 3017 56 

GMDP01Z2-2 c (dc) 89.07 105.38 53.54 1.21 2.28 0.163 0.001 10.372 0.264 0.463 0.011 0.942 1.23 2482 14 

GMDP01Z2-4 c (dc) 149.86 173.21 103.04 1.19 2.17 0.192 0.002 13.849 0.360 0.524 0.013 0.952 1.59 2758 12 

GMDP01Z2-5 r (br) 21.17 8.45 12.12 0.41 0.26 0.187 0.006 13.130 0.580 0.509 0.016 0.710 2.42 2717 52 

(continued) 
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Table 7.2 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

U 
(ppm) 

Th 
(ppm) 

Pb 
(ppm) 

Th/U 
204Pbc 
(ppb) 

207Pb/ 
206Pb 

2σ 
207Pb/ 

235U 
2σ 

206Pb/ 
238U 

2σ 
Error 
Corr. 

% 
Disc. 

207Pb/206Pb 
Age 

2σ 

JM09/DP01 (continued) 

GMDP01Z3-1 sp 15.12 7.08 8.83 0.48 0.72 0.194 0.010 13.629 0.898 0.508 0.020 0.594 4.71 2780 86 

GMDP01Z4-1 sp 14.84 7.77 7.87 0.54 1.52 0.164 0.003 10.532 0.381 0.467 0.015 0.876 1.01 2494 28 

GMDP01Z4-2 sp 12.34 6.70 6.89 0.56 0.96 0.165 0.004 11.116 0.482 0.489 0.017 0.782 -2.41 2506 44 

GMDP01Z5-1 c (dc) 81.03 33.84 50.53 0.43 5.62 0.198 0.002 14.929 0.398 0.548 0.013 0.916 -0.44 2805 18 

GMDP01Z5-2 r (br) 11.57 6.02 6.12 0.53 0.30 0.168 0.004 10.783 0.389 0.464 0.011 0.673 3.29 2542 44 

GMDP01Z6-1 r (br) 5.41 3.20 3.31 0.61 1.08 0.203 0.009 14.440 0.822 0.516 0.019 0.651 5.83 2849 70 

GMDP01Z6-2 r (br) 24.23 19.41 16.76 0.82 1.15 0.200 0.003 15.491 0.506 0.561 0.016 0.882 -1.60 2827 24 

GMDP01Z6-3 c (dc) 65.70 61.02 45.59 0.95 2.38 0.201 0.003 15.229 0.475 0.549 0.016 0.916 0.58 2836 20 

GMDP01Z7-1 sp 14.67 7.37 8.24 0.52 0.98 0.177 0.008 12.006 1.237 0.492 0.045 0.887 1.71 2624 78 

GMDP01Z8-1 r (br) 19.81 13.34 11.37 0.69 0.86 0.184 0.007 12.209 0.578 0.482 0.012 0.542 5.59 2686 66 

GMDP01Z9-3 ir 58.50 27.94 30.01 0.49 1.33 0.164 0.002 10.285 0.281 0.456 0.011 0.898 2.88 2493 20 

JM08/22 

                GM22Z1-1 c (ozp) 98.42 112.96 72.56 1.18 0.00 0.206 0.004 15.870 0.521 0.558 0.014 0.781 0.63 2876 34 

GM22Z1-2 c (bc) 152.83 181.19 111.25 1.22 0.94 0.200 0.003 15.121 0.389 0.549 0.012 0.835 0.05 2823 24 

GM22Z2-1 c (ozp) 172.11 246.58 96.22 1.47 6.30 0.165 0.002 9.292 0.240 0.409 0.010 0.903 11.84 2506 18 

GM22Z3-1 c (ozp) 409.93 185.31 225.64 0.46 0.74 0.173 0.002 11.660 0.271 0.489 0.010 0.908 0.86 2587 16 

JM08/23 

                GM23Z2-1 ir 110.41 78.14 66.20 0.73 1.14 0.177 0.004 12.247 0.367 0.503 0.011 0.746 -0.27 2620 34 

GM23Z2-2 ir 78.76 69.45 47.04 0.90 0.70 0.177 0.003 11.807 0.323 0.483 0.011 0.797 3.27 2627 26 

GM23Z4-1 r (br) 138.07 290.26 108.04 2.16 1.57 0.182 0.003 12.754 0.350 0.509 0.011 0.811 0.58 2668 26 

GM23Z4-2 r (br) 136.05 233.58 103.19 1.76 2.65 0.188 0.003 13.602 0.387 0.524 0.012 0.784 0.33 2726 28 

GM23Z5-1 sp 74.92 73.40 50.93 1.01 0.30 0.196 0.005 14.420 0.504 0.534 0.013 0.698 1.23 2792 40 

GM23Z5-2 sp 61.85 57.41 40.43 0.95 1.99 0.186 0.004 13.405 0.443 0.522 0.014 0.784 0.15 2710 34 

GM23Z6-2 ir 144.50 87.46 85.49 0.62 4.87 0.174 0.003 12.187 0.385 0.508 0.012 0.778 -2.08 2595 34 

GM23Z6-3 ir 88.35 88.90 60.25 1.03 1.43 0.194 0.004 14.276 0.480 0.533 0.014 0.759 0.75 2777 34 
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Fig.  7.4 U-Th-Pb chemistry of zircons from this study plotted as: Th concentration (ppm) vs. U 
concentration (ppm) colour-coded by sample (a) and by cathodoluminescence zoning pattern (b); U 
concentration (ppm) vs. 

207
Pb/

206
Pb age colour-coded by sample (c) and by cathodoluminescence 

zoning pattern (d); Th/U ratio vs. 
207

Pb/
206

Pb age colour-coded by sample (e) and by 
cathodoluminescence zoning pattern (f). 
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Fig.  7.5 Spread of 
207

Pb/
206

Pb ages recorded by zircons in this study: (a) 
207

Pb/
206

Pb ages with 2σ errors 
colour-coded by sample; (b) 

207
Pb/

206
Pb ages with 2σ errors colour-coded by cathodoluminescence 

zoning pattern; (c) Wetherill concordia plot of zircon Pb/U ratios colour-coded by sample; (d) 
Wetherill concordia plot of zircon Pb/U ratios colour-coded by cathodoluminescence zoning pattern. 

 In order to obtain a protolith age for the Assynt Terrane from this potentially 

confusing array of data, a starting point is to look for the oldest age in the population, as 

was done by Friend and Kinny (1995) in their analysis of the Assynt Terrane. This study 

includes zircons of unknown provenance from metasedimentary rocks and these are 

therefore excluded when trying to determine a protolith age for the TTG gneisses which 

make up the majority of the Assynt Terrane. The oldest age in the TTG gneiss zircon 

population is 3017±56Ma, although this age is reversely discordant by 6%. This degree of 

reverse discordance is interpreted to be beyond the level of an analytical artefact affecting 

the U/Pb ratio calibration so this particular age may be overestimated.  
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 An alternative approach used by Whitehouse and Kemp (2010) to determine a 

protolith age is to assume that there is a single magmatic age and that the spread of ages 

has been caused by later Pb-loss. Successive rejection of the youngest ages is performed 

until the mean square of weighted deviates (MSWD) of the weighted average age of the 

population falls below a limit, below which analytical error can account for the observed 

scatter. This objective approach does not take account of the CL zoning pattern, however. 

The oldest age in the TTG gneiss zircon population is from a rim which is unlikely to reflect 

protolith formation whereas cores are much more likely to reflect the early stages of zircon 

history, possibly growth from a protolith magma (Corfu et al., 2003). Taking the  threshold 

MSWD to be 1 (Whitehouse and Kemp, 2010), the oldest three cores yield a mean age of 

2958±7Ma (MSWD = 1.00, probability = 0.37). Including the next youngest core increases 

the MSWD to only 1.3 which is still acceptable and yields a mean age of 2957±14Ma. These 

four oldest cores are all oscillatory zoned and thus are likely to have formed by 

crystallisation from a magma (Corfu et al., 2003). Cores with younger ages do not all show 

oscillatory zoning, and also greatly increase the MSWD. This age is ~100Myr older than the 

protolith age suggested by Whitehouse and Kemp (2010) from a similar dataset, which was 

also calculated  from oscillatory zoned zircons, but is within error of the 2960Ma age 

suggested by Friend and Kinny (1995) for the formation of the protolith to the Assynt 

Terrane. 

 Any attempt to pick out ages for metamorphic events from the zircon population in 

this study is hampered by the spread of concordant ages. There is no clear clustering of 

ages in any sample (Fig. 7.5a) or CL zoning pattern category (Fig. 7.5b). The fact that not all 

of the oldest ages in the population are from cores as might be expected, coupled with the 

spread of ages of up to ~600Myr in the different CL zoning pattern categories, makes 

interpretation of the chronological history of the Assynt Terrane extremely difficult. In 

chapter 6, possible explanations for this spread of ages and lack of correlation between age, 
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sample and CL zoning pattern were explored and volume diffusion of Pb was considered to 

be the most likely explanation. The evidence for this was presented and discussed in detail 

in chapter 6 and will not be repeated here.  

 

3.4. Zircon Rare Earth Elements 

 The relative abundance of the different rare earth elements in zircon has been 

shown to vary according to the environment in which the zircon formed or was modified 

(e.g. Bea et al., 1994; Rubatto, 2002; Whitehouse and Kamber, 2003; Rubatto and 

Hermann, 2006). For example, zircon grown  from a felsic-intermediate magma typically has 

a steeply positive chondrite-normalised La-Lu profile due to a preference for the smaller 

ionic radius heavier REEs over the larger lighter REEs (Murali et al., 1983; Hinton and Upton, 

1991; Hoskin and Ireland, 2000; Whitehouse and Kamber, 2003). Zircon formed or modified 

during metamorphism, however, may deviate from this pattern (e.g. Kelly and Harley, 

2005a). The REE composition of zircon that grows or is modified during metamorphism will 

be affected by concurrent growth or resorption of other REE-sequestering minerals such as 

garnet, which sequesters heavy REEs (Rubatto, 2002; Whitehouse and Platt, 2003), 

monazite, which sequesters light REEs (Bea and Montero, 1999; Schaltegger et al., 1999; 

Rubatto et al., 2001), or amphibole, which sequesters middle REEs (Davidson et al., 2007). 

Therefore, REE profiles of zircons can assist in investigations of zircon petrogenesis and 

potentially link zircon CL domains to metamorphic assemblages in the host rock (e.g. 

Whitehouse and Kamber, 2003; Kelly and Harley, 2005a). 

 The majority of zircon analyses from Badcall Point show a typical magmatic zircon 

REE profile of increasing chondrite-normalised La-Lu with a positive Ce anomaly and a 

negative Eu anomaly (Table 7.3; Fig. 7.6a). Yb/Gd is generally 10-15 (Fig. 7.7) which is lower 

than that measured by Kelly and Harley (2005a) for magmatic zircon (Yb/Gd = 20-30). There 

is no clear distinction in REE profile between the different CL zoning pattern categories (Fig. 
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7.6d). A few analyses from Badcall Point deviate from this pattern. A couple of core 

analyses from samples JM09/BP06 and JM09/BP04 are enriched in Pr-Eu relative to other 

analyses (Figs. 7.6a&d) and this core analysis from JM09/BP04 has virtually no Eu anomaly 

(Eu/Eu* = 6.34) (Figs. 7.6a&d, 7.8 & 7.9; Table 7.4). A single analysis from an irregularly-

zoned zircon from sample JM09/BP01 has a flat heavy REE profile (Yb/Gd = 1.87) (Table 7.4; 

Figs. 7.6a&d, 7.8 & 7.9). Four analyses from a an irregularly-zoned zircon from sample 

JM09/BP06 are relatively depleted in light and middle REEs and have very high Yb/Gd ratios 

of 72-323 (Table 7.4; Figs. 7.6a&d, 7.8 & 7.9). They also have low Eu contents and no Eu 

anomaly (Table 7.4; Figs. 7.6a&d). 

 The majority of zircon analyses from Duartmore Point also show a typical magmatic 

zircon REE profile, regardless of sample or CL zoning pattern (Table 7.4; Figs. 7.6b&e). Like 

at Badcall Point, typical Yb/Gd ratios are lower than those reported by Kelly and Harley 

(2005a) for magmatic zircon with the majority  in the range of ~8-15 (Table 7.4; Figs. 7.8 & 

7.9). One core analysis from sample JM09/DP01 has a lower Yb/Gd of 3.28 and therefore 

has a relatively flat heavy REE profile (Table 7.4; Figs. 7.6b&e, 7.8 & 7.9). Eu/Eu* values are 

generally higher than at Badcall Point (almost all are >1) and Eu anomalies are generally less 

pronounced (Table 7.4; Figs. 7.6b&e, 7.8 & 7.9). 

 There is more variety in REE profile in zircons from Sithean Mor. The majority of 

analyses, especially the irregularly-zoned zircons from sample JM08/23, have pronounced 

negative Eu anomalies and Eu/Eu* values of <0.5 (Table 7.4; Figs. 7.8 & 7.9). The negative 

Eu anomaly is also found in zircons from sample JM08/22 but is not as pronounced. Most 

notable in the analyses from Sithean Mor is the presence of flat heavy REE patterns; in all 

bar two of the analyses Yb/Gd is <7 (Table 7.4; Figs. 7.6c&f, 7.8 & 7.9). The highest two 

Yb/Gd values are from a single phase zircon while the two analyses from zircon rims have 

Yb/Gd of <1. Zircon cores and irregularly-zoned zircons have a range of Yb/Gd values of ~1-

7 (Table 7.4; Fig. 7.8 & 7.9). 
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Table 7.3 Ion microprobe zircon trace element data (ppm). CL zoning pattern identifiers as Table 7.2. 

Sample/spot 
CL Zoning 
Pattern 

Ti Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Eu/Eu* Ce/Ce* 

JM09/BP02 
 

                   GMBP02Z1-1 sp 15.43 0.834 0.248 35.8 1.36 2.51 10.96 6.91 42.1 63.0 114.0 181.2 306.1 418.7 548.7 833.5 13.04 0.95 28.18 

GMBP02Z1-2 sp 15.90 1.109 0.251 34.5 1.25 2.65 12.01 8.34 39.3 63.7 114.0 175.8 292.5 431.7 517.3 821.5 13.16 1.16 28.19 

GMBP02Z2-1 ir 17.75 0.741 0.160 25.8 1.10 2.65 8.83 8.16 24.4 41.9 63.8 111.4 167.5 248.7 308.1 498.3 12.64 1.42 22.98 

GMBP02Z2-2 ir 16.89 0.614 0.191 26.2 1.31 2.47 9.57 7.97 25.4 42.6 73.6 106.1 169.7 247.1 299.3 463.8 11.79 1.35 21.39 

JM09/BP01 

                    BP01Z1-1 ir 18.66 0.917 0.313 20.3 1.15 2.21 8.88 6.47 21.2 24.1 30.6 32.4 40.3 43.2 39.7 58.2 1.87 1.18 16.79 

GMBP01Z2-1 ir 14.53 0.465 0.420 26.7 1.56 3.53 10.43 7.68 38.0 66.7 121.9 204.1 362.9 511.3 661.6 997.2 17.41 1.10 18.97 

JM09/BP06 

                    BP06ChZ1-1 r (br) 17.13 0.317 0.303 31.3 1.24 2.64 8.30 8.76 21.1 24.0 35.5 46.0 64.5 84.2 107.8 165.9 5.10 1.62 25.22 

BP06ChZ1-2 c (ozp) 14.64 0.352 0.456 46.7 1.57 5.18 20.96 19.17 62.3 104.1 180.1 298.4 515.8 814.1 1177.9 1976.7 18.91 2.10 32.82 

BP06ChZ2-1 c (ozp) 15.84 0.987 0.262 25.2 1.06 2.83 21.87 16.19 92.2 168.9 294.1 476.4 755.8 1011.6 1266.6 1750.1 13.73 1.52 21.93 

BP06ChZ2-2 c (ozp) 14.53 0.977 3.202 22.3 1.74 3.08 14.79 15.24 58.2 108.7 191.8 318.6 530.7 681.4 893.1 1297.2 15.33 1.78 10.05 

BP06ChZ2-3 c (ozp) 18.16 0.699 0.380 31.6 3.98 12.83 57.67 29.24 159.6 263.4 436.6 676.6 1039.9 1337.9 1684.1 2405.9 10.55 1.98 15.15 

BP06ChZ2-6 r (dr) 19.42 0.451 1.008 45.1 1.99 4.67 20.35 8.80 60.6 106.7 177.6 287.0 493.5 698.2 878.2 1317.1 14.50 0.98 26.06 

BP06ChZ2-7 ir (emb) 12.15 0.804 0.163 14.3 0.61 0.77 5.66 4.45 20.5 40.5 79.7 145.3 243.3 364.2 492.3 826.2 23.97 0.87 16.22 

BP06ChZ2-9 r (dr) 17.58 0.808 1.983 69.4 3.62 5.50 19.07 11.54 50.9 83.9 143.5 224.1 364.0 542.8 692.7 1042.1 13.62 1.38 29.33 

BP06Z3-1 ir 12.61 0.502 0.649 6.7 0.59 0.29 1.49 3.13 6.2 21.0 70.8 183.1 459.7 850.6 1358.7 2354.3 219.13 1.13 6.05 

BP06Z3-2 ir 16.84 0.627 0.493 5.6 0.54 0.34 1.68 3.82 6.3 27.0 95.6 269.1 709.2 1370.3 2042.0 3485.7 322.94 1.35 5.55 

BP06Z3-3 ir 10.52 0.485 0.775 34.6 2.02 3.31 12.20 9.47 32.8 47.0 82.4 146.8 329.5 597.0 889.7 1646.8 27.16 1.41 20.74 

BP06Z3-4 ir 14.23 0.557 0.093 1.6 0.25 0.13 1.15 1.70 2.1 3.6 11.9 30.9 75.1 125.0 213.2 359.9 100.05 0.94 2.81 

BP06Z3-5 ir 14.81 0.354 0.224 5.3 0.67 0.29 2.26 2.81 6.6 15.9 39.4 90.5 189.3 318.7 478.3 783.7 72.02 0.94 5.64 

GMBP06Z1-1 r (br) 18.62 0.711 0.473 29.8 1.70 4.34 18.42 9.20 57.7 91.4 148.2 235.4 370.4 497.8 690.1 922.1 11.96 1.05 20.20 

GMBP06Z1-2 r (br) 17.87 0.549 0.331 28.6 1.65 2.79 13.86 8.16 40.9 62.5 106.2 159.3 261.6 339.8 444.6 621.5 10.88 1.10 20.34 

GMBP06Z1-3 c (bc) 15.66 0.954 0.412 23.3 0.60 2.25 8.85 6.16 44.0 68.5 131.7 213.3 323.4 453.4 580.0 786.1 13.19 0.85 23.23 

GMBP06Z2-1 ir (emb) 16.72 0.392 0.280 39.1 1.84 7.05 20.41 13.06 59.6 97.2 168.1 271.7 385.9 507.9 647.3 1094.6 10.86 1.46 26.86 

GMBP06Z2-2 c (ozp) 18.75 0.428 0.157 38.7 1.46 5.09 27.35 18.71 113.0 182.7 298.1 456.1 675.5 889.8 1014.7 1678.2 8.98 1.58 30.39 

GMBP06Z3-1 r (br) 15.39 0.611 0.295 27.1 0.52 1.65 5.15 4.64 41.5 67.2 121.2 179.0 295.4 375.0 464.3 739.7 11.18 0.68 30.06 

GMBP06Z3-2 r (br) 14.84 0.635 0.063 24.4 0.87 1.63 10.50 4.91 36.0 56.8 104.8 155.6 270.3 375.0 393.2 697.6 10.92 0.72 25.30 

GMBP06Z3-3 c (dc) 16.38 0.315 0.291 26.8 0.52 3.05 8.84 3.43 47.4 92.9 138.2 235.1 315.9 475.5 529.3 767.8 11.17 0.46 29.70 

(continued) 
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Table 7.3 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

Ti Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Eu/Eu* Ce/Ce* 

JM09/BP06 (continued) 

GMBP06Z4-1 r 15.00 0.885 0.284 30.0 2.04 4.50 24.92 15.07 80.8 127.7 212.8 330.7 514.8 657.8 853.0 1130.7 10.56 1.47 19.68 

GMBP06Z4-2 c (bc) 15.78 0.604 0.322 27.1 1.23 3.03 12.24 7.06 38.4 59.3 97.0 151.3 241.4 335.1 441.8 622.5 11.50 0.99 21.73 

GMBP06Z4-3 c (bc) 13.78 0.617 0.315 27.1 1.29 3.79 16.51 11.17 50.0 81.8 131.7 206.0 331.2 447.5 548.4 818.4 10.97 1.37 21.38 

GMBP06Z4-4 r 14.48 0.606 0.188 29.7 1.94 4.86 23.39 14.24 76.0 128.2 211.3 336.4 508.1 661.0 872.7 1179.0 11.48 1.43 20.33 

GMBP06Z5-1 r (br) 15.83 0.316 0.435 25.9 0.40 2.03 9.89 3.15 33.5 61.5 93.8 166.1 276.0 377.1 447.6 773.9 13.38 0.48 28.38 

GMBP06Z5-2 c (dc) 14.60 0.450 0.283 43.2 0.72 2.95 12.67 5.72 70.2 111.8 212.4 365.3 565.4 860.9 1101.4 1763.6 15.70 0.63 42.99 

GMBP06Z6-1 ir 23.72 0.511 0.246 36.1 1.70 5.50 16.56 8.14 74.7 111.7 199.9 317.9 491.0 653.4 806.6 1222.3 10.80 0.85 25.88 

JM09/BP04 

                    GMBP04Z1-1 r (br) 17.26 0.206 0.325 38.8 1.03 6.42 15.54 8.33 54.8 84.0 149.4 229.3 368.8 500.3 592.0 934.0 10.80 0.99 33.33 

GMBP04Z1-2 r (br) 18.30 0.233 0.178 44.2 1.44 4.77 22.46 12.84 73.8 124.9 210.4 316.4 530.1 697.1 835.8 1320.1 11.33 1.31 34.75 

GMBP04Z2-1 r (br) 16.95 0.389 0.178 33.2 0.89 2.14 11.31 7.67 24.8 40.4 57.3 78.2 124.7 200.8 238.4 349.9 9.61 1.28 32.17 

GMBP04Z2-2 r (br) 11.89 0.488 0.030 36.9 1.33 2.84 11.89 6.61 40.2 76.2 128.8 198.2 296.2 485.3 576.3 861.0 14.34 0.92 31.66 

GMBP04Z3-1 c (bc) 16.13 1.254 1.899 33.1 10.21 22.42 79.01 99.26 166.1 215.9 280.3 380.0 541.0 684.6 814.0 1135.2 4.90 6.34 9.51 

GMBP04Z3-2 c (bc) 16.25 1.439 0.353 34.3 1.26 2.66 12.53 7.91 35.9 66.3 110.3 171.4 284.9 382.2 492.9 701.0 13.71 1.14 26.95 

GMBP04Z4-1 r (br) 13.81 0.935 0.435 42.7 2.87 7.89 18.80 8.42 43.7 69.8 122.0 190.9 293.5 385.9 488.0 808.8 11.18 1.07 23.50 

GMBP04Z4-2 r (br) 14.81 0.166 0.287 42.6 2.51 7.14 14.26 9.27 50.7 76.6 115.7 185.7 239.2 346.7 478.1 781.8 9.43 1.15 25.47 

GMBP04Z4-3 c (dc) 8.58 0.148 1.305 32.1 1.88 3.98 6.78 8.18 27.2 47.7 75.3 128.6 204.9 343.2 429.8 697.5 15.80 1.40 17.97 

GMBP04Z5-1 sp 17.10 0.242 0.338 33.0 1.53 4.85 17.50 8.09 50.3 78.9 142.9 222.3 316.5 466.2 574.6 922.4 11.42 0.98 24.16 

GMBP04Z5-2 sp 17.30 0.664 0.228 31.8 1.36 5.71 18.21 12.77 57.6 89.8 138.1 247.7 350.5 512.9 533.8 994.8 9.26 1.47 25.22 

GMBP04Z6-1 r (br) 18.91 0.243 0.189 30.8 1.35 4.12 12.19 4.90 38.6 74.3 113.8 187.9 278.8 415.1 513.6 820.2 13.30 0.69 24.79 

GMBP04Z6-2 c (ozp) 19.13 0.304 0.142 39.9 1.95 5.06 21.07 12.72 65.1 108.7 187.8 304.8 483.1 603.0 781.6 1184.7 12.01 1.37 27.63 

GMBP04Z7-1 sp 21.06 0.277 0.141 32.3 0.90 2.99 12.50 7.75 33.9 57.4 100.3 151.8 246.0 309.4 440.5 674.4 13.01 1.14 31.64 

GMBP04Z7-2 sp 18.59 0.007 0.258 32.9 1.15 4.09 15.07 6.57 46.9 67.7 125.7 180.5 273.9 416.6 515.7 824.6 10.99 0.83 27.76 

GMBP04Z7-3 sp 20.74 0.109 0.186 29.8 1.31 1.90 17.59 4.44 38.2 56.6 102.9 167.1 269.2 391.6 426.6 770.9 11.17 0.59 24.35 

GMBP04Z8-2 sp 19.12 0.928 0.313 30.5 1.63 3.62 15.61 9.84 48.7 78.5 130.2 201.4 324.5 433.4 526.6 808.3 10.81 1.23 21.86 

GMBP04Z8-3 sp 16.61 0.828 0.252 32.4 1.62 3.80 15.34 12.65 55.8 88.7 141.1 225.9 341.9 479.5 608.7 866.6 10.91 1.50 23.74 

GMBP04Z9-1 sp 16.60 0.220 0.196 32.8 1.48 3.53 14.04 7.79 47.8 83.2 124.4 211.3 306.2 437.9 523.9 901.5 10.96 0.99 25.33 

GMBP04Z9-2 sp 14.82 0.159 0.185 34.2 1.33 3.66 11.61 8.00 38.7 62.9 75.3 126.4 217.4 266.2 324.6 558.0 8.39 1.13 27.79 

(continued) 
 

 



280 
 

 
Table 7.3 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

Ti Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Eu/Eu* Ce/Ce* 

JM09/BP04 (continued) 

JM09/DP03 

                    GMDP03Z1-1 r (br) 13.09 0.380 0.207 29.0 1.14 2.11 13.05 10.24 43.9 71.8 112.4 192.3 314.7 450.7 607.2 879.2 13.84 1.36 24.97 

GMDP03Z1-2 r (br) 12.66 0.601 0.236 24.6 0.91 2.32 9.96 9.25 33.1 52.0 83.7 137.4 222.7 320.4 431.0 645.8 13.03 1.41 23.02 

GMDP03Z1-3 c (ozp) 6.71 0.655 0.385 34.2 0.88 3.28 16.41 18.27 62.4 94.4 168.1 267.0 445.9 621.2 818.0 1186.9 13.10 2.06 30.34 

GMDP03Z1-4 r (br) 14.07 0.251 0.357 27.0 1.01 2.23 11.11 10.21 34.3 53.2 92.5 145.9 244.3 343.9 459.1 686.6 13.38 1.51 23.14 

GMDP03Z1-5 r (br) 13.03 1.335 0.538 28.4 1.99 4.00 16.92 16.06 45.2 71.6 112.6 173.2 294.5 420.4 575.8 874.4 12.73 2.04 17.89 

GMDP03Z2-1 c (ozp) 19.64 0.435 0.580 8.3 1.02 1.92 10.59 20.72 49.7 97.4 177.0 311.6 516.6 733.2 1000.7 1492.3 20.15 2.67 6.59 

DP03Z2-1 sp 19.41 0.698 2.283 32.1 3.98 7.48 16.61 18.49 34.8 41.8 60.4 74.9 123.3 155.4 224.8 303.6 6.46 2.58 12.81 

JM09/DP01 

                    DP01Z4-1 sp 17.78 0.663 0.252 35.5 0.99 2.66 15.05 8.67 55.4 94.5 167.4 257.2 424.1 569.6 724.5 1073.9 13.09 1.03 31.92 

DP01Z4-2 sp 16.39 0.647 0.334 32.4 0.89 2.25 13.18 7.37 48.7 84.2 145.7 232.1 389.0 510.3 626.4 932.5 12.86 0.94 29.25 

DP01Z6-1 r (br) 17.14 1.115 0.577 29.5 1.80 4.10 16.78 12.57 52.5 73.4 117.6 180.9 276.9 364.6 446.3 671.0 8.50 1.51 19.13 

DP01Z6-2 r (br) 15.90 0.811 0.348 27.6 1.51 4.11 15.71 12.36 47.4 73.5 114.4 166.5 262.2 363.1 435.0 648.4 9.17 1.55 20.25 

DP01Z6-3 c (dc) 15.09 0.584 0.357 31.4 1.03 2.49 9.47 7.09 24.0 32.1 53.1 74.7 101.4 136.6 159.8 253.1 6.65 1.22 26.64 

DP01Z6-4 r (br) 17.78 0.529 0.470 26.4 1.82 3.03 14.73 12.85 40.3 60.4 95.1 142.0 220.2 304.1 377.0 547.7 9.36 1.73 17.48 

DP01Z6-5 r (br) 18.59 0.581 0.610 26.9 1.53 4.18 16.49 14.28 48.5 72.5 113.8 171.5 252.7 355.0 452.9 624.4 9.34 1.77 18.42 

DP01Z10-1 r (br) 20.28 0.908 0.835 32.4 2.10 4.01 15.13 16.79 39.5 62.2 96.9 141.8 219.1 279.8 372.9 540.4 9.43 2.27 18.87 

DP01Z10-2 r (br) 19.81 0.613 0.380 25.6 1.35 3.44 13.46 9.75 39.5 59.7 98.3 149.9 221.4 318.8 393.0 565.1 9.95 1.34 19.43 

DP01Z10-3 r (br) 15.75 1.028 0.144 24.5 1.20 2.30 11.07 9.49 28.6 44.0 68.7 113.4 168.6 222.3 280.4 403.4 9.79 1.51 21.12 

GMDP01Z1-1 r (br) 13.32 0.639 0.286 27.2 0.78 1.18 7.36 4.66 27.7 50.5 82.0 131.7 222.5 341.8 435.8 690.4 15.74 0.79 26.29 

GMDP01Z1-2 r (br) 8.32 0.834 0.211 26.6 0.98 1.59 8.07 7.52 23.1 46.2 83.1 135.1 232.3 340.5 467.3 697.6 20.26 1.35 24.40 

GMDP01Z2-1 r (br) 14.94 0.338 0.283 20.9 0.89 2.29 10.76 8.53 32.7 51.1 82.1 120.7 186.0 255.7 339.4 475.4 10.39 1.29 19.34 

GMDP01Z2-2 c (dc) 14.87 0.649 0.253 25.2 0.90 1.48 5.81 6.28 17.1 30.2 46.9 67.6 111.5 154.2 205.6 304.6 12.00 1.31 23.49 

GMDP01Z2-4 c (dc) 14.15 0.539 0.297 28.0 1.08 3.06 16.49 16.55 50.2 69.0 94.2 109.6 130.6 140.8 164.7 181.0 3.28 2.03 23.82 

GMDP01Z2-5 r (br) 15.15 0.428 0.284 19.8 1.16 2.10 9.16 7.69 28.5 44.7 72.5 110.4 172.4 245.6 309.4 491.0 10.87 1.25 16.46 

GMDP01Z3-1 sp 20.75 0.957 0.554 24.7 1.74 3.68 14.71 13.21 46.4 78.7 118.4 184.5 288.7 371.7 478.1 714.3 10.31 1.69 16.33 

GMDP01Z4-1 sp 9.95 0.532 0.237 27.2 1.58 3.69 12.89 10.67 36.2 54.6 87.6 131.6 198.6 270.3 334.2 463.8 9.24 1.52 20.19 

GMDP01Z4-2 sp 12.78 0.136 0.497 26.1 1.92 3.51 15.31 12.82 42.6 58.4 93.0 139.5 217.2 293.2 378.8 533.6 8.89 1.68 16.81 

(continued) 
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Table 7.3 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

Ti Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Yb/Gd Eu/Eu* Ce/Ce* 

JM09/DP01 (continued) 

GMDP01Z5-1 c (dc) 10.81 0.894 0.469 14.9 0.62 2.04 8.01 9.60 27.9 44.0 72.1 108.1 174.9 241.3 302.8 490.6 10.85 1.60 14.29 

GMDP01Z5-2 r (br) 17.20 1.265 0.346 21.1 1.17 2.53 8.11 5.61 22.5 35.5 55.9 84.8 133.3 166.3 222.9 338.4 9.90 1.01 17.08 

GMDP01Z6-1 r (br) 13.70 0.755 0.142 24.1 0.72 1.98 9.97 7.38 29.1 50.0 86.0 137.3 218.9 312.2 428.9 599.3 14.74 1.18 25.98 

GMDP01Z6-2 r (br) 14.19 0.748 0.262 21.3 0.76 1.55 7.87 8.52 28.6 47.3 80.7 134.9 224.7 321.7 433.8 644.9 15.17 1.41 21.07 

GMDP01Z6-3 c (dc) 13.87 0.408 0.293 24.9 0.80 1.88 8.03 8.25 26.4 44.1 71.3 114.2 186.2 272.3 379.4 583.4 14.38 1.41 23.86 

GMDP01Z7-1 sp 19.31 0.641 0.403 25.0 1.55 3.89 12.37 12.06 40.3 64.8 97.5 148.9 238.0 308.6 391.3 568.7 9.72 1.66 17.89 

GMDP01Z8-1 r (br) 15.34 1.410 0.215 24.6 0.73 2.12 11.50 8.74 33.5 59.0 105.2 173.2 280.5 387.5 531.9 846.1 15.86 1.30 25.30 

GMDP01Z9-3 ir 13.42 1.287 0.080 25.9 1.05 1.92 10.33 7.30 27.1 42.2 59.2 84.9 124.6 158.8 213.1 293.0 7.87 1.19 24.38 

JM08/22 

                    GM22Z1-1 c (ozp) 21.31 0.145 0.623 27.8 4.98 16.33 87.52 42.92 230.9 314.3 444.7 583.3 759.4 985.4 1013.3 1667.5 4.39 2.41 11.76 

GM22Z1-2 c (bc) 19.97 0.110 0.284 40.2 6.69 19.49 90.32 48.48 245.6 343.9 477.5 619.2 807.7 1041.6 1137.0 1789.9 4.63 2.65 15.22 

GM22Z2-1 c (ozp) 22.97 0.063 0.202 5.0 1.51 2.86 19.80 3.19 50.1 44.7 64.2 62.2 60.1 66.1 84.1 94.2 1.68 0.38 3.80 

GM22Z3-1 c (ozp) 19.39 0.193 0.277 7.7 1.27 3.56 19.99 15.92 74.3 131.6 199.9 269.7 362.9 452.0 519.5 840.4 6.99 1.64 6.17 

GM22Z4-1 ir 19.84 0.156 0.419 19.2 1.01 3.09 17.73 9.63 40.3 61.7 87.5 102.6 132.6 164.6 170.1 204.7 4.22 1.26 16.02 

JM08/23 

                    GM23Z1-1 ir 17.80 0.872 0.444 28.6 3.82 10.31 48.06 2.85 151.7 212.6 286.9 308.6 330.6 342.1 364.7 428.3 2.40 0.20 13.83 

GM23Z2-1 ir 19.54 0.138 0.385 27.9 2.42 6.41 44.56 1.66 136.7 218.9 254.2 303.3 315.9 334.3 365.1 410.7 2.67 0.12 16.65 

GM23Z2-2 ir 24.39 0.103 0.573 30.8 3.10 8.75 36.74 5.28 117.5 190.4 284.3 407.7 547.7 696.2 790.7 1063.9 6.73 0.43 16.04 

GM23Z4-1 r (br) 24.32 0.098 0.045 11.0 1.77 7.86 25.21 4.49 60.6 58.1 62.5 66.3 62.4 62.5 46.7 69.2 0.77 0.49 8.15 

GM23Z4-2 r (br) 25.19 0.263 1.430 14.5 2.80 8.88 28.35 14.41 55.5 58.4 57.7 54.3 50.4 50.1 53.7 61.2 0.97 1.57 7.04 

GM23Z5-1 sp 20.55 0.340 0.581 30.9 4.52 13.11 26.78 6.80 102.5 167.9 288.0 460.0 693.2 898.2 908.6 1538.6 8.87 0.60 13.68 

GM23Z5-2 sp 17.94 0.129 0.153 31.1 2.17 7.58 24.43 4.92 78.3 144.6 220.2 362.9 571.1 605.0 844.0 1248.2 10.78 0.49 20.39 

GM23Z6-1 ir 26.69 0.028 0.238 25.9 1.71 7.34 28.61 2.58 95.9 143.8 185.8 224.7 244.5 247.9 259.1 321.9 2.70 0.23 18.54 

GM23Z6-2 ir 22.06 0.218 0.325 31.8 3.46 9.97 56.00 3.34 162.6 258.4 317.3 346.0 339.0 318.7 306.0 314.9 1.88 0.23 16.33 

GM23Z6-3 ir 24.48 0.230 0.395 36.6 3.02 7.98 48.48 6.60 145.6 233.1 353.8 493.6 703.5 871.8 1001.1 1412.0 6.88 0.47 19.80 
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Fig.  7.6 Matsuda plots of zircon rare earth element profiles for: (a) Badcall Point colour-coded by 
sample; (b) Badcall Point colour-coded by cathodoluminescence zoning pattern; (c) Duartmore Point 
colour-coded by sample; (d) Duartmore Point colour-coded by cathodoluminescence zoning pattern; 
(e) Sithean Mor colour-coded by sample; (f) Sithean Mor colour-coded by cathodoluminescence 
zoning pattern; values normalised against chondrite values of Sun and McDonough (1995). 
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Fig.  7.7 Histograms comparing rare earth element ratios of zircons from Badcall Point, Duartmore 
Point and Sithean Mor. 

 
 
 
 
 

 

Fig.  7.8 Histograms comparing rare earth element ratios of zircon domains with different 
cathodoluminescence zoning patterns from Badcall Point, Duartmore Point and Sithean Mor. 
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Fig.  7.9 Histograms comparing rare earth element ratios of zircons from Badcall Point, Duartmore 
Point and Sithean Mor for different categories of cathodoluminescence zoning patterns. 

  

3.5. Zircon Ti 

 Ti contents of zircons were measured along with U-Th-Pb and REEs so that Ti-in-

zircon thermometry (Watson and Harrison, 2005; Watson et al., 2006) could be applied to 

the LGC for the first time to further the understanding of the temperature history of the 

Assynt terrane. Ti contents ranged from 6 to 27ppm (Table 7.3). Zircons from Sithean Mor 

had higher average Ti concentration than Badcall Point and Duartmore Point (Fig. 7.10a; 

Table 7.5) although there was no clear distinction between the two samples from this 

locality (Fig. 7.10b; Table 7.5). Zircons from Duartmore Point and Badcall Point had a similar 

range of Ti concentrations and again there was no clear distinction between samples at 

each locality (Fig. 7.10b; Table 7.5). There was also no clear correlation between CL zoning 

pattern category and Ti content (Figs. 7.11a&b; Table 7.5). 
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Table 7.4 Range, mean and standard deviation on rare earth element ratios of each sample, locality and cathodoluminescence zoning pattern. 1SD denotes 1 standard 
deviation, %SD denotes the standard deviation as a percentage of the mean. Values in parts per million. 

 
Yb/Gd  Eu/Eu*  Ce/Ce* 

 
Range Mean 1SD SD%  Range Mean 1SD SD%  Range Mean 1SD SD% 

JM09/BP02 (n=4) 11.79-13.16 12.66 0.62 4.89  0.95-1.42 1.22 0.21 17.16  21.39-28.19 25.19 3.52 13.98 

JM09/BP01 (n=2) 1.87-17.41 9.64 10.99 113.93  1.10-1.18 1.14 0.05 4.68  16.79-18.97 17.88 1.54 8.60 

JM09/BP06 (n=28) 5.19-322.94 36.81 70.51 191.58  0.46-2.10 1.18 0.43 36.43  2.81-42.99 21.57 9.27 42.97 

JM09/BP04 (n=20) 4.90-15.80 11.17 2.33 20.86  0.59-6.34 1.38 1.19 86.77  9.51-34.75 25.98 5.69 21.92 

JM09/DP03 (n=7) 6.46-13.84 13.24 3.97 29.96  1.36-2.67 1.95 0.54 27.87  6.59-30.34 19.82 8.02 40.47 

JM09/DP01 (n=27) 3.28-20.26 11.02 3.41 30.98  0.94-2.27 1.43 0.33 22.82  14.29-31.92 21.46 4.36 20.30 

JM08/22 (n=5) 1.68-4.63 4.38 1.88 43.01  0.38-2.65 1.67 0.91 54.64  3.80-16.02 10.59 5.43 51.25 

JM08/23 (n=10) 0.77-10.78 4.46 3.55 79.49  0.12-1.57 0.48 0.41 85.85  7.04-20.39 15.05 4.52 30.02 

Badcall Point (all analyses) (n=54) 1.87-322.94 17.57 21.11 120  0.46-6.34 1.23 0.47 38  2.81-42.99 22.65 5.01 22 

Duartmore Point (all analyses) (n=34) 3.28-20.26 12.13 3.69 30  0.94-2.67 1.69 0.43 26  6.59-31.92 20.64 6.19 30 

Sithean Mor (all analyses) (n=15) 0.77-10.78 4.42 2.72 61  0.12-2.65 1.07 0.66 62  3.80-20.39 12.82 4.97 39 

Badcall Point 

    

 

    

 

    Cores (n=14) 4.90-18.91 12.60 3.43 27  0.46-6.34 1.68 1.42 85  9.51-42.99 23.67 9.06 38 

Irregular (n=12) 1.87-322.94 69.22 100.98 146  0.85-1.46 1.17 0.23 19  2.81-26.86 15.82 8.61 54 

Rims (n=17) 5.10-14.50 11.39 2.23 20  0.48-1.62 1.08 0.32 29  19.68-34.75 26.50 4.85 18 

Single Phase (n=11) 8.39-13.16 11.19 1.50 13  0.59-1.50 1.09 0.26 24  21.86-31.64 26.20 2.77 11 

Duartmore Point 

    

 

    

 

    Cores (n=7) 3.28-20.15 11.49 5.44 47  1.22-2.67 1.76 0.52 30  6.49-30.34 21.29 8.10 38 

Irregular (n=1) 7.87 7.87 

  

 1.19 1.19 

  

 24.38 24.38 

  Rims (n=18) 8.50-20.26 12.18 3.15 26  0.79-2.27 1.45 0.34 23  16.46-26.29 21.03 3.21 15 

Single Phase (n=7) 6.46-13.09 10.08 2.32 23  0.94-2.58 1.59 0.54 34  12.81-31.92 20.74 7.11 34 

Sithean Mor 

    

 

    

 

    Cores (n=4) 1.68-6.99 4.42 2.17 49  0.38-2.65 1.77 1.02 58  3.80-15.22 9.24 5.20 56 

Irregular (n=7) 1.88-6.88 3.93 2.09 53  0.12-1.26 0.42 0.39 93  6.17-19.80 16.74 1.92 11 

Rims (n=2) 0.77-0.97 0.87 0.14 16  0.49-1.57 1.03 0.77 75  7.04-8.15 7.59 0.79 10 

Single Phase (n=2) 8.87-10.78 9.82 1.35 14  0.49-0.60 0.54 0.08 15  13.68-20.39 17.04 4.75 28 

Cores (all analyses) (n=25) 1.68-20.15 28.51 11.04 39  0.38-6.34 5.20 2.96 57  3.80-42.99 54.20 22.37 41 

Irregular (all analyses) (n=20) 1.87-322.94 81.02 103.07 127  0.12-1.46 2.78 0.62 22  2.81-26.86 56.95 10.53 18 

Rims (all analyses) (n=38) 0.77-20.26 24.44 5.52 23  0.48-2.27 3.56 1.42 40  7.04-34.75 55.13 8.85 16 

Single Phase (all analyses) (n=20) 6.46-13.16 31.10 5.17 17  0.49-2.58 3.22 0.88 27  12.81-31.92 63.98 14.63 23 
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4. Discussion 

4.1. U-Th-Pb 

 The occurrence of volume diffusion has several implications for determining the 

chronology of the Assynt Terrane. Firstly, volume diffusion of Pb in zircon potentially 

compromises the accuracy of the protolith formation age calculated here. If Pb was able to 

move out of zircons, this could have affected Pb/U ratios in the crystals that yielded the 

oldest core ages from which the protolith formation age was calculated. Pb loss would 

generate artificially young ages so the calculated protolith formation age for the TTG 

gneisses of 2958±7Ma would be a minimum; the true age may be older than this. Volume 

diffusion would also suggest that the protolith formation ages determined by Whitehouse 

and Kemp (2010) and Friend and Kinny (1995) are minimum ages.  

 Second, the depositional age of the metasedimentary rocks at Sithean Mor cannot 

be constrained. When using zircons to constrain the depositional ages of metasediments, 

the youngest core age (interpreted to be detrital) is the maximum depositional age while 

the oldest rim age (interpreted to be metamorphic) is the minimum depositional age. 

However, at Sithean Mor the oldest rim age (2726±28Ma) is older than the youngest core 

age (2506±18Ma) so this approach cannot be applied. This is further evidence of volume 

diffusion of Pb in zircons having occurred.   

 Third, the age of metamorphic events occurring in the Assynt Terrane cannot be 

confidently determined. There is field evidence for at least one granulite-facies 

metamorphism (the Badcallian) and this would be expected to be recorded in the zircon U-

Pb systematics, as well as potentially the amphibolite-facies Inverian event. However, the 

absolute timing of these events has been obscured by volume diffusion. Friend and Kinny 

(1995) concluded that the youngest age in their spread of concordant zircon ages 

represented a metamorphic event which caused major Pb-loss, and they suggested that 

this was the age of the Badcallian metamorphism. Corfu et al. (1994) had previously 
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suggested the Badcallian occurred at ~2710Ma and Whitehouse and Kemp (2010) 

attempted to determine if this was a statistically significant age in their concordant age 

spread but were unable to do so with any confidence. 

 

Table 7.5 Range, mean and standard deviation of zircon Ti from each sample, locality and 
cathodoluminescence zoning pattern category. 1SD denotes 1 standard deviation, %SD denotes the 
standard deviation as a percentage of the mean. Values in parts per million. 

 
Range Mean 1SD SD% 

Samples     

JM09/BP02 (n=4) 15.43-17.75 16.49 1.04 6.29 

JM09/BP01 (n=2) 14.53-16.89 16.59 2.92 17.58 

JM09/BP06 (n=28) 10.52-23.72 15.92 2.55 16.03 

JM09/BP04 (n=20) 8.58-21.06 16.70 2.94 17.60 

JM09/DP03 (n=7) 6.71-19.64 14.09 4.43 31.44 

JM09/DP01 (n=27) 8.32-20.75 15.43 3.05 19.74 

JM08/22 (n=5) 19.39-22.97 20.70 1.46 7.05 

JM08/23 (n=10) 17.80-26.69 22.30 3.18 14.25 

     Badcall Point 

    Cores (n=14) 8.58-19.13 15.59 2.57 16.50 

Irregular (n=12) 10.52-23.72 15.78 3.49 22.13 

Rims (n=17) 11.89-19.42 16.36 2.06 12.62 

Single Phase (n=11) 14.82-21.06 17.57 2.07 11.77 

Duartmore Point 

    Cores (n=7) 6.71-19.64 13.59 4.00 29.40 

Irregular (n=1) 13.42 

   Rims (n=18) 8.32-20.28 15.28 2.84 18.57 

Single Phase (n=7) 9.95-20.75 16.63 3.93 23.64 

Sithean Mor 

    Cores (n=4) 19.39-2.97 20.91 1.59 7.61 

Irregular (n=7) 17.80-26.69 22.12 3.22 14.56 

Rims (n=2) 24.32-25.19 24.76 0.61 2.47 

Single Phase (n=2) 17.94-20.55 19.24 1.84 9.56 

     Localities 

    Badcall Point (all analyses) (n=54) 8.58-23.72 16.43 2.36 14.38 

Duartmore Point (all analyses) (n=34) 6.71-20.75 14.76 3.74 25.32 

Sithean Mor (all analyses) (n=15) 17.80-26.69 21.50 2.32 10.78 

     CL Zoning Pattern Categories 

    Cores (n=25) 6.71-22.97 15.88 3.70 23.30 

Irregular (n=20) 10.52-26.69 17.88 4.56 25.48 

Rims (n=38) 8.32-25.19 16.26 3.19 19.61 

Single Phase (n=20) 9.95-21.06 17.41 2.81 16.15 

 
 



288 
 

 

Fig.  7.10 (a) Histogram of Ti concentration (ppm) in zircons from each locality. (b) Histogram of Ti 
concentration in zircons from each sample. 
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Fig.  7.11 (a) Histogram comparing Ti concentration (ppm) in zircons with different 
cathodoluminescence zoning patterns from each locality. (b) Histogram of Ti concentration in zircons 
for each cathodoluminescence zoning patterns from each locality. 
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 The youngest age of the spread caused by volume diffusion in this study represents 

the time at which volume diffusion of Pb in zircon ceased. The youngest age in this 

population (2384±46Ma) is from a zircon rim from sample JM09/BP06 but is 46Myr younger 

than the next youngest age and is reversely discordant by 2%. Adopting the approach used 

above to attempt to determine a protolith formation age but rejecting the oldest ages until 

a MSWD threshold is reached, the youngest ten ages (those <2500Ma) yields a mean age of 

2479±12Ma (MSWD = 3.1, probability 0.001). As more ages are excluded, the MSWD only 

increases but by rejecting the 2384±46Ma and taking the next nine oldest ages, the MSWD 

drops to 1.3. Only by rejecting the next youngest age (2430±44Ma) as well, however, does 

the MSWD drop below 1 – the next eight oldest ages (ranging from 2459±46Ma to 

2494±28Ma) yield a mean age of 2482±6Ma (MSWD = 0.69, probability = 0.68). This age is 

interpreted to reflect the cessation of volume diffusion of Pb in zircons. 

 Volume diffusion would not have ceased at peak metamorphic conditions. A post-

peak drop in temperature would cause volume diffusion of Pb in zircon to cease (Cherniak 

and Watson, 2001; Cherniak and Watson, 2003). This cessation appears to have taken place 

at ~2482Ma indicating the peak metamorphic conditions of a major tectonothermal event 

may have shortly predated this. Which tectonothermal event was responsible for the 

volume diffusion? Zirkler et al. (2012) calculated PT conditions for the Inverian 

tectonothermal event (characterised by an amphibolite-facies assemblage in the TTG 

gneisses) of 5-6.5kbar and 520-550°C. Cherniak and Watson (2003) showed that volume of 

diffusion of Pb in zircon required temperatures of at least ~700°C and over a billion years 

would be required at that temperature for it to occur. This rules out volume diffusion 

during the Inverian event. Johnson and White (2011) calculated peak temperatures for the 

Badcallian tectonothermal event (characterised by a granulite-facies assemblage in the TTG 

gneisses) of 875-975°C; a temperature of 875°C for 500Myr would allow significant volume 

diffusion, falling to only 3Myr at a temperature of 975°C. Therefore, the Badcallian clearly 
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reached temperatures which made volume diffusion of Pb in zircon possible. It remains 

unclear whether the Badcallian was a short ‘event’ or a longer high temperature episode, 

without improved temperature constraints. As volume diffusion of Pb in zircon ceased at 

~2482Ma, the Badcallian tectonothermal ‘event’ would have occurred prior to this.  Friend 

and Kinny (1995) and Whitehouse and Kemp (2010) suggested it occurred at ~2500Ma, an 

age which would fit with post-peak cessation of volume diffusion at ~2482Ma. The 

occurrence of high-grade metamorphism at ~2700Ma remains uncertain. 

 

4.2. REEs 

 The interpretation that there was volume diffusion of Pb in zircon raises the 

question of whether the REEs were also able to diffuse around or out of the zircons. At the 

conditions required for volume diffusion of Pb in the Assynt Terrane (3Myr at 975°C to 

500Myr at 875°C), there would not be significant diffusion of REEs, perhaps only over a few 

microns (Cherniak et al., 1997). This is borne out by sharp and fine-scale CL zoning patterns, 

for example the oscillatory zoning in zircon GMBP04Z6 or the sharp boundary between the 

CL-bright rim and the core in zircon BP06ChZ1 (Fig. 7.3). This indicates that the REE profiles 

of the zircons in this population are representative of the zircon petrogenesis. 

 The similarity in REE profiles and REE abundances between the majority of core and 

rim analyses at Badcall Point and Duartmore Point indicates that zircon REEs did not 

interact with REEs in other metamorphic minerals. The presence of REE-sequestering 

metamorphic minerals such as garnet causes deviation in the pattern of metamorphic 

zircon rims from that in zircon cores (e.g. Kelly and Harley, 2005a). The general absence of 

any such deviation, for example a flat chondrite-normalised heavy REE profile if the rim 

formed in the presence of metamorphic garnet, is best explained by little or no interaction 

between REEs in zircon and any other minerals in the majority of cases. This is commonly 

observed in solid-state recrystallization (Hoskin and Black, 2000).  
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 The flat heavy REE profile in one of the two analyses from zircons from sample 

JM09/BP01 (Inverian TTG gneiss, Badcall Point) suggests that this irregularly-zoned zircon 

may have formed its current REE profile in the presence of garnet. Garnet has not been 

documented in the TTG gneisses of the Assynt Terrane, however, and is not stable in 

tonalites (the dominant rock type in the Assynt Terrane) below 15kbar (Knudsen and 

Andersen, 1999); such pressures have not been documented in the Assynt Terrane. The 

cause of this and the few other low Yb/Gd values from zircons from Badcall Point and 

Duartmore Point remains unclear. Similarly, the relative depletion in Pr-Dy of a single 

irregularly-zoned zircon from sample JM09/BP06 is also unclear. Amphibole sequesters 

middle REEs (Davidson et al., 2007) such as those depleted in this zircon, but amphibole is 

abundant in the TTG gneisses in the Inverian and Laxfordian assemblages and does not 

seem to have had a similar effect on the REE pattern of any of the other 36 zircons analysed 

from Badcall Point and Duartmore Point. 

 The majority of zircons from the TTG gneisses from Badcall Point and Duartmore 

Point have REE profiles typical of magmatic growth. Zircons from the metasedimentary 

rocks from Sithean Mor, however, do not. The prevalence of relatively low Yb/Gd ratios and 

relatively flat chondrite-normalised heavy REE profiles suggests that REE abundance in 

these zircons has been affected by garnet. Garnet is present in sample JM08/22, and 

although it was not found in sample JM08/23, it is widely distributed at this locality. The 

link with garnet has the potential to allow zircon CL zones to be linked to the 

tectonothermal evolution of the Assynt Terrane (Rubatto, 2002; Whitehouse and Platt, 

2003). Phase equilibria modelling by Zirkler et al. (2012) showed that garnet in similar 

metasedimentary rocks from elsewhere in the Assynt Terrane was part of the Badcallian 

assemblage. This suggests that the zircon CL zones from Sithean Mor with relatively flat 

heavy REE profiles re-equilibrated in the presence of garnet during the Badcallian 

tectonothermal event. Unfortunately there is not a clear correlation between Yb/Gd ratio 
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and CL zoning pattern as rims, irregularly-zoned crystals and a core analysis all have Yb/Gd 

ratio of <3. Perhaps a larger number of analyses from this locality (n = 15 in this study) 

would show a more statistically significant relationship between CL zoning pattern and 

Yb/Gd. It is also possible, however, that these detrital zircons may have acquired their low 

Yb/Gd ratios in the source rock and were not significantly reset in the Badcallian but 

without knowing the composition of the source rock, this is impossible to determine. Kelly 

and Harley (2005a) used REE profiles to link ages from zircon domains to whole rock 

assemblages to determine which zircon ages represented magmatic and metamorphic 

episodes in the Napier Complex in Antarctica but volume diffusion of Pb in zircon in this 

study means that this approach is not possible due to the heterogeneous resetting of zircon 

ages. 

 The zircons from Duartmore Point generally have relatively high Eu/Eu* values. Eu 

can occur as a divalent or trivalent cation and this is controlled by the oxygen fugacity of 

the parent magma (e.g. Schreiber et al., 1980; Hinton and Upton, 1991; Hoskin and 

Schaltegger, 2003). In reducing conditions, there will be more divalent Eu which is relatively 

incompatible with the tetravalent Zr site and hence there will be a negative Eu anomaly. 

More oxidising conditions mean more trivalent Eu, which is more compatible in zircon, so 

that the Eu anomaly will be of a lesser magnitude. The lower magnitude Eu anomaly (i.e. 

Eu/Eu* is higher) suggesting that the protolith magma at Duartmore Point may have been 

more oxidised than at Badcall Point. However, a more oxidising magma would result in a 

greater magnitude of positive Ce anomaly but the Ce/Ce* values for Duartmore Point are 

not markedly higher than those for Badcall Point (Fig. 7.7). This indicates that the oxygen 

fugacity of the magma alone is not responsible for the high Eu/Eu*. Furthermore, a positive 

Ce anomaly indicates oxidising magma conditions while a negative Eu anomaly indicates 

reducing magma conditions. This paradox may be explained by plagioclase fractionation 

which depletes divalent Eu from the magma (Snyder et al., 1993; Hoskin, 1998; Hoskin et 
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al., 2000). Plagioclase is ubiquitous in the TTG gneisses of the Assynt Terrane and wider 

LGC, both in current metamorphic assemblages and in the protolith magmatic assemblages 

calculated by CIPW norm (see Chapter 4b). The TTG gneiss samples from Duartmore Point 

have slightly lower modal percentages of plagioclase than the Badcall Point samples. If the 

protolith magmas at Duartmore Point were less evolved than those at Badcall Point at the 

time of zircon crystallisation, less plagioclase would have crystallised and the Eu anomaly in 

the magma, and the zircon, would be less pronounced.  

 

4.3. Ti-in-Zircon Thermometry 

 Ti content in zircon is proportional to the crystallisation temperature – this forms 

the basis of the Ti-in-zircon geothermometer derived by Watson et al. (2006). The 

thermometer has so far been used mainly to calculate crystallisation temperatures for 

magmatic zircon in igneous rocks but Baldwin et al. (2007) also used it to calculate the 

temperature of ultra-high temperature metamorphic zircon from Brazil. Ti contents of 

zircons were measured along with U-Th-Pb and REEs in this study in this study to 

investigate zircon crystallisation temperatures in the Assynt Terrane of the LGC.  

 The accuracy of the temperatures calculated with the Ti-in-zircon thermometer is 

controlled by aTiO2 – the presence of rutile in the rock indicates that aTiO2 = 1 and Ti content 

in zircon was buffered. In this situation, the calculated temperatures will be accurate. If 

there is no rutile present during zircon crystallisation, the system is not buffered and the 

calculated temperature will be a minimum. However, Ferry and Watson (2007) calibrated 

the thermometer equation to take into account sub-unity aTiO2; the lowest temperatures 

are calculated if zircon is assumed to be in equilibrium with rutile (aTiO2 = 1) while 

temperature increases as aTiO2 decreases. 

 Accurate temperatures can therefore be calculated for zircons in this study if aTiO2 is 

known but the host rocks are polymetamorphic with field evidence for three 
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tectonothermal events after protolith formation. Which of these four assemblages was 

coeval with the Ti-in-zircon thermometer temperature? At aTiO2 = 1, the lowest calculated 

temperature is 710°C but the majority are ~780-800°C (Table 7.6). This is well above the 

best available peak pressure-temperature estimates for the Inverian (520-550°C, 5-6.5kbar 

(Zirkler et al., 2012)) and Laxfordian (510-660°C, 5-8kbar (Droop et al., 1999)) 

tectonothermal events. This leaves the Badcallian tectonothermal event and the magmatic 

protolith formation as temperatures that could be recorded by the Ti-in-zircon 

thermometer.  

 Different rocks may have different aTiO2 and zircons from the metasedimentary 

rocks from Sithean Mor and the TTG gneisses from Badcall Point and Duartmore Point are 

dealt with separately. For the TTG gneisses, a sample of typical pristine Badcallian granulite-

facies gneiss with granoblastic texture and an opx+cpx+plag+qtz assemblage has rutile in its 

assemblage indicating that aTiO2 was 1 in the Badcallian. At aTiO2 = 1, the maximum 

calculated temperature was 834±34°C from an irregularly-zoned zircon from sample 

JM09/BP06 (Table 7.6). This is below the most recent reliable peak Badcallian temperature 

estimates of Johnson and White (2011) of 875-975°C and below previously calculated 

Badcallian peaks (e.g. O' Hara and Yarwood, 1978; Savage and Sills, 1980; Barnicoat, 1987; 

Sills and Rollinson, 1987). Cherniak and Watson (2007) showed that Ti does not diffuse in 

zircon at temperatures below 1000°C.  

 Diffusion is controlled by temperature and time and Cherniak and Watson (2007) 

showed that to diffuse a distance of 50µm (an approximate average diameter of a rim in 

zircons in this study) over a period of 10Myr, a temperature of ~1200°C would need to be 

sustained for this length of time. This is much hotter than the peak Badcallian temperatures 

of Johnson and White (2011) and so magmatic zircon recrystallizing at Badcallian peak 

temperatures appears not to have had its Ti signature reset. Any anatectic zircon grown in 

the Badcallian (for which there is no clear CL evidence, Fig. 7.3) would be expected to 
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record temperatures within the peak Badcallian temperature range calculated by Johnson 

and White (2011) but this is not the case.  

Table 7.6 Ti-in-zircon crystallisation temperatures calculated using the thermometer of Watson et al. 
(2006) for TiO2 activities of 0.5 and 1 reflecting the presence or absence of rutile as a buffer to the 
thermometer system. CL zoning pattern identifiers as Table 7.2. 

Sample/spot 
CL Zoning 
Pattern 

Ti (ppm) 
T (°C) at 

aTiO2 = 0.5 
2σ 

T (°C) at 
aTiO2 = 1 

2σ 

JM09/BP02 
      

GMBP02Z1-1 sp 863.99 30.73 29 788 28 

GMBP02Z1-2 sp 867.54 31.11 29 791 28 

GMBP02Z2-1 ir 880.64 32.54 31 803 30 

GMBP02Z2-2 ir 874.66 31.88 30 798 29 

JM09/BP01 

      BP01Z1-1 ir 886.65 33.21 31 808 30 

GMBP01Z2-1 ir 857.01 29.99 28 782 27 

JM09/BP06 

      BP06ChZ1-1 r (br) 876.37 32.07 30 799 29 

BP06ChZ1-2 c (ozp) 857.86 30.08 28 783 27 

BP06ChZ2-1 c (ozp) 867.09 31.06 29 791 28 

BP06ChZ2-2 c (ozp) 857.04 29.99 28 782 27 

BP06ChZ2-3 c (ozp) 883.42 32.85 31 805 30 

BP06ChZ2-6 r (dr) 891.56 33.77 32 812 31 

BP06ChZ2-7 ir (emb) 836.72 27.91 26 765 26 

BP06ChZ2-9 r (dr) 879.46 32.41 30 802 30 

BP06Z3-1 ir 840.88 28.33 27 768 26 

BP06Z3-2 ir 874.31 31.84 30 797 29 

BP06Z3-3 ir 820.89 26.37 25 751 24 

BP06Z3-4 ir 854.58 29.73 28 780 27 

BP06Z3-5 ir 859.21 30.22 28 784 28 

GMBP06Z1-1 r (br) 886.44 33.19 31 808 30 

GMBP06Z1-2 r (br) 881.44 32.63 31 804 30 

GMBP06Z1-3 c (bc) 865.72 30.91 29 790 28 

GMBP06Z2-1 ir (emb) 873.46 31.75 30 797 29 

GMBP06Z2-2 c (ozp) 887.28 33.28 31 809 30 

GMBP06Z3-1 r (br) 863.67 30.69 29 788 28 

GMBP06Z3-2 r (br) 859.44 30.24 28 784 28 

GMBP06Z3-3 c (dc) 871.01 31.48 30 794 29 

GMBP06Z4-1 r 860.70 30.38 29 785 28 

GMBP06Z4-2 c (bc) 866.63 31.01 29 791 28 

GMBP06Z4-3 c (bc) 850.91 29.35 28 777 27 

GMBP06Z4-4 r 856.61 29.95 28 782 27 

GMBP06Z5-1 r (br) 866.97 31.05 29 791 28 

GMBP06Z5-2 c (dc) 857.56 30.05 28 783 27 

GMBP06Z6-1 ir 916.61 36.69 34 834 33 

(continued) 
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Table 7.6 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

Ti (ppm) 
T (°C) at 

aTiO2 = 0.5 
2σ 

T (°C) at 
aTiO2 = 1 

2σ 

JM09/BP04 

      GMBP04Z1-1 r (br) 877.29 32.17 30 800 29 

GMBP04Z1-2 r (br) 884.33 32.95 31 806 30 

GMBP04Z2-1 r (br) 875.10 31.93 30 798 29 

GMBP04Z2-2 r (br) 834.30 27.67 26 762 25 

GMBP04Z3-1 c (bc) 869.24 31.29 29 793 29 

GMBP04Z3-2 c (bc) 870.08 31.38 29 794 29 

GMBP04Z4-1 r (br) 851.14 29.38 28 777 27 

GMBP04Z4-2 r (br) 859.23 30.22 28 784 28 

GMBP04Z4-3 c (dc) 799.32 24.38 23 732 22 

GMBP04Z5-1 sp 876.16 32.05 30 799 29 

GMBP04Z5-2 sp 877.57 32.20 30 800 29 

GMBP04Z6-1 r (br) 888.28 33.40 31 809 30 

GMBP04Z6-2 c (ozp) 889.70 33.56 31 811 31 

GMBP04Z7-1 sp 901.62 34.92 33 821 32 

GMBP04Z7-2 sp 886.21 33.16 31 808 30 

GMBP04Z7-3 sp 899.67 34.70 33 819 32 

GMBP04Z8-2 sp 889.65 33.55 31 811 31 

GMBP04Z8-3 sp 872.72 31.67 30 796 29 

GMBP04Z9-1 sp 872.62 31.66 30 796 29 

GMBP04Z9-2 sp 859.33 30.23 28 784 28 

JM09/DP03 

      GMDP03Z1-1 r (br) 845.05 28.75 27 772 26 

GMDP03Z1-2 r (br) 841.33 28.37 27 769 26 

GMDP03Z1-3 c (ozp) 774.35 22.24 21 710 20 

GMDP03Z1-4 r (br) 853.28 29.60 28 779 27 

GMDP03Z1-5 r (br) 844.61 28.71 27 771 26 

GMDP03Z2-1 c (ozp) 892.92 33.92 32 813 31 

DP03Z2-1 sp 891.51 33.76 32 812 31 

JM09/DP01 

      DP01Z4-1 sp 880.85 32.56 31 803 30 

DP01Z4-2 sp 871.08 31.49 30 794 29 

DP01Z6-1 r (br) 876.44 32.08 30 799 29 

DP01Z6-2 r (br) 867.53 31.11 29 791 28 

DP01Z6-3 c (dc) 861.41 30.45 29 786 28 

DP01Z6-4 r (br) 880.86 32.56 31 803 30 

DP01Z6-5 r (br) 886.25 33.17 31 808 30 

DP01Z10-1 r (br) 896.90 34.38 32 817 31 

DP01Z10-2 r (br) 894.01 34.05 32 814 31 

DP01Z10-3 r (br) 866.42 30.99 29 790 28 

GMDP01Z1-1 r (br) 847.08 28.96 27 774 26 

GMDP01Z1-2 r (br) 796.04 24.09 23 729 22 

GMDP01Z2-1 r (br) 860.28 30.33 28 785 28 

(continued) 
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Table 7.6 (cont.) 

Sample/spot 
CL Zoning 
Pattern 

Ti (ppm) 
T (°C) at 

aTiO2 = 0.5 
2σ 

T (°C) at 
aTiO2 = 1 

2σ 

GMDP01Z2-2 c (dc) 859.73 30.27 28 785 28 

GMDP01Z2-4 c (dc) 853.93 29.67 28 780 27 

GMDP01Z2-5 r (br) 861.85 30.50 29 786 28 

GMDP01Z3-1 sp 899.75 34.71 33 819 32 

GMDP01Z4-1 sp 814.95 25.81 24 745 24 

GMDP01Z4-2 sp 842.38 28.48 27 769 26 

GMDP01Z5-1 c (dc) 823.88 26.65 25 753 24 

GMDP01Z5-2 r (br) 876.85 32.12 30 800 29 

GMDP01Z6-1 r (br) 850.30 29.29 28 776 27 

GMDP01Z6-2 r (br) 854.32 29.71 28 780 27 

GMDP01Z6-3 c (dc) 851.70 29.43 28 778 27 

GMDP01Z7-1 sp 890.88 33.69 32 812 31 

GMDP01Z8-1 r (br) 863.32 30.66 29 788 28 

GMDP01Z9-3 ir 847.95 29.05 27 774 27 

JM08/22 

      GM22Z1-1 c (ozp) 903.08 35.09 33 822 32 

GM22Z1-2 c (bc) 895.00 34.16 32 815 31 

GM22Z2-1 c (ozp) 912.53 36.21 34 830 33 

GM22Z3-1 c (ozp) 891.39 33.75 32 812 31 

GM22Z4-1 ir 894.17 34.06 32 815 31 

JM08/23 

      GM23Z1-1 ir 880.94 32.57 31 803 30 

GM23Z2-1 ir 892.34 33.86 32 813 31 

GM23Z2-2 ir 920.22 37.13 35 837 34 

GM23Z4-1 r (br) 919.86 37.08 35 837 34 

GM23Z4-2 r (br) 924.37 37.63 35 841 34 

GM23Z5-1 sp 898.52 34.56 32 818 31 

GM23Z5-2 sp 881.94 32.68 31 804 30 

GM23Z6-1 ir 931.95 38.56 36 847 35 

GM23Z6-2 ir 907.43 35.60 33 826 32 

GM23Z6-3 ir 920.71 37.18 35 838 34 

 

 The lack of peak Badcallian temperatures recorded by Ti-in-zircon thermometry and 

the unlikelihood of Ti resetting in recrystallizing zircon suggests that the zircons from TTG 

gneiss samples did not record Badcallian metamorphic temperatures in their Ti systematics 

but instead retain the crystallisation temperature of the magmatic protolith. A CIPW 

normative mineralogy calculated from a dry pristine Badcallian granulite-facies TTG gneiss 

indicates that rutile was not present in the protolith magmatic rock. In addition to this, 
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modelling of the fractionation of TTG magmas indicates that any rutile would be left in the 

mafic restite (e.g. Xiong et al., 2005; Xiong, 2006). The titanium-bearing mineral ilmenite is 

present in the CIPW normative assemblage and the majority of igneous rocks have an aTiO2 

of ≥0.5 (Watson and Harrison, 2005) but the protolith aTiO2 cannot be well-constrained. 

Therefore, temperatures calculated at aTiO2 = 1 will be minimum temperatures. Maximum 

temperatures would be calculated at aTiO2 = 0.5 and the accurate temperature will be 

somewhere in between the two. Figure 12 shows the Ti-in-zircon thermometer 

temperatures at aTiO2 = 1 and 0.5 for each zircon analysis. The upper bar in each pair is the 

maximum temperature (aTiO2 = 0.5) and the lower bar is the minimum (aTiO2 = 1); the bars 

include 2σ errors on the temperature calculations.  

 

Fig.  7.12 Plot showing temperatures with 2σ errors for zircon analyses from each sample (colour-
coded by cathodoluminescence zoning pattern) at TiO2 activities of both 0.5 and 1 (reflecting the 
absence or presence of rutile, respectively); the upper bar in each vertical pair denotes the 
temperature at aTiO2 = 0.5, the lower one aTiO2 = 1. 
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 Over the 6 TTG samples, minimum temperatures ranged from 710°C to 834°C with 

an average minimum temperature of 790°C (Table 7.7). Maximum temperatures ranged 

from 774°C to 917°C with an average maximum temperature of 865°C (Table 7.7). Fu et al. 

(2008) calculated crystallisation temperatures of <800-850°C for a wide range of igneous 

rocks and the crystallisation temperatures presented here are in broad agreement with 

this. The zircons record a range of temperatures of >100° at both aTiO2 values although the 

majority of analyses fall in a 60° window (760-820°C at aTiO2 = 1 and 840-900°C at aTiO2 = 0.5) 

(Fig. 7.13). Watson et al. (2006) found a wide range of temperatures recorded by zircon in 

their Adirondack migmatite sample and suggested this may reflect a mix of inherited and 

magmatic temperatures. However, the average 2σ error on the temperatures calculated in 

this study is ~±30° and so the 60° range in temperatures is not believed to reflect a mixture 

of protolith and metamorphic temperatures but rather uncertainty in the calibration and 

analytical error (Watson et al., 2006). 

 Zircons from the metasedimentary rocks from Sithean Mor record higher Ti-in-

zircon temperatures than from the TTG gneisses from Badcall Point and Duartmore Point. 

At aTiO2 = 1, the average temperature is 823°C compared to 790°C in the TTG gneisses and 

the minimum recorded temperature from Sithean Mor of 803±30°C is much higher than the 

lowest from the TTG gneisses (710±20°C) (Table 7.7). The garnet in the metasediments is 

interpreted to be Badcallian (see section 4.2 of this chapter) so the rocks as a whole were 

involved in the Badcallian metamorphism. It is therefore possible that the zircons recorded 

this metamorphism in their Ti systematics. However, only one of the nine zircons analysed 

from the metasedimentary samples has a convincingly metamorphic CL zoning pattern. 

Three have fine oscillatory zoning, suggesting they grew from a magma. These are 

interpreted to be detrital zircons that preserve their original igneous zoning. Another four 

of the studied zircons have irregular CL zoning which is difficult to interpret. The 

metasediment samples have been retrogressed from their peak Badcallian assemblage and 
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it is not clear if the rutile that is present in one of the samples would have been in 

equilibrium with zircon during the Badcallian metamorphism. Ghent and Stout (1984) found 

that aTiO2 in metapelites is normally at or close to 1 but this would mean that calculated 

zircon temperatures would be generally lower than the peak Badcallian conditions 

calculated by Johnson and White (2011). On the whole, given that the zircons in the TTG 

gneisses are interpreted not to have recorded the Badcallian granulite-facies 

metamorphism in their Ti systematics, there is no reason to believe that the zircons in the 

metasediments would have done so either.   

 

Table 7.7 Range, mean and standard deviation of Ti-in-zircon thermometer temperatures (Watson et 
al., 2006) from each sample at TiO2 activities of both 0.5 and 1 (reflecting the absence or presence of 
rutile, respectively). 1SD denotes 1 standard deviation; values in °C. 

Sample Range Mean 1SD Average error (2σ) 

At aTiO2 = 0.8 

    JM09/BP02 (n=4) 864-881 872 7 32 

JM09/BP01 (n=2) 857-887 872 21 32 

JM09/BP06 (n=28) 821-917 867 19 31 

JM09/BP04 (n=20) 800-902 872 23 32 

JM09/DP03 (n=7) 774-893 849 40 29 

JM09/DP01 (n=27) 796-900 862 24 31 

All TTG Samples 774-917 866   

JM08/22 (n=5) 894-913 899 9 35 

JM08/23 (n=10) 881-924 908 18 36 

All Metasediments 881-924 904   

At aTiO2 = 1 

    JM09/BP02 (n=4) 788-803 795 6 29 

JM09/BP01 (n=2) 782-808 795 18 29 

JM09/BP06 (n=28) 751-834 791 16 28 

JM09/BP04 (n=20) 732-821 795 20 29 

JM09/DP03 (n=7) 710-812 775 35 27 

JM09/DP01 (n=27) 753-819 787 21 28 

All TTG Samples 710-834 790   

JM08/22 (n=5) 812-830 819 7 32 

JM08/23 (n=10) 803-847 826 16 32 

All Metasediments 803-847 823   
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Fig.  7.13 Probability density histograms of Ti-in-zircon thermometer (Watson et al., 2006) 
temperatures at aTiO2 = 1 (a) and aTiO2 = 0.5 (b). 
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 The protolith of the zircons in the metasediments at Sithean Mor is unknown and 

so the Ti-in-zircon thermometer offers the opportunity to fingerprint the crystallisation 

temperature of these rocks. Similar to the attempts of Watson and Harrison (2005) to 

determine the crystallisation temperature of the Jack Hills zircons, the lack of any constraint 

on aTiO2 means that an aTiO2 value of 1 is used and the calculated temperatures are minima. 

This results in a range of 803°C to 847°C with an average of 823°C (n=15). Assuming the 

protolith was an igneous rock, the crystallisation temperatures are relatively high, 

suggesting it may have been relatively mafic. This is just speculation and a constraint on 

aTiO2, perhaps through analysis of mineral inclusions in zircons (as used by Watson and 

Harrison (2005) to aid their interpretation of the crystallisation temperature of the Jack 

Hills zircons), is required to improve the accuracy of the Ti-in-zircon thermometry in this 

case. 

 

5. Conclusions 

 Zircons from a range of TTG gneisses and metasediments from the Assynt Terrane, 

a significant part of the Precambrian Lewisian Gneiss Complex (LGC) of Northwest Scotland, 

have been analysed for U-Th-Pb, REEs and Ti. This contribution has presented the first 

application of Ti-in-zircon thermometry (Watson et al., 2006) to the LGC and the first 

analysis of zircon REEs on the mainland LGC. Analysis of these trace elements and isotopes 

in the context of field and petrographic characterisation and cathodoluminescence imaging 

of internal chemical zoning has raised the following key points about the history of the 

Assynt Terrane: 

 The oldest three cores yield a mean age of 2958±7Ma (MSWD = 1.00, probability = 

0.37), a possible minimum magmatic protolith crystallisation age and close to that 

derived by Friend and Kinny (1995) for the formation of the protolith to the Assynt 

Terrane.  
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 A period of volume diffusion of Pb in zircon is interpreted to have ended at 

~2482Ma with the peak of the Badcallian granulite-facies metamorphism shortly 

before this. The length of the Badcallian metamorphism (calculated to be anything 

from 3Myr to 500Myr based on diffusion rates) remains unclear without further 

temperature constraints. 

 A general lack of variation between cores and rims suggests that zircon REEs may 

have been a closed system in many cases. Occasional zircon analyses from TTG 

gneisses deviate from the typical zircon REE profile which may have been caused by 

equilibration with other phases such as amphibole but this remains unclear. 

 Zircons in the metasediments have relatively flat chondrite-normalised heavy REE 

profiles (low Yb/Gd ratios) which suggest they equilibrated with Badcallian 

metamorphic garnet. Volume diffusion of Pb in the zircons, however, means that a 

definitive age for the Badcallian cannot be determined from these zircons.  

 Ti-in-zircon thermometry (Watson et al., 2006) records crystallisation temperatures 

of ~760-820°C for zircons in the magmatic protolith to the TTG gneisses, although 

this may be higher as the activity of TiO2 is unconstrained. Zircons in the 

metasediments record generally higher minimum temperatures, with an average of 

823°C compared to 790°C in the TTG gneisses. The zircons in the metasediments 

are interpreted to be detrital and the calculated temperatures are interpreted to 

record zircon crystallisation in a currently unknown protolith. 
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8. Synthesis and Future Work 

 In this chapter, the conclusions from the previous three chapters are summarised 

and related to the aims of the thesis. The overall aim in this PhD was to undertake a 

detailed and systematic characterisation of the response of zircon to overprinting. Under 

this, there are both process- and regionally-motivated objectives: 

 a generic understanding of how radiometric ages and other geochemical systems in 

zircon are affected by multiple and varying intensities of metamorphism and 

deformation i.e. process-motivated 

 a better understanding of the formation and evolution of the case study rocks, the 

Lewisian Gneiss Complex, through geological mapping, petrography, microstructure 

and element/isotope zircon measurements i.e. regionally-motivated 

In order to try and understand the effects of overprinting on zircon (the process-motivated 

aim), the research in this project evolved to look at the effects of deformation at the grain-

scales on zircon and the effects of aspects of metamorphic history on zircon. Initially, it was 

planned to investigate the effects of macro-scale deformation on zircon by comparing 

zircons from inside and outside shear zones and linking their isotope and trace element 

systematics to the evolution of the host samples. However, as discussed in chapter 4c, the 

heterogeneity of the LGC rocks and the samples themselves meant that any understanding 

of zircon chemistry in the context of the whole rock could not be replicated from one 

sample to the next.  

 To investigate the effects of micro-scale deformation on zircon, the frequency of 

lattice distortion in a zircon population and its effects on zircon geochemistry was 

examined. In terms of the effects of metamorphism, evidence was found to suggest that 

there had been volume diffusion of Pb in some zircons which gave some constraint on the 

metamorphic history of the rocks. In order to gain a better understanding of the Lewisian 

Gneiss Complex (the regionally-motivated aim), zircon U-Th-Pb, REEs and Ti were analysed 
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to investigate zircon crystallisation temperatures, links with other minerals and the 

absolute chronology of the Assynt Terrane of the LGC. The outcomes of the research into 

these points are outlined here. 

The Effects of Deformation on Zircon 

 The effects of deformation at the micro-scale were considered in Chapter 5. Five of 

ninety-nine zircons analysed in a population of zircons from the LGC were found to have 

distorted lattices, a small but significant proportion, which suggests that lattice distortion of 

zircon may be more widespread than generally realised and contests the commonly held 

assumption that zircon is mechanically robust. Weighted Burgers vectors (WBV) analysis 

(Wheeler et al., 2009) suggests that three of the five distorted zircons have undergone 

post-crystallisation plastic deformation to distort their crystal lattices; the other two have 

lattice distortion patterns not easily explained by plastic deformation and are instead 

suggested to have grown with distorted lattices. 

 There is heterogeneity in chemical response to lattice distortion within grains, 

within samples and between localities. Lattice distortion was found to have caused both 

loss and gain of Pb and Ti while chondrite-normalised REE profiles varied between and 

within distorted crystals. Discordant ages from two distorted zircons define a discordia 

lower intercept within error of the age of the lower-amphibolite-facies Laxfordian 

tectonothermal event, previously dated by U-Pb titanite methods (Corfu et al., 1994; Kinny 

and Friend, 1997). Undistorted zircons do not record Laxfordian ages. This suggests that 

lattice distortion allows Pb diffusion at lower temperatures than in undistorted zircon. 

Overall, these findings illustrate the significant and heterogeneous effects of crystal 

lattice distortion on trace elements and isotopes in zircon. It highlights the importance of 

conducting EBSD analysis prior to ion microprobe analysis to determine if any zircons in the 

target population have distorted lattices. Zircons with distorted lattices may record lower 

temperature tectonothermal events that undistorted zircons do not.  
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Further Study of the Effects of Deformation on Zircon 

 Extending the study of the effects of micro-scale deformation on zircon in other 

basement complexes and other host rock lithologies would help to prove whether the 

findings noted here are widely applicable or if there is just too much heterogeneity to 

develop any model of the effects of deformation on zircon.  

 Hf isotope petrogenetic tracing is a widely used technique and a major zircon 

isotope system not analysed in this study. Although the Hf isotope system is regarded as 

robust (Kinny et al., 1991), systematic investigation into the effects of lattice distortion of 

Hf in zircon could be illuminating. 

 One thing this study has revealed is that some zircons had crystal lattice distortion 

but others did not. In one sample, a plastically deformed zircon was located approximately 

two millimetres from an entirely undeformed one. Why did some zircons plastically deform 

while others didn’t? The answer may well lie in the surrounding minerals.  Barrie et al. 

(2009) and Boyle et al. (1998) showed that impingement on pyrite of another pyrite, rather 

than a different softer sulphide phase gave rise to greater plastic deformation. Perhaps a 

similar scenario explains why some zircons have distorted lattices and other do not. Further 

petrographic and EBSD analysis could potentially confirm this. 

 The necessity of analysing zircons with EBSD prior to geochemical and 

geochronological analysis is clear. The technique could therefore be applied to other 

mineral chronometers such as monazite, titanite, rutile, baddeleyite, etc to determine if 

trace element mobility and isotope systematics are affected by lattice distortion. As well as 

mineral chronometers, other geochemical applications could benefit from prior EBSD 

analysis. EBSD could test for lattice distortion that could compromise thermobarometric 

phases such as garnet, rutile, titanite, pyroxenes, etc. 

The Weighted Burgers Vector (WBV) (Wheeler et al., 2009) is newly applied to 

zircon here. It offers new insight into the cause of lattice distortion whether it is through 
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plastic deformation or a growth microstructure or some other cause. This technique could 

be incorporated into future EBSD studies of zircon and other mineral chronometers and 

thermobarometers as well as being deployed on other phases to help determine 

deformation histories at the micro-scale. 

Volume Diffusion of Pb in Zircons 

 Part of the process-motivated aim of this project was to investigate the effects of 

multiple metamorphic events on zircon. A significant result came in the form of evidence 

for volume diffusion of Pb in zircons. Chapter 6 systematically illustrated the evidence for 

volume diffusion of Pb having occurred in a population of complex zircons from the LGC. 

Other potential explanations for a spread of concordant ages of ~600Myr, including 

radiation-damage, lattice distortion and recrystallisation, were methodically eliminated. 

Decoupling of age and chemical zoning pattern suggested that volume diffusion of Pb in the 

zircons may have been responsible for the age spread. For an average grain radius of 50µm, 

volume diffusion would have required anything between ~3Myr and ~500Myr to occur at 

the 875-975°C temperatures estimated as peak metamorphic conditions in the host rock by 

Johnson and White (2011). The length of time at high temperature cannot be further 

constrained without more precise temperature estimates. 

Further Study of Volume Diffusion of Pb in Zircons 

 The hypothesis that volume diffusion of Pb occurred in zircons from the Assynt 

Terrane of the LGC is based on the relationship between catholuminescence (CL) zoning 

patterns and ion microprobe analytical spots that are ~30µm in diameter. In order to 

strengthen the evidence for volume diffusion having occurred, a higher resolution picture 

of Pb distribution throughout the zircon crystals would be advantageous. This would show 

if there was a decoupling of U and Pb isotopes and provide a higher spatial resolution map 

of the extent of decoupling between U-Pb dates and chemical zoning. NanoSIMS is 
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essentially a higher resolution ion microprobe with a spot size of ~10µm; it has previously 

been applied to zircons where there was a decoupling between U-Pb dates and chemical 

zoning but volume diffusion was not invoked as an explanation for the decoupling (Flowers 

et al., 2010). The efficacy of the technique has been demonstrated though and could be 

applied to the zircon population in this study. 

 Another technique that could provide an even higher spatial resolution Pb isotope 

map of the zircons is TOFSIMS (time-of-flight secondary ion mass spectrometry) (Henkel et 

al., 2007). TOFSIMS measures a complete spectrum of isotopes and elements 

simultaneously and rasters across a specified area pixel by pixel; pixels can be sub-micron in 

diameter and so it offers the possibility of a very high spatial resolution map of not just Pb 

isotopes but all isotopes that are present in the crystal. Investigation of one zircon in the 

population was started using the TOFSIMS instrument at the University of Manchester but 

the gold source was not good enough to resolve the small mass differences b 

etween the different Pb isotopes and interferences from ionised hafnium oxides. However, 

a new electron source is to be installed in late 2012 that should provide the mass resolution 

required to resolve Pb isotopes from interferences, and so this work may yet be carried out. 

 As well as gathering more data, modelling the Pb diffusion pathways and conditions 

would help to visualise the volume diffusion. This work is currently being undertaken by 

one of the project supervisors (JW), where a model developed in Matlab will model the 

diffusion of Pb ions over time where the grain radius, parent isotope concentration and 

temperature history can be varied. The model is currently being refined but may prove a 

valuable addition in further developing the volume diffusion hypothesis. 

 Volume diffusion of Pb in zircon is generally regarded as unlikely or impossible in 

normal crustal conditions (Mezger and Krogstad, 1997; Cherniak and Watson, 2003). 

However, a hotter Archaean geotherm would make it more likely for high temperatures to 

be sustained for long periods. Therefore, it would be interesting to test the volume 
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diffusion hypothesis on other zircon populations from Archaean basement complexes 

around the world. This would require high quality CL images for each zircon with analytical 

spots clearly marked and this is not always available in material already published so new 

studies would be required. With more precise temperature estimates, the length of time 

required for volume diffusion of Pb in zircon can be better constrained. If relatively long 

high temperature periods of ~500Ma are required, there will be implications for Archaean 

tectonics and the origination of the continental crust, and this therefore merits further 

investigation. 

Tectonothermal History of the Lewisian Gneiss Complex 

 The regionally-motivated aim of this thesis was to understand better the 

tectonothermal history of the Lewisian Gneiss Complex (LGC), and was covered in Chapter 

7. A suite of tonalite-trondhjemite-granodiorite (TTG) gneisses and metasediments from 

the Assynt Terrane of the LGC were analysed for zircon U-Th-Pb, REEs and Ti. Volume 

diffusion of Pb in zircons (chapter 6) across the analysed population made it difficult to 

confidently interpret magmatic and metamorphic ages. The oldest three cores yield a mean 

age of 2958±7Ma (MSWD = 1.00, probability = 0.37), a possible minimum magmatic 

protolith crystallisation age but caution is required as the oldest age in this study is from a 

zircon rim, which is not interpreted to reflect magmatic crystallisation. The period of 

volume diffusion of Pb in zircon is interpreted to have ended at ~2482Ma with the peak of 

the Badcallian granulite-facies metamorphism shortly before this. Zircons in the 

metasediments have relatively flat chondrite-normalised heavy REE profiles (low Yb/Gd 

ratios) which suggest their REE profiles were affected by Badcallian metamorphic garnet 

sequestering heavy REEs. Ti-in-zircon thermometry (Watson et al., 2006) records 

crystallisation temperatures of ~760-820°C for zircons in the magmatic protolith to the TTG 

gneisses, although this may be higher as aTiO2 is not tightly constrained. Zircons in the 

metasediments generally record higher temperatures, with an average of 823°C compared 
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to 790°C in the TTG gneisses. The zircons in the metasediments are interpreted to be 

detrital and the calculated temperatures are interpreted to record zircon crystallisation in a 

currently unknown protolith. 

Further Study of the Tectonothermal History of the Lewisian Gneiss Complex 

 The Assynt Terrane (Kinny et al., 2005), part of the Central Region of Sutton and 

Watson (1951) is the most studied part of the LGC. Metamorphic mineral assemblages and 

structures from three tectonothermal events can be seen here and this was the reason for 

the work in this study being carried out on samples from the Assynt Terrane. Formerly the 

same tectonothermal history was thought to apply to the whole of the LGC with different 

degrees of overprinting in different areas. However, the terrane hypothesis of Kinny et al. 

(2005) suggested that different parts of the LGC had completely different histories.  

 Volume diffusion of Pb in zircon is hypothesised to have occurred in the Assynt 

Terrane but what about other parts of the LGC? The available published data are sparse and 

do not really allow investigation of the possibility of volume diffusion. A new suite of data 

from different parts of the LGC would help to determine if volume diffusion occurred 

elsewhere. This would potentially inform the debate over the terrane model hypothesis of 

Kinny et al. (2005) and lead to a better understanding of the evolution of the whole of the 

LGC. 
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