
1 
 

 
 

 

Investigating the role of hydrogen 

sulfide in the myometrium  
 

Thesis submitted in accordance with the 
requirements of the University of Liverpool for 

the degree of Doctor in Philosophy 
 

By 
 

Hayley Robinson 
 

February 2013 
Department of Cellular and Molecular Physiology 

Institute of Translational Medicine 

 

 

 

 

 



2 
 

Acknowledgements 

 

Firstly, I would like to thank my primary supervisor Prof. Susan Wray for all the help, 

guidance and support you have given. Especially when undertaking presentations 

your encouragement and belief in me was much appreciated. Thank you also for all 

the opportunities you have given, allowing me to grow in self confidence and will 

benefit me in my future directions. I have thoroughly enjoyed working with you. 

I would also like to thank Prof. Ted Burdyga for your enthusiasm, technical help and 

feedback in lab meetings. 

I would like to give a big thank you to all the staff at Liverpool Women’s Hospital who 

helped consent and take biopsies. Special thanks to Kelly Harper, Jo Drury and Lisa 

Heathcote for your coordination and assistance in the collection of biopsies, vital for 

this project. As well as Dr Dharani Hapangama for taking the hysterectomy samples 

used within this thesis. Most importantly thanks to the patients of Liverpool 

Women’s Hospital for their kind donation of biopsies. 

Many thanks to the University of Liverpool for this opportunity, and thank you to the 

Wellcome Trust for funding this project. 

I would also like to extend my thanks to all the lab members of yellow block without 

you the science would not be as entertaining especially when on late nights. Dr 

Sarah Arrowsmith, Dr Rachel Floyd, Dr Amanda Heath, Debbie Noble and Jacqui 

Hanley for you support, friendship and fun we have had over past few years. I know 

you all now really love my taste in music . Many thanks to Bill Franks for all the 

ordering you have done and to Michelle Nelson for all the help you have given me. 

Thank you also to Dr Karen Noble, Dr Lyudmyla Borysova, Dr Clodagh Prendergast, 

Dr Helen Wallace, and Mohammed Alotaibi.  

Last but not least my deepest thanks go to my family and friends for their continuous 

support, and belief. Mum and Dad, Thank you for always being there for me with 

your words of wisdom, I couldn’t have done this without you and I love you very 

much! 

And finally to Mark ...you have been there, through it all supporting me through 

everything and listening to me go on about science. Thank you for putting up with 

me and I can’t wait to marry you next year!  

 

 

 

 

 



3 
 

Contents 

Title page.......................................................................................................1 

Acknowledgements.......................................................................................2 

Contents........................................................................................................3 

List of figures.................................................................................................10 

List of tables...................................................................................................14 

List of abbreviations.......................................................................................16 

Abstract..........................................................................................................20 

 

CHAPTER 1- Introduction          Page 

1.1  THE UTERUS............................................................................................22 

1.1.1 Anatomy of the uterus............................................................................22 

1.1.2 Uterine Myocytes....................................................................................26 

1.2 MYOMETRIAL CELL EXCITABILITY..........................................................27 

1.2.1 Overview................................................................................................27 

1.2.2 Resting membrane potential and ion channel activation......................27 

1.2.3 Voltage-gated calcium channels............................................................31 

1.2.4 Potassium channels................................................................................32 

1.3  THE REGULATION OF CALCIUM [Ca2+]i IN MYOMETRIAL CONTRACTION......36 

1.3.1 Overview................................................................................................36 

1.3.2 Calcium influx mechanisms....................................................................36 

1.3.3 Calcium efflux mechanisms....................................................................37 

1.3.4 The sarcoplasmic reticulum (SR).............................................................38 

1.3.5 Excitation-contraction coupling mechanism...........................................40 

1.3.6 pH and Contraction..................................................................................42 

1.4 HYDROGEN SULFIDE (H2S).......................................................................44 

1.4.1 H2S chemistry and compounds used to investigate the effects of H2S...44 

1.4.2 Endogenous H2S production....................................................................48 



4 
 

1.4.3 H2S catabolism......................................................................................51 

1.4.4 Tissue and blood levels of H2S..............................................................52 

1.4.5 H2S in vascular smooth muscle.............................................................53 

1.4.6 H2S in the Uterus...................................................................................54 

1.4.7 Mechanisms responsible for the affects produced by H2S...................56 

1.5 CLINICAL ASPECTS.................................................................................59 

1.5.1 Non-pregnant uterus.............................................................................59 

1.5.2 The menopause.....................................................................................60 

1.5.3 Endometriosis........................................................................................61 

1.5.4 Pregnancy..............................................................................................63 

1.5.5     Labour...................................................................................................63  

1.5.6 Premature Labour.................................................................................65 

1.6 THESIS AIMS..........................................................................................67 

 

CHAPTER 2 - General Materials and Methods 

2.1  TISSUE....................................................................................................69 

2.1.1  Animal Tissue........................................................................................69 

2.1.2  Human Tissue.........................................................................................69 

2.2  TISSUE PREPARATION AND DISSECTION...............................................70 

2.2.1  Animal Tissue Dissection........................................................................70 

2.2.2  Human Biopsy Dissection......................................................................71 

2.3  CHEMICALS AND SOLUTIONS USED FOR CONTRACTILITY EXPERIMENTS......71 

2.4  MEASUREMENT OF INTRACELLULAR CALCIUM....................................75 

2.4.1  Fluorescence process.............................................................................76 

2.4.2  Fluorescent indicators and measurement of intracellular calcium and 
intracellular pH (cytosolic free).............................................................76 

2.4.3  Advantages and disadvantages of indicators.........................................81 
 
2.5  FORCE, CALCIUM AND pHi MEASUREMENTS.........................................82 
 



5 
 

2.5.1  Calibration of force.................................................................................82 
 
2.5.2 Loading Tissue with Membrane Permeable Calcium Indicator Indo-1...82 
 
2.5.3  Loading Tissue with pHi Indicator SNARF................................................83 
 
2.5.4  Simultaneous Measurements of Calcium and Force or pHi and Force...83 
 
2.5.5  Measurements of Force alone................................................................87 
 
2.5.6  Analysis of Contractility Data..................................................................90 
 
2.6  IMMUNOHISTOCHEMISTRY...................................................................92 
 
2.6.1  Fixation of tissue for immunohistochemistry.........................................92 
 
2.6.2  Staining for CBS and CSE.........................................................................92 
 
2.6.3  Image Capture of Myometrial Biopsy Sections – DAB Stained...............94 
 
2.7  WESTERN BLOTTING...............................................................................95 
 
2.7.1  Protein Extraction...................................................................................95 
 
2.7.2  Protein Assay of Extract from Human Myometrial Biopsies..................95 
 
2.7.3  Preparation of Protein Samples for Western Blotting...........................96 
 
2.7.4  Western Blotting....................................................................................97 
 
2.7.5  Analysis of Western Blots......................................................................98 
 
2.8  STATISTICS.............................................................................................98 
 
CHAPTER 3 - Characterisation of non- pregnant human myometrium: Examining 
the differences in myometrial contractility from pre-and post menopausal women 
and from women with endometriosis  

3.1  ABSTRACT ................................................................................................100 

3.2  INTRODUCTION.........................................................................................101 

3.3  METHODS..................................................................................................106 

3.4  RESULTS.......................................................................................................108 

3.4.1  Establishment of spontaneous contractions in vitro...............................111 



6 
 

3.4.2  Comparing the contractility of pre-menopausal women with post menopausal 
women......................................................................................................112 

3.4.3  Comparing the contractility of pre-menopausal women with post menopausal 
women excluding endometriosis patients................................................116 

3.4.4 In vitro non-pregnant pre-menopausal women compared to post-
menopausal women contractility, age and BMI-matched........................119 

 
3.4.5  How does non-pregnant contractility of the myometrium change with age?..122 

3.4.6  How does non-pregnant contractility change with age excluding 
endometriosis patients?...........................................................................128 

 
3.4.7  Myometrial contractility of women with endometriosis...........................131 

3.4.8  Myometrial contractility of women with endometriosis and not on 
medication.................................................................................................135 

3.4.9  Myometrial contractility of women with endometriosis and on medication.....138 

3.5  DISCUSSION................................................................................................141 

3.5.1  The effect of menopausal status on myometrial contractility..................142 

3.5.2  The effect of aging on non-pregnant myometrial contractility.................143 

3.5.3  Does endometriosis affect myometrial contractility?...............................145 

3.5.4  Conclusion..................................................................................................146 

3.5.5    Limitations of study……………………………………………………………………………….147 

CHAPTER 4 - Investigating the role of H2S within the myometrium through H2S 
producers NaHS and novel slow releasing H2S-generating compound, GYY4137. 

4.1  ABSTRACT..................................................................................................148 

4.2  INTRODUCTION.........................................................................................150 

4.3  METHODS..................................................................................................152 

4.4  RESULTS.....................................................................................................154 

4.4.1  Establishment of spontaneous contractions and control incubation protocol......154 

4.4.2  Dose dependent effects of GYY4137 on spontaneous contractions in non-
pregnant rat myometrium.............................................................................156 

 
4.4.3  Dose dependent effects of GYY4137 on spontaneous contractions in term 

pregnant rat myometrium.............................................................................158 

4.4.4  Gestational dependent effects of GYY4137 and NaHS..................................161 



7 
 

4.4.5  Recovery periods and times to contract within the rat myometrium.......166 

4.4.6  Effects on calcium entry and Calcium signalling .........................................169 

4.4.7  Effects of KATP channel inhibition on GYY4137-induced changes in 
contractility...............................................................................................173 

4.4.8  Effects of sulfhydryl-modifying reagents (DM and DTT) on contractions of 
term rat myometrium...............................................................................176 

4.4.9  Effects of GYY4137 and NaHS on non-pregnant human myometrium.......179 

4.4.10  Effects of GYY4137 and NaHS on term pregnant human myometrium......181 

4.4.11  Effects of GYY4137 and NaHS on term pregnant human oxytocin-stimulated 
contractions ..................................................................................................184 

4.5  DISCUSSION................................................................................................186 

4.5.1  Experimental conditions and protocols.........................................................186 

4.5.2  GYY4137 and smooth muscle.........................................................................187 

4.5.3  Effects of H2S change with gestational state..................................................187 

4.5.4  Mechanism of H2S effects in myometrium..................................................188 

4.5.5  Changes in intracellular Calcium.....................................................................189 

4.5.6  Effects of GYY4137 on depolarized and oxytocin-stimulated contraction....189 

4.5.7  Gestational changes and H2S mechanism of action....................................190 

4.5.8  GYY4137 and tocolysis.................................................................................191 

4.5.9     Summary.........................................................................................................192 
4.5.10 Limitations of Study………………………………………………………………………………….192 

CHAPTER 5 - Investigating the role of H2S through L-cysteine and expression of the 
enzymes producing and breaking down H2S. 

5.1  ABSTRACT.....................................................................................................193 

5.2  INTRODUCTION............................................................................................195 

5.3 METHODS.....................................................................................................198 

5.4  RESULTS........................................................................................................202 

5.4.1  The effect of L-cysteine on term pregnant rat myometrial contractility.......202 



8 
 

5.4.2  The effect of L-cysteine on non-pregnant rat myometrial contractility........206 

5.4.3  Comparing the response of 1mM L-cysteine within non-pregnant and term 
pregnant rat myometrium.............................................................................209 

5.4.4  Effects on calcium entry and Calcium signalling .............................................211 

5.4.5  Examining the chemical effect of L-cysteine through use of D-cysteine and 
sodium pyruvate...............................................................................................212 

5.4.6  Monitoring intracellular pH of term pregnant myometrial contractions upon 
perfusion with L-cysteine..............................................................................216 

5.4.7  Do inhibitors of both H2S production enzymes abolish the response of L-
cysteine?.......................................................................................................218 

5.4.8  The dose dependent effect of L-cysteine on term pregnant human 
myometrium.................................................................................................223 

5.4.9  The effect of 1mM L-cysteine on non-pregnant and human myometrium..227 

5.4.10  Does garlic affect the myometrium?.............................................................230 

5.4.11  Expression of the CBS and CSE in the Myometrium of Non-pregnant, 10 day, 
14 day, 18 day and 22 day rat myometrium – Immunohistochemistry.......234 

 
5.4.12  Expression of the CBS and CSE in the myometrium of non-pregnant, and term 

pregnant human myometrium- Immunohistochemistry............................237 
 
5.4.13  Expression of the H2S producing enzymes CBS and CSE in non-pregnant and 

term pregnant myometrium – Western Blotting.......................................240 
 
5.4.14  Expression of the H2S detoxifying enzyme – Western Blotting..................243 

5.5  DISCUSSION................................................................................................245 

5.5.1  The effect of L-cysteine on myometrial contractility................................245 

5.5.2  The mechanism of L-cysteine’s effects in the myometrium.....................246 

5.5.3  Effects of garlic .........................................................................................248 

5.5.4  Regulation of H2S production and breakdown in the myometrium...........250 

5.5.5  Conclusions..................................................................................................251 

5.5.6      Limitations of Study……………………………………………………………………………….252 



9 
 

CHAPTER 6 - Final Discussion 

6.1  CHARACTERISATION OF NON-PREGNANT MYOMETRIUM.........................253 
 
6.2  THE EFFECT OF H2S-PRODUCERS NaHS AND GYY4137 ON MYOMETRIAL 

CONTRACTILITY ...........................................................................................254 

6.3  THE EFFECT OF H2S PRODUCING ENZYME SUBSTRATE L-CYSTEINE...........256 

6.4  MECHANISM OF H2S IN THE MYOMETRIUM...............................................256 

6.5 EXPRESSION OF H2S PRODUCTION ENZYMES IN THE MYOMETRIUM........258 
 
6.6  EXPRESSION OF H2S DETOXIFYING ENZYMES TST.......................................259 

6.7  FUTURE WORK............................................................................................259 

6.8        FINAL CONCLUSIONS……………………………………………………………………………..265 

REFERENCES...........................................................................................................266 

APPENDIX 1 :Publication list and conference presentations................................281 

APPENDIX 2.............................................................................................................282 

APPENDIX 3.............................................................................................................295 

APPENDIX 4.............................................................................................................304 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 



10 
 

Figure index 

CHAPTER 1 

Figure 1.1 Anatomy of the human uterus............................................................24 

Figure 1.2  Anatomy of the rat uterus...................................................................25 

Figure 1.3 Membrane potential, action potential and contraction.....................30 

Figure 1.4  Excitation-contraction coupling pathway in the uterus......................41 

Figure 1.5  Dissociation of H2S, reduction of H2S and H2S-forming compounds..47 
 
Figure 1.6  Production of H2S in mammalian cells...............................................50 
 

CHAPTER 2 

Figure 2.1  Diagram of the structural modifications involved in loading cells using 
Indo-1 AM...........................................................................................78 

Figure 2.2  Diagram of the structural modifications involved in loading cells using 
6-(and 5) carboxy SNARF-1 AM..........................................................79 

Figure 2.3  Fluorescence emission spectra of Indo-1 and 5-(and 6)- Carboxy 
SNARF-1..............................................................................................80 

 
Figure 2.4   Diagram of equipment designed to record simultaneous 

measurements of force and calcium or force and intracellular pH 
(pHi).....................................................................................................85  

 
Figure 2.5  Diagram of the incubation technique to monitor the contractility 

changes using GYY4137 and NaHS......................................................86 

Figure 2.6  Control traces.....................................................................................88 

Figure 2.7  Control incubation technique traces...................................................89 

Figure 2.8  Parameters measured for contractility...............................................91 
 

CHAPTER 3  

Figure 3.1  Contractility of pre and post-menopausal women..........................114 

Figure 3.2  Pre and Post-menopausal myometrial contractility age-matched..120 
 
Figure 3.3  Non-pregnant myometrial contractility in relation to age. ..............124 
 
Figure 3.4  Scatter graph to show the relationship between AUC and age........126 
 



11 
 

Figure 3.5  Uterine activity with age of non-pregnant myometrium.................127 
 
Figure 3.6  Scatter graph to show the relationship between AUC and age without 

endometriosis patients included......................................................130 
 
Figure 3.7  Endometriosis and Pre-menopausal myometrial contractility.........133 

CHAPTER 4 

Figure 4.1  Dose dependency of GYY4137 in non-pregnant rat.........................157  

Figure 4.2  Dose dependency of GYY4137 in term pregnant rat........................159 

Figure 4.3  LOG dose response curve for pregnant rat myometrium………………160  

Figure 4.4  Rat myometrial contractility changes over gestation in response to 
GYY4137............................................................................................163   

Figure 4.5  Rat myometrial contractility changes over gestation in response to 
NaHS..................................................................................................164 

Figure 4.6        Times to contract after incubation of rat myometrium over gestation.167 
 
Figure 4.7 Amplitude of contraction recovery in response to GYY4137 and NaHS of 

rat myometrium over gestation........................................................168    
          
Figure 4.8   Effects of NaHS and GYY4137 on High K+ depolarisation..................171  

Figure 4.9   Effects of GYY4137 on calcium signalling..........................................172  

Figure 4.10   Effects on calcium entry and calcium signalling................................174 

Figure 4.11  Term rat myometrial contractility changes to sulfhydryl modifiers 
Diamide and Dithioreitol...................................................................177 

 

Figure 4.12  Effects of NaHS and GYY4137 on non-pregnant human myometrium....180  

Figure 4.13  Effects of NaHS and GYY4137 on term pregnant human myometrium....182  

Figure 4.14  Effects of NaHS and GYY4137 on term pregnant oxytocin-stimulated 
human myometrium..........................................................................185  

CHAPTER 5  

Figure 5.1  Dose dependency of L-cysteine in term pregnant rat myometrium.........203  

Figure 5.2  Mean data of dose dependency of L-cysteine in term pregnant rat 
myometrium......................................................................................204  



12 
 

Figure 5.3  LOG dose response curve for pregnant rat myometrium…………….205 

Figure 5.4  Dose dependency of L-cysteine in non-pregnant rat myometrium.207  

Figure 5.5 Mean data of dose dependency of L-cysteine in non-pregnant 
myometrium.....................................................................................208 

Figure 5.6  Comparison of rat non-pregnant and term pregnant L-cysteine 
responses..........................................................................................210  

Figure 5.7   Effects on calcium entry and calcium signalling...............................213  

Figure 5.8   Effect of L-cysteine on myometrial contractility in the presence of 
BayK 8644..........................................................................................214  

Figure 5.9  Effect of D-cysteine, sodium pyruvate and L-cysteine on term 
pregnant rat myometrium.................................................................215 

Figure 5.10  The effects of L-cysteine and external pH 6.9 on intracellular pH.....217 

Figure 5.11  The effect of L-cysteine in the presence of CSE inhibitor..................219 

Figure 5.12 Mean data showing the responses of L-cysteine with and without CSE  
inhibitor............................................................................................220 

Figure 5.13  The effect of L-cysteine in the presence of CBS inhibitors................221 

Figure 5.14  Mean data showing the responses of L-cysteine with and without CBS 
inhibitor AOAA...................................................................................222 

Figure 5.15  Dose dependency of L-cysteine in term pregnant Human 
myometrium.....................................................................................224  

Figure 5.16  Mean data of dose dependency of L-cysteine in term pregnant human 
myometrium. ...................................................................................225 

Figure 5.17  LOG dose response curve for term pregnant human myometrium.226  

Figure 5.18  Effect of 1mM L-cysteine in non-pregnant and term pregnant 
myometrium......................................................................................228 

Figure 5.19  Comparison of non-pregnant and term pregnant L-cysteine responses..229 

Figure 5.20  Effect of increasing doses of garlic powder on term pregnant rat 
myometrium......................................................................................231 

Figure 5.21  Mean data for the initial effects of increasing concentrations of Garlic 
on term pregnant rat myometrium...................................................232  



13 
 

Figure 5.22  Mean data for the final effects of increasing concentrations of Garlic 
on term pregnant rat myometrium.................................................233  

Figure 5.23  Positive and negative controls..........................................................235 
 
Figure 5.24  Expression of H2S producing enzymes CBS and CSE in rat myometrium.236 

Figure 5.25  Expression of CBS and CSE in non-pregnant myometrium as shown by 
immunohistochemistry.....................................................................238 

Figure 5.26  Expression of CBS and CSE in term pregnant myometrium as shown by 
immunohistochemistry......................................................................239 

Figure 5.27  The expression of CBS H2S production enzyme in non-pregnant and 
term pregnant myometrium – Western Blotting .............................241 

 
Figure 5.28  The expression of CSE H2S production enzyme in non-pregnant and 

term pregnant myometrium – Western Blotting .............................242 
 
Figure 5.29  The expression of TST, H2S detoxifying enzyme in non-pregnant, term 

pregnant human myometrium and rat myometrium – 
WesternBlotting................................................................................244   

 
CHAPTER 6 
 
Figure 6.1  Reversible permeabilisation of 22 day gestation rat myometrial strips...263 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Table index 

CHAPTER  3 

Table 3.1   Demographics for non-pregnant women......................................108 

Table 3.2   Summary of demographics of all 40 non-pregnant women as well as 

separated into subgroups of menopausal status (pre and post 

menopausal women) and endometriosis.......................................110 

Table 3.3  Contractile parameter averages for the entire 40 non-pregnant 

patients studied within this chapter...............................................111  

Table 3.4  Summary of spontaneous contractile activity of pre and post 

menopausal non-pregnant myometrium.......................................115 

Table 3.5   Summary of spontaneous contractile activity of pre and post- 

menopausal non-pregnant myometrium without patients with 

endometriosis incorporated.........................................................118 

Table 3.6  Summary of spontaneous contractile activity of pre and post- 

menopausal non-pregnant myometrium age and BMI matched......121 

 

Table 3.7  Summary of spontaneous contractile activity of non-pregnant 
myometrium in relation to age......................................................125 

 

Table 3.8  Summary of spontaneous contractile activity of non-pregnant myometrium 

in relation to age excluding patients with endometriosis.....................129  

 
Table 3.9  Summary of spontaneous contractile activity of women with 

endometriosis and pre- menopausal non-pregnant myometrium....134 

 

Table 3.10  Summary of spontaneous contractile activity of women with 

endometriosis and no medication and pre- menopausal non-pregnant 

myometrium......................................................................................137 

 



15 
 

Table 3.11  Summary of spontaneous contractile activity of women with 

endometriosis and on medication and pre- menopausal non-pregnant 

myometrium....................................................................................140 

CHAPTER 4 

Table 4.1.  Changes in contractile parameters of myometrial tissue in response to 

control incubations...........................................................................155  

Table 4.2.  Changes in contractile parameters in response to NaHS and GYY4137 

in term pregnant rat myometrium...................................................165 

Table 4.3.  Changes in contractile parameters in response to GYY4137, 

Glibenclamide and GYY4137 with Glibenclamide, in term pregnant rat 

myometrium.....................................................................................175 

Table 4.4.  Changes in contractile parameters in response to Dithioreitol and 

Diamide compared to control, in term pregnant rat myometrium...178 

Table 4.5:  Changes in pregnant human myometrial contractile parameters in 

response to NaHS, and GYY4137 incubations with and without 

oxytocin. ............................................................................................183 

 

 

 

 

 

 

 

 

 



16 
 

List of Abbreviations 

ANOVA – Analysis of Variance 

ATP - Adenosine-5'-triphosphate 

AOAA - O-(carboxymethyl)hydroxylamine hemihydrochloride 

AUC – Area under the Curve 

BCA - β-cyanoalanine 

BKCa --  large conductance Calcium Activated Potassium Channels 

Bp – base pairs 

Ca2+ - Calcium Ions 

cAMP – Cyclic Adenosine Monophosphate 

CBS - cystathionine β-synthase 

CCE – Capacitative Calcium Entry 

CH3SH  - Methanethiol 

CH3SCH3 - dimethylsulfide 

CICR – Calcium Induced Calcium Release 

Cl- - Chloride Ions 

ClCa – Calcium Activated Chloride Channels 

CSE - cystathionine γ-lyase 

Cys - Cysteine 

DAB - 3,3'-Diaminobenzidine 

DADS  - Diallyl disulfide 

DAG – Diacylglycerol 

DATS  - Diallyl trisulfide 

DMSO - Dimethyl Sulfoxide 

DTB - Drug & Therapeutics Bulletin 

DTPA - Diethylene triamine pentacetic acid 

EC50 - Half Maximal Effective Concentration 

ECL - Enhanced Chemiluminescence 



17 
 

ET-1 - Endothelin-1 

Ethe1 - ethylmalonic encephalopathy 1 

FSH - Follicle stimulating hormone 

HA – Hydroxylamine 

HBSS – Hanks Balanced Salt Solution 

hCG - Human chorionic gonadotropin 

High K+ - potassium chloride 

HPLC – High performance Liquid chromatography 

HRT - Hormone replacement therapy 

H2S  - Hydrogen sulfide  

HS- - Sulfhydryl ion 

ICC - interstitial cells of Cajal 

IKCa – Intermediate Conductance Calcium Activated Potassium Channels 

Indo-1AM – Indo-1 acetoxymethyl ester 

IP3 - Inositol-1,4,5, triphosphate 

IP3R - Inositol Triphosphate Receptor 

K+ - Potassium Ions 

kDa – Kilo Daltons 
 
KATP – ATP-sensitive potassium channel 
 
Kir- Inward Rectifier Potassium Channels 
 
Kv –Voltage Gated Potassium Channels 

LOGEC50 – LOG Half Maximal Effective Concentration 

LH - luteinizing hormone 

M – Moles 

mg – Milligrams 

Mg2+ - Magnesium Ions 

Mg2SO47H20 – Magnesium Sulfate 

MLC –Myosin Light chain 



18 
 

MLCK – Myosin Light Chain Kinase 
MLCP – Myosin Light Chain Phosphatase 

mM – Millimolar 

mRNA – Messenger Ribonucleic Acid 

MRTB – Myometrial Research Tissue Bank 

3MST - 3-mercaptopyruvate sulfurtransferase 

mV – Millivolts 

NaHS – Sodium hydrogen sulfide/ Sodium hydrosulfide 

Na2S – Sodium Sulfide 

Na+ - Sodium Ions 

NCX - Sodium Calcium Exchanger 

NaCl - Sodium Chloride 

NHS - National Health Service 

O2 - Oxygen 

OTR – Oxytocin receptor 

PAG - D,L propylargylglycine 

pHi -  intracellular pH 

pH0 - Extracellular pH 

PIP2 - Phosphatidylinositol 4, 5 Biphosphate 

pKa - Dissociation Constant 

PLC - Phospholipase C 

PLP, Vitamin B6 - Pyridoxal 5’ Phosphate 

PMCA - plasma membrane ATPase 

PMT - Photo Multiplier Tube  

31P NMR – Phosphorous nuclear magnetic resonance 

RC0G – Royal college of Obstetricians and Gynaecologists 

ROCC - Receptor Operated Calcium Channels 

ROS - Reactive oxygen species 

RyR - Ryanodine Receptors 



19 
 

RSnH – Hydropolysulfide 

R-Sn-R’ – Organic poly sulphides 

S2- - Sulfide ion 

S2O3
2- - Thiosulfate ion 

SO3
2- - Sulfite 

SO4
2- - Sulfate 

SDS – Sodium Dodecyl Sulfate 

s.e.m – Standard error of the mean 

SERCA – Sarcoplasmic Reticulum Ca-ATPase 

SKCa – Small Conductance Calcium Activated Potassium Channels 

SOCC – Store Operated Calcium Channels 

SOCE – Store Operated Calcium Entry 

SR – Sarcoplasmic Reticulum 

STOC’S - Spontaneous Transient Outward Currents# 

SUR - Sulphonylurea receptor subunit 

TBS-T – Tris Buffered Saline Solution with Tween 20 

Trp – Transient Recepter Potential Channels 

TST – Thiosulfate Sulphur transferase 

VOCC – Voltage Operated Calcium Channels       

WHO – World Health Organisation 

WHSL - Womens Health Specialist Library 

 

 

 
 
 
 

 

 



20 
 

Investigating the role of hydrogen sulfide in the myometrium 

Hayley Robinson 

Abstract 

Preterm births are increasing worldwide; currently 7 % of UK births are preterm. 
Prematurity is the principal cause of neonatal mortality and a major cause of 
paediatric morbidity. Uterine contractility before term leads to pre-term labour. 
Therefore to reduce pre-term delivery, new pathways and drugs that inhibit uterine 
contractility are of interest. The gasotransmitter H2S has been shown to inhibit 
myometrial contractility without much mechanistic insight and thus is of potential 
interest. Hydrogen sulfide (H2S) is produced in vivo from L-cysteine, by cystathionine β-
synthase (CBS) and cystathionine γ-lyase (CSE). At least two enzymes degrade H2S; 
thiosulfate sulphur transferase (TST) and ethylmalonic encephalopathy 1 (Ethe1).  
Thus H2S will be regulated within cells. NaHS, which releases a rapid bolus of H2S, 
reduces myometrial contractility. However it is not clear if an H2S-generating system is 
present throughout gestation or if more physiological modes of H2S production can 
affect contractility. Previous studies used NaHS as a H2S producer, which is toxic and 
releases H2S as a non-physiological bolus and thus alternative H2S donors suitable for 
drug development are sought. A new H2S generating compound, GYY4137, developed 
to slowly release H2S which better reflects physiological conditions, appears to be such 
a drug.  

The aims of this work were to: (1) characterise the non-pregnant human myometrial 
tissue to determine the inherent spontaneous activity, to monitor whether the 
contractions were stable enough to assess H2S effects when compared to the term 
human myometrium.  In addition, to monitoring changes in contractility in response 
to age, menopausal state and whether the women have endometriosis, (2) examine 
throughout gestation, the effects of GYY4137 on rat myometrial contractility, (3) 
investigate the differences in response to GYY4137 in non- pregnant versus pregnant 
human myometrium (4) compare GYY4137 effects to those of NaHS and L-cysteine in 
rat and human tissues, (5) elucidate the mechanism of H2S effects, and (6) determine 
the myometrial expression of enzymes governing tissue H2S levels.  

Non-pregnant human myometrium gave rise to stable spontaneous contractions. 
The older women become the lower the amplitude and area under the curve of 
contractions. High K+ depolarisations were also diminished with advanced age. As 
women reach post menopause contractions are found to decline when compared to  
pre-menopausal women. Women with endometriosis showed decreased amplitude 
with increased frequency of contractions when compared to their fertile, healthy 
counterparts. This finding suggested a potential involvement of altered myometrial 
activity in women suffering this condition. 

NaHS, L-cysteine and GYY produce uterine relaxation in a dose-dependent manner 
using rat and human tissues. NaHS and GYY4137 effects increased throughout 
gestation using rat myometrial tissue, possibly due to changes in H2S removal rates. 
TST, a H2S breakdown enzyme was not detectable in different gestation rat as well as 
in non- pregnant and term pregnant human myometrial tissue, implying no 
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involvement.. Labouring rat myometrium however was not affected by either H2S 
producer. These data suggest that H2S contributes to uterine quiescence until labour 
onset. Term human myometrial contractions, both spontaneous and oxytocin-
stimulated produced similar inhibitory responses to H2S producers NaHS and 
GYY4137. Non-pregnant spontaneous human contractions were unaffected on 
application of H2S producers. GYY4137 and L-cysteine decreased Ca transients, 
suggesting it affects L-type Ca channels, perhaps via sulfhydration of residues. These 
data were further supported upon use of BayK 8644 a calcium channel opener 
showing reduced effects of L-cysteine. KATP channels were also shown to be involved 
in the mechanism of H2S in the myometrium as use of KATP channel blocker 
glibenclamide caused reduced effects of the H2S producer GYY4137. These data 
suggest that H2S is an attractive target for therapeutic manipulation of human 
myometrial contractility and drugs such as GYY4137 will be effective. Both CBS and CSE 
are present in all the tissues tested in this thesis. It was also demonstrated that these 
enzymes were down regulated at term perhaps showing a role in preparing the 
myometrium for the onset of labour as the enzymes have been shown to further 
decline in labouring tissues. 

In conclusion, the work I have undertaken in this thesis strengthens the evidence of a 
physiologically important role for H2S in the myometrium and suggests it targets ion 
channels to affect calcium signalling and thus contractions.   
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Chapter 1 - Introduction 

1.1The Uterus 

1.1.1 Anatomy of the Uterus 

Human Uterus 

The uterus is a hollow, pear-shaped organ with thick muscular walls. It is situated 

between the rectum and the bladder. The uterus is separated into several regions 

and for descriptive purposes; it is divided into the fundus, body and cervix (Figure 

1.1). The upper area of the uterus is the fundus. The fundus is a broad curved region 

which leads into the uterine tubes, or fallopian tubes terminating at the ovaries. 

Below the fundus is the body of the uterus, triangular in shape. Moving downwards 

to the lower, narrow part of the uterus called the cervix.   

 

The human uterus is a single chambered simplex structure arranged to usually 

support singleton pregnancies (Figure 1.1). The layers of the uterine wall include the 

myometrium, endometrium, and perimetrium. The myometrium is located between 

the endometrium (the inner layer of the uterine wall) and the perimetrium (the 

outer uterine layer).  

The myometrium is the layer under investigation within this thesis and is the middle 

layer of the uterine wall. The myometrium is the spontaneously active smooth 

muscle layer and consists predominately of poorly defined muscle fibre bundles 

arranged in circular (inner layer), longitudinal (outer layer) and diagonal orientation, 

held together by connective tissue. In portions of the human uterus however the 

arrangement of fibres is much more dispersed as the layers of muscle bundles are 

spread transversely, obliquely and longitudinally (Ramsey 1994). This layer accounts 

for the increase in uterine size during pregnancy and is responsible for the powerful 

contractions resulting in the expulsion of the placenta and the foetus during labour. 

The endometrium is an internal mucous membrane lining which is adhered closely to 

underlying tissue throughout the uterine cavity and is non-excitable. During the 

menstrual cycle the endometrium grows to a thick, blood vessel-rich, glandular 

tissue layer to allow for successful implantation of the fertilised ovum. If this occurs 

the endometrium at site of implantation will then adapt to form part of the placenta. 
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If no embryo is implanted the endometrium will shed during menstruation. Changes 

within the endometrium are controlled by ovarian hormones, which lead to these 

distinctive alterations of the endometrium throughout menstruation.  

The outermost layer of the uterus is the perimetrium, also called the serosa. It is part 

of the peritoneal epithelium and is a thin layer which covers the entire uterus. It is 

not known currently to influence the pharmacology of uterine contraction. 

 

Rat Uterus 

Uteri between species have different morphological characteristics which are related 

to function. In rats and other types of rodents the uterus is duplex and consists of 

two horns which meet at the uterine body above the cervix. This duplex uterus 

happily accommodates multiple embryos during pregnancy. However the cross 

sectional morphology of the rat uterus is similar to that of humans. This is separated 

into the same three distinct layers, the endometrium, the myometrium and the 

perimetrium. The rat uterus also consists predominately of poorly defined muscle 

fibre bundles arranged with an outer layer of longitudinal smooth muscle and an 

inner layer of circular muscle (Figure 1.2). 
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Figure 1.1 Anatomy of the human uterus. Adapted from the National Uterine Fibroids 

Foundation Website.  
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Figure 1.2 Anatomy of the rat uterus 

 



26 
 

1.1.2 Uterine Myocytes 

The most dominant cell type within the uterus are smooth muscle cells of the 

myometrium (Young 2007). They are spindle- shaped cells with tapering ends and a 

single, oval-shaped nucleus located centrally. The smooth muscle cells range from 5-

10μm diameter and 30-40 μm long in the non-pregnant uterus. The cells length 

varies between 300μm to 600μm during pregnancy (Broderick and Broderick 1990).   

The generation of contractions is brought about by the interaction of actin and 

myosin within the myocytes. In relaxed muscle, the myosin cross bridges are 

detached from actin filaments. During contraction, they attach and provide the 

contractile force. The contractile machinery (myofilaments, intermediate filaments 

and dense bodies) occupy 80-90% of the total myometrial cell volume. However the 

cells also contain nuclei, mitochondria, Golgi bodies and a calcium store called the 

sarcoplasmic reticulum (Broderick and Broderick 1990).  

Myocytes are excitable cells, producing co-ordinated contractions by acting as a 

syncytium (Wray 1993). This is achieved through cell to cell communication via gap 

junctions (Wray 1993).  Gap junctions are specialised regions of the membrane that 

permit the rapid spread of electrophysiological activity. In humans and other 

mammals, gap junctions are scarce in the myometrium of the non-pregnant uterus 

(Kilarski 1998). Throughout pregnancy the number of gap junctions is low; they have 

poor coupling abilities and decreased electrical conductance results, favouring 

quiescence of the myometrium and maintenance of pregnancy. The number of gap 

junctions increases close to term to enable the rapid spread of electrophysiological 

activity between myocytes to produce co-ordinated contractions to give birth 

(Garfield et al 1978, Tabb 1992). The presence of gap junctions is thought to be 

regulated by the changing of oestrogens and progesterone levels in the uterus 

(Garfield 1998). 

The plasma membrane of the uterine myocyte contains specialised regions called 

caveolae. Caveolae are omega shaped invaginations of the surface membrane. 

Within smooth muscle including the myometrium, a high density of caveolae are 

present, increasing the surface area of the membrane (Noble and Wray 2008). 
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Uterine caveolae have been indicated in a number of signalling pathways and have 

been shown in the uterus to have an effect on calcium signalling and contractility 

(Lee et al, 2001, Kendrick 2004; Smith, Babiychuk et al. 2005). 

 

1.2 Myometrial cell excitability 

1.2.1 Overview 

The myometrium is a phasic smooth muscle that exhibits spontaneous and agonist 

induced contractions. The excitability of a tissue is governed, in part, by the resting 

potential. Several ions determine the resting membrane potential of myocytes 

allowing successful action potential generation; these include Na+, K+, Cl-, and most 

importantly Ca2+, the driving force for contractions in the uterus. Influx of calcium is 

driven by spontaneous changes in membrane potential (Wray 1993).  Although many 

factors are involved in the production of contractions in the myometrium, the 

primary mechanism underlying phasic activity are those that allow spontaneous 

depolarisation of the myometrial cell membrane to occur. 

 

1.2.2 Resting membrane potential and ion channel activation 

Membrane potential is controlled by the distribution of ions across the plasma 

membrane. This ionic distribution facilitates contraction in myocytes. The ionic 

gradient within uterine smooth muscle is maintained such that the internal 

potassium ion content is high, and calcium content is low (Kao 1989). This allows for 

a quick response when small changes in permeability result in significant movement 

of ions. The resting membrane potential in the myometrium is estimated to range 

between -80 and -35mV (Kumar and Barnes 1961, Pressman 1988, Inoue 1990) but is 

dependent upon the species and the gestational status of the uterus (Parkington 

1999). The majority of the work performed on membrane potential in the 

myometrium comes from Parkington and Coleman (Parkington & Coleman 2001). 

Contraction and relaxation of the myometrium occurs through the recurring 

depolarisation and repolarisation of the smooth muscle cell in the form of action 

potentials (Marshell 1962, Kao 1989). Upon depolarisation an influx of Ca2+ occurs as 

well as Na+. Repolarisation is caused by an outward flow of potassium ions. (Figure 

1.3) 
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Depolarisation of the surface membrane is slow and has been associated with 

pacemaker cell activity; however the presence of any pacemaker cells in the 

myometrium remains to be elucidated (Shmygol, Noble et al. 2007). Cells known as 

ICC – interstitial cells of Cajal have been located in other smooth muscles such as 

urinary bladder and gastrointestinal smooth muscle, and play a pacemaker role 

(Sanders 2000; Sergeant 2000; Sui, Wu 2004) ICC-like cells have been found in the 

myometrium (Duquette, Shmygol et al. 2005) but it remains unclear whether they 

play a pace making role.  

Ion channels are discrete membrane-spanning proteins that enable the selective 

transfer of ions across the impermeable, hydrophobic plasma membrane. The 

opening and closing of channels allows differences in ionic concentrations to be 

made and maintained, discriminating between different ions and enabling or 

excluding their passage on the basis of their charge and size.  These ion channels are 

usually selectively permeable to only one ion or one type of ion and are generally 

named after the ion to which they allow passage e.g. Ca2+ channels, K+ channels. Ion 

channels open by specific changes in their local environment and can involve 

alterations in membrane potential/ voltage or binding of a specific agonist (Kim et al 

2002). The main determinant to the change in transmembrane ion distribution is the 

expression of ion channels. However, electrochemical gradients also influence the 

total ion current. A larger electrochemical gradient for a given ion, gives a larger 

driving force and therefore a greater change in concentration per open channel. 

Differences in cell membrane potential and thus changes in the gating of specific ion 

channels has dramatic consequences for the myometrial cell, in particularly this 

includes changes in the open probability and conductance of calcium and potassium 

channels. Upon membrane depolarisation, voltage-gated calcium channels open 

with a threshold for activation at -60 to -30mV and maximum current flow occurring 

at -30 to +10mV (Jmari 1986, Amedee 1987, Triggle 1998, Perez-Reyes 2003). 

Following the opening of these channels, an influx of calcium occurs. Calcium entry 

into the cell is the major component of the action potential upstroke and further 

potentiates plasma membrane depolarisation and increases the open probability of 

these channels (Wray 1993, Shmigol 1998, Wray 2003). Voltage-sensitive K+ 

channels, at a more positive membrane potential, increases its opening probability. 
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Opening allows the efflux of potassium ions, responsible for the downstroke of the 

action potential and cell membrane repolarisation (Wray 1993, Wray 2003). 
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Figure 1.3 Membrane potential, action potential and contraction (adapted from 
(Garfield 1994). A rise in intracellular calcium (from 10-7 M to 10 -5 M) initiates 
movements of ions down their electrochemical gradients. 
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1.2.3 Voltage-gated calcium channels 

Voltage gated calcium channels (VOCC) are divided into three main groups Cav1 (L-

type), Cav2, (P-type, N-type and R-type) and Cav3 (T-type) (Lipscombe, Helton et al. 

2004). Two types of VOCC have been identified in the myometrium; L-type and T-

type channels (Young 1993, Wray 2003, Lee 2009). They have a complex structure 

which is composed of four subunits. There is the pore forming subunit α, and three 

regulatory subunits β, γ, and α2/δ (Collins, Moore et al. 2000). The α subunit has 

been shown to be the subunit that forms the ion conducting pore and to carry the 

characteristic pharmacological and functional properties of the Ca2+ channel for 

voltage sensing, ion permeability and drug binding whilst the others are classed as 

auxiliary subunits. Complete receptor function however requires the presence of all 

subunits and co-expression of the different β subunit isoforms with the same α 

subunit can result in trafficking of the channel to different membrane compartments 

within the cell. The extracellular α2 domain provides the structural support required 

for channel stimulation and is attached to the membrane through the membrane 

spanning δ subunit. The δ subunit influences voltage-dependent activation and 

steady-state inactivation and modulates the inactivation kinetics. 

T-Type calcium channels comprise of three major α subunits - Cav3.1, Cav3.2, and 

Cav3.3 (Blanks, Zhao et al. 2007). T-type calcium currents have been recorded in 

human myometrium (Young, Smith et al. 1993; Young and Zhang 2005). These 

currents are low voltage activated transients and have been implicated in initiation 

of action potentials in uterine smooth muscle (Young and Zhang 2005) as well as the 

generation and modulation of the frequency of spontaneous Ca2+ transients (Lee 

2009). 

The main VOCC in the uterus are L-type calcium channels and are crucial for 

excitation-contraction coupling (Lipscombe, Helton et al. 2004). L-type calcium 

channels produce high voltage activated long lasting currents that flow through the 

primary calcium entry route Cav1.2 calcium channels, and account for the majority of 

the calcium current measured in the myometrium (Shmygol, Blanks et al. 2007). 

Calcium entry through L-type VOCC relies on membrane depolarisation, and is a key 

step for smooth muscle contraction. L-type calcium channels have been found to be 
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under hormonal control and alter during gestation suggesting a role in parturition 

(Young, Smith et al. 1993; Collins, Moore et al. 2000). 

 

1.2.4 Potassium channels 

The main function of potassium channels is to dampen cellular excitability by 

maintaining the cell membrane potential close to the reversal potential of K+ ions 

(around -84mV).  At this negative potential depolarisation is opposed by an outward 

K+ current, which causes hyperpolarization or repolarization thereby terminating or 

rendering action potential generation and ultimately making contraction less 

probable (Khan 2001). 

 

Calcium activated K+ channels 

There are three subclasses of calcium-activated K+ channels, the large conductance 

channel (BKCa), the intermediate (IKCa) and the small (SKCa) conductance calcium-

activated K+ channels. All as suggested by their names are activated when 

intracellular Ca2+ levels are elevated (Blatz & Magleby, 1987; Vergara et al. 1998).  

BKCa channels are present in the non-pregnant rat (Song 1999), non-pregnant human 

(Tritthart 1991) and pregnant human myometrium (Khan 1993).  Activation of a 

small number of BKCa channels has been associated with causing relaxation of the 

uterus (Brainard, Korovkina et al. 2007).Inhibiting BKca with tetraethylammonium, 

barium and 4-aminopyridine thereby reducing the outward potassium current in 

human myocytes, produces an increase in the frequency of contractions. This 

supports the role of BKCa channels in opposing contractility (Khan, Matharoo-Ball et 

al. 2001). Inhibition of BKca channels however has been shown to have little effect of 

myometrial contractility in pregnant and non-pregnant rat myometrium (Aaronson, 

Sarwar et al. 2006). 

The BKCa channels consist of a tetrameric pore forming α subunit, and a regulatory β 

subunit (Garcia-Calvo 1994, Toro 1998). The β subunit is required as it acts as the 

calcium sensor. Its ability to enhance Ca2+ sensitivity in the human myometrium has 

been published (Orio et al 2002). Alternative splicing and post translational 

modifications are thought to result in functionally distinct variants of the receptor 

which also alter their calcium and voltage sensitivity (Korovkina 2001) hormonal 
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sensitivity (Holdiman 2002) and phosphorylation of the receptor and its trafficking 

(Perez and Toro 1994, Bainard 2007). In human myometrium BKca with decreased 

sensitivity are up regulated during labour to allow the uterus to be more excitable 

(Curley, Morrison et al. 2004). In support, Gao et al 2009 also showed down 

regulation of both the α and the β subunits upon labour onset. 

IKCa channels have a similar structure consisting of a central pore, a calcium sensing 

region and 6 transmembrane spanning regions (Tharp and Bowles 2009). Unlike BKCa 

channels they lack a voltage sensing region so are unaffected by membrane voltage. 

IKCa channels play an important role physiologically as they are involved in many 

systems including the hematopoietic system, and salt and fluid transport. They are 

also important for maintaining a negative resting membrane potential to help 

accumulate electrical gradients for ion transport (Jensen, Strobaek et al. 2001; 

Begenisich, Nakamoto et al. 2004). 

SKCa channels are encoded by four genes – SK1, SK2, SK3 and IK1/SK4. The structure 

of SK channels is similar to voltage gated (Kv) potassium channels consisting of six 

transmembrane segments (S1-S6), and a selective pore region for potassium 

conductance (Stocker 2004). SK channels do not contain a calcium binding motif to 

allow direct interaction with calcium, however the proximal c terminal domain 

interacts with calmodulin (Maylie, Bond et al. 2004).  

Activation of SK channels cause a long lasting hyperpolarisation known as a slow 

after hyperpolarisation (sAHP) (Vergara, Latorre et al. 1998). There is a role for SK 

channels in the myometrium as regulators of contractions during gestation and 

labour (Brainard, Korovkina et al. 2007). Over expression of SK3 in transgenic mice 

has been shown to delay parturition and reduce the strength of uterine contractions 

(Bond, Sprengel et al. 2000). Other studies have shown that the expression of SK2 

can affect the coordination of uterine contractions by limiting calcium entry though 

L-type Ca channels (Brown, Cornwell et al. 2007). It has also been shown that SK2 

and SK3 are down regulated in human myometrium during parturition (Mazzone and 

Buxton 2003). In the rat myometrium functional studies show upon inhibition of the 

this channel was larger than that of BKCa channel inhibition suggesting a role for SK 

channels in maintaining uterine quiescence and may in fact contribute more than 

BKCa channels. 
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Voltage- gated K+ channels 

Voltage dependent potassium channels (KV) are extensively expressed in the uterus 

and are activated by depolarisation (Brainard, Korovkina et al. 2007). Voltage gated 

potassium channels have been implicated in maintaining uterine quiescence and the 

initiation of contractions (Knock, Smirnov et al.1999). They also play a role in 

maintaining the resting membrane potential of myocytes (Brainard, Korovkina et al. 

2007) 

There are four major subfamilies of KV channels – KV1 (Shaker) , KV2 (Shab), KV3 

(Shaw), KV4 (Shal) (Xu, Yu et al. 1995) The KV4 subfamily seem to play the most 

important role in the myometrium during pregnancy (Knock, Smirnov et al. 1999). 

The expression of KV4.2 has been shown to increase before parturition where as 

KV4.1 and 4.3 appear to decrease throughout gestation (Suzuki and Takimoto 2005). 

Hormones also affect KV channels. Oestrogen reduces the expression of KV4.3 and 

its function before parturition allowing increases in myometrial contractility (Song, 

Helguera et al. 2001). 17β-estradiol and progesterone have also been shown to 

modulate outward potassium currents in cultured human term myometrial cells 

(Knock, Tribe et al. 2001). 

 

 KATP channels 

The ATP-sensitive potassium (KATP) channel is one of the most abundant potassium 

channels and most likely contributes to the resting membrane potential in smooth 

muscle tissues (Teramoto N, 2006). The channel contains heteromultimers of an 

inwardly rectifying K+ channel (Kir) and a modulatory sulphonylurea receptor subunit 

(SUR) which is responsible for the ATP sensitivity and pharmacological properties 

(Inagaki 1995, 1996, Aguilar-Bryan 1998, Isomoto 1996). The mRNA expression of Kir 

6.1, Kir 6.2, SUR1 and SUR2B in human pregnant myometrium have been detected 

and Kir6.1/SUR2B appear to be the predominant isoform of KATP channel in human 

myometrium (Curley, Cairns 2002). Another study found the expression of all four 

KATP channel subunits in the pregnant myometrium. They found a reduction in the Kir 

6.1 and Kir 6.2 subunits with no change in SUB2B within labouring tissue. This 

reduction could be related to labour onset (Curley, Cairns et al. 2002, Xu 2011) 
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 The functional role of KATP channels have been assessed through use of channel 

agonists and antagonists. KATP channel openers including levcromakalim, diazoxide 

and pinacidil can inhibit spontaneous and oxytocin-stimulated contractions in 

isolated human myometrium (Morrison, Ashford et al. 1993). Other openers, also 

producing an inhibitory affect towards contractions includes diazoxide. Interestingly 

diazoxide was shown to be less potent in term labouring tissue compared to term 

non-labouring tissue, suggesting less of a role for KATP channels in labour and 

overlaps with the reduction in potassium channels expression, allowing for the onset 

of powerful contractions.  

Conversely, KATP channel blocker glibenclamide induces spontaneous uterine 

contractions (Bailie, Vedernikov et al. 2002). The effect of KATP channel manipulation 

with drugs has variable results between pregnant and non-pregnant myometrium 

suggesting difference in expression during gestation. (Bailie, Vedernikov et al. 2002; 

Longo, Jain et al. 2003). Hypoxia has been associated with an increase in K+ efflux 

from the myometrium which is glibenclamide sensitive suggesting involvement of 

KATP channels. An increase in outward potassium current causes hyperpolarisation of 

the surface membrane and decrease excitability of the smooth muscle cells (Heaton, 

Wray et al. 1993).  
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1.3 The regulation of calcium [Ca2+]i in myometrial contraction 

1.3.1 Overview 

Contractions arise due to an elevation in intracellular calcium from 10-7M to 10-6M. 

This occurs through Ca2+ influx via channels or through release from the internal 

store. The key mechanism of calcium entry to produce spontaneous contractions is 

through L-type calcium channels in the uterus. Although calcium can also enter the 

cell through receptor-operated calcium channels (ROCCs) and store-operated 

calcium channels (capacitative calcium entry). However inside the cell, Ca2+ can be 

sequestered into the sarcoplasmic reticulum (SR) and/or extruded through the cell 

membrane by plasma membrane Ca2+-ATPase(PMCA) and or Na2+/Ca2+ exchanger 

(NCX) (Matthew 2004).  

 

1.3.2 Calcium influx mechanisms 

Calcium influx can occur independent of depolarisation through non-specific cation 

channels and receptor operated channels (ROCC). Receptor operated currents have 

been described in a number of smooth muscle tissues with varying degrees of 

calcium selectivity (Wray 2005, Thorneloe and Nelson, 2005). In the myometrium, G-

protein coupled receptors (GPCRs) are activated by a ligand and as a consequence 

the ligand binds to and activates a G protein leading to activation of second 

messengers or ion channels. Some receptors when activated stimulate myometrial 

contraction such as oxytocin, prostaglandin FP and TP receptors where as others 

such as β2-adrenoceptors and prostaglandin EP2 promote relaxation. The above 

stimulators activate Gαq and the relaxors activate Gαs. 

Oxytocin receptors (OTR) are relatively abundant in pregnant uterine tissues ( 

Gimpl&Fahrenholz, 2001). In human myometrium, the OTR protein was found to 

increase at term and after the onset of labour (Kimura 1996). In the rat uterus, the 

OTR mRNA levels were also increased at term and upon labour onset, the levels fell 

by 85% in within 24 hours following parturition (Larcher A 1995). Oxytocin binds to 

OTR’s to increase internal Ca2+. It does this by inhibiting Ca2+ extrusion by 

suppression of Ca2+-ATPase, opening L-type calcium channels and through activation 

of phospholipase C (PLC) liberating Inositol-1,4,5, triphosphate (IP3) which releases 

internally stored Ca2+ ions (Kao1989, Reimer&Roberts, 1986). Inhibition of calcium 



37 
 

entry highlights the limited role of the SR in the response to oxytocin where as 

inhibiting the SR reveals no change in the response of oxytocin on myometrial 

contractions (kupittayanant 2002). This elucidates the role of ROCC via its effect on 

L-type calcium channels. 

Store-operated calcium channels (SOCCs) and chloride channels (ClCa) have also been 

implicated in Ca2+ entry. SOCC’s are activated by a reduction in the sarcoplasmic 

reticulum (SR) calcium content, which results in calcium entry known as capacitative 

calcium entry (CCE) or store operated calcium entry (SOCE). This increase in calcium 

availability may contribute to contractility in the myometrium (Tribe, Moriarty et al. 

2000).  In the human myometrium CCE has been demonstrated in oxytocin 

stimulated increases in intracellular free calcium (Monga, Campbell et al. 1999). In 

the rat myometrium it has been shown that SOCE occurs and that it contributes to 

oxytocin-induced contraction (Noble 2009). The mechanism behind store operated 

calcium entry has been linked to transient receptor potential superfamily (Trp). 

TrpC1, TrpC3, TrpC4 and TrpC6 have been shown to be expressed in human 

myometrium (Ku, Babich et al. 2006), and are upregulated in term as well as labour 

suggesting a role in labour (Dalrymple, Slater et al. 2004). 

As for chloride channels ClCa4 are the most abundant form found in smooth muscle. 

Their role in water and salt balance as well as control of excitability has been 

published in rat uterine myocytes (Jones, Shmygol et al. 2004). ClCa2 channels have 

been suggested to cause depolarisation via the opening of L-type calcium channels 

(Arnaudeau, Lepretre et al. 1994, Jones, Shmygol et al. 2004).  

 

1.3.3 Calcium efflux mechanism 

Ca2+ is removed intracellularly in two ways, by the plasma membrane ATPase (PMCA) 

and the Na+/Ca+ exchanger. These mechanisms are ATP dependent and remove the 

bulk of calcium from the cell and if inhibited, the recovery of calcium to resting levels 

is abolished (shmigol 1999). It is the activity of these proteins that is responsible for 

the maintenance of the 10,000-fold concentration gradient across the plasmalemma 

(Matthew 2004). The NCX has a lower affinity for Ca2+, but is a higher capacity 

system (Bradley 2002). It utilises the Na+ gradient provided by Na/K-ATPase to 

operate the efflux of calcium. During each transport cycle, the energy from 3Na+ ions 



38 
 

entering the cells is used to export each Ca2+. This reaction can occur in either 

direction dependent upon the concentration of Na+ such that if extracellular Na+ is 

significantly reduced, an increase in intracellular calcium occurs as the exchanger 

operates in reverse. The PMCA extrudes Ca2+ at a lower [Ca2+]i and is calmodulin 

dependent (Blaustein 2002). PMCAs affinity to calmodulin is dependent on its 

isoform. Within uterine cells inhibiting the NCX or PMCA showed 30% of the total 

calcium extruded was via the NCX and 70%, via the PMCA (Shmigol, 1998). This 

highlights the predominant mechanism responsible for calcium extrusion in the 

myometrium is the PMCA. 

 

1.3.4 The sarcoplasmic reticulum (SR) 

Ca2+ transport into the SR 

There are three mechanisms for removal of Ca2+ from the cytosol; the NCX, PMCA, 

and the sarcoplasmic recticulum Ca2+ ATPase (SERCA). The NCX and PMCA are both 

located on the plasma membrane and extrude Ca2+ to the extracellular space and 

have been discussed earlier. The SERCA is located on the SR membrane, and pumps 

Ca2+ to the SR lumen, which offers a finite capacity for storage (Matthew 2004). 

Active transport using the energy from ATP hydrolysis is how Ca2+ is imported into 

the lumen of the SR. SERCA takes up Ca2+ against the electrochemical gradient at the 

cost of the hydrolysis of one molecule of ATP (Marin 1999). Myometrial cells have an 

extensive SR network, which approaches very close to the plasma membrane. There 

are three isoforms of the SERCA pump, SERCA 1, SERCA 2 and SERCA 3 (Wray and 

Burdyga 2010). Within animal and human studies SERCA isoforms 2a, 2b and 3 have 

been identified and change in labour suggesting a potential role of SERCA in 

pregnancy and contraction (tribe 2000, Khan 1993b). The SR has a large capacity for 

storing calcium, however experiments have shown that when other calcium 

extrusion mechanisms are inhibited such as PMCA and NCX, SERCA was unable to act 

alone, suggesting that SERCA acts in conjunction with plasmalemmal calcium 

extrusion mechanisms (Matthew, Shmygol et al. 2004). Blocking of SERCA with 

cyclopiazonic acid CPA and thapsigargin causes an increase in contractility in the 

uterus (Tribe, Moriarty et al. 2000). 
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Ca2+ within the SR is not uniformly distributed it is located in hot spots 

(Young&Mathur 1999). Two proteins involved in the distribution of Ca2+ within the 

cell are Ca2+ binding proteins; calsequestrin and calreticulin. In the uterine smooth 

muscle cells calreticulin acts alone as no presence of calsequestrin was found (Milner 

1991). 

 

Ca2+ release from the SR 

Ca2+ is released from the SR by pores in the SR membrane formed by the 

tetramerisation of IP3R or ryanodine receptors (RyR). Ip3R are activated by agonists 

leading to the activation of IP3 and diacylglycerol (DAG) from the hydrolysis of 

phosphoinositide-bis-phosphate (PIP2). IP3 causes release of calcium by binding to 

the IP3R on the SR (Bultynck 2003). RyR are activated by an increase in the local 

[Ca2+] and inhibited by phosphorylation by PKC (Bonev 1997). In the uterus all three 

isoforms have been identified (IP3R 1- 3) (Morgan, De Smedt et al. 1996). In rat 

myometrium the expression of IP3Rs increased with advancing gestation, except for 

IP3R-2, this increase in expression also coincided with an upregulation of the PLC 

cascade associated with the release of IP3. In the uterus all three isoforms of RyR 

have been identified (RyR 1- 3). RyR receptors have not been shown to have any 

major effect on function (Taggart and Wray 1998, Noble 2009). Further work needs 

to be done to elucidate its role in the myometrium. Both channels are stimulated to 

open by the very ion they release, the opening of a single IP3R or RyR is likely to open 

adjacent SR channels. This process is called Ca2+ induced Ca2+ release (CICR). CICR 

inhibitors have been shown to reduce contractility in the myometrium (Phillippe and 

Basa 1996). Although there is little evidence that shows CICR has a role in the uterus 

(Kupittayanant 2002). 

Calcium has also been shown to leave the SR in the form of a calcium leak. The SR’s 

calcium load comes from the uptake of calcium by the sarcoplasmic reticulum 

ATPase (SERCA). The calcium load of the SR is kept at a steady state by release of 

calcium through vectoral calcium release. Studies of smooth muscle have shown 

evidence of these releases in the form of calcium sparks from RyRs and Ca puffs from 

IP3Rs (Ledoux 2008, Tovey 2001). Ca2+ sparks occurring from RyR opening have been 

shown to target the Ca2+-activated BKCa channels on the plasma membrane. The 
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sparks increase the local [Ca2+] around BKCa channels and activate them giving rise to 

spontaneous transient outward currents (STOCs), i.e. small membrane 

hyperpolarisations. In turn this leads to a decrease in L-type calcium channel 

opening, a reduction in Ca2+ entry and relaxation (Burdyga and Wray 2005). This 

mechanism has been demonstrated in vascular (Nelson 1995) and utereric (Burdyga 

and Wray 2005) smooth muscle. Although BKCa channels are present in the uterus, 

Calcium sparks and STOCs have yet to be discovered in the uterus (Wray 2007).  

 

1.3.5 Excitation-contraction coupling mechanism 

Excitation-contraction coupling relies on changes in membrane potential of the 

smooth muscle cells and intracellular calcium concentrations. Contractions occur 

upon depolarization of the surface membrane opening L-type Ca2+ channels, 

followed by an influx of Ca2+ entry into the cell (Figure 1.4). Depolarisation occurs 

spontaneously (Duquette 2005) or via opening of channels or due to hormones 

binding to receptors (Miyoshi 2004, Arnaudeau 1994).   Ca2+ then binds to plasma 

membrane calmodulin which dissociates forming a calcium-calmodulin complex 

containing 4 Ca2+ ions. This activates myosin light chain kinase (MLCK) causing 

phosphorylation of serine 19 on myosin light chains (MLC), and triggers the cycling of 

myosin cross bridges with actin leading to contraction (Wray 2007; Aguilar and 

Mitchell 2010, Webb 2003). Consequently, a fall in Ca2+ concentration through 

uptake into the intracellular calcium store, and efflux through plasmalemmal calcium 

extrusion mechanisms, results in the dephosphorylation of myosin by myosin light-

chain phosphatase, deactivation of myosin light chain kinase and dissociation of the 

calcium-calmodulin complex leading to relaxation (Allen 1994, Webb 2003).  

Agonists can cause contraction independent of membrane potential changes 

through release of calcium from the sarcoplasmic reticulum, the entry of calcium 

through receptor operated channels, or through alterations of the contractile 

proteins sensitivity to calcium. This is called pharmacomechanical coupling (Wray 

1993).  
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Figure 1.4 Excitation-contraction coupling pathway in the uterus. 

Action potentials are a result of changes in ionic permeability of the myocyte 

membrane. Upon depolarisation of the myocyte membrane, L-type calcium channels 

open and allow calcium influx. Calcium then binds to calmodulin, activating myosin 

light chain kinase (MLCK), which phosphorylates myosin (Myosin-P) causing cross 

bridge cycling of myosin and actin and therefore promoting contraction. When 

dephosphorylation takes place producing myosin light chain phosphatase (MLCP), 

this leads to relaxation. 
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1.3.6 pH and Contraction 

Each contraction causes a small acidification. Uterine pH was first measured by 

Dawson and Wray in 1985. A value of ~7.1 at 37oC was found in pregnant and non-

pregnant rat uteri using 31P NMR spectroscopy. Changes in external pH are 

transmitted to the cytoplasm where they may affect cellular function (Wray 1993). 

These changes occur due to physiological processes such as increased activity, 

hypoxia, respiratory effort and acid base imbalance. The metabolic demands of 

labour and changes in metabolites, as described previously during contractions, will 

lead to changes in intracellular pH (pHi). Normal labour is associated with the 

development of maternal acidemia (Sjosted 1962, Cerri 2000). 

A significant alkalinisation has been shown to occur when measuring intracellular pH 

over the last few weeks of pregnancy, from pH 7.07 (33 weeks gestation), pH 7.12 at 

36-37 weeks to pH 7.26 at term (40-43 weeks) (Parratt 1995B). Also the mean value 

of resting pH, was found to be significantly lower in the non-pregnant women (7.06 ± 

0.03; n = 39) when compared to pregnant women (7.14 ± 0.01, n=53)(Parratt 1995A). 

Direct measurements of intracellular pH in human myometrial tissue has shown that 

application of a weak acid and base (30mM) produces intracellular pH (pHi) changes 

of around 0.14pH units (Parratt 1995A) and that changes occur rapidly (<1 minute) 

as the weak acids and bases cross the cell membrane and dissociate. Intracellular pH 

is then gradually restored as pH regulatory mechanisms come into play. The 

intracellular pH change occurring is dependent on concentration of the weak acid or 

base.  

Alteration of pHi in human myometrial strips have been shown to have significant 

effects on spontaneous contractions (Parratt 1995A and B) such that acidification 

decreases and alkalinisation increases, spontaneous force and calcium. This is also 

found in the rat myometrium (Taggart 1993). Intracellular acidification can directly 

reduce Ca2+ current in uterine myocytes and has been shown to directly inhibit force 

production at the level of cross bridge cycling (Nagesetty&Paul 1994, Smith 1998, 

Pierce 2003).  
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Most of the effects of extracellular pH (pH0) are thought to arise from the 

consequent change in intracellular pH, as H+ diffuse across the plasma membrane 

and into the cell. The effects however will be slower and probably to less of an 

extent than direct intracellular pH change. pH0 has been shown to influence L-type 

Ca2+ entry as does pHi (Smirnov 2000, Saadoun 1998, Pierce 2003) and Shmigol 1995 

also showed a slow reduction in current when lowering extracellular pH to 6.9. 

Pierce et al shows upon acidification using changes in pH0 show an increase in 

frequency and decrease in amplitude were as an alkalinisation produced an increase 

in force and a decrease in frequency (Pierce 2003). 

pH changes during labour, induced via hypoxic events, will have significant effects on 

the contracting uterus and may affect the progress of the labour. Recently a test 

based on the work done by Liverpool university and Liverpool women’s hospital 

showing that the uterus produced lactic acid as other muscles do when they work 

hard, but that when it reaches a certain level the substance starts to inhibit 

contractions, was established. The test is thought to help doctors monitor lactic acid 

and  determine which women may go on to deliver vaginally and this lactic acid build 

up could be a reason why some slow labouring women do not respond to induction 

of labour through use of oxytocin.  
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1.4 Hydrogen sulfide (H2S)  

H2S is well known for its rotten egg smell and toxicological effect, a result of its 

reaction with metalloenzymes. In the mitochondria, cytochrome oxidase, the final 

enzyme in the respiratory chain, is inhibited by H2S; this disrupts the electron 

transport chain, interferes with ATP production and impairs oxidative metabolism 

(Chou 2003, Reiffenstein 1992). H2S has a recognition threshold of 0.0047 ppm, at 

this concentration only 50% of humans can detect the characteristic odour and at ~ 

500ppm it can be fatal. However in recent years research has focused on H2S as a 

gaseous signalling molecule (Zhao 2001, Mustafa 2009) and its physiological 

contributions. H2S has a growing list of functions e.g. long term potentiation (Abe 

1996), anti-nociception (Distrutti 2006), exocrine secretion (Schicho 2006) and 

control of blood pressure(Yang 2008) which has led to the suggestion that H2S is 

poised to have a large impact on physiology and medicine. Data from studies on 

inflammation, atherosclerosis, hypertension and ischaemic injury indicate that it can 

be cytoprotective especially against oxidative stress and will be useful 

therapeutically (Szabo 2007). However, it has been associated with diseases such as 

diabetes and asthma (Yusuf 2005). It can act as an oxygen sensor and is part of the 

vascular response to hypoxia (Olson 2006) and inhibits production of reactive oxygen 

species (ROS) leading to increased tissue function (Muzaffar 2008). The reduced 

cardiovascular risk associated with garlic eating seems to be due to the production of 

H2S from polysulfides in the plant (Benavides 2007). 

 

1.4.1 H2S chemistry and compounds used to investigate the effects of H2S  

H2S is a extremely reactive, flammable, colourless gas. It is the sulfur analogue of 

water, but is somewhat less polar, giving it the ability to dissolve well in both polar 

and non-polar environments. The gaseous state and lipophilic nature allows H
2
S to 

dissolve into cell membranes and thus no transporters are needed for it to enter or 

leave the cell (Mathai et al., 2009). H
2
S is also a weak acid, and in aqueous solution 

dissociates according to equation 1 (Figure 1.5A) with pKa 7.05, pH 7.4 at 20°C giving 

rise to ~30% H
2
S and 70% HS

- 

(Lide, 1998).  
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Under physiological situations, pH 7.4 and 37°C, give a distribution of about 20% H2S 

and 80% HS-. It should be emphasised that H2S and SH- may both contribute directly 

to the biological action of hydrogen sulfide, and that SH-, the predominant sulfide 

species under biological conditions, is a nucleophile, which readily binds to metal 

centres in biological molecules (e.g. haemoglobin) or reacts with other compounds. 

Only the first reaction within equation 1 is relevant for biological samples because 

the pKa is in the physiological range. The pKa2 for the second reaction is over 12, 

with some reports suggesting it is as high as 19. S2- is negligible in all physiological 

experiments (Olson 2012). 

H
2
S is a strong reductant, and can spontaneously oxidize to sulfur dioxide or 

elemental sulfur (among other possibilities) as shown in Equations 2 and 3, 

respectively (Figure 1.5B).  These reactions are not particularly fast in the absence of 

catalysts, with halftimes on the order of 30 hr (Millero, 1987). In the presence of 

transition metal ions, such as Fe
2+

, the oxidation rate is greatly increased, and 

addition of the transition metal chelator diethylene triamine pentacetic acid (DTPA) 

to an H
2
S solution effectively blocks this route of oxidation (Tapley, 1999).  

H2S-forming salts are the first compounds used to monitor H2S effects. However, 

they require protons from a solvent and their solvation results in an alkaline 

solution, such as sodium sulfide (Na2S) (Figure 1.5C) which requires 2 protons (Olson 

2012).  Sodium hydrosulfide (NaHS, Figure 1.5C) only requires one proton and  is 

commonly used as an H2S-forming compound, since it dissociates instantaneously to 

Na+ and HS–; the latter then partially binds H+ to form undissociated H2S (Lowicka 

2007). However, as compounds that can release more physiological amounts of H2S 

are sought to better control H2S quantities and monitor its effects, H2S releasing 

compounds have been and are still being produced.  One drug that slowly releases 

H2S following addition to aqueous solution due to its steric hindrance, is GYY4137 

(Figure 1.5C). The likely mechanism of producing H2S is through protonation of the 

sulfide group to form a sulfhydryl moiety followed by hydrolysis to release H2S (Li 

2009). Lee et al confirmed H2S production, illustrating upon incubation of NaHS and 

GYY4137 in culture medium using a methyl blue formation assay resulted in the 

release of measureable amounts of H2S.  Liberation of H2S from NaHS was rapid with 
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plateau from 30-50 mins and declining to undetectable levels by 90 min. H2S release 

from GYY4137 was 10% of that observed with NaHS but was sustained, remaining 

higher than baseline for up to 7 days. Both H2S production enzymes Cystathionine 

beta synthase (CBS) and cystathionine gamma lyase (CSE) use L-cysteine (Figure 

1.5C) as a substrate to produce H2S (described below), hence this has been used to 

investigate H2S effects also. However, L-cysteine is an important amino acid that 

protects stomach lining, the intestines and helps in the absorption of essential 

nutrients from foods also. It is naturally occurring and can be found in most protein 

rich foods ranging from dairy to poultry products.  Naturally occurring garlic derived 

compounds maybe also a good choice of compound to monitor H2S effects as human 

red blood cells convert garlic-derived organic polysulfides into H2S (Benavides 2007). 

Allyl-substituted polysulfides undergo nucleophilic substitution at the α carbon of 

the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate 

during the formation of H2S. Organic polysulfides (R-Sn-R’) also undergo nucleophilic 

substitution at a sulfur atom, yielding RSnH and H2S. Diallyl disulfide (DADS), and 

Diallyl trisulfide (DATS) are the highest producing H2S, garlic-dervied polysulfides 

producing approximately 35 and 100 µM H2S, respectively on the addition of 100 µM 

of each polysulfide (Benavides 2007). 

NaHS has been reported to relax different vascular tissues with EC50 of 1-300 µM 

(Olson 2010). Another report described an EC50 value of 0.7mM term non labouring 

myometrium and 2mM for term labouring tissue using L-cysteine (You 2011). 

GYY4137, a slow releasing H2S compound has been shown to relax contraction in 

aortic rings with an EC50 of 115 µM (Li 2008). This shows that there is considerable 

inter-tissue differences in EC50 values, although experimental differences may account 

for much of the variation. 
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Figure 1.5 Dissociation of H2S (A), reduction of H2S (B) and H2S-forming compounds 

(C).  
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1.4.2 Endogenous H2S production 

Hydrogen sulfide is produced in mammalian tissues from L-cysteine by two key 

enzymes CBS and CSE. Another enzyme that produces H2S is 3-mercaptopyruvate 

sulfurtransferase (3MST), although this enzyme seems to be the more important 

source of H2S in the brain (See Figure 1.6, Ishigami 2009).  Alterations in CBS and CSE 

activity have been associated with functional effects in a variety of tissues (Hosoki 

1997). The expression of CSE has been shown to be higher than that of CBS in several 

smooth muscles (Zhao 2001, Hosoki 1997). Both the CSE and CBS enzymes are 

expressed in rat and human myometrium (Patel 2009, You 2011). There is also the 

presence of a minor non-enzymatic route via reduction of elemental sulphur to H2S 

using reducing equivalents obtained from the oxidation of glucose. An environment 

where oxidative stress and hyperglycaemia is high promotes H2S generation through 

this route (Searcy 1998). 

CBS depends on pyridoxal 5’ phosphate (PLP, vitamin B6). This enzyme catalyses a β-

replacement reaction with amino acid substrates, including L-cysteine, 3-

chloroalanine and serine. Homocysteine, 2-mercaptoethanol and H2S are nucleophile 

substrates, allowing for other possible reactions to take place (Miles &Kraus 2004). 

CBS can catalyse the β-replacement of the sulfhydryl group on cysteine with water, 

releasing serine and H2S but traditionally on the sulfhydryl group of homocysteine 

with the hydroxyl of serine forming cystathionine (Julian 2002). CBS is a 

homotetramer consisting of 551-amino-acid subunits with a subunit molecular 

weight of ~63KDa which bind two co-factors (haem and PLP) and two substrates 

(homocysteine and serine). Several isoforms have been identified although their 

functional effect of them remains unknown (Singh 2009). The haem component of 

CBS is reported to function as a cellular redox sensor (Maclean 2002) which could 

increase H2S generation in response to oxidative stress (Whiteman 2011). Two 

inhibitors are available in the form of O-(carboxymethyl)hydroxylamine 

hemihydrochloride (AOAA) and hydroxylamine (HA). 

CSE also depends on PLP and is a 405-amino-acid protein consisting of a tetramer 

formed by two homodimers, with active and stable dimer of ~45KDa (Sun 2009, 

Whiteman 2011). CSE catalyses the α,γ-carbon elimination of cystathionine to 
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produce cysteine, α-oxobutyrate and ammonia. Additional cysteine-dependent β- 

and homocysteine-dependent γ-reactions have been suggested (Chiku 2009) to 

generate H2S. Additionally CSE may catalyse the β-elimination of cystine (cysteine 

disulfide) via the formation of thiocysteine, which then decomposes non-

enzymatically to H2S (Chiku 2009). The CSE-catalysed α,β-elimination of cysteine was 

the predominant source of H2S accounting for ~70% of the H2S produced (Chiku 

2009). At least two CSE mRNA splice variants have been demonstrated producing 

long and truncated CSE proteins, although the precise role of these variants in 

regulating CSE activity has yet to be disclosed (Lu 1992, Levonen 2000). A condition 

called hyperhomocysteinemia is when there is excess H2S production (Carson 2010). 

Two CSE enzyme inhibitors are available, reversible inhibitor, β-cyanoalanine (BCA) 

and irreversible inhibitor, D,L propylargylglycine (PAG).  

Little information is available on 3MST and H2S synthesis. 3MST is a ~33 kDa 

monomeric or disulfide-linked dimeric protein containing two rhodanese domains. 

At least two splice variants of human 3MST are present, but as with CSE and CBS, 

their regulation and role in H2S synthesis are not understood and no inhibitors exist 

(Whiteman 2011).  
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Figure 1.6 Production of H2S in mammalian cells. Adapted from Wang 2012. 

CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; CAT, cysteine 

aminotransferase; 3MST, 30mercaptopyruvate sulfurtransferase. 
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1.4.3 H2S catabolism 

Oxidation 

Oxidation is the loss of electrons or an increase in oxidation state by a molecule, 

atom, or ion and is the main way to catabolise H2S. It was first reported in 1986 that 

sulfide oxidation occurred in the mitochondria (Powell 1986). H2S is rapidly oxidized 

to thiosulfate (S2O3
2−) by mitochondria and is subsequently converted to sulfite 

(SO3
2−) and sulfate (SO4

2−) (Caliendo 2010). The oxidation of H2S to thiosulfate in the 

rat liver is influenced by heme compounds (Sorbo 1958, Sorbo 1957), metal protein 

compounds and ferritin (Wang 2012). The overall oxidation process take place using 

membrane-bound sulfide-quinone oxidoreductase (SQR) to oxidize H2S to a 

persulfide (S0), the electrons are used to reduce ubiquinone, which then enters the 

electron transport chain. Subsequently, sulphur dioxgenase further oxidizes a 

persulfide to sulfite, consuming O2 and water. The final steps are converting sulfite 

to thiosulfate by the sulfur transferase-catalysed transfer of a second persulfide from 

SQR and excretion of thiosulfate. Thiosulfate is converted to sulfite by thiosulfate 

sulfurtransferase and sulfite is then further metabolized to sulfate by sulfite oxidase 

(stipanuk 2010, Olson 2011, Linden 2012). The production of sulfite and sulfate is 

catalysed by the sulfide-detoxifying enzymes, one of which is Rhodanese (Picton 

2002). Rhodanese consists of two isoforms thiosulfate sulfur transferase (TST), the 

isoform that detoxifies H2S to sulfite and 3MST which cannot (Ramasamy 2006). 

Mice lacking ethylmalonic encephalopathy 1 (Ethe1) exhibit elevated sulphide levels, 

suggesting that Ethe1 is the sulfur dioxygenase involved in H2S metabolism (Linden 

2012). Both Ethe1 and Rhodanese are highly expressed in the liver (Hildebrandt and 

Grieshaber 2008). H2S is a powerful reducing agent and is likely to be consumed by 

endogenous oxidant species in the vasculature also, such as peroxynitrite (Whiteman 

2004), superoxide (Chang 2008), and hydrogen peroxide (Geng 2004). 

 
Methylation 

Primarily methylation takes place in the cytosol. Using thiol S methyltransferase, 

methylation of H2S generates smelly gas methanethiol (CH3SH) and then this can 

slowly be converted to dimethylsulfide (CH3SCH3) through a second methylation. It 
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has been shown that oxidation of H2S happens ~10,000 faster than sulfide 

methylation (Levitt 1999). 

Scavenging 

H2S can be scavenged by methemoglobin to form sulfhaemoglobin and is thought to 

have a short half life (Wang 2012). There is evidence that shows in the presence of 

methemogloblin, H2S production is decreased (Yang 2004). Metallo- and disulfide-

containing molecules such as horseradish peroxidise and oxidized glutathione can 

also scavenge H2S (Smith 1966, Beauchamp 1984). 

1.4.4 Tissue and blood levels of H2S 

Much controversy has been associated with monitoring H2S production and blood 

levels. Tissue production and levels of ‘H2S’ in blood has been the subject of much 

controversy (reviewed in (Whiteman 2009, Olson 2012). H2S levels in blood serum 

and plasma of healthy adults have been measured using the methyl blue method 

and through use of sulfide sensitive electrodes of 20-60µM (Whiteman 2009, 

Lawrence 2000, Yang 2008, Branceleone 2008). More recently fluorimetric-based 

methods have been developed employing monobrombimane to trap ‘free’ H2S and 

the resulting dibimane determined by reverse-phase HPLC to show baseline levels of 

free ‘H2S’ to be in the region of 0.4–0.9 μM (Wintner, 2010). It is therefore likely that 

other methods measure the total sum of H2S-derived species such as HS− and S2− and 

possibly other physiological H2S ‘carrier’ molecules that exist at physiological pH and 

which release H2S under acidic conditions employed in the analytical processes, 

rather than ‘free’ H2S itself and care should be taken to describe the results as such 

(Whiteman 2009). 
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1.4.5 H2S in vascular smooth muscle 

Both the CBS and CSE enzyme have been detected in many smooth muscles tissues 

including airway (Ryu 2009), aorta and mesenteric arteries (Cheng 2004). CSE is the 

predominant enzyme responsible for H2S generation in vasculature smooth muscle 

(Zhao 2001), whereas both CBS and CSE contribute to H2S generation in 

gastrointestinal and penile smooth muscle (Fiorucci 2005, d’Emmanuele di Villa 

Bianca  2009). These data confirm that H2S generation could play a significant role in 

smooth muscle. 

Modulation of smooth muscle activity has been described as one of the main 

functions of H2S in peripheral tissues (Moore 2003). The effects of H2S on smooth 

muscle contractile activity have been examined in several tissues and in general it is 

associated with a reduction in contractile activity. Relaxation has been reported for 

bronchial (Kubo 2007), GI tract (Teague 2002, Gallego 2008, Dhaese 2009), corpus 

cavernosum (Shukla 2009) and bladder (Dombkowsi 2006). In vivo intraperitioneal 

administration of NaHS causes relaxation of the rat colon (Distrutti 2006) and iv 

injection of H2S in rats induced a transient dose-dependent decrease in mean arterial 

pressure (Zhao 2001). In vitro, H2S and NaHS relaxed rat thoracic aorta and portal 

vein pre-constricted with noradrenaline. H2S also relaxed mesenteric arteries (Cheng 

2004); an effect mimicked by L-cysteine. In addition the relaxing effect of L-cysteine 

was abolished by the CSE inhibitor, Propargylglycine (PAG) suggesting that cysteine 

acted through its conversion to H2S. However, some reports in vascular smooth 

muscle have found increased contraction or different effects dependent upon H2S 

concentration (Zhao 2009,Webb 2008). It has been suggested that these differences 

may be due to the lower conversion efficacy of NaHS to H2S at high concentrations 

(Tian 2012). The finding that free H2S values are up to 100-fold higher in smooth 

muscle (aorta) compared to liver, blood, heart and kidney, (Levitt 2011) shows its 

importance in smooth muscle. 

These data suggest H2S is functionally important in smooth muscle as a vasodilator 

(widening of blood vessels leading to a decrease in blood pressure) in diseases were 

high blood pressure is a problem, it highlights a role in new drug synthesis as well as 

help in other diseases such as cystic fibrosis and atherosclerosis (Lowicka 2007).  
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1.4.6 H2S in the Uterus 

Early studies showed that exposure of pregnant rats to 28-100mg H2S/m3 for 7 

hours a day on gestation day 6- day 21 postpartum might increase the mean 

parturition time and prolong labour (Hayden 1990). This was evidence and created 

interest in the role of H2S in the uterus. It has been shown that H2S is produced in rat 

and human myometrium using a methylene blue technique, both the CSE and CBS 

were expressed and that hypoxia increases H2S production (Patel 2009). Further 

work by You et al looked at the expression of CBS and CSE, as well as quantifying the 

amount of protein and mRNA levels in human non labouring and labouring 

myometrium, showing a decrease in the CBS (~63kDa, 205bp) and CSE (~45kDa, 

149bp) mRNA levels and a decrease in CBS at the protein level in labouring tissue. 

This demonstrates the enzymes are regulated over gestation and their down 

regulation in labour suggests the decrease in H2S production could be involved in 

labour onset.  

CBS-/- knockout mice are infertile and CBS+/- knockout mice have reduced fertility 

wereas CSE-/- knockout mice have normal fertility which highlight a possible role of 

H2S in fertility and that CBS may have an important role in reproduction. It could also 

give insight and warrants further work in understanding hyperhomocysteinemia (CBS 

deficiency), which affects the female reproductive function in many ways. Early 

pregnancy loss, congenital birth defects and maternal obstetric complications such 

as pre-eclampsia are some of the related abnormalities (Wang 2012). This also 

suggests the importance of producing new more specific inhibitors of the enzymes, 

to be used therapeutically. 

Myometrial contractility experiments using L-cysteine and NaHS to monitor the 

effects of H2S have been performed. In the pre-term (19 day) rat myometrium, L-

cysteine and NaHS, H2S producers decreased contractility at 1µM-1mM L-cysteine 

concentrations and 1mM NaHS concentration (Sidhu 2001). Hu et al studied the 

effects of NaHS on spontaneous and oxytocin-stimulated term labouring myometrial 

contractions and showed significant decreases in frequency and AUC at 1µM to 1mM 

concentrations. Another study showed a dose dependent decrease from 0.1µM to 
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10mM L-cysteine with an increase in frequency found at and above 1mM L-cysteine 

in term labouring and non-labouring tissue. They also found that the effects found 

on labouring tissue were less potent as well as there being a decrease in H2S 

production (You 2011). Within this thesis we also found the effects of H2S were less 

in the labouring rat myometrium compared to term pregnant myometrium, further 

suggesting that endogenous H2S could be involved in the transition to labour. 

Inhibitors of CBS and CSE, PAG and AOAA blocked or partially blocked effects of L-

cysteine on contractility (You 2011). The effect of H2S and expression of CBS and CSE 

throughout gestation and in particular late pregnancy in the pregnant rat 

myometrium as well as in the non-pregnant human versus term pregnant human 

myometrium has not been researched. 

As new ways to relax the uterus are required to help prevent the global increase in 

pre-term deliveries and as H2S effects look very promising more work needs to be 

performed to help understand the mechanism. As well as to investigate new more 

controlled and physiological H2S releasing drugs with the potential to be used 

clinically such as GYY4137 and even naturally occurring compounds such as garlic 

derived polysulfides. H2S could also shed some light on the mechanism by which 

uterine quiescence is maintained during pregnancy and the initiation of co-ordinated 

contractions in human parturition. 
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1.4.7 Mechanisms responsible for the effects produced by H2S 

The main mechanism linked to H2S effects is via hyperpolarisation through opening 

of KATP channels. Data indicates that H2S relaxes blood vessels mostly, by opening 

ATP-regulated potassium channels in the vascular smooth muscle cells. First, 

glibenclamide, a KATP channel antagonist, attenuated the hypotensive effect of H2S in 

vivo and vasodilatory effect in vitro (Zhao 2001). Second, the vasodilatory effect of 

H2S was attenuated when vessels were incubated in a high-K+ medium. Third, patch-

clamp studies have demonstrated that H2S increases KATP-dependent current and 

induces hyperpolarization in isolated vascular smooth muscle cells (Cheng 2004, 

Zhao 2001). In smooth muscle cells isolated from the rat mesenteric artery, H2S 

increased the open-probability of KATP channels without altering their conductance 

(Tang 2005). Interestingly, CSE inhibitors reduced KATP channel current indicating that 

endogenous H2S continuously stimulated the channel under baseline conditions. 

Unlike the direct effect on smooth muscle cells, the endothelium-dependent 

component of H2S-induced vasorelaxation is independent of KATP channels (Cheng 

2004). Other studies however have found no role for KATP channels (Dhaese 2009, 

Boyarsky 1978, Kubo 2007). In the myometrium  although KATP channels are expressed 

(Curley 2002)  they so far appear to have only a limited functional importance 

compared to voltage dependent K channels (Heaton 1993, Aaronson 2006, Longo 2003) 

, thus other targets for H2S  may  be important in the myometrium. The only 

mechanistic data in the myometrium to date is using the KATP blocker glibenclamide 

showing it abolishes the effects of H2S producers NaHS and L-cysteine (Hu 2011, You 

2011). 

Other reports suggest a potential inhibitory mechanism of H2S involving an effect on 

L-Type calcium channels. Recently, a study in cardiomyocytes suggested, H2S inhibits 

L-type [Ca] channels through sulfhydration, as NaHS decreased the functional free 

sulfhydryl groups in the channels (Zhang 2012). In non-contracting (butanedione 

monoxime treated) cerebral artery, Tian et al, used fluo-4 and showed decreases in 

Ca levels as NaHS was increased from 0.1 to 1 mM, and suggested  that NaHS relaxes 

these vessels by reducing L-type Ca current. There have however been no simultaneous 
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measurements of the changes of intracellular Ca with contraction and no research has 

looked at H2S effect on L-type calcium channels in the myometrium. 

BkCa, SKCa and IKCa have a role in myometrial membrane excitability and H2S has been 

associated with stimulating SKCa and IKCa channels in isolated rat mesenteric arteries 

(Mustafa 2011). BKCa channels have been research more and both a decrease in open 

probability in HEK 293 cells transfected stably with human BKCa channel alpha subunits 

(Li 2010) and recently,  the opposite has been documented in rat pituitary tumor cells 

(Sitdikova 2010). This difference could be associated with differences in BKCa channel 

isoforms. Other studies using blockers iberiotoxin and paxillin in rat mesenteric and 

cerebral arteries showed H2S caused hyperpolarisation through the BKCa channel 

opening (Jackson-weaver 2011). 

 Other mechanisms implicated in the effects produced by H2S include myosin light 

chain phosphotase activation investigated in cardiomyocytes (Dhaese 2009) and 

activation of Cl-/HCO-3 in smooth muscle cells, another mechanism concerned with 

mediating excitability (Tang 2010). Lee et al (Lee 2007) explained H2S vasorelaxant 

effects via activation of pH regulating mechanisms. Intracellular signalling pathways 

connected with H2S effects include PKA, cAMP and PKG (Shukla 2009, Srilatha 2009). 

A review of the actions of H2S in neuronal and smooth muscle tissues concluded that 

it was likely to be targeting different pathways in different tissues (Kimura 2005). It is 

more likely that H2S produces effects on ion channels and other targets by 

sulfhydration i.e cysteine’s covalent modification by which -SH groups on  cysteine 

residues of a protein are converted to –S-SH, via addition of  sulphur from H2S 

(Mustafa 2009). This molecular mechanism is similar to the S-nitrosylation effect of 

NO, however, unlike S-nitrosylation, S-sulfhydration activates rather represses, its 

target proteins (Gallyas, 2012). The most widely researched effect of H2S is on KATP 

channels within smooth muscle as discussed, in vascular smooth muscle cells H2S 

stimulated single-channel activity of KATP channels by directly increasing their 

opening probability (Wang 2012).  Recent work has made progress in identifying 

which residues in the channel are affected by H2S, with Cys 6 and 26 on the 

extracellular N terminal of the SUR1 subunit of the channel being identified (Jiang 
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2010). Sulfhydration has also been associated with stabilising cys residues to prevent 

oxidative stress, damage and preserving protein function (Paul 2012). 

Interestingly, recent work identified a channel permeable to HS− anions in the 

bacterium Clostridium difficile, suggesting that the signalling function of HS− anions 

may not be confined to HS− anion-generating cells and that although there is a long 

way to go and much research to be performed to elucidate the mechanism of H2S 

maybe such channels/ receptors are present in mammalian tissues (Czyzewski 2012).  

Concluding that many mechanisms have been related to the effects H2S generates, 

suggesting different mechanisms are targeted in different tissues. In the myometrium 

specifically, only the use of Glibenclamide a KATP blocker has been performed to 

elucidate the mechanism of H2S. Confirming further work is needed to unveil its role 

especially on calcium entry, L-type calcium channels as well as any other potential 

mechanism that could cause the responses found to H2S producers. 
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1.5 Clinical aspects 

Here I will explain the relevant clinical aspects of my thesis. I characterise non-

pregnant myometrial contractility hence I will discuss the menstrual cycle of the non-

pregnant uterus, the menopause and endometriosis. I am looking at the effect of H2S 

on myometrial contractility of the pregnant myometrium and its potential to help in 

pre-term birth therefore I will also describe pregnancy and parturition as well as the 

complications of a pre-term birth. 

1.5.1 Non -pregnant uterus 

The endometrium is the traditionally accepted end target organ for cyclical ovarian 

hormonal activity. Endometrial cycle of proliferation, differentiation and shedding is 

the result (the menstrual cycle). Myometrium also express oestrogen receptors (ER) 

and progesterone receptors (PR) (Geimonen 1998); some myometrial activities are 

regulated by oestrogen and progesterone.  

The main research investigating myometrial function in non-pregnant women over the 

last two decades have been obtained from the use of open-tipped pressure catheter 

recordings, 3D ultrasound, and magnetic resonance imaging (Brosens 1998, van gestel 

2003, Bulletti 2004, Bulletti and de Ziegler 2006). The contractions observed during 

the menstrual cycle have been termed ‘endometrial waves’ (ljland 1996).  These 

contractions appear to involve only the sub-endometrial layer of the myometrium 

(Aguilar 2010). After menstruation, in the early follicular phase, contractile waves 

occur once or twice per minute and last 10–15s with low-amplitude (usually, 30 

mmHg). As ovulation approaches, the frequency increases to 3–4 per minute. During 

the luteal phase, the frequency and amplitude decrease possibly to facilitate 

implantation. When a blastocyst does not implant, the contraction frequency 

remains low but the amplitude increases considerably (50–200 mmHg) producing 

labour-like contractions at the time of menstruation (Aguilar 2010). The difference in 

contractility through the menstrual cycle suggests some cyclical action of oestrogen 

and progesterone. 
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1.5.2 The menopause 

The menopause is defined as the permanent cessation of menstruation brought on 

by ovarian failure (Rees et al 2009). In the UK, the median age for onset of 

menopausal symptoms is 45.5 to 47.5 years (Burbos 2011).  Follicles in the ovaries 

become less responsive to follicle stimulating hormone (FSH) – which stimulates the 

follicles before ovulation – until ovulation ceases. The menopause is a retrospective 

definition made following one year of amenorrhoea (Rees et al 2009). It includes 

different phases, peri menopause, menopause and post menopause (Rees et al 

2009). The peri-menopause (or pre-menopause) is the period from the onset of 

menopausal symptoms, which is when ovarian function begins to decline, to the 

menopause, when oestrogen production ceases as no follicles. Post menopause are 

the years following menopause (when periods have stopped for at least twelve 

months). The age at which the menopause occurs is determined by genetics, 

environmental factors such as smoking, and surgery (oophorectomy), chemotherapy 

or radiotherapy (Rees et al 2009). Premature ovarian failure (early menopause) is 

where the ovaries stop functioning in women under the age of 45 years (Holloway 

2011). 

Common vasomotor symptoms include hot flushes, night sweats, sweating, 

palpitations, insomnia, sleep disturbances, shivering, increased pulse, feeling faint, 

and nausea. Vaginal and urinary symptoms include vaginal infections, post-coital 

bleeding, painful sex, itching or irritation, decreased libido (hormonal causes: 

atrophic changes (loss of elasticity in vaginal tissues), decreased lubrication, change 

in sensory perception), dysuria, atrophic vaginitis – dryness, urinary 

frequency/urgency, stress and urge incontinence. Other symptoms include changes 

in bleeding pattern, irregular periods, heavier periods, long gaps of amenorrhoea, 

skin itching or crawling sensations, and joint pain. Symptoms of the menopause can 

be managed with lifestyle changes (such as regular exercise and weight reduction), 

complementary treatments (homeopathy) prescribed alternatives (such as 

progestogens to control hot flushes) and hormone replacement therapy (HRT). HRT 

is a combination of oestrogen and progesterone which help to relieve the symptoms 

of menopause. 
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There is little research looking at the differences in contractility with onset of the 

menopause. Domali et al showed invitro the effects of endothelin-1 (ET1) on the 

myometrial contractility of pre and post menopausal women showing observations 

from segments of equilibration periods from both groups, concluding pre-

menopausal myometrium contracted quicker, and were more frequent than post 

menopausal myometrium, however no analysis was performed. Although the main 

finding of this research was the long-lasting effectiveness of ET1 in strips collected 

from post menopausal women compared with pre menopausal women, perhaps the 

effect of ET1 is enhanced by the oestrogen deficiency after menopause. They also 

found that there was no change in the response to High K+ in either group and 

suggested that High K+ and ET1 affect uterine contractility through different 

mechanisms and that ovarian steroids may play a regulatory role in human uterine 

responsiveness to ET1 (Domali 2001).  

 

1.5.3 Endometriosis 

Endometriosis is one of the most common gynaecological disorders. It affects 10–

15% of all women in the reproductive years. The incidence is 40–60% in women with 

dysmenorrhoea and 20–30% in those with subfertility (WSHL 2010). Endometriosis is 

a chronic, inflammatory condition characterised by growth of endometrial tissue in 

sites outside the uterus, most commonly in the pelvic cavity, but also in other parts 

of the body (RCOG 2006). The condition is predominantly found in women of 

reproductive age, from all ethnic and social groups (RCOG 2006).  This ectopic tissue 

responds to the hormonal changes of the menstrual cycle, with subsequent bleeding, 

inflammation, and pain. If the ovaries are affected, endometriotic ovarian cysts may 

develop (Bulun 2009). Symptoms associated with endometriosis may include 

infertility defined as the inability to conceive and is one of the problems associated 

with endometriosis. As this inability is often not absolute, the term 'subfertility' is 

preferred. Dysmenorrhoea is severe uterine pain during menstruation. 

Although the condition may be asymptomatic, common symptoms include 

dysmenorrhoea, dyspareunia, non-cyclical pelvic and abdominal pain, and 

subfertility (RCOG 2006). The cause of endometriosis is not known, but several 

factors are thought to be involved in its development. These include retrograde 
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menstruation (backward movement of menstrual fluids); embryonic cells giving rise 

to deposits in distant sites around the body; an abnormal quantity or quality of 

endometrial cells; failure of immunological mechanisms; angiogenesis; and the 

production of antibodies against endometrial cells (Gazvani 2002, Rock 1992, Seli 

2003, Kyama 2003, Oral 1996). 

Pain due to endometriosis can be functional, neuropathic, due to inflammation, or 

result from a combination of these. It may be evoked by a low intensity, normally 

innocuous stimulus (allodynia), it may be an exaggerated and prolonged response to 

a noxious stimulus (hyperalgesia), or it may be spontaneous in the absence of any 

apparent peripheral stimulus (Lundeberg 2008). In addition, oestrogens and 

prostaglandins probably play key modulatory roles in endometriosis and the pain it 

causes (Lundeberg 2008). Consequently, current medical treatments for the 

condition include drugs such as non steroidal anti-inflammatories (NSAIDs), 

combined oral contraceptives, progestogens (Provera, Mirena coil), 

antiprogestogens (Danazol and Gestrinone) and gonadotrophin releasing hormone 

analogues, as well as surgical excision of endometriotic lesions. However, 

management of pain in women with endometriosis is often inadequate. 

Retrograde contractions are contractions propagating from the cervical end of the 

uterus towards the fundus aiding in sperm transport or possibly in retention of iron 

for example, following blood losses at menstruation (Kunz and Leyendecker 2002). In 

the pregnant uterus, these retrograde contractions may also have roles in the 

maintenance of early pregnancies within the uterine cavity (de Vries et al. 1990), but 

possibly also in causing endometriosis, as menstrual debris enters the peritoneal 

cavity. Despite the common occurrence and the huge economic burden of 

endometriosis, the many biological studies using a range of models have not yet 

identified the causative mechanisms. Changes in myometrial contractions could be 

involved in increasing the back flow of menstrual debris in to the pelvic cavity, giving 

rise to endometriotic deposits. Only in vivo techniques have been investigated to 

look for changes in myometrial contractility in response to endometriosis. In 1995, 

Salamanca and Beltran in a study of inner myometrial contractility using transvaginal 
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sonography in women with endometriosis found a predominantly retrograde pattern 

of subendometrial contractions during menstruation (Salamanca 1995). In 2002, 

intrauterine pressures were recorded showing increased frequency, amplitude and 

basal pressure tone within infertile endometriosis patients when compared to 

infertile patients without endometriosis (control). Retrograde bleeding was found in 

73% of these patients with endometriosis compared to 9% of the control group. This 

study also shows 45% endometrial debris within the cul-de-sac of endometriosis 

patients compared to 0% in controls which could implant (Bulletti 2002). Both 

studies indicate abnormal alterations of uterine contractility at the time of menses 

are involved in the development of endometriosis. No in vitro studies to look at 

myometrial contractions of women with endometriosis have been performed.  

 

1.5.4 Pregnancy 

The uterus has a number of important functions that are fundamental for successful 

pregnancy to occur. It provides an appropriate environment for implantation of the 

fertilised ovum, after which time it undergoes alterations in size and structure to 

accommodate to the needs of the growing embryo. During pregnancy, the uterus 

provides nourishment for the fetus and also serves as a mechanical barrier 

throughout the entire developmental stage. As gestation progresses and term 

approaches however, the uterus undergoes a number of preparatory changes in 

readiness for the onset of labour and for the activity required for successful delivery 

of the fetus and placenta. 

 

1.5.5 Labour 

Human labour is the process whereby the products of conception (fetus, placenta 

and membranes) at a gestation where the fetus is viable (term) are expelled from 

the genital tract. In humans the process begins naturally at term (37- 42 weeks of 

gestation).  Labours that occur between 24-37 weeks of gestation are referred to as 

pre-term labours. 
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The safe passage of the fetus through the birth canal is dependent upon five 

unknown factors of labour (Beazley 1995): 

i) The efficiency of uterine contractions 

ii) the ‘give’ of the pelvis 

iii) the moulding potential of the fetal head 

iv) the fortitude of the mother  

v) the adaptability of the child’s physiology. 

The process of parturition is continuous but traditionally it is divided into three 

stages: 

The first stage 

This is from the onset of uterine contractions to full dilation of the cervix. It is the 

subdivided into the latent phase and the active phase. 

The time onset of spontaneous labour is difficult to determine and indeed the trigger 

for the commencement of this physiological process is still unknown. Clinically, the 

extrusion of the mucus ‘plug’ from the cervix, which appears as a jelly-like substance 

streaked with blood, commonly indicates that the labour process is about to 

commence. This occurs during the latent phase as the cervix undergoes extensive 

changes from a sphincter, designed to retain the products of conception to a dilator. 

The ground substance of the cervix hydrates, collagen is denatured and there is an 

increase in hyaluronidase. As a result, the ground substance changes from a gel to a 

fluid medium permitting deformation of the cervix (Gee &Olah 1993). 

During the active stage of labour the cervix dilates rapidly. The rate of dilation was 

described by Freidman in 1955 as 1cm per hour. This is adhered to today as the rate 

of ‘normal’ progress in labour; however this changes amongst different populations. 

Throughout the first stage of labour, contractions increase in their frequency and 

duration becoming more powerful and painful to the mother. 
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The second stage 

This is from full dilatation of the cervix to delivery of the infant. It can be subdivided 

into two phases; the descent phase, when the presenting part of the infant descends 

through the maternal pelvis, triggering a ‘need to push’ response from the mother 

and a second expulsive phase which results in active maternal pushing and delivery 

of the infant. 

The third stage 

From delivery of the infant to separation and expulsion of the placenta and 

membranes. 

1.5.6 Premature Labour 

Preterm birth is defined as any delivery, regardless of birth weight, that occurs 

before 37 completed weeks of gestation but after the gestation of viability (WHO 

1969). Prematurity is the principal cause of neonatal mortality (Mathews 2004)  and 

a major cause of paediatric morbidity and long-term disability (Hack 2002, 

Mccormick 2002); it is associated with at least 50% of all paediatric 

neurodevelopmental disorders (Goldenberg 1998). The incidence is gradually 

increasing and currently complicates 7% of all pregnancies. These rates however, 

vary considerably between races and populations being about 8.8% in Caucasian and 

18.9% in black communities (Lyon 1994). 

The aetiology of spontaneous premature labour is often unknown. Risk factors 

include: low socioeconomic status, low maternal weight at time of conception, 

maternal smoking, uterine abnormalities, cervical incompetence, antepartum 

haemorrhage, pre-eclampsia, multiple gestations, previous preterm labour and 

infection. 

In some cases prevention of contractility can be a useful way to prevent pre-term 

labour and improve neonatal outcome but in cases of antepartum haemorrhage, 

pre-eclampsia and infection this may not be the case. As of yet there is no clinical 

evidence for the use of tocolytic drugs in prolonging gestation. 
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The choice of tocolytic drug remains controversial. Magnesium sulphate, calcium 

channel blockers, prostaglandin synthase inhibitors, nitric oxide donors, β-adrenergic 

receptor agonists, oxytocin antagonists as well as progesterone (P4) have all been 

suggested to be effective (Arrowsmith 2010). All help to relax the uterus to promote 

quiescence. There is no consensus on the best tocolytic of choice although the rate 

of pre-term delivery has not declined. This suggests the invention used is not 

effective and new ones are needed and that a better understanding of the 

mechanisms of force production by the uterus may therefore lead to the 

development of improved tocolytic agents. 

Overall, there is a need to find better ways to treat uterine dysfunctions. Recent 

evidence suggests a physiological role for H2S for example in the control of blood 

pressure and in changing contractility. Enzymes that produce H2S have been found in 

the myometrium and H2S causes a decrease in contractility suggesting H2S could give 

insight into the mechanism of quiescence and potentially help in pre-term birth. 

However, there are many unknowns in the understanding of H2S, its mechanism and 

its physiological relevance in the myometrium. 
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1.6 Thesis Aims 

The aims of my thesis was to investigate my hypothesis which is –  

H2S relaxes the myometrium and could potentially help therapeutically to reduce the 

incidence of preterm birth. Reduced contractility in the presence of H2S has been 

indicated in other smooth muscles as described in my introduction as well as few 

studies in the uterus. I examined H2S through the use of three H2S producing 

compounds NaHS, GYY4137 and L-cysteine. NaHS is the most widely used H2S 

producing compound although its toxicity and release of H2S in a non-physiological 

large bolus reveals the need for alternative H2S donors suitable for drug development.  

A new H2S generating compound, GYY4137, developed to slowly release H2S and thus 

better reflects physiological conditions and therefore is a more promising drug for 

clinical use. L-cysteine is a substrate for H2S production through the presence of 

enzymes CBS and CSE within tissues, an alternative and more physiological way to 

produce H2S compared to NaHS. Dose response curves were performed for novel 

compound GYY4137 upon myometrial contractility.  

I investigated whether the response to H2S producers changes throughout gestation 

and its potential involvement in quiescence through use of different gestational 

state rat myometrium as well as non-pregnant and term pregnant human 

myometrium. Firstly I characterised the non-pregnant human tissue samples 

received to see how contractility changed with age and pre or post menopausal 

hormonal status. I also looked at whether H2S has an affect on oxytocin stimulated 

term pregnant myometrial contractions. I explored the mechanism of H2S action in 

the myometrium. As suggested by other studies on smooth muscle, KATP channels are 

the most widely researched for its involvement in the relaxant affect produced by 

H2S. In the myometrium, L-type calcium channels are a key target to initiate changes 

in contractility. Therefore I examined the affect of H2S on both L-type calcium 

channels and KATP channels through use of calcium sensitive indicator indo-1, high K, 

BayK as well as KATP channel inhibitor glibenclamide.  

As myometrial contractility is reduced throughout gestation I carried out 

immunohistological analysis on sections of myometrium from non-pregnant and 

term pregnant women to look for the distribution of H2S production enzymes CBS 



68 
 

and CSE and performed Westerns to indicate any differences in expression of both 

enzymes present within these tissues. Rhodhanese is involved in detoxifying H2S. 

Rhodanese consists of two sulfurtransferase components, thiosulfate 

sulfurtransferase (TST) and mercaptopyruvate sulfur-transferase (MST), with close 

structural and size similarities. There is evidence that rhodanese, particularly TST, 

might be involved in detoxification of H2S 

Therefore I examined the presence and expression of TST within the myometrium to 

see if there is any difference between tissues. Overall, looking at both production 

and breakdown of H2S to assess whether or not the alterations in the responses 

found in contractility in response to H2S were due to their upregulation or down 

regulation. 
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Chapter 2 - General Materials and Methods 

2.1 Tissue  

Both human and animal tissues were used for the work performed in this thesis. 

2.1.1 Animal Tissue 

In this study female non-pregnant and time mated Wistar rats (Charles River, KENT, 

UK) were used. For the time mated Wistar rats the male was placed in the cage on 

Day 0 and left overnight to mate. The pregnant rat was allowed to reach 14, 18 and 

term, (day 22) and killed prior to labour. Labouring animals were also used and were 

taken on delivery of the first pup. All animals were humanely killed by cervical 

dislocation under CO2 anaesthesia in accordance with UK Home Office legislation. 

Pups were delivered by caesarean section and killed by decapitation in accordance 

with UK Home Office legislation. Once all pups had been removed the uterus was 

dissected and immediately placed into physiological saline solution (PSS): (154mM 

NaCl; 5.6mM KCl; 1.2mM Mg204.7H2O; 10.9mM 2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid (HEPES); 8mM glucose; 2mM CaCl2, pH 7.4). The uterine tissue 

was then rinsed and cleaned, removing any foetal membranes, placenta, fat and any 

excess blood prior to myometrial dissection. 

 
2.1.2 Human Tissue 

The human tissues used for these studies were non-pregnant and pregnant 

myometrial biopsies. Non-pregnant tissues were collected from women undergoing 

hysterectomy and pregnant tissues from elective caesarean section. Ethical approval 

was sought separately for the use of pregnant and non-pregnant hysterectomy 

myometrium within this project and granted (Appendix 2). For myometrial tissue 

from the Liverpool Women’s NHS Foundation Trust Hospital Myometrial Research 

Tissue Bank (MRTB) a further application was submitted to the hospital (Appendix 3). 

Access was granted from the MRTB.  

Patients were consented by research midwives and clinicians at the preoperative 

clinic. Written informed consent was obtained and proformas detailing any relevant 

clinical history and medical conditions was also filled in (Appendix 4). 
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 Biopsies from non-pregnant women undergoing hysterectomy were taken 

immediately after the removal of the uterus from the lower half of anterior uterine 

wall, so as to approximate the area where the biopsy was removed from the 

pregnant uterus. For pregnant tissues, full thickness biopsies measuring 1cm x 1cm 

were taken after delivery from the middle of the upper edge, lower segment uterine 

incision at time of caesarean section.  All biopsies were then placed immediately into 

chilled Hanks Balanced Salt Solution(HBSS): (137mM NaCl; 5.1mM KCl; 0.44mM 

KH2PO4; 0.26 Na2HPO4 ; 5mM glucose, 10mM HEPES, pH 7.2) and then transferred to 

the physiology department. All biopsies were collected and handled using a protocol 

to prevent tissue degradation and to ensure all condition for experiments were the 

same. Biopsies were used either on the day of collection (within 3 hours of removal 

from organ) or the next day after storage at 4 oC. Biopsies were never used more 

than 18 hours after delivery. Observations from Crankshaw et al (Hillcock and 

Crankshaw (1999) Senchyna and Crankshaw (1999) and Popat and Crankshaw 

(2001)) have indicated that human myometrium stored in PSS for up to 18 hours and 

at room temperature do not behave differently upon exposure to a number of 

different agents compared to fresh samples. Unpublished results obtained within 

our group and my own findings would also confirm this. 

 

2.2 Tissue Preparation and Dissection 
 
Each tissue type was placed in a dissection dish containing PSS solution at room 

temperature. 

 

2.2.1   Animal Tissue Dissection 

A small section approximately 1cm in length of the uterine horn was cut from the 

ovarian end. An incision to the uterine tube longitudinally was cut and opened out, 

then pinned out with the myometrium facing upwards. The surface of the tissue was 

cleaned using a cotton cue tip to remove any serosal cells. Strips of longitudinal 

myometrium were dissected avoiding any underlying circular smooth muscle and 

endometrium and were placed into physiological saline solution. 
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2.2.2    Human Biopsy Dissection 

Samples were transferred from HBSS into PSS where they were cleaned and trimmed 

of any blood, endometrium, and peritoneum. Using blunt dissection an opening was 

made between muscle bundles to expose the inner tissue not subjected to any 

external trauma. Small longitudinal strips of muscle were dissected from the biopsy, 

each approximately 1x5mm and placed into physiological saline solution. 

In specimens from pregnant women, hypertrophy of the smooth muscle bundles 

enabled dissection of strips where the majority of the muscle fibres were running in 

the same direction. Dissection of tissue from non-pregnant women was more 

difficult and it was composed of more interwoven fibres. 

 

2.3. Chemical and Solutions used for Contractility Experiments 

All chemicals used were purchased from Sigma (Dorset, UK) unless otherwise stated. 

In stock solutions of certain substances that did not dissolve within PSS, solvents 

such as ethanol and DMSO were used. These substances do not alter the myometrial 

strip contractile activity as reported previously. (Taggart &Wray, 1997, Taggart & 

Wray 1998, Noble & Wray 2002). 

 

High Potassium Solution 

119.6mM NaCl; 40mM KCL; 1.2mM Mg2047H2O; 10.9mM HEPES; 8mM glucose; 

2mM CaCl2, 

pH 7.4 

 

GYY4137  

A 1mM GYY4137 (Santa Cruz biotechnology, USA) stock solution was prepared in 

PSS. The solution pH was adjusted (pH7.4) before use and made fresh before each 

experiment. Then serial dilutions were prepared from the stock to produce 1nM, 

1µM, 0.1mM. GYY4137 is a H2S donor. 
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Sodium hydrogen sulphide (NaHS) 

A 1mM NaHS solution (Alfa Aesar, uk) was prepared in PSS. The solution pH was 

adjusted (pH7.4) before use and made fresh before each experiment. NaHS is a H2S 

producer. 

 

Dithiothreitol (DTT) 

A 1mM DTT solution (Sigma Aldrich, uk) was prepared in PSS. The solution pH was 

adjusted (pH7.4) before use and made fresh before each experiment. DTT is a 

reducing sulphydryl modifier. DTT transforms disulphide bonds to thiol groups. 

 

Diamide (DM)  

A 1mM DM solution (Sigma Aldrich, uk) was prepared in PSS. The solution pH was 

adjusted (pH7.4) before use and made fresh before each experiment. DM is a 

oxidant sulphydryl modifier. Diamide converts thiol groups to disulphide bonds. 

 

L-Cystiene 

A 1mM L-cysteine stock solution was prepared in PSS. The solution pH was adjusted 

(pH7.4) before use and made fresh before each experiment. Then serial dilutions 

were prepared from the stock to produce 1nM, 1µM, 0.1mM. L-cysteine is the 

substrate H2S production enzymes use in tissue to form H2S. 

 

D-cysteine, 

A 1mM D-cysteine stock solution was prepared in PSS. The solution pH was adjusted 

before use and made fresh before each experiment. D-cysteine is the opposite 

stereoisomer of L-cysteine. Isomers are molecules that have the same molecular 

formula but differ in the way the atoms are arranged around the central atom. 

 

Oxytocin 

A 1mM Oxytocin was prepared by dissolving the lyophilized powder in double 

distilled water. From the 1mM stock a further diluted stock of 10μM solution was 

prepared, aliquoted and stored at -20°C. For use in contractility experiments a 

concentration was used that would not cause a tonic response but would augment 
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contraction frequency and force. A concentration of 0.5nM was used for human 

myometrial strips.  

 

BayK 8644 (BayK) 

BayK was dissolved in ethanol (63mg/ml) to produce a 10 mM stock solution. A 0.1 

µM solution was used in rat tissue and was diluted using PSS. Above 0.5 µM 

concentrations were not used as tonic rather than phasic contractions were found. 

BayK is a calcium channel agonist and increases the open probability to L-type 

calcium channels (Lauven et al 1999). 

 
L-serine 

 A 1mM L-serine stock solution was prepared in PSS. The solution pH was adjusted 

before use to 7.4 and made fresh before each experiment. L-serine is an analogue of 

L-cysteine in which the sulphur atom is replaced with an oxygen atom. 

 
Sodium pyruvate 

 A 1mM sodium pyruvate stock solution was prepared in PSS. The solution pH was 

adjusted before use to7.4 and made fresh before each experiment. 

 
Propylargylglycine (PAG)  

A 1mM PAG stock solution (Santa Cruz biotechnology, USA) was prepared in PSS. The 

solution pH was adjusted to 7.4 before use and made fresh before each experiment. 

H2S is produced by two enzymes Cystathionine gamma lyase (CSE) and Cystathionine 

beta synthase (CBS). PAG is a CSE enzyme inhibitor. 

 

Aminooxyacetic acid (AOAA) 

A 1mM AOAA stock solution was prepared in PSS. The solution pH was adjusted 

before use to 7.4 and made fresh before each experiment. AOAA is a CBS inhibitor. 

 

Hydroxylamine (HA) 

A 1mM HA stock solution was prepared in PSS. The solution pH was adjusted before 

use to 7.4 and made fresh before each experiment. HA is a CBS inhibitor. 
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Garlic  

Solutions from 0.0025- 1 mg/ml Garlic powder(100% pure garlic powder, RAJAH) 

were prepared in PSS. The solution pH was adjusted before use to 7.4 and made 

fresh before each experiment. 

 

Glibenclamide 

A 10mM stock solution was prepared every week in DMSO, then aliquoted and 

stored at -20°C. For use in contractility experiments a 1mM solution using this stock 

was prepared. Glibenclamide is a KATP channel inhibitor.  
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2.4 Measurement of Intracellular calcium 

The concentration of intracellular ions such as Ca2+, Na+ and H+, are important in the 

regulation of cell function. Calcium is the main ion responsible for smooth muscle 

contraction, although pH differences can also be responsible for some of the 

changes we see in contractility especially in response to agonists. The work in this 

thesis involves establishing not only changes in smooth muscle contractility under 

differing conditions but also the associated changes in intracellular calcium ([Ca2+]i), 

and intracellular pH (pHi). 

Fluorescent probes are the most popular method for establishing intracellular 

concentrations of ions. This is because (Tsien 1989): 

 In most cell types the probes can be incorporated into the intact functioning 

cell without any breaching of the plasma membrane. 

 Indicators allow ion activities or free concentrations to be measured. 

 Fluorescent probes can be used at all levels of organisation from whole 

organs to isolated tissue fragments to populations of disaggregated cells to 

single cells to subcellular domains of single cells. 

 Simple application of fluorescent indicators only need a fluorometer but also 

sophisticated instruction is available leading  to dual-wavelength ratio 

fluorometry, digital ratio imaging microscopy and scanning confocal 

microscopy. 

For a fluorescent compound to be a useful indicator, the fluorescence intensity must 

change as a function of the concentration of the measured ion. In addition a valuable 

property is that either the excitation or emission spectrum should change in shape, 

thus allowing dual wavelength measurements (Valdeolmillos & Eisner, 1991). 

 

2.4.1 Fluorescence process 

Fluorescence is a process that begins with excitation. A photon of energy is applied 

via an external source such as a lamp or laser and the energy is absorbed by the 

fluorophore. This forms an elevated ‘excited’ energy state of the fluorophore. This 

excited state however, is not infinite and some of the energy becomes dissipated 

revealing a more relaxed state but does not completely reach its original (ground 



76 
 

energy state). Fluorescence then concludes with the emission of a photon of energy 

from the fluorophore returning back to the ground state. Some energy is dissipated 

during the excited state therefore the energy of the photon emitted is lower and is 

therefore of a longer wavelength than the initial excitation photon. This difference is 

called the Stokes shift and is fundamental to fluorescence techniques as it allows for 

emission photons to be detected against a background of excitation photons. 

This process of fluorescence can reoccur as long as the fluorophore is not irreversibly 

destroyed (i.e photobleaching) therefore the same fluorophore can be repeatedly 

excited and detected. Each fluorophore is also capable of generating thousands of 

photons. For fluorescence to be detected an excitation source, a fluorophore, 

wavelength filters to isolate emission photons from excitation photons and a 

detector that registers emission photons and produces an output that can be 

recorded are required. For detection of cellular ions such as calcium, as used in this 

thesis, often the fluorescent indicator used has different excitation or emission 

spectra for its free and ion-bound form. Fluorescence systems such as these are 

called ratiometric systems since the ratio of the optical signals (ie. excitation or 

emission spectra) can be used to measure the change in the free and ion bound 

indicator forms which in turn can be used to quantify ion concentrations.  

 

2.4.2 Fluorescent indicators and measurement of intracellular calcium and 

intracellular pH (cytosolic free) 

 
The fluorescent indicators Indo-1 and Carboxy SNARF-1 have been used in this 

dissertation. 

Indo-1 AM (Figure 2.1) have binding sites which are modelled on the Ca2+ selective 

chelator ethylene glycol bis(β-aminoethyl ether) N, N’-tetracetic acid (EGTA). EGTA 

at pH 7 is normally occupied by two protons, but the incorporation of the aromatic 

rings in the fluorescent indicators lowers the PKa of the amine nitrogens to 6.5 or 

below thus eliminating all the proton interference for pH>6.8. Ca2+ binding diverts 

the nitrogen lone pair electrons away from the aromatic system, causing large 

spectral changes. The more electron donating or withdrawing the aromatic nucleus, 

the higher or lower the Ca2+ affinity (Tsien 1980). Indo-1 is a dual emission calcium 
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sensitive indicator. Two emission wavelengths are collected, calcium free (approx 

500nm) and calcium bound (400nm), once excited at about 340-350nm (Figure 2.3).  

5- (and 6)-Carboxy SNARF-1 AM (Figure 2.2) is used by exciting the dye at between 

488 nm -530 nm, while monitoring the fluorescence emission at two wavelengths, 

the proton-bound and unbound forms of SNARF emit at 590 and 640 nm (Figure 

2.3), respectively. These are pH-dependent emission shifts going from yellow-orange 

to deep-red fluorescence as conditions become more basic. The absorption 

spectrum of the carboxy SNARF-1 pH indicator undergoes a shift to longer 

wavelengths upon deprotonation of its phenolic substituent (Invitrogen). The use of 

dual emission spectroscopy increases the precision of the measurement, reduces the 

effects of instrumentation shift, movement artefacts or loading dye content, and 

permits the quantification of the signal without knowing the concentration of 

intracellular indicator. The fluorescent signal is also independent of the cell thickness 

(valdeomillos & Eisner, 1991, Grynkiewicz, Poenie et al. 1985). 

These indicators were incorporated into cells as ester AM (acetoxymethyl ester) 

derivatives. This form of the indicator is readily cell permeable as it is uncharged and 

hydrophobic and thus can cross lipid membranes, gaining entry to the interior of 

cells (Kao, 1994). The carboxyl groups in the indicator are essential to the ability of 

the indicator molecule to sense Ca2+; therefore the AM groups must be removed 

once the AM ester has entered the cell. The AM esters are cleaved by cytosolic 

esterases once inside the cell which restricts the indicator to the cytosolic 

compartments. This is because the polycarboxylate form of both indicators is 

multiply charged and thus becomes trapped within the cell. 

 

Tissue loading with indicators can be improved by adding the detergent Pluronic F-

127 as it is a mild non ionic surfactant and dispersing agent for AM esters. Pluronic is 

presumed to sequester the AM ester in micellar from, thus preventing precipitation 

and the micelles are presumed to serve as a steady source to replenish AM esters 

taken up by cells (calcium in living cells, Whitaker, 2010). Both Pluronic acid and AM 

ester stock solutions in Dimethylsulfoxide (DMSO) are mixed intimately before 
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dispersal into an aqueous medium, facilitating the solubilisation of the water-

insoluble dyes in physiological media and improving the loading of indicators into 

cells, this methodology was incorporated into the loading technique. 

 

 

 
 
Figure 2.1 Diagram of the structural modifications involved in loading cells using 

Indo-1 AM. The membrane-permeable  acetoxymethyl (AM) ester derivative of Indo-

1 (Indo-1 AM) is insensitive to Ca2+ions and therefore does not bind to Ca2+. 

However, once inside the cells it is readily hydrolysed to Indo-1 by ubiquitous 

endogenous esterases, releasing the ion sensitive indicator. Cleavage if the ester 

produces a polar form of the indicator which is cell impermeable and is therefore 

retained within the cells interior. (Figure adapted from Johnson I, current protocols). 
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Figure 2.2 Diagram of the structural modifications involved in loading cells using 6-

(and 5) carboxy SNARF-1 AM. The membrane-permeable acetoxymethyl (AM) ester 

derivative of SNARF-1 (SNARF-1 AM) is not affected by pH. However, once inside the 

cells it is readily hydrolysed SNARF-1 by ubiquitous endogenous esterases, releasing 

the pH sensitive indicator. Cleavage if the ester produces a polar form of the 

indicator which is cell impermeable and is therefore retained within the cells 

interior. (Johnson I, current protocols). 
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Figure 2.3 Fluorescence emission spectra of Indo-1 and 5-(and 6)- Carboxy SNARF-
1. 
Ca2+- dependent emission spectra of Indo-1 excited at 338nm, shifts from~475nm in Ca2+- 

free medium to ~400nm when the dye is saturated with Ca2+. pH-dependent emission 

spectra of carboxy SNARF-1 when excited at 488nm shifts from ~640 nm when proton  

bound  form ~590nm when  in its proton unbound form. Figures taken from Invitrogen 

Handbook. 
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2.4.3 Advantages and disadvantages of indicators 
 
Photobleaching 

Photobleaching is the irreversible destruction of the excited fluorophore. Another 

factor contributing to loss of signal is leakage of fluorophore out of the cell. For 

mammalian cells the loss rate is maximal at 37oC and drops sharply as temperature is 

lowered (Kao, 1994). To help reduce photobleaching, detection sensitivity can be 

increased to maximum so allowing a reduction in the intensity of excitation. This was 

undertaken in all experiments. Also neutral density filters were inserted in front of 

the excitation light to reduce light intensity in the tissues (Tsien 1989, Haugland 

1995).  

 

Autofluorescence 

Tissue autofluorescence results from naturally occurring cellular fluorophores, such 

as NADH, and riboflavin. If the contribution from autofluorescence is significant this 

will affect the total fluorescence readings and thus an estimate of autofluorescence 

is required in order to calculate intracellular calcium. It has been shown that 

myometrial strips have autofluorescence at 340nm (luckas et al 2000), which will 

increase the 500nm signal in response to an increase [Ca]i. However the same 

author showed that this autofluorescence was very small (<5%) and the signals 

changed in opposite directions, thus the autofluorescence of myometrial strips is not 

significant. 

 

Subcellular compartmentalisation of fluorophores 

Indicators can be compartmentalised into other organelles such as sarcoplasmic 

reticulum and mitochondria. In order to correct for the contribution of the above 

fluorescence signal, an estimate of their contribution to the signal can be made via 

quenching with manganese (Mn) (Hesketh et al, 1983). The measured emission 

following quenching is subtracted from the total signal, the difference equalling the 

signal derived from cytosolic free indicator. 
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Despite these disadvantages, preventative steps have been put in place to avoid cell 

toxicity and compartmentalisation of the dye. These steps include minimising the 

indicator loading time (<4 hours), loading in a dark place to avoid photobleaching, 

and therefore loss of fluorescence as well as loading at lower temperatures (room 

temperature).  

 

2.5 Force, Calcium and pHi Measurements 

Indo 1AM and Carboxy SNARF-1 AM were prepared by dissolving in DMSO. There is 

no significant effect of DMSO on myometrial contractility at the concentration used 

for Indo-1 AM and Carboxy SNARF-1 AM loading (Taggart, Menice et al. 1997).   

 

2.5.1 Calibration of force 

Force was calibrated to Newtons (N). The electrical signal from the transducer was 

amplified and converted to a digital signal and record on a computer using Axoscope 

software (Figure 2.4). Force was calibrated by comparing force traces to traces 

obtained from a known amount of force. This was done by suspending weights from 

the transducer and converting to force using the equation: N=kg.ms-2 where 1kg is 

9.8N. 

 

2.5.2 Loading Tissue with Membrane Permeable Calcium Indicator Indo -1 

To monitor changes in intracellular calcium concentrations [Ca2+]i  the ratiometric 

calcium indicator Indo-1 acetoxymethyl ester (Indo-1AM, Molecular Probes, Oregon, 

USA) was used. To load myometrial strips 50μg of Indo-1/AM was dissolved in 50μl 

of a solution of 200µl dimethyl sulphoxide (DMSO) containing 0.05g pluronic acid. 

This solution was added to 4ml of PSS and vortexed creating a 12.5μM solution. This 

solution was separated into two 5ml vials to which the dissected myometrial strips 

(no more than 6 strips per 2mls) were added. These were then incubated for 3 hours 

at room temperature on a rotating platform, once loaded tissue was transferred to 

PSS. 
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2.5.3 Loading Tissue with pHi Indicator SNARF 

To monitor changes in pHi  the ratiometric pH indicator caroboxy SNARF-1 (carboxy 

SNARF-1 AM, Molecular Probes, Oregon, USA) was used. To load myometrial strips 

50μg of carboxy SNARF-1/AM was dissolved in 50μl of a solution of 200µl dimethyl 

sulphoxide (DMSO) containing 0.05g pluronic. This solution was added to 8ml of PSS 

and vortexed creating a 11μM solution. 4mls of this solution was separated into two 

5ml vials to which the dissected myometrial strips (no more than 6 strips per 2mls) 

were added. These were then incubated for 2 hours at room temperature on a 

rotating platform, once loaded tissue was transferred to PSS.  

 

2.5.4 Simultaneous Measurements of Calcium and Force or pHi and Force 

All strips were stretched to a resting tension of 2mN to ensure the degree of stretch 

exerted to all samples was standardised across experiments. Loaded myometrial 

strips were transferred to a dissection dish to attach aluminium foil clips either end 

of the strip. These strips were then placed into a 1ml perfusion bath above an 

inverted microscope. The strips were held in place by attaching one clip to a fixed 

hook inside the perfusion chamber and the other to a hook attached to a force 

transducer connected to a digi data acquisition system. This system includes the 

software Axoscope which records the contractility data and output from the photo 

multiplier tubes (PMT’s) for ratio metric measurements of indo-1AM and carboxy 

SNARF-1AM. Once the tissue was attached a stretch of 2mN was given as a standard 

resting tension for all experiments. In the bath the strips were super-perfused with 

physiological saline solution pH7.4 at 37°C and spontaneous contractions were left 

to equilibrate for 60-90miniutes. The inverted microscope objective was focused 

onto the tissue and the fluorescent dye now loaded in the tissue was excited by 

ultraviolet illumination from a xenon lamp at a wavelength of 340nm (indo-1AM), 

530nm (Carboxy SNARF-1AM). Light emitted at both wavelengths for each dual 

emission indicator was detected by the photomultiplier tubes and recorded using 

Axoscope software (Figure 2.4). The rise and fall of intracellular calcium which is 

responsible for myometrial contractions is measured by the changes in the Indo-

1AM ratio calculated from the shifts in the emission signals from the 400nm and 

500nm photomultiplier tubes, as described above. The rise in intracellular pH is 
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measured by the changes in the SNARF-1 ratio calculated from the shifts in the 

emission signals from the 590nm and 640 photomultiplier tubes. 

When incubation experiments were performed (Figure 2.5) for monitoring the 

effects of GYY4137, NaHS, and PSS (control) strips were placed on the rig for a 

control period and then incubated in test solution for 45 minutes, within a hot plate 

in a fume hood at 37oC and then strips were re-attached between the fixed hook and 

force transducer and contractions monitored after 5 minutes of re-attachment.  
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Figure 2.4 – Diagram of Equipment designed to record Simultaneous 
Measurements of Force and Calcium or Force and intracellular pH (pHi).  
To excite the calcium fluorescent dye Ultraviolet illumination is provided by a xenon 
lamp (1). A heat filter (2) and neutral density filter (3) are placed in the path of light 
to reduce the light intensity and heat on the excitation filter (4). A mechanical 
shutter (5) in the excitation pathway keeps the tissue light exposure time to a 
minimum to prevent photobleaching. The excited light hits the dichroic mirror 1 
(DM1) which is angled to reflect onto the indicator loaded tissue strip through a 
focused microscope objective (6). The light emitted by the fluorescence indicator is 
then passed back through the microscope objective, through dichroic mirror1, 
reflected by a sliding mirror and directed through and adjustable diaphragm (7). The 
light then hits a DM2 mounted at 45°. The longer wavelength emitted light is 
diverted to the video camera and the shorter wavelength light is passed through a 
DM3 directed to the photomultipliers (8, PMTs). The DM3 splits the emitted light 
and passes it through emission filters (9) of specific wavelengths for both indo-1 and 
6-(and 5) Carboxy SNARF-1 emissions. To avoid interference from the microscope 
light with the fluorescence measurements, a long pass filter (10) is positioned in 
front of the microscope lamp (11).  
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Figure 2.5- Diagram of the incubation technique to monitor the contractility 
changes using GYY4137 and NaHS. This was performed as H2S is a very potent gas 
and is poisonous at ppm levels. Firstly 1x5mm myometrial strips from rat of varying 
gestation and human tissue were dissected (A). Then once the strips were clipped up 
attached to a fixed hook and force transducer (same set up as Figure 2.4) and 
monitored for a control period (B). After establishing a control period strips were 
incubated in a fumehood at 37oC for 45 minutes (C) and then placed back on the rig 
to monitor changes in contractility (B).All ultimately to produce a force trace, 
underlying calcium transients were also monitored using the same technique via the 
use of Indo-1 (D).  
 



87 
 

2.5.5 Measurements of Force alone 

The same experimental setup as described in section 2.5.4 was used for force alone 

measurements except the tissue was not loaded with a fluorescent dye. For control 

periods, once spontaneous contractions were established the strips were left for 

approximately 30minutes – 60minutes to allow for a sufficient control period of 

contractions of similar force, duration and frequency to develop. Any treatments to 

be used were then either super-perfused through the tissue or incubated at 37oC, pH 

7.4 (Figure 2.5) and the effect on contractility was measured. 

A time control showing a stable period of contractions is depicted in Figure 2.6. 

These are 5 hour traces showing that my dissected myometrial strips can contract 

for over 5 hours before any decline in force is seen due to tissue fatigue within both 

animal and human tissue. An incubation control for both animal and human tissue is 

also shown showing no change in contractility in control PSS solution before and 

after incubation re-attachment (Figure 2.7). 
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Figure 2.6 Control traces - showing a 5 hour period of myometrial contractions 
generated by a small longitudinal strip of myometrium dissected from A) a term rat 
myometrium and B) a term human biopsy.  
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Figure 2.7 Control incubation technique traces. Control contractility before and 

after incubation in physiological saline solution (PSS) of a term rat (A)and human (B) 

myometrial strip . (Strips were placed under a resting tension of 2mN and 

superfused continually with physiological saline solution (pH 7.4) at 37°C before and 

after the 45 minute incubation periods in PSS or NaHS (pH 7.4) at 37°C.  
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2.5.6 Analysis of Contractility Data 

There are four main parameters that were analysed for contractility data. All analysis 

was carried out in Origin Pro (Version 8.5).  

 

Force amplitude 

Force of contractions (mN) was measured by subtracting the value of the baseline 

from the peak of the contraction to be measured. An average of 10-30 minutes 

worth of contractions was taken for the control period which was then compared to 

the average obtained from any treatment periods. 10 minutes worth of contractions 

was assessed in the rat myometrium were as 30 minutes was monitored in the 

human myometrium to accommodate the slower rate of contractions. 

 

Duration 

Duration was measured by calculating the time (minutes) at the half maximal 

amplitude (t50)  point of the contraction. The duration of the same contractions used 

for the average force control period were measured and the same for the treatment 

period. 

 

Frequency 

A period of control contractions was selected and the time period between the 

beginning of one contraction to the beginning of the next was measured. This was 

done for 3-6 contractions and the average time was calculated. From this average 

the number of contractions in a ten minute period for rat contractility or 30 minute 

period for human contractility was calculated for both control and treatment 

periods. 

 

Area under the Curve (AUC)/Mean Integral of Force 

A period of 10-30 minutes control and treatment contractions were selected and the 

area under each contraction in the time period was measured. This gives an 

indication of the overall effects of frequency, duration and force. 
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Figure 2.8 Parameters measured for contractility. 

A) Force amplitude of contraction represented in force (mN) and corresponds to the height 

of the contraction (represented by the red arrow), B) Duration of contraction is represented 

as how long a single contraction lasts (minutes) and was measured at half the maximal peak 

of contraction (dotted blue lines show contraction height and half the contraction height, 

red arrow indicates duration), C) Frequency of contraction, D) AUC of contraction, a measure 

of the overall contractile activity. This data was obtained over 10 minutes for rat contractility 

and 30 minutes for human contractility. 
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2.6 Immunohistochemistry 

2.6.1 Fixation of tissue for immunohistochemistry 

Small pieces of myometrium approx 0.5mm x 0.5mm x 0.5mm were dissected and 

placed into neutral buffered formalin containing 10 % formalin. The fixed samples 

were left for 24 hours in the physiology fridge before transferring back to Liverpool 

Women’s Hospital. The fixed samples were processed and embedded in paraffin wax 

by Kelly Harper at Liverpool Women’s Hospital for human sections, and animal 

sections in the pathology department in the University of Liverpool Veterinary 

School and 4μm sections were cut, then mounted onto glass slides. Sections were 

cut from 6 pregnant and non-pregnant women as well as different stage gestation 

rats. For control tissues and antibody optimisation animal tissue was also used. 

Aorta and Kidney were dissected from 22 day pregnant Wistar rats, also non-

pregnant, 10, 14, 18, 22 day as well as labouring rat uterus were dissected. They 

were then placed in Formalin solution, neutral buffered, 10%. Embedding and 

sectioning was carried out in the pathology department in the University of Liverpool 

Veterinary School. 

 
2.6.2 Staining for CBS and CSE  

CBS enzyme – CBS monoclonal antibody, Abnova, clone 3E1 : 1:50 

CSE enzyme- CTH monoclonal antibody, Abnova, clone 4E1-1B7 : 1:150 

Both CBS and CSE antibodies have been used multiple times in recent literature 

(Rashid 2012, Kasparek 2011, Fu 2012). 

Beta Actin - beta Actin antibody, Abcam : 1:500 

Sections from human myometrium were labelled appropriately before combining in 

a metal rack. The rack was placed into a glass bath containing 100% Xylene for 

30minutes to remove the paraffin wax from the section. The sections were then 

dipped in a series of ethanol baths from 100%. 95%, 85%, 70% and 50% in order to 

rehydrate the sample before being placed into a bath of distilled water for 5 

minutes. The slides were then placed into a bath of boiling 14mM Sodium Citrate 

buffer pH6.0 in a microwave for 20mins to allow optimum antigen retrieval. The 

slides were allowed to cool for 20minutes on ice before washing with distilled water. 

Each slide was removed of excess water before circling the tissue section with 
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ImmEdge Hydrophobic barrier pen (Vector Laboratories) which allows reagents to 

remain localized. To block endogenous peroxidise activity 3% hydrogen peroxide 

(30% Hydrogen peroxide in tris buffered saline (TBS) solution) was dropped onto 

each tissue section and incubated for 30 minutes in a humid chamber. Slides were 

then rinsed with TBS-T (0.05% Tween20) and incubated for 1hour with non specific 

block 5% Bovine Albumin Serum (BSA) dissolved in 0.05% TBS-T. Slides were then 

rinsed again in TBS-T before overnight incubation with the appropriate antibody in 

blocking solution at 4°C. As a negative control one section from both non-pregnant 

hysterectomy and term pregnant patients, as well as a multiple stage rat 

myometrium slide, were incubated overnight in blocking solution alone. As a positive 

control an animal section that is known to express the protein of interest was used 

and for an antibody control beta actin was used. 

The following day the primary antibody was removed by 3 X 15 minute washes with 

TBS-T 

0.05% before incubating with secondary antibody at room temperature for 1hour 

(impress 

Universal Antibody anti-mouse Ig /anti-rabbit Ig, peroxidise polymer detection kit, 

Vector Labs). The secondary antibody was then removed by 3 X 15minute washes 

with TBS-T 

0.05%. As a HRP labelled secondary was used 3,3'-Diaminobenzidine (DAB) was used 

for developing (3,3′-Diaminobenzidine (DAB) Enhanced Liquid Substrate System 

tetrahydrochloride, Sigma). DAB was dropped onto the positive control slide first and 

placed under a microscope until a brown colour developed. The reaction was 

stopped by placing slide into distilled water. All slides from pregnant and non-

pregnant human were developed for the same time to reduce any bias in the 

experiments; the same was done for the different stage gestation animal tissue. 

Once all slides were developed the slides were counterstained with Haematoxylin by 

incubating with the stain for 1 minute followed by washing with tap water for 5 

minutes. The slides were then dehydrated by dipping in a series of ethanol baths 

from 50%, 70%, 85%, 95% and 100% before being placed into xylene. This removed 

any excess paraffin pen that was encircling the section. Cover slips were then 

mounted using DPX mountant and left to dry overnight before image capture. 
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2.6.3 Image Capture of Myometrial Biopsy Sections – DAB Stained. 

The setup used was provided by Liverpool Women’s Hospital university department 

and was composed of the following - 

1. Nikon Eclipse 50i Microscope, Nikon Corporation, Tokyo 100-8331, Japan 

2. Nikon DS-Fi1 digital camera Head 5M pixel, Nikon Corporation, Tokyo 100-8331, 

Japan 

3. Nikon Digital control unit DS-U2 USB, Nikon Corporation, Tokyo 100-8331, Japan 

4. Nikon C-Mount TV adaptor, 0.63x, Nikon Corporation, Tokyo 100-8331, Japan 

5. NIS-Elements-F software, developed for Nikon Instruments 

6. Personal computer (minimum specification 1GB RAM, 2.8GHz processor) 

After launching the NIS- Elements-F software a slide was placed on the microscope 

stage and moved to an area that contained a section of myometrial biopsy. The 

settings were adjusted to normal mode, 640x480 resolution, 1280x960 quality 

capture, and high colour contrast and sharpness. The microscope was calibrated 

using a scale slide for each objective 

– 4x, 10x and 40x. The whole tissue section was scanned on 4x objective and 10 x 

objective to examine which areas would be most representative of the entire tissue 

for photographing. The negative control was examined first to make sure there was 

no staining 

– if any staining was present then the experiment would have to be repeated. All 

slides were blinded to the observer to reduce any bias. After locating the areas with 

a high amount of staining the 40x objective was used to photograph 10 different 

areas of the section. This was repeated for all sections in each 

immunohistochemistry. 

 

 

 

 

 

 



95 
 

2.7 Western Blotting 

2.7.1 Protein Extraction  

A small section of myometrium was dissected, blotted onto filter paper and weighed 

to obtain a maximum of 1 gram of tissue. This was done for compiled non-pregnant, 

14, 18, and 22 day rat myometrial strips as well as pregnant and non-pregnant 

hysterectomy human. Once weighed the samples were snap frozen with liquid 

nitrogen and stored at -20°C. Once a sufficient number of samples were reached the 

tissue was removed from the freezer, diced with a scalpel and ground to a fine 

powder keeping it cold with liquid nitrogen before placing into protein extraction 

buffer – RIPA (Radio-Immunoprecipitation Assay) Buffer (1xPBS, 1.0% IGEPAL,0.5% 

Sodium Deoxycholate, 0.1%Sodium dodecyl sulphate). Just before use 30μl 

of100mM Sodium orthovanadate, 90μl Aprotinin, and 30μl of 10mg/ml of PMSF 

(phenylmethanesulfonylfluoride) was added to each 3ml of RIPA. For each 1g of 

tissue 3ml of prepared RIPA buffer was added, the tissue was then homogenised in 

5ml Bijou tubes using IKA Ultra Turrax T258N on level 5. The homogeniser was 

cleaned between each protein extraction and the samples all placed on ice. The 

homogenate was transferred to Eppendorfs and centrifuged at 12,000 RPM at 4°C 

for 10minutes. The supernatant was transferred to new Eppendorfs tubes and 

recentrifuged at 12,000 RPM at 4 C for 10minutes. Any samples that were in 

separate Eppendorfs were pooled and mixed, aliquoted and stored at -20°C. 

 
 
2.7.2 Protein Assay of Extract from Human Myometrial Biopsies 

A detergent compatible (Dc) technique was used to quantify the level of protein 

within samples. Bio-Rad DC Protein Assay is a colorimetric assay for protein 

concentration following detergent solubilization. The reaction is similar to the well-

documented Lowry assay, but with the following improvements: The reaction 

reaches 90% of its maximum colour development within 15 minutes thereby saving 

valuable time, and the colour changes not more than 5% in 1 hour or 10% in 2 hours 

after the addition of reagents.  

The assay is based on the reaction of protein with an alkaline copper tartrate 

solution and Folin reagent. As with the Lowry assay, there are two steps which lead 
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to colour development: The reaction between protein and copper in an alkaline 

medium, and the subsequent reduction of Folin reagent by the copper-treated 

protein. Colour development is primarily due to the amino acids tyrosine and 

tryptophan, and to a lesser extent, cystine, cysteine, and histidine. Proteins effect a 

reduction of the Folin reagent by loss of 1, 2, or 3 oxygen atoms, thereby producing 

one or more of several possible reduced species which have a characteristic blue 

colour with maximum absorbance at 750 nm. 

The protocol I used was firstly to make a 2ml/mg protein standard stock (0.01g BSA 

in 5ml RIPA) using nominal protease free bovine serum albumin (BSA). Then from 

this, solutions of 1, 0.5, 0.3, 0.25, 0.1 and zero mg/ml standards were produced 

within testubes.  Extracted protein samples were defrosted and diluted in RIPA 

(usually 1:50) within test tubes. All solutions were then vortexed. The Dc reagent 

was then prepared, 20 μl of reagent S to each ml of reagent A (an alkaline copper 

tartrate solution). 500 μl of this reagent was then added to each of the standards 

and proteins of interest (a solution of 100 μl ). Then addition of 4mls of reagent B(a 

dilute Folin Reagent) was added to each test tube and vortexed immediately. After 

15 minutes absorbances could be read using a wavelength of 750nm. A standard 

curve was produced each time the assay was performed and used to acquire protein 

concentrations of test solutions. 

 

2.7.3 Preparation of Protein Samples for Western Blotting 

Once the protein content for the samples had been calculated the samples were 

then prepared to run western blots. 25μg of protein was prepared in 3x loading 

buffer/Laemmili buffer (1M Tris-HCl pH 6.8 2.4ml , 20% Sodium dodecyl sulphate 

3ml, Glycerol 3ml, Bromophenol blue 6mg, beta mercaptoethanol 1.6ml). The 

samples were then boiled at 100°C for 5minutes, placed into ice ready for loading 

onto a gel. 
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2.7.4 Western Blotting 

Antibodies 

CBS enzyme – CBS monoclonal antibody produced in mouse, Abnova, clone 3E1, – 

Dilution 1:250 

CSE enzyme- CTH monoclonal antibody produced in mouse, Abnova, clone 4E1-1B7, 

– Dilution 1:200 

TST enzyme – Anti-TST antibody produced in rabbit, Abcam, ab96543– Dilution 

1:1000 

Beta Actin - beta Actin antibody produced in mouse, Abcam,  Ab8227, – Dilution 1: 

5000 

Secondary Antibody - Goat Anti-Rabbit IgG (H+L), Peroxidase Conjugated, A0545 

 1:100,000 

Secondary Antibody – Goat Anti-Mouse IgG (H+L), Peroxidase Conjugated, A2554, – 

Dilution 1:10000 

1mm spacer plates and glass plates were cleaned using 70% Ethanol and distilled 

water before being assembled into a casting kit (Omni PAGE kit). 12% acrylamide 

tris-HCL resolving gels (30% Acrylamide:Bis-Acrylamide ,distilled water, 1.5M Tris-

HCL pH8.8, 10% SDS, 10%APS, TEMED) were cast, overlaid with distilled water and 

left to polymerise for 1hour at room temperature. The distilled water was poured off 

and a 2.5% acrylamide stacking gel was cast (30% Acrylamide:Bis-Acrylamide, 

distilled water, 0.5M Tris HCl pH 6.8,10% SDS, 10% APS, TEMED) and 1mm 10 well 

combs inserted. This was then left to polymerise for 30minutes. Once the gels were 

fully polymerised they were inserted into the gel tank containing fresh running 

buffer (25mM Tris-base, 192mM glycine, 0.1% SDS, distilled water, pH8.3) and the 

combs were removed. 8μl of protein standard was added to wells on both ends of 

the gel (SeeBlue® Plus2 Pre-Stained Standard) and 20μl of the prepared proteins 

were added to the remaining wells. The gel was then run at 150 volts for 90 mins or 

until the loading buffer ran off the end of the gel. The gels were then removed from 

the tank and moved to blotting cassettes for protein transfer to nitrocellulose 

membrane (Whatman Protran nitrocellulose membrane). 

The assembled cassettes were placed into the gel tank on top of a magnetic stirrer 

surrounded by ice. Transfer buffer was poured into the tank (Tris-Base, glycine, 
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distilled water, 10% methanol) and the tank was run at 40V for 1hour at room 

temperature. Once transferred the nitrocellulose membranes were placed into 

blocking solution (5% BSA dissolved in TBS-T 0.1%) for 2 hours. The antibodies to be 

used were diluted to the appropriate concentrations in prepared antibody solution 

(TBS, 0.1%BSA, 0.1% Sodium Azide) and the membranes were incubated in 

containers overnight at 4°C on a rocker. The following day the primary antibody was 

removed and the membranes were washed 3x10minutes with TBS-T 0.1% then 

incubated with the appropriate secondary antibody diluted in 5% BSA for 1hour at 

room temperature. The membranes were then washed for 1x 15mins and 4 x 

5minutes before incubation for 5minutes with chemiluminescent (ECL) substrate for 

horseradish peroxidase (HRP) enzyme (SuperSignal West Pico Chemiluminescent 

Substrate, Thermo Fisher Scientific). The membranes were then transferred to a film 

cassette where they were exposed to film for the required amount of time (CL-

XPosure Film, ThermoFisher scientific). The films were then developed using Kodak 

processing chemicals developer and fixer. 

 

2.7.5 Analysis of Western Blots 

Analysis of Western blots was carried out in Image J 

(http://rsb.info.nih.gov/ij/index.html). 

The original blot was scanned and saved as a TIFF file. The image was then opened in 

ImageJ. Using the rectangular selection tool a rectangle was drawn around the first 

band in the image. This same rectangle is then used to select every band on the 

image. Once all have been selected a profile plot is generated showing peaks which 

represent the density of each band. Using the wand tool each peak was highlighted 

which gave the area and percentage of each peak. This process was repeated for the 

loading control used (actin) so that there were two set of percentage values – one 

for Actin and one for the samples. The percentage value for the sample was then 

divided by the loading control to get an adjusted density for each sample. 

2.8 Statistics 

For statistical analysis and construction of graphs and tables Microsoft excel, origin 8 

and Graphpad Prism 5 were used. 
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All data was normally distributed. The standard deviation, standard error of the 

mean were calculated. As the data followed the Gaussian distribution Student’s t-

test, 

ANOVA, and Spearman’s correlation were used, as detailed in each results chapter. 

 

For all tests significance was taken as a p value less than 0.05 (p<0.05*).  
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Chapter 3 -  

Characterisation of non- pregnant human myometrium: Examining the 
differences in myometrial contractility from pre-and post menopausal 

women and from women with endometriosis 

3.1 Abstract  

This chapter characterises the contractile activity of non-pregnant human myometrium 

particularly looking at age of women, menopausal state and the effect of 

endometriosis.  Characteristics of spontaneous and high K+ depolarisation-induced 

contractile activities of each tissue type are discussed. 

Myometrial tissue was obtained from 40 women aged between 27-74 years and 

contractility was assessed. The contractile functions of the uterus and the changes it 

undergoes from pre-menopausal to post-menopausal state will be discussed and any 

changes in myometrial contractility and responses as women age. Here its indicated 

that in the non-pregnant state there is a significant decrease in contractility for both 

spontaneous and depolarised-induced contractions, with age. Hence, concluding 

that there is a decrease in the contractile activity of the myometrium in the post-

menopausal state. Muscle atrophy and down regulation of Ca channels may account 

for this. 

Endometriosis is defined as the presence of endometrial tissue outside the uterine 

cavity. Altered contractions of the uterine muscles (myometrium) may be involved in 

the pathogenesis, as they may increase the back flow of menstrual debris in to the 

pelvic cavity, where it can be implanted and give rise to endometriotic deposits.  I 

found that the forces of myometrial contractions from women with endometriosis 

are decreased when compared to fertile, healthy, pre-menopausal women, having a 

hysterectomy for menorrhagia, irregular bleeding, or pelvic pain, but the frequency of 

these contractions increased. These data suggest a potential involvement of altered 

myometrial activity in women suffering with this condition. 

In summary this data provides the most extensive in vitro characterisation of non-

pregnant human myometrium to date and shows significant effects of aging and 

endometriosis on its activity. 
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3.2 Introduction 

 The smooth muscle of the uterus, the myometrium, is active throughout a woman’s 

life, not just during labour and delivery. The mechanism generating the contractile 

activity and its physiological regulation are reasonably well understood and have 

been described within Chapter 1.  

The purpose of this chapter is to characterise and consider how aging, menopausal 

state and endometriosis may affect uterine function in non-pregnant women. 

Characterising this tissue is necessary background information needed to further my 

work on the effects of H2S on the non-pregnant compared to the term pregnant human 

myometrium. There has however been little previous in vitro work investigating non-

pregnant myometrium, discussed below.  

The first recording of contractile activity in the non-pregnant uterus was performed by 

Heinricius using a balloon technique in 1889 (Heinricius 1889). The main research 

investigating myometrial function in non-pregnant women over the last two decades 

have been obtained from the use of open-tipped pressure catheter recordings, 3D 

ultrasound, and magnetic resonance imaging (Brosens 1998, van gestel 2003, Bulletti 

2004, Bulletti and de Ziegler 2006). The contractions observed during the menstrual 

cycle have been termed ‘endometrial waves’ (ljland 1996).  These contractions 

appear to involve only the sub-endometrial layer of the myometrium (Aguilar 2010). 

After menstruation, in the early follicular phase, contractile waves occur once or 

twice per minute and last 10–15s with low-amplitude (usually, 30 mmHg). As 

ovulation approaches, the frequency increases to 3–4 per minute. During the luteal 

phase, the frequency and amplitude decrease possibly to facilitate implantation. 

When a blastocyst does not implant, the contraction frequency remains low but the 

amplitude increases considerably (50–200 mmHg) producing labour-like contractions 

at the time of menstruation (Aguilar 2010). However there are few in vitro studies 

performed on non-pregnant human myometrial strips. Domali et al showed the 

effects of endothelin-1 (ET1) on the myometrial contractility of pre and 

postmenopausal women showing observations from segments of equilibration 

periods from both groups, concluding pre-menopausal myometrium contracted 
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quicker, and were more frequent than post menopausal myometrium, however no 

analysis was performed. Although the main finding of this research was the long-

lasting effectiveness of ET1 in strips collected from postmenopausal women 

compared with premenopausal women, perhaps the effect of ET1 is enhanced by the 

oestrogen deficiency after menopause. They also found that there was no change in 

the response to KCl in either group and suggested that KCl and ET1 affect uterine 

contractility through different mechanisms and that ovarian steroids may play a 

regulatory role in human uterine responsiveness to ET1 (Domali 2000). The only 

other study using strips mounted in organ baths demonstrated smaller contractions 

produced by the non-pregnant myometrium when compared to non labouring term 

pregnant myometrium, whilst time between contractions was lower in the non-

pregnant myometrium. This study also suggested that SK/IK channels are present 

and functional in myometrium from pregnant and non-pregnant women 

(Rosenbaum 2012). This chapter will explore more extensively, the statistical 

differences in contractility of the non-pregnant myometrium, specifically in pre and 

post menopausal women. 

In non-primate species, the myometrium consists of two distinct layers—an outer 

longitudinal layer and an inner circular layer. However, in the human, the 

myometrial substructure is not so well defined (Huszar and Naftolin, 1984). Looking 

at the oestrus cycle in the non-pregnant rat, four distinct periods are found: pro-

oestrus, oestrus, metoestrus and dioestrus. Pro-oestrus typically lasts 12–14 h, 

oestrus 25–27 h, metoestrus is shortest lasting 6–8 h and dioestrus lasts 55–57 h (38, 

39). Mating occurs during the oestrus period (‘heat’) and as rats are nocturnal 

breeders, under normal lighting conditions, oestrus occurs overnight, typically 

commencing between 16.00–22.00 h. Ovulation is timed to coincide with copulation, 

and usually occurs 8–11 h after the onset of oestrus (Hafez 1970). During pro-oestrus 

electrical and mechanical activity of the rat myometrium has shown a relative 

quiescence with little propagation of any electrical events. Noble et al showed using 

longitudinal myometrial tissue strips that Ca2+ signalling and mechanical activity are 

greatest in metoestrus and dioestrus compared to pro-oestrus and oestrus (Wray 

2008). Ca2+ signalling still needs to be addressed in the non- pregnant human 

myometrium. 
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The first contractions felt by a woman are those occurring once menstruation has 

started, possibly those giving rise to uterine cramping (dysmenorrhoea) often 

associated with menstruation. Non-pregnant myometrium has been shown to 

undergo different patterns of contractility during the menstrual cycle; one being 

‘focal and sporadic bulging of the myometrium’, (Togashi 2007; Togashi et al. 1993) 

giving rise to sustained contractions and the other, rhythmic, ‘wave-like’ 

contractions, sometimes called uterine peristalsis, which are thought to aid in the 

sloughing of the endometrium (Bulletti et al. 2000; de Vries et al. 1990; 

Lyons et al. 1991). The female steroid hormones change during the menstrual cycle 

and influence the pattern of myometrial activity in women and other animals (Wray 

and Noble 2008). These hormones will also control levels of ATP and other 

metabolites needed for contraction (Crichton et al. 1993; Wray and Tofts 1986) and 

can affect excitability (Parkington et al. 1999). Recordings of uterine pressures in the 

non-pregnant uterus as well as MR imaging have shown that the pattern of 

myometrial activity, such as the direction of contraction propagation throughout the 

uterus varies with the different phases of the menstrual cycle, already discussed 

(Bulletti et al. 2000; Kunz and Leyendecker 2002; Nakai et al. 2003; Togashi 2007), 

although diurnal variations, have not been observed (Kido et al. 2006). The pattern 

of contractile activity in the non-pregnant uterus is closely related to uterine 

function. Thus antegrade contractions, that is contractions propagating from the 

fundus towards the cervical end of the uterus, favours forward emptying or 

discharge of uterine content i.e. menstrual blood, (Lyons et al. 1991) whilst cervico-

fundal contractions aid in sperm transport or possibly in retention of iron for 

example, following blood losses at menstruation (Kunz and Leyendecker 2002). In 

the pregnant uterus, these retrograde contractions may also have roles in the 

maintenance of early pregnancies within the uterine cavity (de Vries et al. 1990), but 

possibly also in causing endometriosis, as menstrual debris enters the peritoneal 

cavity, discussed below. 

The menopause is another major feature in a woman’s life. With the gradual decline 

in hormonal secretion from the ovaries, up to the point when the ovaries cease to 

function, the menopause is characterised by a loss of regular menstruation and 
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eventually permanent cessation of menses (Burger et al. 2002). One might assume 

that following the menopause, uterine activity ceases. However, rhythmical 

myometrial contractions have been seen  by ultrasound examination in 

postmenopausal women (de Vries et al. 1990) and one previous study has reported 

spontaneous activity in strips from human post-menopausal myometrium in vitro 

(Domali et al 2001). However to date no study has looked at the function of 

myometrium from women much over 40, and certainly not for women in their 50s or 

even older, nor at the activity of the non-pregnant uterus with age, menopausal 

state described within this chapter. 

There is growing awareness of the potential importance of abnormal myometrial 

function in common disorders of reproduction. Endometriosis is one of the 

commonest benign gynaecological conditions; it causes severe pelvic pain, painful 

periods, painful sexual intercourse and infertility. Endometriosis has a prevalence of 

38.5% and 5.2% in infertile and fertile women, respectively (Wheeler 1989, Verkauf 

1987). Despite the common occurrence and the huge economic burden of 

endometriosis, the many biological studies using a range of models have not yet 

identified the causative mechanisms. Changes in myometrial contractions could be 

involved in increasing the back flow of menstrual debris in to the pelvic cavity, giving 

rise to endometriotic deposits. Only in vivo techniques have been investigated to 

look for changes in myometrial contractility in response to endometriosis. In 1995, 

Salamanca and Beltran in a study of inner myometrial contractility using transvaginal 

sonography in women with endometriosis found a predominantly retrograde pattern 

of subendometrial contractions during menstruation (Salamanca 1995). In 2002, 

intrauterine pressures were recorded showing increased frequency, amplitude and 

basal pressure tone within infertile endometriosis patients when compared to 

infertile patients without endometriosis (control). Retrograde bleeding was found in 

73% of these patients with endometriosis compared to 9% of the control group. This 

study also shows 45% endometrial debris within the cul-de-sac of endometriosis 

patients compared to 0% in controls which could implant (Bulletti 2002). Both 

studies indicate abnormal alterations of uterine contractility at the time of menses 

are involved in the development of endometriosis. An interesting histological study 

on human non-pregnant myometrial sections, staining for nerve fibres illustrated 
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increased nerve fibre density in both the endometrium and myometrium of 

endometriosis women implying a role in the mechanism of pain generation in this 

disease (Tokushige 2007). This chapter is the first in vitro study to look at myometrial 

contractions of women with endometriosis.  

 

The aims of this chapter were: 

1) to characterise the in vitro contractile activity of the non-pregnant human 

myometrium 

2) to compare activity between pre- and post-menopausal women, 

 3) to examine the influence of age on contractility 

4) to examine the effects of  women suffering from endometriosis on contractility 
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3.3 Methods 

3.3.1 Tissue 

Non-pregnant human myometrial tissue was obtained from women undergoing a 

hysterectomy. I was blinded to the details of the sample until experiments had been 

performed and analysed. Once performed details including age, menopausal state, 

medication, reason for hysterectomy and whether they had endometriosis was 

obtained. Further details of how the tissue was obtained are described in the general 

methods section, Chapter 2. 

Non-pregnant samples were obtained from hysterectomy specimens. The indications 

for surgery were as follows: menorrhagia (25), prolapse (8), irregular bleeding (1), pelvic 

pain (2) and not stated (4). Therefore the total number of non-pregnant samples in this 

study group was 40, with 22 women in the pre-menopausal group, 8 in the post 

menopausal group and 10 in the endometriosis group (all pre-menopausal). The 

endometriosis group was then separated into no medication including women with 

mirena coil (n=6) and those on medication (n=4). Medication included gonadotropin-

releasing hormone therapy (GnRHa,2), hormone therapy (1) and Provera (1). All surgery 

was performed under general anaesthesia and the biopsy was removed immediately 

following removal of the uterus at surgery. The median age of all 40 women studied 

was 52.2 years. 

Endometrium was scrapped off all biopsies. Looking down the microscope all strips 

dissected were clearly muscular. The tissue size used for all experiments was 

standardized at 5x2x1mm. Within hysterectomy samples, the tightly bound muscle 

fibres, made dissection of individual muscle fibres more challenging compared to the 

pregnant tissue in which identification of the longitudinal muscle fibres was easier. 

Strips could be attained just as easily in the non-pregnant human myometrium from 

pre, post-menopausal and endometriosis samples.  

3.3.2 Measurement of tension 

Tissue preparation and measurements of tension are the same as those described in 

Chapter 2. 
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3.3.3 Solutions  

PSS and High K+ solutions were produced as described in Chapter 2. 

3.3.4 Statistics 

Contractility measurements were made and analysed blinded to the woman’s age, 

menopausal state, and condition. Significance was tested by Student’s t-test with 

P<0.05 taken as the significance value. When more than two groups were tested 

ANOVA with Bonferroni post hoc test were performed. All data was normally 

distributed. All values represent the mean ± s.e.m where ‘n’ is the number of 

samples with each representing a different woman. In some cases results are 

expressed as percentage of control contractions were control is 100%. 
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3.4 Results 

Data were obtained from 40 non-pregnant hysterectomy samples. These samples 

varied in age, (From 27 to 74 years) and menopausal status, 32 pre-menopausal, 

including 10 who had endometriosis and 8 post menopausal women. These details 

and other relevant information is given in Tables 3.1 and averages in Table 3.2.  

For analysis of contractile parameters, including time to establishment of activity, 

data are first analysed and presented from the entire 40 patients and then divided 

into the following sub-groups (1) menopausal status, (2) the effects of endometriosis 

and (3) the effects of medication. There was no significant difference between BMI, 

and time to spontaneously contract in any of the sub groups. However age was 

significantly increased in the post–menopausal group as expected. These differences 

are explored later in this chapter. 

 

Table 3.1 – Demographics for non-pregnant women - showing Age, reason for 

hysterectomy, BMI, medication and if they had endometriosis or not for each patient 

(n=40) 

 

Age 

(years) 

Reason for 

Hysterectomy 

BMI Medication Endometriosis? Pre or Post 

menopausal? 

45 Menorragia 25.3 NONE NO Pre 

50 Not stated 25.2 NONE NO Pre 

48 Menorragia 22 Mirena coil NO Pre 

34 Irregular bleeding 26.1 Implanon NO Pre 

44 Menorragia 28 NONE NO Pre 

37 Menorragia 23.7 Mirena coil NO Pre 

43 Pelvic pain 28.2 NONE NO Pre 

27 Menorragia 22.7 Tranexamic and 

mefenamic acid 

NO Pre 

46 Menorragia 21 NONE NO Pre 

32 Not stated 27.2 Mirena coil NO Pre 
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44 Not stated 23.7 Norethisterone until 

previous day 

NO Pre 

27 Not stated 23 NONE NO Pre 

44 Menorragia 30.4 Mirena coil NO Pre  

45 Menorragia 29.4 Mirena coil NO Pre 

48 Menorragia 29.9 NONE NO Pre 

37 Pelvic pain 29 NONE NO Pre 

46 Menorragia 35.4 NONE NO Pre 

46 Menorragia 23.2 NONE NO Pre 

46 Menorragia 27.4 NONE NO Pre 

31 Menorragia 24.9 NONE NO Pre 

27 Menorragia 23.8 NONE NO Pre 

46 Menorragia 29 NONE NO Pre 

44 Menorragia 34.9 NONE Endometriosis 

(stage1) 

Pre 

48 Menorragia 22.9 NONE Endometriosis 

(stage1) 

Pre 

39 Menorragia 29.4 Mirena coil Endometriosis 

(stage1) 

Pre 

47 Menorragia 25.5 NONE Endometriosis 

(stage 3) 

Pre 

44 Menorragia 33.3 Mirena coil Endometriosis 

(stage 3) 

Pre 

31 Menorragia 21.0 Mirena coil Endometriosis 

(stage 4) 

Pre 

  39 Menorragia 27.2 GnRHa Endometriosis 

(stage 4) 

Pre 

47 Menorragia/Fibroids 31.2 GnRHa Endometriosis 

(stage 2) 

Pre 

39 Menorragia 25.9 Hormone therapy Endometriosis 

(stage 2) 

Pre 
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45 Menorragia 29.2 Provera Endometriosis Pre 

71 Prolapse 24.1 HRT 17 years NO Post 

62 Prolapse 24.4 HRT 6 years NO Post 

47 Prolapse 28.0 NONE NO Post 

63 Prolapse 28.1 NONE NO Post 

58 Prolapse 20.0 NONE NO Post 

69 Prolapse 24.7 NONE NO Post 

62 Reduce risk of ovarian 

cancer 

32.2 NONE NO Post 

74 Prolapse 32.0 NONE NO Post 

 Rows highlighted in pink are pre-menopausal women, in purple are pre-menopausal 

women with endometriosis and in blue are post-menopausal women. 

 

Table 3.2 – Summary of demographics of all 40 non-pregnant women as well as 

separated into subgroups of menopausal status (pre and post menopausal women) 

and endometriosis- showing average age, BMI and times to contract for each group.  

 

Averages 

Age 

(years) 

BMI Subgroups Time to spontaneous 

activity (mins) 

45.6 26.8 All women (n=40) 43.7 

41.1 26.8 Pre-menopausal (n=32) 48.5 

63.2*# 26.7 Post menopausal (n=8) 24.7 

42.3 28.1 Endometriosis (n=10) 54.7 

 

* Represents a significant difference between pre-menopausal and post menopausal, and # between 

pre-menopausal and endometriosis patients using ANOVA with Bonferroni pos hoc test 
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3.4.1 Establishment of spontaneous contractions in vitro. 

All tissues were superfused with physiological salt solution (PSS) at 37 oC, pH 7.4 until 

spontaneous contractile activity was established. In general from my observations 

the commencement of contractions occurred within 1 hour of continuous perfusion, 

average time to contract for entire 40 patients was 43.7±4.5 minutes. Once 

contractions reached equilibrium, contractions were monitored for 1-2 hours and 

then high K + solution applied to enable maximal force to be obtained.  

All samples contracted apart from those dissected from a 71 year old woman, the 

second oldest in this cohort.  

Table 3.3 Contractile parameter averages for the entire 40 non-pregnant patients 

studied within this chapter.  

 Mean (± S.E.M) 

n- number 40 

Amplitude (mN) 2.4mN±1.6 

Frequency (no. Per 

30 minutes) 

6.4± 0.6 

 

Duration 

( minutes) 

0.9 ± 0.3 

 

AUC  

(30 minutes) 

9.1± 1.0 

 

High K+ response 

(mN) 

2.4± 0.4 
 

 

Amplitude of contraction is peak force (mN); Frequency of contraction is the number 

of contractions occurring in 30 minutes; Duration of contraction is duration of 

contraction (min) measured at the half maximal peak of contraction; AUC is a 

measure of the overall contractile activity occurring in 30 minutes and High K+ 

response is the maximal force of contraction measured in mN. 
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3.4.2 Comparing the contractility of pre-menopausal women with post menopausal 

women. 

Firstly, the contractility of all 40 women in Table 3.1 was assessed in response to 

menopausal status. The average age of this group was 45.6 and average BMI was 

26.8 as found in Table 3.2.  

(a) Contraction amplitude 

The mean force amplitude of spontaneous contractions recorded for post-

menopausal women (n=8) was significantly reduced, 0.3±0.1 mN, compared to pre-

menopausal women (n=32), 2.9 ±0.4 mN. Representative recordings of 

spontaneously contracting myometrium from pre-menopausal and post menopausal 

women are shown in Figure 3.1. 

(b) Frequency 

Frequency of contractions was greater (Figure 3.1) for post-menopausal women, 8 ± 

1.8 contractions per 30 minutes; pre-menopausal women: 6 ± 1.3 contractions per 

30 minutes. No significant difference was found. 

(c) Duration 

The mean duration of contraction was shorter (Figure 3.1) in post-menopausal 

women; 0.5 ± 0.2 minutes, pre-menopausal women; 1.0 ± 0.1 minutes. The 

difference however did not reach significance. 

(d) Area under the curve (AUC, 30 minutes) 

AUC of contractions, which is an index of the total work done by the tissue over a 

given time period, was calculated by measuring the area under the contraction curve 

in 30 minutes. For post-menopausal women mean AUC calculated was 1.4± 0.6 a.u 

compared to 11.1± 1.6 a.u recorded for pre-menopausal women. Contractile activity 

of post-menopausal women was significantly reduced compared to pre-menopausal 

women. 
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(e) High K+ depolarisation-induced contractions 

Depolarisation was produced by external elevation of [K+] in the PSS to 40mM for 2 

minutes. Under application of a K+ depolarisation stimulus, the pattern of contractile 

activity is noticeably increased compared to spontaneous phasic contractions, high 

K+ producing a maintained ‘tonic like’ force of contraction. As the response to high K+ 

is thought to measure the maximal contractile activity that the tissue can yield via 

membrane depolarisation and consequently opening of L-type calcium channels, I 

examined and compared this response in both the pre and post-menopausal groups. 

The high K+ response achieved by post-menopausal myometrium was significantly 

lower, 0.5±0.2mN compared to the pre-menopausal myometrium 2.7± 0.4mN. 

(f) Time to commencement of spontaneous activity 

Spontaneous contractions occurred in vitro, in pre-menopausal myometrium (n=32) 

after 48.5 ± 5.0 minutes compared with post menopausal (n=8) myometrium after 

24.7± 7.4 minutes. This was proven to be a significantly lower time to spontaneously 

start contract in the post menopausal women using a Student’s t-test. 

 

Table 3.4 summarises the mean values of contraction amplitude, frequency, 

duration, AUC and High K+ responses of spontaneous contractions as well as the 

mean time to spontaneously contract in pre and post-menopausal myometrium 

(n=40). 
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Figure 3.1 Contractility of pre and post-menopausal women. 

Representative recordings of spontaneous contractions of human non-pregnant 

myometrium from women that have undergone hysterectomy’s; and are in (A) pre-

menopausal and (B) post-menopausal. In this and subsequent figures, the tissues 

were superfused with PSS (pH 7.4) at a flow rate of 1.5ml/min and maintained at 36-

37 oC.  
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Table 3.4 Summary of spontaneous contractile activity of pre and post- 

menopausal non-pregnant myometrium. 

 Pre-menopausal Post menopausal P-value 

n- number 32 8     --- 

Amplitude (mN) 2.9mN±0.4 0.3mN±0.1 0.001* 

Frequency (no. Per 

30 minutes) 

6.0± 1.3 

 
8 ± 1.8 

 
0.266 

Duration 

(minutes) 

1.0 ± 0.1 

 
0.5 ± 0.2 

 
0.076 

AUC  

(30 minutes) 

11.1± 1.6 

 
1.4± 0.6 

 
0.007* 

High K+ response 

(mN) 

2.7± 0.4  
 

0.5± 0.2 

 
0.044* 

Time to spontaneous 

activity (minutes) 

48.5 ± 5.0 24.7± 7.4 0.032* 

Average age 41.1 63.2 2.5x10-9* 

Average BMI 26.8 26.7 0.921 

*denotes significance recorded at p<0.05 level 

Table 3.4: Student T-test identified that mean force amplitude of contraction, AUC of 

contraction, mean High K+ response and time to spontaneously contract was 

significantly reduced in the myometrium from post-menopausal women. Frequency 

of contraction of post-menopausal myometrium was shown to be increased 

however, not significance compared to pre-menopausal women. Amplitude of 

contraction is peak force (mN); Frequency of contraction is the number of 

contractions occurring in 30 minutes; Duration of contraction is duration of 

contraction (min) measured at the half maximal peak of contraction; AUC is a 

measure of the overall contractile activity occurring in 30 minutes, High K+ response 

is the maximal force of contraction measured in mN and time to spontaneously 

contract measured in minutes. Average age and BMI in both groups are also found 

showing significant differences in the age of both groups. 
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3.4.3 Comparing the contractility of pre-menopausal women with post menopausal 

women excluding endometriosis patients. 

Endometriosis did not make the tissue less likely to contract. However, next the 

contractility of the 10 women with endometriosis were removed to see if the 

contractility pattern changes and to see if the statistical differences remain. All the 

endometriosis patients are removed from the pre-menopausal group. The average 

age of the 30 women being assessed is 46.6 and the average BMI is 26.4, not much 

different to when the entire 40 women were examined. 

(a) Contraction amplitude 

The mean force amplitude of spontaneous contractions recorded for post-

menopausal women (n=8) remained significantly reduced, 0.3±0.1 mN, compared to 

pre-menopausal women (n=22), 3.3±0.5 mN. 

(b) Frequency 

Frequency of contractions was greater for post-menopausal women, 8 ± 1.8 

contractions per 30 minutes; pre-menopausal women: 5± 0.8 contractions per 30 

minutes. Without endometriosis patients, frequency became closer to significance. 

(c) Duration 

The mean duration of contraction was shorter in post-menopausal women; 0.5 ± 0.2 

minutes, pre-menopausal women; 1.2 ± 0.2 minutes. A student t-test showed this to 

be significantly shorter at p<0.05 level of significance without using endometriosis 

patients. 

(d) Area under the curve (AUC, 30 minutes) 

For post-menopausal women mean AUC calculated was 1.4± 0.6 a.u compared to 

12.6± 2.2 a.u recorded for pre-menopausal women. Contractile activity of post-

menopausal women remained significantly reduced compared to pre-menopausal 

women. 
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(e) High K+ depolarisation-induced contractions 

The high K+ response achieved by post-menopausal myometrium was still 

significantly lower, 0.5± 0.2mN compared to the pre-menopausal myometrium 3.1± 

0.5mN. 

(f) Time to commencement of spontaneous activity 

Spontaneous contractions occurred in vitro, in pre-menopausal myometrium (n=22) 

after 45.7± 6.6 minutes compared with post menopausal (n=8) after 24.7± 7.4 

minutes. This reduction in the time to spontaneously contract in the post 

menopausal women did not reach significance. 

 

Table 3.5 summarises the mean values of contraction amplitude, frequency, 

duration, AUC and High K+ responses of spontaneous contractions as well as the 

mean time to spontaneously contract in pre and post-menopausal myometrium 

without endometriosis patients incorporated. 

 

 

 

 

 

 

 

 

 

 



118 
 

Table 3.5  Summary of spontaneous contractile activity of pre and post 

menopausal non-pregnant myometrium without patients with endometriosis 

incorporated. 

 Pre-menopausal Post menopausal P-value 

n- number 22 8     --- 

Amplitude (mN) 3.3mN±0.5 0.3mN±0.1 0.001* 

Frequency (no. Per 

30 minutes) 

5± 0.8 

 
8 ± 1.8 

 
0.072 

Duration 

(minutes) 

1.2 ± 0.2 

 
0.5 ± 0.2 

 
0.036* 

AUC  

(30 minutes) 

12.6± 2.2 

 
1.4± 0.6 

 
0.005* 

High K+ response 

(mN) 

3.1± 0.5 

 
0.5± 0.2 

 
0.045* 

Time to 

spontaneous 

activity (minutes) 

45.7± 6.6 

 
24.7± 7.4 0.087 

Average age 40.6 63.2 1.3x10-7* 

Average BMI 26.3 26.7 0.794 

*denotes significance recorded at p<0.05 level 

Table 3.5: Student T-test identified that mean force amplitude of contraction, mean 
duration of contraction, AUC of contraction and mean High K+ response was 
significantly reduced in the myometrium from post-menopausal women. Frequency 
of contraction of post-menopausal myometrium was shown to be increased 
however, this did not reach statistical significance compared to pre-menopausal 
women. Time to spontaneously contract did not reach significance either. Amplitude 
of contraction is peak force (mN); Frequency of contraction is the number of 
contractions occurring in 30 minutes; Duration of contraction is duration of 
contraction (min) measured at the half maximal peak of contraction; AUC is a 
measure of the overall contractile activity occurring in 30 minutes, High K+ response 
is the maximal force of contraction measured in mN and time to spontaneously 
contract measured in minutes. Average age and BMI in both groups are also found 
showing significant differences in the age of both groups. 
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3.4.4 In vitro non-pregnant pre-menopausal women compared to post-menopausal 

women contractility, age and BMI-matched. 

To investigate whether the changes found are age related or menopausal status 

related or both, a subset of samples from both the pre and post-menopausal groups 

were age and BMI matched as close as possible. With 9 women in the pre-

menopausal group with a mean age of 46.4 years old and BMI 26.4 and 5 women in 

the post-menopausal with mean age of 58.4 years old and BMI 26.5 groups were 

compared. Representative age matched traces are seen in Figure 3.2.  These data 

suggest that the changes we see are somewhat age related although there are not 

enough n numbers or younger post menopausal women to accurately assess.  

However, it was found that still there is a significant decrease in force amplitude in 

the post menopausal group, all other parameters were not significant as seen in 

Table 3.6. 
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Figure 3.2 Pre and Post-menopausal myometrial contractility age-matched. 
 

 Representative isometric recordings of spontaneously contracting myometrial strips 
obtained from a (A) 50-year old pre-menopausal women, and (B) 47-year old post 
menopausal woman. Strips were placed under a resting tension of 2 mN and 
superfused continually with physiological saline solution (pH 7.4) at 37 oC. 
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Table 3.6 Summary of spontaneous contractile activity of pre and post- 
menopausal non-pregnant myometrium age and BMI matched. 

 Pre-menopausal Post menopausal P-value 

n- number 9 5     --- 

Amplitude (mN) 3.6±0.8 0.4±0.1 0.017* 

Frequency (no. Per 

30 minutes) 

5.3± 1.7 

 
7.2 ± 1.6 

 
0.493 

Duration 

(minutes) 

1.4 ± 0.3 

 
0.7 ± 0.3 

 
0.213 

AUC  

(30 minutes) 

13.5 ± 4.4 

 
1.6± 0.9 

 
0.030 

High K+ response 

(mN) 

3.7± 0.9 

 
0.5± 0.2 

 
0.018 

Time to 

spontaneous 

activity (minutes) 

43.8±9.7 23.2±9.0 0.187 

 

*denotes significance recorded at p<0.05 level 

Student T-test identified that mean force amplitude of contraction was significantly 

reduced in the myometrium from post-menopausal women compared to pre-

menopausal. All other parameters were not significantly changed. AUC and High K+ 

were close to significance. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; AUC is a measure of the overall 

contractile activity occurring in 30 minutes and High K+ response is the maximal force 

of contraction measured in mN. Time to spontaneously contract measured in 

minutes. 
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3.4.5 How does non-pregnant contractility of the myometrium change with age? 

Spontaneous contractions of non-pregnant human myometrium irrespective of 

menopausal state or presence of endometriosis was examined in relation to age. 

Figure 3.3 shows four original contractility recordings of a non-pregnant women 

aged 32 (A), 48 (B), 62 (C) and 74 (oldest women in study) (D). A very clear loss of 

force is apparent with increasing age. The mean data shown in Table 3.7 also 

supports this observation. There was no significant change in the time to commence 

contractions although time to commence contractions tended to be shorter in the 

patients >50, showing that the older uterus is not deterred in producing 

contractions.  When contractions from all women are plotted on a scatter graph 

(Figure 3.4) this clear drop in force with age is seen (r=-0.6969, significant negative 

correlation, p<0.0001 , n=40). To investigate the effects of age on the non-pregnant 

uterus in more detail, the effects of stimulating the uterus with high K+ (40 mM) 

which maximally activates functional voltage-gated L-type Ca channels inducing Ca 

entry and a large tonic contraction was examined (Wray 2001). For each tissue, 

spontaneous contractions were normalised to this maximal high K+-induced 

contraction to determine the degree of activation of the contractile mechanisms. 

The results have been analysed for age cohorts of 25-29, 30-39, 40-49, >50 as shown 

in Figure 3.5.  

The reduction in spontaneous force with age produced by the non-pregnant uterus 

was prominent (Figure 3.5 A) and is also seen when L-type Ca channels are 

maximally activated with high K+ (Figure 3.5 B). These data suggest that there might 

be loss of functional muscular tissue (e.g. less muscle cells) or decreased expression 

of L-type Ca channels, with age (Floyd and Wray 2007; Taggart et al. 1997), although 

larger sample numbers are required before these suggestions can be tested. In 

Figure 3.5 C the spontaneous contractions are normalised to the high K+ contraction 

to control for any effects of age on decreased muscle or L-type Ca expression. 

Relative to high K+ the amplitude of spontaneous activity decreases with age, 

suggesting that the mechanisms generating spontaneous contractions are also 

affected. Thus in non-pregnant myometrium the suggestion is that force may decline 

as a consequence of muscle loss and/or decreased Ca entry and thus decreased 
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activation of the contractile proteins. Reduced levels of oestrogen with aging would 

be expected to cause atrophy of the myometrium, and thus explain some of the 

decreased strength of contractions. There is evidence that the L-type calcium 

channel subunits and function are hormonally regulated, with oestrogen associated 

with increasing, (Batra 1987) and progesterone decreasing (Tezuka et al. 1995) 

calcium channel expression. Thus as oestrogen decreases with aging, levels of L-type 

Ca channels will be expected to fall. 

 

 

 

 



124 
 

 
Figure 3.3 Non-pregnant  myometrial contractility in relation to age.  
 

 Representative isometric recordings of spontaneously contracting myometrial strips 
obtained from a (A) 32-year old, (B) 48-year old and (C) 62-year old woman  (D) 74-
year old woman undergoing hysterectomy (expanded version of contractions can 
also be seen within D). Strips were placed under a resting tension of 2 mN and 
superfused continually with physiological saline solution (pH 7.4) at 37 oC. 
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Table 3.7 Summary of spontaneous contractile activity of non-pregnant 
myometrium in relation to age.  
 

 Age 
25-29 

Age 
30-39 

Age 
40-49 

Age 
>50 

n- number 3 9 19 9 

Amplitude (mN) 6.4 ± 0.6 2.8± 0.4* 2.2± 0.4* 0.8± 0.5* 

Frequency (no. Per 

30 minutes) 

2.7± 0.7 8.3±4.0 5.7±0.9 6.7± 1.6 

Duration 

(minutes) 

1.1± 0.3 1.1± 0.3 1.1± 0.2 0.5± 0.2 

AUC  

(30 minutes) 

20.3± 0.9 
 

12.4± 2.5 8.5±2.3* 1.63±0.6* 

Time to 

spontaneous 

activity (minutes) 

66.8± 27.9 43.5± 8.3 49.1± 5.8 23.1± 6.7 

 

 

*denotes significance recorded at p<0.05 level when compared to age 25-29 group. 

ANOVA with Bonferroni post hoc test identified that mean force amplitude of 

contraction, and AUC of contraction was significantly reduced in the myometrium 

from the age of over 40. Frequency of contraction, mean duration of contraction and 

time to spontaneously contract were not significantly different. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; and AUC is a measure of the 

overall contractile activity occurring in 30 minutes. Time to spontaneously contract 

was measured in minutes. All data are expressed as mean ± S.E.M. 
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Figure 3.4 Scatter graph to show the relationship between AUC and age 

Plot of spontaneous contractile activity (quantified as area under the contraction 

curve, (AUC, in arbitary units, au) of strips of non-pregnant myometrium obtained 

from women undergoing a hysterectomy, against age. Post menopausal women are 

denoted by blue triangles and pre-menopausal women are denoted by red diamonds 

(unless patient is pre-menopausal and suffers from endometriosis, these patients are 

denoted as purple diamonds). Spearman’s rank test found a significant negative 

correlation between integral of force and age combining pre and post menopausal 

women (rs=-0.6969, significant negative correlation, p<0.0001, n=40).  

 

R=-0.6969, P<0.0001 
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Figure 3.5 Uterine activity with age of non-pregnant myometrium. 
A)Spontaneous force of contraction, B) force of contraction under high K+ (40 mM) 
depolarisation and C) force of contraction normalised to high K+ (where high K+ 

equalled 100 %), according to age group. Mean force of contraction declined with 
increasing age group 
(A) with little activity observed from myometrial strips from women over 50 years of 
age, in comparison to their younger counterparts. Similarly, maximal force achieved 
under high K+ (B) was reduced in samples from older women, and normalised force 
shown in (C) also declined with advancing age. Values represent means ± SEM 
denoted by error bars, values in white indicate n-numbers. Anova with Bonferroni 
post hoc test was used, * represents p<0.05, **represents p<0.01, *** represents 
p<0.001. 
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3.4.6 How does non-pregnant contractility change with age excluding 

endometriosis patients? 

Next the 10 endometriosis patients were taken out to see if the significant changes 

in contractility parameters and correlation in relation to age still remained. The 

endometriosis patients were only removed from ages 30-39 and 40-49. The mean 

data of 30 women without endometriosis separated by age can be found below in 

Table 3.8. The same age groups (30-39, 40-49, >50 when compared to 25-29 year 

olds) remain significant with and without the inclusion of patients with 

endometriosis. Frequency, duration and time to spontaneously contract remain not 

significantly changed. When contractions from these 30 women without 

endometriosis are plotted on a scatter graph (Figure 3.6), the significant negative 

correlation is still found in force with age. The correlation seen is slightly more 

negative at rs=-0.7214 (significant negative correlation, p<0.0001 , n=40). 
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Table 3.8 Summary of spontaneous contractile activity of non-pregnant 

myometrium in relation to age excluding patients with endometriosis.  

 

 Age 
25-29 

Age 
30-39 

Age 
40-49 

Age 
>50 

n- number 3 5 13 9 

Amplitude (mN) 6.4 ± 0.6 2.5± 0.3* 2.5± 0.5* 0.8± 0.5* 

Frequency (no. Per 

30 minutes) 

2.7± 0.7 4.9±1.2 5.4±1.3 6.7± 1.6 

Duration 

(minutes) 

1.1± 0.3 1.4± 0.4 1.2± 0.3 0.5± 0.2 

AUC  

(30 minutes) 

20.3± 0.9 13.5± 3.4 8.5±2.3* 1.63±0.6* 

Time to spontaneous 

activity (minutes) 

66.8± 27.9 30.8± 8.8 48.1± 6.0 23.1± 6.7 

 

 

*denotes significance recorded at p<0.05 level when compared to age 25-29 group 

Anova with bonferroni post hoc test identified that mean force amplitude of 

contraction, and AUC of contraction was significantly reduced in the myometrium 

from the age of over 40. Frequency of contraction, mean duration of contraction and 

time to spontaneously contract were not significantly different. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; and AUC is a measure of the 

overall contractile activity occurring in 30 minutes. Time to spontaneously contract 

was measured in minutes. 
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Figure 3.6 Scatter graph to show the relationship between AUC and age without 

endometriosis patients included 

Plot of spontaneous contractile activity (quantified as area under the contraction 

curve, (AUC, in arbitary units, au) of strips of non-pregnant myometrium obtained 

from women undergoing a hysterectomy, against age. Post menopausal women are 

denoted by blue triangles and pre-menopausal women are denoted by red 

diamonds. Spearman’s rank test found a significant negative correlation between 

integral of force and age combining pre and post menopausal women (rs=-0.7214, 

significant negative correlation, p<0.0001, n=30).  

 

 

R=-0.7214, P<0.0001 
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3.4.7 Myometrial contractility of women with endometriosis. 

All endometriosis patients used within this thesis were pre-menopausal. Hence the 

control group used to compare the contractility of endometriosis patients were pre-

menopausal women without endometriosis. Both groups were age and BMI matched 

as close as possible with the pre-menopausal group at an average age of 41.2 years 

old and average BMI 26.4 and with the endometriosis group at an average age of 

42.0 years old and average BMI 28.0. Both BMI’s are in the overweight category. 

(a) Contraction amplitude 

The mean force amplitude of spontaneous contractions recorded for women with 

endometriosis (n=10) was reduced, 2.1±0.4 mN, compared to pre-menopausal 

women (n=21), 3.2±0.5 mN. Representative recordings of spontaneously contracting 

myometrium from pre-menopausal women and a women suffering from 

endometriosis are shown in Figure 3.7. 

(b) Frequency 

Frequency of contractions was greater (Figure 3.7) for endometriosis women, 9.0 

±3.5 contractions per 30 minutes; pre-menopausal women: 5± 0.8 contractions per 

30 minutes. 

(c) Duration 

The mean duration of contraction was shorter (Figure 3.7) in endometriosis women; 

0.8± 0.1 minutes, pre-menopausal women; 1.2 ± 0.2 minutes.  

(d) Area under the curve (AUC, 30 minutes) 

For women with endometriosis mean AUC calculated was 7.9± 1.7 a.u compared to 

12.3± 2.3 a.u recorded for pre-menopausal women. Contractile activity of 

endometriosis women was reduced compared to pre-menopausal women. 

(e) High K+ depolarisation-induced contractions 

The high K+ response achieved by the myometrium from women with endometriosis 

was lower, 1.8± 0.4mN compared to the pre-menopausal myometrium 3.0± 0.6mN. 
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(f) Time to commencement of spontaneous activity 

Spontaneous contractions occurred in vitro, in pre-menopausal myometrium after 

45.7 ± 6.6 minutes compared with patients with endometriosis after 54.7± 6.7 

minutes. This increase in the time to spontaneously contract in the women with 

endometriosis was not statistically different. 

 

Table 3.9 summarises the mean values of contraction amplitude, frequency, 

duration, AUC and High K+ responses of spontaneous contractions as well as mean 

time to commence spontaneous contractions in pre-menopausal myometrium and 

myometrium from women with endometriosis. 

All results did not reach significance. However as some of the endometriosis patients 

were on hormone therapy potentially affecting myometrial contractions, the 

contractility of women with endometriosis and on no medication other than mirena 

coil (a contraceptive) were compared.  
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Figure 3.7 Endometriosis and Pre-menopausal myometrial contractility. 
 

 Representative isometric recordings of spontaneously contracting myometrial strips 
obtained from a (A) 44-year old pre-menopausal women, and (B) 46-year old woman 
with endometriosis. Strips were placed under a resting tension of 2 mN and 
superfused continually with physiological saline solution (pH 7.4) at 37 oC. 
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Table 3.9 Summary of spontaneous contractile activity of women with 

endometriosis and pre- menopausal non-pregnant myometrium. 

 Pre-menopausal Endometriosis P-value 

n- number 21 10     --- 

Amplitude (mN) 3.2±0.5 2.1±0.4 0.168 

Frequency (no. Per 

30 minutes) 

4.9± 0.8 

 
9.0 ± 3.5 

 
0.139 

Duration 

(minutes) 

1.2 ± 0.2 

 
0.8 ± 0.1 

 
0.162 

AUC  

(30 minutes) 

12.3± 2.3 

 
7.9± 1.7 

 
0.221 

High K+ response 

(mN) 

3.1± 0.5 

 
1.8± 0.4 

 
0.238 

Time to 

spontaneous 

activity (minutes) 

45.7 ± 6.6 54.7± 6.7 0.411 

 

*denotes significance recorded at p<0.05 level 

All parameters were not significantly changed. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; AUC is a measure of the overall 

contractile activity occurring in 30 minutes and High K+ response is the maximal force 

of contraction measured in mN. Time to spontaneously contract measured in 

minutes. 
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3.4.8 Myometrial contractility of women with endometriosis and not on 

medication. 

The pre-menopausal group included 13 patients not on any medication and 2 

patients with mirena coil. The endometriosis group included 3 patients not on any 

medication and 3 patients with mirena coil. Average age and BMI for each group can 

be found in table 3.10. 

(a) Contraction amplitude 

The mean force amplitude of spontaneous contractions recorded for women with 

endometriosis (n=6) was reduced, 1.7±0.5 mN, compared to pre-menopausal women 

(n=13), 3.1±0.6 mN.  

(b) Frequency 

Frequency of contractions was significantly greater for women with endometriosis, 

12 ± 5.6 contractions per 30 minutes; pre-menopausal women: 4± 0.4 contractions 

per 30 minutes. A student t-test at p<0.05 level of significance was used. 

(c) Duration 

The mean duration of contraction was shorter in endometriosis women; 0.7 ± 0.2 

minutes, pre-menopausal women; 1.3 ± 0.2 minutes.  

(d) Area under the curve (AUC, 30 minutes) 

AUC of contractions, which is an index of the total work done by the tissue over a 

given time period, was calculated by measuring the area under the contraction curve 

in 30 minutes. For women with endometriosis mean AUC calculated was 7.8± 2.8 a.u 

compared to 13.7± 2.8 a.u recorded for pre-menopausal women. Contractile activity 

of endometriosis women was reduced compared to pre-menopausal women. 

(e) High K+ depolarisation-induced contractions 

The high K+ response achieved by myometrium from endometriosis women was 

lower, 1.8± 0.5mN compared to the pre-menopausal myometrium 3.0± 0.6mN. 



136 
 

(f) Time to commencement of spontaneous activity 

Spontaneous contractions occurred in vitro, in pre-menopausal myometrium (n=13) 

after 52.4± 6.8 minutes compared with patients with endometriosis on no 

medication (n=6) after 45.5 ± 7.9 minutes. No significant difference found. 

 

Table 3.10 summarises the mean values of contraction amplitude, frequency, 

duration, AUC and High K+ responses of spontaneous contractions as well as mean 

time to commence spontaneous contractions in pre-menopausal myometrium and 

myometrium from women with endometriosis on no medication. 
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Table 3.10 Summary of spontaneous contractile activity of women with 

endometriosis and not on medication and pre- menopausal non-pregnant 

myometrium. 

 Pre-menopausal Endometriosis P-value 

n- number 13 6     --- 

Amplitude (mN) 3.1mN±0.6 1.7mN±0.5 0.182 

Frequency (no. Per 

30 minutes) 

4.1± 0.4 

 
12.5 ± 5.6 

 
0.040* 

Duration 

(minutes) 

1.3 ± 0.2 

 
0.7 ± 0.2 

 
0.169 

AUC  

(30 minutes) 

13.7± 2.8 

 
7.8± 2.8 

 
0.277 

High K+ response 

(mN) 

3.0± 0.6 

 
1.8± 0.5 

 
0.316 

Time to 

spontaneous 

activity (minutes) 

52.4 ± 6.8 45.5± 7.9 0.550 

Average age 43.1 42.2 0.755 

Average BMI 27.8 27.8 0.998 

*denotes significance recorded at p<0.05 level 

Student’s T-test identified that mean Frequency of contraction was significantly 

increased in the myometrium from women with endometriosis not on medication 

compared to the pre-menopausal women control group. All other parameters were 

not significantly changed. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; AUC is a measure of the overall 

contractile activity occurring in 30 minutes and High K+ response is the maximal force 

of contraction measured in mN. Average age and BMI in both groups are also found. 

Time to spontaneously contract measured in minutes. 
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3.4.9 Myometrial contractility of women with endometriosis and on medication. 

The pre-menopausal group included 10 patients not on any medication, 2 patients 

with mirena coil, 1 patient on Tranexamic and mefenamic acid and 1 patient on 

Norethisterone until previous day. The endometriosis group included 2 patients on 

GnRHa, 1 patient on provera and the other on hormone therapy. Average age and 

BMI for each group can be found in table 3.11. 

(a) Contraction amplitude 

The mean force amplitude of spontaneous contractions recorded for women with 

endometriosis (n=4) was reduced, 2.8mN±0.8, compared to pre-menopausal women 

(n=14), 3.2mN±0.6. No significance was found.  

(b) Frequency 

No significant difference in frequency of contractions was found unlike in the women 

with endometriosis on no medication. Women with endometriosis, 3.8± 1.0 

contractions per 30 minutes; pre-menopausal women: 4.2± 0.4 contractions per 30 

minutes.  

(c) Duration 

The mean duration of contraction was shorter in endometriosis women; 0.8 ± 0.2 

minutes, pre-menopausal women; 1.3 ± 0.2 minutes.  

(d) Area under the curve (AUC, 30 minutes) 

AUC of contractions, which is an index of the total work done by the tissue over a 

given time period, was calculated by measuring the area under the contraction curve 

in 30 minutes. For women with endometriosis mean AUC calculated was 7.9± 1.8 a.u 

compared to 13.8± 2.8 a.u recorded for pre-menopausal women. Contractile activity 

of endometriosis women was reduced compared to pre-menopausal women. 

(e) High K+ depolarisation-induced contractions 

The high K+ response achieved by myometrium from endometriosis women was not 

calculated as only one KCl response was recorded for the group.  
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(f) Time to commencement of spontaneous activity 

Spontaneous contractions occurred in vitro, in pre-menopausal myometrium (n=14) 

after 49.4.4± 6.3 minutes compared with patients with endometriosis on medication 

(n=4) after 68.5± 8.7minutes. No significant difference found. 

Overall there was no significant difference in the contractility parameters of the pre-

menopausal control group compared to the patients with endometriosis and on 

medication. 

Table 3.11 summarises the mean values of contraction amplitude, frequency, 

duration, AUC and High K+ responses of spontaneous contractions in addition to 

mean time to commence spontaneous contractions in pre-menopausal myometrium 

and myometrium from women with endometriosis on medication. 
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Table 3.11 Summary of spontaneous contractile activity of women with 

endometriosis and on medication and pre- menopausal non-pregnant 

myometrium. 

 Pre-menopausal Endometriosis P-value 

n- number 14 4     --- 

Amplitude (mN) 3.2mN±0.6 2.8mN±0.8 0.743 

Frequency (no. Per 

30 minutes) 

4.2± 0.4 

 
3.8 ± 1.0 

 
0.692 

Duration 

(minutes) 

1.3 ± 0.2 

 
0.8 ± 0.2 

 
0.268 

AUC  

(30 minutes) 

13.8± 2.8 

 
7.9± 1.8 

 
0.345 

Time to 

spontaneous 

activity (minutes) 

52.4 ± 6.8 45.5± 7.9 0.154 

Average age 49.4 48.5 0.903 

Average BMI 27.5 28.4 0.528 

*denotes significance recorded at p<0.05 level 

All parameters were not significantly changed. 

Amplitude of contraction is represented by force (mN); Frequency of contraction is 

represented by the number of contractions occurring in 30 minutes; Duration of 

contraction is represented by how long a single contraction lasts (min) and is 

measured at the half maximal peak of contraction; and AUC is a measure of the 

overall contractile activity occurring in 30 minutes. Average age and BMI in both 

groups are also found. Time to spontaneously contract measured in minutes. 
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3.5 Discussion 

In 98% of non-pregnant biopsies worked on in this chapter, spontaneous 

contractions were established. The muscle bundles within the non-pregnant 

myometrium compared to the pregnant myometrium are more tightly bound, 

although dissection using a microscope and the tissue undergoing an endometrial 

scrape aided in the dissection of clear muscular tissue strips. It took an average of 44 

minutes until spontaneous contractions occurred. Usually from my observations 

within the term pregnant human myometrium initiation of contractions takes 

around 70-90 minutes. In both tissue types, stable contractions were monitored for a 

period of 1- 2 hours. 

Biopsies from non-pregnant women undergoing hysterectomy were taken 

immediately after the removal of the uterus from the lower half of anterior uterine 

wall, so as to approximate the area where the biopsy was removed from the 

pregnant uterus. For pregnant tissues, biopsies were taken after delivery from the 

middle of the upper edge, lower segment uterine incision at time of Caesarean 

section. Both lower and upper segments of the myometrium have been shown to 

have similar contractile profiles (Luckas and Wray 2000) All biopsies were collected 

and handled in the same way using a protocol to prevent tissue degradation and to 

ensure all conditions for experiments were the same, allowing for comparison of 

both tissues in proceeding chapters.   

To the best of my knowledge, this chapter is the most extensive in vitro study of non-

pregnant human myometrium and shows that good strong regular contractions do 

occur. It also demonstrates significant effects of aging, menopausal state and 

endometriosis on myometrial activity. The only findings from in vitro observations of 

non-pregnant human contractility without statistical evidence is that contractions of 

pre-menopausal myometrium contracted at a greater frequency, and were more 

frequent than post menopausal myometrium (Domali 2001). The only other study 

demonstrated smaller contractions were produced by the non-pregnant 

myometrium when compared to non labouring term pregnant myometrium while 

time between contractions was reduced in the non-pregnant myometrium 

(Rosenbaum 2012), discussed further below.  



142 
 

3.5.1 The effect of menopausal status on myometrial contractility 

Once spontaneous activity was established, post menopausal myometrium had 

contractions that were lower in amplitude, shorter in duration but at a higher 

frequency than pre-menopausal myometrium. Overall, mean AUC of contraction 

confirmed the activity of the post-menopausal myometrium is significantly reduced 

compared to pre-menopausal myometrium. Although, when age and BMI are taken 

into account, only the significant decrease in force amplitude of contraction remains. 

This suggests age partially affects the results obtained. Thus, reduced uterine activity 

appears to be an inherent property of post menopausal women. 

Interestingly contractility although low, is maintained well into post-menopause. This 

is consistent with an earlier in vitro study which found spontaneous activity in post-

menopausal women (Domali 2001). These latter authors also demonstrated 

responsiveness to endothelin 1, which could be modified by ovarian steroids. This 

again emphasizes that post-menopausal human myometrium remains active and 

responsive to hormonal environment. Reduced contractile activity is the main 

finding in the post- menopausal myometrium, but what is the reason for this?  

Uterine contractility is a directly related to underlying electrical activity in 

myometrial cells. Spontaneous contractions of the myometrium are produced by 

spontaneous changes in cell membrane potential towards a more positive potential 

(membrane depolarisation) which triggers the firing of a single action potential or 

bursts of action potentials (Kawarabayashi et al 1988), opening of L-type calcium 

channels and calcium influx (Wray 1993, Shmigol 1998). Contraction of the 

myometrium then transpires from the resulting myofilament cross-bridge cycling. 

The frequency of myometrial contractions is therefore directly related to changes in 

membrane potential and the frequency of bursts. The increase in contraction 

frequency recorded in post menopausal women in this study suggests that the cell 

membrane potential in these women is more excitable i.e. less negative than pre-

menopausal women such that it would reach the threshold potential for action 

potential generation more readily than in pre-menopausal myometrium. This helps 

to explain why as women reach post menopause they spontaneously contract 

quicker than in the pre menopausal women. Instead, the increased frequency of 
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contraction may also be due a faster repolarisation or recovery of the membrane to 

resting potential. 

However given the data in my study illustrating reduced contraction amplitude and 

duration for post menopausal myometrium, it would indicate that despite the higher 

frequency of reaching threshold for activation in these tissues, the mechanical 

activity produced by the change in membrane potential is still reduced. This could be 

due to poor propagation of calcium signalling events in the muscle cells of post 

menopausal myometrium and less recruiting of muscle cells or muscle bundles to 

contract, or alternatively reduced smooth muscle with advancing menopausal state 

and therefore less L-type calcium channels and reduced calcium entry resulting in 

the reduced force produced. Reduced levels of oestrogen with reaching post 

menopause could directly affect L-type expression as already discussed below. 

 

3.5.2 The effect of aging on non-pregnant myometrial contractility 

The results of this study are the first to show aging decreases non-pregnant uterine 

contractility. It also suggests that in the non-pregnant uterus, the majority of the 

decline may occur by the age of 35 years. Suggested mechanisms for this underlying 

decrease in contractility with age could be through morphological changes or 

hormonal changes of the myometrium. However data on how the myometrium 

changes with age are scarce. Whereas the morphology of endometrial tissue has 

been shown to change as a result of reductions in steroid hormones, how aging 

affects the morphology of the myometrium has not yet been examined, although 

studies on the microanatomy of the aging reproductive tract have been published 

(Heyn 2005). Changes in the biophysical properties of the myometrium with age also 

appear to have been neglected. It would be interesting to examine how myocytes 

size, muscle mass and connective tissue content are affected by aging. 

Within this chapter the negative relationship showing a decrease in contractility with 

age, correlates with the poorer obstetric outcomes noted with advancing age which 

in turn may attribute to the greater incidence of high risk medical conditions that are 

associated with older women. Interestingly, we find that upon increasing age (25-43 

years old) within the pregnant myometrium this significant correlation is lost 
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(Arrowsmith 2012). This more or less maintained force in pregnant women up to 

around age 40, suggests that if a woman becomes pregnant at this age, the uterus 

will respond to the hormonal environment of pregnancy, and increase its muscle 

mass, and hence contractile potential, removing any age-related differences (Wu et 

al. 2008). This suggestion is consistent with the uterine responses of women in their 

50s and 60s to hormonal treatment for IVF and the uterus safely bearing these 

pregnancies to term. Oxytocin however, may have reduced efficacy in the 

myometrium of older women which may have implications clinically such as in cases 

of poor labour progression. Further studies should investigate the details of the 

underlying mechanisms. 

Aging produces changes in metabolism including an increase in cholesterol and LDLs. 

Body mass index (BMI) also increases as women age. Both cholesterol and BMI have 

been shown to depress myometrial contractility (Zhang 2007a, b), and could 

therefore contribute to a reduction in function. Conversely, removal of cholesterol 

using cholesterol sequestering agents enhances contractile activity, thus in the 

uterus, cholesterol inhibits function. Partially, due to effects on K channel activity 

(Shmygol 2007; Noble 2006). Furthermore, myometrial strips with high cholesterol 

content (measured using thin layer chromatography) contracted more poorly in the 

laboratory than those with a lower cholesterol content (Noble 2009). 

Overall this reduction in spontaneous force with age produced by the non-pregnant 

uterus was prominent and is also seen in the responses to high K+. Hence these data 

support the theory that there might be loss of functional muscular tissue (e.g. less 

muscle cells) or decreased expression of L-type Ca channels, with age (Floyd and 

Wray 2007; Taggart et al. 1997), although larger sample numbers are required and 

morphological studies before these suggestions can be tested. Spontaneous 

contractions were normalised to the high K+ contraction to control for any effects of 

age on decreased muscle or L-type Ca expression. Relative to high K+ the amplitude 

of spontaneous activity decreases with age, suggesting that the mechanisms 

generating spontaneous contractions are also failing. Thus in non-pregnant 

myometrium the suggestion is that force may decline as a consequence of muscle 

loss and/or decreased Ca entry and thus decreased activation of the contractile 
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proteins. Reduced levels of oestrogen with aging would be expected to cause 

atrophy of the myometrium, and thus explain some of the decreased strength of 

contractions. There is evidence that the L-type calcium channel subunits and 

function are hormonally regulated, with oestrogen associated with increasing, (Batra 

1987) and progesterone decreasing (Tezuka et al. 1995) calcium channel expression. 

Thus as oestrogen decreases with aging, levels of L-type Ca channels will be expected 

to fall. 

 
3.5.3 Does endometriosis affect myometrial contractility? 

Assessing the spontaneous contractility of non-pregnant myometrium from women 

with endometriosis shows differences in the contractility profile when compared to 

their pre-menopausal healthy counter parts. These data show an increase in 

frequency of contractions. This parameter reaches significance when patients with 

endometriosis and on medication are removed, a trend decrease in all other 

parameters of contraction is found. The women on medication removed were on 

hormone therapy. This study suggests that perhaps hormone therapy is dampening 

the increase in frequency found.  The high K+ data demonstrates a decrease in high 

K+ response within the endometriosis women possibly due to a decrease in the L-

type calcium channels. The overall data obtained from this study supports the 

previous findings, of increased frequency as observed in early in vivo intrauterine 

pressure recordings and videosonography of uterine peristalsis (Leyendecker 2004, 

Bulletti 2002). The increase in frequency of contraction in vivo was two times greater 

than there healthy counterparts were as in vitro the frequency was three time 

greater than when compared. Bulletti et al compared the contractility of infertile 

women with and without endometriosis., Thus the differences in frequency found 

may be accounted for by fertility status. The differences in contractile amplitudes 

between this study and Bulleti et al may also be attributed to the fact that they were 

monitoring whole uterine activity in vivo whereas we are looking at the contractility 

of myometrial tissue strips in vitro. The theory of retrograde menstruation 

(Sampson, 1922) proposes that retrograde bleeding occurs at the time of menses in 

women with endometriosis. This results in transtubal migration of viable 
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endometrial cells that attach and implant in the pelvic cavity, to ultimately develop 

into endometriotic implants (Bulletti 2002). It is also found that there is a much 

higher incidence of these retrograde contractions in women with endometriosis. 

Overall these findings support a causal role of alterations in myometrial contractility 

in the genesis or continuation of endometriosis. This also suggests that this change in 

contractility could have an important effect on the uterine retrograde transport 

capacity and consequently fertility. This was highlighted in 

hysterosalpingoscintigraphy showing that transport of labelled inert particles is 

drastically increased during the early and  mid-follicular phases of the cycle, but the 

directed transport of the particles into the tube ipsilateral to the dominant follicle is 

absent in the periovulatory phase, concluding in women with endometriosis directed 

sperm transport is impaired (leyendecker 2004). 

 

3.5.4 Conclusion 

The results of this study are novel. In this chapter I have compared myometrial 

contractility from pre-, and post-menopausal women as well as from women with 

endometriosis.  This is also the first study to look at the effect of advancing age on 

the non-pregnant myometrium. The data demonstrates clear effects of age and 

menopausal state upon myometrial contractility. It shows that aging significantly 

decreases uterine contractility as does progressing menopausal state, which is not 

surprising as there is a strong relationship between the two.  Endometriosis also 

shows an increase in frequency of contractions and a non-significant but consistent 

decrease in the other parameters of contractility. Consistent with an earlier in vitro 

study which had found spontaneous activity in post-menopausal women, and earlier 

in vivo studies showing more frequent  contractions within the myometrium with 

endometriosis (Domali 2001, Bulletti 2002), these changes in the myometrial 

contractions of women with endometriosis could be implicated as having a causal 

role in the genesis and continuation of the disease. 

The reasons behind this impaired contractility may be related to alterations in 

calcium signalling in the post - menopausal and women with endometriosis. Reduced 

calcium transients are indicative of less calcium entry through L-type voltage calcium 
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channels or perhaps alterations in the expression of L-type calcium channels, which 

is supported by the High K+ data I presented in this chapter, where High K+ 

contractions were reduced in the post menopausal women as well as a trend 

decrease in women with endometriosis. Reduced muscle content could also be 

contributing to the reduced contractility found in this chapter, especially with 

advancing age. Further work needs to be performed to investigate this. 

 

In summary, contractions of the non-pregnant myometrium can be measured in vitro 

and are stable allowing for investigation of the effects of H2S compared with the 

term pregnant myometrium as discussed next in Chapter 4.  

 

3.5.5 Limitations of Study 

One of the main issues to be addressed for future work is the low n numbers as this 

will allow for further insight to be given with respect to contractility differences in 

response to the different medications the women are on such as HRT, GnRH, 

progestagens as well as to define further any differences in contractility in response 

to endometriosis. 
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Chapter 4 

Investigating the role of H2S within the myometrium through H2S 
producers NaHS and novel slow releasing H2S-generating compound, 

GYY4137. 

4.1 Abstract  

Better tocolytics are required to help prevent preterm labour. The gasotransmitter 

Hydrogen sulfide (H2S) has been shown to reduce myometrial contractility and thus is 

of potential interest. However previous studies used NaHS, which is toxic and releases 

H2S as a non-physiological bolus and thus alternative H2S donors suitable for drug 

development are sought.  A new H2S generating compound, GYY4137, developed to 

slowly release H2S and thus better reflects physiological conditions, appears to be such 

a drug.  

The effects of GYY4137 were examined on contractility and compared to NaHS, in 

human and rat myometrium. As it is unknown how the effects of H2S vary with 

gestation, its involvement in the mechanism for transition to labour, and its effects in 

the presence of oxytocic drive, this was also investigated, to increase understanding of 

its physiological importance. The effects on contractility in response to GYY4137 

(1nM-1mM) and NaHS (1mM) were examined on myometrial strips from, biopsies of 

women undergoing elective caesarean section or hysterectomy, and from non-

pregnant, 14, 18, 22 day (term) gestation or labouring rats.  

In pregnant rat and human myometrium dose-dependent and significant decreases 

in spontaneous contractions were seen with increasing concentrations of GYY4137, 

which also reduced underlying Ca transient, measured using Indo-1 fluorescence. 

NaHS (1mM) also significantly decreased contraction.  Both H2S producers 

significantly reduced force in oxytocin-stimulated preparations and their inhibitory 

effects increased as gestation advanced, but were abruptly reversed in labour. The 

effects of GYY4137 and NaHS also occurred in depolarized preparations. 

Glibenclamide, an inhibitor of ATP-sensitive potassium (KATP) channels, abolished the 

inhibitory effect of GYY4137.  
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These data suggest (i) H2S contributes to uterine quiescence from mid-gestation until 

labour, (ii) that H2S affects L-type calcium channels and KATP channels reducing Ca 

entry and thereby myometrial contractions, (iii) add to the evidence that H2S plays a 

physiological role in relaxing myometrium, and thus (iv) H2S is an attractive target for 

therapeutic manipulation of human myometrial contractility and that drugs such as 

GYY4137 may be effective. 
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4.2 Introduction 

H2S is a gaseous signalling molecule that has been implicated in several physiological 

and pathophysiological processes from long term potentiation (kimura 2002) and 

inflammation (Li 2005), to smooth muscle contractility (Teague 2002, Zhao 2009, 

Dhaese 2009, Sidhu 2001).  Two cytosolic enzymes, cystathionine β-synthase (CBS) 

and cystathionine γ-lyase (CSE) (Patel 2009)  act on the sulphur containing amino 

acids, cysteine and homocysteine, to produce H2S (Li 2011, Hughes 2009).  At least two 

enzymes have been identified that degrade H2S to thiosulfate and sulphate, thiosulfate 

sulphur transferase and Thiol S- methyltransferase (Teague 2002, Li 2011, Ramasamy 

2006). Thus H2S will be physiologically regulated within cells and rapid rates of turnover 

enable it to function as a signalling molecule (Vitvitsky 2012). 

The effects of H2S have been examined in several smooth muscles and decreased 

contraction is the most common finding e.g. vas deferens,(Teague 2002), blood vessels 

(Webb 2008) GI tract (Teague 2002, Zhao 2009, Dhaese 2009). The mechanism by 

which H2S produces its effects on smooth muscle contractility is not clear, although KATP 

channels have been implicated in some studies (Dawe 2008, Distrutti 2006, Tang 2005, 

Zhao 2001). Other studies however have found no role for KATP channels (Boyarsky 

1978, Dhaese 2009, Kubo 2007).  In the myometrium  although KATP channels are 

expressed  (Curley 2002)   they so far appear to have only a limited functional 

importance  compared to voltage dependent K channels (Heaton 1993, Aaronson 

2006,Longo 2003 ) , thus other targets for H2S  may  be important in the myometrium. 

Changes in intracellular [Ca2+] are known to underlie contractility changes in response 

to agonists and tocolytics in myometrium (Longo 2003, Szal 1994, Wray 2005). 

Recently, a study in cardiomyocytes suggested, H2S might inhibit L-type [Ca2+] 

channels through sulfhydration as NaHS decreased the functional free sulfhydryl 

groups available in the L-type [Ca2+] channel (Zhang 2012). In non-contracting 

(butanedione monoxime treated) cerebral artery, Tian et al, (Tian 2012) used fluo-4 

and showed decreases in Ca2+ levels as NaHS was increased from 0.1 to 1 mM, and 

suggested  that NaHS relaxes these vessels by reducing L-type Ca2+ current. There have 

however been no simultaneous measurements of the changes of intracellular Ca2+ that 

occur when changes in contraction result with H2S production in any tissue, and hence 
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its role in the mechanisms of H2S’s effects is unclear. Understanding how H2S affects 

Ca2+ signalling in smooth muscle will provide further insight into how H2S can affect 

force                                                                                                                                                                                                                                    

There is a pressing need to better understand how uterine contractility is controlled 

and to develop better tocolytics to reduce the morbidity and mortality associated with 

pre-term delivery (Goldenberg 2002, Wray 2008).  Thus an endogenous molecule that 

can reduce contractility is of interest.  It has already been shown that the 

uterus possesses the enzymes to produce H2S from L-cysteine, and reports have shown 

H2S to be able to reduce contractions of myometrium from rat and human (Patel 2001, 

Hu 2011, You 2011). Thus alterations of H2S levels may be an attractive target for 

therapeutic manipulation in problematic labours.  It is not clear however if the effects 

of H2S are gestationally dependent, which would indicate that H2S is part of the 

mechanism maintaining uterine quiescence and governing the switch to labour onset, 

or if it remains at an unchanged constitutive level in myometrium.   

The previous studies investigating H2S in myometrium used addition of NaHS as a 

means of producing H2S.  This will produce H2S in a large, rapid bolus and thus it may be 

questioned how well this simulates the physiological condition. In addition because of 

its potential lethality, it is unlikely that NaHS will be a useful therapeutic tool. Recently a 

novel H2S generating compound, GYY4137 (morpholin-4-ium 4 methoxphenyl 

(morpholino) phosphinodithionate) has been developed. It slowly releases H2S, both in 

vitro and in vivo (Li 2008), and has been shown to slowly relax aortic rings and in vivo to 

cause vasodilation and act as an anti-hypertensive (Li 2008).  To the best of our 

knowledge this more physiological approach to the study of H2S in myometrium has 

not been examined.  This in turn limits information on which to judge the clinical 

potential/ usefulness of H2S manipulation in controlling uterine activity. In order to 

increase mechanistic understanding of how H2S reduces uterine contractility, 

simultaneous measurements of changes in intracellular Ca and force were also made 

(Kupittayanant 2002).  

The aims of this chapter were therefore to determine: (1) the effects of GYY4137 on 

contractions of human and rat myometrium, (2) how responses of the myometrium to 
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H2S vary with gestational state, (3) the effects of glibenclamide on GYY4137-induced 

changes in contractility; (4) the effects of H2S produced via NaHS and GYY4137 on 

spontaneous, oxytocin and high K+ depolarization stimulated contractions, and (5) the 

effect of GYY4137 on myometrial Ca signals.    

4.3 Methods  

4.3.1 Tissue 

 Strips of longitudinal myometrium (~ 1x5mm) were dissected from the uterus of 

humanely killed non-pregnant, 14 day, 18 day and 22 day gestation and labouring 

Wistar rats (Wray 2008) The gestation of the rat was defined from day 0, when the 

male was placed in the cage to mate. Human myometrial strips were dissected from  

biopsies obtained with informed consent and ethical approval  from women 

undergoing an elective term caesarean section (means gestational age 39 weeks, 

mean maternal age, 31; range 22-41 years, N=15 ) or pre-menopausal hysterectomy 

(mean age, 40; range 27- 48 years, N=12). Indications for caesarean section included 

maternal request, previous traumatic vaginal delivery, previous caesarean section or 

breech presentation. None of the women included in this study had any underlying 

diseases (hypertension, diabetes, pre-eclampsia, intrauterine growth restriction 

etc.). Indications for hysterectomy were menorrhagia, fibroids or prolapse. Biopsies 

were obtained from the upper lip of the lower segment uterine incision at caesarean 

section (Luckas 2000) and from corresponding macroscopic normal area of the 

uterus at hysterectomy.  

 

4.3.2 Solutions 

 All chemicals were produced as described in chapter 2. All chemicals were obtained 

through Sigma (UK), apart from GYY4137, which was obtained from Santa Cruz 

biotechnology, USA, NaHS, obtained from Alfa Aesar, uk and Indo-1, Invitrogen, uk. 

The composition of Physiological Saline Solution (PSS) was as follows (mM): 154 

NaCl, 5.1 KCl, 0.12 MgSO47H2O, 10.9 HEPES, 8 Glucose, 2 CaCl2, pH 7.4. In some 

experiments to depolarize the tissue, the KCl in the PSS was increased to 40 mM and 

NaCl reduced equivalently. In some experiments, 0.5 nM oxytocin was added to the 

PSS to study oxytocin induced contractions.  The H2S forming solutions were made in 
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PSS at 1mM for NaHS and 1n M, 1 µM, 0.1 and 1 mM for GYY4137, pH readjusted to 

7.4. (Olson 2012). Both GYY4137 and NaHS were made and incubations performed in 

a fume cupboard at 37oC. Glibenclamide was used at 10µM. Diamide and DTT were 

used at 1mM. 

4.3.3 Ca2+ and Force Measurements:   

Tissue preparation and measurements of calcium and tension are the same as 

described in Chapter2, general materials and methods. 

4.3.4 Incubation protocol 

 Contractile activity was seen in all myometrial strips within 60 mins for rat and 3 hours 

for human after perfusion with PSS (Noble 2006). The strips were allowed to contract 

spontaneously and an equilibrium period of at least 30 minutes with stable 

contractions was obtained before incubation in any chemical. After recording control 

activity, the effect of 45 minutes exposure to NaHS, GYY4137 or control (PSS) 

solution on uterine activity was examined by placing the strip in an Eppendorff with 

the agent, at 37oC within a fume hood due to the toxicity of H2S. The tissues were 

then carefully re-attached to the tension transducer, superfused with PSS and 

contractility again recorded. The same was performed for glibenclamide experiments 

only the control activity was exposed to 10µM glibenclamide as well as during 

incubation in GYY4137 1 mM or PSS. Each concentration of drug was obtained on a 

separate strip of myometrium. Control incubation traces can be found in chapter 2 

(page 91). 

4.3.5 Statistics 

Contractions were analysed for amplitude, frequency, and area under the curve, 

(AUC, in arbitrary units, au) for; 10 minutes, rat data; 30 min, human data (to 

accommodate the slower rate of contractions), and; 15 minutes, high K+, before and 

after H2S forming solution incubation, using Origin 8 (Shmigol 1998). Each strip 

tested for the effect of each H2S producer, had a paired control response in PSS 

rather than test solution. After incubation the contractions were assessed 5 minutes 

after re-attachment. Diamide and DTT were added directly to the bath to examine 

their effects comparing 10 minutes control and Diamide or DTT exposed in the same 
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way. Student’s t tests were performed to compare two groups. Anova with 

Bonferroni post hoc tests were used to compare more than two groups. P was taken 

as showing a significant difference when P<0.05. Each n was from a different biopsy 

or rat.  

4.4 Results 

4.4.1 Establishment of spontaneous contractions and control incubation protocol  

All tissues were superfused with physiological saline salt solution (PSS) at 37oC, pH 7.4 

until spontaneous contractile activity was established. The commencement of 

spontaneous contractile activity of rat myometrium was always within an hour were as 

spontaneous contractile activity of human myometrium was within 2 hours of 

continuous superfusion with PSS at 36-37oC. Where spontaneous activity did not occur 

following 2 hours, the strip was subjected to a 1 (rat) or 2 minute (human) high K+ and 

the strip was further monitored for spontaneous contractions between 30 minutes and 

1 hour. If no further activity was recorded the strip was discarded and another strip 

tried. All samples included in this study were spontaneously active. 

Due to the great toxicity of H2S the tissue strips with the H2S producing solutions, were 

incubated in a fume cupboard and then re-attached via their clips, to the tension 

transducer at the end of the incubation period.  It was therefore necessary to show that 

under control conditions i.e. incubation with PSS and re-attaching, no significant 

changes in contractile parameters were found when contractions were re-established.  

Figure 2.7 within chapter 2 shows that this was the case. Analysis of 4 strips (non-

pregnant rat), 6 strips (14 day gestation rat), 7 strips (18 day gestation rat), 7 strips (22 

day, term pregnant rat), 4 strips (labouring rats), 6 strips (non-pregnant human) and 6 

strips (pregnant human) showed that there were no significant changes to any of the 

parameters of contractions (Table 4.1).  
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Table 4.1. Changes in contractile parameters of myometrial tissue in response to 

control incubations  

 

 NP 14 day 18 day 22 day 

(term) 

 

Labouring Non-

pregnant 

Human 

Term 

pregnant 

human 

n-number 4 6 7 6 

 

4 7 4 

Force 

Amplitude 

(%) 

96±6% 104±1.9% 101±4% 99 ±2% 102±4% 97±3% 
 

90±7% 

Frequency 

(%) 

89±13% 100.4±7.6

% 

92±3% 100±7% 95±9% 93±6% 
 

106±5% 

Duration 

(%) 

101±9% 97.0±6% 105±4% 99±4% 90±5% 94±6% 
 

102±7% 

AUC (%) 85±12% 107±3% 97.1±7.3

% 

95±5% 104±4% 88±9% 
 

104±6% 

 

 

Rat myometrial or human myometrial strips were studied from 4-7 animals. After 

baseline values were obtained (10 minute period immediately before incubation in 

experimental solutions,100 %), tissues were incubated in either physiological saline 

(control) for 45 minutes and then the parameters of contraction re-measured, and 

expressed as the percent of baseline values (i.e. paired data).Values are means ± 

s.e.m.  

No Significant differences were found between any of the values. 
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4.4.2 Dose dependent effects of GYY4137 on spontaneous contractions in non-

pregnant rat myometrium 

Having established a robust protocol (section 4.4.1) I proceeded to determine the 

effects of GYY4137 on myometrial contractility. Concentrations of GYY4137 from 1nM 

to 1mM were examined in non-pregnant rat myometrium. Typical results for each 

concentration are shown in figure 4.1A. The mean data is presented within figure 4.1 B. 

 As seen in the original traces, no significant changes in non-pregnant contractility 

profiles where seen upon increasing doses up to 1mM GYY4137.  At the highest 

concentration 1mM GYY4137 the force remained unaffected (100.8±7% relative to 

control of 100%, n=4). Even integrating the differences in force, duration and 

frequency by measuring the AUC, at 1mM GYY4137 showed no significant change 

(93.6±28% relative to control period of 100%, n=4).  
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Figure 4.1: Dose dependency of GYY4137 in non-pregnant rat.  

(A) Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from non-pregnant rat, before and after 45 minute incubations in i) 1nM, ii)1µM, 

iii) 0.1mM, iv) 1mM GYY4137. (B) Mean data± s.e.m, denoted by error bars, showing the 

dose dependent decrease in i) Amplitude, ii) Duration iii) Frequency, iv) AUC in response to 

GYY4137. Values within bars indicate n-numbers. No significant differences in contractile 

activity were found, using Anova with Bonferroni post hoc tests.  
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4.4.3 Dose dependent effects of GYY4137 on spontaneous contractions in term 

pregnant rat myometrium 

 

Exposure of contracting term pregnant rat myometrium to increasing concentrations 

of GYY4137 from 1nM to 1mM caused a dose dependent decrease in the amplitude 

of force of contractions (figure 4.2).  Representative traces of each concentration are 

illustrated in Figure  4.2 A. The mean data presented in graphical form can be 

found in figure 4.2B.  

The decrease in force was most marked at the highest concentration of GYY4137 

1mM (34.0±6% relative to control period 100%, n=6). Statistical analysis showed a 

significant decrease in contractility from 1nM to 1mM (p=0.003) and from 1nM to 

0.1mM (p=0.030). The decrease in frequency of contractions was significant at 

concentrations from 1nM and 1µM to 1mM GYY4137 (p=0.002, p=0.042 

respectively). There was no significant effect on duration of contraction after 

increasing concentrations of GYY4137. However, by integrating the differences in 

force, duration and frequency by measuring the AUC, showed a dose dependent 

decrease with increasing concentrations of GYY4137 which was most marked at the 

highest concentration of GYY4137, 1mM (22.0±10% relative to control period 100%, 

n=6). With significance at concentrations of 0.1mM and 1mM (p=0.014, p=0.003 

respectively). These results show that GYY4137 causes a dose dependent decrease in 

myometrial contractility in pregnant rat myometrium. 

 

A dose response curve for the effect of GYY4137 on the force of myometrial 

contractions showing the logEC50 is shown in Figure 4.3. 
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Figure 4.2: Dose dependency of GYY4137 in term pregnant rat. 

(A) Representative isometric recordings of spontaneously contracting myometrial 

strips obtained from 22 day  gestation rat, before and after 45 minute incubations in 

i) 1nM, ii)1µM, iii) 0.1mM, iv) 1mM GYY4137. (B) Mean data± s.e.m, denoted by 

error bars, showing the dose dependent decrease in i) Amplitude, ii) Duration iii) 

Frequency, iv) AUC in response to GYY4137. Values within bars indicate n-numbers.  

* represents P<0.05, ** represents P<0.01, using Anova with Bonferroni post hoc 

tests.  
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Figure 4.3 LOG dose response curve for pregnant rat myometrium  

Log dose response curve for the effect of GYY4137  on rat myometrial contractility, 

showing sigmoidal relationship. The EC50 value of -5.873 depicts the concentration 

required to reduce myometrial contractility by 50% compared to minimum and 

maximum values. 
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4.4.4 Gestational dependent effects of GYY4137 and NaHS 

Having shown that GYY4137 can reduce contractions of term pregnant myometrium, I 

next examined if its efficacy varied throughout pregnancy, and as no data were 

available on this point for NaHS, it was also investigated. Typical examples of the effects 

of 1mM GYY4137 (n =4-7) and NaHS (n =4-7) from non-pregnant, 14, 18 and 22 day 

pregnant and labouring rat myometrial tissue are shown in Figures 4.4A and 4.5A 

respectively. 

 Exposure of non-pregnant, 14 day, 18 day, 22 day and labouring contracting 

myometrial tissue to 1mM GYY4137 caused a gestational dependent decrease in the 

amplitude of force of contractions (figure 4.4).   Increasing effects of GYY4137 on 

contractility as gestation progressed were found (Figure4.4Aii-iv). It can be seen that 

GYY4137 has no significant effect on non-pregnant myometrium (Figures 4.4A and Bi). 

As shown in the mean data, (Figure 4.4B), amplitude, frequency of contractions and 

AUC are progressively reduced by GYY4137 from mid-gestation up until labour onset. 

No significant differences were found at day 14 as effects were small. Effects increased 

as gestation advanced with significant decline in force of contraction at day 18 and day 

22 (23.3±12.7% and 34.4±5.6% respectively). There were no significant changes to 

frequency, or duration, However by integrating the differences in force, duration and 

frequency by measuring the AUC, showed large decreases at day 18 and day 22 

(21.4±12.3% and 21.7±10.3% respectively). There was a marked reversal of the 

inhibitory effect of GYY4137 once labour was initiated. No effect on any of the 

parameters of spontaneous contractions of labouring tissue in response to GYY4137 

was found (Figure 4.4Av). Statistical analysis showed a significant increase in the force 

and AUC of labouring contractions in response to GYY4137 when compared to day 18 

and day 22 (106.1±4.8%, 103±10% respectively). 

As revealed in Figure 4.5A the effects of NaHS also increased as gestation advanced.  

As with GYY4137 there was no significant effect on the non-pregnant (Figure 4.5i) or 

labouring (Figure 4.5v) myometrium. The mean data for the effects of NaHS 

throughout gestation are shown in Figure 4.5B and the significant decrease on force 

compared to non-pregnant myometrium can be seen at 22 days gestation (14.9±8.0%). 

Significant decreases on AUC in response to NaHS were also seen at day 18 and day 22 
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(40.9±9.3% and 16.6±13.5% respectively). Once labour was initiated, statistical analysis 

showed a significant increase in the force and AUC of labouring contractions in 

response to NaHS when compared to day 18 and day 22 (99.1±6.7%, 99.3±5.7% 

respectively). 

Figure 4.4 and 4.5iv) shows a term pregnant myometrial strip which had been 

incubated in 1mM GYY4137 and NaHS respectively, clear effects on contraction are 

apparent. The mean data for contraction amplitude, Duration, frequency and AUC 

measured over 10 minutes, after incubation with GYY4137 and NaHS, compared with 

the immediate control period are shown in Table 4.2; significant reductions in all 

parameters of contraction occurred except for changes to duration. Figure 4.4 and 

4.5iv) also shows the gradual recommencement of force after return to control 

solutions. 
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Figure 4.4: Rat myometrial contractility changes over gestation in response to 1mM 

GYY4137.   

(A) Representative isometric recordings of spontaneously contracting myometrial 

strips obtained from i) non-pregnant (NP), ii) 14 day, iii) 18 day, iv)22 day gestation 

and v) in labour rats before and after incubation in 1 mM GYY4137. (B) Mean data ± 

s.e.m, denoted by error bars, of the gestational dependent decrease in i) Amplitude, 

ii) Duration, iii) Frequency, iv) AUC in response to GYY. Values represent Means ± 

s.e.m, denoted by error bars. Values within bars indicate n-numbers.  * represents 

P<0.05, ** represents p<0.01, *** represents p<0.01, using Anova with Bonferroni 

post hoc tests.  
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Figure 4.5: Rat myometrial contractility changes over gestation in response to 1mM 

NaHS.  

(A) Representative isometric recordings of spontaneously contracting myometrial 

strips obtained from i) non-pregnant (NP), ii) 14 day, iii) 18 day, iv) 22 day gestation 

and v) in labour rats. (B) Mean data ± s.e.m, denoted by error bars, of the gestational 

dependent decrease in i) Amplitude, ii) Duration, iii) Frequency, iv) AUC in response 

to NaHS. Values within bars indicate n-numbers.  * represents P<0.05, ** represents 

p<0.01, *** represents p<0.01, using Anova with Bonferroni post hoc tests.  
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Table 4.2. Changes in contractile parameters in response to 1mM NaHS and 

GYY4137 in term pregnant rat myometrium 

Parameter 

measured 

 

Control 

(% ± SE, n=7) 

NaHS 

incubated 

(% ± SE, n=7) 

GYY4137 

incubated 

(% ± SE, n=6) 

Contraction 

Amplitude 

99 ±2% 15±8%* 34±6%* 

Frequency 100±7% 23±9%* 42±10%* 

Duration 99±4% 59±28% 121±35% 

AUC 95±5% 16±13%* 22±10%* 

 

Term (day 22) rat myometrial strips were studied from 4-7 animals. After baseline 

values were obtained (10 minute period immediately before incubation in 

experimental solutions,100 %), tissues were incubated in either physiological saline 

(control) or the solutions indicated, for 45 minutes and then the parameters of 

contraction re-measured, and expressed as the percent of baseline values (i.e. paired 

data).Values are means ± s.e.m.  

* represents significant differences in contractility compared to preceding control 

period (p<0.05, t-test).  AUC; area under the curve. 
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4.4.5 Recovery periods and times to contract within the rat myometrium. 

The length of time it took for the strips incubated in GYY4137 and NaHS to start 

contracting after the 45 minute incubation was monitored to see whether this was 

affected in response to H2S. There was no significant differences, however in Figure 4.6  

you can see that with GYY4137 incubations (Figure 4.6A) and NaHS incubations (Figure 

4.6B) there is a trend of an increase in the length of time to contract up to term which 

is reversed upon labour onset. 

The maximum recovery amplitude of contraction after incubation was examined for 

both GYY4137 (Figure 4.7A) and NaHS incubated (Figure 4.7B)   strips where possible. 

This showed no significant differences over gestation using Anova with bonferroni 

post hoc testing illustrating significant recovery was achieved. Presumably the H2S 

had volatilised and oxidized. It can still be seen that the most significantly affected 

gestations 18 day and 22 day recovered the least.  
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Figure 4.6 Times to contract after incubation of rat myometrium over gestation. 

 

Mean data ± s.e.m, denoted by error bars, of the times to start contracting after 45 

minute incubations in (A) GYY 4137 (B) NaHS. A trend of increased time to contract 

can be seen up until 22 day gestation, which disappears upon labour onset. Values 

within bars indicate n-numbers.  No significant differences were found using Anova 

with Bonferroni post hoc tests.  
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Figure 4.7 Amplitude of contraction recovery in response to GYY4137 and NaHS of rat 

myometrium over gestation. 

 Mean data ± s.e.m, denoted by error bars, of the maximum recovery amplitude of 

contraction after 45 minute incubations in (A) GYY 4137 (B) NaHS. Values within bars 

indicate n-numbers.  No significant differences were found using Anova with 

Bonferroni post hoc tests.  
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4.4.6 Effects on calcium entry and Calcium signalling  

As the above data show very clear reductions in the strength of myometrial 

contractions in the presence of H2S, it was next determined if Ca2+ channels and 

transients are affected by H2S producers in two ways.  Firstly, high K+ was used to 

depolarize the myometrium and open voltage gated Ca2+ channels (Noble 2006). If the 

response to depolarization is unaltered by the H2S donors then this would indicate that 

their effects were on the normal processes leading to membrane depolarization.  

Secondly, direct measurements of intracellular Ca2+  simultaneously with force in the 

absence and presence of GYY4137 were made. If Ca2+  entry is decreased, then this 

should be apparent in the associated Ca2+  transients (Shmigol 1998). 

 

High K+ depolarisation 

Depolarisation using 40mM High K+ for 15 minute was examined before and after 45 

minutes incubation in 1mM NaHS (figure 4.8B, n=6) and GYY4137 (figure 4.8C, n=8). In 

day 22 pregnant rats, the two successive applications of high K+, produced very similar 

contractile responses; a rapid rise in force which plateaus and shows only a small 

decrement until the tissue is returned to control solution (Figure 4.8). As shown in 

Figures 4.8B and C, both H2S producers inhibited the amplitude of the High K+ 

contractions significantly (43±10%, NaHS 82±6% GYY4137) and AUC (34±4%, NaHS 

84±7% GYY4137) compared to control (95±5%, 105±3% respectively, figure 4.8A).  

 

Calcium signalling 

In a subset of studies described within this chapter term pregnant myometrial tissue 

was loaded with intracellular calcium indicator indo-1. Strips loaded and incubated in 

control solution, PSS, showed no changes in force and underlying calcium transients 

(figure 4.9A). An overlay of both force and calcium under control conditions (PSS, 

figure 4.9Bii) shows that changes in calcium precedes the changes in force. The 

effects of 1mM GYY4137 on Ca2+ signalling on day 22 of gestation were examined. 

Figure 4.9B clearly shows spontaneous Ca transients (indo-1 fluorescence) underlie 

the phasic contractions of the myometrium. As before, GYY4137 produced 

significant decreases in contraction amplitude, which as can be seen in Figure 4.9B, 
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are accompanied by a significant decrease in the amplitude of Ca2+  transients to 76 ± 

8%,  (n = 5). Figure 4.9Bii shows an overlay of force and Ca2+ in the presence of 

control and GYY4137 conditions, illustrating the decline in force and calcium in the 

presence of GYY4137. 
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Figure 4.8:  Effects of NaHS and GYY4137 on High K+ depolarisation.  

High K+ (40 mM) depolarisation, 15 mins,  of  term pregnant rat myometrial strips and the 

effects in the presence of A) physiological saline solution (PSS), B) 1mM NaHS (n=6) C) 1mM 

GYY4137 ( n=8). All solutions were used at 37oC and pH 7.4.  
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Figure 4.9:  Effects of GYY4137 on calcium signalling.  

 Recording of force and intracellular Ca (from Indo-1–emitted fluorescence F400:500), 

measured simultaneously in spontaneously contracting myometrial strips dissected from 

term rat myometrium before and after incubation in A) Control (PSS, n=3), Bi) GYY 1mM 

(n=5). Bii) an overlay of both force and calcium showing that the change in calcium precedes 

the changes in force as well as showing the decrease in contractions in the presence of 

GYY4137 1mM compared to control. All solutions were used at 37oC and pH 7.4.  
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4.4.7 Effects of KATP channel inhibition on GYY4137-induced changes in 

contractility. 

Studies have demonstrated that KATP channels are involved in H2S modulation of 

smooth muscle tone (Tang 2005, Zhao 2001) but this has not been studied in rat 

uterus. In 4 paired experiments the effects of GYY4137 in the presence of 

glibenclamide, (10 µM) a blocker of KATP channels was investigated. As previously 

found (Heaton 1993) glibenclamide had little effect on spontaneous contractions 

shown in Figure 4.10A. The mean data for the effects of Glibenclamide, 

Glibenclamide & GYY4137 as well as GYY4137 incubations is shown in Figure 4.10C 

and Table 4.3.  Incubation of term myometrial tissue in GYY4137 in the continued 

presence of glibenclamide had little effect on the parameters of contraction within 

rat myometrium when compared to GYY4137 alone (Figure 4.8B). As can be seen in 

Table 4.3, GYY4137 did not produce any significant effects when glibenclamide was 

present on force, frequency or AUC when compared to GYY4137 alone (73±19%, 

101±28%, 72±14% compared to 34±6%, 42±10% 22±10% respectively relative to 

paired control of 100% (normalised). There was no significant change to duration. 

 

.  
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Figure 4.10:  Effects on calcium entry and calcium signalling.  

KATP channel inhibitor glibenclamide (10µM)  was applied to rat myometrial strips 20 

minutes before and during the 45 minute A) control incubation (PSS) and B) GYY4137 

(1mM, n=4) incubation period. All solutions were used at 37oC and pH 7.4.  C) Illustrates 

the mean data± s.e.m, denoted by error bars. Values within bars indicate n-numbers.  

* represents P<0.05  
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Table 4.3. Changes in contractile parameters in response to GYY4137, 

Glibenclamide and GYY4137 with Glibenclamide, in term pregnant rat myometrium 

Parameter 

measured 

 

Control  

(PSS) 

 

Glibenclamide 

(% ± SE, n=4) 

GYY4137+ 

Glibenclamide 

(% ± SE, n=4) 

GYY4137 

incubated 

(% ± SE, n=6) 

Contraction 

Amplitude 

100% 81±12% 73±19% 34±6%* 

Frequency 100% 99±13% 101±28% 42±10%* 

Duration 100% 92±15% 124±16% 121±35% 

AUC 100% 84±21% 72±14% 22±10%* 

 

Term (day 22) rat myometrial strips were studied from 4-6 animals. After baseline 

values were obtained (10 minute period immediately before incubation in 

experimental solutions,100 %), tissues were incubated in either physiological saline 

(control) or the solutions indicated, for 45 minutes and then the parameters of 

contraction re-measured, and expressed as the percent of baseline values (i.e. paired 

data).Values are means ± s.e.m.  

* represents significant differences in contractility compared to control period 

(p<0.05).  AUC; area under the curve. 
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4.4.8 Effects of sulfhydryl-modifying reagents Diamide (DM) and Dithiothreitol 

(DTT) on contractions of term rat myometrium 

Sulfhydryl modifiers can help to simulate or prevent S-sulfhydration. DM is an 

oxidizing sulfhydryl modifying substance converting SH bonds to disulfide bonds 

reducing the amount of free sulfhydryl groups simulating the sulfhydration 

mechanism. Examining diamides response on contractility (Figure 4.11A) shows 

similar responses to GYY4137 and NaHS, i.e. a significant decrease in amplitude, 

frequency and AUC of contraction (all p<0.05, n=5) with no significant change to 

duration (Table 4.4). A representative trace is shown in Figure 4.11A. DTT is a 

reducing sulfhydryl modifying reagent which transforms disulfide bridges into 

sulfhydryl groups in cysteine-containing proteins. This had no significant effect on 

contractility as illustrated in Figure 4.11B and summarised in table 4.4, this highlights 

free sulfhydryl groups produce no significant effect on contractility. 
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Figure 4.11: Term rat myometrial contractility changes to sulfhydryl modifiers 

Diamide and Dithioreitol. 

Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from  22 day gestation animals in response to (A) Diamide (DM, 1mM) an 

oxidant sulfhydryl modifier and (B) Dithioreitol (DTT, 1mM), a reductant sulfhydryl 

modifier. Diamide significantly reduced amplitude, frequency and area under the 

curve similar to NaHS and GYY4137 (p<0.05, n=5). DTT caused no changes to 

contractility (n=3). Student t-tests were performed.  
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Table 4.4. Changes in contractile parameters in response to Dithioreitol and 

Diamide compared to control, in term pregnant rat myometrium 

 

 Control  

(PSS) 

Dithioreitol 

(DTT, % ± SE, n=3) 

Diamide 

(DM, % ± SE, n=5) 

Force 100% 89±11% 13±12%* 

Frequency 100% 122±16% 39±35%* 

Duration 100% 143±15% 21±16% 

AUC 100% 144±26% 6±5%* 

 

Term (day 22) rat myometrial strips were studied from 3-5 animals. After baseline 

values were obtained (10 minute period immediately before superfusion in 

experimental solutions,100 %), tissues were superfused in either physiological saline 

(control) or the solutions indicated, for 30 minutes and then the parameters of 

contraction re-measured, and expressed as the percent of baseline values (i.e. paired 

data). Values are means ± s.e.m.  

* represents significant differences in contractility compared to control period 

(p<0.05).  AUC; area under the curve. 
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4.4.9 Effects of GYY4137 and NaHS on non-pregnant human myometrium 

Having established in rat that GYY4137 and NaHS could significantly reduce force in 

term but not non-pregnant myometrium, next their affect on non-pregnant human 

myometrium were investigated.  Contractions were monitored and analysed 30 

minutes before and after incubation in the solution of interest. As revealed in rat 

myometrium there were no significant changes in force, duration, frequency, or AUC of 

control contractions, the same was found upon control incubations of non-pregnant 

human myometrium in PSS (97±3%, 94±11%, 93±6%, and 88±9%,respectively,  n=7, 

Figure 4.12A).  

Exposure of spontaneous by contracting non-pregnant human myometrium with NaHS 

(Figure 4.12B, n=6) showed no significant effects on force, duration, or AUC of 

contractions (90±9%, 99±13%, 80±10% respectively relative to control 100%). However, 

frequency was significantly decreased (60±16%).  Exposure of spontaneously 

contracting non-pregnant human myometrium with GYY4137 (Figure 4.12C, n=5) 

showed no significant effects on force, duration, frequency or AUC contractions 

(84±10%, 82±14%, 116±10%, and 88±19%, respectively relative to control). 
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Figure 4.12 Effects of NaHS and GYY4137 on non-pregnant human myometrium  

Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from non-pregnant human tissue. Strips were placed under a resting 

tension of 2mN and superfused continually with physiological saline solution (pH 7.4) 

at 37°C before and after 45 minute incubations in (A) physiological saline solution 

(control, represented in red), (B)1mM NaHS (blue), (C)1mM GYY4137 (green) all at a 

pH 7.4 and at 37°C.  
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4.4.10 Effects of GYY4137 and NaHS on term pregnant human myometrium 

In contrast to the non-pregnant human myometrium, as shown in Figure 4.13B and 

4.13C, both H2S producers generated clear effects on term human myometrium and 

significant reductions in force, as seen in Table 4.5. Statistical analysis showed 

significant decreases in force, frequency and AUC of contraction after incubation in 

NaHS 1mM (p=0.014, p=0.004, and p=0.020 respectively, n=6) and GYY4137 1mM 

(p=0.008, p=0.038, and p=0.010 respectively, n=7). Duration of contractions did not 

reach significance for either H2S producer (p=0.055, NaHS and p=0.070). These results 

show that GYY4137 and NaHS significantly inhibit contractions of term pregnant 

human myometrium and that contractions of non-pregnant human myometrium are 

not significantly affected. All except for frequency in the presence of NaHS were a 

reduction is found in both tissues (non-pregnant and pregnant). 
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Figure 4.13 Effects of NaHS and GYY4137 on term pregnant human myometrium  

Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from term pregnant non-labouring human tissue. Strips were placed under 

a resting tension of 2mN and superfused continually with physiological saline 

solution (pH 7.4) at 37°C before and after 45 minute incubations in (A) physiological 

saline solution (control, represented in red), (B)1mM NaHS (blue), (C)1mM GYY4137 

(green) all at a pH 7.4 and at 37°C.  
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Table 4.5: Changes in pregnant human myometrial contractile parameters in 

response to NaHS, and GYY4137 incubations with and without oxytocin.  

Parameter 

measured 

 

Control  

(%) 

NaHS 

incubated 

(% ± SE, n=7) 

NaHS 

+Oxytocin 

(%± SE, n=7) 

GYY4137 

incubated 

(%± SE, n=6) 

GYY4137 

+Oxytocin 

(%± SE, n=5) 

Contraction 

Amplitude 

100 10±4%* ‡ 40±9%* 35 ±14%* 33±14% 

Frequency 100 23±9%* ‡ 50±10%* 48±19%* 76±26% 

Duration 100 52±19% 71±25% 51±18% 68±17% 

AUC 100 3±2%* ‡ 22±7%* 23 ±10%* 29±12%* 

 

After baseline values were obtained (30 minute period immediately before 

incubation in experimental solutions,100 %), tissues were incubated in either 

physiological saline (control) or the solutions indicated, for 45 minutes and then the 

parameters of contraction re-measured, and expressed as the percent of baseline 

values (i.e. paired data).Values are means ± s.e.m. * represents significant 

differences in contractility compared to preceding control period.(p<0.05, t-test). ‡, 

represents significant reduction in spontaneous contractility when compared to in 

the presence of oxytocin (0.5nM) along with either GYY4137 or NaHS. AUC; area 

under the curve.    
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4.4.11 Effects of GYY4137 and NaHS on term pregnant human oxytocin-stimulated 

contractions  

In vivo term human myometrium will be stimulated by circulating oxytocin thus it could 

be posited that this stimulation prevents the effects of H2S, hence I investigated if 

GYY4137 and NaHS could reduce contractility in term myometrium stimulated by 

oxytocin. Oxytocin produces a clear increase in phasic contractions in pregnant 

myometrium, upon which the effects of, NaHS, (n=7) and GYY4137 (n=5) were tested 

(Figure 4.14B and 4.14C). Both compounds reduced significantly the parameters of 

contraction in all samples, but as can be seen in Table 4.5 the effects were not as 

potent as found for spontaneous activity. For incubations in NaHS 1mM, force, 

frequency and AUC of contractions were significantly reduced at 40±9%, 50±10% and 

22±7% respectively under the presence of oxytocin. Although not as significantly 

diminished as the response to NaHS 1mM, on force, frequency and AUC of 

spontaneous contractions, 10±4%,, 23±9%, 3±2% respectively. For incubations in 

GYY4137 1mM, force, frequency and duration of contractions were decreased but not 

significantly in the presence of oxytocin at 33±14%, 76±26% and 68±17% respectively. 

Although integrating force, duration and frequency to attain the AUC still showed a 

significant decrease in contractions (29±12%).  
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Figure 4.14 Effects of NaHS and GYY4137 on term pregnant oxytocin-stimulated human 

myometrium  

Representative isometric recordings of oxytocin-stimulated (0.5nM) spontaneously contracting 

myometrial strips obtained from term pregnant non-labouring human tissue. Strips were placed 

under a resting tension of 2mN and superfused continually with physiological saline solution (pH 7.4) 

at 37°C before and after 45 minute incubations in (A) physiological saline solution (control, 

represented in red), (B) 1mM NaHS (blue), (C) 1mM GYY4137 (green) all at a pH 7.4 and at 37°C.  
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4.5 Discussion  

 

The present study is the first to investigate the effects of the novel H2S generator 

GYY4137 in a non-vascular smooth muscle, the myometrium. The effects in rat and 

human myometrium were studied and I found that: i) GYY4137 causes a concentration-

dependent reduction in contractility of  myometrium, ii) The ability of H2S to inhibit 

contraction is not constant but rather is greatest close to term before disappearing 

during labour  iii) GYY4137 and NaHS significantly reduced contractility in pregnant but 

not non-pregnant human myometrium,  iv) H2S  significantly reduced tonic force 

produced by high-K  depolarization and oxytocin-stimulated contractions, and v) 

GYY4137 reduced the intracellular Ca transients underlying contractions and inhibition 

of KATP channels prevented the effects of GYY4137. Together these data suggest H2S 

affects both membrane potential and L-type Ca channels to relax myometrium and that 

physiologically, H2S levels may be altered during gestation to contribute towards 

myometrial quiescence until labour. This suggestion is supported by recent findings 

reporting that H2S production is decreased within human term labouring myometrium 

compared to non labouring myometrium (You 2011).  

4.5.1 Experimental conditions and protocols 

GYY4137, like NaHS, releases H2S when in aqueous solutions such as PSS, but was 

developed to release it with a slower and more prolonged time course than that 

obtained with sulfide salts (Li 2008, Wang 2012). Measurements of H2S in vivo and in 

vitro confirmed a release of H2S with GYY4137 taking several minutes to peak, whereas 

NaHS produces a larger, more or less instantaneous release of H2S (Lee 2011). In 

subsequent work it was confirmed that H2S release from GYY4137 was 10% of that 

observed with NaHS, but was sustained, (Lee 2011) and that a structural analogue, 

ZYJ1122, which lacked sulphur, was without effect. Our incubations were performed 

in a fume cupboard and tissue then transferred to the experimental rig for force and 

other measurements. I waited five minutes after re-attachment of the tissue to the 

force transducer, to allow the tissue to settle and wash off of the H2S producing 

compounds. This is likely therefore to have resulted in an under-estimation of the 

effects of H2S, and suggests in vivo that GYY4137 will be more potent than measured 
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in our in vitro studies.  As seen in many of the figures, force builds up throughout the 

period after incubation, presumably as the H2S is volatilized and oxidized (Olson 

2012).  Notwithstanding these experimental conditions clear effects of GYY4137 are 

apparent. Consistent with previous work (Hu 2011, Sidhu 2001) within this thesis it was 

found that NaHS decreased or even abolished spontaneous contractility in rat and 

human myometrium.  

4.5.2 GYY4137 and smooth muscle 

In the only other study on smooth muscle function, Li et al showed GYY4137 could relax 

contraction of aortic rings with an EC50 of 115 µM.  In the uterus I found contractions to 

be relaxed with an EC50 of 1.6 µM. NaHS has been reported to relax different vascular 

tissues with EC50 of 1-300 µM (Olson 2010), thus it is apparent that there is 

considerable inter-tissue differences in EC50 values, although experimental differences 

may account for much of the variation.  

As mentioned earlier, studies in both animal and human tissues over the last few 

years have demonstrated a role for H2S within smooth muscle. While many have 

reported relaxation (Webb 2008, Dhaese 2009, Teague 2002, Zhao 2009), some have 

found increased contraction or different effects dependent upon H2S concentration 

(Webb 2008, Zhao 2001). It has been suggested that these differences may be due to 

the lower conversion efficacy of NaHS to H2S at high concentrations (Tian 2012). 

Such dual responses were not found by us with NaHS in pregnant rat myometrium, 

consistent with previous findings in the pregnant human myometrium (Hu 2011). In 

vivo data points to relaxation being the predominant effect of H2S in the vasculature. 

Mice lacking CSE, the biosynthetic enzyme for H2S, are hypertensive and their blood 

vessels do not relax to acetylcholine, and administration of NaHS to animals causes 

vasodilation (Yang 2008, Ishii, 2010). 

4.5.3 Effects of H2S change with gestational state 

Striking differences in the response of the myometrium were found, both in rat and 

human tissue, to GYY4137 and NaHS depending upon the gestational state of the 

tissue. No significant effects on contractions in the non-pregnant tissue to addition of 
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either H2S source were found but clear effects by mid-gestation. The inhibitory effect 

on contraction then further increased until term. These data suggest that the relaxant 

effects of H2S are increased as pregnancy advances. The most striking effect however 

was the abrupt transition upon labour; H2S was without effect as seen by the data for 

both compounds. This suggests that H2S contributes to uterine quiescence in late 

pregnancy and that the myometrium can rapidly change its responses to H2S.   

 

4.5.4 Mechanism of H2S effects in myometrium 

There are many suggestions for the mechanism by which H2S exerts its effects and as 

with NO, it is likely that there will be many targets (Li 2011).  The main mechanism  

appears to be due to H2S  modifying cysteine residues in many proteins through S-

sulfhydration (Mustafa 2011) i.e. cysteine’s covalent modification by which -SH groups 

on  cysteine residues of a protein are converted to –S-SH, via addition of  sulphur 

from H2S (Mustafa 2009). This molecular mechanism is similar to the S-nitrosylation 

effect of NO, however, unlike S-nitrosylation, S-sulfhydration activates rather 

represses, its target proteins (Gallyas 2012). The data in this thesis using DTT, a 

reductant sulfhydryl modifier and Diamide, a oxidant sulfhydryl modifier supports this 

showing that firstly free sulfhydryl groups have no effect on contractility and that 

disulphide bonds cause a similar effect to NaHS and GYY4137.  Although it would be 

interesting to see whether using DTT could reverse GYY4137 and NaHS effects on force 

and calcium as in Zhang et al 2012 where it could markedly reverse the H2S donor-

induced inhibition of I Ca, L (L-type calcium current) in cardiomyocytes. Illustrating that 

if H2S targets on the crucial free-sulfhydryl groups on the L-type Ca2+ channel and 

inhibits the L-type calcium current, the inter-chain disulfide bond linkages would be 

rapidly reduced by DTT, and therefore the inhibition would be reversed (Zhang 

2012). 

The most widely researched effect of H2S is on KATP channels within smooth muscle. In 

vascular smooth muscle cells H2S stimulated single-channel activity of KATP channels 

by directly increasing their opening probability (Wang 2012).  Recent work has made 

progress in identifying which residues in the channel are affected by H2S, with Cys 6 

and 26 on the extracellular N terminal of the SUR1 subunit of the channel being 

identified (Jiang 2010). KATP channels have been suggested as one of the targets of 
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H2S that lead to reduced myometrial contractility (Hu 2011).  In contrast, other 

studies showed that the KATP channels are not involved in H2S relaxation in smooth 

muscle tissues including vascular, bronchial, and gastrointestinal smooth muscle 

(Kubo 2007, Teague 2002, Lee 2007). Our data with glibenclamide would support a 

role for these channels in the mechanism of H2S effects in myometrium.  GYY4137 

had no significant effect on myometrial contractility when KATP channels had been 

incubated with glibenclamide.  As opening of these channels will cause 

hyperpolarisation, and this in turn decreases the opening of L-type Ca channels, this 

suggests that KATP are a target in myometrium. Hyperpolarization and relaxation 

induced by Na2S has been directly measured in arterioles (Liang, 2012). However as 

this hyperpolarization was shown to be due to activation of Ca sparks and opening of 

Ca-activated K (BK) channels, and Ca sparks are not present in myometrium (Burdyga 

2007),  this cannot account for hyperpolarization in the myometrium .  

4.5.5 Changes in intracellular Calcium 

The above suggests that L-type Ca entry will be reduced by H2S sources in the uterus.  

There are however few studies measuring the effects of H2S on Ca in any tissues, and 

none have done so simultaneously with contraction. Reduction of Ca by H2S has 

previously been demonstrated in non-contractile arterial segments (Tian 2012). Our 

simultaneous measurements of intracellular Ca and contractions show a H2S-

dependent reduction in intracellular Ca accompanies the decrease in amplitude of the 

phasic contractions.  To the best of our knowledge these are the first measurements 

directly demonstrating that the effects of H2S in producing reduction in force are due to 

decreased Ca transient amplitude.  

4.5.6 Effects of GYY4137 on depolarized and oxytocin-stimulated contraction. 

This study also shows in pregnant rat myometrium that the tonic force produced by 

depolarization with high K+, used to directly open L-type calcium channels, is reduced 

by GYY4137.  This suggests that mechanisms beyond membrane potential changes 

are also a feature of the H2S relaxation mechanism in the uterus.  There is now 

mounting evidence that the L-type Ca channels themselves are targets of H2S. Sun et 

al, (Sun 2008) in cardiac myocytes were the first to show that H2S can inhibit L-type Ca 
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channels. Recently others have shown inhibition of these channels by NaHS also occurs 

in vascular smooth muscle (Tian 2012, Al-Magableh 2011) and Zhang et al  (Zhang 2012) 

have gone on to show that this is dependent upon the protein sulfhydryl state of the 

channel. An increase in resting Ca2+  was also found in endothelial cells with NaHS 

(Bauer 2010), thought to be due to store operated Ca2+  entry. Thus direct effects on 

Ca2+  entry via L-type Ca2+  channels and other channels, also contributes to the relaxant 

effects of H2S. This inhibition of Ca2+  channels will also explain why in some tissues 

inhibition with glibenclamide of KATP channels often does not fully prevent the relaxant 

effects of H2S donors. There is evidence from gastric fundus and distal colon, where 

glibenclamide is without effect, that H2S may affect Ca2+  sensitization of the contractile 

machinery (Dhaese 2009, Dhaese 2010), but as Ca2+  sensitization plays little role in 

spontaneous activity of myometrium (Kupittayanant 2001), this is unlikely to be 

contributing to the data obtained within this chapter.  

Our data clearly show that H2S donors can reduce contractility even when stimulated 

by oxytocin in the pregnant myometrium. Oxytocin increases Ca2+ within the 

myometrium, partly by depolarization and increasing L-type Ca2+  channel entry (Wray 

2007).  Thus the mechanisms by which H2S suppresses spontaneous contractions are 

likely to also feature in the effects on oxytocin-induced contractions.  As shown in Table 

4.5, the effects of NaHS were less in the presence of oxytocin compared to 

spontaneous activity, presumably due to the increased contractile drive with oxytocin 

stimulation. This was not the case for GYY4137 perhaps as the H2S produced by 

GYY4137 outlasts the instantaneous H2S produced by NaHS and this allows the 

contractile drive to have more of an effect on NaHS incubated strips (Lee 2011).  

4.5.7 Gestational changes and H2S mechanism of action 

The above gives insight into the mechanism of action of H2S but does not explain the 

reasons for susceptibility changes over gestation. Suggestions include (i) increased 

vulnerability to sulfhydration of L-type calcium channels as L-type calcium channel 

subunits increase toward term (Collins 2000); (ii) reduction in kir6.1 and 6.2 KATP 

subunits once myometrium is labouring, as  before labour H2S exerts its effects on 

these subunits  (Xu 2011); (iii) up regulation of the H2S breakdown enzymes with 
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gestation, or (iv) changes in uterine environment with labour, such as hypoxia and pH 

changes, (Quenby 2004, Wray 1992) may result in faster breakdown of H2S, but this 

remains controversial, (Olson 2012, Doeller 2005).  The lack of specific inhibitors of 

these enzymes and the difficulty of accurately measuring H2S in tissues, hinders further 

study of these last two points. The differences between non-pregnant and term 

pregnant human and rat contractility responses could also be attributed to changes in 

suceptability of L-type ca channels and Katp channels to be sulfhydrated, down 

regulation of H2S breakdown enzymes at term or uterine environment changes where 

by H2S breakdown is hindered at term.  

4.5.8 GYY4137 and tocolysis 

The synthesis of GYY4137 and its cardiovascular effects in rats were first reported by Li 

et al 2008) (Li 2008).  As pointed out by these authors, while much data were being 

obtained showing the importance of H2S, studies were limited by the lack of a 

compound to better mimic the endogenous release of H2S in cells. The commonly used 

NaHS or Na2S release H2S instantaneously in aqueous solutions, producing very large 

and transient increases in its concentration. GYY4137’s potential as a slow-releasing H2S 

compound with effects on vascular smooth muscle in vitro and in vivo were shown, its 

time scale of H2S production measured and its lack of toxicity to aortic cells shown (Li 

2008). Subsequent work has supported low toxicity (Yu 2010) and also indicated anti-

cancer properties (Lee 2011), anti inflammatory activity (Li 2009), and anti apoptotic 

(Lavu 2011) activity of GYY4137. Thus GYY4137 or subsequent compounds, 

(Predmore 2012) may well be suitable for a variety of patho-physiological conditions, 

including tocolysis in threatened preterm labour, i.e. to stop the onset of labor,  

although further work, including studies on labouring samples, are needed to 

develop this suggestion. Recent studies of interactions between the enzymes 

producing or destroying H2S and their inhibitors, also represent another way of 

manipulating its effects in the uterus (Sun 2009)  The finding that free H2S values are 

up to 100-fold higher in smooth muscle (aorta) compared to liver, blood, heart and 

kidney, (Levitt 2011) also encourages these approaches. 
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4.5.9 Summary 

In conclusion, NaHS and GYY4137 relax term pregnant human and rat myometrium. 

Within the rat myometrium we show increased potency as term approaches is 

shown; an effect that is rapidly reversed as labour starts.  GYY4137 can reduce force 

produced spontaneously, by oxytocin or high K+ depolarization. The mechanism 

involves both KATP channels and importantly, L-type Ca channels. GYY4137 reduces 

the intracellular Ca transients that underlie spontaneous contractions. Our data and 

that of previous studies suggest H2S could contribute to uterine quiescence and that 

increasing its level in myometrium could be an attractive target for therapeutics to 

inhibit the onset of labor.  Increased understanding of the mechanisms for transition to 

labor should also follow from obtaining a better understanding of H2S in the 

myometrium. 

4.5.10 Limitations of study 

Limitations of study include: 

 No direct evidence of sulfhydration. Furture work using a biotin switch assay 

investigating sulfhydration of L-type and Katp channels in the uterus needed 

as using DTT and DM effect many mechanisms including oxidation of 

glutathione. 

 No work on human labouring samples, need to investigate human labouring 

samples to see whether the effect seen in the rat can directly relate. Difficult 

samples to attain. 

 When thinking about tocolytics many factors have to be borne in mind, 

including effects on other tissues, the fetus, tolerance, side effects, 

formulations and desensitization.  However this is a worthwhile goal, as 

illustrated by the successful introduction of atosiban, the Oxytocin receptor 

anatagonist. 
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Chapter 5 

Investigating the role of H2S through L-cysteine and expression of the 
enzymes producing and breaking down H2S. 

5.1 Abstract 

H2S is produced in vivo from L-cysteine, by cystathionine β-synthase (CBS) 

and cystathionine γ-lyase (CSE). The enzyme rhodanese has an isoform, TST involved in 

the breakdown of H2S. Thus H2S will be regulated within cells.  In the previous chapter it 

has been clearly shown that H2S producing compounds NaHS and GYY4137 have a 

relaxant effect on the myometrium and reduce Ca transients at term. However, is the 

same true for endogenous L-cysteine? This chapter investigates L-cysteine’s effects on 

simultaneous force and calcium measurements within non-pregnant and term 

pregnant rat (22 day) myometrium. L-cysteine’s effects were also examined in non-

pregnant and term pregnant human myometrium.  The characteristics of spontaneous 

and high k+ depolarisation induced contractions are discussed. Another question 

addressed by determining enzyme expression levels, is could the differences in 

contractility in non-pregnant compared to pregnant myometrium (Chapter 4) in 

response to H2S, be a result of differences in H2S production or removal rates within the 

uterus?   

There is no previous account of the effects of L-cysteine on non-pregnant and term 

pregnant rat myometrium and its effects are therefore unknown. In this chapter I 

therefore determined its effects and possible mechanisms of action, by studying 

changes in underlying calcium, intracellular pH, and changes in response to BayK 8644 

and high K+. L-cysteine and the contribution of its chemical effect were also assessed 

using D-cysteine, the stereoisomer of L-cysteine as well as, L-serine and sodium 

pyruvate both by-products of H2S production through L-cysteine. In addition inhibitors 

of both H2S producing enzymes were examined to determine whether changes to the L-

cysteine responses occurred. Finally, as H2S can be naturally produced by garlic, I also 

monitored changes in contractility in response to garlic.  

The distribution of CBS, CSE and TST were assessed using immunohistochemistry 

and/or Western blotting in NP, 10 day, 14 day, 18 day, and 22 day gestation rat 
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myometrium as well as within non-pregnant and term pregnant human myometrium.  

L-cysteine applied to term pregnant rat and human myometrium, dose-dependently 

and significantly decreased spontaneous contractions, and also reduced the 

underlying Ca transient (Indo-1 fluorescence). The frequency and AUC of contraction 

increased. The intracellular pH, measured via carboxy SNARF-1 fluorescence, 

declined in L-cysteine. L-cysteine had no effect in depolarized preparations. 

BayK8644 reduced the effects of L-cysteine although the initial increase in 

contractions once L-cysteine was applied remained significant.  

This data also shows only increases in frequency of contraction were found upon 

application of L-cysteine within the non-pregnant rat and human myometrium. 

Inhibitors of H2S production reduced or blocked the relaxant effect produced by L-

cysteine although stimulant effects remained. Garlic also produced similar responses 

to L-cysteine with decreases in amplitude as well as an overall increase in frequency 

and AUC. 

Both H2S production enzymes, but not TST, were present in all myometrium examined. 

Closer examination of the non-pregnant and term pregnant human tissue through 

western blotting illustrated that within the term pregnant tissue significantly less 

amounts of both enzymes are present.  

In conclusion L-cysteine caused an increase in frequency and decline in force 

amplitude. The effects on amplitude can be explained by L-cysteine affecting Ca 

transients and L-type calcium channels similar to GYY4137 and NaHS. However, the 

stimulatory effect caused by L-cysteine remains to be elucidated. Preliminary 

experiments with garlic shows tocolytic effects but remain to be further investigated, 

as does the H2S enzyme distribution decline from non-pregnant to term to allow for 

the onset of labour. 
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5.2 Introduction 

H2S has been around for millions of years and is well known for its smelly odour and 

toxicological effect (Reiffenstein 1992). However in recent years it has been 

recognized for its physiological role as a gaseous signalling molecule. Tissues produce 

H2S via two enzymatic pathways, cystathionine β-synthase (CBS) and cystathionine γ-

lyase (CSE) and L-cysteine is the substrate these enzymes use to produce H2S. 

Therefore as both enzymes are present in the myometrium (Patel 2009, You 2011), it 

is capable of producing H2S from the precursor L-cysteine. CSE and CBS are cytosolic 

enzymes. CBS is a homotetramer consisting of 551-amino-acid subunits with a 

subunit molecular weight of ~63KDa and  CSE is a 405-amino-acid protein consisting 

of a tetramer formed by two homodimers, with active and stable dimer of ~45KDa 

(Sun 2009, Whiteman 2011 Singh 2009, & You 2011). An enzyme called rhodanese 

has been implicated in the breakdown of H2S, specifically its TST isoform. However, 

neither H2S producing enzyme has been looked for in the non-pregnant myometrium 

or at different stage gestations in the rat and TST has not been examined in the 

uterus at all. The main finding on application of H2S through H2S donors is that it has 

a relaxant effect on smooth muscle, which has been clearly shown in Chapter 4, this 

stimulated the examination of L-cysteine’s effect on force and calcium of the 

myometrium as well as the presence of the H2S producing and breakdown enzymes 

with view to help develop new physiological and naturally occurring tocolytics and to 

help explore the physiological relevance of H2S in the myometrium.   

There have been few studies examining the effect of L-cysteine on uterine 

contractility. One study investigated the effect of increasing concentrations of L-

cysteine up to 1mM on 19 day rat myometrium, finding a dose dependent decrease 

in contractile activity (Sidhu 2001).  L-cysteine on term non labouring and labouring 

human myometrium also reduced contraction amplitude, but also increased 

frequency. This study also found that myometrial strips treated with glibenclamide 

an inhibitor of KATP channels abolished the effects of L-cysteine and that L-cysteine’s 

effects were less potent in the term labouring human strips (You 2011). The latter 

observations ties in with Chapter 4 were glibenclamide abolished the effects of NaHS 
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and GYY4137 and that both H2S-producer effects were eliminated upon labour 

onset.  

 

H2S is also naturally produced by garlic (Allium Sativum). Garlic consumption has 

been correlated with the reduction in multiple risk factors associated with 

cardiovascular diseases such as increased reactive oxygen species, and high blood 

pressure to high cholesterol (Banerjee 2002, Benavides 2007). Within isolated 

hearts, aortic rings, tracheas and intestines, garlic juice inhibited smooth and cardiac 

muscle contractions (Aqel MB 1991).  Given the need to find more efficacious 

tocolytics to prevent pre-term labour, the suggestion that H2S can relax uterine 

smooth muscle is important and if verified could form the basis of new methods to 

control uterine activity and maybe aid in the understanding of quiescence. It would 

be even more beneficial if this tocolytic could be naturally occurring from the food 

that we eat and this is why I have investigated the effect of garlic on myometrial 

contractility. If similar effects to GYY4137 and NaHS are found, then its use clinically 

will be of interest.  

As there is little mechanistic insight into the effects of L-cysteine on myometrial 

contractility, this was examined. This chapter aims to demonstrate the contractile 

responses of L-cysteine within non-pregnant and term pregnant rat and human 

myometrium. Characteristics of spontaneous and high K+ depolarisation-induced 

contractile activities are discussed. Further investigation into the mechanism of L-

cysteine with respect to BAYK 8644, Ca2+ signalling, intracellular pH and use of H2S 

producing enzyme inhibitors are also discussed. I also explored the contractility 

changes of the myometrium in the presence of garlic which naturally produces H2S. 

The enzymes CBS and CSE are widely distributed in tissues. In the cardiovascular 

system the expression of CSE is much higher compared to CBS, though the opposite 

is found in brain (Lowicka 2007, Awata 1995). Expression of both CBS and CSE have 

been documented in smooth muscle tissue. CSE seems to be the predominant 

enzyme responsible for H2S production in vasculature smooth muscle (Zhao 2001) 

were as in the gastrointestinal and penile smooth muscle both contribute (Fiorucci 

2005, De’Emmanuele Di Villa Bianca 2009). In the myometrium, Patel et al found the 
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presence of both H2S producing enzymes in rat non-pregnant and 19 day gestation 

uterus as well as human term pregnant myometrium. You et al further examined the 

presence of both enzymes in term non labouring and labouring human myometrium 

at the protein and mRNA level, finding both present and during labour H2S enzymes 

are down-regulated. No work has been undertaken to look at the expression of both 

enzymes within different stage gestation rat myometrium or looked at the presence 

in non-pregnant human versus term pregnant myometrium hence this was 

researched. 

TST is the isoform of rhodanese that detoxifies H2S to sulfite and sulfate from 

thiosulfate. (Caliendo 2010). TST is a mitochondrial matrix enzyme and ~33-kDa in 

weight (Ramfrez 2004). TST was shown to detoxify H2S in human colon but has yet to 

be looked at in the myometrium. Could TST have a role in the differences found in 

contractility? Does its presence differ at different stages of gestation in rat 

myometrium and in non-pregnant versus term pregnant human myometrium?, this 

will be investigated. 
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5.3 Methods 

5.3.1 Tissue 

 Strips of longitudinal myometrium (~ 1x5mm) were dissected from the uterus of 

humanely killed non-pregnant, and 22 day gestation (equivalent to term) Wistar rats 

(Wray 2008). The gestation of the rat was defined from day 0, when the male was 

placed in the cage to mate. Human myometrial strips were dissected from biopsies 

obtained with informed consent and ethical approval from women undergoing an 

elective term caesarean section (mean gestational age 39 weeks, mean maternal 

age, 29; range 27-37 years, N=8 ) or pre-menopausal hysterectomy (mean age, 38.2; 

range 27- 50 years, N=5). Indications for caesarean section included previous 

caesarean section or breech presentation. None of the women included in this study 

had any underlying disease (hypertension, diabetes, pre-eclampsia, intrauterine 

growth restriction etc.). Indications for hysterectomy were menorrhagia or irregular 

bleeding. Biopsies were obtained from the upper lip of the lower segment uterine 

incision at caesarean section (Luckas 2000) and from corresponding macroscopic 

normal area of the uterus at hysterectomy.  

 

5.3.2 Solutions 

 All chemicals were produced as described in Chapter 2. All chemicals were obtained 

through Sigma (UK), apart from garlic, which was obtained from RAJAH finest 

authentic foods, UK. The composition of Physiological Saline Solution (PSS) was as 

follows (mM): 154 NaCl, 5.1 KCl, 0.12 MgSO47H2O, 10.9 HEPES, 8 Glucose, 2 CaCl2, pH 

7.4. In some experiments to depolarize the tissue, the KCl in the PSS was increased 

to 40 mM and NaCl reduced equivalently. L-cysteine was made in PSS at 1n M, 1 µM, 

0.1 and 1 mM, then pH readjusted to 7.4. (Olson 2012). Garlic powder (Rajah), was 

diluted in PSS at 0.01, 0.2, 0.7 and 1 mg/ml and also pH readjusted to 7.4. Allicin 

(diallyl thiosulfinate), the main organosulfur compound, is produced from the amino 

acid alliin by action of the enzyme alliinase when garlic is crushed to a powder. 

Allicin, unstable in aqueous solution, rapidly decomposes mainly to diallyl sulfide 

(DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS),and ajoene (Amagase 2006). 

BayK was used at 0.1µM, sodium pyruvate, L-serine and D-cysteine were used at 
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1mM. Enzyme inhibitors, propylargylglycine (PAG), O-(carboxymethyl)hydroxylamine 

hemihydrochloride (AOAA) and hydroxylamine (HA) were used at 0.1mM. All 

solutions were applied directly to the bath at 37oC. 

 

5.3.3 Ca2+ and Force Measurements:   

Tissue preparation and measurements of calcium and tension are the same as 

described in Chapter2, general materials and methods. 

 

5.3.4 pHi and Force Measurements:   

Tissue preparation and measurements of pHi and tension are the same as described 

in Chapter2, general materials and methods. 

 

5.3.5 Statistics 

Contractions were analysed for amplitude, frequency, duration and area under the 

curve, (AUC, in arbitrary units, au) for; 10 minutes, at the beginning and end of 

response to L-cysteine and garlic rat data, 30 minutes, high K, using origin 8. L-

cysteine’s response within human data was assessed over a 30 minute period to 

accommodate the slower rate of contractions. Each strip tested for the effect of L-

cysteine or garlic had a paired control response in PSS rather than test solution. 

Student’s t tests were performed to compare two groups. Anova with Bonferroni 

post hoc tests were used to compare more than two groups. P was taken as showing 

a significant difference when P<0.05. Each n was from a different biopsies or rat.  In 

some cases results are expressed as percentage of control contractions were control 

is 100%. 

5.2.6 Immunohistochemistry 

Sections of 4μm thick were cut in the pathology department and mounted onto glass 

slides. Sections were cut from 6 non-pregnant and 6 pregnant women as well as non-

pregnant, 10, 14, 18, and 22 day rat myometrium. The sections were stained as 

described in Chapter 2 section 2.6. Briefly sections from human myometrium were 

labelled appropriately before combining in a metal rack were rehydrated and placed 

into boiling 10mM Sodium Citrate buffer pH6.0 for antigen retrieval. Endogenous 
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peroxidise activity was blocked with 3% hydrogen peroxide before incubation non 

specific block 5% Bovine Albumin Serum (BSA) overnight incubation with 1:50 CBS 

and  1:150 CSE antibodies. Beta actin (Abcam) was used as an antibody control and 

Aorta and brain were used as a positive control for CSE and CBS, respectively. The 

following day the sections were incubated with secondary antibody before 

developing with 3, 3’-Diaminobenzidine (DAB) (Sigma). All slides from rat were 

developed for the same time to reduce any bias in the experiments. All slides from 

non- pregnant and term pregnant myometrium were developed for the same time to 

reduce any bias in the experiments. 10 images were photographed from each 

sample (6 non-pregnant and 6 term pregnant human myometrium as well as non-

pregnant, 10, 14, 18, and 22 day rat myometrium) using a 40x objective. (Nikon 

Biophot Microscope, Nikon Corporation, Tokyo 100-8331, Japan, Eclipsenet 

software, developed by Laboratory Imaging s.r.o. for Nikon Instruments Europe B.V., 

1170AE Badhoevedorp, The Netherlands). 

 
5.2.7 Western Blotting 

Protein was extracted, quantified and Western blots run as described in Chapter 2 

section 2.7. Briefly a small section of myometrium was dissected from non-pregnant 

and term pregnant myometrial biopsies, diced with a scalpel before placing into 

protein extraction buffer. The tissue was then homogenised, centrifuged and the 

supernatant removed and stored at - 20°C until use. Once quantified 25μg of protein 

was prepared in 3x loading buffer, boiled at 100°C. 10% acrylamide gels were cast 

and 20μl of the prepared proteins were added to the wells. The gels were run at 150 

volts for 90 mins before transfer to nitrocellulose membranes at 40V for 1hour and 

10minutes at room temperature. Once transferred the nitrocellulose membranes 

were placed into 5% BSA before overnight incubation at 4°C with primary antibody. 

The primary antibodies used were CBS at 1:250 (Abnova), CSE at 1:200 (Abnova), TST 

at 1:1000 (Abcam) and loading control Actin 1: 5000 (Abcam). The following day the 

primary antibody was removed and the membranes were incubated with the 

appropriate secondary antibody either Goat Anti Mouse, Goat Anti Rabbit (Thermo 

Fisher Scientific) before developing with SuperSignal West Pico Chemiluminescent 
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Substrate (Thermo Fisher Scientific). Analysis of Western blots was carried out in 

ImageJ using densitometry. 
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5.4 Results 

5.4.1 The effect of L-cysteine on term pregnant rat myometrial contractility 

Exposure of contracting rat myometrium to increasing concentrations of L-cysteine 

from 1nM to 1mM caused a dose dependent decrease in the amplitude of force of 

contractions. Typical force traces are shown in figure 5.1i)-iv) and the mean data for 

amplitude, duration, frequency and AUC are presented in graphical form in Figure 

5.2 showing the results in response to L-cysteine in the first (Figure 5.2A) and last 

(Figure 5.2B) 10 minutes of perfusion. Looking at initial 10 minutes response to L-

cysteine (Figure 5.2 Ai-iv) showed no significant change until 1mM when a 

stimulatory effect on contractility was found. A significant increase in force 

amplitude, frequency and AUC, was seen at 1mM L-cysteine (p=0.007, 0.00009, 

0.005 respectively). There was no change in the duration of contractions.  

 

Examining the last 10 minutes of the response on application of L-cysteine (Figure 

5.2Bi-iv) highlighted a decrease in force amplitude, most marked at the highest 

concentration of L-cysteine 1mM (67±6%) relative to control period 100% (n=8). 

Statistical analysis showed a significant decrease in contractility from 1nM to 1mM 

(p=0.019). Increased frequency of contractions achieved highest significance at 1mM 

L-cysteine (p=0.002) as well as duration after increasing concentrations of L-cysteine, 

however by integrating the differences in force, duration and frequency by 

measuring the AUC, showed the most marked increase at the highest concentration 

of L-cysteine 1mM (180±28%) relative to control period 100% (n=8) and significant at 

1mM concentration (p=0.037). These results showed effects most prominent at 

1mM L-cysteine, myometrial contractility after 30 minutes showed a decrease in 

force amplitude with overall increase in AUC.  

A dose response curve for the final 10 minute effect of L-cysteine on the force of 

term pregnant rat myometrial contractions showing the logEC50 is illustrated in 

Figure 5.3. 
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Figure 5.1: Dose dependency of L-cysteine in term pregnant rat myometrium.  

Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from term pregnant rat (22 day gestation). Each myometrial strip was 

perfused with either i) 1nM, ii)1µM, iii) 0.1mM, iv) L-cysteine.  
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Figure 5.2: Mean data of dose dependency of L-cysteine in term pregnant rat myometrium.  

Mean data± s.e.m, denoted by error bars, showing the first 10 minutes (A) and the last 10 minutes (B) 
of applications of L-cysteine. The mean data for i) Amplitude, ii) Duration iii) Frequency, iv) AUC in 
response to L-cysteine. Values within bars indicate n-numbers. * is p<0.05. ** is p<0.01, ***p<0.001 
using Anova with Bonferroni post hoc tests. (A) shows a dose dependent increase in contractility as 
does (B) only with a significant dose dependent decrease in amplitude. 
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Figure 5.3 LOG dose response curve for pregnant rat myometrium  

Log dose response curve for the effect of L-cysteine on rat myometrial contractility, 

showing the sigmoidal relationship. The log EC50 value of -3.345 depicts the 

concentration required to reduce myometrial contractility by 50% compared to 

minimum and maximum values. 

Log (L-cysteine Concentration (M) 
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5.4.2 The effect of L-cysteine on non-pregnant rat myometrial contractility 

Concentrations of L-cysteine from 1nM to 1mM were examined in non-pregnant rat 

myometrium, original traces from each concentration are illustrated in Figure 5.4. L-

cysteine within non-pregnant myometrium, in the initial 10 minute (Figure 5.5A i-iv) 

period highlighted a dose dependent increase in contractile profile upon increasing 

doses. The stimulation seen only became significant in increasing the amplitude of 

contraction at 1mM (p= 0.003, n=10). No significance in duration and frequency was 

found. Were as integrating the differences in force, duration and frequency by 

measuring the AUC significance was found between 1nM and 1µM to 1mM 

(p=0.005, p=0.012 respectively) showing a dose dependent increase with increasing 

concentrations of L-cysteine which was most marked at the highest concentration of 

L-cysteine 1mM (198±17%).  

Studying the last ten minutes of the response to L-cysteine (Figure 5.5B i-iv) 

demonstrated a trend increase in all parameters with no significance. Frequency of 

contractions at 1mM L-cysteine showed a significant increase (p=0.013, n=10).  
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Figure 5.4: Dose dependency of L-cysteine in non-pregnant rat myometrium.  

Representative isometric recordings of spontaneously contracting myometrial strips 

obtained from non-pregnant rats. Each myometrial strip was perfused with either i) 

1nM, ii)1µM, iii) 0.1mM, iv) L-cysteine.  
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Figure 5.5: Mean data of dose dependency of L-cysteine in non-pregnant 
myometrium.  

Mean data± s.e.m, denoted by error bars, showing the first 10 minutes (A) and the last 10 minutes (B) 
of applications of L-cysteine. The mean data for i) Amplitude, ii) Duration iii) Frequency, iv) AUC in 
response to L-cysteine. Values within bars indicate n-numbers. * is p<0.05. ** is p<0.01, ***p<0.001 
using Anova with Bonferroni post hoc tests. (A+B) show a dose dependent increase in contractility.  
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5.4.3 Comparing the response of 1mM L-cysteine within non-pregnant and term 

pregnant rat myometrium 

The first and last ten minutes of responses to 1mM L-cysteine were compared in 

both term and non-pregnant myometrium. For the first ten minutes there was no 

difference in the parameters of the stimulation found. At the last ten minutes of 

activity the mean force amplitude of spontaneous contractions within term pregnant 

myometrium were smaller at 67±3% (n=8) compared to non-pregnant at 93±11% 

(n=10). The mean duration, frequency and AUC of contraction were not significantly 

elevated when compared to the non-pregnant. The overall mean data for all 

parameters can be found in figure 5.6, student t-tests were performed to look for 

significance at p<0.05. Therefore in conclusion the changes in contractile activity on 

application of L-cysteine to non-pregnant and pregnant myometrium were not 

significantly different apart from a remaining significant decrease in amplitude of 

pregnant myometrial contractions. 
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Figure 5.6: Comparison of rat non-pregnant and term pregnant L-cysteine 
responses.  

Mean data± s.e.m, denoted by error bars, showing non-pregnant (NP) and term pregnant differences 
in final ten minute perfusion with L-cysteine. The mean data for i) Amplitude, ii) Duration iii) 
Frequency, iv) AUC in response to L-cysteine. Values within bars indicate n-numbers. * is p<0.05. ** is 
p<0.01, ***p<0.001 using student ttests.  
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5.4.4 Effects on calcium entry and Calcium signalling  

The data above very clearly shows increased frequency of contractions that progress to 

a reduction in the amplitude of term pregnant rat myometrium in the last 10 minutes 

of L-cysteine application which could be attributed to the effects of H2S produced by L-

cysteine as found on incubation with H2S producers  NaHS and GYY4137 (chapter 4). 

Next it was determined if Ca2+  channels and transients were affected upon application 

of L-cysteine.  Firstly, high K+ was used to depolarize the myometrium and open voltage 

gated Ca2+  channels (Noble 2006). Secondly, direct measurements of intracellular Ca2+  

simultaneously with force in the presence of L-cysteine. If Ca2+  entry is decreased, then 

this should be apparent in the associated Ca2+  transients (Shmigol 1998). Thirdly, Bay K 

8644 was used to investigate whether upon opening L-type calcium channels changes 

the response of L-cysteine. As Bay K 8644 opens L-type Ca2+  channels and leads to a 

rise in cytosolic Ca2+, however the mechanism by which the sustained elevation in 

cytosolic calcium results in the generation of phasic contractile activity is unclear 

(chien 1996).  

Depolarisation using high K+ for 30 minutes was examined with and without 1mM L-

cysteine (n=5). In day 22 pregnant rats, the two consecutive applications of high K, with 

and without L-cysteine, produced very similar contractile responses; a rapid rise in 

force which plateaus (Figure 5.7A). No significant differences in AUC were found.  

The effects of 1mM L-cysteine on Ca2+ signalling in day 22 of gestation rat 

myometrium were examined. As Figure 5.7B clearly shows spontaneous Ca2+ 

transients (indo-1 fluorescence) underlie the phasic contractions of the 

myometrium. L-cysteine produced significant decreases in Ca2+ amplitude to 75±5%, 

shown in figure 5.7B with an overall increase in the frequency of Ca transients to 

129±25%.  (p=0.021, p=0.004 respectively, n = 5).  

Consistent with previous studies upon application of 0.1µM BayK (Figure 5.8) 

increased the intensity and frequency of smooth muscle contractions (Knot 1991, 

Sato 1988, Chien 1996). The effects of L-cysteine in the presence of BayK were not as 

pronounced, the decrease in contractility found after the 30 minute L-cysteine 

incubation did not reach significance (p=0.06). For duration, frequency and AUC 
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there were also no significant changes. Although, the AUC for the initial 10 minutes 

of L-cysteine incubation remained significantly increased.  

Overall L-cysteine affects Ca entry as it significantly decreases Ca2+ transient 

amplitude after 30 minute incubations as well as increases frequency. KCL and BayK 

8644 results show that the effects of L-cysteine are eliminated in the presence of KCl 

and partially inhibited in the response to bayK 8466.  

 

5.4.5 Examining the chemical effect of L-cysteine through use of D-cysteine and 

sodium pyruvate. 

To investigate whether the difference seen in responses to L-cysteine are not just 

simply a chemical effect D-cysteine, the stereo isomer of L-cysteine as well as sodium 

pyruvate and  L-serine, by products formed when the CSE and CBS enzymes use L-

cysteine to produce H2S, were studied (Figure 5.9). L-serine is an analogue of L-

cysteine. The optimum concentration of L-cysteine used was 1mM and this was the 

concentration used within this section to directly compare responses of D-cysteine, 

sodium pyruvate and L-serine. 

There was no effect on contractility in the presence of D-cysteine (n=4, Figure 5.9A) 

also previously found by sidhu et al 2001 (sidhu 2001). Both sodium pyruvate (n=4) 

and L-serine (n=2) produced a similar increased contractile profile upon initial 

application. No statistical analysis was performed on L-serine but sodium pyruvate 

showed a significant increase in amplitude of initial contractions once sodium 

pyruvate had been added at 113±3% (p=0.03). This lead me to the question could 

the initial stimulation of force in the presence of L-cysteine be due to an intracellular 

pH change?  
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Figure 5.7:  Effects on calcium entry and calcium signalling.  

(A)  High K (40 mM) depolarisation, 30 mins,  of  term pregnant rat myometrial strips and the 

effects in the presence of 1mM L-cysteine (n=5). (B) Recording of force and intracellular Ca 

(from Indo-1–emitted fluorescence F400:500), measured simultaneously in spontaneously 

contracting myometrial strips dissected from term rat myometrium in the presence of L-

cysteine (n=5). All solutions were used at 37oC and pH 7.4.  
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Figure 5.8:  Effect of L-cysteine on myometrial contractility in the presence of BayK 8644  

 A representative trace showing the reduced effects of L-cysteine on the contractility 
of term pregnant rat myometrium in the presence of BayK 8644. BayK 8644 L-type 
calcium channel opener. The decrease in contractions is abolished in the response to 
L-cysteine with BayK 8644 compared to the response to L-cysteine alone. In 
indo1AM loaded stripes whilst being excited at 340nM by a xenon lamp. The emitted 
light was measured by photomultiplier tubes at 400nM and 500nM. The ratio of the 
two fluoresces gives a measurement of the underlying calcium transients. All 
experiments were carried out a 37°C and pH7.4 
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Figure 5.9:  Effect of D-cysteine, sodium pyruvate and L-cysteine on term pregnant rat 

myometrium 

A representative trace showing A) no effect of 1mM D-cysteine on spontaneous 

contractility of term pregnant rat myometrium and the stimulation upon initial 

perfusion in B) 1mM sodium pyruvate and C) 1mM L-serine. All experiments were 

carried out a 37°C and pH7.4.  
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5.4.6 Monitoring intracellular pH of term pregnant myometrial contractions upon 

perfusion with L-cysteine. 

To investigate if the initial stimulation of frequency upon incubation with L-cysteine 

was due to an intracellular alkalinisation (Heaton 1992, Heaton 1993) the pH 

sensitive indicator carboxy SNARF-1 was used. In 6 myometrial strips from different 

term pregnant rats pH was measured simultaneously with spontaneous contractile 

activity and L-cysteine added. The initial changes in frequency and amplitude of 

contractions upon application of L-cysteine coincides with the period when pH 

decreased i.e. no alkalinisation occurred. (Figure 5.10A). Addition of pH 6.9 PSS 

illustrates the effects of external acidification (figure 5.10B) using Carboxy SNARF-1, 

supporting that upon incubation in L-cysteine an acidification roughly half the size is 

seen.  
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Figure 5.10 The effects of L-cysteine and external pH 6.9 on intracellular pH 

Simultaneous recording of force and pHi in term pregnant rat myometrium loaded 

with the pH sensitive indicator carboxy-SNARF. The tissue was excited at 530nm and 

a ratio of the emission signals at 590 and 640. Traces show a small decrease in pHi is 

associated with each phasic contraction. A) Shows an intracellular decrease in pH 

upon application of L-cysteine (n=6). B) Illustrates decreasing the pH of the perfusate 

from pH 7.4 to pH 6.9 increased force of contractions.  
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5.4.7 Do inhibitors of both H2S production enzymes abolish the response of L-

cysteine? 

Both CSE and CBS enzymes produce H2S through use of substrate L-cysteine. In order 

to confirm that the effects of 1mM L-cysteine were through producing H2S, CBS and 

CSE inhibitors were administered 20 mins before addition of L-cysteine to term 

pregnant rat myometrium. Within this section I describe the use of CSE inhibitor, 

PAG (0.1mM) and CBS inhibitors, AOAA (0.1mM) and HA (1mM).  PAG and AOAA 

have been used in human myometrium at these concentrations (You et al 2011). 

An original trace showing L-cysteine’s effects in the presence of PAG can be seen in 

Figure 5.11. As shown in Figure 5.12A, CSE inhibitor PAG did not block the initial 

stimulation caused by L-cysteine. Significant elevations in amplitude, duration and 

AUC remain (p=0.03, p=0.03, p=0.009, respectively, n=4). Frequency is elevated but 

not significantly, with increased n numbers this may change. However, illustrated in 

figure 5.12B, the decrease in amplitude of the contractions in the final ten minute 

period of L-cysteine exposure is partially blocked at 88±13% rather than 67±6% in L-

cysteine alone. Amplitude, duration and AUC remain significantly elevated. 

CBS inhibitors HA (n=5) and AOAA (n=4) were tested in the presence of L-cysteine 

and original traces can be found in figure 5.13. HA totally abolished contractions as 

well as the effects of L-cysteine. AOAA abolished the L-cysteine-induced decrease in 

spontaneous contraction amplitude found within the last ten minute of L-cysteine 

application. This is shown in the mean data within figure 5.14. All other parameters 

of contractility were not significantly changed in response to L-cysteine in the 

presence of AOAA at the beginning or end period of L-cysteine application, although 

overall resultant affects still remain on AUC. 

 

 Overall both inhibitors block or partially block the decrease in contractility, most 

likely a result of H2S production by the enzymes through L-cysteine. Although the 

effects of the acidification found upon application of L-cysteine remain, with an 

increase in the frequency and AUC of contraction demonstrated in figures 5.11-5.14.  
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Figure 5.11 The effect of L-cysteine in the presence of CSE inhibitor 

CSE inhibitor PAG (0.1mM) was applied to term pregnant rat myometrial strips 20 

minutes prior and throughout the 30 minute superfusion of L-cysteine (1mM). A 

representative trace is illustrated above (n=4). All solutions were superfused at 37oC, 

pH7.4. 
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Figure 5.12: Mean data showing the responses of L-cysteine with and without CSE 
inhibitor. 

Mean data± s.e.m, denoted by error bars, showing the first 10 minutes (A) and the last 10 minutes (B) 
of applications of L-cysteine (1mM) with and without CSE inhibitor PAG (0.1mM). The mean data for i) 
Amplitude, ii) Duration iii) Frequency, iv) AUC in response to L-cysteine. Values within bars indicate n-
numbers. * is p<0.05. ** is p<0.01, using student t-tests.  
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Figure 5.13 The effect of L-cysteine in the presence of CBS inhibitors 

CBS inhibitors  A) HA(1mM) and B) A0AA (0.1mM) were applied to term pregnant rat 

myometrial strips 20 minutes prior and throughout the 30 minute superfusion of L-

cysteine (1mM). A representative trace is illustrated above (n=5, n=4 respectively). 

All solutions were superfused at 37oC, pH7.4. 
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Figure 5.14: Mean data showing the responses of L-cysteine with and without CBS 
inhibitor A0AA. 

Mean data± s.e.m, denoted by error bars, showing the first 10 minutes (A) and the last 10 minutes (B) 
of applications of L-cysteine (1mM) with and without CBS inhibitor AOAA (0.1mM). The mean data for 
i) Amplitude, ii) Duration iii) Frequency, iv) AUC in response to L-cysteine. Values within bars indicate 
n-numbers. * is p<0.05. ** is p<0.01, using student t-tests.  
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5.4.8 The dose dependent effect of L-cysteine on term pregnant human 

myometrium 

The dose response of L-cysteine was examined in the term pregnant human 

myometrium. To see if similar effects were found.  To accommodate the slower rate 

of contractions the full 30 minute exposure to L-cysteine was assessed. Human 

myometrium was exposed to increasing concentrations of L-cysteine from 1nM to 

1mM. 

 

A trend dose-dependent decrease in the amplitude of force of contractions was 

found. At the highest concentration (1mM) this decrease in force almost reached 

significance at 57±8% compared to control (100%) (p=0.060, n=6). A typical dose 

response force trace can be seen in figure 5.15 and the mean data for amplitude, 

duration, frequency and AUC of contractions in response to L-cysteine are presented 

in graphical form in figure 5.16. All other parameters showed an increase in 

contraction (5.15 ii-iv) in response to increasing doses of L-cysteine, only the 

elevated frequency reached significance, from 1nm and 1µm to 1mM (p=0.033, 

p=0.025 respectively). Individual Student t-tests between control and 1mM L-

cysteine contractions showed a significant decrease in amplitude (p=0.001) and 

significant increases in duration, frequency and AUC (p=0.023, p=0.017, p= 0.040, 

respectively). Student t-tests between control and 0.1mM L-cysteine showed a 

significant decrease in amplitude as well as a significant increase in frequency 

(p=0.03, p=0.019). 

 

A dose response curve for the effect of L-cysteine on the force of term pregnant 

human myometrial contractions showing the logEC50 is illustrated in Figure 5.17. 
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Figure 5.15: Dose dependency of L-cysteine in term pregnant Human myometrium.  

Isometric recordings of spontaneously contracting term pregnant human myometrial 

strips superfused with increasing doses of L-cysteine from 1nm to 1mM at 37oC, 

pH7.4.  
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Figure 5.16: Mean data of dose dependency of L-cysteine in term pregnant human 
myometrium.  

Mean data± s.e.m, denoted by error bars, showing the mean data in the parameters of contractility i) 
Amplitude, ii) Duration iii) Frequency, iv) AUC in response to L-cysteine. Values within bars indicate n-
numbers. * is p<0.05. ** is p<0.01, ***p<0.001 using Anova with Bonferroni post hoc tests.  
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Figure 5.17 LOG dose response curve for term pregnant human myometrium  

Log dose response curve for the effect of L-cysteine on term human myometrial 

contractility, showing the sigmoidal relationship. The log EC50 value of -6.277 

depicts the concentration required to reduce myometrial contractility by 50% 

compared to minimum and maximum values. 

 

 

 

 

Log (L-cysteine Concentration (M) 
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5.4.9 The effect of 1mM L-cysteine on non-pregnant and Term human myometrium 

Looking at the statistical effect of 1mM L-cysteine on non-pregnant human 

myometrium (n=5) alone showed a significant decrease in amplitude of contractions 

at 90±2% (p=0.015) and significant increases in frequency at 364±100% (p=0.009) 

and AUC at 268±65% (p=0.048) when compared to control period (100%). 

Differences between the responses found to 1mM L-cysteine in non-pregnant and 

term pregnant human myometrial contractions were then examined. Representative 

traces of a non-pregnant (5.18A) and term pregnant human (5.18A) 1mM L-cysteine 

response is illustrated in figure 5.18.  The mean data are demonstrated in figure 5.19 

i-iv. As in rat myometrium l-cysteine responses, the only significant difference in 

response was to the decline in contractility as within the term human pregnant 

myometrium the contractions under L-cysteine application were significantly more 

reduced at 56±8% (p=0.008).  Therefore in conclusion the changes in contractile 

activity on application of L-cysteine within both groups are not significantly different 

apart from a residing significant decrease in amplitude when compared to non-

pregnant. 
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Figure 5.18: Effect of 1mM L-cysteine in non-pregnant and term pregnant 

myometrium. 

Isometric recordings of spontaneously contracting (A) non-pregnant and (B) term 

pregnant human myometrial strips superfused with 1mM L-cysteine at 37oC, pH7.4.  
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Figure 5.19: Comparison of non-pregnant and term pregnant L-cysteine responses.  

Mean data± s.e.m, denoted by error bars, showing non-pregnant (NP) and term pregnant differences 
in final ten minute perfusion with L-cysteine. The mean data for i) Amplitude, ii) Duration iii) 
Frequency, iv) AUC in response to L-cysteine. Values within bars indicate n-numbers. * is p<0.05. ** is 
p<0.01, ***p<0.001 using student ttests.  
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5.4.10 Does garlic affect the myometrium? 

Here preliminary experiments have been performed superfusing different 

concentrations of garlic powder, most likely a mixture of garlic derived organic 

polysulfides (Benavides et al 2007), within PSS for 20 minute periods. 

Initial experiments show a similar response to L-cysteine at 0.714mg/ml 

concentration of garlic (Figure 5.20A). The different concentration responses can be 

seen within figure 5.20 A-C. Upon increasing doses of garlic powder there is a trend 

of a dose-dependent increase in duration, frequency and AUC with not much change 

in amplitude for both the initial and end 10 minute period responses of garlic (Figure 

5.21 and 5.22). The most prominent effects were found at 0.714mg/ml and greater 

concentrations of garlic powder. At 0.714mg/ml the initial ten minute period of 

garlic application illustrated a small initial increase in amplitude of contraction at 

103±19% with increases in duration, 117±3%, frequency, 152±14% and AUC, 169±9% 

(Figure 5.21 i-iv, n=4). At  0.714mg/ml the  last ten minutes of garlic application 

showed amplitude decreased to 96±25% with increases in duration, 125±11%, 

frequency, 163±15% and AUC, 172±13%  (Figure 5.22 i-iv , n=4). Only underlying AUC 

reached significance for both initial and final exposures to 0.714 mg/ml garlic (5.21iv 

and 5.22ivp=0.030, p=0.007 respectively). All other doses were not assessed for 

significance due to low n-numbers of 1 or 2. 
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Figure 5.20: Effect of increasing doses of garlic powder on term pregnant rat 

myometrium. 

Isometric recordings of spontaneously contracting term pregnant human myometrial 

strips superfused with 0.01-1mg/ml garlic powder. A) shows the effect of 

0.714mg/ml garlic B) shows the effect of 0.2, 0.714 and 1mg/ml garlic C) shows the 

effect of 0.01, 0.2 and 0.714mg/ml garlic on contractility. 
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Figure 5.21: Mean data for the initial effects of increasing concentrations of Garlic on term pregnant 
rat myometrium.  

Mean data± s.e.m, denoted by error bars, showing the changes in contractility within the first 10 
minutes of applications of Garlic. The mean data for i) Amplitude, ii) Duration iii) Frequency, iv) AUC in 
response to L-cysteine. Values within bars indicate n-numbers. Only 0.714mg/ml garlic was tested for 
significance using student t-tests * is p<0.05.  
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Figure 5.22: Mean data for the final effects of increasing concentrations of Garlic on term pregnant 
rat myometrium.  

Mean data± s.e.m, denoted by error bars, showing the changes in contractility within the last 10 
minutes of applications of Garlic. The mean data for i) Amplitude, ii) Duration iii) Frequency, iv) AUC in 
response to L-cysteine. Values within bars indicate n-numbers. Only 0.714mg/ml garlic was tested for 
significance using student t-tests ** is p<0.01.  
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5.4.11 Expression of the CBS and CSE in the Myometrium of Non-pregnant, 10 day, 

14 day, 18 day and 22 day rat myometrium – Immunohistochemistry 

 

The expression of the CBS and CSE, H2S production enzymes were examined by light 

microscope of DAB staining which is equivalent to CBS and CSE expression. Positive 

controls for CBS (Brain) and CSE (Aorta) as well as negative controls for non-

pregnant, 10 day, 14 day, 18 day and 22 day rat myometrium are seen in figure 5.23, 

illustrating DAB staining in the positive controls and no staining in the negative 

controls. This shows that the staining is specific to either the CBS or CSE antibody 

depending on which antibody is used. A representative image of NP, 10, 14, 18 and 

22 day rat myometrium is shown in figure 5.24 (n=3 each tissue type). Staining was 

found in the myometrium of all samples as well as the circular muscle. 
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Figure 5.23 Positive and negative controls 

Positive staining for CBS and CSE in brain and aorta respectively was observed (A). 

No staining was found using BSA as negative control under the same conditions in 

non-pregnant, 10, 14, 18 and 22 day rat myometrium (B). 
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Figure 5.24 Expression of H2S producing enzymes CBS and CSE in rat myometrium. 

Expression of CBS and CSE can be see using DAB staining in i) non-pregnant, ii)10 

day, iii)14 day, iv)18 day and v)22 day rat myometrium. 
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5.4.12 Expression of the CBS and CSE in the myometrium of non-pregnant, and 

term pregnant human myometrium- Immunohistochemistry 

The expression of the CBS and CSE, H2S production enzymes were examined by light 

microscope of DAB staining which is equivalent to CBS and CSE expression. Positive 

control beta actin as well as negative controls for non-pregnant  and term pregnant 

human myometrium are demonstrated in Figure 5.25C&D and Figure 5.26C&D, 

respectively, illustrating DAB staining in the positive controls and no staining in the 

negative controls. This shows that the staining is specific to either the CBS or CSE 

antibody depending on which antibody is used. A representative image of non-

pregnant and term pregnant human myometrium stained with CBS (n=6) and CSE 

(n=6) can be found in Figure 5.25A&B and 5.26A&B, respectively. Staining for both 

enzymes was present in both types of myometrium showing H2S could be produced 

in the myometrium.  
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Figure 5.25: Expression of CBS and CSE in non-pregnant myometrium as shown by 
immunohistochemistry. 

A) A representative image showing the expression of CBS in the myometrium of a 
non-pregnant  women, as shown by the brown DAB staining n=6 
 
B) A representative image showing the expression of CSE in the myometrium of  a 
non-pregnant women, as shown by the brown DAB staining n=6 

C) Positive control & D) Negative control 



239 
 

 

 

 

Figure 5.26: Expression of CBS and CSE in term pregnant myometrium as shown by 
immunohistochemistry. 

A) A representative image showing the expression of CBS in the myometrium of a 
term pregnant women, as shown by the brown DAB staining n=6 
 
B) A representative image showing the expression of CSE in the myometrium of a 
term pregnant women, as shown by the brown DAB staining n=6 

C) Positive control & D) Negative control 
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5.4.13 Expression of the H2S producing enzymes CBS and CSE in non-pregnant and 

term pregnant myometrium – Western Blotting 

To investigate whether the differences in the effect of H2S on human myometrial 

contractility is related to more than modifications to ion channels, the expression of 

H2S production enzymes CBS and CSE were investigated, this was also to help 

understand the physiological relevance of H2S in the myometrium.  

The quantification of CBS (Figure 5.27) and CSE (Figure 5.28) was performed in non-

pregnant and term pregnant myometrium. Western blotting was carried out from 6 

non-pregnant and 6 term pregnant women and the expression of each enzyme 

measured. A representative image of 2 term pregnant and 4 non-pregnant repeats of 

western blots for CBS is shown in figure 5.27. The expression of CBS was measured 

as a percentage of the actin loading control. As can be seen in figure 5.27 there was 

a significant reduction in expression of the CBS enzyme in the myometrium from 

term pregnant women (10.1%) compared to non-pregnant (100%) p=<0.05. A 

representative image of 3 repeats of western blots in non-pregnant and term 

pregnant myometrium for CSE is shown in figure 5.28. The expression of CSE was 

measured as a percentage of the actin loading control. As can be seen in figure 5.28 

there was also a significant reduction in expression of the CSE enzyme in the 

myometrium from term pregnant women (51.0%) compared to non-pregnant (100%) 

p=<0.05. 

Overall both the CSE and CBS H2S producing enzymes are present in the non-

pregnant and term pregnant human myometrium, allowing H2S production to occur, 

although both are down regulated in the term pregnant myometrium. 
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Figure 5.27. The expression of CBS H2S production enzyme in non-pregnant and 
term pregnant myometrium – Western Blotting  
 
A) A representative image showing the results of western blot for CBS in human non-
pregnant and term pregnant myometrial protein extracts. L is for liver and K is for 
kidney. 
 
B) Bar chart showing the significant reduction in CBS expression in the myometrium 
of term pregnant women. 
 

Relative 

intensity (%) 
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Figure 5.28. The expression of CSE H2S production enzyme in non-pregnant and 
term pregnant myometrium – Western Blotting  
 
A) A representative image showing the results of western blot for CSE in human non-
pregnant and term pregnant myometrial protein extracts. 
 
B) Bar chart showing the significant reduction in CSE expression in the myometrium 
of term pregnant women. 
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5.4.14 Expression of the H2S detoxifying enzyme – Western Blotting 
 
Contrary to what I thought, there was a down regulation of both H2S producing 

enzymes at term. The next question was whether there was an upregulation in H2S 

breakdown in non-pregnant women, which help to reduce the effect of H2S 

producing compounds on contractility? TST has been implicated in H2S breakdown. 

The quantification of TST was performed in non-pregnant and term pregnant 

myometrium. Western blotting was carried out on tissue from 5 non-pregnant and 5 

term pregnant women and the expression of the TST isoform of Rhodanese 

measured. A representative image of 5 repeats of Western blots is shown in figure 

5.29A for its presence in non-pregnant human myometrium and figure 5.29B for its 

presence in the term pregnant human myometrium. No detectable expression of 

this enzyme was present in the human myometrium of either non-pregnant or term 

pregnant women, however its presence was strong in the rat liver and kidney 

positive controls. The presence in the non-pregnant, 14 day, 18 day, and 22 day rat 

myometrium also showed no presence of TST (Figure 5.29C). 
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Figure 5.29. The expression of TST, H2S detoxifying enzyme in non-pregnant, term 
pregnant human myometrium and rat myometrium – Western Blotting  
 
 A representative image showing the results of western blot for TST in A) human 
non-pregnant, B) Human term pregnant and C) rat myometrial protein extracts. 
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5.5 Discussion 

This is the first study to investigate the effect of L-cysteine within the term pregnant 

rat and non-pregnant myometrium as well as to simultaneously measure force- 

calcium and underlying intracellular pH changes in response to L-cysteine. This 

chapter is also the first time the response to garlic has been looked at in the 

myometrium. The presence of H2S producing enzymes in non-pregnant myometrium 

as well as in the myometrium of different stage rat gestations have never been 

examined. Neither has the H2S detoxifying enzyme isoform TST been monitored in 

the myometrium. 

5.5.1 The effect of L-cysteine on myometrial contractility 

This study has shown that L-cysteine, a precursor of H2S produces uterine relaxation 

in term pregnant rat and human myometrium although effects were not as 

pronounced as those of GYY4137 or NaHS.  The decrease in contractility appeared to 

be dose dependent and was more pronounced in the human myometrium. At the 

highest concentration of L-cysteine 1mM there was a significant decrease in the 

force amplitude of myometrial contractions relative to control period. Similar 

relaxant effects have been reported in vascular smooth muscle (Hosoki 1997, Teague 

2002, Zhao 2009, Ohia 2010, d'Emmanuele di Villa Bianca 2009). A single study 

within the rat myometrium has presented similar effects in 19 day gestation rats 

(sidhu 2001). The data inside this chapter was performed on 22 day gestation 

pregnant rat (term) myometrium, along with this relaxation an increase in frequency 

and overall AUC was found. This response was established also in the term pregnant 

human myometrium. The only other study within human myometrium by You et al 

used cumulative administration of L-cysteine (10-7–10-2 mol/L) and found a dose-

dependent decrease in the amplitude of spontaneous contractions in non labouring 

and labouring myometrial strips. In addition to L-cysteine at high concentration (10-3 

mol/L), increased frequency of spontaneous contractions and sometimes a tonic 

contraction were also found (You 2011), in support of the results within the rat and 

human myometrial data demonstrated in this chapter. Other research on neonatal 

rat bladders illustrated this facilitation of contractions was also produced in the 
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presence of L-cysteine. Its effects were reduced by the use of L-type calcium channel 

blocking agent nifedipine and a calcium activated K+ channel opener (Buyu 

knacar,2010). 

In the non-pregnant uterus it was found that the application of L-cysteine showed 

similar excitation without the pronounced decrease in force amplitude, implying 

once again that the non-pregnant tissue seems more resilient to the diminished 

force caused by H2S. This maybe similar to the effect found when using NO donors, 

where NO production was found to be lower in non-pregnant myometrium possibly 

through some involvement of oestrogens (Kakui 2004). Also within NO research, as 

with H2S, CBS and CSE produces H2S from L-cysteine, so arginase metabolizes L-

arginine. NO production depends on the availability of L-arginine to NOS. It was 

found L-arginine decreased during 7th-21st day of gestation. However, the enzyme 

activity became significantly higher at term gestation (22 day) than that in the non- 

pregnant myometrium (Hirata 2006). Both factors may play a part in the reason for 

the difference in responses found to L-cysteine in non-pregnant and term pregnant 

myometrium.   

5.5.2 The mechanism of L-cysteine’s effects in the myometrium 

One potential mechanism of action is that H2S is produced from L-cysteine endogenously in 

uterine tissues, which relaxes the smooth muscle. This is a biochemical pathway 

documented (Abe 1996, stipanuk 1982) and involves two main enzymes, CSE and CBS. These 

enzymes have been shown to be present in rat myometrium by a functional study (Sidhu 

2001) and human myometrium (Patel 2009) and quantified in non-labouring and labouring 

human myometrium (You 2011) although within the non-pregnant versus the term pregnant 

myometrium, each enzyme’s presence has not been quantified, as discussed below. 

Intracellular L-cysteine concentrations are reported to be 30-200µM (Griffith 1987) with 

tissue levels as 10-100µM (cooper 1983). This illustrates that concentrations used for dose 

responses are within an adequate range.  

L-cysteine reduced contractions via decreased Ca transient amplitude, suggesting that it 

could affect L-type Ca channels, possibly by sulfhydration as is proposed to happen when 

KATP channels are affected within vascular smooth muscle (Tang 2010) and L-type calcium 

channels in cardiomyocytes (Zhang 2012). BayK 8644 data also shows a reduction in the 
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response to L-cysteine, pointing towards L-type calcium channels being targeted. No 

differences in the response to L-cysteine were found in high K+ suggesting membrane 

potential is affected. Intracellular calcium leading to contraction is controlled by a 

multitude of mechanisms beyond the classic entry through voltage operated calcium 

channels, calmodulin binding pathway. Alterations too many of the ion channels in 

the myometrium can have a profound effect on contractility. 

Researchers working on vascular smooth muscle have shown KATP channels are directly 

involved in the mechanism of H2S by increasing their open probability, most likely 

through S-sulfhydration of specific cysteine residues of the KATP channel, promoting 

outward K+ flow and hyperpolarization, to cause a decrease in contractility (Zhao 2001, 

Wang 2012).  This conclusion is largely based on the ability of glibenclamide, a KATP 

channel antagonist, to block the vasorelaxant effects of H2S (Zhao 2001, Cheng 

2004), in addition to electrophysiological experiments providing direct evidence that 

exogenous H2S increases KATP currents, blocked by glibenclamide in isolated rat aortic 

and mesenteric SMCs (Cheng 2004, Zhao 2001). KATP channels have been suggested 

as one of the targets of H2S that lead to reduced myometrial contractility using 

glibenclamide (Hu 2011).  In contrast, other studies showed that the KATP channels 

are not involved in H2S relaxation in smooth muscle tissues including vascular, 

bronchial, and gastrointestinal smooth muscle (Kubo 2007, Teague 2002, Lee 2007, 

Kiss 2008). Our data with glibenclamide in Chapter 4 would support a main role for 

these channels in the mechanism of H2S effects in the myometrium. This decrease in 

rat myometrial contractility could be inhibited by both CSE and CBS inhibitors, 

suggesting that endogenous H2S generated by CBS and CSE can modulate the 

contractility of human myometrium during pregnancy as found in non-labouring and 

labouring human myometrium (You 2011). 

Hydrogen ions are known to interfere with uterine smooth muscle contraction and 

both extracellular and intracellular pH changes have been found to effect 

contractility (Parrat 1995, Taggart 1997). All solutions were pH readjusted to 7.4, so 

a change in extracellular pH could not explain the relaxant effect of L-cysteine in the 

myometrium. D-Cysteine was found to have no effect on contractility, which 

suggests that the relaxation was not produced by a simple chemical effect. Although 



248 
 

application of by products of H2S production through use of L-cysteine by CSE and 

CBS, L-serine and sodium pyruvate, caused initial excitation with significant increase 

in force amplitude upon application of sodium pyruvate. This led to the testing of 

Intracellular pH upon L-cysteine exposure. A decrease in intracellular pH was 

illustrated. The initial changes in frequency and amplitude of contractions upon 

application of L-cysteine coincided with the period when pH was seen to change. 

This rapid increase in [H+]i may lead to this initial stimulation by displacing Ca2+ from 

intracellular binding sites as protons and Ca2+ are known to compete for intracellular 

binding sites (Wray, 1998).  In contrast decreased intracellular pH using NaHS within 

rat aortic smooth muscle was related to the relaxation monitored (Lee 2007). This is 

the first study that has shown the effects of cysteine are seen even though there is 

an intracellular acidification and that an alkalinisation cannot explain the effects of 

cysteine.  

It is possible that NaHS, GYY4137 and L-cysteine have quite different mechanisms of 

action and therefore different potencies. L-cysteine could act as an agonist at amino 

acid receptors, as this is usually excitory, this could be also a target to produce the 

stimulation upon incubation of myometrial tissue in L-cysteine. This is something 

that could be further investigated. L-cysteine is thought to achieve its effect on the 

cell through the help of an excitory amino acid transporter subtype and possibly by a 

zwitter ion amino acid transporter subtype (EAAT3)(Zerangue, 1996) and possibly by 

a zwitterionic amino acid transporter (ASCT1)(Palacin 1998). Both of these 

transporters are widely distributed in tissues. Once inside the cell as H2S could be 

released enzymatically from L-cysteine and therefore L-cysteine could act as a direct 

intracellular donor H2S or HS-. Normally L-cysteine is transported into cells as cystine, 

which then splits into two molecules of cysteine, but it is possible that L-cysteine 

could be transported directly when applied extracellularly (Sidhu 2001).  

5.5.3 Effects of garlic  

H2S is produced naturally by garlic as well as from L-cysteine within human tissue. 

Here I found that the myometrial contractility changes of garlic were comparable to 

L-cysteine with initial stimulation in contractility, which then results in decreased 
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amplitude of contractions (something needed to be further investigated, shown in 

figure 5.20 A). Further work on Garlic power needs to be performed to investigate its 

effects. Although garlic oil produced through crushing garlic would be better to use 

as Allicin (diallyl thiosulfinate), the main organosulfur compound, is produced from 

the amino acid alliin by action of the enzyme alliinase when garlic is crushed. Allicin, 

unstable in aqueous solution, rapidly decomposes mainly to diallyl sulfide (DAS), 

diallyl disulfide (DADS), diallyl trisulfide (DATS), and ajoene (Amagase 2006).  It 

would also be of interest to look at active garlic derived polysulfide compounds, 

which are converted to H2S. This could help find a naturally occurring H2S compound 

to reduce contractility allowing the monitoring of different polysulfides active in 

garlic. Within vascular smooth muscle different polysulfides have been looked at and 

H2S production amounts monitored, DATS and DADS produce the greatest amount of 

H2S and cause the greatest relaxation in aorta (Benavides 2007), good candidates to 

further research garlic’s use on the uterus.  

Preliminary investigations show 0.714mg/ml and above concentrations of garlic 

show similar responses to L-cysteine with increased contractility although no 

significant changes in amplitude of contraction was found with low n numbers.

The frequency of myometrial contractions is directly related to changes in 

membrane potential and the frequency of burst or the increased frequency of 

contraction may also be attributed to faster repolarisation or recovery of the 

membrane to resting potential.  Further investigation is needed to examine these 

effects and mechanism found by the use of L-cysteine and garlic. Electrophysiological 

techniques such as voltage clamp could be used to measure the membrane potential 

of the smooth muscle cells in the presence and absence of L-cysteine and garlic to 

examine their effect on membrane potential. Overall in this chapter we find 

differences and similarities in myometrial contractility changes in response to L-

cysteine when compared to the response found through use of H2S producers NaHS 

and GYY4137. It would also be of interest to monitor H2S production using a 

polarographic electrode (Olson 2012), to compare the H2S produced by NaHS, 

GYY4137, L-cysteine and garlic and to assess whether the decrease in contractility 

was directly related to H2S production or an unidentified sulfide moiety.  
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5.5.4 Regulation of H2S production and breakdown in the myometrium. 

In the myometrium, Patel et al found the presence of both H2S producing enzymes in 

rat non-pregnant and 19 day gestation uterus as well as human term pregnant 

myometrium. You et al quantified the presence of both enzymes in term non 

labouring and labouring human myometrium at the protein and mRNA level as well 

as looking for their expression in sections, finding both present and during labour 

H2S enzymes are down-regulated. No work has been undertaken to look at the 

expression of both enzymes within different stage gestation rat myometrium or 

looked at the presence in non-pregnant human versus term pregnant myometrium. 

This chapter showed the expression of both the CSE and CBS enzyme in non-

pregnant, 14 day, 18 day and term pregnant rat myometrium as well as non-

pregnant and term pregnant human myometrium. This showed that the myometrial 

tissues assessed are able to produce H2S endogenously. Their presence was further 

defined through quantification of CBS and CSE in non-pregnant and term pregnant 

human myometrium via Western blotting. It was found that the presence of both 

enzymes was significantly decreased in the term pregnant myometrium, perhaps in 

preparation for the onset of labour as the enzymes further decline upon the onset of 

labour (You et al), allowing the production of H2S to no longer keep the powerful 

contractions at bay to cause labour.  

As I have found that H2S producers have more of an effect at term the question was, 

could the breakdown of H2S be higher at term when compared to non-pregnant 

human myometrium as clearly there are the tools to have a greater production of 

H2S in the non-pregnant myometrium although we see the effect at term. TST is the 

isoform of rhodanese implicated in detoxifying H2S in human colon (Ramasamy 

2006), however its presence has not been investigated in the uterus. I have shown 

clearly that in human non-pregnant and term pregnant human myometrium in 

addition to non-pregnant, 14 day, 18 day, term rat myometrium that it was not 

detectable and is not likely to be involved in H2S breakdown in the myometrium. This 

is not to say that the increased effects seen upon application of NaHS, GYY4137 and 

L-cysteine throughout gestation are not due to H2S removal rates as other enzymes 

may exist. Recently, mice lacking ethylmalonic encephalopathy 1 (Ethe1) exhibit 
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elevated sulphide levels, suggesting that Ethe1 is the sulphur dioxygenase involved in 

H2S metabolism (Linden 2012). Also could this affect be due to the up regulation of a 

SH- channel at term?  Recent work identified a channel permeable to HS− anions in 

the bacterium Clostridium difficile, although there is a long way to go and much 

research to be performed to elucidate the mechanism of H2S although perhaps such 

channels/ receptors are present in mammalian tissues (Czyzewski 2012).  

5.5.5 Conclusions 

L-cysteine causes an initial dose dependent increase in frequency and a decrease in 

amplitude of myometrial contractility in both term pregnant rat and human 

myometrium. The effect on frequency could not be explained by intracellular 

alkalinisation, as pH falls when L-cysteine is applied. The effects of L-cysteine are not 

as prominent as those upon incubation in GYY4137 or NaHS. The mechanism of the 

initial enhanced contraction frequency remains to be elucidated. The mechanism of 

L-cysteine inhibitory action on myometrial contractions is suggested to be due to 

corresponding decreases in the calcium transients, probably due to H2S production; 

CSE and CBS inhibition with PAG and AOAA prevented this decrease in contraction. 

In the human term pregnant myometrium the dose response of L-cysteine was more 

apparent than in rats with a log EC50 value approximately doubled, similar to the 

differences in NaHS and GYY4137 responses in non-pregnant and term pregnant 

tissues, reduced inhibitory effects of L-cysteine were found when applied to non- 

pregnant myometrium. Preliminary investigations show 0.714mg/ml and above 

concentrations of garlic show similar responses to L-cysteine with increased 

contractility although no significant changes in amplitude of contraction was found 

due to low n numbers. 

This chapter has also highlighted that both H2S enzymes are present within all the 

myometrial tissues tested within this thesis and that there is a down regulation of 

both enzymes at term. Also no presence of the H2S detoxifying isoform of 

rhodanese, TST, was found in rat or human myometrium. 

 

 



252 
 

5.5.6 Limitations of study 

 

 Low n numbers for sodium pyruvate, L-serine, Garlic powder work. More n 

numbers are required 

 

 Results using CBS and CSE inhibitors are limited due to their poor selectivity. 

 

 Garlic oil is more active and contains a greater content of polysulfides to 

produce H2S due to crushing garlic rather than drying in the case of garlic 

powder. Future work should use garlic oil. 

 



253 
 

Chapter 6- Final Discussion 

The aims of the work described within this thesis were firstly to characterise the 

non-pregnant human myometrial tissue samples to see how contractility changes 

with age, menopausal status or with the condition endometriosis, and then to 

examine H2S and its effects on myometrial contractility of human and rat tissue, 

using three H2S producing compounds, NaHS, GYY4137 and L-cysteine. In addition to 

investigating the mechanism by which H2S reduces contractility I also investigated 

any differences in response to H2S over gestation and thus its potential involvement 

in quiescence. The presence of H2S producing enzymes CBS and CSE were also 

explored to confirm that H2S could be produced within the myometrial tissues 

studied. My overall aim is to gain a better understanding of the role of H2S in the 

myometrium and to investigate its potential as a preterm preventative. I consider I 

have addressed and achieved many of my specific aims and that the work presented 

here has built on previous studies and highlighted the physiological relevance of H2S 

in the myometrium and its effects throughout gestation as well as in human 

myometrium.  

 

6.1 Characterisation of non-pregnant myometrium 

Myometrial contractility from pre-, and post-menopausal women as well as from 

women with endometriosis were compared.  The effect of advancing age on the 

non-pregnant myometrium was also addressed. The data demonstrated clear effects 

of age and menopausal state upon myometrial contractility. It shows that aging 

significantly decreases uterine contractility as does progressing menopausal state, 

which is not surprising as there is a strong relationship between the two.  

Endometriosis also shows an increase in frequency of contractions and a non-

significant but consistent decrease in the other parameters of contractility. 

Consistent with an earlier in vitro study which had found spontaneous activity in 

post-menopausal women, and earlier in vivo studies showing more frequent  

contractions within myometrium with endometriosis (Domali 2001, Bulletti 2002), 

these changes in the myometrial contractions of women with endometriosis could  

have a causal role in the genesis and continuation of the disease. 
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The reasons behind this impaired contractility may be related to alterations in 

calcium signalling in the post menopausal women and women with endometriosis. 

Reduced calcium transients are indicative of less calcium entry through L-type 

voltage calcium channels or perhaps alterations in the expression of L-type calcium 

channels. This is supported in the high K data within chapter 3, where High K+ 

contractions were reduced in the post menopausal women as well as a trend to 

decrease in women with endometriosis. Reduced muscle content could also be 

contributing to the reduced contractility, especially with advancing age. Further work 

needs to be performed to investigate this. 

Overall, contractions of the non-pregnant human myometrium were stable allowing 

for investigation of the effects of H2S compared with the term pregnant human 

myometrium. Therefore pre-menopausal women were used as the non-pregnant 

myometrium in chapters 4 and 5. 

 

6.2 The effect of H2S producers NaHS and GYY4137 on myometrial contractility 

The effects in rat and human myometrium were studied and I found that: i) GYY4137 

causes a concentration-dependent reduction in contractility of myometrium, ii) The 

ability of H2S to inhibit contraction is not constant but rather is greatest close to term 

before disappearing during labour  iii) GYY4137 and NaHS significantly reduced 

contractility in pregnant but not non-pregnant human myometrium,  iv) H2S  

significantly reduced tonic force produced by high-K  depolarization and oxytocin-

stimulated contractions, and v) GYY4137 reduced the intracellular Ca transients 

underlying contractions and inhibition of KATP channels prevented the effects of 

GYY4137.  A recent study supported the reduced effects of H2S upon labour in the 

human labouring myometrium in response to L-cysteine (You 2011). Other research 

also found NaHS reduced contractility of human term labouring myometrium and that 

the effects found were abolished in the presence of glibenclamide supporting the data 

found in this thesis at term (Hu 2011). No significant effects on contractions in the non-

pregnant tissue to addition of either H2S source were found, but clear effects were seen 

by mid-gestation. The inhibitory effect on contraction then further increased until term. 

These data suggested that the relaxant effects of H2S were increased as pregnancy 
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advances. The most striking effect however was the abrupt transition upon labour; H2S 

was without effect as seen by the data for both compounds. This suggests that H2S 

contributes to uterine quiescence in late pregnancy and that the myometrium can 

rapidly change its responses to H2S, perhaps through changes in H2S removal rates or 

channel susceptibility to sulfhydration.   

Studies were limited by the lack of a compound to better mimic the endogenous 

release of H2S in cells. The commonly used NaHS or Na2S release H2S instantaneously in 

aqueous solutions, producing very large and transient increases in its concentration. 

GYY4137’s potential as a slow-releasing H2S compound with effects on vascular smooth 

muscle in vitro and in vivo were shown, its time scale of H2S production measured and 

its lack of toxicity to aortic cells shown (Li 2008). Subsequent work has supported low 

toxicity (Yu 2010) and also indicated anti-cancer properties (Lee 2011), anti 

inflammatory activity (Li 2009), and anti apoptotic (Lavu 2011) activity of GYY4137. 

Thus GYY4137 or subsequent compounds, (Predmore 2012) may well be suitable for 

a variety of patho-physiological conditions, including tocolysis in threatened preterm 

labour, i.e. to stop the onset of labour,  although further work, including studies on 

labouring samples, are needed to develop this suggestion.  

Recently, H2S releasing drugs are an active area of research as these molecules have 

such benefits as suppressing breast cancer cell support for osteoclastogenesis and 

prevent osteolysis (Frantzias 2011), prevention of smooth muscle cell proliferation in 

diseases such as atherosclerosis and vascular restenosis (Baskar 2008) to anti 

inflammatory and anti cancer properties (Kodela 2012, Chattopadhyay 2012). Other 

drugs investigated include naturally occurring H2S producing agents such as DATS 

produced by garlic, which readily vasodilate rat aortas (Benavides 2007) and 

Sulforaphane, the isothiocyanate compound from broccoli, which has shown 

neuroprotective and anti inflammatory actions (Jackson 2007, Shan 2010,  Zhu 

2008). I speculate there will be further research and more slow releasing H2S 

molecules to come to help benefit therapeutically and give insight into the 

physiological roles of H2S. Interestingly, sulfide sensitive dyes similar to the well 

known ion-sensitive dyes such as the calcium reporter Indo-1 are currently being 

developed as to date they lack sensitivity, these molecules would resolve many of 
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the key questions regarding H2S signalling mechanisms (Lippert 2011, Qian 2011, 

Olson 2012), this further demonstrates H2S and its releasing compounds are an 

active area of research. 

My data and that of previous studies suggest H2S could contribute to uterine 

quiescence and that increasing its level in myometrium could be an attractive target 

for therapeutics to inhibit the onset of labour.  Increased understanding of the 

mechanisms for transition to labour should also follow from obtaining a better 

understanding of H2S in the myometrium. 

6.3 The effect of H2S producing enzyme substrate, L-cysteine 

L-cysteine at 1 mM, caused an initial increase in the frequency of uterine 

contractions, but a decrease in amplitude of myometrial contractility in both term 

pregnant rat and human myometrium. The effect on frequency could not be 

explained by intracellular alkalinisation, as pH falls when L-cysteine is applied. The 

effects of L-cysteine are not as prominent as those upon incubation in GYY4137 or 

NaHS. The mechanism of the initial enhanced contraction frequency remains to be 

elucidated. The mechanism of L-cysteine inhibitory action on myometrial 

contractions is suggested to be due to corresponding decreases in the calcium 

transients, probably due to H2S production; CSE and CBS inhibition with PAG and 

AOAA prevented this decrease in contraction. In the human term pregnant 

myometrium the dose response of L-cysteine was more apparent than in rats with a 

log EC50 value approximately doubled. Similar to the differences in NaHS and 

GYY4137 responses in non-pregnant and term pregnant tissues, reduced inhibitory 

effects of L-cysteine were found when applied to non-pregnant myometrium.  

 

6.4 Mechanism of H2S in the myometrium 

There are many suggestions for the mechanism by which H2S exerts its effects and it is 

likely that there will be many targets (Li 2011).  The main mechanism  appears to be 

due to H2S modifying cysteine residues in many proteins through S-sulfhydration 

(Mustafa 2011) i.e. cysteine’s covalent modification by which -SH groups on  cysteine 

residues of a protein are converted to –S-SH, via addition of  sulphur from H2S 
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(Mustafa 2009). The data in this thesis using DTT, a reductant sulfhydryl modifier and 

Diamide, an oxidant sulfhydryl modifier supported this showing that firstly free 

sulfhydryl groups have no effect on contractility and that disulphide bonds cause a 

similar effect to NaHS and GYY4137.  Although it would be interesting to see whether 

using DTT could reverse GYY4137 and NaHS effects on force and calcium as in Zhang et 

al 2012 where it could markedly reverse the H2S donor-induced inhibition of I Ca, L (L-

type calcium current) in cardiomyocytes. Illustrating that if H2S targets the crucial 

free-sulfhydryl groups on the L-type Ca2+ channel and inhibits the L-type calcium 

current, the inter-chain disulfide bond linkages would be rapidly reduced by DTT, 

and therefore the inhibition would be reversed (Zhang 2012). 

The most documented effect of H2S is on KATP channels within smooth muscle. In 

vascular smooth muscle cells H2S stimulated single-channel activity of KATP channels 

by directly increasing their opening probability (Wang 2012).  Recent work has made 

progress in identifying which residues in the channel are affected by H2S, with Cys 6 

and 26 on the extracellular N terminal of the SUR1 subunit of the channel being 

identified (Jiang 2010). KATP channels have been suggested as one of the targets of 

H2S that lead to reduced myometrial contractility (Hu 2011).  The data with 

glibenclamide would support a role for these channels in the mechanism of H2S in 

the myometrium, as GYY4137 had no significant effect on myometrial contractility 

when KATP channels were blocked with glibenclamide.   

The data within this thesis also suggested that L-type Ca2+ entry was reduced by H2S 

sources. Reduction of Ca2+ by H2S has previously been demonstrated in non-contractile 

arterial segments (Tian 2012) but had yet to be shown in the myometrium. My 

simultaneous measurements of intracellular Ca2+ and contractions show a H2S-

dependent reduction in intracellular Ca2+ accompanies the decrease in amplitude of the 

phasic contractions. Also when BayK 8644, a calcium channel opener is used in the 

presence of L-cysteine to produce H2S, reduces the reduction in contractility also 

pointing towards L-type calcium channels being targeted. L-type Ca2+ channels have 

also been shown to contribute to H2S effects, possibly by sulfhydration as proposed 

to happen when KATP channels are affected within vascular smooth muscle (Tang 

2010) and L-type calcium channels in cardiomyocytes (Zhang 2012). There is now 
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mounting evidence that the L-type Ca2+ channels themselves are targets of H2S. Sun 

et al, (Sun 2008) in cardiac myocytes were the first to show that H2S can inhibit L-type 

Ca2+ channels. Recently others have shown inhibition of these channels by NaHS also 

occurs in vascular smooth muscle (Tian 2012, Al-Magableh 2011) and Zhang et al  

(Zhang 2012) have gone on to show that this is dependent upon the protein sulfhydryl 

state of the channel. 

The above gives insight into the mechanism of action of H2S but does not explain the 

reasons for susceptibility changes over gestation. My suggestions include (i) increased 

vulnerability to sulfhydration of L-type calcium channels as L-type calcium channel 

subunits increase toward term (Collins 2000); (ii) reduction in kir6.1 and 6.2 KATP 

subunits once myometrium is labouring, as  before labour H2S exerts its effects on 

these subunits  (Xu 2011); (iii) up regulation of the H2S breakdown enzymes with 

gestation, or (iv) changes in uterine environment with labour, such as hypoxia an pH 

changes, (Quenby 2004, Wray 1992) may result in faster breakdown of H2S, but this 

remains controversial, (Olson 2012, Doeller 2005).  The lack of specific inhibitors of 

these enzymes and the difficulty of accurately measuring H2S in tissues, hinders further 

study of these last two points. 

 6.5 Expression of H2S production enzymes in the myometrium 

Within this thesis H2S producing enzymes CBS and CSE were expressed in non-

pregnant, 10 day, 14 day, 18 day, and term pregnant rat myometrium as well as in 

non-pregnant and term pregnant myometrium. This showed that H2S can be 

produced endogenously within the tissues assessed. Both enzymes have already 

been shown to be expressed in term non-labouring and labouring human 

myometrium in addition to 19 day gestation rat myometrium (Patel 2009, You 2011). 

Here we have also shown through quantification of the CBS and CSE enzymes that 

there is a down regulation of both enzymes within the term pregnant human 

myometrial tissue when compared to the non-pregnant human myometrium. This 

could be in preparation for the onset of labour as the enzymes are further declined 

upon the onset of labour (You et al), allowing the production of H2S to no longer 

keep the powerful contractions at bay to cause labour. In addition H2S production is 
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also found to be lower in labouring compared to non-labouring human myometrium 

(You 2011).  

6.6 Expression of H2S detoxifying enzyme TST 

TST is the isoform of rhodanese implicated in detoxifying H2S in human colon 

(Ramfrez 2004), however its presence has not been investigated in the uterus. I have 

shown clearly using Western blotting that in human non-pregnant and term 

pregnant human myometrium in addition to non-pregnant, 14 day, 18 day, term rat 

myometrium that it is not detectable, this is supported by TST being present in 

positive controls. A Western blot using increasing quantities of myometrial protein 

up to 100μg was also performed further demonstrating no detectable presence of 

the enzyme TST (not shown).  This makes it highly likely that TST is not involved in 

H2S breakdown in the myometrium although this is not to say other H2S breakdown 

enzymes such as sulfur dioxygenase enzymes may be present.  

I found in this thesis that there was greater inhibition of contractility at term in the 

presence of H2S producers, but that H2S producing enzymes are up regulated in the 

non-pregnant myometrium compared to the term myometrium. Thus the non-

pregnant uterus has the potential to produce H2S, but it does not affect contractility, 

at least under my experimental conditions. The question was, could the resistance 

against H2S effects be due to an up-regulation in H2S removal rates?  However as my 

data on TST were negative, it was not possible to further test this suggestion. 

Recently, mice lacking ethylmalonic encephalopathy 1 (Ethe1) exhibit elevated 

sulphide levels, suggesting that Ethe1 is the sulphur dioxygenase involved in H2S 

metabolism (Linden 2012), this enzymes presence in the myometrium could be 

investigated.  

 

6.7 Future work 

There are several subsequent studies that could be pursued following my work: 

The finding that post menopausal and old age cause reduced myometrial 

contractility could be further explored by examining the potential mechanisms that 

could be affected. Through monitoring changes in underlying calcium transients 
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using simultaneous force and calcium measurements using calcium sensitive 

indicator Indo-1. It would also be of interest to monitor changes in the expression of 

L-type calcium channel to see if there is a down regulation in the post menopausal 

and older age group. A reduction in L-type calcium channel expression has been 

shown to be linked with the decreased force produced in the diabetic myometrium 

(Al-Qahtani 2011). In the laboratory reduced muscle content in diabetic women was 

also found, a potential factor that could ultimately contribute to the poor 

contractility found in chapter 3, especially with advancing age.  Also working on 

further endometriosis samples would define the contractility better especially 

increasing the n numbers in the ‘no medication’ group. I could also test the 

hypothesis that ageing myometrium can respond to hormonal treatment and retains 

the ability to increase its strength. It would be interesting to look at the effect of 

different medications the non-pregnant women were on and compare contractility 

differences also once n numbers are increased. Likewise a comparion could then be 

made between Progestagen treated non- pregnant myometrium and pregnant 

myometrium to see possible similarities. 

It would also be worth monitoring the changes in H2S production over gestation and 

looking at the difference in H2S production from the H2S producers NaHS, GYY4137 

and L-cysteine used within this thesis. Using either analysis of H2S evolution into 

headspace gas and subsequent gas chromatography which has been used to 

measure both tissue and plasma H2S in the nanomolar range (Furne 2008, Levitt 

2011) or the well-known method of measuring thiols by derivatization with excess 

monobromobimane (MBB) and subsequent measurement of the stable sulfide-

diamine product with reverse phase high pressure liquid chromatography (HPLC) 

coupled with fluorescence detection, recently used to measure plasma H2S levels at 

the nanomolar range (Shen 2011, Wintner 2010). A good review of the H2S 

monitoring techniques was published by Olson 2012 concluding that there appears 

to be a lack of sensitivity to measure endogenous H2S at submicromolar levels and in 

real-time. This will give insight into H2S and its production throughout pregnancy and 

maybe confirming its involvement in quiescence. It would also be important to look 

at the effect of NaHS and GYY4137 on human labouring tissue to see whether the 
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effect seen in the rat can be related to the human. As well as investigating the 

effects of both H2S producers invivo and on the fetus using the rat model to help 

understand more clearly their side effects and potential use in pregnancy. 

L-type calcium channels have been implicated in the mechanism of H2S within this 

thesis. In non-contracting (butanedione monoxime treated) cerebral artery, Tian et al, 

used fluo-4 and showed decreases in Ca2+ levels as NaHS was increased from 0.1 to 1 

mM, and suggested  that NaHS relaxes these vessels by reducing L-type Ca2+ current. A 

recent study using cardio myocytes suggested, H2S inhibits L-type [Ca2+] channels 

through sulfhydration, as NaHS decreased the functional free sulfhydryl groups in 

the channels (Zhang 2012). To further demonstrate the effect of H2S on L-type 

calcium channels in the myometrium, I could monitor the function free sulfhydryl 

groups in the myometrial tissue protein extract of a control incubated and H2S-

producer incubated tissue then using a biotin switch assay as used in Zhang 2012 

monitor any difference in functional free Sulfhydryl.  

KATP also play a role in the reduction in contractility of term myometrial tissue shown 

through use of glibenclamide a KATP blocker. To confirm if H2S affects membrane 

potential through KATP channels, patch clamp studies could be used to see how much 

the membrane hyperpolarises after exposure to H2S producers as examined in 

vascular smooth muscle (Zhao 2001). 

H2S producing enzymes CBS and CSE were expressed in non-pregnant, 14 day, 18 day 

and 22 day (term) rat myometrium. This could be further investigated through 

protein quantification via use of Western blotting to see whether there are any 

changes in the production over gestation implicating H2S in the mechanism of 

quiescence. 

TST the H2S detoxifying isoform of the enzyme rhodanese. This is not present within 

the uterus. Other breakdown mechanisms maybe involved such as ethylmalonic 

encephalopathy 1 (Ethe1) which is a sulphur dioxygenase enzyme involved in H2S 

catabolism as mice lacking Ethe1 exhibit elevated sulphide levels (Linden 2012). 

Naturally producing H2S compounds may be of use therapeutically, these include 

garlic derived poly sulphides already implicated to reduce cardiovascular risk. Human 

red blood cells convert garlic-derived organic polysulfides into H2S (Benavides 2007). 
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Diallyl disulfide (DADS), and Diallyl trisulfide (DATS) are the highest producing H2S, 

garlic-dervied polysulfides producing approximately 35 and 100 µM H2S, respectively 

on the addition of 100 µM of each polysulfide (Benavides 2007). There effect on the 

myometrium could be of interest because if a reduction in contractility is found they 

could help to reduce the onset of labour within threatened pre-term births. The use 

of garlic oil which produces these polysulfides when crushed would a better 

compound to perform experiments with as garlic powder is dried rather than 

crushed and does not retain the activity of the polysulfides. 

 

The investigation of intact tissue RNAi technique, reversible permeablisation to 

deliver SiRNA (Morgan 1982, Lesh 1995) was investigated as a potential useful 

technique for use in the uterus over the period of studying for my PhD. Preliminary 

experiments using Indo-1 pentapotassium salt (cell-impermeable calcium sensitive 

indicator) were performed (Figure 6.1).  
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Figure 6.1: Reversible permeabilisation of 22 day gestation rat myometrial strips. 

Figure A demonstrates the presence of cell impermeable Indo-1 inside the myocytes 

showing successful permeabilisation. The scale bar (white) in the right hand corner 

of the picture corresponds to 50µm. Figure B shows the contractility before and after 

treatment and the indicator emission ratio confirming some cells were successfully 

reversibly permeabilised.  
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Under the reversible permeabilisation technique, signalling will only be present if the 

cell impermeable Indo-1 manages to enter the cell and is cleaved by esters enabling 

it to bind to calcium and fluoresce. One problem with examining calcium signalling of 

reversible permeabilised strips is that the period of time the incubations occur over 

allows Indo-1 to enter and escape from the permeabilised membrane. Hence the 

indo fluorescent signalling may not be very strong. Considering this, pregnant tissue 

was dissected thinly and tested for contractility. Once 20 minutes of contractions 

occurred, the strips were incubated firstly in a solution containing EGTA, ATP and 

MgCl2 to permeabilise the tissue and then increasing concentration of MgCl2 was 

used to increase the permeability of the cell membranes. Following this, cell- 

impermeable calcium sensitive indicator, Indo-1 was introduced to the tissue and 

after this the holes in the membrane were closed using increasing concentrations of 

calcium in the presence of NaCl. This shows antagonism exists between Mg and Ca 

ions and alterations of the surface layer of cells which regularly accompanies 

changes of irritability, initiates changes in permeability (Gellhorn 1930). The 

contractility of the strip after treatment was tested as well as the presence of cell 

impermeable Indo-1 which is illustrated in figure 6.1. This figure shows that under 

the conditions of the reverse permeabilisation, contractility still occurred. The 

contractions post treatment were more regular and smaller in amplitude (Figure 

6.1A). Changes in indicator emission, which indicates the change in intracellular 

calcium, is shown in figure 6.1B suggesting that some smooth muscle cells were 

successfully loaded. 

This technique could possibly be used to knockdown ethe-1 a potential H2S 

breakdown enzyme, if present within the uterus, to monitor whether the same 

responses to H2S- producers are found throughout gestation and implicate a role for 

this enzyme in the breakdown of H2S in the myometrium.  
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6.8 Final Conclusions 

The key findings demonstrated in this thesis are: 

 Changes in contractility of the non-pregnant myometrium can be attributed 

to menopausal state, age or condition 

 A progressive decline in contractility over gestation in response to H2S 

producers GYY4137 and NaHS up until labour onset, an effect rapidly 

reversed as labour starts. A decrease was also found from non-pregnant to 

term human myometrium. 

  H2S effects involved both KATP channels and L-type Ca channels.  

 GYY4137 and L-cysteine reduced the intracellular Ca transients that underlie 

spontaneous contractions.  

 H2S producing enzymes have been shown to be down regulated at term 

perhaps in preparation for labour onset.   

Therefore my data and that of previous studies suggest H2S could contribute to 

uterine quiescence and that increasing its level in myometrium could be an 

attractive target for therapeutics to inhibit the onset of labour in threatened pre-term 

pregnancies perhaps via use as a gel or pessary.  
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