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Abstract 

The filamentous fungus, Aspergillus nidulans is a well-characterized model organism which 

has been used extensively for the study of eukaryotic cell biology and genetics over the past 

60 years. The A. nidulans genome was sequenced in 2005, and various genome annotations 

have been released since, the majority of which rely heavily on in silico gene prediction. The 

development of high-throughput next generation sequencing technologies has revolutionised 

transcriptomics by allowing RNA-analysis of whole transcriptomes through massively 

parallel cDNA sequencing (RNA-seq). This sequencing approach has been applied to the A. 

nidulans transcriptome, and augmented by the development of a novel strategy for selectively 

sequencing the 5′ ends of RNAs on the ABI SOLiD platform. This aimed to produce a more 

robust resource for gene interrogation and the investigation of regulatory elements which 

impact on the transcriptomal landscape in A. nidulans. Bioinformatic analysis RNA-seq data 

was used to define 15,375 transcription start site (TSS) regions, which have been 

characterised by statistical analysis of mapped 5′ end distribution. Motif finding within 

sequence regions surrounding these TSS identified 16 putative functional promoter motifs 

based on overrepresentation and distributional analysis within promoters, and GO annotation 

found significant functional enrichment amongst genes associated with two of these motifs 

(AARARAAA and TTTYTTY). Transcript assembly of RNA-seq data has also revealed 

16065 putative transcripts, 1112 of which were mapped to regions annotated as intergenic. 

From these transcripts we identified 38 strong candidates for novel protein coding genes (six 

of which contained non-canonical translation start sites), and over 400 additional transcripts 

containing putative coding regions. Separation of RNA-seq data in two sets of strand specific 

reads was shown to greatly increase the quality of transcript assembly and facilitated the 

identification of 2291 occurrences of sense:antisense overlap between assembled transcripts, 

four of which have been proven experimentally. Finally, assembled transcripts have been 
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used to detect multiple transcript isoforms arising from alternative splicing events. 374 

distinct loci were identified as the origins of alternatively spliced transcripts, and six of these 

were verified experimentally.  
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1. Introduction and aims 

1.1. Importance of the Aspergilli 

The Aspergilli are a group of approximately 200 species of fungi, with roles in disease and 

food spoilage (including 20 known to be human pathogens), as well as a number of beneficial 

species used in the biotechnology industry and for the production of foodstuffs (Timberlake 

& Marshall, 1989). As a result, the Aspergilli are one of the most important and widely 

studied groups in the field of fungal research, and the genomes of many species have been 

sequenced (Ward et al., 2006). 

Aspergillus nidulans, is a filamentous fungus which has played a central role in eukaryotic 

cell research for over 60 years (Martinelli & Kinghorn, 1994). During this time, A. nidulans 

has been developed as an experimental genetics system, and played a particularly important 

role in the study of mitosis, being utilised for the first studies targeted specifically at nuclear 

division (Morris, 1976a; Morris 1976b). Morris demonstrated the utility of the sexual and 

parasexual cycles of A. nidulans, and it's homothallic nature meant that mutants could be 

directly tested for complementation without the problems of genetic mating types. This was 

aided by the fact that haploid, diploid and heterokaryotic vegative states had all been defined, 

along with eight well-marked linkage groups representing the eight chromosomes 

(Pontecorvo et al., 1953; Kafer, 1977). These studies helped to establish A. nidulans as a 

model genetic system for future studies, including the investigation of gene organisation and 

regulation (Timberlake, 1980). It is important to note the existence of multiple wild-type 

stains of A. nidulans (Jinks et al., 1966), however all commonly used mutant strains are 

derived from a single strain selected as a genetic model in 1953, often referred to as the 

Glasgow strain (Pontecorvo et al., 1953). 
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As a model organism, developing our understanding of the A. nidulans genome can provide 

valuable insight into other Aspergillus species. This work therefore has the potential to aid 

research not only in A. nidulans, but other Aspergilli of social and economic importance, 

such as A. oryzae, used in the production of soy sauce, sake and miso, and A. fumigatus, a 

human pathogen which presents an ever increasing risk to immunocompromised patients due 

to mutations resulting in antifungal drug resistance (Chamilos & Kontoyiannis, 2006). 

 

1.2. The Aspergillus nidulans genome 

The first eukaryotic organism to have its genome sequenced was Saccharomyces cerevisiae 

in 1996 (Goffeau et al., 1996). It was not until 2005 that the A. nidulans genome was 

sequenced and published by the Broad Institute. This genome was found to contain 

approximately 30 million base pairs in eight chromosomes or linkage groups (Galagan et al., 

2005). The genome sequence was annotated with the Calhoun annotation system, utilising 

protein homology searches and numerous gene prediction algorithms, including FGENESH 

(Salamov & Solovyev, 2000), FGENESH+, and GENEWISE (Birney et al., 2004). A. 

nidulans EST data was not incorporated into gene predictions, but was used separately for 

validation, and 9,541 protein-coding genes were predicted (Galagan et al., 2005).  

The genomes of two other Aspergillus species (A. fumigatus and A. oryzae) were also 

sequenced in 2005, and described in two companion papers (Nierman et al., 2005; Machida 

et al., 2005). All three assembled genomic sequences were produced by different sequencing 

centres, each using a separate and diverse annotation process. This produced inconsistencies 

in gene model and functional annotation, while additional attributes such as Enzyme 

Commission numbers (Bairoch, 2000) or Gene Ontology (GO) associations (Ashburner et al., 

2000) were also inconsistently applied. Functional annotations for A. fumigatus (Af293) and 
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A. niger (CBS 513.88) were manually reviewed by their respective research communities, 

prompting a reannotation of the A. nidulans genome by  the Eurofungbase community, 

published in 2008 (Wortman et al., 2008).The primary goal of this reannotation was to 

increase the number of A. nidulans proteins with accurate functional assignments. The 

percentage of A. nidulans gene products with informative names was increased from 3 % to 

approximately 19 %, which was subsequently increased to 58 % by the transfer of 

information from orthologous genes annotated in A. fumigatus or A. niger. Manual curation 

of gene model annotations also led to an increase in the number of predicted genes, from 

9,541 to over 10,500 (Wortman et al, 2008). While this represented an iterative improvement 

over previous annotations, it was by no means a finished product, and further demonstrated 

the high level of inaccuracy associated with in silico gene prediction, which was still the 

primary method of annotation for the majority of A. nidulans genes.  

The sequencing of the A. nidulans genome allowed for major advances in our understanding 

of the Aspergilli through comparative genetic studies between species. Comparative study of 

the A. nidulans genome with A. fumigatus and A. oryzae led to a major discovery, in that until 

that point A. nidulans was the only one of the three with a known sexual cycle, while the 

other two were only known to reproduce through asexual mitotic spores. In conjunction with 

other work (Nierman et al., 2005; Paoletti et al., 2005), 215 genes inplicated in the mating 

process, meiosis, fruiting body development and pheromone response in fungi were 

investigated and all (with the exception of mating-type genes) genes identified in A. nidulans 

were also found in both A. fumigatus and A. oryzae. While it is possible that these genes are 

present due to sexual reproduction being lost only recently in these species, these data 

suggested that A. fumigatus and A. oryzae may be capable of sexual reproduction, which may 

result in a massive increase in the potential for developing genetic tools for these fungi in 

both medicine and industry (Gallagan et al., 2005). This work also showed that both large 
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and small scale evolutionary processes in eukaryotes are species specific and can occur at 

different relative rates. These findings contrasted those in vertebrate, nematode and arthropod 

systems, where structural and nucleotide evolution are shown to be correlated (Galagan et al., 

2005; Coghlan & Wolfe., 2002; Burt et al., 1999; Sharakhov et al., 2002).  

Since this update to the A. nidulans genome, annotations have been constantly evolving as 

work continues to more accurately identify gene models and functions. Work is currently 

being undertaken by the group responsible for the Aspergillus Genome Database (AspGD) 

(Arnaud et al., 2010), with the aim of reannotating the A. nidulans genome using high-

throughput sequencing data. 

 

1.3. Transcription of mRNA in eukaryotes 

Transcription is the first step of gene expression,in which the enzyme RNA polymerase is 

used to create a new molecule of RNA with a sequence complimentary to that of a region of 

DNA. The regulation of transcription is vital for the control of gene expression, and can 

occur at numerous points throughout the process. Firstly, for genes to be actively transcribed, 

the locus needs to be accessable to the machinery of transcription, which includes various 

enzymes and transcription factors. In eukaryotes, transcription is constitutively repressed by 

nucleosomes, in which a length of approximately 146 bp of DNA is wrapped around a 

complex of histones H3, H4, H2A and H2B (Struhl, 1999). Activation of transcription 

requires decondensation of the chromatin structure around the relevent locus (Chambeyron & 

Bickmore, 2004; Bernstein et al., 2004), which in turn is controlled by modification of 

histones in this region (Lachner et al., 2003) in response to a range of regulatory proteins 

(Fischle et al., 2003) including transcription factors, histone acetyltransferases and chromatin 

remodeling enzymes (Swanson et al., 2003). These modifications clear nucleosomes from the 
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promoter region of the gene to be transcribed (Boeger et al., 2003, Reinke & Horz, 2003). 

There is also evidence for a relationship between regulation of transcription and the position 

of genes within chromosome territories, with highly expressed genes located more commonly 

at the periphery (Kurz et al., 1996; Dietzel et al., 1999) or within loops which extend outside 

of these territories (Volpi et al., 2000; Williams et al., 2002). 

 

In eukaryotes, a complicated system of transcription factors is required for binding of RNA 

polymerase II to the promoter. These transcription factors were originally in identified in 

Drosophila and S. cervisiae (Matsui et al., 1980), are collectively known as general 

transcription factors and have been are named TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, 

where TF stands for transcription factor. These factors are recruited sequentially onto the 

DNA promoter to form a nucleoprotein complex capable of recruiting RNA polymerase II. 

This process is regulated by the action of activator and repressor proteins, which respectively 

aid or inhibit recruitment of the general transcription factors (Orphanides et al., 1996). This 

regulation has been shown to occur at cis-regulatory elements shortly upstream of the core 

promoter, which are often binding sites for other regulatory elements produced in trans 

elsewhere in the genome (Gilad et al., 2008). 

 

Transcription itself is initiated by the binding of RNA polymerase to a promoter sequence 

within DNA. The core promoter consists of a short region immediately upstream and/or 

downstream of the transcription start site (TSS), and contains binding sites which interact 

directly with components of transcriptional machinery. The vast majority of core promoters 

studies have been performed on promoters containing a TATA box as an essential element. 

This conserved motif binds TFIID (lee & Young, 2000), however promoters have been 

shown to possess extreme structural and functional diversity, with many lacking the TATA 
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motif. This indicates that other factors along with TFIID are responsible for directing and 

binding the machinery of transcription to the core promoter (reviewed by; Smale & 

Kadonaga, 2003), and this diversity makes an important contribution to the regulation of gene 

expression (Butler & Kadonaga, 2002; Smale, 2001). Other core promoter elements capable 

of binding TFIID include the motif 10 element, the TFIIB recognition elements, the X core 

promoter element 1 and the initiator element (Inr), which can act alongside of independantly 

of a TATA motif. In TATA-less promoters, an alternative core promoter motif known as the 

downstream promoter element (DPE) is often (but not always) found downstream of the Inr, 

at a precise distance of +28-32 bp. TFIID has been shown to bind cooperatively to these 

motifs, with the efficiency of binding and therefore transcriptional activity being highly 

dependant on the distance between the Inr and DPE (Juven-Gershon & Kadonaga, 2010; 

Kutach & Kadonaga, 2000). This is supported by the work of Jin et al., 1995 and Tan & 

Richmond (1998), who showed that the insertion of a single base pair between transcription 

factor binding motifs can cause a rotational shift of up to 35°. Some transcription factors are 

able to tolerate a degree of flexibility in the distance between binding sites, showing only a 

lowering of binding affinity, while for others this rotational shift leads to steric 

incompatability and abolishing cooperative binding. This demonstrates the importance of 

conserved functional motifs and their position relative to the TSS and each other in the 

initiation and regulation of transcription. 

 

Following the successful recruitment of RNA polymerase II to the promoter and initiation of 

transcription, the RNA polymerase travels along the template strand of the DNA from 3'-5', 

using complimentary base pairing to create an mRNA copy of the coding strand. This process 

is known as elongation, and ends in termination of transcription and the release of the fully 

formed pre-RNA, which must be processed to transform it into mature mRNA. Some of this 
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processing occurs during elongation, such as the addition of the 5' cap structure, which 

consists of a 7-methylguanosine moiety attached to the 5' end of the mRNA during early 

elongation (Takagi et al., 2002). This structure has several functions, including regulation of 

export from the nucleus, promotion of translation and protection of the mRNA molecule from 

degradation by 5'-3' exonucleases (Konarska et al., 1984; Caponigro & Parker, 1996). 

Another modification vital for the stability of mRNA is the addition of a poly(A) tail at the 3' 

end upon termination of transcription (Guhaniyogi & Brewer, 2001). Newly synthesised 

mRNAs are cleaved at the 3' end and the poly(A) tail added based on the presence of a 

polyadenylation signal motif recognised by a complex of cleavage and polyadenlyation 

factors (Hunt et al., 2008). Genes have also been identified with multiple polyadenylation 

sites, suggesting that a single gene may code for several transcripts with alternative 3' ends, 

contributing to diversity of the transcriptome (Proudfoot et al., 2002; Shen et al. 2008). 

Removal of the poly(A) tail and 5' cap are a vital processes in the control of mRNA 

expression through transcript degradation, and are discussed further in Chapter 4.16 of this 

thesis.  

 

Splicing is another mechanism which can occur during elongation of the mRNA, and which 

also occurs after termination on transcription. This process assembles eukaryotic mRNAs 

from the longer, newly synthesised precursor mRNA. Alternative splicing patterns give rise 

to different protein isoforms with unique chemical and biological properties based on the 

inclusion or exclusion of coding sequences in the mature mRNA (Grabowski & Black, 2001). 

This facilitates a huge amount of diversity in the proteome, as a single transcript may have 

multiple splice patterns, with some known examples being alternatively spliced into 

thousands of different mature mRNAs (Black, 2000; Graveley, 2001). The mechanism of 

alternate splicing is explored in greater detail in Chapter 7.1 of this thesis. 
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1.4. Nitrogen metabolism in Aspergillus nidulans 

Nitrogen is a vital resource for all organisms, used in the production of proteins, nucleic acids, 

lipids and in the fungal cell wall. Aspergillus nidulans has been extensively utilised in the 

study of nitrogen metabolism and regulation, alongside another fungal species, Neurospora 

crassa (Caddick et al., 1994). The processing of various nitrogen sources has been linked to 

genes involed in the nitrogen utilisation pathway of these two organisms, and this work has 

contributed greatly to the understanding of nitrogen metabolism regulation through gene 

expression (Wiame et al., 1985). 

A. nidulans is able to utilise a wide range of nitrogen sources, although not all nitrogen-

containing compounds are used equally. Generally, nitrogen sources can be classified into 

two subgroups, distinguished on the basis of preference for their utilisation: Primary nitrogen 

sources (ammonia and glutamine) and secondary nitrogen sources, which includes all other 

compounds which can be utilised. When they are available, the uptake and metabolism of 

primary nitrogen sources is preferred to secondary sources, the processing of which generally 

requires additional cellular mechanisms. These mechanisms are tightly regulated by a number 

of genes associated with each metabolic pathway (Caddick et al., 1994), and primarily 

controlled by expression of the GATA transcription factor AreA (Platt et al., 1996). AreA is a 

positive regulator of secondary nitrogen metabolism, and the expression of areA mRNA is 

repressed in the presence of an abundant primary nitrogen source, effectively blocking the 

utilisation of secondary nitrogren sources in a process known as nitrogen metabolite 

repression (Arst & Cove, 1973; Wiame et al., 1995). In contrast, growth on secondary 

nitrogen sources has been shown to result in higher levels of the transcript and the effective 

utilisation of secondary nitrogen sources (Fraser et al, 2001). A second transcription factor, 

MeaB, has also been implicated in the regulation of nitrogen metabolism. MeaB appears to 
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act in opposition to AreA, being optimally expressed in response to nitrogen sufficiency and 

rapidly localized to the nuclei in the presence of primary nitrogen sources, with this being 

reversed on transfer to nitrogen limiting conditions. While MeaB has been proven capable of 

independantly mediating nitrogen metabolite repression, the expression of many genes 

regulated by MeaB are dependant on AreA, and that areA is able to partially regulate meaB 

(Wagner et al., 2010), however the method of this regulation was not clear. 

 

1.5. The development of high-throughput sequencing 

The recent development of “next generation” high-throughput sequencing using next 

generation technologies such as the ABI SOLiD and Illumina Genome Analyzer II has 

completely transformed quantitative transcriptomics. These next generation sequencing 

(NGS) technologies have significantly reduced the cost-per-reaction and time required, while 

simultaneously increasing the amount of data produced by each experiment. This has led to a 

number of experimental techniques being developed to directly survey the RNA content of 

cells without the traditional cloning requirements of EST sequencing. Such approaches have 

been shown to generate quantitative expression scores that are comparable to microarrays, 

but allow the entire transcriptome to be surveyed with no prior knowledge of transcribed 

regions (Wilhelm & Landry, 2009). This provides an unprecedented potential for global 

transcriptome analysis and the discovery of previously unidentified transcripts.  

As high-throughput sequencing became more prevalent, the data produced has provided 

information on non-coding transcripts, untranslated regions and gene structures, facilitating 

iterative improvements to existing genome annotations. Investigation of sequence reads 

spanning exon-intron or exon-exon junctions has also given unique insights into splicing 
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across introns and genes, as well as changes in splicing observed in alternative growth 

conditions (Wilhelm et al., 2008). 

Cloonan et al., (2008), showed that high-throughput sequencing can be used to survey the 

complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. 

Using a combination of tag maps with existing genome and transcriptome annotations, they 

developed a protocol to study the genomic landscape of gene expression and both known and 

novel alternative splicing events. This clearly defined the location of exons, as well as 

addressing transcriptional activity, transcriptional complexity from active loci, transcriptional 

activity outside currently defined annotations, and allowing for the discovery of previously 

unidentified nonsynonymous single-nucleotide polymorphism (SNP) expression (Cloonan et 

al., 2008).  This work also showed the use of tag counts to define differential expression 

between various states, finding good concordance with previously published expression 

profiles (Bruce et al., 2007) and work by Wilhelm et al., (2008) who have also shown a 

strong correlation between RNA expression levels determined from sequence-read numbers 

and those determined from hybridization signals. This indicates that data obtained from high 

throughput sequencing provides quantitative analysis of transcript levels and may do so more 

accurately than previous techniques. Expression levels measured by Lyne et al., (2003) using 

cDNA microarrays produced measurable signals from only 80-90% of genes in proliferating 

cells, with the remaining 10-20% shown to be highly expressed only under specific 

conditions such as meiosis or response to stress (Chen et al., 2003; Mata & Bähler, 2003). In 

comparison, expression levels in proliferating cells measured by analysis of sequencing data 

showed an average coverage of 94.9 %, and Lyne et al., (2003) suggest that the sequencing 

approach is sensitive enough to detect genes with low expression levels and even basal 

“transcriptional noise” from genes which are not actively expressed.  

This unprecedented level of sensitivity and accuracy means that whole transcriptome 
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sequencing using high-throughput NGS technology offers a near-complete snapshop of the 

transcriptome, including rare and hard to detect transcripts with regulatory roles. High-

throughput sequencing has therefore become the primary method for the discovery and 

characterization of non-coding RNAs (ncRNA). ncRNA describes a broad class of functional 

RNAs which are not translated into proteins. Combined with the fact that ncRNAs are often 

poorly conserved over evolutionary time, this made identification and sequencing of ncRNAs 

extremely difficult using previous technologies. Therefore, the prediction of both mature and 

precursor ncRNAs using in silico methods is of limited use, and the majority of ncRNA 

discovery relies on the sequencing of small RNA fragments (Mardis, 2008). Next generation 

high-throughput sequencing is therefore ideally suited to the global discovery of ncRNAs, 

and has been utilized for this purpose in a number of species ranging from Chlamydomonas 

(Zhao et al., 2007) to human and chimpanzee brain (Berezikov et al., 2006).  

 

 

1.6. The challenges of high-throughput RNA-seq 

While high-throughput RNA-seq has been shown to have many advantages over traditional, 

low-throughput EST sequencing, there are a number of complications associated with these 

experiments. Sequence reads produced by RNA-seq using next generation sequencing (NGS) 

technologies are predominantly very short. For example, reads produced by SOLiD 

sequencing at the start of this thesis were only 35 bp in length, and while this has been 

improved over time, current iterations of the SOLiD system are still limited to the production 

of 75 bp fragment libraries.  

To achieve the short read length which can be sequenced using NGS technology, transcripts 

must be fragmented prior to sequencing, then reassembled from the resulting fragments (with 

the exception of various classes of small RNAs which are shorter than the sequenced length). 
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This leads to loss of information as there is no definitive way of determining the structure of 

the full length transcripts, which must be predicted by assembly of reads mapped to a target 

genome. Transcriptome assembly is extremely challenging to perform accurately as 

algorithms must take into account factors such as strand specificity, read and mapping quality, 

and the fact that transcript variants from a single gene can share much of the same exon 

sequence, making them difficult to resolve. Using the SOLiD NGS sequencer we have 

observed an additional complication in that the distribution of read mapping can be highly 

uneven across a transcribed sequence, and sufficient depth of sequencing must therefore be 

obtained to ensure complete coverage of transcribed regions and robust transcript assembly. 

This issue has also been reported in other NGS technologies (Hansen et al., 2010), so does 

not seem to be limited to the SOLiD, indicating the need for further development and 

improvement of NGS technology across all platforms.  

The choice of whether to guide transcript assembly is also important, as this is largely 

dependent on the quality of the reference genome. In the case of A. nidulans supplying a 

reference was shown to greatly reduce the number of novel transcripts identified compared de 

novo transcript assembly. Previous studies such as the sequencing of the Anopheles funestus 

transcriptome by Crawford et al. (2010) have combined these two methods where the quality 

of reference genome was called into question, and findings from this thesis propose that a 

similar approach may be beneficial in A. nidulans (Chapter 5.7).  Even when an assembly 

strategy has been developed, the choice of algorithm poses yet more challenges, as most 

transcript assembly software is developed using distinct organisms on a single NGS platform, 

so different algorithms can produce a variety of transcript assemblies from the same data. In 

some cases the choice of assembler may also be limited, as specific data formats (such as 

SOLiD colour space) are not accepted by all assemblers, and even where they can be used, 

support for these data types is not always robust. These problems are compounded by the fact 
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that there is currently no standard criteria for quality assessment of transcriptome assemblies, 

although the need for such criteria has been acknowledged and they are currently being 

developed (Salzberg et al., 2005; Meader et al., 2010). 

The result of high-throughput coupled with short read length is extremely large datasets, 

ranging from several gigabases to terabases of data produced from a single transcriptome. 

Manual data-handling is therefore impossible, and researchers must develop new skills in 

bioinformatics and the production of novel software to facilitate automated manipulation and 

interrogation of these massive datasets. Hardware limitations are also a consideration, as 

analysis of these data requires high-power computing systems with large memories and 

sufficient processing capability to run parallel algorithms.  

During the course of this thesis, advances have been made in NGS technology and data 

analysis. Throughput, read length, mapping and assembly algorithms have all been improved, 

resulting in greater read coverage and higher quality transcript assembly. However, this 

technology is still reliant on cDNA synthesis or hybridization steps, the efficiency of which is 

dependent on RNA sequence and structure. This can result in spurious second-strand cDNAs 

through template switching (Cocquet et al., 2006) and primer-independent cDNA synthesis 

due to self-priming thought to occur through cDNA secondary structure (Ozsolak & Milos, 

2011). Furthermore, reverse transcriptases have been shown to have lower fidelity than other 

polymerases due to their lack of proofreading mechanisms, and can add nontemplated 

nucleotides to cDNAs (Chen & Patton, 2001). These factors together pose limitations on the 

quality and accuracy of strand-specific RNA-seq using standard NGS techniques. 

Current work in the field of NGS aims to address many of the issues through development of 

amplification-free low quantity RNA-seq (LQ-RNAseq) (Ozsolak et al., 2010) and direct 

sequencing of RNA molecules (Lipson et al., 2009). 

 



32 
 

1.7. The ABI SOLiD system 

Early comparisons of high-throughput NGS technologies such as those conducted by 

Harismendy et al. (2009) suggested that platforms such as the ABI SOLiD and Illumina 

sequencers were extremely similar in terms of accuracy and throughput. This work suggested 

that the major factors influencing choice of sequencing platform were therefore time, cost and 

availability. However, each system was shown to have minor advantages in certain 

applications. The ABI SOLiD system was shown to produce lower coverage variability and 

therefore higher accuracy at low coverage. This was of particular importance for the 

identification and characterization of transcripts with very low expression, and of rare 

intergenic transcripts such as ncRNAs (Harismendy et al., 2009). Combined with the in-

house availability of SOLiD sequencing, this made it the system of choice for this analysis. 

The applied Biosystems (ABI) SOLiD (Sequencing by Oligo Ligation and Detection) system 

was commercially released in 2007. This system offers a unique sequencing methodology 

based on sequential ligation of fluorescently labeled semi-degenerate oligonucleotide probes. 

Each probe queries two adjacent base positions at a time, with four fluorescent dyes used to 

encode for the sixteen possible di-base combinations. After the ligation step, a fluorescent 

readout records the colour of the dye. The fluorescent group is then removed from the ligated 

oligonucleotide probe by chemical cleavage, allowing a subsequent round of ligation. The use 

of di-base probes is referred to as “2 base encoding” and contributes to the high accuracy of 

the SOLiD system. Cycling of ligation, detection and cleavage determines the eventual read 

length. Following a series of ligation cycles, the extension product is removed and the 

template reset with a primer complimentary to the n-1 position for a 2
nd

 round of ligation 

cycles. A total of 5 cycles are performed for each sequence tag and the final sequence 

produced in colour space.  
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This method of sequencing provides numerous advantages compared to other systems: 

1.  Interrogation of two bases in each ligation provides increased specificity. 

2. Each base in interrogated twice providing increased confidence in each call. 

3. The primer is reset for five independent rounds of extension, improving signal to 

noise ratios. 

4. The design of the four dyes encoding sixteen possible two base combinations enables 

built in error checking. 

The sequencing process and colour space format are detailed in Fig 1.1. An overview of the 

SOLiD workflow is presented at: 

http://marketing.appliedbiosystems.com/images/Product/Solid_Knowledge/ 

flash/102207/solid.html 
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Figure 1.1.  The colour space format and SOLiD sequencing by ligation. The SOLiD 

system uses a set of semi-degenerate and fluorescently labelled di-base probes to create 

sequences in colour space. A key for converting di-base sequences to colour space is 

illustrated in the left pannel. The SOLiD sequencing process is shown in the right panel, and 

begins with hybridization of primers to the P1 adapter sequence within the library template. 

The four probes then compete for ligation to the sequencing primer. The fluorescent label 

attached to the ligated probe is detected by the SOLiD, the probe is then removed by cleavage 

and the process repeated for the next base in the template. Specificity of the di-base probe is 

achieved by interrogating every 1
st
 and 2

nd
 base in each ligation reaction. 
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RNA samples can be prepared for sequencing on the ABI SOLiD platform in a number of 

different ways, depending on the application and desired outcome. SOLiD sequencing of the 

whole transcriptome utilizes fragment libraries created from mRNAs, which must be isolated 

from total RNA by poly(A) selection or ribosomal RNA depletion. Prior to fragmention with 

RNase III, the mRNA library is treated with tobacco acid pyrophosphatase (TAP) to cleave 

the cap structure present at the 5' end of the mRNA molecules, leaving a 5'-monophosphate 

and a 3'-hydroxl. These structures are characteristic of RNase III cleavage products and are 

required to make the mRNA competent for adaptor ligation by RNA ligase which selectively 

ligates synthetic oligoribonucleotides to the phosphate at the 5' end. The adaptors used are 

sets of RNA/DNA oligonucleotides with a single-stranded degenerate sequence at one end 

and a defined sequence required for SOLiD sequencing at the other. Preparation of libraries 

for SOLiD sequencing is shown in Fig 1.2. 
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Figure 1.2. Creation of SOLiD fragment libraries. The SOLiD system can use two types 

of libraries, fragmented (left panel) or mate-paired (right panel). The fragment libraries 

utilized in this thesis are prepared by fragmenting mRNAs with RNase III, followed by 

ligation of the SOLiD 5' (P1) and 3' (P2) adaptors to each fragment. 
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Following the ligation of the adaptor to the fragmented RNA, reverse transcription is 

performed to synthesise a cDNA library of fragments containing the P1 and P2 adaptors 

required for sequencing. The RNA/cDNA duplex is then denatured and the library is selected 

by size for fragments with sequence inserts of sufficient length to generate full-length SOLiD 

RNA-seq reads. The products of size-selection are then amplified by PCR to increase 

quantity of fragments, using the lowest possible number of cycles to maintain an accurate 

expression profile. PCR products are then purified and subjected to quality control (QC) 

checks, ensuring that the library is of sufficient quality and concentration. Libraries which 

pass QC are prepared for SOLiD sequencing by emulsion PCR (ePCR) of the template with 

P1 coupled beads. In this process, the template is annealed to the P1-coupled beads, and a 

polymerase extends from the P1 adapter to generate a complimentary sequence extending 

from the beads surface. Following ePCR, templates are denatured and bead enrichment 

performed using a glycerol gradient to separate beads with extended templates from the 

undesirable non-templated beads. Templated beads are 3' modified to facilitate covalent 

linkage to the SOLiD slide, where they are deposited in a random array (Fig. 1.3). Deposition 

chambers offer the ability to segment the slide into multiple chambers during the loading 

process, allowing increased densities of beads per slide and resulting in a higher level of 

throughput.  
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Figure 1.3. Emulsion PCR and bead enrichment for SOLiD sequencing. Emulsion PCR 

is used to capture the templates on P1-coupled beads. The templates are then denatured and 

bead enrichment is performed to separate beads with extended templates from undesirable 

beads. Templated beads are then 3' modified to facilitate covalent linkage to the SOLiD slide, 
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1.8. Aims 

The aim of this thesis was to develop modern, high-throughput strategies to investigate the A. 

nidulans transcriptome. These strategies aimed to identify key sequence elements within the 

genome which may be used to predict and/or regulate gene expression. This included in silico 

prediction of promoters as well as the identification of specific DNA or RNA motifs 

associated with regulatory proteins.  

Through interrogation of high-throughput sequencing data, this thesis also aimed to assess the 

use of high-throughput sequencing for the identification and characterization of novel genes, 

intergenic non-coding RNAs, antisense genes, and to provide new insights into the 

integration of different biological processes. While the aim was not to reannotate the A. 

nidulans genome, a priority was placed on collaboration with CADRE and AspGD to make 

the resultant high-throughput sequencing data publicly available as a community resource to 

assist with gene interrogation and genome reannotation.   

  



40 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



41 
 

2.  Materials and Methods 

2.1. Synthetic oligonucleotides 

Table 2.1. List of custom oligonucleotide names and sequences. 

Name Sequence (5′ - 3′) 

P1 (comp) 
Phosphate- ATCACCGACTGCCCATAGAGAGGAAAGCGGAG 

GCGTAGTGGTT -biotin TEG 

P1 random (6) 
CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT

NNNNNN -phosphate 

P1 random (10) 
CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGAT

NNNNNNNNNN -phosphate 

Random priming P2 

(barcoded) 

CTGCCCCGGGTTCCTCATTCTCTAAGCCCCTGCTGTACGGC

CAAGGCGNNNNNC 

Random priming P2 

(non-barcoded) 
CTGCTGTACGGCCAAGGCGNNNNNC 

P1 PCR CCACTACGCCTCCGCTTTCCTCTCTATG 

P2 PCR CTGCCCCGGGTTCCTCATTCT 

Antisense A 

(AN8048.4) 
GTCCGCCAGATATACTA 

Antisense B 

(AN8040.4) 
GAACTGGCTCTTAATG 

Antisense C 

(AN4023.4) 
ATCACCGAACTGAGACT 

Antisense D 

(AN4058) 
CCACCGTATATCATCAG 

Splicing A forward 1 GAGCATCGCTACGCTGTT 

Splicing A forward 2 CACCTCAAGGAAGCTACA 

Splicing A reverse CGATACGACGCCTCTTCT 

Splicing B forward TAGAGGTCGGGAGTGATG 

Splicing B reverse TTTGTAGAAGGCGGGCTC 

Splicing C forward CAGCCAGAGGAGATCAAG 

Splicing C reverse GGGGACTCTGTCGAATCT 

Splicing D forward AAGGTCGTCGGTTAAGCG 

Splicing D reverse AACCCGGTTCTTTCTCCG 

Splicing E forward GCCAGATATATTATCGGC 
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Splicing E reverse TGCTAGAACGATTTGACC   

meaB F1 ATCTTGCGTCAAGACCT 

meaB F2 CTTCCGCTTCTGTGTCT 

Meab R CCGGTTCTCTAACTGTC 
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2.2. Aspergillus nidulans strains and maintenance. 

2.2.1. Aspergillus nidulans strains 

Aspergillus nidulans wild-type strain is designated G00 in the Glasgow collection and is a 

natural isolate and therefore has no explicit genotype (Pontecorvo et al., 1953). 

 

2.2.2. Growth media 

Growth media were as described by Cove (1966) and are listed in Appendix 1.2.1. 

 

2.2.3. Aspergillus nidulans solutions and media 

For a list of solutions and media used throughout this thesis, as well as their compositions. 

See Appendix 1.2.1.  

 

2.2.4. Maintenance of Aspergillus nidulans cultures 

A. nidulans stock cultures were kept as conidia at -80 °C. Strains were grown on minimal 

media (MM) containing 3 % agar (w/v), with appropriate supplements for 2-3 days at 37 °C. 

Conidial suspensions were created by scraping conidia from confluent plates and 

resuspending in 20 ml of 0.1% Tween. The approximate concentrations of the resultant 

suspensions were determined using a hemocytometer, and 10
8
-10

9
 spores used to inoculate 1 l 

flasks containing appropriate media and supplements for each growth condition described in 

Table 2.2. Incubations were at 37 °C in an orbital incubator at 200 rpm.  Mycelia were 

harvested by filtration through Miracloth [Calbiochem Corp.], washed with fresh media, then 



44 
 

washed again with RO filtered water and dried by blotting on paper towels. Dried mycelia 

were snap frozen in liquid nitrogen and stored at -80 °C. 

Table 2.2. Large scale cultures. This table describes the growth conditions for large scale 

liquid A. nidulans cultures used throughout this thesis. 

Growth condition Media and Supplements Incubation 

MM + nitrate 250 ml MM + sodium 

nitrate (final concentration 

10 mM NO3
-) 

16 hours 

MM + ammonium 250 ml MM + Ammonium 

D tartrate (final 

concentration 10 mM NH4
+) 

16 hours 

Complete medium 250 ml CM 16 hours 

 

4 hour nitrogen starvation 

250 ml MM + sodium 

nitrate (final concentration 

10 mM NO3
-)then transfer 

to 250 ml MM 

16 hours then transfer to 

unsupplemented MM and 

incubate for a further 4 hours 

 

72 hour nitrogen starvation 

250 ml MM + sodium 

nitrate (final concentration 

10 mM NO3
-) then transfer 

to 250 ml MM 

16 hours then transfer to 

unsupplemented MM and 

incubate for a further 72 hours 

Oat 1 % ground oat in 500 ml 

water 

72 hours 

 

2.3. Molecular techniques for the manipulation of nucleic acids 

 

2.3.1. Extraction of RNA from Aspergillus nidulans  

Mycelia harvested from liquid culture and stored at -80 °C was transferred to liquid nitrogen. 

Mycelia were ground to fine powder using a pestle and mortar with the addition of liquid 

nitrogen to maintain a fully frozen state. Approximately 1 g of dry, powdered mycelium was 

transferred to a 30 ml centrifuge tube containing 1 ml phenol (pH 5.0) and 1.5 ml lysis buffer 

(100 mM Tris-HCL pH 8.0, 300 mM NaCl, 10 mM EDTA, 3 % SDS). Tubes were vortexed 
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to mix and centrifuged at 4500 x g for 15 minutes. 0.75 ml supernatant was transferred into a 

fresh 1.5 ml Eppendorf tube, to which was added 0.5 ml phenol (pH 5.0). Tubes were 

vortexed prior to centrifugation for 15 minutes at 15,000 x g. Approximately 0.5 ml of 

supernatant was collected and transferred to a fresh 1.5 ml Eppendorf tube. An equal volume 

of 5 M LiCl was deed and tubes left overnight at 4 °C. Precipitated RNA was pelleted by 

centrifugation at 4 °C for 60 minutes at 15,000 x g. Pelleted RNA was washed twice with 180 

µl 70  % ethanol, dried for 10 minutes in a fume cupboard to prevent contamination, then 

dissolved in 400 µl SDW. Ethanol precipitation was performed by the addition of 40 µl 3M 

sodium acetate and 1 ml 70 % ethanol, then incubating for at least 1 hour at -20 °C. 

Precipitated RNA was pelleted by centrifugation for 15 minutes at 15,000 x g. The 

supernatant was removed and pellets washed with 180 µl 70 % ethanol, then re-centrifuged 

for 5 minutes at 13,000 x g to ensure retention of the pellet. Pellets were dried for 10 minutes 

in a fume cupboard, then dissolved in 50 µl RNA storage solution (5 mM EDTA, 5 % SDS) 

and stored at -20 °C, or 50 µl nuclease free water for immediate use. 

 

2.3.2. Nucleic acid quantification 

 

Concentrations of DNA and RNA solutions were measured by Nanodrop [Thermo Scientific] 

spectrophotometer, using 2 µl of sample per measurement. Where sample concentration was 

expected to be greater than 5 µg/ml samples were diluted by a factor of 10 to achieve greater 

accuracy. 
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2.3.3. Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis of DNA was performed using horizontal electrophoresis gel 

tanks [Fisher Scientific] with 1 X TAE (0.4 M Tris-acetate; 1 mM EDTA) buffer. Gels were 

composed of 1.0 to 2.0 % (w/v) agarose in 1 X TAE buffer. Where required, 1 in 5 volumes 

of loading buffer was added to DNA samples prior to loading of the gel. Gels were run at 50 

to 200 V depending on the size of apparatus and required resolution of DNA size bands, until 

the bromophenol dye had travelled 3/4 of the gel length. DNA was stained by the addition of 

ethidium bromide to the molten agarose gel at a final concentration of 0.5 µg/ml. Stained 

DNA was visualised under ultraviolet (UV) light. 

 

2.3.4. Ethanol precipitation 

Nucleic acids were purified and concentrated from solution by ethanol precipitation in the 

presence of sodium ions. To improve the efficiency of nucleic acid recovery, DNA or RNA 

samples under < 100 µl were diluted to 100 µl volume using nuclease-free water. Sodium 

ions were introduced by the addition of 1/10 volumes of sodium acetate solution (3M, pH 

5.2), followed by 3 volumes of 100% ethanol. Precipitation reactions were incubated for at 

least 2 hours at -20 °C. Samples containing small nucleic acid fragments were incubated 

overnight to give the highest possible yield (Zeugin and Hartley, 1985). Precipitate was 

collected by centrifugation at 14,000 x g at 4 °C for 30 minutes. The supernatant was 

discarded and the pellet washed with 200 µl of 70 % ethanol. A second centrifugation at 

14,000 x g for 5 minutes ensured that the pellet was at the bottom of the tube before the 

supernatant was discarded. Pellets were dried for 10 minutes in a laminar flow cabinet to 

prevent contamination. Dried pellets were dissolved in the appropriate volume of nuclease 

free water or the desired buffer for the next reaction. 
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2.3.5. Phenol:chloroform extraction of nucleic acids 

Phenol:chloroform extraction was used to isolated polynucleotides from aqueous solutions 

containing proteins. This method relies on phase separation by centrifugation of a mix of the 

aqueous sample and a solution containing water-saturated phenol, chloroform and a 

chaotropic denaturing solution (guanidinium thiocyanate) (Chomczynski & Sacchi, 1987). 

Equal volumes of phenol:chloroform (1:1; v/v) and an aqueous solution containing 

polynucleotides to be isolated, were mixed vigorously by vortexing for 20 seconds. Phase 

separation was achieved by centrifugation at 13,000 x g for 5 minutes. This resulted in an 

upper aqueous phase (containing polynucleotides) and a lower phase (containing proteins 

dissolved in phenol and lipids dissolved in chloroform). The aqueous phase was extracted and 

ethanol precipitation performed to purify the polynucleotides for downstream applications. 

 

2.3.6. Poly(A) selection using oligo(dT) 

Enrichment for mRNA from total RNA samples was performed by Poly(A) selection using 

an Oligotex direct mRNA midi kit (QIAGEN) following the manufacturer’s protocols for 

purification of mRNA from samples containing starting material of ~500 µg total RNA. 

 

2.3.7. DNA depletion with DNase I 

DNase I is an endonuclease that nonspecifically cleaves DNA to release di-, tri- and 

oligonucleotide products (Kunitz, 1950; Vanecko and Laskowski, 1961). This enzyme was 

used for the depletion of contaminating DNA in total RNA samples extracted from cell 

cultures, with RNase inhibitor added to the reaction mix to protect the total RNA from 

http://en.wikipedia.org/wiki/Phenol
http://en.wikipedia.org/wiki/Chloroform
http://en.wikipedia.org/wiki/Guanidinium_thiocyanate
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degradation. The following components were combined and incubated at 37 °C for 1 hour: 2 

μl 10X DNase I buffer (Invitrogen), 0.5 μl RNasein RNase inhibitor (Promega), 0.5 µl DNase 

I (Invitrogen) and 17 μl Total RNA sample. 

Reactions were stopped by phenol:chloroform extraction and ethanol precipitation. 

 

2.3.8. 5′ decapping of RNA with tobacco acid pyrophosphatase 

The 5′ cap structure was removed from mRNAs by treatment with Tobacco Acid 

Pyrophosphatase (TAP). The following components were combined and incubated at 37 °C 

for 1 hour: 2 μl 10X TAP buffer (Epicentre), 0.5 μl RNasein RNase inhibitor (Promega), 

15.75 μl RNA in nuclease free water and 0.25 μl TAP (10 u/µl) (Epicentre). 

Reactions were stopped with phenol:chloroform extraction and ethanol precipitation of the 

RNA. 

2.3.9. RNA fragmentation with zinc acetate 

Poly(A) selected RNA was fragmented using the RNA Fragmentation Reagents kit (Ambion) 

to achieve fragment sizes of approximately 50-200 nt. This kit uses a form of heat 

fragmentation catalyzed by metal ions in the form of Zn
2+

. 0.9 µl of 10X fragmentation 

reagent (zinc acetate solution) was added to 300 µg of poly(A) selected RNA dissolved in 8 

µl of nuclease-free water and incubated for 5 minutes at 70 °C. The reaction was terminated 

by the addition of 0.9 µl of stop solution (metal chelating agent) and chilling the solution on 

ice. The stopped reaction mix was diluted to 500 µl with nuclease-free water and purified by 

either ethanol precipitation or ultra-filtration using a YM-30 column (Millipore). 
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2.3.10.  End repair with T4 polynucleotide kinase 

To facilitate SOLiD library preparation, T4 polynucleotide kinase (T4 PNK) end repair was 

conducted for RNA fragments produced by chemical shearing. The dual functionality of T4 

PNK allows it to act as both a 5′-kinase and 3′phosphatase, producing both the 5′ phosphate 

group and 3′ hydroxyl group required for SOLiD adaptor ligation. The following reaction mix 

was incubated for 10 minutes at 37 °C: 12.5 μl RNA sample in nuclease free water, 2 μl 10X 

T4 PNK buffer (Fermentas), 0.5 μl RNasein RNase inhibitor (Promega), 3 μl T4 PNK (10 

u/μl) (Fermentas) and 2 μl 5 mM ATP. 

Reactions were stopped by the addition of 4 µl of 0.5 M EDTA. RNA was purified by 

phenol-chloroform extraction and isolated by ethanol precipitation. The resultant pellet was 

dissolved in 8 µl of nuclease-free water for use in SOLiD library preparation. 

 

2.3.11.  RNase H degradation of RNA in RNA/DNA duplexes – manufacturer’s 

protocol 

RNase H (Fermentas) was used to selectively degrade the RNA strand in the RNA/cDNA 

duplexes created by first strand cDNA synthesis (Vorobjev & Zarytova, 2000) in modified 

SOLiD library preparation protocols.  

RNA/cDNA hybrids were purified from first strand synthesis reactions by ethanol 

precipitation and pellets dissolved in 8 µl of nuclease free water. The following reagents were 

mixed and incubated at 37 °C for 20 minutes: 8 μl RNA/cDNA hybrid solution, 1 μl 10X 

RNase H reaction buffer (Fermentas) and 1 μl RNase H (Fermentas), 

Reactions were stopped by heat inactivation of the enzyme at 65 °C for 10 minutes. 
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2.3.12. RNase H degradation of single stranded RNA in RNA/DNA duplex - 

modified protocol 

1 µl of RNase H (Fermentas) was added to 10 µl of first strand synthesis solution containing 

RNA/DNA hybrids and the reaction mix incubated at 37 °C for 20 minutes. Stopping of the 

reaction was not required for downstream applications. 

 

2.3.13. First strand cDNA synthesis with random priming P2 

Hybridisation of the degenerate N6 sequence of random primer P2 was performed by 

combining the following reagents and incubating the reaction at 65 °C for 5 minutes then 

snap cooling on ice for 2 minutes: 10 μl (~1 µg) Fragmented RNA sample, 5 μl Random 

primer P2 (10 nm/µ1) and 2 μl dNTPs (10 μM), 

First strand synthesis was performed using Superscript III reverse transcriptase (Invitrogen). 

An RT master mix was created with the reagents in Table 2.3. 23 µ1 of RT master mix was 

added to each hybridisation reaction and RT incubation performed in a thermal cycler as 

shown in Table 2.4. 

 

Table 2.3. Reaction components for reverse transcription. 

Volume Component 

9 μl Nuclease-free water 

8 μl 5X First Strand buffer 

2 μl DTT (0.1 M) 

2 μl RNasin 

2 μl SuperScript II Reverse Transcriptase 
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Table 2.4. Incubation temperatures and times for reverse transcription. 

Temperature Time 

12°C 1 hour 

25°C 5 min 

42°C 10 min 

50°C 30 min 

55°C 30 min 

70°C 15 min 

4°C hold 

 

2.3.14. P1 adaptor ligation 

Ligation of the P1 adaptor to cDNA was performed using DNA ligase (Promega). The 

following reagents were combined and incubated for 16 hours at 16 °C in a thermal cycler: 7 

μl cDNA, 2 μl Adaptor N6 or N10 (10 nm/µ1), 10 μl 2X ligation buffer and 1 μl DNA ligase 

(Promega). 

2.3.15. Second strand synthesis with proofreading TAQ 

Second strand synthesis of cDNA ligated to the P1 adaptor using KOD hot start DNA 

polymerase (Novagen). The components in Table 2.5 were combined and incubated at 95 °C 

for 4 minutes to activate the enyzme. 

 

Table 2.5. Reaction components for second strand synthesis. 

Volume Component 

6 μl MgSO4 (25 mM) 

10 μl DNTPs (2 mM) 

10 μl 10 X buffer 

2 μl KOD hot start polymerase 

52 μl Nuclease-free water 

 

 

The 20 μl P1 adaptor ligation mix was then added and the reaction incubated at 70 °C for 10 

minutes in a thermal cycler. 
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2.3.16. Chemically fragmented library amplification with primers P1 and P2 

PCR amplification of libraries was conducted using KOD hot start polymerase (Novagen).  

 

KOD hot start polymerase is a premixed complex of KOD DNA Polymerase and two 

monoclonal antibodies that inhibit the DNA polymerase and 3´→ 5´ exonuclease activities at 

ambient temperatures (Mizuguchi et al., 1999). This helped to avoid non-specific 

amplification due to mispriming events that can occur during setup and initial temperature 

increase. Primer degradation during setup at room temperature due to exonuclease activity is 

also effectively inhibited. 

 

 PCRs were set up as shown in Table 2.6. Reactions were incubated at 95 °C for 5 minutes to 

activate the KOD hot start polymerase, then subjected to 10-18 cycles of PCR as described in 

Table 2.7. A final extension step was conducted for 5 minutes at 72 °C to promote complete 

synthesis of all PCR products (Sullivan et al., 2006). 

 

 

Table 2.6. Reaction components for PCR amplification of chemically fragmented 

libraries. 

Volume Component 

10 μl cDNA 

60μl Nuclease-free water 

6 μl MgSO4 (25 mM) 

10 μl dNTPs (2 mM) 

10 μl 10X KOD Hot Start Polymerase buffer 

1 μl P1 primer (10 nm/ µl) 

1 μl P2 primer (10 nm/ µl) 

2 μl KOD Hot Start Polymerase 
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Table 2.7. PCR cycle for amplification of chemically fragmented libraries. Reactions 

were incubated at 95 °C for 5 minutes to activate the KOD hot start polymerase, followed by 

10-18 cycles of PCR. 

Temperature Time Cycles 

95 °C 5 min - 

95 °C 15 sec  

10-18 62 °C 15 sec 

72 °C 1 min 

72 °C 5 min - 

4 °C hold - 

 

 

 

2.3.17. Size selection of RNA fragments by FlashPAGE fractionator 

Size selection of RNA fragments using the FlashPAGE fractionator (Ambion) was performed 

as an alternative to agarose gel size selection of cDNA libraries prior to PCR amplification in 

SOLiD library preparation. During FlashPAGE electrophoresis, RNA and DNA molecules 

were separated from longer species and collected in the lower running buffer chamber. This 

removed the requirement for libraries to be purified from gels, a step that was found to be 

unreliable when performed with previous protocols supplied with SOLiD Small RNA 

Expression Kit (SREK) protocols. The FlashPAGE fractionator was set up using FlashPAGE 

pre-cast gels (Ambion) and electrophoresis performed following the manufacturer’s protocol 

for the recovery of polynucleotide fragments 50-150 bp in size.  

RNA fragments were purified and concentrated from FlashPAGE running buffer using a 

FlashPAGE reaction cleanup kit (Ambion) following the manufacturer’s instructions. 
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2.3.18. TA cloning 

PCR products were run on 1.5 % agarose gels to identify products of the appropriate 200 bp 

length. These regions of the gel were excised, and DNA isolated using a Qiaquick gel 

extraction kit following the manufacturer’s protocols. DNA was transformed into highly 

competant E.coli cells using a pGEM-T Easy Vector System (promega) according to the 

manufacturer’s protocols. Transformants were grown on selective media containing ampicilin 

and blue-white scoring used to identify successful transformations. Plasmids were extracted 

from successful transformants using a plasmid extraction kit (QIAGEN) according to 

manufacturer’s protocols, and digested with EcoR1 prior to running on a 1.5 % agarose gel to 

identify cloned fragments. 

2.4. Bioinformatics and computational biology 

2.4.1. Motif finding with YMF and MEME 

To ensure robust analysis, de novo motif identification was performed using two different 

motif finding algorithms; YMF 3.0 (Sinha & Tompa, 2000; Blanchette & Sinha, 2001; Sinha 

& Tompa, 2002; Sinha & Tompa, 2003) and MEME (Bailey & Elkan, 1994). Both programs 

can be run via webservers, but due to the large number of sequences being searched, YMF 

software and the MEME Suite (Bailey et al., 2009) were downloaded and run locally. 

For motif finding with YMF, it was necessary to construct a background model for A. 

nidulans transcription start sites. The background sequences supplied to YMF consisted of 

1000 bp upstream and 199 bp downstream (1200 bp total) from each putative TSS identified 

by 5' RNA-seq analysis. 

To capture the promoter, a sequence 200 bp upstream and 24 bp downstream was defined for 

each TSS. YMF motif finding was performed within these regions for motif lengths of 6 bp, 7 
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bp, 8 bp, 9 bp and 10 bp. Each run produced 1000 predicted motifs ordered by Z-score, 

indicating overrepresentation of the patterns against background sequences. 

To reduce redundancy in the raw YMF output, the software MATLIGN (Kankainen & 

Löytynoja, 2007) was used to group the motifs into subsets. MATLIGN is extremely 

inefficient when processing very large datasets, so only the top 500 motifs (by Z-score) of 

YMF output were selected. The Z-scores of motifs after the 500 cut-off were relatively low (5 

times less than the top motifs) so we were confident that no significant motifs were 

discounted. 

Motifs found by YMF were verified by a second round of motif finding using MEME, again 

repeated 5 times for motif lengths of 6-10 bp. The output of MEME provided several 

statistics relating to each motif. Sites is the number of occurrences; llr is the log likelihood 

ratio which measures difference from the background model; and E-value indicates the 

statistical significance of llr value. Lower E-values indicate stronger putative motifs. 

 

2.4.2. Building a Bowtie reference index 

The Bowtie short read aligner uses a Burrows-Wheeler Transform to carry out rapid 

alignment of sequence reads. In order to do this, the reference genome must be represented as 

an ‘index’. The function “Bowtie-build” was used to create a Bowtie reference index from a 

set of DNA sequences. To obtain these sequences, the latest A. nidulans genome reference 

was downloaded in FASTA format from the Ensembl Genomes ftp server 

(ftp://ftp.ensemblgenomes.org/pub/fungi). The resulting output was a set of 6 files with 

suffixes .1.ebwt, .2.ebwt, .3.ebwt, .4.ebwt, .rev.1.ebwt, and .rev.2.ebwt, which together 
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comprise the Bowtie index. The original sequence file was no longer needed by Bowtie, as all 

alignments are made against the index files. 

The only options supplied were “-C” to generate a colour space reference, and “-f”, which 

told Bowtie that the reference genome was in FASTA format. All other settings were run as 

default. <reference_in> corresponded to the reference FASTA, while <ebwt_base> defined 

the prefix of the Bowtie index files. 

Bowtie-build usage:  

bowtie-build [options]* <reference_in> <ebwt_base> 

  

2.4.3. Mapping of SOLiD RNA-seq reads with Tophat 

Alignment of reads to the assembled Bowtie reference index and subsequent junction finding 

was performed with Tophat version 1.3.1. Tophat is an aligner for mapping RNA-seq data.  It 

uses Bowtie to align reads to a reference index. It enables mapping of spliced reads by 

splitting the reads into segments, mapping each segment and defining instances where 

mapped segments are separated by a putative intron. For all Tophat runs, reads produced by 

SOLiD sequencing were supplied in “.csfasta” format (<reads>), with their associated quality 

values in “.qual” format (<quals>). The folder containing the six Bowtie index files was 

given as the reference against which reads would be aligned (<index>).  

The option “-C” was used to indicate that the input reads were in colour space, while “-Q” 

told Tophat to utilise the separate .qual files associated with colour space reads. Finally, the 

library type was defined using “--library-type fr-secondstrand”. This told Tophat that reads 

were strand specific, in SOLiD format, and to enforce the rule that the left-most end of the 
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fragment (in transcript coordinates) is the first sequenced (or only sequenced for single-end 

reads). Output directories for each run were defined using the option “-o”. Additional options 

were also used depending on the required outcome of the mapping run. Where required, 

maximum intron length was set using the option “-I” followed by the length required. If a 

reference gene model annotation was required, this was supplied using the option “-G” 

followed by the name of the reference file. The CADRE 2.5 gene model annotation was used 

throughout this analysis (A_nidulans.CADRE2.5.gtf).  

Tophat usage: 

Tophat [options]* -C –Q --library-type fr-secondstrand -o outputdirectory <index> 

<reads1> <quals> 

Where multiple inputs from more than one SOLiD library were being aligned in a single 

Tophat run, the read and quality files were supplied in comma separated lists, e.g. 

<reads_1,reads_2,…,reads_N>. 

Mapped reads were output in binary alignment/map (BAM) format, a compressed, binary 

form of the sequence alignment/map (SAM) format (Li et al., 2009). SAM/BAM format is a 

popular way to represent large scale alignments. Optional header lines contain information 

(metadata) on the reference sequence, library, sequencing platform etc., while all other lines 

consist of a set number of tab-separated fields describing each sequence read (mapped 

position, orientation, number of mismatches, uniqueness of mapping etc.). Predicted splice 

junctions were separately annotated in a tab delimited BED file, the format of which is 

described on the UCSC Genome Bioinformatics web site 

(http://genome.ucsc.edu/FAQ/FAQformat). 
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2.4.4. Indexing and sorting of BAM files with SAMtools 

BAM format is the recommended input for Broad Institutes Integrative Genomics Viewer 

(IGV). IGV requires that BAM files be sorted and indexed, and that the BAM index file 

follows a specific naming convention. Specifically, BAM index files should be named with 

suffix “.bai” appended to the name of the original BAM file (The SAM Format Specification 

Working Group, 2011). Sorting a BAM file places reads in order of leftmost coordinates and 

was performed with the “sort” command in SAMtools, defining a BAM input (aln.bam) and 

sorted BAM output “aln.sorted”. All options were as default. 

SAMtools sort usage: 

samtools sort aln.bam aln.sorted 

Once the alignments had been sorted, they were indexed to facilitate fast random access. This 

enables an alignment viewing program to access a portion of this very large file at a time, 

reducing the amount of computer memory required. The sorted BAM file (<aln.sorted.bam>) 

was indexed using the “index” command in SAMtools. 

Index usage: 

SAMtools index <aln.sorted.bam> 

This command created the index file <aln.sorted.bam>.bai, which was renamed to 

aln.bam.bai for use with IGV. 

 

2.4.5. SamTools pileup from BAM read alignment data 

Pileup is a text-based format for summarizing the base calls of aligned reads to a reference 

sequence, and was originally developed by Tony Cox and Zemin Ning at the Wellcome Trust 



59 
 

Sanger Institute before becoming widely known within the SAMtools software suite (Li et al., 

2009). 

The mpileup feature of SAMtools was used to convert read alignment data from BAM files 

(<aln.bam>) into a pileup format. A number of options were used to generate the optimal 

pileup for downstream analysis of read alignment. The option “-D” produces an output which 

gives output of read depth at each position. “-B” disabled probabilistic realignment for the 

computation of base alignment quality (BAQ). BAQ is the Phred-scaled probability of a read 

base being misaligned. Applying this option greatly helps to reduce false SNPs caused by 

misalignments. “-Q” was used to set the minimum mapping quality to 0, providing the most 

comprehensive pileup. “-d” was used to set the maximum depth of coverage to an arbitrary 

number which was extremely high, to ensure that all aligned reads would be counted. Finally, 

“-f” was used to supply mpileup with a reference genome: the same FASTA format genome 

used to build the Bowtie reference index against which reads had been aligned 

(<AN_bowtie.fa>) (Chapter 2.4.2). Output was redirected to a text file (<pileup.txt>) for 

downstream analysis. 

 

SAMtools mpileup usage: 

samtools mpileup -D -B -Q 0 -d 1000000000 -f <AN_bowtie.fa> <aln.bam> > <pileup.txt>  

 

2.4.6. Combining alignment coverage for multiple libraries 

BAM files containing read alignments from multiple libraries were combined using the 

merge function in SAMtools. The output was a single BAM file containing all the reads from 

each input BAM. As this format of compiled data was being used only for the purpose of 
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producing a pileup of read coverage from multiple libraries, the merge was performed using 

default settings. 

SAMtools merge usage: 

samtools merge <out.bam> <in1.bam> <in2.bam> [...] 

 

2.4.7. Quantification of uniquely mapped reads from Tophat alignment data 

SOLiD read IDs were extracted from the first column of Tophat read alignment data which 

had been converted from BAM to SAM format as previously described. These IDs were 

sorted and made unique. The number of lines with unique IDs was then counted. This process 

was performed using the following command: 

cut -f 1 <accepted_hits.sam> | sort | uniq -c | wc -l 

It is important to note that SAM files may contain a header conserved from the original BAM 

file, which does not represent read alignment data. Where this header was found, the number 

of unique read alignments was reduced by 3, representing the number of lines in the header 

with unique values in column 1. 

 

2.4.8. Cufflinks assembly of transcripts 

Cufflinks was used to assemble mapped RNA-seq reads into a list of predicted transcript 

structures, taking a BAM format alignment file as input. To ensure accurate assembly, the 

SOLiD library format was specified using the command “--library-type fr-secondstrand”.  
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Cufflinks usage: 

Cufflinks [options]* <aligned_reads.bam> 

The cufflinks software is available online at: http://bio.math.berkeley.edu/cufflinks. 

 

2.4.9. Counting unique genetic loci and numbers of alternative isoforms 

predicted by Cufflinks assembly 

Cufflinks is able to predict multiple isoforms of transcripts originating from the same genetic 

locus. In these cases, additional isoforms can be identified as having the same basic Cufflinks 

CUFF ID, but with a unique number after the final stop character (e.g. CUFF00001.1, 

CUFF00001.2 etc). The number of unique genetic loci at which transcripts have been 

assembled can therefore be obtained using the grep function of unix to search for all CUFF 

IDs ending in “.1”, sorting them, then finding the number of unique IDs and counting the 

lines on which they occur.  

Grep usage to find the number of unique loci: 

grep -o '\"CUFF\.[1-9]*\.[1]' transcripts.gtf |sort |uniq | wc -l 

Some transcripts may have several isoforms, to determine the number of transcripts with 2 or 

more isoforms, the above command was altered to search for CUFF IDs ending in “.2”. This 

number (N) was then changed to find those transcripts with increasing numbers of isoforms. 

Grep usage to find the number of loci with N transcript isoforms: 

grep -o '\"CUFF\.[1-9]*\.[N]' transcripts.gtf |sort |uniq | wc -l 
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2.4.10. Converting BAM to SAM format 

BAM format files were converted to SAM format using the view function of SamTools. The 

–h option was used to maintain the BAM headers, and –o to define the output file. 

Samtools usage: 

samtools view -h -o out.sam in.bam  

 

2.4.11. Splitting BAM files by strand 

To improve the accuracy of Cufflinks transcript assembly, read alignments in BAM format 

were split by strand. The “view” feature of Samtools was used (Li et al. 2009) to decompress 

the BAM file (binary) to a SAM file (a text flatfile) and search the data stored for each read. 

The hexadecimal code 0x10 (16) in the flag column indicated mapping to the minus strand. 

Lines containing this code were found using the “–f” command and output to a reverse strand 

specific BAM file. The command was then modified to “-F” to identify lines which do not 

match the 0x10 search function, and these lines were output to a forward strand specific 

BAM file (note that the Tophat output contains only mapped reads with bitwise flags of 0 for 

forward and 16 for reverse, some mappers also output unmapped reads with the ‘unmapped’ 

flag 4). Two additional options were used in the command line; “-b” instructed Samtools to 

produce an output in BAM format, and “-s” was used to maintain the headers in the output 

file.  

 

Samtools usage to isolate forward strand alignments: 

samtools view -b -h -F 0x10 input.bam > output.forward.bam 
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Samtools usage to isolate reverse strand alignments: 

samtools view -b -h -f 0x10 input.bam > output.reverse.bam 

 

2.4.12. Cuffcompare of transcripts to reference 

Cuffcompare takes a cufflinks GTF output as input, comparing it to other cufflinks GTFs 

and/or to a reference annotation. The reference annotation file is provided in GTF format 

using the option “-r” followed by the reference file location. 

Cuffcompare usage: 

cuffcompare [options]* <cuff1.gtf> [cuff2.gtf] ... [cuffN.gtf]  

 

 

2.4.13. Alignment of ORFs to the Pfam protein database 

Lists of putative ORFs produced by the software “getorf” and processed to remove duplicate 

sequences and unwanted newline characters were aligned to the Pfam protein database using 

the online batch sequence search facility (Punta et al., 2012) available at: 

http://pfam.sanger.ac.uk/search#tabview=tab1. Standard settings were used. 
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2.4.14. Alignment of ORFs to the Kyoto Encyclopaedia of Genes and Genomes 

Alignment of ORFs to the Kyoto Encyclopedia of Genes and Genomes (KEGG) was 

performed using the online KEGG Automatic Annotation Server (KAAS). As a limited 

number of putative genes were being aligned, the single-directional best hit (SBH) method 

was used and ORFs uploaded in multi-FASTA format. Gene data sets from all available 

Eurotiomycetes were used for KAAS alignment, as well as other well-characterised fungal 

genomes including Saccharomyces cerevisiae (budding yeast), Neurospora crassa and 

Schizosaccharomyces pombe (fission yeast). All settings were as standard. 

 

 

2.5. Novel Software  

 

2.5.1. Use of Perl  

All novel software was created using the Perl programming language (Wall, 1999). 

 

2.5.2. Pileup software for Corona lite aligned RNA-seq reads 

Software designed and produced by Dr Kevin Ashelford for the creation of pileup data from 

Corona lite alignments of SOLiD RNA-seq reads and an example shell script for running this 

software can be found in Appendix2.2. The software is not described in further detail as its 

creation was not part of this thesis. 
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2.5.3. Gene expression using SOLiD version 2 libraries 

Running this software requires three additional options set in the command line. The option 

“–f” is used to define the file location containing mapped SOLiD read data in double stranded 

pileup format. The chromosome to be processed is defined using the “-c” option, followed by 

the chromosome number. The final option “-m” is used to set the minimum read coverage per 

exon base for a gene to be reported as expressed. Three text files are produced as output, 

“expressed.txt” contains a list of genes found to be expressed, “nonexpressed.txt” containing 

a list of genes which were not expressed, and “Totals.txt” containing a numerical summary of 

these data. All output file names are prefixed with the appropriate chromosome number to 

facilitate batch processing using shell scripts. 

This software can be found in Appendix 2.1.1. 

2.5.4. Antisense estimation 

Software was developed to assess antisense transcription.  This can be done by comparing 

read coverage on forward and reverse strands of each chromosome to annotated genes to 

quantify the amounts of sense and antisense RNA across each gene.  To do this, the software 

took chromosome specific A. nidulans reference annotation files (in .gbk format) and double 

stranded pileup data in .csv format as input. The minimum overlap percentage, minimum 

overlap bases and minimum coverage for an overlap base to be reported can be set within the 

script. The default values were all set to 1, reporting all putative antisense occurrences. 

This software read the read alignment frequencies of each base position from the 2 columns 

of the pileup data, placing them into 2 arrays; coverage of the forward strand and coverage of 

the complementary strand.  
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Gene model positions were then extracted from the .gbk format reference using regular 

expressions to identify lines corresponding to mRNA annotations, then splitting these lines 

by the comma character used to separate position values, which were then stored in an array. 

Strand specificity is achieved by querying each line for the “complement” marker uses to 

denote a gene on the complement strand, and genes for each strand are processed separately. 

Genes were processed individually, with positions for each gene being added to the array 

until the start of the next gene annotation was reached. At this point, the gene positions were 

sorted by size from smallest to largest, and the length of the gene calculated. This sorting step 

was required because the .gbk annotation format lists compliment gene positions in relation 

to the forward strand, listing them from highest to lowest.  

Gene positions were then used to interrogate the pileup array corresponding to the opposite 

DNA strand. Within the compliment region, the number of bases shown to have a read 

mapping frequency above the minimum value was counted and used to calculate the 

percentage of the gene covered by antisense transcription. Genes with antisense coverage 

greater than the minimum values were reported as having a putative antisense transcript, and 

recorded in output files. A summary file was also created, listing the total number of 

antisense occurrences, and a breakdown of this total by coverage percentage. 

This software can be found in Appendix 2.1.2. 

 

2.5.5. Masking positions with low readhead coverage 

This software requires readhead pileup data in single stranded format as input, with strand 

defined as “p” or “m” for the forward and complement strands respectively. Input files should 

follow the naming convention: <chromosome number>_<strand>.csv 
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Upon running the software, the user was required to input the location of the folder 

containing the input files, the number of chromosomes to be processed and the maximum 

coverage for a RH position to be masked. The software then read through the pileup data and 

set the coverage of any positions where RH frequency was less than or equal to this number 

as “0”. Modified pileups were output to a new .csv file. 

This software can be found in Appendix 2.1.3. 

 

2.5.6. Association of TSS and motifs to gene models 

This software required several additional options set within the command line. “ –s  <sample 

name>” specified the sample name, corresponding to the folder in which input files were 

located. “-c <[1-8]>” specified the chromosome to be processed, while “-d [+-]” specified the 

positive or negative strand of the chromosome. The facility to produce an output file for use 

with the SEED database (Overbeak et al. 2005) was built into the software, and the option “–

o [yn]” used to determine if this output was produced, however this was not used in this 

thesis and this option was therefore set to “n”.  

A number of input files were required, including a set of motifs (in IUPAC code) in a newline 

delimited text file, lists of TSS region locations and their associated CI values, and the 

original RH data from which these TSS regions had been located. The required file names 

and locations required were as follows: 

Motifs: <sample name>/motifs.txt 

TSS regions: <sample name>/TSS_locations/out_<[1-8]><[+-]> .txt 

RH pileups: <sample name>/readheads/c[1-8]_[+-].csv 
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The A. nidulans genome assembly in chromosome specific .gbk format was also required in a 

subfolder (named “references”) of the directory from which the software was run. 

Further options could be set within the script, allowing the user to define the promoter length 

upstream and downstream of the TSS (default: 200 and 25 respectively), as well and the 

lower and upper CIL values to use when selecting TSS (default 0 and 100 respectively). The 

furthest distance from an annotated gene start site for a TSS to be associated with that gene 

could also be defined, as well as the closest distance upstream of a gene stop site (defaults 

500 and 0 nt respectively). 

This software can be found in Appendix 2.1.4. 

 

2.5.7. Generating statistics for production of consensus sequences surrounding 

transcription start sites 

Running this software requires an additional option set within the command line; “-s” 

followed by the sample ID. This ID should be the name of the folder containing the TSS list 

files used as input, and the prefix of each input file, the names of which should be in the 

format  “<Sample ID>_out_<chromosomenumber><strand p or m>.txt”,  e.g. 

“Sample1_out_1p.txt”. Chromosome specific reference files in .gbk format should be present 

in a subdirectory titled “references”, with file names corresponding to chromosome number 

(e.g. “1.gbk”).  

This software generates counts of nucleic acid frequency at each base position within a set of 

21 nt sequences centred on the TSS locations defined by the input files. The percentage 

occurrence of each nucleic acid at each base position is calculated, and the 

“Spreadsheet::WriteExcel” module of Perl used to write these data to an Excel spreadsheet.  
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The software can be found in Appendix 2.1.6. 

 

2.5.8. Selection of uniquely mapping reads with complete 5' end alignments 

Novel software was developed using the Perl programming language to filter reads based on 

these criteria. Using the “output.csfasta.ma” files produced by Bioscope mapping of SOLiD 

5' specific RNA-seq reads as input, this software identified csfasta headers and associated 

read data. The position in the read identified as the start of the alignment was isolated from 

the data in the csfasta header, and reads with alignment start data matching “0” (i.e. 

alignment starts at the 0 position in the read, representing the first base at the 5' end) were 

output to a new file in “.csfasta.ma” format. Where reads had been aligned to multiple 

positions, multiple alignment start positions were listed. These positions therefore did not 

match to the single “0” required for output, and the corresponding reads were excluded from 

the output file. 

The software can be found in Appendix 2.1.7. 

 

2.5.9. Generating readhead pileups from selected read data 

To convert mapping data from selected reads to a pileup of read 5' mapping positions or 

readheads (RH). This software generated a series of arrays, representing the forward and 

reverse strands of each A. nidulans chromosome. Each base was represented by a single array 

element, which would contain the RH mapping frequency at a given position. The length of 

each array was determined using the number of base positions indicated by A. nidulans 

genome reference files in FASTA format, obtained from CADRE (www.cadregenomes.org). 
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Reads which had previously been selected for full length 5' end mapping and unique genome 

position (Chapter 2.5.8) were taken as input. Reads were processed individually, firstly 

extracting the chromosome number and the position at which mapping initiated (i.e. the 

readhead). Positions with a negative value indicated that the read was mapped to the reverse 

strand. These data were used to define the array representing the chromosome and strand to 

which the read had been mapped, and the element of the array corresponding to the RH 

position was incremented by 1 to record a single readhead mapping to this position. 

Processing of each read in this way created a pileup of RH mapping frequency at each 

position throughout the A. nidulans genome. Once all reads had been processed, arrays were 

output to text files with each element on a newline, creating a pileup format which could be 

viewed in the Artemis genome browser (Rutherford et al., 2000; Carver et al., 2012). 

The software can be found in Appendix 2.1.8. 

 

2.5.10. Comparison of read head mapping positions 

When run, this software required user input to define folders containing two sets of 

chromosome and strand specific pileups of read head (RH) data to be compared. Each 

chromosome strand is processed individually. RH frequencies from the first set of pileup data 

is read into an array.  The software then moves through this array and the pileup data from 

the second dataset simultaneously, comparing the RH frequencies at each base position. The 

number of bases where RH mapping was observed simultaneously in both datasets was 

recorded, as well as the total number of bases with RH mapping. Once both strands of each 

chromosome had been processed, the percentage of matching RH positions was calculated 

and output to “comparison_report.txt”. 
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This software can be found in Appendix 2.1.9. 

 

2.5.11. Analysis of intron lengths 

Software was developed to extract intron lengths from the A. nidulans gene model annotation.  

The workflow for this software is illustrated in Fig. 2.1. Taking chromosome specific gene 

annotation files as input, the software searched through the annotation line by line to identify 

exon start and stop positions for each gene. These positions were stored in a data array, and 

processed when the software reached a line in the annotation corresponding to a new gene. 

The first element of the array was removed as this indicates the start of the first exon, and 

gives no information on intron positions. The length of the first intron was then calculated 

from the difference between the first two elements of the array, which corresponded to the 

first exon stop and the second exon start within the gene in question. These two elements 

were then removed from the array, the next two processed in the same way, and this cycle 

repeated until all introns in the gene had been identified. Once calculated, individual intron 

lengths were stored in a separate data array for future use.  

The exon position array was then cleared, and the software continued to read through the 

reference annotation, gathering the exon positions for the next gene. Once all genes had been 

processed in this way, each element of the intron length array was written to a new line of a 

text file, producing a list of all intron lengths in A. nidulans.  

The software also recorded the ID of each gene as it was being processed. A scalar variable 

was added to record the largest intron found. The size of each newly identified intron was 

compared to the length stored in the variable. If the new intron was found to be larger, the 

variable was overwritten with this new value. Two more scalars were added to store the gene 
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ID associated with largest intron and the chromosome number on which the gene was located. 

After processing all genes in the reference, the value in each of these scalars was printed to 

the console, giving the largest intron and the gene in which it was found. By providing these 

data directly from the software output, the gene in question was quickly identified. Gene 

structure analysis could then be conducted using mapped RNA-seq reads displayed against 

the reference genome in the Integrative Genomics Viewer (IGV) (Robinson et al., 2011; 

Thorvaldsdottir et al., 2012).  

A copy of this software can be found in Appendix 2.1.10.  
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Figure 2.1. Process for extraction of intron lengths and largest intron data. Software read 

through the reference gene model annotation line by line. Exon positions were extracted and 

used to calculate intron lengths for each gene. Intron lengths for all genes were recorded, 

sorted in order of size and output as a newline separated list in .txt format. The largest intron 

found was also recorded and printed alongside its associated gene ID and chromosome 

number into an output file.  
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2.5.12. Comparison of Tophat splice junctions 

Novel software was created to compare the junction locations from two junction.bed files, 

produced by Tophat mapping of RNA-seq reads. One of these junction files contained the 

results of de novo junction finding, while the other contained no novel junctions, thereby 

facilitating the identification of novel junctions. 

This software first interrogated the file containing no novel junctions. Each line of a .bed 

format file contains the data for a single junction feature in a TAB delineated format. These 

data were converted into elements of an array by splitting it based on whitespace characters 

(i.e. TAB). Feature chromosome location, start and stop positions were then extracted from 

the array, along with the values by which the start and stop should be modified to locate the 

true start and stop positions of the respective junction. Three new arrays were created to 

contain chromosome locations, true junction starts and true junction stops. A given position 

in all three arrays therefore corresponded to the three data for a single junction. 

Each line of the second file was then interrogated in a similar fashion, but chromosome, 

junction start and junction stop positions were not placed into arrays. Instead, these data were 

compared to all the junctions stored in the three arrays. Where no match was found, the 

current line of the second file (representing a novel junction) was output to a new gtf file. 

This software can be found in Appendix 2.1.11. 

 

2.5.13. Remove RH pileup positions covered by annotated gene models 

This software required additional options to be set in the command line. “-s <sample name>” 

was used to define the file containing mapped read coverage data in double stranded pileup 

format (.csv). A second option “-c [1-8]” was used to set the chromosome number to be 
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processed. The A. nidulans genome assembly in chromosome specific .gbk format was also 

required in a subfolder (named “references”) of the directory from which the software was 

run. 

This software can be found in Appendix 2.1.1. 

 

2.1.14. Software to obtain transcript positions 

Software was developed to take a list of transcript IDs as input, and compare these to the 

transcript IDs of the corresponding Cufflinks “transcripts.gtf” output file. The ID of each 

transcript in the input list was read into an array, and processed to remove any surrounding 

information. For each transcript ID in the array, the transcripts.gtf file was searched for lines 

with matching IDs. As only the start and stop position of each transcript was required, only 

the first line of information for each transcript was interrogated, as this gave the full length of 

the transcript, with subsequent lines giving information on each predicted exon. Start and 

stop positions were placed into an array. As the GTF format lists compliment strand sequence 

positions from 5' to 3', elements in the array were sorted by position on the chromosome to 

produce a consistent output format. Transcript positions, chromosome and strand were 

printed to a text file, and the entire line of the GTF file printed to a new GTF which would 

contain only identified intergenic transcripts for visualisation in genome browsing software. 

This software can be found in Appendix 2.1.15 
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2.1.15. Software to obtain transcript sequences 

Software was designed to take a reference sequence in FASTA format and a list of transcript 

positions which had been created as described in Chapter 2.5.14 as input. Using the FASTA 

reference, arrays were produced for each chromosome, with individual elements 

corresponding to a single nucleotide position and containing the appropriate nucleotide 

sequence. To obtain the correct sequences for transcripts on the reverse strand, a second set 

of sequence arrays was created, and sequences converted to their compliment. The 

compliment sequences did not need to be reversed as all positions given in Cufflinks output 

GTF files were in relation to the positive strand. 

For each line of the transcript position list, the information was split to allow the isolation of 

chromosome number, start and stop position. The chromosome number and strand 

information were used to define the correct sequence array to use for each transcript. 

Sequences in the array elements corresponding to nucleotide positions between the transcript 

start and stop locations were extracted and printed to an output file in multi-FASTA format, 

with headers consisting of the transcript ID, chromosome, strand and positions.  

This software can be found in Appendix 2.1.16 

 

2.5.16. Counting of ORFs and their associated transcripts 

To obtain statistics regarding ORFs identified by the ORF finding software “getorf” 

(http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html), novel software was 

developed to process the getorf output file. This software requires the user to define a getorf 

output file in FASTA format. The input file is processed line by line, counting the number of 

FASTA headers and interrogating them for the cufflinks ID of the transcript in which the 
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ORF was identified. These cufflinks IDs are listed as the first value of each FASTA header, 

with a “_” between each subsequent value. Headers were split into arrays using “_”, resulting 

in the cufflinks ID being placed into the first element of the array. Each ID was pushed into a 

new array, which by the end of the file contained a list of the transcripts associated with each 

ORF. The elements in the array were processed using the “uniq” function to remove repeats, 

so each unique transcript ID was listed once. The length of the array was then found to 

determine the number of unique transcripts in which ORFs had been found by getorf. 

This software can be found in Appendix 2.1.17. 

 

2.5.17. Remove duplicates and newline characters from multi-FASTA sequence 

lists 

Lists of ORFs in FASTA format were produced by the software “getorf”. These lists were not 

immediately suitable for input to the Pfam batch sequence search as they contained a large 

number of duplicate sequences and newline characters. Software was developed to remove 

these by reading through the FASTA file line by line and removing newline characters. 

Duplicate sequences were removed by comparing each header to all previously processed 

headers. The first header in the file and its accompanying sequence were printed to a new 

FASTA format file. The header was then stored in an array. The next header was then 

compared to the header stored in the array, if a match was found, the new header and its 

sequence were skipped, otherwise they were printed to the output file and this new header 

stored in the array in addition to the previous one. Each new header was compared to headers 

stored in this array, with matches identifying repeat sequences. These repeat sequences were 

discarded, while previously unprocessed sequences were printed to the output file and their 

headers stored in the array to interrogate future sequences. This process produced a multi-
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FASTA file with unique sequence headers in the correct FASTA format for input into 

downstream applications such as Pfam. 

This software can be found in Appendix 2.1.18 

 

2.5.18. Comparison of Pfam and KEGG protein database alignments 

Software was developed to compare the results of ORF alignments with the protein domain 

databases Pfam and KEGG. This software took the output file from Pfam and a KEGG 

Ontology (KO) list as input. The Cufflinks transcript ID associated with each ORF had been 

used as the start of each ORF ID. ORFs with matches in the Pfam output file were therefore 

identified by lines starting with a “C”, indicating the start of the associated Cufflinks ID, and 

were recorded in an array. The KAAS KO list contained all ORF IDs in a single column. A 

second column contained a list of KO terms alongside ORFs where an alignment had been 

made. Lines with values in both columns therefore indicated aligned ORFs, and the ORF IDs 

from these lines were extracted and placed into a second array. Elements in each ORF ID 

array were made unique to remove any duplicates of ORF IDs which were present due to 

multiple protein database alignments to a single ORF. The elements of each array were then 

compared. Matches were recorded and counted. The number of matches between the two 

datasets were then printed to an output file, along with lists of matched and unmatched ORFs. 

This software can be found in Appendix 2.1.19. 
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2.5.19. Identification and classification of antisense transcripts  

This software required the user to define 2 Cufflinks transcript files in gtf format, 

representing forward and complement strand transcripts produced from alignment data which 

had been split by strand.  

The software used the first line of the GTF file to determine which transcripts belong to each 

chromosome, and processed each chromosome individually. Transcript start and stop 

positions were compared in three ways, looking for overlaps between the 5' or 3' ends of 

transcripts, or for instances of one transcript being totally covered by a transcript on the 

opposite strand. The number of matches in each category was counted as they were identified 

and these counts were printed to a text file. The software also produced a list of overlapping 

transcripts, with each pair given a header listing the chromosome, an ID number for that pair, 

the class of antisense relationship and the length of the overlap between the two transcripts 

(Format: <chromosome>_AS_<ID>_<Class>_<Overlap>) 

Antisense classes were as follows: 

- strand transcript entirely within + strand transcript (class 1) 

+ strand transcript entirely within - strand transcript (class 2)    

Overlap  at 3' end (class 3)    =  $prime3 

Overlap  at 5\' end (class 4) 

A minimum overlap of 20 bp was used for this analysis, but this can be set within the script if 

a different overlap length is required. 

This software can be found in Appendix 2.1.20. 
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3.  High-throughput whole transcriptome RNA-seq in Aspergillus nidulans on the 

ABI SOLiD version 2 platform 

 

3.1.  Sequencing of SOLiD Total-RNA-seq libraries 

To accurately define the Aspergillus nidulans transcriptome on a global scale, high 

throughput total RNA-seq was performed on the ABI SOLiD platform.  

Initial attempts to create total RNA-seq libraries for SOLiD sequencing using the SOLiD 

Whole Transcriptome Analysis Kit (ABI) failed repeatedly. The SOLiD system was in its 

infancy and library preparation protocols and kits were not yet perfected. Library preparation 

using the SOLiD Small RNA Expression Kit (SREK) (ABI) was explored as an alternative to 

the Whole Transcriptome Analysis Kit. SREK provided a more up to date, rapid and robust 

protocol for library preparation, and allowed each sample to be tagged with one of ten 

barcode sequences. Barcoding allowed libraries to be pooled together into a single sample for 

ePCR and sequenced simultaneously on a single slide. This multiplexing capability unlocked 

the full sequencing capacity of the SOLiD system, facilitating rapid data production and 

greatly reducing the per-library cost of SOLiD sequencing.  

The more robust SREK protocol was successful in producing sample libraries which passed 

quality control criteria for SOLiD sequencing.  

 

3.2.  Creation of two SOLiD libraries with SREK 

Two whole-transcriptome libraries were created using SREK and successfully sequenced on 

the SOLiD system version 2, producing reads 35 bp in length. Two additional libraries were 

also sequenced, but gave no meaningful results. 
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RNA used in the creation of the two sequenced libraries was extracted from G00 wild type A. 

nidulans cultures grown under standard conditions, one on complete media (library ID: S1) 

and one on minimal media (library ID: S3) supplemented with nitrate as sole nitrogen source 

(see Chapter 2.2.4 for detailed growth conditions). Contaminating DNA was removed from 

total RNA samples by treatment with DNase I.  

The resultant total RNA samples represented all RNAs in the A. nidulans cells at the time of 

extraction. Large ribosomal RNA (rRNA) constitutes approximately 90% RNA species in 

total RNA. The whole transcriptome must therefore be isolated prior to RNA-seq (Chen & 

Duan, 2011), by either depletion of rRNA or enrichment for mRNA. Eukaryotic mRNA 

utilise two cotranscriptional modifications to determine the stability of the molecule; the 5′ 

cap and the 3′ poly(A) tail. Shortening of the poly(A) tail is generally the rate-limiting step, 

resulting in either transcript decapping and subsequent 5′-3′degradation (Tucker & Parker, 

2000) or exosome-dependent 3′-5′ decay (Butler, 2002; Mitchell & Tollervey, 2000).  

Decapping has been shown to occur when the poly(A) tail is shortened to around 15 residues 

(Couttet et al., 1997; Decker & Parker, 1993; Muhlrad et al., 1994). Full length, capped 

mRNAs can therefore be isolated from total RNA by complimentary binding of the poly(A) 

tail to immobilised oligo(dT). Enrichment for mRNAs from total RNA samples was therefore 

performed using an Oligotex oligo(dT) mRNA purification kit (QIAGEN). 

mRNAs were decapped with Tobacco Acid Pyrophosphatase (TAP). Decapping of mRNAs is 

vital to SOLiD library preparation as the 5′cap structure inhibits the ligation of the 5′ adaptor. 

TAP hydrolyzes the phosphoric acid anhydride bonds in the triphosphate bridge of the 5′ cap 

structure found in most eukaryotic mRNA. This releases the cap nucleoside and generates a 

5´-monophosphorylated terminus on the RNA molecule (Lockard et al., 1981), which is 

required for SOLiD adaptor ligation.  
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SOLiD v2 sequencing of S1 and S3 produced 52,626,177 and 46,271,839 reads respectively. 

A current assembly of the A. nidulans genome was downloaded from CADRE (annotation 

version 14/05/2009) and used to assemble a reference genome for the SOLiD System 

Analysis Pipeline Tool; Corona.  

Initial read mapping with Corona Lite utilised a 35_3 schema, allowing 3 colour space 

mismatches across each 35 bp read length, and resulting in 13.24% (S1) and 10.29% (S3) of 

reads mapping to the reference genome. The numbers of uniquely mapping reads were very 

similar to the total mapping, at 12.75% (S1) and 9.84% (S3), reflecting the low number of 

repeat regions in the transcriptome.  

Following updates to the SOLiD software, mapping was repeating using the same reference 

genome with the Whole Transcriptome Analysis Pipeline (WTP) version 1.1 (ABI). The 

more sensitive WTP increased the number of mappable reads to 16.4% (S1) and 13.4% (S3), 

with unique mapping rates of 14.6% and 11.7% respectively. While a notable improvement 

over previous mapping figures, these percentages were still far lower than mapping figures 

achieved by a library created from SREK control RNA (human). 29.8% of sequenced reads 

from a library prepared with this control RNA mapped to the human genome, with 16.7% 

mapping uniquely.  

Although we had successfully sequenced and mapped two whole transcriptome libraries in A. 

nidulans, the two unsuccessful libraries and low mapping percentages of S1 and S3 required 

further investigation into quality control before the resultant data were considered fit for 

utilisation in downstream analysis. 
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3.3.  Investigation of mapping quality in SOLiD libraries 

The high proportion of well mapped and uniquely mapping reads was an encouraging 

indicator of quality in both S1 and S3 libraries. However, the percentage of mappable reads 

in both cases was still low in comparison to libraries created with SOLiD control RNA 

(human) and mapped to the appropriate genome. The quality of the A. nidulans libraries was 

also called into question by two out of the four sequenced libraries producing data which 

could not be mapped to the A. nidulans genome. This prompted an investigation into possible 

contaminants which could negatively influence the integrity of SOLiD libraries. 

To better assess the quality of these libraries, reads were mapped against human genome to 

test for possible contamination. Due to the significant size of the human genome, a certain 

level of background mapping was inevitable. To facilitate an accurate assessment of this 

mapping, a second mammalian genome (bovine) was used as a control. A summary of 

mapping results is shown in Table 3.1. 
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Table 3.1. Summary of whole transcriptome pipeline mapping results. Total read 

mapping percentages for both A. nidulans libraries are low compared the control library when 

mapped to their respective genomes. Both libraries also map the human and bovine genomes 

at nearly the same rate as the A. nidulans genome. While this may indicate contamination of 

the fragment libraries, the low percentage of reads mapped with high quality (align score >= 

24 ) and similar number of hits in both human and bovine genomes suggests that this not be 

the case. 

  Genome 

 Mapping A. nidulans Human Bovine 

 

S1 

Total 16.4 % 16.7 % 15.3 % 

High quality 14.7 % 0.6 % 6.1 % 

Unique 14.6 % 0.2 % 1.7 % 

 

S3 

Total 13.4 % 10.1 % 14.2 % 

High quality 11.8 % 0.6 % 5.1 % 

Unique 11.7 % 0.2 % 1.4 % 

 

Human 

(control) 

Total 0.4 % 29.8 % 21.2 % 

High quality 0.1 % 20.1 % 8.3 % 

Unique 0.1 % 16.7 %  4.2 % 
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Contamination of the fragment library was the primary concern, as S1 and S3 mapped to both 

human and bovine genomes at a similar rate as to A. nidulans. However, the extremely low 

numbers of reads mapping with high quality, and/or uniquely mapping, indicates very poor 

mapping quality in each case. This low quality suggests that reads mapped to human and 

bovine are likely due to these genomes being sufficiently large that a high number of false, 

low quality read hits are inevitable. Mapping of the control library appears to support this 

hypothesis, as it also maps to the large bovine genome with relatively high frequency and 

quality, but not to the much smaller A. nidulans genome. It is also interesting that there is a 

much higher discrepancy between total mapped reads, high quality reads and uniquely 

mapping reads in the control. The latter figure being much closer to the percentages we 

achieve with our own libraries again indicates that false hits due to the size of the human 

genome play a major role in mapping profile.  

The nature of colour space data and the mapping used make it difficult to ascertain exactly 

why a relatively low number of reads were mapped to the A. nidulans genome. While 

contamination cannot be completely ruled out, the data indicate that it most likely did not 

play a major role in affecting mapping quality, and that the low mapping frequency is simply 

due to the relatively small size of the A. nidulans genome. While it is vital to always strive for 

improved quality in RNA-seq libraries, S1 and S3 appear to be valid and of reasonable 

quality, despite showing relatively low rates of total mapping. 
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3.4.  Analysis of RNA-seq data 

Mapped RNA-seq data were visualised using the Artemis genome browser (Rutherford et al., 

2000; Carver et al., 2012). To ensure data compatibility with Artemis and facilitate the 

analysis of coverage frequency at the nucleotide level, the mapped read data was converted to 

strand specific coverage plots by Dr Kevin Ashelford, using software of his own design 

(Chapter 2.5.2; Appendix 2.2). Visual analysis of the mapped data in Artemis reveals a 

number of issues which we aimed to address. As previously discussed, the majority of A. 

nidulans genes in this annotation were predicted in silico. Our data indicated that this 

approach was not comprehensive, with a significant number of genes excluded or incorrectly 

annotated. A large number of potentially novel genes was indicated by significant read 

mapping throughout intergenic regions, an example of which can be seen in Fig. 3.1. 

Differential expression between growth conditions was also observed (Fig. 3.2). Many genes 

appeared poorly annotated and/or overlapping in antisense configuration between the two 

strands. An example of this can be seen in genes AN0104.4 and AN0105.4 (Fig. 3.3). 

Transcription of these genes was shown to terminate far beyond the annotated 3′ ends, 

indicating both poor quality annotation and a previously unidentified antisense overlap 

between the two genes. As antisense pairs are often related, a BLAST search was performed 

for both genes. AN0104.4 demonstrates high sequence homology with yeast ALG3, which 

encodes Dol-P-Man:Man(5)GlcNAc(2)- PP-dolichyl alpha-1,3-mannosyltransferase, while 

AN0105.4 encodes a eukaryotic translation initiation factor eIF1a-like protein. A direct 

functional association between these two genes could therefore not be ascertained by these 

data alone, and while RNA-seq data provides a resource for the identification of antisense 

transcripts, such relationships must be proven experimentally. 
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Figure 3.1. Observation of potentially novel genes. Mapped RNA-seq coverage for the 

forward (green graph) and reverse (red graph) strands are displayed in Artemis against the 

forward (green track) and reverse (grey track) strands of the A.nidulans genome assembly. 

Regions of coverage on each strand appears to indicate the presence of two genes in the 

region shown. The region appears to be intergenic in this version of the A. nidulans 

annotation, as no genes are displayed on either strand. These reads therefore represent 

potentially novel transcripts originating from unannotated genes in this area. 
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Figure 3.2. Artemis display of reads from two strains of A. nidulans grown in different 

conditions. Mapped RNA-seq coverage for the forward (green graph) and reverse (red graph) 

strands are displayed in Artemis against the forward (green track) and reverse (grey track) 

strands of the A.nidulans genome assembly, with annotated genes shown in dark grey. The 

top graph (A+C) represents the wild type strain grown overnight on complete media, while 

the bottom graph (B+D) was grown on minimal media supplemented with NO3
-
. Two genes 

are shown, one of which (AN8756.4) appears to be differentially expressed under these two 

conditions, while the second appears reasonably constant in both cases. 
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Figure 3.3. Demonstration of sense-antisense overlap. Mapped RNA-seq coverage for the 

forward (green graph) and reverse (red graph) strands are displayed in Artemis against the 

forward (green track) and reverse (grey track) strands of the A.nidulans genome assembly, 

with annotated genes shown in dark grey. Strand specific RNA-seq data indicates that 

transcription of AN0104.4 and AN0105.4 terminates significantly downstream from the 

annotated 3′ ends. The two genes are shown to exist in a sense-antisense overlap 

configuration, indicating a possible functional or regulatory relationship between these genes. 
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From visual analysis in Artemis, it was clear that reads were not mapping uniformly across 

their associated genes. These data instead presented as jagged, asymmetrical peaks, with 

extreme variation in depth of coverage across a given locus, making the precise level of 

individual gene expression difficult to determine. To address this issue, novel software was 

developed to determine the average depth of coverage across each gene, and used this as a 

comparative measure of expression. Using gene models from the CADRE A. nidulans 

genome annotation, the frequency of read alignment to the exon bases of each gene was 

extracted from the mapped RNA-seq data. These frequencies were combined and divided by 

the total number of exon bases, producing the average coverage per exon base (Chapter 2.5.3). 

Genes with an average read coverage greater than 1 read per exon base were reported as 

expressed, facilitating the identification of poorly expressed genes while being sufficiently 

stringent to avoid false positives due to random background mapping. Using this software, 

61.0 % of annotated genes were shown to be expressed in RNA library S1, and 57.4 % in S3. 

Due to the extent of potentially novel or poorly annotated genes, it was hypothesized that 

significantly higher levels of antisense transcription would be identified when using RNA-seq 

data than when comparing existing gene positions. Software was developed to estimate 

occurrences of antisense transcription from mapped RNA-seq data. This software is described 

in Chapter 2.5.4, and worked by extracting gene models from the CADRE A. nidulans 

genome annotation, then interrogating corresponding base positions on the opposite strand for 

RNA-seq read alignments using the pileup data produced by Dr K. Ashelford (as previously 

discussed). With its most lenient settings, this software indicated 1703 occurrences of 

antisense transcription in library S1 and 1393 in S3. The number of these with antisense 

coverage greater than 10 % of the annotated gene length was significantly lower, 498 for S1 

and 464 for S3, representing approximately 5 % of annotated genes. Inspection of the number 

of hits per chromosome revealed a high level of consistency in the proportion of genes with 
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antisense transcripts, with no significant bias (Fig. 3.4). The full software output for both 

libraries including gene lists with associated antisense coverage can be found in Appendix 2.4. 

It should be noted that this 10 % cutoff was used solely to introduce an arbitrary lower limit 

of antisense coverage as a form of control, against which the most lenient settings of the 

software could be compared. This cutoff is far from ideal as it will undoubtedly have 

introduced a bias for shorter genes, highlighting the need for more robust methods of 

antisense detection in future work (see Chapter 6.7). 

 

Figure 3.4. Histograms of estimated antisense transcript occurrence by chromosome. 

The number of genes with putative antisense transcripts identified using novel software and 

RNA-seq data is shown for libraries S1 (blue) and S3 (red). Datasets containing all genes 

exhibiting antisense transcription (left histogram) and only those with antisense transcription 

covering >10 % of the total gene length (right histogram) show similar patterns, and in each 

case the number of genes per chromosome was shown to be proportional to chromosome size. 
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3.5.  Addressing fragmentation bias 

The pronounced fragmentation bias evident in these libraries raised a major concern with the 

quality of the data produced by these libraries. A random, unbiased fragmentation would be 

expected to produce a far more even distribution of reads, where as RNA-seq data from S1 

and S3 showed regions of both very high and very poor mapping within individual genes. 

The highly uneven distribution of reads across each gene made the data difficult to interpret 

when investigating gene structure or comparing expression levels between samples. One of 

the aims of this project was to present RNA-seq data to the Aspergillus community as a 

resource for further work. Therefore, data produced needed to be of the highest possible 

quality, prompting an investigation into the cause of this uneven mapping. 

 

The protocol for SOLiD library preparation fragments RNA uses Ribonuclease III (RNase 

III), a double-stranded RNA specific endoribonuclease (Blaszczyk et al., 2001). This 

enzymatic fragmentation has the advantage of producing RNA fragments with the 5′ 

phosphate and 3′ hydroxyl groups required for SOLiD adaptor ligation. However, despite its 

ability to degrade a double-stranded substrate non-specifically, it has been shown to produce 

specific cuts in single-stranded RNA (Robertson et al., 1968). This is due to the double-

stranded specificity of the enzyme, which relies on the secondary structure of single-stranded 

substrates to provide dsRNA-like hair-pins at which it can act (Gan, 2005; Ji, 2008). The 

resulting structural bias of RNase III fragmentation translates through to the final library and 

the highly uneven mapping profile of the reads across each gene.  

 

In an effort to bypass the issue of fragmentation bias, chemical shearing of RNA with 

divalent cations under elevated temperature was explored as an alternative fragmentation 

method. Metal ions have been shown to promote cleavage of RNA in aqueous solution. 
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Lanthanide ions, such as Eu
3+

,Tb
3+

, and Yb
3+

, are particularly efficient in catalyzing 

nucleotide cleavage, with rate acceleration of 3-4 orders of magnitude over the uncatalysed 

reaction (Breslow & Huang, 1991). Other metal ions such as Pb
2+

, Zn
2+

, and Mg
2+

 have also 

been shown to produce significant rate acceleration over the uncatalyzed reaction (Breslow & 

Huang, 1991). While not as efficient as Lanthanide ions, catalysis by these ions provides a 

more controlled fragmentation in a laboratory environment. Metal-catalysed heat 

fragmentation of RNA has been extensively used in sample preparation for microarray 

experiments (Browne, 2002) and is the preferred method of fragmentation in other high-

throughput sequencing systems. Illumina utilise zinc acetate fragmentation in their RNA-seq 

protocols as they found “This is the most robust method for fragmentation of RNA. 

Fragmentation by this method has been shown to result in more uniform sequencing coverage 

compared with other methods” (Illumina, unpublished data). 

 

Conditions for zinc acetate catalysed fragmentation of RNA have previously been optimised 

for the creation of 50-200 nt fragments in a number of systems (Vitale, 2001; Mehlmann et 

al., 2005) and this method is frequently used in sequencing applications (Gibbons et al., 

2009; Vivancos et al., 2010). Metal ions are generally considered to cleave single-stranded 

RNA more effectively than double-stranded RNA (Hall et al., 1996; Husken et al., 1996; 

Kolasa et al., 1993; Zagorowska et al., 1998). However, the reaction temperature of 70°C 

denatures the secondary structure of the RNA, eliminating any potential for fragmentation 

bias.  

 

A major drawback of this method is that it cleavage of RNA by divalent cations is usually 

preceded by an intramolecular transesterification of the internucleosidic 3´,5´-phosphodiester 

bond to a 2´,3´-cyclic phosphate and its subsequent hydrolysis to a mixture of 2´- and 3´-
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phosphates (Zagórowska et al., 1998).  The resultant fragments therefore do not have the 

necessary 5′-phosphate and 3′-hydroxl groups for SOLiD adaptor ligation, and the ends must 

be repaired using T4 polynucleotide kinase (T4 PNK). This enzyme catalyzes the transfer of 

the γ-phosphate from ATP to the 5´-terminus of polynucleotides, and also functions as a 3′-

phosphatase (Cameron & Uhlenbeck, 1977). This double function allows T4 PNK to produce 

the functional group required for SOLiD library preparation at each end of the RNA 

fragments. 

 

Repaired RNA fragment libraries were used in conjunction with SREK to produce libraries 

for SOLiD sequencing. This proved unsuccessful, with RNA samples either degrading or 

being incompatible with some part of the library preparation protocol. This experiment was 

performed during a period in which the SOLiD system was still in its infancy and protocols 

changing rapidly. Library preparations were extremely temperamental during this period and 

the inability to produce a valid library using chemical fragmentation is most likely due to 

imperfections in the early SOLiD protocols and human error due to inexperience with the 

system. 

 

Later attempts to use a chemical fragmentation in the preparation of RNA libraries for SOLiD 

sequencing were attempted without the use of SOLiD library preparation kits. An alternative 

protocol was developed using chemical fragmentation, oligonucleotides which matched the 

SOLiD primer sequences, and a random primer to perform reverse transcription. Synthesising 

cDNA prior to adaptor ligation allowed the use of DNA ligase instead of the standard SOLiD 

RNA ligation enzyme mix, and circumvents the requirement for a 5´-phosphate and 3´-

hydroxl on the fragmented RNA. Removing the need for end repair aimed to decrease the 

number of steps in the protocol and the potential for sample degradation and loss. Libraries 
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created in this manner should also have provided more accurate and complete transcript 

mapping as the ligation compatibility of each fragment is not dependant on a T4 PNK 

reaction which will not have 100% efficiency.  

RNA from one of the samples which had successfully been used in SOLiD sequencing was 

used to test the validity of this novel protocol. The RNA selected was from culture grown on 

minimal media with ammonia, however this was arbitrary as the purpose of this experiment 

was to provide proof of concept and the resulting libraries would not be sequenced. RNA 

samples underwent Poly(A) selection, DNA depletion with DNase I and were fragmented 

with zinc acetate. RNA was purified by ethanol precipitation and dissolved in 10 µl of 

nuclease free water.  

First strand synthesis was performed by random priming with oligo “Random Priming P2 

(barcoded)” (Chapter 2.1), and reverse transcription with KOD hot start polymerase 

(Novagen).  RNase H (Fermentas) was used to selectively degrade the single-stranded RNA 

in RNA/cDNA duplexes created by first strand synthesis (Vorobjev & Zarytova, 2000). This 

reaction was first attempted using the manufacturer’s protocol, however extremely low yields 

or complete loss of the fragment library was observed. Comparison of the first strand 

synthesis and RNase H reaction mixtures revealed that the pH of the Tris buffer was similar, 

and that the KCl, MgCl2 and DTT required by the RNase H were present in the first strand 

synthesis reaction mix. While not at optimum concentrations, the presence of these 

components meant that RNase H reactions could be performed by adding the enzyme directly 

to the first strand synthesis reaction mix. The ethanol precipitation step prior to RNase H 

treatment was therefore removed to minimise the number of purification steps and potential 

for sample loss, while the heat deactivation step was also removed to prevent heat 

degradation of cDNA. Subsequent RNase H reactions were performed by adding the enzyme 

directly to the first strand synthesis reaction mix, achieving higher yields with no sample loss. 
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The presence of the active RNase H had no effect on subsequent reactions, and the enzyme 

was removed from the solution during downstream purification steps.  

Following RNase H treatment, cDNA was isolated in solution with phenol:chloroform and 

purified by ethanol precipitation. To ensure the efficiency of hybridisation of the P1adaptor, 

two adaptor oligonucleotides were tested with different lengths of degenerate sequence 

overhangs. The complete, double stranded P1 adaptor was created by hybridising 

oligonucleotides P1 (comp) to either P1 random(6) or P1 random(10) (Chapter 2.1). Ligation 

of the adaptor to the cDNA was performed with DNA ligase, and proofreading Taq 

polymerase was used to synthesise the second strand. The resulting libraries were purified 

using a Minelute PCR purification kit (QIAGEN) and amplified by PCR with primers “P1 

PCR” and “P2 PCR” (Chapter 2.1). The concentration of the cDNA was tested by 

spectrophotometer and the number of cycles chosen based on guidelines in the SOLiD library 

preparation protocol. No size selection was performed for these libraries as they were not to 

be sequenced and this step was the point at which the majority of problems arose in the 

creation of previous libraries.  

The libraries were created with the N6 adaptor, N10 adaptor and control RNA (with N10 

adaptor) were run on a 2% agarose gel next to a lane of Hyperladder V molecular weight 

marker (Bioline) before and after amplification. To produce comparable results, the same 

proportion of the sample was run on each gel. The resulting gels indicated successfully 

amplified libraries created using both adaptors, and a negative result from the –RNA control 

confirmed that the correct fragments were being amplified (Fig. 3.5).  

The protocol was adapted to include the size selection step from the ABI SOLiD library 

preparation manual, and three new libraries and a negative control with no RNA were created 

with the completed protocol and the same starting RNA as the trial libraries (Fig. 3.6). As 
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both adaptors had produced successful libraries, the N6 adaptor was chosen for all future use 

as the shorter degenerate sequence had less chance of introducing mismatch errors into the 

finished library. Prior to PCR amplification, cDNA libraries were size selected alongside 

“Hyperladder V” molecular weight marker (Bioline) on 2% agarose gels (as indicated in the 

current version of SOLiD library creation kit protocols at the time). Gels were stained with 

ethidium bromide and visualised under UV. Visualisation of the gel indicated the presence of 

cDNA for each library, and a high proportion of fragments falling within the correct size 

range for SOLiD sequencing (Fig. 3.7). However, purification of the size selected library 

from the excised gel fragments proved extremely temperamental, with a high proportion of 

samples lost or degraded. This method of size selection had also been problematic in the 

creation of libraries with SREK. In an attempt to avoid these issues, different methods of size 

selection were investigated.  

As an alternative to size selection on agarose gels, a FlashPAGE fractionator (Ambion) was 

used to isolate the required sizes of cDNA for SOLiD sequencing. This method had been 

recently released in updated SOLiD library preparation protocols for use with official SOLiD 

kits, and removed the need for a gel extraction step. Unlike previous size selection protocols, 

FlashPAGE fractionation was performed following the fragmentation step and before SOLiD 

amplified library construction in the method described in Fig. 3.6. The concentration of 

cDNA was tested by spectrophotometer prior to PCR amplification and the appropriate 

number of PCR cycles used. A second PCR amplification was performed with a higher 

number of cycles to ensure that any viable product had been sufficiently amplified.  

Amplified libraries were visualised under UV on a 2% agarose gel stained with ethidium 

bromide (Fig. 3.8). However, libraries were deemed unsuitable for SOLiD sequencing. 
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Figure 3.5. Trial libraries made with chemical fragmentation before (A) and after (B) 

PCR amplification. The same proportion of the library was run on each gel to produce 

comparable results. Streaks up the gel were due to these libraries not undergoing size 

selection. Both the N6 (lane 2) and N10 (lane 3) adaptors were shown to produce libraries 

which could be amplified by PCR, while the negative result produced by the –RNA control 

(lane 4) confirmed that it is the library being amplified rather than contaminants.  

 

 

B 

A 

-200 bp 

-100 bp 

 

-200 bp 

 
-100 bp 

 



100 
 

 

 

 

 

Figure 3.6. SOLiD library preparation protocol with zinc acetate fragmentation. 

Hybridization of a P2 random primer followed by first strand synthesis generates cDNA 

bound to single-stranded RNA. producing single-stranded cDNA. The P1 adaptor is 

hybridized and ligated to the cDNA using DNA ligase and the incomplete strand removed by 

denaturing. Size selection of products 100-200 nt in length is performed by PAGE on 6% 

TBE-urea gels and PCR amplification used to increase the quantity of cDNA to that required 

for SOLiD sequencing. 
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Figure 3.7. Size selection of amplified libraries on 2% agarose gel. Lane 1: Marker 

(Hyperladder V), Lane 2: Negative control, Lane 3-5: Amplified libraries. The streaks up the 

gel indicate a good fragmentation and show a large amount of product in the 100-200 nt size 

range required for SOLiD sequencing. 
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Figure 3.8. Amplified libraries created with chemical fragmentation and size selected by 

FlashPAGE. Libraries were amplified with either 10 or 15 cycles of PCR to ensure sufficient 

product. Bands of the appropriate size for SOLiD sequencing (150-200 bp) were present in 

some of the 15 cycle lanes (particularly lane 6), however the streaks up the gel suggest 

considerable contamination, most likely from primer complexes. None of the libraries were 

considered suitable for SOLiD sequencing. 
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Following advice from ABI representatives, development of this protocol was placed on hold 

as new SOLiD kits and protocols were soon to be released, and developments to the SOLiD 

sequencing platform would allow for deeper and more reliable sequencing. This promised 

greater coverage, giving a better representation of gene structure and minimising the issues 

caused by RNA fragmentation bias.  

 

 

3.6. Discussion  

 

The Aspergillus nidulans transcriptome has been sequenced on the SOLiD version 2 platform. 

Two whole transcriptome libraries prepared from G00 wild type cultures growth on nitrate 

with glucose and complete media were successfully mapped to the A. nidulans genome. The 

mapping percentage of these libraries did not appear to be optimal compared to the control, 

however there was no conclusive evidence that this was due to poor sample quality. It is more 

likely that the observed mapping figures were due to the relatively small size of the A. 

nidulans genome, resulting in fewer false positive hits due to repeat regions or random 

matches.  

 

Gene expression analysis reported 60.1 % of genes expressed in A. nidulans cells grown on 

nitrate and glucose. Comparatively, 57.4 % of genes were expressed in cells grown on 

complete media. ~5% of annotated genes demonstrated a strong indication of antisense 

transcription. Natural antisense transcripts (NATs) have previously been shown to perform 

functional regulatory roles in RNA interference (RNAi), alternative splicing (Zhang et al., 

2006), and influence transcription and protein activity (reviewed in Wilusz et al., 2009).  
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NATs are transcribed in intergenic regions and can vary in length from >200 to several 

thousand nt. They can be transcribed either in cis, meaning at the same genomic locus to the 

sense transcript and with perfect sequence complimentarity, or in trans, meaning at a 

different loci with imperfect sequence complimentarity. The majority of sense-antisense 

transcript pairs involve interactions between a coding transcript and a non-coding transcript, 

and are classified based on orientation of the overlapping region relative to the sense 

transcript. The four classes are; head-to-head (overlap at the 5' end), tail-to-tail (overlap at the 

3' end), fully overlapping (the NAT covers the entire sense ORF) and embedded (the NAT is 

entirely covered by the sense ORF) (Lapidot & Pilpel, 2006; Su et al., 2010).  

 

Interactions between sense-antisense pairs are able to regulate gene expression through a 

variety of mechanisms. The first of these is the formation of double stranded RNA (dsRNA), 

which can block active sites required for RNA-protein interactions (Beiter et al., 2009), 

preventing processes such as transport, splicing and polyadenylation. In the cytoplasm, the 

formation of dsRNA can also effect translation, rate of degradation, and in fungi has been 

shown to trigger the RNAi pathway (Faghihi & Wahlestedt, 2009). The second mechanism is 

chromatin remodelling, and NATs have been shown to recruit histone modifying enzymes 

such as histone methyltransferases to alter chromatin structure in fungi (Lapidot & Pilpel, 

2006; Faghihi & Wahlestedt, 2009). This strategy requires the interaction of the NAT directly 

with the DNA, resulting in transcriptional regulation of the sense transcript (Munroe & Zhu, 

2006). The extreme level of regulation achievable through this mechanism has been 

demonstrated in S. cerevisiae by the silencing of the highly expressed GAL1-10 cluster by 

NATs transcribed only once per hour (Gullerova & Proudfoot, 2010). Finally, NATs can 

cause transcriptional interference, where the simultanious transcription of two transcripts in 

cis interferes with the machinery of transcription, rather than the action of the NAT itself. 
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This interference can be due to either occlusion of the promoter or the two RNA polymerase 

II complexes blocking each other, preventing elongation of the transcripts (Werner et al., 

2009; Lapidot & Pilpel, 2006). It has also been proposed that simultanious transcription of 

both strands places a topological constraint on the DNA and creates conditions which are 

unfavourable for transcription (Munroe & Zhu, 2006). 

 

The discovery of NATs was met with some scepticism until recent years, and functional 

analysis has been limited considering the number that have been discovered through 

transcriptome analysis. The majority of experimental characterisation of NATS has currently 

been performed in S. cerevisiae (Donaldson & Saville, 2012), however global analysis has 

also been performed in A. flavus, leading to the discovery of 352 NATs, the majority of 

which were found to be expressed alongside a sense transcript, suggesting that these NATs 

may function post-transcriptionally (Smith et al., 2008). RNA-seq data indicated the rate of 

NAT occurrence in A. nidulans to be roughly consistent with those observed in A. flavus 

other systems (Yelin et al., 2003). This supports the hypothesis that natural antisense 

transcripts play an important role in the regulation of gene expression in A. nidulans. 

690 intergenic regions with a large number of reads mapped to them were identified, 

representing either gross misannotation or putative novel genes. Further visual analysis also 

revealed many more examples of less extensive misannotations. This indicated that the in 

silico methods used to predict a large proportion of genes in this annotation were not 

comprehensive. 

 

Attempts at modifying the SOLiD library preparation protocols to avoid fragmentation bias 

caused by RNase III were unsuccessful. Similar issues with size selection were reported by 

other parties preparing libraries for SOLiD sequencing at a meeting with representatives from 
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ABI in early 2009. More recent SOLiD protocols have moved away from agarose gels and 

now size select by PAGE on denaturing gels before the amplification step. All forms of gel 

extraction were also removed from the official protocols, with the gel fragments instead 

placed directly into the PCR reaction mix. This new method of size selection would have 

greatly benefited attempts to produce libraries using chemical fragmentation. Had successful 

SOLiD libraries been produced using the suggested protocol (Fig. 3.6), there was high 

probability that the degenerate sequence on the P1 adaptor would have introduced errors to 

the first 6 bases of the read due to imperfect matches between the degenerate sequence and 

cDNA during adaptor hybridisation and ligation. PAGE on denaturing gels would have 

removed the N6 adaptor sequence from the cDNA by denaturing and size selection. As the 

resulting single stranded cDNA would contain both adaptor sequences, PCR amplification 

could then have been performed without the need for second strand synthesis. This would 

have greatly simplified library creation and removed the potential for the introduction of 

errors in the first 6 bases of sequenced reads due to degenerate adaptor sequences. Despite the 

introduction of new library preparation kits and protocols, the use of RNase III and the 

associated fragmentation bias is a persisting issue. Work using the Illumina sequencing 

platform has reported similar coverage bias using chemical fragmentation, however work by 

Dohm et al. (2008) showed there to be no fragmentation bias using this method. Hansen et al. 

(2008) showed biases in Illumina transcriptome sequencing to be due to random hexamer 

priming. The fact that chemical fragmentation has been proven to be unbiased may means 

that alternative methods of RNA fragmentation may be worthwhile now that viable library 

creation and size selection protocols are more reliable. However, these findings mean that 

sequencing bias may still occur in SOLiD libraries created with an unbiased fragmentation 

method. 
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Constant and rapid developments in SOLiD sequencing technology caused this initial 

analysis to rapidly go out of date. The SOLiD version 2 sequencer was replaced by the 

version 4, allowing longer (50 bp) reads to be sequenced. Early sample preparation kits were 

replaced with the SOLiD Total RNA-seq kit (ABI), further improving the quality and 

reliability of library construction.  Additionally, the release of new and/or improved software 

for mapping and handling whole-transcriptome data offered improved accuracy and more 

advanced downstream analysis. It was therefore beneficial to create new libraries using the 

most up to date SOLiD sequencing technology. Early work done with these initial samples 

was made largely redundant. However, it was used to guide future data analyses, as it had 

highlighted many points of interest which could be further and more accurately explored 

using these new libraries and software tools. 
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4. 5′ specific RNA-seq 

 

4.1. Identification of transcription start sites and functional promoter elements 

Whole transcriptome RNA-seq has allowed for accurate transcript identification and gene 

structure prediction in relation to intron-exon junctions. However, the highly uneven nature 

of read mapping (discussed in Chapter 3.5) made the accurate identification of transcription 

start sites from these data alone extremely difficult and imprecise. 

To supplement the whole transcriptome RNA-seq data already produced on the ABI SOLiD 

platform, a protocol for 5′ specific RNA-seq was developed for accurate, genome-wide 

identification of transcription start sites (TSS). 

TSS identified by this analysis were used to define promoter regions for the identification of 

functional promoter elements. Previous research has highlighted the importance of conserved 

DNA motifs in the regulation of downstream pathways in a wide variety of organisms (Kellis 

et al, 2003; Conlon et al., 2001). Such regulatory sequences within promoters have been 

shown to control both the activation and repression of multiple pathways, functioning as 

regulatory elements in eukaryotes (Bregman et al., 2011; Trcek et al., 2011). These 

sequences are usually short, 6-15 bp in length, follow few rules and can tolerate some degree 

of sequence variation, making them much harder to detect than genes. Early examples were 

generally detected by experimental manipulation of individual promoter regions, however 

computational analysis has been successfully employed to identify regulatory elements 

associated with sets of related genes (Bailey & Elkan, 1994; Tavazoie et al., 1999; Stormo, 

2000). Cross species sequence alignments have also been used to study promoters, and have 

been applied across the entire human and mouse genomes (Mouse Genome Sequencing 

Consortium, 2002), and in four species of Saccharaomyces (Kellis et al., 2003) to identify 
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regulatory motifs accross the entire genomes. Examples such as the binding site for the Gal4 

transcription factor, which regulates genes involved in galactose metabolism, were highly 

conserved, with four experimentally validated sites showing perfect conservation between all 

four species of Saccharaomyces (Keegan et al, 1986; Kellis et al., 2003). The Gal4 binding 

site motif was also shown to have a higher conservation rate in intergenic regions and 

upstream of flanking genes, while no such preferences were observed for control motifs 

(Kellis et al., 2003). A significant amount of work has also examined conserved functional 

regulatory elements in the promoters of numerous Aspergilli, including A. nidulans (David et 

al., 2008). These include the binding sites for the CREA repressor responsible for carbon 

catabolite repression (Kulmburg et al., 2006), the PacC transcription factor required for 

regulation of the isopenicillin N synthase (ipnA) gene encoding a key penicillin biosynthetic 

enzyme (Espeso & Penalva, 1996), and the GATA transcription factor binding site 

(Ravagnani et al., 1997; Scazzocchio, 2000). Members of the GATA class of transcription 

factors have been shown to control a wide range of major physiological process in fungi, 

including development (Chae et al., 1995), circadian rhythm and blue light response (Ballario 

et al., 1996) and nitrogen metabolism (Fu & Marzluf, 1990; Kudla et al., 1990; Haas et al., 

1995). Global analysis of conserved regulatory motifs is therefore vital to the understanding 

of transcriptional regulation, and mRNA expression data from microarrays has previously 

been used to discover regulatory motifs upstream intergenic regions in S. cerevisiae amongst 

other organisms (Roth et al., 1998; Tavazoie et al., 1999; McGuire & Church, 2000). RNA-

seq data should therefore prove to be an excellent resource for global identification of 

conserved regulatory motifs in A. nidulans. 
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4.2. Development of 5′ specific RNA-seq 

Early attempts to produce 5′ specific RNA-seq libraries on the SOLiD platform utilised a 

number of techniques previously employed during the exploration of alternative 

fragmentation methods for SOLiD library creation (chapter 3.5). RNA fragmentation with 

zinc acetate had previously been shown to produce fragments with 5′ and 3′ functional groups 

which were not compatible with SOLiD adaptor ligation protocols without further 

modification. Using this fragmentation method followed by removal of the 5′ cap structure 

with TAP created fragment libraries where only fragments representing the 5′ ends of 

transcripts were compatible for 5′ SOLiD adaptor ligation. However, due to the 3′ ends of 

these reads still possessing the incorrect functional group, only the 5′ adaptor would be added 

to these fragments. The 3′ adaptor therefore had to be added via an alternative method.  

Creation of successfully PCR-amplified cDNA libraries had previously been achieved using 

randomly-primed first strand synthesis. This process utilised single stranded oligonucleotides 

comprised of a 5′ sequence complimentary to that of the SOLiD 3′ adaptor sequence, and a 3′ 

degenerate sequence (Fig. 4.1). This technique would perform first strand synthesis for all 

RNA fragments, regardless of functional groups. However, only those fragments representing 

5′ ends would produce cDNA with the correct SOLiD adaptor sequences at each end. The 

degenerate sequence at the 3' end of the oligonucleotides was originally a 6N hexameric 

sequence as described by Fritz et al. (1991). This degenerate sequence was later amended to 

NNNNNC-3', as the addition of a cytosine residue to the 3' end has been shown to aid 

efficiency of hybridisation, as described by Hashimoto et al. (2004) in their protocol for 5'-

end serial analysis of gene expression (5' SAGE).   

This method was used to produce cDNA libraries which were then amplified using custom 

made primers as previously described. However, none of the libraries produced by this 
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method were suitable for SOLiD sequencing, with very little product recovered after cleanup 

from size selections. 

 

 

 

 

 

 

 

5'- CTGCCCCGGGTTCCTCATTCTCTAAGCCCCTGCTGTACGGCCAAGGCGNNNNNC -3' 

 

Figure 4.1. Design of Random priming P2 (barcoded) oligonucleotide for first strand 

synthesis. The sequence in black corresponds to that of the SOLiD 3' adaptor sequence, of 

which the blue sequence is the barcode. The degenerate sequence used for random priming is 

shown in red, with the addition of a cytosine residue at the 3' to aid efficiency of 

hybridisation. N represents any nucleotide (A,T, G or C). 

 

 

 

 

 



113 
 

4.3. Modifying the 5′ specific RNA-seq protocol to reduce sample loss 

Attempts to produce alternative methods for SOLiD library preparation up to this point had 

all focused on reproducing a sequence of steps similar to those in the ABI SOLiD library 

preparation protocols. However, experience with SOLiD library preparation indicated that 

library quality decreased in accordance with the number of steps used. Kits and protocols for 

standard SOLiD library preparation had also evolved significantly by this point and were 

proving far more robust. The 5′ specific RNA-seq protocol was therefore revised to involve 

the fewest possible number of steps, and to utilise as many components of the SOLiD Small 

RNA Expression Kit as possible. These changes aimed to reduce sample loss while making 

library preparation as true to the standard protocol as possible in order to benefit from the 

increased reliability of these methods and reagents. 

Evaluation of the 5′ specific RNA-seq protocol revealed that fragmentation of the RNA was 

not necessary. The random nature of the primer used for first strand synthesis naturally 

created a library of cDNA fragments with variable lengths from full length RNA substrates. 

The fragmentation step could therefore be removed and cDNA libraries created directly from 

full length mRNAs, greatly reducing the potential for sample loss and degradation caused by 

fragmentation and subsequent cleanup procedures. 

To minimise sample loss, the different purification kits recommended by various official 

SOLiD protocols were tested on a non-size selected cDNA library created using the 5′ 

specific RNA-seq protocol as previously described, but without a fragmentation step. Equal 

quantities of the library were subjected to PCR cleanup using either the MinElute PCR 

purification kit (QIAGEN) or Purelink PCR micro kit (Invitrogen). The Purelink kit appeared 

to be superior for the removal of oligonucleotides from the sample, however, less product 

was observed in the 100-200 bp size range required for SOLiD sequencing (Fig. 4.2). Despite 
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the lower amount of product in the correct size range, the Purelink kit was selected for the 

purification of amplified SOLiD libraries due to the high level of purity required for libraries 

to pass quality controls for SOLiD sequencing.  

 

 

 

 

 

                  1             2            3             4  

 

 

Figure 4.2. PCR cleanups with Minelute and Purelink kits. PCR cleanup products were 

run on agarose gels alongside a 50 bp size marker (lanes 1 and 3). The Minelute kit (lane 2) 

appeared to have slightly higher product concentration in the 100-200 bp size range required 

by SOLiD sequencing, but a clear band was visible at the bottom of the gel representing 

residual oligonucleotides in the sample. These did not appear in the products from the 

Purelink kit (lane 4), indicating a more robust cleanup protocol.   
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The number of cycles used for PCR amplification was also investigated. Previous 

unsuccessful attempts at library creation had led to the use of an increased number of PCR 

cycles in an attempt to produce a greater amount of product for SOLiD sequencing. Libraries 

which had not undergone size selection were again used for this experiment, as the size 

selection had been identified as the point at which most sample loss occurred. To investigate 

the effect of over-amplification, equal amounts of cDNA were amplified using either 20 or 25 

cycles of PCR performed according to SOLiD SREK protocols. The maximum number of 

cycles recommended by the SREK was 18, so these values were chosen to demonstrate the 

result of both slight and severe over-amplification. PCR products were run on 2% agarose 

gels, stained with ethidium bromide and visualised under UV. 25 cycles appeared to produce 

significantly more product overall, as would be expected. However, a large proportion of this 

product had failed to run and was seen at the top of the gel. This resulted in less product 

appearing in the 100-200 bp size range required for SOLiD sequencing compared to the 20 

cycle PCR products (Fig. 4.3). Over-amplification of SOLiD libraries was therefore counter-

productive, and future attempts at 5′ specific RNA-seq used the standard number of cycles 

suggested in the SOLiD SREK protocols. 
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20 cycles  25 cycles 

   

                                          1          2           3                          4          5          6 

 

Figure 4.3. Effect of PCR over-amplification on SOLiD libraries. cDNA libraries were 

amplified by either 20 (lanes 2 and 3) or 25 cycles (lanes 5 and 6) of PCR, representing slight 

and gross over-amplification respectively. Hyperladder V molecular weight marker (lanes 1 

and 4) was used to determine product sizes. A lower concentration of product in the 100-200 

bp size range was observed with a greater number of PCR cycles, and much of the product 

appeared to be stuck at the top of the gel. Further library preparations were therefore 

performed with the minimum number of PCR cycles to warrant efficient recovery of 

fragments in the appropriate size range for SOLiD sequencing. 
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4.4. 5′ specific RNA-seq library 

Advancements in the 5′ specific RNA-seq protocol proved successful in producing a library 

which passed quality control and was sequenced on the SOLiD version 3 Plus platform. To 

prepare this library, total RNA was extracted from G00 wild type A. nidulans grown on 

minimal media supplemented with nitrate and glucose. Total RNA was DNA depleted with 

DNase I, enriched for mRNA with poly(A) selection using oligo(dT), and the 5′ cap structure 

removed with TAP to facilitate 5′ adaptor ligation. No fragmentation step was performed 

prior to the hybridisation and ligation of adaptors from the SOLiD SREK, according to SREK 

protocols. First strand synthesis was then performed using a random priming P2 

oligonucleotide (Fig. 4.1) as previously described. The downstream size selection required 

for fragmented libraries could be used to equal effect in size selection of libraries created in 

this fashion, and was performed according to standard SREK protocols using 6% TBE-urea 

polyacrylamide gels. The PCR amplification step was also performed using reagents from the 

SOLiD SREK and in accordance with standard SREK protocols and suggested number of 

PCR cycles. This successful protocol for 5′ specific RNA-seq library preparation is outlined 

in Fig. 4.4. 
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Figure 4.4. Protocol for 5′ specific RNA-seq on the SOLiD platform. Total RNA was 

extracted from A. nidulans culture and DNA depleted. Enrichment for mRNAs was 

performed by poly(A) selection using oligo(dT). 5′ caps were removed by TAP to allow 

subsequent ligation of the SOLiD 5′ adaptor. The P2 3′ adaptor was then added by reverse 

transcription using random priming, and size selection performed on denaturing 

polyacrylamide gels. Libraries were then amplified according to standard SREK protocols 

and sequenced on the ABI SOLiD platform. 
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Despite keeping as close as possible to standard SOLiD library preparation procedures and 

using the most robust kit for the cleanup of PCR products, quality control checks on an 

Agilent 2100 bioanalyser found the library to contain what appeared to be several artefacts 

producing large peaks at sizes 100, 150 and 253 bp (Fig. 4.5). These artefacts had the 

potential to interfere with the efficiency of the emulsion PCR step of SOLiD sequencing. 

However, so long as some usable data was produced it could be used as proof of concept, and 

further work could be done to produce new libraries with fewer artefacts and greater 

sequencing potential. Therefore, sequencing of the library went ahead, accepting this 

potential reduction in efficiency. 

 

 

 

 

Figure 4.5. Agilent 2100 bioanalyzer plot of 5′ specific RNA-seq library. The library 

showed correct distribution for SOLiD sequencing, however artefacts were observed in the 

form of large peaks with sizes of 100, 150 and 253 bp. These had the potential to reduce the 

efficiency of the emulsion PCR step of SOLiD sequencing. Standard size markers were 

included at 15 and 1500 bp to ensure accuracy. 
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4.5. Mapping 5’ specific RNA-seq reads to the A. nidulans genome 

For 5’ specific RNA-seq, the junction finding features of Tophat were not required as the 

main concern is the precise mapping of 5’ ends. It was therefore decided to map reads to the 

A. nidulans genome with ABI’s Bioscope software. Unlike Tophat, Bioscope was specifically 

designed to handle SOLiD colour space read data and uses progressive mapping to gradually 

trim the 3’ ends of reads until optimal mapping is achieved. In the context of this experiment, 

Bioscope’s method of read alignment should provide greater depth of coverage compared to 

the same data mapped with Tophat. 

 

5’ specific RNA-seq was performed as previously discussed, producing 64 million reads. 

Reads were mapped with Bioscope by members of the Liverpool Centre for Genomic 

Research (CGR), and14 million (22%) were aligned to the A. nidulans genome. This figure 

was similar to that achieved by whole transcriptome RNA-seq libraries, indicating that the 

artefacts observed during quality control checks did not produce a significant reduction in 

library quality. The data was therefore considered to be of suitable quality for further analysis. 

 

At its most basic level, 5’ RNA-seq data could be displayed in a genome browser and 

provided an excellent resource for visual interrogation of the A. nidulans transcriptome 

alongside reads from conventional whole transcriptome RNA-seq. Mapping of the 5’ ends of 

transcripts allowed quick and accurate assessment of transcription start sites, and 

differentiation of individual genes in regions where genes are tightly packed and may have 

previously been annotated as a single gene model, or where a single gene has been incorrectly 

annotated into multiple gene models. These combined data have were used for the correction 

of several such misannotations (e.g. Fig. 4.6) 

 



121 
 

 

  

     

Figure 4.6. Correction of mis-annotation. Mapped RNA-seq coverage for the forward 

(green graph) and reverse (red graph) strands are displayed in Artemis against the forward 

(green track) strandof the A.nidulans genome assembly and the annotated exons in this region 

(dark grey). In this annotation (AN.4), two genes (AN10053.4 and AN10071.4) are predicted 

in this region. Whole transcriptome RNA-seq (lower graph) revealed the general structure of 

transcripts produced in this region. However, the uneven nature of the mapping makes 

accurate identification of the 5’ end difficult. 5’ specific sequencing (top track) gives a far 

clearer representation of the 5’ end. Re-annotation of this region using the combined whole 

transcriptome and 5’ RNA-seq data reveals that AN10053.4 and AN10071.4 lie within a 

single gene (bottom track) starting significantly upstream of previous estimates, including 

both previously annotated exons from both annotated genes (highlighted in blue), and two 

additional exons which had not previously been annotated (highlighted in pink). All RNA-seq 

data was produced from RNA extracted from A. nidulans culture grown on minimal media 

with nitrate (as previously described). 

 

 

 

 

5’ specific RNA-seq 

 

Whole transcriptome       
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Genome annotation                       

Corrected gene structure 
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4.6. Conversion of mapped read data to readheads 

While 5’ specific RNA-seq provided an excellent resource even in its basic state, the format 

was not ideal for automated high-throughput interrogation of transcription start sites. While 

genome browsing software was available which could show individual reads aligned to the 

genome, the most useful format of data was the coverage plot such as those displayed in 

Artemis (e.g. Fig. 4.6). The coverage plot represents the number of reads aligned to each base 

position, and takes into account any alignment throughout the length of the read. However, 

the nature of 5’ RNA-seq was such that only the aligned position of the first base in each read 

was significant.  

In order to accurately assess putative transcription start sites, it was beneficial to alter the 

format of the mapped data from a series of 50 base pair reads to one which represents only 

the 5′ end of each read. This process identified 5′ ends from a pileup of aligned reads. By 

searching pileup data for each chromosome from 5′ to 3′, the number of reads starting at each 

position was calculated. Alignment frequencies of the following 49 positions were then 

reduced by the same number, so that only the 5′ end positions remained. Moving sequentially 

along each chromosome from 5′ to 3′ meant that each base position had any non-5′ end 

alignments removed before being processed, ensuring accurate representation of 5′ end 

positions and mapping frequencies in the resulting pileup. This process was designed in 

collaboration with Dr H. Wu, who developed novel software to perform this task. Appendix 

2.3 contains software produced by Dr H. Wu for RH identification and all future elements of 

this analysis, as well as a description of software utilisation (provided by Dr Wu).  

The chromosomal position of the first mapped nucleotide at the 5′ end of each read was 

identified as the readhead (RH). From this we were able to find the frequency of RH mapping 
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to each base position and convert read coverage data to a new format listing the number of 

reads and therefore the number of transcripts which start at each base Fig. 4.7. 

 

 

 

 

 

 

 

Figure 4.7. Conversion of mapped read alignments to RH frequencies. Standard RNA-

seq read coverage data (blue) is shown against base position. The start position of each read 

was identified and mapped independently of other bases to convert this to RH coverage (red), 

which mapped only the base at the 5′ end of each read. Converting the data in this way 

greatly simplifies visualisation and further manipulation of TSS data. 
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Visualisation of both standard and RH mapping data in Artemis revealed a significant amount 

of background mapping. Many bases throughout the genome had been aligned with 1-2 reads, 

a number far too low to be considered a candidate for a transcription start site. While the 

majority of these bases appeared to map randomly, a large number were noted within 

annotated genes and shortly downstream of well mapped transcription start sites, possibly 

representing the 5′ ends of partially degraded mRNAs. This posed a problem when designing 

novel software for downstream analysis of the RH data, as such software might have 

identified low coverage positions as potential transcription start sites. To circumvent this 

issue, these positions were filtered out prior to any further analysis.  

Filtering of any nucleotide position with low RH mapping frequency was performed using 

novel software to change the RH frequency to 0 at any base where the RH frequency was 

below a given threshold (Chapter 2.5.5). Various minimum RH values were tested and the 

resultant RH mapping files inspected visually in Artemis to determine an optimum cut off. A 

minimum RH value of 3 was found to eliminate the majority of background noise, while 

having a negligible impact on mapping around sites of high RH frequency.  

Having removed background mapping, the remaining positions to which readheads were 

aligned represented the real 5′ ends of sequenced transcripts. This allowed regions of 

significant RH clustering to be more easily identified as potential transcription start sites.  
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4.7. Identification of TSS regions 

Previous studies into the internal structure of core promoters have shown that transcription 

start sites are not absolute positions within the promoter. The FANTOM3 (functional 

annotation of mouse 3) project, applied Cap analysis of gene expression (CAGE) methods 

(Kodzius et al., 2006; Shiraki et al., 2003) to 20 tissues from mouse and human (Carninci et 

al., 2005; Carninci et al., 2006). In many cases, initiation of transcription was found to occur 

at multiple nucleotide positions within a core promoter region. This suggested that most core 

promoters do not have a single TSS, but rather a number of closely located initiation sites. 

These sites form distinct TSS regions and are conceptually different from alternative 

promoters, in which core promoters are separated by clear genomic space.  

Visual inspection of the filtered RH data alongside standard whole transcriptome data and the 

current gene model annotation showed excellent correlation between regions of RH mapping 

and the annotated 5′ ends of genes. The majority of RHs mapped in clusters close to predicted 

start sites, often with a distribution of multiple large peaks surrounded by a range of positions 

of lower RH frequency. This supported the hypothesis that transcription start sites are not 

confined to a single base, instead presenting as regions in which transcription can be initiated. 

In an attempt to characterise these regions, a sample of 100 genes with high levels of RH 

mapping at the 5′ end were selected at random, and RH distribution investigated for the start 

site region of each gene. 

Selecting the nucleotide with the highest RH mapping frequency as the predominant 

transcription start site for each region, the distribution of RH mapping both upstream and 

downstream of this position was investigated. In 98% of cases nucleotides with substantial 

levels of RH mapping were confined to within a 60 bp range in either direction from the 

predominant start site. In those cases where mapping was observed beyond this 60 bp limit, 
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the frequency of RH mapping was extremely low. While transcripts started at these positions 

are probably real, their apparent scarcity beyond this point meant that they were disregarded 

during further analysis, which focused on the TSS of more common transcripts. Therefore, a 

region of 121 bp centred on each predominant TSS was defined to investigate the spread of 

RH distribution on a global scale. These regions were identified on a global scale by Dr 

H.Wu. 

 

4.8. Global analysis of RH frequency 

To investigate the distribution in readhead mapping frequency to each TSS region on a global 

scale, the total RH frequency for each region was calculated. These RH frequencies 

represented the relative expression levels of transcripts originating from these regions and 

were analysed globally across chromosomes.  

The RH frequencies of each position in a 121 bp TSS segment were combined to produce a 

total RH frequency for each region. These figures were used to generate box plots for all TSS 

regions identified on a chromosome. Performing this analysis for the first 4 chromosomes in 

A. nidulans revealed a high level of consistency between the statistics and near symmetrical 

normal distribution for each chromosome (Fig. 4.8). A large number of outlying positions of 

abnormally high RH mapping frequency were observed, many of which persisted even when 

the minimum and maximum thresholds were doubled from 1.5* to 3.0* the interquartile 

range (IQR). These outliers represent loci where transcription was found to initiate at an 

exceedingly frequent rate in statistical relation to other regions. While the majority of these 

outlying RH frequencies were most likely associated with genes with very high levels of 

expression, a low number of extremely high RH frequencies were observed, with some in 

excess of 100,000 RHs mapped. While these may simply have been associated with genes 
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that are very highly expressed, the extent of the frequency difference observed between these 

and the majority of other regions in the sample suggest that there may have been some 

experimental bias for reads mapped to these positions.  
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Figure 4.8. Box-plots of RH peak distribution for 4 chromosomes of A. nidulans. The 

five-number summaries for each chromosome are as follows:  C1 (11, 20, 39, 115, 395), C2 

(11, 19, 40, 121, 429), C3 (11, 20, 41, 124, 434), C4 (11, 19, 41, 117, 410). These numbers 

correspond to the five lines for each box-plot and represent the minimum, first quartile (Q1), 

median, third quartile (Q3), and maximum RH mapping coverage. A base position with 

coverage above the maximum is seen as an outlier indicated by dots. A high level of 

consistency between each chromosome and a bias for larger RH coverage is observed, with a 

large number of outliers appearing above the maximum level within the normal distribution, 

some peaks having  >100,000 RH coverage.  
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4.9. Global analysis of TSS distribution within segments 

Comparing total RH counts between regions gave a good indication of the variance in 

expression levels between start sites. However, the distribution of these readheads within the 

region itself was still unknown. Previous manual analysis of a sample of 100 well defined 

start sites indicated that readheads mostly fell within a 121 bp region centred on the highest 

peak. To confirm this observation and gain a deeper understanding of RH distribution within 

TSS regions, the RH frequency at each of the 121 bp positions within regions were summed 

up for all regions on a chromosome. To allow all regions from both strands to be compared 

simultaneously, all sequences were placed in 5′-3′ orientation. Regions which had previously 

been identified as outliers in total RH frequency (Chapter 4.8) were excluded as the 

extremely high RH frequencies in these regions were so large that they may have introduced 

bias to the RH distributions.  

For ease of visualisation, RH positional distribution frequencies were combined into 13 bins 

to produce a graphical representation of global RH distribution across the regions in a 

chromosome. Chromosome 1 showed near normal distribution with a very strong central 

peak as expected due to this bin containing the primary TSS. Other abnormally large peaks 

away from this position would therefore represent secondary strong TSS, however RH 

frequencies trailed off towards the 0 and 121 bp positions. This distribution was consistent 

with previous findings regarding the spread and pattern of transcriptional initiation at start 

site regions. The analysis was then repeated for chromosomes 2, 3 and 4, all of which showed 

a near identical distribution pattern to chromosome 1 (Fig. 4.9).  
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Figure 4.9. Readhead position distribution in TSS regions on chromosomes 1-4. 

Readhead frequencies at each position of all identified TSS regions on each chromosome 

were combined. For ease of visualisation, positions were placed into 13 bins and their 

combined read frequencies plotted as histograms. The strong peak at the central position is an 

artefact caused by position 61 representing the strongest peak in each TSS segment. The 

presence of similar peaks at other positions would indicate RH enrichment due to alternative 

strong transcription start sites away from the primary TSS. These data indicate that the 

majority of TSS regions contain strong central start sites with high RH mapping. The level of 

RH mapping rapidly declined with increased distance from these central points, and this 

pattern was highly conserved between chromosomes.  
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4.10. Characterising TSS regions 

While global analysis of RH distribution in TSS regions indicated a trend for normal 

distribution of transcriptional initiation around a primary start site, visual analysis of the data 

revealed that this was not always the case. While many regions presented as a near uniform 

RH distribution, others were observed with no single base possessing a significantly higher 

rate of RH mapping which would identify as a predominant start site, indicating that 

transcription started almost indiscriminately within these regions. Another observation was 

that many regions contained multiple bases with high RH mapping frequency, indicating the 

presence of multiple strong start sites within a single region (Fig. 4.10). This suggested 

variability in the specificity of each start site for a given nucleotide position. Based on this 

observation, a method was devised to statistically analyse the spread of RH mapping and 

produce a numerical representation of the variance in position of transcriptional initiation for 

each region. 
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Figure 4.10. Examples of readhead mapping variance in transcription start sites. RH 

coverage data for three genes (black graphs) are displayed in Artemis against the A. nidulans  

genome annotation (green track), including genes present in each region (grey). Regions 

containing transcription start sites were shown to present with a number of different RH 

mapping profiles. These included a strong, single TSS location (A), multiple strong starts 

within a single TSS region (B), and widespread RH mapping indicating relatively 

indiscriminate transcription start sites (C). 
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Investigation into the variability of TSS specificity required the use of only well mapped 

regions. Regions of low expression may not present a true representation of the TSS and were 

therefore excluded. For this purpose, well mapped regions where the RH frequency of the 

highest single peak was ≥ 10 and the total RH frequency of the 121 bp region was ≥ 50 were 

identified for use in this analysis. Using these thresholds allowed the inclusion of both strong 

single peaks and regions of dispersed RH distribution, while aiming to further eliminate 

background noise and exclude regions which were poorly defined due to low mapping. 

Using the above criteria, 15,475 of these 121 nt segments were identified as having 

significant RH mapping frequency. Each region was centred on the base with the highest RH 

mapping frequency, which therefore represented the preferred TSS within that region. By 

measuring the RH distribution around these primary TSS, it was possible to achieve a 

measure of variance in the location of transcriptional initiation in relation to that base position. 

This measure was presented in the form of a confidence interval. Regions with TSS found to 

be highly specific to a single base position were assigned a low confidence interval, while 

regions where transcription was shown to start across a wider range of positions were 

assigned lower confidence intervals. 

Confidence values were assigned to each primary TSS based on the RH frequencies of 

surrounding bases. As previously discussed, RH frequencies in individual 121 bp regions 

rarely show normal distribution, more frequently presenting with a series of randomly 

dispersed and sized peaks. This prevented the use of a ready formula to calculate confidence 

intervals. Based on the normal assumption, positions with peak RH frequencies should 

represent the sample mean of each region. The data were therefore adapted by reversing the 

region around the peak position and adding the RH frequencies of the reversed region to 

those of the original to create a normal distribution while maintaining the variance of the 

unedited data. The relationship between variables could then be expressed by the equation 
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below, where z is the upper percentage point of the standard normal distribution and 

confidence interval length (CIL) is directly proportional to the standard deviation of RH 

distribution (σ) and inversely proportional to the sample size (n): 

CIL =  z  2σ / √n 

This analysis was performed by Dr H. Wu, and resulted in two confidence values per TSS, 

representing the level of deviation in RH distribution upstream and downstream of the 

primary TSS. Combining these two values created a single statistic representing the 

frequency and distance of deviation in transcriptional start position from this primary TSS, 

and therefore a measure of heterogeneity for the position of transcriptional initiation. Lists of 

the primary (central) TSS location for each region and their associated CIL were produced. A 

subset of these data is shown in Table 4.1, full lists of TSS region positions and CI length 

scores can be found in Appendix 2.5. 

Of the 15,475 regions analysed, 3,777 (24.4 %) were observed with CI lengths <2, indicating 

confidence values >95%. This represents very tight TSS clustering and a low level of 

positional deviation around a single, dominant start site. This indicates a high level of 

consistency in the position of transcriptional initiation within nearly a quarter of TSS regions 

in A. nidulans. 
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Table 4.1. TSS location confidence intervals and Length(bp) values. Data represents a 

subset of putative transcription start sites on the forward strand of chromosome I. Position is 

given as the central peak of each TSS region, representing the primary TSS. Confidence 

intervals represent the deviation possible in each direction from the position. These values are 

combined to produce the Length(bp) value, which provides a single figure as a statistical 

measure of TSS deviation within a given region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results for chromosome 1 of forward strand: 

 

Position     Confidence Interval (0.95)    Length(bp) 

41114            ( -0.550  0.551 )          1.101  

175784          ( -0.956  0.908 )          1.864 

228977          ( -0.286  0.273 )          0.559  

229297          ( -2.501  2.363 )          4.864  

229428          ( -2.741  2.719 )           5.460  

229846          ( -2.954  2.997 )          5.950  

245674          ( -2.787  2.821 )          5.608  

247677          ( -1.390  1.430 )           2.820  

286377          ( -1.180  1.187 )          2.367  

322829          ( -2.096  2.054 )          4.150  

322893          ( -1.044  1.105 )           2.149  

324366          ( -0.459  0.449 )           0.908  

324584          ( -2.417  2.391 )           4.808  

324960          ( -3.842  3.747 )           7.589 

       

325273          ( -5.158  5.539 )          10.697 
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4.11. Global analysis of TSS distribution 

Global analysis of TSS distribution was performed by mapping the TSS regions across each 

chromosome. All TSS regions were mapped together, and separate tracks created to show 

start sites with low confidence intervals (< 2) which indicated strong positional specificity of 

transcriptional initiation, and the most highly expressed TSS determined by a total RH 

mapping frequency within the region of >1,000, indicating high levels of expression. No 

obvious clustering of transcription start sites and no indication of positional bias towards 

telomeric regions was observed, and statistical analysis by Dr Huihai Wu found no 

statistically significant distribution bias on any chromosome. An example of chromosome 

TSS distribution mapping can be seen in Fig.4.11, TSS maps for all chromosomes can be 

found in Appendix 2.6. 

 

 

 

 

 

 

 

 

 

 



137 
 

 

 

 

 

 

Figure 4.11. Chromosome map of identified TSS regions. Forward (Top) and the 

complementary (Bottom) strands of Chromosome 1 are shown with 3 tracks of data 

representing TSS positions. All identified TSS are indicated (blue), with additional tracks 

representing highly specific TSS with low confidence values (orange) and the most highly 

expressed TSS by total RH frequency (red). No statistically significant distribution bias was 

observed in any of the 8 chromosomes in the A. nidulans genome. 
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4.12. Motif finding and analysis 

DNA sequence motifs are defined as short, recurring patterns in DNA presumed to have 

some biological function. Motifs located around the promoter are often present in sequence-

specific binding sites for proteins such as transcription factors and therefore are often linked 

to gene regulation (D'haeseleer, 2006). Global identification of transcription start sites 

provided the opportunity to undertake promoter specific motif identification in A. nidulans. 

To capture the promoter associated with each TSS, a 225 bp sequence ranging from 200 bp 

upstream to 24 bp downstream of the primary TSS position was extracted for each region.  

Based on previous classification of promoters in A. nidulans (Endo et al., 2008), this region 

was deemed to be of sufficient length to fully capture functional elements of promoter 

sequences.   De novo motif finding was performed within these regions using the motif 

sequence finding softwares YMF (Sinha & Tompa, 2000) and MEME (Bailey & Elkan, 

1994). 

The effect of TSS distribution was investigated by creation of two TSS datasets for motif 

finding analysis. The first dataset (DS1) contained 3,777 regions with confidence values <2 

representing very sharp TSS distribution as previously discussed. The second dataset (DS2) 

contained 3,959 regions with greater TSS distribution, identified by confidence values 

between 2 and 4. 

The results of motif prediction by YMF analysis of DS1 were categorised into subsets with 

the software MATLIGN (Kankainen & Löytynoja, 2007), which converted the large list of 

motifs in the raw YMF output into small groups of similar, non-redundant motifs (Fig. 4.12).  
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Figure 4.12. Motifs identified from DS1. Motifs found by YMF were categorised into 7 

groups and listed in order of descending over-representation. 

 

 

 

  

Motifs found grouped by YMF z-scores (degree of over-representation) 

highest-lowest: 

 

Group 1: CACGTG, CACGTGA, CACGTGAY 

Group 2: AAAAWAA, AWAAWAA, ARARAAA, AAAAAAAA, ARARAAAA, 

AARARAAA 

Group 3: TTTTTTW, TTWTTTW, TTTWTTW, TTTYTTY, TTTTYTTY, TTTYTTTY 

Group 4: ACCRCC, CACCRCS, CWCCRCC, CACCRCC, ACCWCCA, CYCCGC 

Group 5: GGCGGTS, GGYGGTS, RGGCGGTS, GYGGGGW, GCGGRGW 

Group 6: GCCTSAGG, GCCTSAGGC 

Group 7: CTCTCYY, CTCTTYT, ATAWATA, MATCAAC, MTCCAAC 
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These motifs were largely consistent with those found by MEME, with all motifs identified 

belonging to the classes determined by MATLIGN and the strongest motif being the same in 

each platform (CACGTGA). Motifs predicted by both systems were grouped into 5 distinct 

subsets by Dr H. Wu. The most likely candidates for functional motifs were selected for 

further analysis and placed into classes based on the relative strength of the motifs. Motif 

strength was determined by a combination of Z-value (YMF), E-score (MEME), rate of 

occurrence and consistency of the motif based on any degenerate bases in the sequence 

(Fig.4.13). 

The software used for motif discovery tests only for the degree of motif over-representation 

against a background sequence. From the list of motif groups identified (Fig. 4.13), it was 

clear that motifs in groups 2 (TTTYTTY, TTTTYTTY) and 3 (ARARAAA, ARARAAAA)  

consist of multiple base repeats, throwing doubt on their validity as real functional elements, 

despite their high level of enrichment against background sequences. While enrichment is a 

known characteristic of functional motifs (Frith et al., 2004), there is also evidence that 

strong, functional motifs are enriched within a narrow sequence region of the promoter 

(Vardhanabhuti et al., 2007). Motif position distribution was therefore analysed, firstly by 

producing histograms representing motif positions within promoters. This provided a visual 

representation of motif distribution in which all the motifs identified appear to have a 

positional bias within the promoter (Fig. 4.14), and these distribution varied dramatically 

between motifs. For example, motifs in class 1 (CACGTG, CACGTGA and CACGTGAY) 

showed very little distribution in the immediate vicinity of the TSS, but were strongly 

enriched around position -70. This very specific distance from the TSS supports the 

hypothesis that these motifs have a function within the promoter, requiring a specific distance 

from the TSS to perform their given role. As expected, Class 3 shows a much more evenly 

spread distribution pattern, and as such are less likely to possess a functional role. It is worth 
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noting however that class 2 motifs, while similar to class 3, express a high level of 

distributional enrichment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Classes of motif arranged from strongest (1) to weakest (6). These represent 

the most likely functional motifs from the combined outputs of MEME and YMF. 

 

 

 

 

 

 

 

 

 

 

 

 

Group 1: CACGTG, CACGTGA, CACGTGAY 

Group 2: TTTYTTY, TTTTYTTY 

Group 3: ARARAAA, ARARAAAA 

Group 4: GCCTSAGG, GCCTSAGGC 

Group 5: GGCGGTS, RGGCGGTS 

Group 6: ACCRCC, CACCRCC 
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Continued overleaf. 
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Figure 4.14. Histograms of enrichment relative to TSS location for 13 identified motifs. 

The occurence of motifs starting at each base position relative to the TSS (position 0) was 

plotted. Base posisions for motifs with higher occurence were divided into 22 bins. This was 

impractical for motifs with lower occurence as the bins were too small to small to easily 

interpret the resultant graphs. To facilitate ease of interpretation, the number of bins was 

halved to 11 for these motifs. A high level of enrichment around certain positions are 

indicated for a number of motifs, while others show more even distributions and are therefore 

less likely to perform functional roles.  

  



144 
 

To provide a statistical measure of distributional bias, Chi-square GOF uniformity tests were 

performed by Dr H.Wu, to determine goodness of fit for observed distribution against 

uniform distribution within the defined promoter region. Chi-square GOF uniformity tests 

determine the goodness of fit between observed and normal distributions. The smaller the p-

value assigned, the more statistically significant the deviation from standard distribution. P-

values lower than 0.05 are generally regarded as statistically significant. All motif positional 

distributions were found to have extremely low p-values of 0.0005, indicating significant 

variance from normal distribution, but providing no means of differentiating distribution 

between motifs. Dr Wu therefore coupled these data with kernal density estimation (Fig. 

4.15) to re-order motif classes based on the level of distributional enrichment around the TSS 

(Fig. 4.16). 
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Figure 4.15. Distribution of motif classes by kernel density estimates. The relative density 

of a range of motifs at each nucleotide position around the TSS shows a clear and statistically 

significant bias, consistent with them having functional roles within the promoter. 

 

 

 

 

 

 

 

Figure 4.16. Motif classes ordered by level of distributional enrichment. Combining the 

level of distributional enrichment with the scores from YMF and MEME, motif classes were 

reordered from strongest (top) to weakest (bottom). 

 

Class 1:  CACGTG, CACGTGA, CACGTGAY 

Class 5:  GGCGGTS, RGGCGGTS 

Class 4:  GCCTSAGG, GCCTSAGGC 

Class 2:  TTTYTTY, TTTTYTTY 

Class 3: ARARAAA, ARARAAAA 
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Motif finding analysis was then repeated for the promoter regions of DS2. YMF produced a 

similar output. However, the motifs found were significantly weaker than those in DS1, with 

occurrence and Z-scores demonstrating a ~50% decrease in motif over-representation. Due to 

the weak motifs in this dataset, the motif finder MEME did not work well, finding very few 

significant motifs. The top 7 bp motif found in each dataset produced a perfect match 

(CACGTGA), and a number of other patterns emerged between the two datasets. Filtering 

motifs based on software scores and frequency of occurrence gave strong indication of 

functional distribution in additional motif groups:  CTCTCYY, CTCTTYT, ATAWATA, 

MATCAAC and MTCCAAC. 

Analysis of motif strength was again performed by Dr H. Wu. Combining the results from 

both DS1 and DS2 gives a total of 38 strong motifs in 7 groups (Fig. 4.17). Distribution 

analysis within promoters revealed 16 motifs most likely to possess a functional role (Fig. 

4.18). 
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Figure 4.17. Combined strong motifs from both datasets. 38 strong motifs were found in 7 

distinct groups, listed in order of YMF Z-scores for degree of over-representation from 

strongest to weakest. 

 

 

 

 

 

 

 

 

Figure 4.18. 16 strongest candidates for functional motifs. Motifs are ordered based a 

combination of their scores from previous analysis combined with distribution analysis 

within the promoter. 

  

Group 1: CACGTG, CACGTGA, CACGTGAY 
 
Group 2: AAAAWAA, AWAAWAA, ARARAAA, AAAAAAAA, ARARAAAA, 
AARARAAA 
 
Group 3: TTTTTTW, TTWTTTW, TTTWTTW, TTTYTTY, TTTTYTTY, TTTYTTTY 
 
Group 4: ACCRCC, CACCRCS, CWCCRCC, CACCRCC, ACCWCCA, CYCCGC 
 
Group 5: GGCGGTS, GGYGGTS, RGGCGGTS, GYGGGGW, GCGGRGW 
 
Group 6: GCCTSAGG, GCCTSAGGC 
 
Group 7: CTCTCYY, CTCTTYT, ATAWATA, MATCAAC, MTCCAAC 
 

Group 1: CACGTG, CACGTGA, CACGTGAY 

Group 2: TTTYTTY, TTTTYTTY, TTTYTTTY 

Group 3: ACCRCC, CWCCRCC, CACCRCS, CACCRCC 

Group 4: CTCTCYY, CTCTTYT, ATAWATA, MTCCAAC 

Group 5: GGCGGTS, RGGCGGTS 
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Comparing motif finding results between DS1 and DS2 demonstrated a significant drop in 

motif over-representation as the specificity of the primary start site decreased. To further 

investigate this relationship, a new dataset was created (DStop) containing the top 10% of 

promoters in terms of RH frequency at the primary TSS. Using cumulative hypergeometric 

distribution, Dr Wu was able to calculate the probability of motif occurrences compared to 

the observed number, expressed as p-value of occurrence rate, with lower p-values indicating 

greater statistical significance. 34 motifs were tested against the 3 datasets (Table 4.2). From 

the average p-values, it was clear that the statistical significance of motif occurrences in DS1 

was far greater than that in DS2, indicating a strong correlation between motif occurrence and 

specificity of the TSS. However, the average p-value of DStop was not significantly different 

to and in fact slightly higher than that of DS1. Therefore, as all promoters in DStop are also 

found in DS1, there appeared to be no correlation between motif occurrence and expression 

level. 
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Table 4.2. Significance of motif occurrences in different datasets. From the average p-

values it is clear that the significance of motif occurrences in DS1 is far greater than that in 

DS2, indicating a strong correlation between motif occurrence and specificity of the TSS.  

 

Datasets:                        DS1                            DS2                           DStop 

------------------------------------------------------------------------------------------ 

Motifs P-value P-value P-value 

------------------------------------------------------------------------------------------ 

CACGTG 1.7179E-18 1.0000E+00 2.1974E-04 

CACGTGA 4.2916E-19 1.0000E+00 1.2218E-04 

CACGTGAY 7.2512E-18 1.0000E+00 1.0279E-04 

GCCTSAGG 2.2770E-03 9.9850E-01 1.2744E-02 

GCCTSAGGC 7.8066E-04 9.9956E-01 2.8984E-03 

GGCGGTS 4.4354E-03 9.9672E-01 3.4696E-01 

GGYGGTS 3.3443E-01 6.9358E-01 5.6422E-01 

RGGCGGTS 1.0953E-04 9.9993E-01 2.8046E-01 

GYGGGGW 8.0896E-01 2.1834E-01 7.0614E-01 

GCGGRGW 1.7388E-01 8.4715E-01 6.5796E-01 

TTTTTTW 1.8928E-03 9.9861E-01 6.3331E-02 

TTWTTTW 8.3815E-02 9.2690E-01 1.4004E-01 

TTTWTTW 1.0008E-02 9.9186E-01 3.4062E-02 

TTTYTTY 1.4002E-04 9.9989E-01 7.1137E-10 

TTTTYTTY 2.0470E-05 9.9999E-01 5.9866E-08 

TTTYTTTY 9.3205E-05 9.9993E-01 2.7824E-07 

AAAAWAA 1.5936E-06 1.0000E+00 1.3973E-02 

AWAAWAA 5.1683E-08 1.0000E+00 3.6517E-02 

ARARAAA 6.5249E-08 1.0000E+00 1.2422E-01 

AAAAAAAA 5.1909E-06 1.0000E+00 2.4465E-02 

ARARAAAA 1.8580E-06 1.0000E+00 6.5643E-02 

AARARAAA 7.3579E-06 1.0000E+00 2.0463E-01 

ACCRCC 6.2715E-01 3.9540E-01 2.0602E-01 

CACCRCS 3.4131E-01 6.8555E-01 6.4725E-01 

CWCCRCC 4.3185E-01 5.9342E-01 8.8766E-01 

CACCRCC 1.8547E-01 8.3655E-01 7.3450E-01 

ACCWCCA 9.4434E-01 6.7786E-02 1.2929E-01 

CYCCGC 2.3491E-01 7.8176E-01 9.1166E-01 

CTCTCYY 6.8881E-01 3.3370E-01 2.7989E-08 

CTCTTYT 6.1285E-01 4.1695E-01 1.1063E-06 

ATAWATA 4.4312E-08 1.0000E+00 3.8243E-01 

MATCAAC 3.3485E-01 6.9931E-01 8.2087E-01 

MTCCAAC 7.4321E-01 2.8912E-01 7.5746E-01 

------------------------------------------------------------------------------------------ 

Ave p-value 0.1989577 0.8112268 0.2653287 
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4.13. Association of TSS regions and motifs with annotated gene models 

Regions of transcriptional initiation were associated with genes in the current A. nidulans 

annotation. Associations were based on either a direct overlap of a segment with an existing 

gene model, or where a segment fell within 500 bp upstream of a CDS. Distance from TSS to 

CDS has been studied in Arabidopsis thaliana and identified as 60-120 bp in that system 

(Yamamoto et al., 2011). Allowing matches between TSS and CDS up to a distance of 500 

bp was therefore a fairly lenient threshold which was more than sufficient to ensure the 

identification of the maximum possible number of valid matches in A. nidulans. 

Novel software (Chapter 2.5.6) was created to associate the 15,475 identified TSS regions 

with current gene annotations based on these criteria and perform motif finding within 

promoter regions surrounding these TSS. Each putative TSS was associated with a previously 

annotated gene by virtue of its position either within or under 500 bp upstream of the gene 

model.  

 

The software then extracted promoter sequences surrounding gene-matched TSS regions and 

performed sequential alignment of identified motifs against these promoters (Fig. 4.19). The 

promoter region size of 225 bp (200 bp upstream and 24 bp downstream) was consistent with 

previous motif finding analysis. The 16 previously identified motifs were then aligned to 

these sequences, producing a list of genes associated with each motif. The number of gene 

matches for each motif can be seen in Table 4.3. Full lists of TSS:Gene associations can be 

found in Appendix 2.7, and lists of gene matches for each motif with the promoter region in 

FASTA format can be found in Appendix 2.8. 

A second piece of software was created to count the number of TSS which had been 

associated with existing gene models, and determine the number of unique genes with at least 

one putative TSS (Appendix 2.1.5). 13,035 (84.2 %) of TSS were associated a total of 6,014 
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known genes, with 2,325 of these genes linked to multiple distinct TSS regions. This software 

also produced a list of gene IDs with multiple TSS associations which can be found in 

Appendix 2.7.1. 

 

 

 

 

 

 

Figure 4.19. Sequential alignment of motifs to promoter sequences. Motifs were first 

aligned at the 5' end of the promoter, then moved sequentially towards the 5' end at single 

nucleotide intervals. This process continued until the motifs could no longer fully align. Upon 

successful alignment the gene associated with the current promoter sequence was recorded in 

an output file. 
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Table 4.3. Motif:gene matches. The table shows the number of genes with promoter regions 

aligned to each of the 16 strong motifs identified by motif finding analysis. The percentage of 

hits for each chromosome is displayed as well as the total number of genes associated with 

each motif. 

 

 

 

 

 

4.14. Consensus sequences around gene associated start sites 

5′ heterogeneity has been shown to occur in eukaryotic organisms (Gowda et al., 2006). Later 

studies noted that this phenomenon also occurs in fungi (Gowda et al., 2007; Spanu & Doyle, 

2009) and is most probably due to inaccurate transcription by RNA polymerase in the first 

stages of the process. TSS regions with particularly strong single peaks and tight distributions 

are therefore likely to have an additional feature within the promoter which guides the 

machinery of transcription to initiate at a highly specific locus. 

To investigate this hypothesis, novel software was developed to interrogate a 21 nucleotide 

sequence surrounding putative TSS locations, representing 10 bp in each direction upstream 

Motif CACGTG CACGTGA CACGTGAY TTTYTTY TTTTYTTY TTTYTTTY ACCRCC CWCCRCC 

Chr 1 76 (14.81%) 46 (15.03%) 40 (15.44%) 144 (15.14%) 87 (18.13%) 88 (18.64%) 88 (14.33%) 71 (14.26%)

Chr 2 69 (13.45%) 48 (15.69%) 40 (15.44%) 133 (13.99%) 61 (12.71%) 63 (13.35%) 105 (17.10%) 86 (17.27%)

Chr 3 68 (13.26%) 32 (10.46%) 27 (10.42%) 166 (17.46%) 90 (18.75%) 87 (18.43%) 83 (13.52%) 70 (14.06%)

Chr 4 37 (7.21%) 22 (7.19%) 18 (6.95%) 57 (5.99%) 26 (5.42%) 22 (4.66%) 41 (6.68%) 37 (7.43%)

Chr 5 58 (11.31%) 35 (11.44%) 31 (11.97%) 57 (5.99%) 26 (5.42%) 24 (5.08%) 52 (8.47%) 38 (7.63%)

Chr 6 60 (11.70%) 33 (10.78%) 27 (10.42%) 91 (9.57%) 41 (8.54%) 36 (7.63%) 66 (10.75%) 58 (11.65%)

Chr 7 65 (12.67%) 38 (12.42%) 33 (12.74%) 122 (12.83%) 57 (11.88%) 59 (12.50%) 67 (10.91%) 58 (11.65%)

Chr 8 80 (15.59%) 52 (16.99%) 43 (16.60%) 181 (19.03%) 92 (19.17%) 93 (19.70%) 112 (18.24%) 80 (16.06%)

Total 513 306 259 951 480 472 614 498

Motif CACCRCS CACCRCC CTCTCYY CTCTTYT ATAWATA MTCCAAC GGCGGTS RGGCGGTS 

Chr 1 48 (13.26%) 40 (15.09%) 73 (12.33%) 28 (8.86%) 29 (11.24%) 15 (8.11%) 33 (16.10%) 23 (15.54%)

Chr 2 60 (16.57%) 47 (17.74%) 91 (15.37%) 56 (17.72%) 43 (16.67%) 33 (17.84%) 22 (10.73%) 14 (9.46%)

Chr 3 47 (12.98%) 38 (14.34%) 66 (11.15%) 40 (12.66%) 29 (11.24%) 25 (13.51%) 39 (19.02%) 32 (21.62%)

Chr 4 25 (6.91%) 17 (6.42%) 53 (8.95%) 25 (7.91%) 16 (6.20%) 12 (6.49%) 14 (6.83%) 12 (8.11%)

Chr 5 28 (7.73%) 16 (6.04%) 53 (8.95%) 31 (9.81%) 31 (12.02%) 15 (8.11%) 8 (3.90%) 5 (3.38%)

Chr 6 44 (12.15%) 34 (12.83%) 49 (8.28%) 27 (8.54%) 25 (9.69%) 22 (11.89%) 24 (11.71%) 14 (9.46%)

Chr 7 40 (11.05%) 27 (10.19%) 91 (15.37%) 52 (16.46%) 49 (18.99%) 24 (12.97%) 29 (14.15%) 20 (13.51%)

Chr 8 70 (19.34%) 46 (17.36%) 116 (19.59%) 57 (18.04%) 36 (13.95%) 39 (21.08%) 36 (17.56%) 28 (18.92%)

Total 362 265 592 316 258 185 205 148
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and downstream of the central peak. This software took a list of TSS positions and aligned 

each TSS to the A. nidulans reference in FASTA format. The 21 nt sequence surrounding 

each TSS was obtained from the reference, and the nucleic acid at each nt position was 

recorded using a set of 4 arrays (representing A, C, G and T). These arrays were 21 elements 

in length, with each element representing a single nt position, and used to maintain counts of 

the nucleic acids found at each position (Chapter 2.5.7).   

TSS with strong positional specificity were more likely to be surrounded by a consensus 

sequence to guide the machinery of transcription to this location. Therefore, only tightly 

distributed TSS with CIL < 2 were used. The resultant counts of nucleic acid occurrence at 

each position were used in conjunction with WebLogo 3.0 (Crooks et al., 2004) to generate a 

graphical representation of patterns within a multiple sequence alignment, also known as a 

sequence logo (Schneider & Stephens, 1990). Logos consists of stacks of letters, one stack for 

each nucleotide position in the sequence, with the overall height of the symbols within the 

stack reflecting the relative frequency of occurrence at that position (Crooks, et al. 2004) Fig. 

4.20. 

 

 

Figure 4.20. Sequence logo for the region surrounding transcription start sites in A. 

nidulans. The data used to generate this sequence logo consists of the -10 to +10 nucleotide 

regions around each TSS (shown here at 0) while the relative height of the letters at each 

position represents the relative probability of the respective base appearing at that location. 
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From the sequence logo produced, there did not appear to be any particular motif which could 

cause transcription to initiate at a given locus. These TSS must therefore rely on an upstream 

element of the promoter guiding the machinery of transcription to produce their tight 

distributions. 

 

4.15. Further development of 5′ specific RNA-seq protocols 

 

4.15.1.  Investigation of mRNA decay 

During visual analysis of 5′ specific RNA-seq readhead data, a significant number of 

readheads were observed downstream of some transcription start site regions. These generally 

presented as a series of peaks with RH frequencies which trailed off with increasing distance 

from the TSS. The most likely cause of this phenomenon was the presence of mRNAs with 

truncated 5′ ends in the original sample. Natural degradation of mRNA 5′ ends in A. nidulans 

cells occurs primarily by 5′ to 3′ exonucleolytic decay, and therefore produces 5′ ends 

compatible with SOLiD adaptor ligation. Decapping and subsequent 5′ degradation is 

triggered by shortening of the mRNA 3′ poly(A) tail to around 15 residues (Morozov et al., 

2010), meaning that mRNAs with degraded 5′ ends often still possess poly(A) tails (Morozov 

et al., 2010; Morozov & Caddick, 2012),  and can therefore be enriched by poly(A) selection 

using oligo(dT). Natively degraded 5′ ends are therefore likely to be represented in the final 

SOLiD library. 

Large amounts of what appear to be mRNAs with naturally decapped and decayed 5' ends 

had not been anticipated in the design of a 5'-specific sequencing protocol. The data produced 

as a result of this could potentially be extremely interesting for the analysis of mRNA 

degradation in living cells. However, the inclusion of these degradation products was not 
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ideal for the identification of true transcription start sites. The extra readhead peaks could 

potentially interfere with the statistical analysis of the TSS location and can cause uncertainty 

as to the exact location of the start site. The protocol for 5'-specific RNA-seq was therefore 

modified to make these degradation products ineligible for adaptor ligation, by removal of the 

5′ phosphate using alkaline phosphatase (ALP). Performing this step prior to decapping 

meant that the 5′ ends of full length transcripts were protected from the action of the ALP, 

and therefore only these 5′ ends would be represented in the final library. 

Alkaline phosphatases are enzymes present in many organisms ranging from E. coli to 

humans (McComb et al. 1979). The three-dimensional crystallographic structure of E. coli 

alkaline phosphatase has been determined and the reaction mechanism for this group of 

enzymes has been inferred (Coleman, 1992). With few exceptions alkaline phosphatases are 

homodimeric, nonspecific phosphomonoesterases, with each catalytic site comprising of 

three metal ions (2 ZN
2+

 and one Mg
2+

). These three metal ions are required for enzymatic 

activity (Millan, 2006) and the conservation of these ions as well as the residues which 

comprise the catalytic zinc binding site and the substrate binding residues, suggests 

conservation of the reaction mechanism throughout evolution (Kim & Lipscomb, 1990). 

There are significant structural differences between different alkaline phosphatases, with 

several loop regions being inserted and/or deleted between E. coli and mammalian enzymes. 

This huge variability in structure is believed to cause the huge differences in catalytic activity 

known to be a feature of alkaline phosphatases, with mammalian enzymes displaying kcat 

values 10-100 orders of magnitude above that of those found in E. coli (Murphy et al., 1995).  

rAPid Alkaline Phosphatase from Roche is supplied as a recombinant enzyme isolated from 

bovine intestine and expressed in the yeast P. pastoris. This enzyme catalyzes the 

dephosphorylation of 5' phosphates from DNA and RNA, as well as nucleotides and proteins. 



156 
 

It was chosen as an alternative to shrimp or calf alkaline phosphatases as it is irreversibly 

inactivated by heat treatment for 2 minutes +75°C and is active in restriction enzyme buffers, 

allowing restriction enzyme digestion, dephosphorylation, enzyme inactivation, ligation, and 

5'-end labelling to be performed without purification steps (Roche). This makes it ideal for 

use in this 5’ sequencing protocol as it can be used to remove the the 5'-phosphoryl termini 

required by ligases, preventing ligation of the uncapped 5' ends to the SOLiD primers, while 

requiring fewer purification steps which could lead to sample loss or contamination.  

Early attempts at using this enzyme and the standard dephosphorylation procedure suggested 

by the manufacturer resulted in complete degradation of the RNA samples being treated, 

despite claims that the product is nuclease-free. We found that this could be prevented by the 

addition of an RNase inhibitor and that an incubation of 30 minutes at 37°C using the 

manufacturer’s dephosphorylation procedure was sufficient to completely dephosphorylate 

the uncapped RNA present in the sample.  

To test the effectiveness of this ALP treatment, a new 5'-specific RNA-seq library was 

created (+TAP+ALP). The library preparation protocol was as previously described, but 

RNA was treated with rAPid Alkaline Phosphatase prior to decapping. This transcription start 

sites identified by this new library should therefore match start sites identified by libraries 

prepared with the original protocol, but with vastly reduced contamination due to degradation 

products.  

As a control, a library was prepared from RNA which had been neither treated with ALP or 

decapped with TAP (-TAP-ALP), meaning that only natively decapped mRNAs should be 

sequenced. 5' ends identified by this library would not necessarily represent the location of 

transcriptional initiation, instead representing the products of decapping and 5' degradation. 

These RH locations should therefore still match to locations identified in the original 5'-
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specific RNA-seq library, but not to those identified by the library treated with ALP. If this 

method proved successful in isolating natively decapped transcripts, libraries created in this 

manner could be used for future investigation of mRNA decay in Aspergilli and other 

organisms. 

Finally, a new library was prepared using the original 5'-specific RNA-seq protocol (+TAP-

ALP), with no ALP treatment prior to decapping. This enabled all three libraries to be 

prepared using the same total RNA as starting material, and to be sequenced together on a 

single SOLiD version 3 Plus slide, making them directly comparable. 

Alignment of SOLiD reads from these three new libraries to the A. nidulans genome was 

performed using the ABI Bioscope software suite as previously described. As an additional 

quality control step, only reads where the entire 5' end of the read could be aligned to the A. 

nidulans genome were converted to readheads. Novel software (Chapter 2.5.8) was 

developed to identify reads where the 5' ends had been truncated by Bioscope to produce a 

valid alignment. These were removed from the dataset as truncation of the 5' end meant they 

would not necessarily identify the true 5' ends of transcripts. To reduced background 

mapping and false-positive TSS identification, this software also removed reads which had 

been successfully mapped to multiple loci. 

Aligned read data were converted to readheads using a different method to that described in 

Chapter 4.6. Instead of using pileup data, novel software was developed to generate pileups 

of RH mapping directly from the mapped read data (Chapter 2.5.9). This method was more 

robust and efficient than previous RH conversion software, and allowed RH pileups to be 

generated directly from full length and uniquely mapping read data. 
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Additional software was developed to align two sets of readhead data and report the number 

of matching RH positions (Chapter 2.5.10). To further reduce background noise and false 

positive transcription start site identification, positions with RH mapping frequencies <3 were 

removed from each dataset prior to alignment. This ensured that only positions with 

significant mapping and therefore representing real transcript 5′ ends would be compared. 

As predicted, transcription start sites identified by the alkaline phosphatase treated 

+TAP+ALP library showed excellent correlation with those identified by the library prepared 

using the original non-ALP treated protocol (+TAP-ALP). 86% of RH positions identified by 

+TAP+ALP aligned to those identified by +TAP-ALP, however this represented only 15.3% 

of RH positions in the latter dataset. Additionally, only 6.7% of +TAP+ALP positions could 

be aligned to those identified by the –TAP-ALP library, showing near complete elimination 

of natively decapped and degraded mRNAs from the ALP treated library. These statistics 

confirmed the presence of a large number of transcripts with partial 5′ degradation in libraries 

prepared without the use of ALP, and demonstrated ALP treatment to be extremely effective 

at removing these transcripts from the finished library while maintaining the integrity of TSS 

identification (Fig. 4.21). ALP treatment therefore represents a vast improvement over 

previous protocols for the robust analysis of full length mRNA 5′ ends and therefore the true 

positions of transcriptional initiation.  
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Figure 4.21. Comparison of 5′ specific RNA-seq readhead data from libraries produced 

with and without Alkaline phosphatase (ALP) treatment. RH coverage data is shown 

(black graphs) against the A. nidulans genome annotation (green track). Genes are shown on 

the annotation track in grey. The non-treated library (top graph) includes a trail of readheads 

immediately downstream of the TSS, and a number of other positions of readhead mapping 

further downstream. The exclusion of these readhead positions in the library treated with 

ALP (bottom graph) indicates that they represent the products of 5′ degradation, and ALP 

treatment is shown to produce a far more accurate representation of TSS positions. 
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To explore the validity of –TAP-ALP treated libraries for the investigation of 5′ degradation, 

-TAP-ALP RH positions were aligned to +TAP-ALP. A high level of consistency had been 

shown in the investigation of capped, full-length mRNAs, however only 31.4% of –TAP-

ALP RH positions could be aligned to +TAP-ALP, showing relatively poor consistency in 

the identification of degradation products.  

As degradation products were expected to represent a relatively low proportion of total-RNA, 

the filtering of RH positions with mapping frequency <3 was removed and alignment of –

TAP-ALP to +TAP-ALP repeated for the unfiltered readhead data. An almost ten-fold 

increase in the number of alignments was observed, however the total number of RH 

positions had increased by a factor of 19, resulting in a lower percentage match. This was due 

to the high frequency of low level and random background mapping, and highlighted the 

importance of filtering out positions with low mapping frequency for accurate TSS 

identification. The data were therefore extremely difficult to interpret, as less than 1/3 of 

positions were identified in both datasets.  

 

 

4.15.2.  Increased library quality using a shorter Random priming P2 

oligonucleotide 

Although successful 5′ specific RNA-seq libraries had been created and sequenced on the 

SOLiD platform, a number of issues arose during library creation and data analysis. Despite 

using the most robust method of PCR cleanup, the library was found to contain what 

appeared to be several artefacts producing large peaks at sizes 100, 150 and 253 bp. The high 

concentration of these artefacts in relation to the rest of the sample meant that they could 

potentially interfere with the efficiency of the emulsion PCR. While this did not appear to 
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reduce the quality of the library to below that of whole transcriptome RNA-seq libraries, it 

may still have impacted on efficiency and required further investigation. 

It was interesting to note that the sizes of the artefacts observed were all approximate 

multiples of 50. This was a similar size to the Random Priming P2 (barcoded) 

oligonucleotide primer used during first strand synthesis, which may therefore be responsible 

for the artefacts in the library. To investigate this issue, a shorter version of the Random 

Priming P2 oligonucleotide was developed which would be easier to remove by purification 

and size selection procedures. This shorter “Random priming P2 (non-barcoded)” 

oligonucleotide also presented the opportunity to more easily multiplex 5′ specific RNA-seq 

libraries. By designing the primer to include only the 3′ internal adaptor sequence in addition 

to the random priming degenerate sequence (Fig. 4.22), barcodes could be added during 

amplification using the standard SOLiD barcoding kit reagents and protocols. 

Libraries produced using this shorter oligo did not contain any of the previously observed 

artefacts when checked for quality on an Agilent 2100 bioanalyser (Fig. 4.23). A small, 

unexpected peak was observed at 112 bp, which could be easily removed by a secondary 

round of size selection. However, this was deemed unnecessary as the concentration of the 

artefact was so low that it would have no noticeable effect on the efficiency of emulsion PCR. 

This shorter P2 oligo therefore represented a marked increase in library quality compared to 

the longer, pre-barcoded P2, as well as providing multiplexing compatibility for future 5′ 

specific RNA-seq libraries. 
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Figure 4.22. Comparison of Random priming P2 oligonucleotides. The two primers are 

aligned and presented in 5'-3' orientation. The shorter version of the random priming P2 

contains only the internal adaptor before the SOLiD barcode (blue) and the degenerate 

sequence (red). The internal adaptor provides a binding site compatible with any of the 

barcoded primers in the PCR primer mix from ABI, allowing any barcode to be added to a 

sample once the cDNA has been generated.  

 

 

 

Figure 4.23. Agilent bioanalyser plots for samples prepared with the barcoded and non 

barcoded Random Priming P2 oligonucleotide. Library preparation with a barcoded 

Random Priming P2 oligonucleotide (A) resulted in unwanted peaks at 100, 150 and 252 bp, 

indicating contamination of the SOLiD library by PCR artefacts. The shorter Random 

Priming P2 oligonucleotide (B) produced higher quality libraries in which the sizes of these 

peaks were greatly reduced. Peaks at 15 (green) and 1500 (purple) are standard size markers. 

Random priming P2 (barcoded):  

CTGCCCCGGGTTCCTCATTCTCTAAGCCCCTGCTGTACGGCCAAGGCGNNNNNC 

Random priming P2 (non-barcoded):   

                                                                     CTGCTGTACGGCCAAGGCGNNNNNC 
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To fully assay the improvement in library quality as a result of this new, shorter P2, the 

creation of a new SOLiD library was required, which could be compared to previous libraries 

created with the longer P2 oligo. Comparisons between protocols were performed using the 

newer libraries rather than the first 5'-specific RNA-seq data, as newer libraries were 

sequenced on the updated SOLiD version 3 Plus system, where as the previous 5' RNA-seq 

library had been sequenced on the older SOLiD version 2. Comparing libraries sequenced on 

the same version of the SOLiD system therefore provided a more robust assay of library 

quality. 

A biological repeat of the previously discussed TAP+ALP library was created using the new, 

shorter P2 oligo. To ensure the two libraries were comparable, the same TAP and ALP 

treated RNA sample was used in the creation of this new library, and the only change in the 

protocol was using the shorter P2 to prime first strand synthesis. The library was multiplexed 

and sequenced on the same proportion of a SOLiD version 3 Plus slide as previous libraries, 

again to ensure comparable data. 4,053,500 reads were mapped to the genome with Bioscope, 

of which 3,143,927 (77.6 %) mapped to unique positions. Therefore, the new library 

demonstrated a marked increase in quality over the library prepared with the longer P2 oligo, 

which produced just over half this number of mappable reads, of which only 66.9 % were 

mapped to unique positions. This resulted in a nearly 3 fold increase in high quality, 

mappable reads, which should translate to greater coverage and therefore a more robust 

identification of transcription start sites, especially those with lower levels of expression. 

To test this hypothesis, the RH positions identified by the two libraries were filtered of 

positions with RH frequencies <3, then aligned and compared (as previously described). 

87.5 % of transcription start sites identified by the full length oligo TAP+ALK library were 

also identified by the new library, indicating a high level of consistency between runs. 

Increasing the minimum RH frequency threshold for filtering to 20 increased the percentage 
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of TSS matches to 97 %, showing that nearly all highly expressed TSS positions identified by 

TAP+ALK library were conserved in the new, shorter P2 library. The high level of 

consistency between the two libraries confirmed robust TSS finding protocol. However the 

greater coverage of the shorter P2 library resulted in more than double the number of putative 

transcription start sites (66,807 compared to 30,312) being identified with RH frequency <3. 

As such this represented a marked improvement in library quality and a more complete TSS 

analysis resulting from the use of this shorter oligo.  

Protocols for 5'-specific RNA-seq were therefore updated to use the shorter P2 

oligonucleotide, as it had been shown to produce both higher quality fragment libraries with 

fewer PCR artefacts, resulting in a greater throughput of data from SOLiD sequencing and a 

more robust analysis of transcription start sites. 

 

 

4.16. Discussion 

A protocol for 5′ specific RNA-seq on the ABI SOLiD platform has been developed and used 

to map the transcription start sites of mRNA transcripts in A. nidulans. Reads from 5′ specific 

RNA-seq library mapped to the A. nidulans genome at a similar rate to previous whole 

transcriptome libraries, indicating similar library quality. 14 million transcript 5′ ends were 

mapped and used to define 15,475 TSS regions of significant mapping. 

A high level of TSS diversity was observed between transcripts, with TSS regions generally 

extending up to 60 bp either side of the primary TSS location. This produced TSS regions up 

to 121 bp in length, with global analysis RH mapping within TSS showing a consistent 

pattern for TSS diversity both within and between chromosomes. While the vast majority of 

TSS regions appear to fit within these limits, some outliers with greater diversity did exist. 
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This is reasonably consistent with TSS region sizes identified in mice, which were shown to 

have an average length of 134.2 bp (Kawaji et al., 2006). 

TSS regions have been categorised based on a statistical analysis of RH distribution. Of the 

15,475 regions analysed, 3,777 (24.4 %) had well defined start sites with transcription 

predominantly confined to a single base pair, with very little diversity (CIL <2). Work in 

mice by Kawaji et al., (2006) also classified TSS regions based on distribution. Four classes 

were identified, presenting as either: a single dominant peak a general broad distribution, a 

broad distribution with a dominant peak, and a bimodal or multimodal distribution. Only the 

first class represents a narrowly defined TSS location, whereas the remaining classes are 

categories of broad regions with multiple TSSs. Kawaji et al., (2006) found that 23% of TSS 

regions in mice fell within the first category of narrowly defined TSSs. This is almost 

identical to the 24.4 % of TSS regions observed in A. nidulans with CI lengths <2. 

Narrowly defined transcription start sites were investigated for potential consensus sequence 

which could guide the machinery of transcription to these very specific locations. No strong 

bias in sequence was observed in this dataset, indicating that there is likely to be a more 

distant element within the promoter which influences TSS specificity. RNA polymerase II 

dependant promoters of vertebrates have previously been studied and divided into two groups, 

categorised as either TATA or CpG types. The former has sharp and peaky TSS clusters with 

the peak TSS at a strict distance from the TATA box, while the latter generally has 

contrastingly broad TSS clusters (Suzuki et al., 2001; Carninci et al., 2006). Further work 

focusing on non-vertebrate promoters in Drosophila melanogaster found both sharp and 

broad TSS clusters, but while Drosophila possessed TATA type promoters, it did not possess 

CpG type (Hoskins et al., 2011). These findings were consistent with those in Arabidopsis 

thaliana, where the TATA promoter is again associated with sharp TSS clusters (Yamamoto 
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et al., 2011). It is therefore likely that TSS regions identified as having low CI length in A. 

nidulans are associated with TATA type promoters.  

Motif finding within promoter sequences surrounding TSS regions with both narrow and 

broad TSS distributions has been performed. Motif finding results from multiple pieces of 

software were combined with distribution analysis within the promoter to identify 16 

candidates most likely to represent strong, functional motifs. The degree of 

overrepresentation of these motifs was far greater in the dataset representing narrowly 

defined TSS regions, further indicating functionality and supporting the hypothesis that 

upstream elements play a vital role in determining the position of transcriptional initiation.  

Since this analysis, the 5′ specific RNA-seq protocol had been include ALP treatment and use 

a shorter, non-barcoded Random Priming P2 oligonucleotide. These changes were shown to 

produce higher quality SOLiD libraries and a more robust analysis of transcription start site 

locations. However, further analysis of these data using the methods previously described in 

this Chapter was not performed due to time constraints. It would therefore be beneficial to 

repeat TSS identification and promoter motif analysis using the more accurate data from a 

library prepared in this way. 

These developments also resulted in a proposed method for the investigation of mRNA 

decapping and 5′ degradation. mRNA degradation is a vital process for the control of mRNA 

expression through rapid reduction of mRNA concentration, and has been studied in a 

number of organisms (Belasco & Brewerman, 1993; Ross, 1995; Abler & Green, 1996; 

Caponigro & Parker, 1996). Degradation of transcripts can occur through three principal 

mechanisms; 5'-3' exonuclease or 3'-5' exonuclease mediated degradation, or endonuclease 

cleavage followed by exonuclease mediated degradation (Caponigro & Parker, 1996). Overall 

stability of the transcript is determined by features such as primary sequence and tertiary 
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structure, as well as specific structures such as the 5' cap and poly(A) tail. These features 

cause some transcripts to be fundamentally unstable, while others are very stable, often 

linked with the activity of the transcript and if its action is required to be short or long lasting 

(Herrick et al., 1990). There are also many documented examples of transcripts with 

regulated stability (Surosky & Esposity, 1992; Klausner et al., 1993; Cereghino & Schaffler, 

1996). AreA is an example of this, and its degradation has been well characterised in A. 

nidulans (Morozov et al., 2000). Degradation is generally preceded by poly(A) shortening 

(Caponigro & Parker, 1996), which triggers decapping when the poly(A) tail is shortened to 

around 15 residues and  facilitates rapid degradation of the transcript by 5'-3' endonucleolytic 

decay. In A. nidulans, decapping is often preceeded by modification of the shortened poly(A) 

tail with the addition of CUCU, which has been proposed to act as a precurser to decapping 

(Morozov et al., 2012). The exact mechanism by which this modification influences 

degradation is still unknown, as is the precise order of events in which degradation occurs. 

Investigation of mRNA degradation products in mRNA-seq data may therefore yield valuable 

insight into this process, by providing a snapshot of all degradation products in a given 

sample of Total RNA. 

 

Initial investigation of the resultant data indicated significant inconsistency between 

degradation products identified by two different RNA-seq libraries. This may be due to the 

progressive nature of exonuclease degradation, the products of which are randomly sampled 

by RNA extraction at a single time point. However, positions that were identified in both 

libraries may represent specific endonuclease cuts, or points at which exonuclease activity is 

paused. While these data were therefore extremely interesting, further and more detailed 

analysis was required to fully understand the process of 5′ degradation in A. nidulans. 

Work performed by Cowley (2012), conducted under my supervision, utilised motifs 

identified in this thesis to perform global analysis of motif distribution. We designed software 
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to perform motif alignment and association with DNA features in the A. nidulans genome. 

The results of this analysis showed statistical significance of motif distribution throughout 

DNA features, further supporting the hypothesis that they are functional elements within the 

promoter sequence and throughout the genome. In addition to the enrichment previously 

observed in promoter regions (Chapter 4.12), motif enrichment was also observed 

downstream of transcription start sites and within introns. Investigating these sequence motifs 

in more depth at exon-intron junctions may link these to alternative splice sites or indicate 

roles in the regulation of splicing events (Holse & Ohler, 2008). Cowley (2012) also 

performed analysis of motifs associated with annotated gene models, using gene ontology 

(GO) to search for enrichment of these genes within specific functions, pathways or 

components of the genome. Genes associated with two motifs; AARARAAA and TTTYTTY, 

showed significant enrichment in DNA response and DNA/RNA metabolic processing 

respectively, indicating distinct biological functions. 
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5. New whole transcriptome libraries 

5.1.  Introduction 

Since the sequencing and analysis of the SOLID RNA-seq libraries described in Chapter 3, 

significant advances were made in both library preparation and SOLiD sequencing. In 

addition to increased bead density, new slide chemistry for greater bead retention during 

sequencing and improved algorithms for detecting and distinguishing bead signals during 

ligation cycles enabled higher throughput. Optimisation of the ligation chemistry also led to 

significant improvements in accuracy and performance compared to previous SOLiD 

versions. These enhancements enabled the SOLiD 4 system to generate up to 100 GB of 

mappable sequence or 1.4 billion reads per run, with an increased read length of 50 bp and 

accuracy of >99.94% (Ichikawa et al., 2010).  

To take advantage of these developments in sequencing technology, new whole transcriptome 

libraries were created using the latest reagents and protocols. The SOLiD Total RNA-seq kit 

had replaced both the Whole transcriptome Analysis and Small RNA Expression kits, 

providing streamlined and more robust protocols for library creation. Using this kit in 

combination with the SOLiD RNA barcoding kit, samples could be multiplexed and run 

together on the same slide, lowering the sequencing cost per sample. We were therefore able 

to produce more libraries and significantly more data compared to previous sequencing runs.  

A wide range of new read mapping software had also recently been released or adapted to 

support colour space reads produced by SOLiD sequencing. This included Tophat, a splice-

junction mapper for RNA-seq reads, which gained colour space support in release 1.1.0 on 

10/03/2010. Tophat aligns RNA-Seq reads to genomes using the ultra high-throughput short 

read aligner Bowtie (Langmead et al., 2009), and then analyzes the mapping results to 

identify splice junctions between exons. The ability to split reads and map them across splice 
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junctions allowed Tophat to accurately define the intron-exon structure of genes, locate 

previously unreported junctions and identify potential occurrences of differential transcript 

splicing (Trapnell et al., 2009). This not only provided more accurate identification of gene 

structure, but gave greater scope for the investigation of transcript splicing, making Tophat 

the preferred method of read mapping for this analysis. 

 

5.2. Library preparation and sequencing 

Using RNA extracted from G00 wild-type A. nidulans cultures grown in a variety of 

conditions, we aimed to sequence transcripts from a wide range of expression profiles, 

therefore capturing as much of the transcriptome as possible. Two of the conditions were 

repeats of the previous S1 and S3 libraries, made using RNA from culture grown on either 

minimal media with nitrate as sole nitrogen source, or on complete media. Another library 

was created from culture grown on minimal media with ammonium replacing nitrate as an 

alternative nitrogen source. These three conditions therefore represented A. nidulans grown 

on abundant nutrients, a sole primary nitrogen source, and a sole secondary nitrogen source. 

The uptake and utilisation of different nutrients requires unique cellular mechanisms which 

are tightly regulated by a number of genes associated with each metabolic pathway (Caddick 

et al, 1994) and will therefore produce different expression profiles. Two additional libraries 

were created from cultures grown initially on minimal media with nitrate, then transferred to 

minimal media with no nitrogen supplement for either 4 or 72 hours (see Chapter 2.2.4 for 

detailed growth conditions of all cultures). The two lengths of nitrogen starvation aimed to 

produce different gene expression profiles from alternative points in the cell’s stress response, 

which has been shown to activate in low nitrogen conditions (Etxebeste et al., 2010).  
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RNA extracted from these cultures underwent poly-A selection, 5′ decapping, and whole 

transcriptome library preparation with the SOLiD Total RNA-seq and SOLiD RNA 

barcoding kits (ABI), following the manufacturer’s protocol. Completed libraries were 

submitted to the Liverpool Centre for Genomic Research (CGR) for SOLiD sequencing. 

Following quality control checks performed by the CGR, libraries were pooled to create a 

single sample containing all libraries in equal concentration. The multiplexed libraries were 

then sequenced on the SOLiD 4 sequencing platform. Reads associated with each barcode are 

separated by software on the SOLiD machine, giving individual outputs for each sample. The 

number of reads produced by each library is displayed in Table 5.1. 

 

 

Table 5.1. Whole Transcriptome libraries sequenced on the SOLiD 4 system. Growth 

condition and number of reads produced by SOLiD sequencing is given for each library 

Library condition Number of reads 

Minimal medium + nitrate 60,003,026 

Complete medium 60,257,046 

Minimal medium + ammonium 46,929,150 

4 hour nitrogen starvation 71,009,476 

72 hour nitrogen starvation 65,995,033 

 

 

 

5.3.  SOLiD read mapping 

The A. nidulans genome assembly (version CADRE 2.5) was downloaded via the 

ensemblgenomes ftp server (ftp://ftp.ensemblgenomes.org/pub/) and used to assemble a 

Bowtie compatible FASTA index (Chapter 2.4.2). 
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To ensure the relative quality of each fragment library was consistent between samples, a 

preliminary test of mapping quality was performed with Bowtie alone. Reads were trimmed 

at the 3′ end to a final length of 35 bp as the error rate in SOLiD reads increases rapidly with 

each additional base position beyond 35 bp from the 5′ end (Applied Biosystems, 2008). 

Stringent mapping of the trimmed reads against the A. nidulans genome was performed in 

Bowtie, allowing 0 mismatches per read in order to best assess sequencing quality for each 

sample. Non-uniquely mapping reads were assigned randomly to a single position to prevent 

total read mapping statistics from being artificially inflated by reads mapping to multiple 

positions. Using these settings, all libraries mapped to the A. nidulans genome at a low rate, 

but demonstrated excellent balance of reads mapping to each strand. Percentage read 

mapping between samples was also reasonably consistent, with only the 72 hour nitrogen 

starvation library showing significantly increased mapping compared to other samples (Table 

5.2).  

 

 

Table 5.2. Read quality assessment mapping. Read distribution between forward and 

reverse strands was even for each sample and mapping figures showed a high level of 

consistency between samples, with only the 72 hour nitrogen starvation sample showing a 

significantly higher level of mapping. 

Library condition Number of reads Mapped to 

forward strand 

Mapped to 

reverse strand 

Minimal medium + nitrate 60,003,026 2781874 (4.6%) 2810440 (4.7%) 

Complete medium 60,257,046 3523898 (5.8%) 3501683 (5.8%) 

Minimal medium + 

ammonium 

46,929,150 2122804 (4.5%) 2142050 (4.6%) 

4 hour nitrogen starvation 71,009,476 4098809 (5.8%) 4095745 (5.8%) 

72 hour nitrogen starvation 65,995,033 6990113 (10.6%) 7145774 (10.8%) 
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Full mapping of reads from newly sequenced samples was performed with Tophat in 

conjunction with Bowtie using basic settings (methods 2.4.3). No reference genes were 

supplied to Tophat for this mapping. Had gene models been provided, Tophat would have 

extracted the transcript sequences and assembled an artificial transcriptome, then use Bowtie 

to map reads preferentially to this construct, before mapping to the rest of the genome. This 

would have led to a strong mapping bias at the loci of current gene models, which our 

previous data had shown to be incomplete and of poor quality. By mapping without a gene 

model annotation we aimed to remove this bias and produce a more accurate representation 

of the A. nidulans transcriptome. 

Resulting BAM files were indexed and sorted using SAMtools to facilitate visualisation of 

mapped reads in the Broad Institute’s Integrative Genomics Viewer (IGV) software 

(Robinson et al., 2011; Thorvaldsdottir et al., 2012). IGV is a high-performance visualization 

tool for interactive exploration of large, integrated genomic datasets, capable of displaying 

both reads which map across splice junctions, and separate tracks to show junctions predicted 

by Tophat (Robinson, et al., 2011; Thorvaldsdottir et al., 2012). 

Visual analysis of the mapped data in IGV displayed a large number of Tophat-defined splice 

junctions which correspond to those in the annotation, but included many more which 

spanned extremely long genetic regions, often traversing several genes (Fig. 5.1). One of the 

ways Tophat identifies putative splice junctions is by splitting reads which partially align to 

the genome into two segments, mapping the partial alignment and the rest of the read 

independently. If the second segment is mapped downstream of the first, Tophat identifies the 

gap between them as a splice junction (Trapnell et al., 2009). The high frequency and 

obvious error of these extremely long junctions would have led to difficulties and inaccuracy 

in data analysis. This led to a reassessment of mapping criteria to reduce the occurrence of 
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this phenomenon, and subsequent remapping of each sample to obtain more accurate junction 

predictions. 

 

 

 

Figure 5.1. Tophat based mapping of extremely long splice junctions displayed in IGV. 

While the majority of splice junctions predicted by Tophat fit the annotation, a large number 

of junctions (shown as horizontal red lines in bottom track) were predicted to span several 

genes (genes are shown in blue in the gene annotation track). This was due to segments from 

split reads mapping at distant loci and Tophat defining the gap in between as a splice junction. 

Instances of this read splitting are shown in the mapped reads track, blocks of red (forward 

strand) and blue (reverse strand) indicate reads aligned to the genome, while the horizontal 

lines indicate gaps between split reads. 

  



176 
 

5.4. Assessment of Tophat junction mapping 

To address the issue of excessively long junction finding, it was necessary to limit the 

maximum intron length when using Tophat to perform read alignment. The default maximum 

intron length in Tophat is 500,000, and when searching for junctions ab initio, TopHat will 

ignore donor/acceptor pairs farther than this many bases apart. This is many times larger than 

any known junction found in the A. nidulans genome and provided a reason for Tophat 

reporting junctions which spanned unrealistic distances and across multiple genes. 

As a test of this hypothesis, Tophat mapping was performed with a maximum intron length of 

21,000, the size of the largest gene in the current annotation. Being many times smaller than 

the default 500,000 bp length, this greatly reduced the number of extremely long introns 

found by Tophat. However, a number of extremely long introns persisted.  

To determine an appropriate limit for intron length in A. nidulans, currently annotated intron 

lengths were used as a starting point. Software was written to extract a list of all intron 

lengths from the current A. nidulans gene annotation. While the software output contained the 

length of every intron in the A. nidulans genome, further processing was required to extract 

meaningful data. To identify the range of intron sizes, the software was updated to sort the 

values in the intron length array by size. This produced an output file of intron lengths listed 

from shortest to longest, assisting the rapid identification of the range of intron sizes in A. 

nidulans and the maximum intron size found (Chapter 2.5.11)   

To gain an overview of all intron lengths, graphical representations of the resulting dataset 

were produced in R (R Development Core Team, 2008) (Fig. 5.2). The box and whisker plot 

produced indicated an extremely low interquartile range with a large number of outliers. To 

provide an alternative view of the data, a histogram was also created in R (Fig. 5.3), 

providing a clearer indication of the number of introns of each length. 
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Figure 5.2. Box and whisker plot of intron lengths in A. nidulans. The length of all introns 

is plotted, with the five number summary indicated by the box and whiskers. The box 

indicates the lower quartile, median and upper quartile, while the whiskers indicate the lowest 

and highest values determined by statistical methods, indicating that the majority of introns 

fall within this length range. The circles represent lengths determined to be statistical outliers, 

meaning that the majority of intron lengths fall within the boxed region around 40-100 bp, 

with the median value being 82. However, there is a significant number of outliers observed 

up to approximately 1200 bp in length, beyond which only very few introns are observed. 
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Figure 5.3. Histogram of intron lengths in A. nidulans. The number of introns of each 

length is shown, indicating the vast majority fall within the 40-100 bp length range as was 

suggested by Fig. 5.2.  
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Annotated intron length in A. nidulans was shown to range between 2 and 3571 bp. However, 

from Fig. 5.2 and Fig, 5.3 it was apparent that nearly all annotated introns are < 1200 bp, with 

the dataset containing a small number of larger outliers. The largest intron was more than 

double the length of any other at 3571 bp, raising questions about the validity of this 

annotation. To identify the gene containing this intron, the software was updated to record the 

ID of genes as they were processed and record the ID of the gene containing the largest intron. 

The finished version of this software is described further in Chapter 2.5.11. 

The modified software was used to identify the largest intron as being annotated in gene 

AN4390.4 (CADANIAG00006067). While our RNA-seq data showed no evidence of an 

intron at this locus (Fig. 5.4), it is still possible that introns of this length would exist in A. 

nidulans. Lowering the maximum intron length beyond this point would potentially have 

prevented real introns from being found by Tophat. A maximum intron size therefore had to 

be over 3571. An optimal limit of 5,000 was selected as it appeared to give excellent mapping 

results on visual inspection in IGV, while being appropriately large so as not to exclude any 

real junctions of greater than average length. Maximum intron lengths below this value were 

also tested, however this caused no appreciable improvement in mapping quality and only a 

minor decrease in junctions found (32 fewer were found with maximum intron length of 

4,000).  
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Figure 5.4. RNA-seq and junction data for gene AN4390.4 (CADANIAG00006067). 

Tophat aligned total RNA-seq reads displayed in IGV is shown, including read coverage (top 

track), individual for the forward (blue) and reverse (red) strands (middle track). The bottom 

track shows the annotated gene in this region (blue) and the splice junctions predicted by 

Tophat (red). This confirmed the presence of 2 small introns, however there was no evidence 

for the existence of the large 3571 bp intron at this locus. 
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More recent annotations of the A. nidulans genome which were released subsequent to this 

analysis no longer contain an intron at this locus. Studies into the structure of AN4390 have 

shown the gene to start at the exon displayed before the first confirmed junction in Fig. 5.4 

(de Groot et al., 2009).  

 

5.5. Modified Tophat mapping  

In order to produce a more accurate representation of the A. nidulans transcriptome, mapping 

of all five libraries sequenced on the SOLiD 4 system was repeated using Tophat in 

conjunction with Bowtie, with maximum intron length set to 5,000 bases.  

A mapping run was also performed using all five libraries as input. This combined run aimed 

to produce the maximum possible depth of coverage and widest expression profile. Table 5.3 

contains the alignment and junction finding results for each library. 

 

Table 5.3. Mapping and splice junction identification by Tophat with a maximum 

intron length of 5000 bp. Total read mapping is displayed in column 2, and the number of 

unique mapping reads in column 3, also expressed as a percentage of total reads sequenced in 

each library. The number of unique splice junctions identified by Tophat is displayed in 

column 3. 

Sample  Reads 

mapped 

(million) 

Unique mapping 

reads (million) 

Splice junctions 

Minimal medium + nitrate 13.8 (22 %)  12.0 (20 %) 10232 

Complete medium 12.0 (20 %) 11.5 (19.2 %) 11549 

Minimal medium + ammonium 8.0 (17 %) 7.4 (15.9 %) 9995 

4 hour nitrogen starvation 14.0 (20 %) 13.2 (18.7 %) 12247 

72 hour nitrogen starvation 20.4 (31 %) 19.8 (30.0 %) 15352 

Combined 76.7 (25.2 %) 73.3 (24.2 %) 20988 

 



182 
 

No gene model annotation was provided to Tophat and Bowtie for any of the mapping runs 

shown in Table 5.3. As a form of control, a single mapping run was conducted using the 

minimal media + nitrate library with a supplied gene model annotation in GTF format. 

Tophat uses a gene model annotation to guide read mapping preferentially to these regions, 

and supplying this annotation resulted in a significant reduction in both total and unique read 

mapping, and also in the number of splice junctions identified. It was theorised that this 

observation was caused by preferential mapping to annotated gene models, reducing the 

number of reads mapped to other locations. A third mapping run was performed with Tophat, 

to further investigate this issue, using the GTF annotation in conjunction with the “—no-

novel-juncs” option, which prevented Tophat from reporting any junctions which were not 

supported by the gene models in the GTF annotation. The results of these runs are shown in 

Table 5.4. 

 

Table 5.4. Mapping and splice junction identification by Tophat with alternative 

settings. Three Tophat mapping runs were performed for the same SOLiD read library, using 

different settings for each run. For the first run listed, no GTF gene annotation was supplied. 

The second run was guided by the GTF but still allowed the discovery of novel junctions. 

The final run did not report any junctions which did not match to those in the GTF annotation. 

Total read mapping, uniquely mapped reads and the number of reported splice junctions is 

given for each run. 

Tophat settings  Reads mapped 

(million) 

Uniquely 

mapping reads 

(million) 

Splice junctions 

No GTF 13825877  12044976 10232 

GTF 10168951 9544085 7827 

GTF and –no-novel-juncs 10160824 9546179 10216 
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While both mapping runs which were guided by the GTF annotation produced similar read 

mapping figures, the number of splice junctions reported increased when no novel junctions 

were permitted. To investigate the implications of these data, software was written to 

compare the junction positions reported by each mapping run. By comparing each set of 

junctions from the run which allowed novel junctions, to those which included junctions 

found in the GTF, the number of novel junctions reported could be determined in each case.  

Initially this software compared the positions of junction features from two junctions.bed 

files produced by Tophat, however this produced extremely high numbers of mismatches 

between datasets. The software was then rewritten to use feature length data contained in 

another part of the junctions.bed files to adapt the feature positions and obtain the precise 

junction start and stop sites. The finished software is described further in Chapter 2.5.12. 

While this significantly increased the accuracy of the analysis, the number of mismatches 

between runs was still high. Despite the low number of junctions reported by the GTF only 

run, 2282 of these were shown to not match those of the annotation, while this number 

increased to 5765 in the run where no GTF was supplied. 

These results imply that the use of a GTF annotation hinders the depth of read mapping to 

previously unannotated regions of the genome, and therefore the discovery of novel genes 

and splice junctions. All future work into novel feature discovery therefore utilised Tophat 

mapping where no gene model annotations had been supplied. 

 

5.6. Genome utilisation indicated by Tophat mapping of RNA-seq reads 

Investigating the proportion of the A. nidulans genome to which reads could be aligned gave 

an indication of genome utilisation, and the breadth of transcriptional activity. Studies in 
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other organisms have previously indicated extremely broad transcription across their 

respective genomes. At least 93% of the human genome is thought to be transcribed  (The 

ENCODE project consortium, 2007; Cheng, et al., 2005; Bertone  et al., 2004), and similar 

levels of transcription have been observed in the mouse genome (The FANTOM Consortium, 

2005).  

The proportion of the A. nidulans genome being transcribed was calculated based on the 

number of bases to which reads had been aligned. To access this statistic, the mpileup feature 

of SAMtools was used to convert read alignment data from Tophat-produced BAM files, into 

a pileup format summarising the base calls of aligned reads to the reference FASTA. The 

resulting pileup file contained a newline-separated list of only those reference bases covered 

by aligned reads, excluding bases where no alignment occurred (Chapter 2.4.5). The number 

of these bases was determined using a linecount of the pileup file, and used to calculate the 

percentage of the genome being transcribed.  

The analysis was repeated for a combined dataset of RNA-seq reads from all five libraries. 

By combining the reads from different conditions, we aimed to produce a dataset in which the 

maximum number of genes were being expressed, and therefore a more accurate assessment 

of the proportion of the genome which could be transcribed in A. nidulans.  

With RNA-seq reads from all 5 libraries combined into a single dataset, Tophat and bowtie 

were able to align reads to 24096731 bp of reference genome, indicating that 80.1% of the 

genome is transcribed as mRNA. This seemed extremely high, as previous analysis of the A. 

nidulans genome predicted 51.5% total protein coding DNA (Galagan et al., 2005). 

Reflection on the cause of this discrepancy revealed an error in the analysis, as the pileup 

format displays alignments from both strands on a single line. This analysis therefore showed 
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the proportion of the genome transcribed on either strand, rather than being nucleotide 

specific, thus artificially inflating the amount of the genome which appeared to be transcribed.    

To circumvent this issue, the fifth column of each pileup file was isolated. This column 

contains information on match, mismatch, indel, strand, mapping quality, starts and stops of 

reads aligned to a given position. By searching these data for characters indicating the strand 

to which reads had been aligned at each position, a count of strand specific alignments was 

performed.This produced far more accurate estimates of genome utilisation (Table 5.5). 

 

 

 

Table 5.5. Nucleotide specific alignments to the A. nidulans genome and proportion of 

the genome transcribed. Nucleotides to which RNA-seq reads had been aligned on each 

strand were counted. These figures were combined to give the total proportion of the genome 

transcribed in each condition. 

Sample Bases expressed on 

forward strand 

Bases expressed on 

reverse strand 

Proportion of  

genome transcribed 

Minimal media + 

nitrate 

9237980 9316688 18554668 (30.8%) 

Complete media 8882344 8932957 17785301 (29.6%) 

Minimal media + 

ammonium 

8218262 8285336 16503598 (27.4%) 

4 hour nitrogen 

starvation 

9254205 9314739 18568944 (30.8%) 

72 hour nitrogen 

starvation 

11679565 11783429 23462994 (39.0%) 

Combined 14218016 14356861 28574877 (47.5%) 
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The proportion of the genome found to be transcribed by this analysis was far more in line 

with previous reports. Libraries were created with poly-A selected mRNA, meaning rRNA 

was not represented. rDNA in A. nidulans has previously been defined as a tandemly repeated 

7.8 kb unit (Borsuk et al., 1982) with a copy number of ~45 (Ganley & Kobayashi, 2007), 

adding another 351 kb of transcribed DNA to this total. Small RNAs were also excluded due 

to the 50 bp read length of whole transcriptome RNA-seq libraries, as sequences shorter than 

50 bp result in a high number of mismatches during alignment and the read being rejected as 

low quality. Sequencing studies of sRNAs in the filamentous fungus Neurospora crassa have 

been conducted using high-throughput techniques on the Illumina/Solexa genome analyser 

and 2,180,272 sRNA (17-30 nt) sequences which matched the Neurospora genome assembly 

(accession number GSE21175) were identified (Lee et al., 2010). The genome of Neurospora 

crassa has been reported as completely sequenced in 2003 (Galagan et al., 2003). Current 

estimates suggested that the 41 megabase genome encodes 9,733 genes. While this genome 

was found to be approximately one third larger than that of A. nidulans, the amount of sRNA 

transcription in Neurospora indicates that a significant increase in genome utilisation would 

be observed should sRNAs be included in this analysis.  

Significant discrepancies were observed between the number of bases aligned to RNA-seq 

reads on both strands (table 5.6), compared to strand specific alignments based on individual 

nucleotides (table 5.5). The higher numbers observed in the latter analysis indicate a large 

number of bases with reads aligned to both forward and reverse strands. For the combined 

dataset, 4,478,146 bases were observed where transcription appears to be occurring on both 

strands. This supports previous estimates of antisense transcript numbers in A. nidulans from 

RNA-seq data (Chapter 3.4). 
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5.7. Discussion 

The mRNA transcriptome has been sequenced for A. nidulans cultures grown in 5 different 

conditions on the SOLiD version 4 platform. Alignment of RNA-seq reads to the reference 

genome with Tophat and Bowtie has been performed, with a maximum intron length of 5,000 

to prevent the identification of incorrect splice junctions, and using no reference gene model 

to achieve the highest possible level of mapping and novel feature discovery. 

Compiling individual libraries into a single dataset shows a significant increase in the 

proportion of the genome being expressed, indicating variance in gene expression profiles 

between samples grown in different conditions.  

A high level of transcription has been observed, with approximately 47.5% of the genome 

aligned to RNA-seq reads, indicating broad transcriptional utilisation of the A. nidulans 

genome, in keeping with findings from previous sequencing studies. These data also indicate 

a significant level of antisense transcription, supporting previous estimates and warranting 

further investigation. However, this analysis did not take into account regions such as introns 

where no mapping should occur, and the fact that these libraries will not include sRNAs. The 

total coverage may also be affected by the uneven mapping profile observed due to the 

fragmentation method employed during SOLiD library preparation (as discussed in Chapter 

3.5), however the increased read length and depth of coverage in these newer libraries 

appears to drastically reduce the number of bases in expressed exonic regions where the 

frequency of read mapping is reduced to 0 due to fragmentation bias. It is therefore expected 

that any effect this bias has on overall genome coverage will have been minimal. 

Additionally, Tophat mapping with alternative GTF annotation settings indicated that read 

mapping to junctions was guided to a greater degree when novel junctions were not permitted. 

However, the depth of mapping was greatly reduced when a GTF annotation was supplied. A 
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potential workaround for this could be to first perform Tophat mapping with no reference 

annotation, thereby achieving the greatest possible depth of coverage and identifying splice 

junctions based purely on RNA-seq data. The resulting junction data could then be used to 

build an annotation that could be then supplied to Tophat to guide a second mapping run, 

potentially increasing the accuracy of mapping across novel splice junctions. 
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6. Identification of putative novel and antisense genes in Aspergillus nidulans 

6.1. Previous observations 

Whole transcriptome RNA-seq data from early SOLiD libraries S1 and S3 had been aligned 

to the A. nidulans reference genome using Corona lite. Visual analysis of these data in the 

Artemis genome browser had revealed a high level of read mapping to intergenic regions, 

indicating the existence of a large number of putative novel genes at these loci (Chapter 3.4). 

Many of these genes appeared to be located in antisense configuration with existing gene 

models, and an estimated 5-18 % of annotated genes were associated with some form of 

antisense transcription. To further investigate these observations, estimation of the number of 

novel transcripts was performed using early RNA-seq data produced on the SOLiD version 2 

platform (Chapter 1). Subsequent developments in RNA-seq technology and data analysis 

tools led to more robust identification and analysis of novel transcripts, and facilitated further 

analysis of putative antisense relationships between transcripts. 

As these putative novel genes were not detected by previous gene prediction analysis, it is 

likely that the majority will be non-coding. Non-coding RNAs fall into two broad categories: 

regulatory and house-keeping. Regulatory ncRNAs are often expressed during development 

or in response to environmental conditions such as nutrient defficiency, and are often 

restricted to subcellular compartments based on their function (Prasanth & Spector, 2007; 

Clark & Mattick, 2011; Tisseur et al., 2010). House-keeping ncRNAs on the other hand are 

constitutively expressed and include small nuclear, small nucleolar, ribosomal, transfer and 

spliceosomal RNAs (Wright & Bruford, 2011). This means that while ncRNAs do not encode 

proteins, they still contain information and perform functions vital to cell viability, and have 

many features similar to protein coding genes, including the ability to be differentially spliced 
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or polyadenylated, and either nuclear or cytoplasmic (Ponting et al., 2009; Amaral et al., 

2011). 

Of particular interest are NATs (as previously discussed) and ncRNAs involed in the RNA 

interference (RNAi) pathway, which in eukaryotes is triggered by the formation of double 

stranded RNA, causing short interfering RNAs (siRNA) to mediate post-transcriptional gene 

silencing (PTGS), maintain genome integrity and protect against viruses (Taft et al., 2010). A 

range of these small RNAs have been reported in fungi, most notably in Neurosporta crassa 

(Lee et al., 2010), and through bioinformatic analysis of a wide range of fungal genomes for 

the conservation of key proteins involved in RNAi (Nunes et al., 2011). siRNAs have also 

been shown to trigger PTGS through RNAi-pathways N. crassa and C. neoformans, viral 

suppression in A. nidulans, M. oryzae and C. parasitica, and heterochromatin formation in S. 

pombe (Schumann et al., 2010; Li et al., 2010; Dang et al., 2011). However, the non-coding 

nature of these transcripts makes global analysis extremely difficult in silico. RNA-seq is 

therefore a potent tool for the global discovery and analysis of ncRNAs both in A. nidulans 

and other systems. 

 

6.2 Initial estimation of novel genes using SOLiD V2 RNA-seq libraries 

Based on the observations discussed in Chapter 6.1, software was developed to detect 

potentially novel genes from mapped RNA-seq data. This software utilised coverage data in 

pileup format, produced as previously discussed (Chapter 3.4).  

Identification of putative novel genes using these pileup data was performed in three distinct 

steps, with separate pieces of software designed for each. The first piece of software (Chapter 

2.5.13) used the current gene annotations in .gbk format to augment the pileup data with an 

additional column indicating which bases were covered by an existing gene model. As 
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previously discussed in Chapter 3.4, visual analysis of the aligned RNA-seq data had 

indicated a significant number of poorly annotated genes, many of which were shown to 

extend beyond their annotated start and stop sites. To prevent these extended regions from 

being identified as putative novel genes, all gene models were extended by 500 bp at each 

end. This process of “masking” regions beyond the annotated gene model was intended to 

remove any regions of significant transcript mapping which were close enough to an existing 

gene as to potentially be associated with that gene, thereby minimising the identification of 

false positive novel genes. The 500 bp distance used was determined by testing a number of 

different distances and inspecting the resultant data in Artemis to see if all reads that 

appeared to associate with existing genes had been removed. The software used these 

extended gene models and the original RH data pileup to create an augmented pileup with 

two additional columns. These columns indicated chromosome position and coverage (or lack 

thereof) of each position by an extended gene model. Lines of these data which indicated RH 

mapping in regions not covered by existing gene models were written to a new pileup file. 

A second piece of software (Appendix 2.1.13) then removed any lines from this new pileup 

file where RH coverage was below a user defined threshold. This threshold was required to 

remove positions where low level, random alignments had occurred, which could have 

affected novel gene model assembly. 

The base positions in the resulting output corresponded to those where significant RH 

coverage was found in intergenic regions, and at a suitable distance from existing gene 

models to identify them as putative novel transcripts. A final piece of software (Appendix 

2.1.14) was developed to search these data for runs of sequential positions which could 

represent a putative novel transcript. The minimum length of transcript which the software 

would report was set to 200. This figure was chosen as it was long enough to ensure that one 

or two randomly mapped reads would not be combined to form a putative novel transcript, 
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while being as short as possible to minimise the exclusion of real, short transcripts. A 

maximum distance between two bases for them to be considered part of the same transcript 

was also used, which accommodated the presence of introns and regions of low mapping due 

to fragmentation bias as previously discussed. As bases with low alignment frequency had 

already been removed, this distance was set to 500 bp, allowing a large gap between bases of 

significant mapping frequency to identify as many putative novel transcripts as possible, 

while not being so large that a significant number of these transcripts would be joined 

together. 

Initial estimations of the number of putative novel genes indicated by intergenic alignment of 

SOLiD RNA-seq reads were performed using the S1 whole transcriptome library (minimal 

media + NO3). As with previous investigations involving read frequencies, the minimum read 

coverage for a position to be reported was set to three to reduce the effect of random 

background alignments. 679 potential novel genes were identified; the experiment was then 

repeated with the minimum read coverage set to five. Increasing the minimum coverage to 

this point ensured that only regions with a high frequency of read alignment were reported as 

containing putative novel genes. Using these settings, the number of predicted genes fell to 

418, however the ratio of genes reported between each chromosome remained fairly 

consistent (Table 6.1). The full outputs from the software used in this analysis can be found 

in Appendix 2.9. 
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Table 6.1. Putative novel genes reported in the S1 SOLiD library using novel software. 

Software was run with a minimum read frequency per base of 3, then repeated with a 

minimum coverage of 5 to ensure only intergenic regions with a high level of read mapping 

were reported as producing putative novel transcripts. 

 

Chromosome Novel genes (minimum 

coverage = 3) 

Novel genes (minimum 

coverage = 5) 

 

1 77 47 

2 82 55 

3 107 75 

4 66 38 

5 55 26 

6 61 41 

7 115 73 

8 116 63 

 

Total 679 418 
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6.3. Transcript assembly with Cufflinks 

The switch to Bowtie and Tophat as the preferred method of RNA-seq read alignment 

produced aligned read lists in BAM format. This was the required format for the “Cufflinks” 

transcript assembly software, which was used to predict transcript structure from aligned 

whole transcriptome RNA-seq reads from libraries sequenced on the SOLiD version 4 

platform. 

Cufflinks constructs a parsimonious set of transcripts that aim to explain the observed 

alignment of reads produced by RNA-Seq experiments. To do so, Cufflinks reduces the 

comparative assembly problem to a problem in maximum matching in bipartite graphs. The 

software then implements a constructive proof of Dilworth's Theorem, which characterizes 

the width of a partially ordered dataset (Dilworth, 1950). It does this by constructing a 

covering relation on the read alignments, then finding a minimum path cover on the directed 

acyclic graph to explain this relation. Cufflinks tries to find the correct parsimonious set of 

transcripts by performing a minimum cost maximum matching. The cost of associating 

splicing events is based on the "percent-spliced-in" score developed by Wang et al. (2008) 

(Trapnell et al., 2010). 

Initial, trial assemblies were performed using the SOLiD whole transcriptome RNA-seq 

library prepared from RNA extracted from A. nidulans culture grown on MM + NO3. 

Cufflinks predicted 13742 transcripts expressed in this growth condition. However, 

visualisation of the assembled transcripts in the IGV indicated a large number of transcripts 

which did not fit to the aligned read data. Closer investigation showed that Cufflinks was 

using read alignment data from both strands of DNA to assemble a single, strand-specific 

transcript (e.g. Fig.6.1). These errors were unexpected as the format of the RNA-seq library 

had been explicitly defined within the Cufflinks input.  

http://en.wikipedia.org/wiki/Partially_ordered_set
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Figure 6.1. Cufflinks assembly of transcripts using aligned reads from both strands. 

Strand specific read alignments (red for forward strand, blue for reverse strand) is shown in 

IGV (top track), along with the existing gene model annotations for the genes in this region 

(CADANIAG00005488 and CADANIAG00005489). Transcripts assembled by Cufflinks are 

shown (thinner blue tracks) below this annotation. CUFF.3746 indicates a transcript on the 

forward strand which runs through the entire length of both gene annotations. This transcript 

therefore appears to have been assembled from the reads on both strands. The 3' end of 

CUFF.4747 on the reverse strand also appears to extend significantly beyond the point at 

which read alignments suggest it should end, again indicating involvement of reads from the 

opposite strand during transcript assembly with Cufflinks. 
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To overcome this issue, Cufflinks transcript assembly was repeated for strand specific 

alignment data. This was achieved by splitting the BAM into two separate files, each 

containing all the reads aligned to a single strand. Cufflinks was then used to process reads 

aligned to each strand separately, and was therefore unable to use reads aligned to the 

opposite strand when assembling transcripts. This method was shown to provide significant 

improvements in the accuracy of transcript structural prediction and goodness of fit to aligned 

RNA-seq reads (Fig. 6.2). 

Utilising this modified Cufflinks assembly protocol, 16065 putative transcripts were 

assembled from RNA-seq data in A. nidulans.  

  



198 
 

 

 

 

Figure 6.2. Strand specific transcript assembly with Cufflinks. Strand specific read 

alignments (red for forward strand, blue for reverse strand) is shown in IGV (top track), along 

with the existing gene model annotations for the genes in this region (CADANIAG00005488 

and CADANIAG00005489). Transcripts assembled using Cufflinks and strand specific read 

alignments for both the forward (A) and reverse (B) strands are shown below existing gene 

models. Transcripts assembled in this way demonstrate excellent correlation with strand 

specific RNA-seq read alignments, with no involvement of reads aligned to the opposite 

strand.   
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6.4. Novel gene finding using Cufflinks assembled transcripts from SOLiD V4 RNA-

seq libraries 

Analysis of SOLiD version 2 whole transcriptome RNA-seq read alignment to intergenic 

regions in the A. nidulans genome had provided an estimation of the number of novel genes 

indicated by these data. Since this analysis, the release of the SOLiD version 4 had facilitated 

the creation and sequencing of newer whole transcriptome libraries with greater accuracy and 

higher coverage compared to those produced on the SOLiD version 2. New software had also 

been released for RNA-seq data analysis, allowing for the discovery of splice junctions 

(Tophat) and the prediction of transcript structure from aligned reads (Cufflinks). 

Investigation into the position of Cufflinks assembled transcripts provided a vast 

improvement in the robustness of novel gene prediction in A. nidulans compared to previous 

methods.  

Given the large number of putative novel genes indicated by a single library of SOLiD 

version 2 RNA-seq data, the size of the dataset for this analysis was limited to the reads from 

a single SOLiD version 4 library. The library produced from RNA extracted from A. nidulans 

culture grown on minimal media supplemented with NO3 was chosen as this was the standard 

growth condition, matching that of the previous analysis. 

For this library, 16065 potential transcripts had previously been defined using Cufflinks. 

Comparison of these de novo transcripts with the CADRE2.5 A. nidulans gene model 

annotation in .gtf format was performed using the Cuffcompare feature of the Cufflinks 

software package (Trapnell et al., 2010; Roberts et al., 2011a; Roberts et al., 2011b). 

Cuffcompare produced a tab delimited file in “.tmap” format, which listed the most closely 

matching reference transcript for each Cufflinks transcript. The class code column of this file 

contained information regarding the type of match for each Cufflinks transcript and the 
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reference gene with which it has been associated. Where a transcript could not be associated 

with a reference gene model, it was placed into the category of “unknown intergenic 

transcripts”, indicated by the letter “u” in the class code column of the cuffcompare .tmap 

output file. Isolating the number of transcripts which fell into this category indicated that 

1112 previously unannotated transcripts were expressed in RNA libraries extracted from A. 

nidulans grown in this condition. 

 

6.5. Functional analysis of putative novel transcripts 

To determine if any of these putative novel transcripts had the potential to represent 

previously unannotated protein coding genes, it was first necessary to analyse their sequences 

for the presence of open reading frames (ORFs). An open reading frame is a sequence of 

nucleotides which begins with a translation start codon and can be divided into a set of 

consecutive, non-overlapping triplets, each of which codes for an amino acid, and terminating 

in a stop codon. These features are required for the translation of the amino acid sequence 

into a viable protein. Long ORFs are therefore often used as an initial indicator of potential 

protein coding sequences, however they alone do not constitute sufficient proof that a 

sequence is translated (Deonier et al., 2005). 

To obtain the sequence of each novel transcript, a list of intergenic transcript IDs was 

obtained from the cuffcompare.tmap file as previously described. Novel software was created 

to match these transcript IDs with those in the original Cufflinks output “transcripts.gtf”, 

containing transcript positions (Chapter 2.5.14). The chromosome positions for each 

intergenic transcript were output to a new file, and a new GTF format file created containing 

only intergenic transcripts for visualisation in a genome browser. A second piece of software 

was developed to use the resulting transcript positions to extract the predicted sequence for 
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each transcript from the FASTA format CADRE2.5 A. nidulans genome annotation, and 

place them into a new FASTA format file to be used as input for ORF finding software 

(Chapter 2.5.15). 

Open reading frame identification within intergenic transcript sequences was performed using 

Getorf from EMBOS (Williams, 2000). Minimum nucleotide length was set to 60 and finding 

of complimentary ORFs was disabled as transcripts on each strand had been aligned, 

assembled and were processed separately. Software was designed to process the resultant 

ORF list and obtain relevant statistics. This software counted the total number of unique 

ORFs, and interrogated the associated cufflinks transcript IDs to determine the number of 

transcripts in which these had been found (Chapter 2.5.16). 2593 open reading frames were 

identified across 868 unique transcripts.  

To determine if any of these ORFs had the potential to produce functional proteins, the ORF 

sequences were aligned to known sequences coding functional protein domains. To provide a 

more robust analysis, two separate protein domain databases were used.  

The first of these databases was Pfam 26.0, a large collection of protein families represented 

by multiple sequence alignments (Punta et al., 2012). Pfam protein families fall into two 

categories; Pfam-A and Pfam-B. Only Pfam-A entries were used, as this category contains 

only high quality, manually curated families.  Pfam-B contains supplementary proteins from 

the Automatic Domain Decomposition Algorithm (ADDA) database (Heger & Holm, 2003), 

which are of significantly lower quality and as such are useful for detecting conserved 

regions, but not ideal for functional analysis of protein sequences. Initial attempts at using 

Pfam resulted in errors due to the presence of ORF sequences which Pfam determined were 

not biologically viable. These sequences were removed from the ORF input file to allow 

Pfam to run successfully. Additionally, Pfam would not accept lists of ORFs in the format 
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produced by ORF, due to the presence of duplicate hits and additional newline characters 

within the FASTA sequence. Novel software was developed to process the Getorf output and 

remove these features, allowing the resulting files to be used in Pfam (Chapter 2.5.17). 

The second database used was the Kyoto Encyclopedia of Genes and Genomes (KEGG). 

KEGG is a database resource for understanding high-level functions and utilities of biological 

systems, such as the cell, organism and ecosystem. In particular it provides a manually 

curated gene database against which sequences can be aligned (Kanehisa at al., 2004). KAAS 

(KEGG Automatic Annotation Server) provides functional annotation of genes by BLAST 

comparisons against the manually curated KEGG GENES database (Moriya et al., 2007).  

290 protein domain hits were reported by pfam (Appendix 2.11.1), but only 51 by KAAS 

(Appendix 2.12.1). Comparison of the ORFs with confirmed protein domain matches in each 

system was performed using novel software (Chapter 2.5.18), to produce a list of ORFs 

which aligned to functional protein domains in both databases. This identified 37 transcribed 

ORFs which were predicted to produce functional proteins in both databases. These ORFs 

were located in 32 distinct intergenic transcripts, identifying these as strong candidates for 

putative novel protein coding genes, the strongest candidates being those transcripts which 

aligned to multiple protein domains in both systems. Full software outputs and novel 

transcript lists can be found in Appendix 2.13.1. 

 

 

 

 

 

 



203 
 

6.6. Identification of novel transcripts with non-AUG start codons 

Using its default settings, Getorf identifies the start of an ORF by the presence of an AUG 

methionine start codon. However, it has long been established that translation can initiate 

from non-AUG start sites, with examples of this phenomenom reported in fungi as early as 

1993 (Gutierrez et al., 1993). More recently, non-canonical start codons have been observed 

in A. nidulans, used by the GATA transcription factor gene areB (Conlon et al., 2001). 

As current A. nidulans references were largely predicted in silico, it was likely that a number 

of protein coding transcripts with non-canonical translation start sites would have been 

missed. To identify putative novel protein coding genes from RNA-seq data, ORF finding 

with Getorf was repeated, using the “-[no]methionine” command to allow ORFs with non-

methionine start codons.  

841 ORFs were identified in 446 transcripts. These were aligned to the protein databases 

Pfam and KEGG as previously described. Pfam identified 719 hits against ORFs (Appendix 

2.11.2), while KEGG identified only 65 (Appendix 2.12.2). Comparison of ORF hits between 

databases was performed with novel software as previously described. This identified 45 

ORFs in 38 transcripts, 6 of which had not been identified by previous analysis using only 

ORFs with AUG start codons. The full software outputs and novel transcript lists can be 

found in Appendix 2.13.2. 
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6.7. Investigation of antisense transcripts using Cufflinks assembly 

Natural antisense transcripts (NATs) are subsets of non-coding RNAs (ncRNA), defined as 

transcripts lacking evidence of a functional ORF (Ponting et al., 2009). The regulatory roles 

of NATs have recently been characterised in mammalian systems (Faghihi & Wahlestedt, 

2009), and a large number have since been identified in range of fungal species including A. 

flavus (Smith et al., 2008). The discovery of natural antisense transcripts NATs in fungi 

greatly increased our understanding the regulation of gene expression through mechanisms 

such as transcriptional interference, chromatin remodelling and dsRNA formation. 

Transcriptome analysis has produced current estimates of NAT association with ORFs in 

fungi ranging from 0.8-3.6 % in systems with low coverage, to as high as 85.2 % in 

comprehensively analysed transcriptomes (Donaldson & Saville, 2012). Preliminary 

estimates of antisense occurrences using early RNA-seq data (Chapter 3.4; Chapter 5.6) 

placed this figure at 5-18 % in A. nidulans. More recent RNA-seq experiments on the SOLiD 

version 4 system (Chapter 5), coupled with vast improvements in transcript prediction 

through the use of Tophat and Cufflinks facilitated a more robust analysis of these putative 

antisense transcripts, which were identified using overlaps on opposite strands between 

transcripts assembled by Cufflinks.  

Custom software created to facilitate both identification and characterisation of each 

antisense transcript (Chapter 2.5.19). Using this software, pairs of overlapping transcripts 

were identified by investigating their start and stop positions from strand specific Cufflinks 

assemblies. Pairs of overlapping transcripts were then placed into one of three categories, 

either with one transcript totally internal to the other (class 1), overlapping at the 3' ends 

(class 2) or overlapping at the 5' ends (class 3). A total of 2291 antisense occurrences were 

identified, meaning 28.5 % of transcripts demonstrated some form of antisense overlap. Of 

these occurrences, 697 were class 1, 1205 were class 2 and 287 were class 3. Class 1 showed 
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no significant enrichment for which strand contained the smaller transcript. However, there 

was significant bias for antisense transcripts overlapping at the 3' end, with more than half the 

observed antisense occurrences falling into this category. The full software output including 

lists of antisense pairs can be found in Appendix 2.14. 

Amongst the complementary transcripts identified, some appeared to be associated with 

previously unannotated genes. To investigate the number of novel transcripts observed in 

antisense configuration, the transcripts were aligned to the CADRE2.5 A. nidulans gene 

model annotation using Cuffcompare as previously described. The class column of the 

resulting “.tmap” file indicated transcripts which did not match to any annotated gene model 

on the same strand, but which demonstrated an exonic overlap with a transcript on the 

opposite strand, therefore representing a novel transcript in antisense configuration with an 

existing gene model. These transcripts were indicated by the class code “x”, and 55 examples 

were identified using this method. 

In order to verify these data, four novel antisense transcripts were randomly chosen to be 

investigated experimentally. As the sequence data were produced utilising poly(A) selected 

RNA, RT-PCR was conducted using oligo(dT) in combination with gene specific 5’ primers 

(2.1., Antisense A-D). Each primer was designed by visualising the aligned read data in the 

Artemis genome browser, and extracting the sequence data for regions of significant mapping 

frequency which overlapped an annotated gene model on the opposite strand, and that RNA-

seq data indicated would produce a PCR product approximately 200 bp in length (Fig. 6.3). 

Sequences were used as input for the “Primer 3” DNA primer design software (Rozen & 

Skaletsky, 2000), with settings to design primers with an optimal length of 18 nt to achieve a 

Tm below 50 °C.  
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Figure 6.3. Novel antisense regions selected for experimental investigation. Whole 

transcriptome RNA-seq data for the forward (red) and reverse (green) strands is displayed 

against the forward (green track) and reverse (light grey track) strands of the A. nidulans 

genome annotation in the Artemis genome browser. Four putative novel antisense transcripts 

overlapping annotated A. nidulans gene models (shown in grey on the annotation tracks) are 

shown (A-D). Sequence data for the regions highlighted in blue was extracted to produce 

PCR primers to prove the existence of these transcripts experimentally. These regions were 

chosen as they appeared to have reads mapping to both strands, indicating antisense 

transcription.  
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Total RNA was extracted from wild type G00 A. nidulans. RNA underwent DNaseA 

treatment and cleanup by phenol:chloroform separation followed by ethanol precipitation to 

prevent DNA contamination of RT-PCR. First round RT-PCR was performed against oligo 

dT (25mer) using Superscript III reverse transcriptase (Invitrogen) according to the 

manufacturer’s protocol. 30 rounds of PCR were performed with KOD hot start polymerase 

(Novagen) according to the manufacturer’s protocols. PCR products were run on a 1.5 % 

agarose gel against a 50 bp ladder, stained with ethidium bromide and visualised under UV. 

PCR products were TA cloned (Chapter2.3.18) and sequenced. To ensure strand specificity, 

sequences were searched for the presence of a poly(A) tail at the end of the predicted 

fragment sequence. Based on these data, the presence of antisense transcripts was confirmed 

in all four cases, each involving a previously unannotated transcript in antisense 

configuration with a known gene. 

One specific example of antisense RNA was investigated in more detail. The transcription 

factor MeaB is a gene has a regulatory associated with nitrogen metabolite repression (Polley, 

Caddick, 1996). From examination of RNA-seq data for the transcript sequence for meaB, it 

appeared that there is an antisense transcript which initiates within the first intron of the gene. 

Analysis of the intron revealed a GATA motif indicating a possible functional association 

with a second transcription factor AreA (Muro-Pastor et al., 1999). Recent work had shown 

areA to partially regulate the transcription of meaB (Wagner et al., 2010). To confirm the 

presence of the antisense transcript and test the possibility that it is under regulation by areA 

we utilised northern analysis using a single stranded probe from exon 1 (-ve strand). As can 

be seen from Fig. 6.4, the antisense transcript is differentially regulated in response to 

nitrogen regime and its expression is dependent on functional area. 
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Figure 6.4. Confirmation of an antisense transcript in meaB. The position and direction of 

transcription start sites indicated by 5’ specific RNA-seq are shown (top two tracks) 

alongside mapped whole transcriptome RNA-seq data for the forward (red graph) and reverse 

(green graph) strands in the region of meaB. These data are displayed here in Artemis 

alongside the A. nidulans genome annotation for this region (green track for forward strand, 

grey track for reverse). The presence of an antisense transcript in meaB was first indicated by 

the overlapping region of the strand specific coverage plots from these whole transcriptome 

RNA-seq data, and confirmed by the presence of an antisense TSS identified by 5' specific 

RNA-seq. From northern analysis of the antisense meaB transcript from wild type and areA- 

strains of A. nidulans (bottom right), this antisense transcript was identified and found to be 

modulated by nitrogen regime, and its expression to be AreA dependent. 
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For meaB the scarcity of the transcript meant that oligo dT was not optimal as a primer for 

reverse transcription. In this case we performed RT with the meaB sequence specific primer 

“meaB R” to minimise background interference during PCR. Two PCR reactions were 

performed with forward primers “meaB F1” and “meaB F2” in combination with reverse 

primer “meaB R” (Chapter 2.1). These primers were designed to produce fragments 400 bp 

and 800 bp in length. PCR products of the correct lengths were TA cloned and sequenced, 

confirming the presence of the antisense transcript. These results were validated by a control 

utilising no RT reaction, which did not give any product. 

 

6.8. Discussion 

Early attempts at novel transcript identification using SOLiD version 2 data were hindered by 

the lack of available software. Due to inexperience in software creation at this early time 

point, the software designed for this analysis was basic. Utilisation of a number of methods 

such as “masking” of regions beyond the ends of annotated gene will undoubtedly have led to 

a number of real novel transcripts being excluded from this analysis due to their proximity to 

existing gene models. Additionally, the use of a minimum transcript length was intended to 

avoid background mapping, but will have caused even further loss of real novel transcript 

identification, as many transcripts in A. nidulans are smaller than the 200 nt limit, with genes 

as small as 36 nt currently annotated by CADRE. Transcriptome analysis of A. fumigatus has 

also revealed a large population of non-coding RNAs, ranging from 21-22 nt long 

microRNAs (Bartel, 2004; Bartel & Chen, 2004) to lengths of around 500 nt (Jöchl et al., 

2008). While this method of whole transcriptome RNA-seq will not have been able to detect 

the smallest of microRNAs, this suggests that a significant number of previously unidentified 

ncRNAs below 200 nt in length will have been excluded from this analysis in A. nidulans. 
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The development of Tophat and Cufflinks RNA-seq analysis software to work with SOLiD 

colour space data presented a drastic advance in the potential for novel transcript 

identification. Transcript assembly with Cufflinks utilises Tophat defined splice junctions to 

pull together reads aligned to exons from the same transcript, and was therefore far more 

robust than the novel gene finding software developed for this thesis. However, Cufflinks 

also presented its own challenges due to issues with strand specificity, assembling transcripts 

which included reads aligned to both strands of DNA. While Cufflinks has been shown to 

work well with unpaired RNA-Seq reads, it was designed with paired reads in mind (Trapnel, 

2012), so SOLiD fragment libraries such as those used here were not ideal. Continued 

development of the software should result in higher accuracy transcript assembly using 

SOLiD reads in future releases. Until then, a valid workaround has been achieved by splitting 

the BAM file by strand, which vastly improved the accuracy of transcript assembly from 

strand specific fragment libraries. 

Using this technique, 16065 putative transcripts have been identified from whole 

transcriptome RNA-seq data in A. nidulans. This presents a vast increase over the 10,827 

transcripts currently predicated in the most recent CADRE A. nidulans genome annotation 

(version 3a). Of these transcripts, 1112 were predicted to originate from putative novel genes. 

ORF finding and functional domain analysis revealed that the vast majority of these 

transcripts are likely to be non-coding, explaining why they may not yet have been predicted 

in silico. An abundant class of intergenic ncRNAs which do not contain canonical ORFs has 

been described by Guttman et al., (2009, 2010), many of which are thought to produce 

functional RNAs with roles in transcriptional regulation and gene expression (Guttman et al., 

2011). 
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32 strong candidates for protein coding genes were identified from ORFs in transcripts 

aligned to intergenic regions of the A. nidulans genome. The use of two protein domain 

databases to identify these genes will have inevitably led to a gross underestimation of these 

figures, and while those genes identified in both systems are the most likely to produce 

functional proteins, transcripts containing ORFs which aligned to only one protein database 

should not be discounted. Six additional strong candidates (matches in both systems) and a 

large number of additional weaker candidates (matches in 1 system) for novel protein coding 

genes were identified from ORFs with non-canonical start codons. Recent work by Ivanov et 

al., ( 2010) has highlighted the potential importance of non-AUG start codons in the 

regulation of translational initiation, where only a small number had been identified 

previously. 

2291 occurrences of transcripts in antisense configuration were also identified, with a 

significant bias observed for overlaps between the 3' ends of transcripts. This bias was 

consistent with previous findings in yeast (David et al., 2006) and Aspergillus flavus (Smith 

et al., 2008). While this represents the number of transcripts shown to overlap between the 

two strands of DNA, it does not necessarily represent the number of antisense transcripts with 

a functional relationship; as such relationships require experimental proof of existence. 

However, combining this with whole transcriptome and 5' specific RNA-seq data has been 

shown to provide an excellent resource for investigation into where such relationships may 

exist, and to guide experimental design into antisense regulation for specific genes (e.g. 

meaB). 

Additionally, 55 strong candidates for putative novel antisense transcripts have been 

identified using Cuffcompare, 4 of which have been proven to exist experimentally. This 

number is likely to be a gross underestimation, as the numerous class codes and strict criteria 
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used by Cuffcompare to apply those codes, are likely to have excluded a large number of 

putative novel transcripts from being identified by the selection process used.  
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7.  Investigation of alternative splicing in Aspergillus nidulans 

 

7.1. Alternative splicing 

 

Alternative splicing of mRNA was first identified in 1980 when membrane-bound and 

secreted antibodies were shown to be encoded by the same gene (Alt et al., 1980; Early at al., 

1980). This phenomenon has become increasingly studied as it allows alternative isoforms of 

proteins to be created from a single gene, potentially providing a huge increase in the 

diversity of proteins without the need for additional genetic information. While once thought 

of as a rare occurrence, the estimated number of genes which use alternative splicing of 

transcribed pre-mRNA to encode more than one protein (or protein isoform) has dramatically 

risen over time. Recent studies using high-throughput sequencing suggest that 95–100% of 

human pre-mRNAs with sequences corresponding to more than one exon can be 

differentially processed to yield multiple distinct mRNAs (Pan et al., 2008; Wang et al., 

2008).  

 

The majority of exon sequences are constitutively spliced, meaning that they are always 

included in the mature mRNA. Some exons however are differentially regulated and can be 

spliced in or out of the final mRNA. These are known as cassette exons, and may be 

regulated either at an individual level, or in a mutually exclusive mannar alongside additional 

cassette exons (Smith & Nadal-Ginard, 1989; Schmucker et al., 2000). Some exons have also 

shown to be variable in length due to alternative splice sites as a result of alternative promoter 

usage in the case of 5'-terminal exons, and alternative polyadenylation sites in the case of 3'-

terminal exons. There are also cases where the removal of introns through splicing does not 

occur, leading to the intron sequence being retained in the final mRNA (Black, 2003). 
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Splice variants have been widely studied and four broad categories identified: retained introns 

(RIs), cassette exons (CEs), competing 5' splice sites, and competing 3' splice sites (Fig. 7.1). 

CEs have shown to be the predominant form of splice variation in multicellular eukaryotes 

(Sugnet et al., 2004; Ast, 2004; Thanaraj et al., 2004), while RIs are more prevelent in 

multicellular plants such as A. thaliana and O. sativa (Ner-Gaon et al., 2004; Campbell et al., 

2006; Wang & Brendel, 2006), as well as in the fungi Cryptococcus and A. nidulans, and also 

in yeast (Kupfer et al., 2004; Loftus et al., 2005; Collins & Penny, 2006; Romfo et al., 2000). 

 

Splicing of pre-mRNA is guided by short, conserved sequences known as splice sites, which 

are present at intron/exon junctions. The 5' splice site occurs at the exon/intron junction, and 

is a semi-conserved sequence containing a GU dinucleotide. Downstream of the 5' splice site 

at the intron/exon junction are three conserved elements which form the 3' splice site. These 

consist of the branch-point, a polypyrimidine tract, and finally a terminal AG at the 3' end of 

the intron (Burge et al., 1999). A macromollecular complex of five small nuclear 

ribonucleoproteins (snRNPs) is assembled onto the intron during splicing. These snRNPs are 

collectively known as the spliceosome, and are responsible for cleaving the pre-mRNA at the 

5' splice site and lariat formation by the ligation of the free intron 5' end to the branch-point. 

The spliceosome then cleaves the pre-mRNA at the 3' splice site to release the intron (now in 

lariat configuration), and ligates the two exons to reform the spliced mRNA molecule.  

 

Splice site consensus sequences alone are generally not sufficient to determine if a given 

sequence will be spliced, and regulation of splice site utilisation can occur in a number of 

ways. Firstly the choice of splice site is thought to be affected by the initial binding of 

spliceosome components to the pre-mRNA, and the formation of spliceosome complexes 

(Lallena et al., 2002). This can be influenced by a number of factors, including the strength of 
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splicing signals and the length of introns and exons. Components of the spliceosome have 

been shown to interact between splice sites at either end of an exon, stimulating the removal 

of flanking introns in a process called exon definition (Hoffman & Grabowski, 1992). 

However, suboptimal distances between splice sites have also been shown to interfere with 

splicing due to steric hinderance between machinery at flanking splice sites (Dominski & 

Kole, 1991). Many additional non-splice site regulatory sequences have also been shown to 

strongly affect splicing. Splicing enhancers are sequences which stimulate splisosome 

assembly, while splicing silencers or repressors act to block spliceosome assembly and 

prevent splicing events with which they are associated. Both splicing enhancers and 

repressors have intronic and exonic varieties, and act either through influencing the 

secondary structure of the pre-mRNA or as binding sites for proteins, both of which are able 

to influence splice site recognition (Libri et al., 1991; Jacquenet et al., 2001; Black, 2003). 

 

Specific examples of alternative splicing have been described in Aspergilli (Trevisan, 2011; 

Maruyama, 2005), although such examples are rare. RNA-seq data has the potential to 

dramatically increase the number of alternative splicing events identified and greatly improve 

our understanding of alternative splicing in Aspergilli.  
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Figure 7.1. Types of alternative splicing. The four basic types of alternative splicing are 

illustrated. These consist of: Retained introns (A), cassette exons (B), competing 5' splice 

sites (C) and competing 3' splice sites (D). Pre-mRNAs are shown on the left, with the 

differentially spliced region highlighted in red, and black lines spanning regions which can be 

spliced out. The products of differential splicing are shown on the right. For retained introns 

(A), the red region is considered an intron if skipped and an exon if retained. 
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7.2. Analysis of alternative splicing events identified by whole transcriptome RNA-

seq in A. nidulans 

Visual analysis of whole transcriptome RNA-seq data and associated splice junctions 

identified by Tophat alignment was initially used to gauge the extent of alternative splicing in 

A. nidulans. A number of putative alternative splicing events were observed, and the most 

common form of alternative splicing appeared to be retention of introns. Potential alternative 

splicing events involving cassette exons and variable intron length due to competing 5' or 3' 

start sites were also observed, but with much lower frequency.   

Further investigation into the extent of alternative splicing in A. nidulans utilised transcripts 

assembled by Cufflinks as previously described. Cufflinks identifies multiple isoforms of 

transcripts produced from the same loci, and outputs these with the same initial cufflinks 

identification number (ID), followed by a decimal point and a unique identification number 

for each transcript (e.g. CUFF01.1, CUFF01.2… etc). The number of loci across which 

transcripts had been assembled could therefore be found by searching the list of cufflinks 

transcript IDs for those that end in “.1”. Of the 16065 total transcripts identified by Cufflinks, 

15666 were shown to have unique IDs using this method. Subtracting this number from the 

total gave 399 transcripts which represent alternative isoforms. As some transcripts may have 

more than two isoforms, this number did not necessarily represent the number of alternatively 

spliced genes in A. nidulans. The search of cufflinks IDs was therefore repeated to identify 

the number of transcripts with IDs ending in “.2” as this would identify the number of loci at 

which these transcripts could be located. 374 distinct loci were identified by this search, 

representing the number of genes predicted by cufflinks to produce alternatively spliced 

transcripts. 

Six genes indicated by Total RNA-sequencing to produce multiple transcript isoforms were 

chosen for further investigation (Figs. 7.2-7.7). Gene selection was by visual interrogation of 
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Cufflinks-assembled transcripts and included as many different alternative splicing methods 

as could be identified. As previously discussed, the major form of alternate splicing in A. 

nidulans is intron retention, and therefore this was the most significant and most closely 

examined, with transcripts from three of the six genes fall into this category. Individual 

examples of exon skipping and competing 5' splice site usage were also identified. Finally, an 

example of differential transcription start site usage resulting in transcripts with different first 

exons was investigated. Although this itself is not a form of alternative splicing, it is similar 

in that it allows multiple distinct transcripts to be produced from the same genetic locus, and 

the chosen example exhibits two very distinct 5' splice sites, both of which are associated 

with the same 3' splice site, meaning that alternative splicing does occur as a direct result of 

this modification in transcription start site. 
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Figure 7.2. First example of alternative splicing by intron retention. The top track shows 

reads from whole-transcriptome RNA-seq mapped with Tophat to the CADRE2.5 A. nidulans 

genome. The second track shows the gene model annotation for this locus 

(CADANIAG00005084). The bottom two tracks show the modified transcripts predicted to 

originate from this gene. A single intron is predicted in the first transcript, while the lower 

transcript has two predicted introns. The reason for this can be seen from the RNA-seq reads, 

some of which have been split by Tophat and confirm the presence of this intron, while 

others appear to read through this region, suggesting that this sequence is retained in some 

transcripts. 
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Figure 7.3. Second example of alternative splicing by intron retention. The top track shows 

reads from whole-transcriptome RNA-seq mapped with Tophat to the CADRE2.5 A. nidulans 

genome. The second track shows the gene model annotation for this locus 

(CADANIAG00004952). The bottom two tracks show transcripts assembled by Cufflinks. 

While the rightmost intron is predicted in both transcripts, the left intron is only found in the 

shorter transcript, suggesting alternative splicing by intron retention. It is also worth noting that 

the lower transcript is significantly shorter, suggesting that alternative 5' start sites are used in 

addition to alternative splicing to further modify the transcripts produced from this locus. This 

alternative start site may also facilitate the splicing out of the sequence in this region. 
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Figure 7.4. Third example of alternative splicing by intron retention. The top track shows 

reads from whole-transcriptome RNA-seq mapped with Tophat to the CADRE2.5 A. nidulans 

genome. The second track shows the gene model annotation for this locus 

(CADANIAG00004878). The bottom two tracks show transcripts assembled by Cufflinks. 

While the lower transcript appears to have 2 introns, only the second intron is present in the 

upper transcript. It is also worth noting that the lower transcript is significantly shorter, 

suggesting that alternative 5' start sites are used in addition to alternative splicing to further 

modify the transcripts produced from this locus. This alternative start site may also facilitate 

the splicing out of the sequence in this region. 
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Figure 7.5. Example of alternative splicing utilising competing 5' splice sites. The top 

track shows reads from whole-transcriptome RNA-seq mapped with Tophat to the 

CADRE2.5 A. nidulans genome. The second track shows the gene model annotation for this 

locus (CADANIAG00009598). The bottom two tracks show transcripts assembled by 

Cufflinks. While these two transcripts are nearly identical, the first intron is shown to 

originate at two different 5' splice sites, resulting in a shorter first exon in the lower transcript. 
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Figure 7.6. Example of alternative splicing utilising a cassette exon. The top track shows 

reads from whole-transcriptome RNA-seq mapped with Tophat to the CADRE2.5 A. nidulans 

genome. The second track shows the gene model annotation for this locus 

(CADANIAG00007226). The bottom two tracks show transcripts assembled by Cufflinks. 

The small second exon predicted in the gene annotation is present in only one of the two 

predicted transcripts, with RNA-seq reads indicating that in some instances the cassette exon 

is spliced out. 
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Figure 7.7. Example of alternative 5' start site utilisation resulting in alternative 

transcripts from a single locus. The top track shows reads from whole-transcriptome RNA-

seq mapped with Tophat to the CADRE2.5 A. nidulans genome. The second track shows the 

gene model annotation for this locus (CADANIAG00006834). The bottom two tracks show 

transcripts assembled by Cufflinks. RNA-seq data indicates that this transcript can originate 

from two alternative 5' transcription start sites, each producing a different exon at the start of 

the transcript, which is then spliced together with a downstream sequence which remains 

constant. While this is not considered a method of alternative splicing, it is another way in 

which variation in transcripts can be achieved from a single locus. The use of alternative 5' 

start sites which are in a different frame may also contribute to alternative splicing events 

downstream by bringing motifs responsible for determining splice site location intro frame.  
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Primers were designed by first using IGV to visualise the regions where alternative splicing 

had been identified by RNA-seq data. Sequences corresponding to the regions of interest 

were extracted from the appropriate CADRE2.5 FASTA reference file and checked against 

the aligned sequence in IGV to ensure the correct sequence had been obtained. Sequence 

features such as TSS and splice sites were marked to facilitate manual design of PCR oligos. 

Individual forward and reverse PCR oligos were designed with a length of 18 nucleotides and 

GC content of 10 (56 %), to provide an approximate melting temperature of >50 °C and 

therefore an appropriate annealing temperature for successful PCR. The position of each 

oligo was also carefully chosen, as sequences being spliced out in each example were 

relatively small (35-100 bp), meaning that the two PCR products produced in each case 

would be similar in size. Oligos were therefore designed to produce small PCR fragments 

(approximately 150-200 bp in size), which allowed greater resolution of the products when 

analysis by electrophoresis. The positions of these oligonucleotides are shown in Fig. 7.8 and 

their sequences listed in Appendix 2.1. (Splicing A-E). 

To confirm these events experimentally, PCR oligos were designed to capture the region in 

which alternative splicing occurs. If transcripts of different lengths are produced due to 

differential splicing in these regions, this would result in multiple PCR product lengths. The 

RNA-seq data further facilitates this experiment as it precisely defines splice junctions. This 

allows for accurate prediction of PCR products resulting from each splicing event and thus 

facilitates rapid validation of alternative splicing.  

To maximise the chance of producing both splice variants, RT PCR was performed with 

RNA grown on both nutrient rich and highly nutrient deficient media. Total RNA was 

extracted from wild type G00 A. nidulans grown on both minimal medium supplemented 

with NO3
-
 and on a severely nutrient limited medium (oat) as an extreme alternative condition 

where metabolic stress should promote alternative splicing of transcripts (see Chapter 2.2.4 
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for detailed growth conditions). All RNA underwent DNase I treatment and cleanup by 

phenol/chloroform precipitation to prevent DNA contamination of RT-PCR. To produce full 

length cDNA for PCR, first round RT-PCR was performed using oligo dT (25mer) and 

Superscript III reverse transcriptase (Invitrogen). The appropriate annealing temperature for 

each set of primers was determined by finding the precise melting temperature of each oligo 

using the online software “OligoCalc” (Kibbe, 2007). Subsequent PCR reactions were 

performed using specifically designed primers as previously described. PCR products were 

visualised under UV next to a 50 base pair ladder on 2.2 % agarose gel stained with ethidium 

bromide. 

PCR of cDNA with oligos designed to isolate the example of a cassette exon produced no 

product in the expected size ranges. This PCR was repeated using a range of annealing 

temperatures to ensure that the failure of the reaction was not due to experimental error, 

however no product was observed for any of the repeats with either RNA sample. For all 

other samples, two distinct PCR products were identified in the expected size ranges, thus 

confirming the presence of each of these transcripts in A. nidulans cells grown in both 

conditions (Fig.7.8). 
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Figure 7.8. PCR oligo design and products for investigating 5 sets of differentially 

spliced transcripts. Forward (red) and reverse (green) PCR oligos are shown aligned to their 

positions on 2 differentially spliced transcripts assembled from total RNA-seq data. These 

transcripts indicate multiple forms of alternative splicing. In the case of A, 2 different 

transcript start sites result in the first exon being different depending on the point of 

transcriptional initiation. B, C and D show differential inclusion/exclusion of an intron, while 

E demonstrates two different intron start positions resulting in two distinct lengths of the first 

exon. For A, we utilised three primers, with a forward primer in each of the two starting 

exons and a reverse primer in the second exon. Using the RNA-seq data the length of each 

splice junction was found and the two forward primers positioned to give significantly 

different sized products when used in combination with the same reverse primer. For each of 

the other examples, primers were designed to fall across the splice site in question, resulting 
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in different length products dependant on the length or exclusion/inclusion of splice junction. 

Gels for each PCR are shown alongside their respective transcripts, with the two left lanes 

showing the products of PCR reactions using RNA from culture grown on minimal media 

+NO3
-
, and the right two lanes showing the products of PCR reactions with RNA from 

culture grown on oat. Two different size bands were produced in both conditions for all 5 

genes, the sizes consistent with alternative splicing events predicted by RNA-seq and 

Cufflinks assembly. This indicates that two different lengths of transcripts are being produced 

as a result of alternative splicing in these regions. 

 

 

7.3. Discussion 

Alternative splicing in A. nidulans has been investigated through whole transcriptome RNA-

seq and transcripts predicted using the Cufflinks transcript assembly software. 399 splice 

variants have been identified across 374 unique loci. This represents approximately 3.6% of 

known protein coding genes in A. nidulans being alternatively spliced. While this figure is 

extremely low compared to humans where up to 100 % of genes are expected to produce 

multiple transcript isoforms (Pan et al., 2008; Wang et al., 2008), it is a significant advance 

on previous studies in A. nidulans, which predicted only 100 splice variants from publicly 

available ESTs. Of those previously predicted alternative splicing events, the 74% were 

shown to fall into the category of intron retention, while 25% utilised alternative 5' or 3' 

splice sites and only 1% involved cassette exons (McGuire et al., 2008). Visual analysis of the 

alternative splicing events predicted by Cufflinks assembly of Tophat-aligned whole 

transcriptome RNA-seq reads indicated that high-throughput sequencing data supports 

these previous findings, although the proportions of each category were not recorded. 
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Of the 399 alternative transcripts identified in A. nidulans, six were investigated by PCR 

using custom designed oligos to produce cDNA fragments of different lengths based on the 

differences in transcript structure. The cassette exon event which was investigated did not 

produce any PCR products in the expected size ranges, indicating that this alternative 

splicing event was either wrongly predicted by Cufflinks, or that it does not occur in either of 

the conditions used. Examples of retained introns, alternative splice sites and alternative 

transcription start sites were all proven experimentally. While alternative transcription start 

site usage is not technically classified as alternative splicing, it is interesting to note that two 

of the three examples of alternative splicing by retained introns were also shown to also 

demonstrate alternative transcription start sites. In each case, the intron which was 

alternatively spliced was the one closest to the 5' end. This suggests that alternative 

transcription start sites not only produce different lengths of transcripts, but can have an 

effect on splice sites. Conserved sequence features at each end of splice sites were identified 

shortly after the discovery of split genes in 1977 (Breathnach, 1978), therefore the effect of 

alternative transcription start site position on intron retention is most likely due to a frame 

shift, bringing otherwise unused splicing motifs into frame. This is supported by the example 

in Fig. 7.7, which shows two very distinct exons produced by alternative transcription start 

sites, each with its own distinctive 5' splice site, both of which are associated with the same 3' 

splice site. 

The previously described analysis was performed using whole transcriptome RNA-seq data 

from a single condition. Utilising RNA-seq data produced with A. nidulans RNA from 

multiple conditions where alternative splicing of transcripts may be up-regulated, and 

comparing transcripts assembled between each condition would provide a more 

comprehensive list of transcripts which can be alternatively spliced. 
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Although a definite bias for intron retention was observed as the main method of alternative 

splicing in A. nidulans, the exact number of transcripts in each class was not recorded. It is 

also worth noting that some examples of alternative transcripts may not fall into these 

categories, being instead produced by modifications at the 5' or 3' end due to alternative start 

sites or non-splicing post translational modifications. Classification of identified alternative 

transcripts into the four previously defined groups would therefore provide a more accurate 

representation of the number of alternatively spliced transcripts. This analysis would also 

facilitate a direct comparison of the frequency of occurrence and proportions of each group 

with those reported by previous works in A. nidulans. 

 

 

 

 

 

 

 

 

 

 

 

 



232 
 

 

 

 

 

 

 

 

 

Chapter 8 

 

 

 

 

 

 

 

 

 

 



233 
 

8. Further work 

8.1. Availability of data as a community resource 

Collaboration with AspGD has made RNA-seq data produced for this thesis available to 

members of the Aspergillus nidulans community. These data are currently being used to 

assist reannotation of the A. nidulans genome. 

Through collaboration with CADRE, RNA-seq data produced from A. nidulans grown on 

minimal media with nitrate as sole nitrogen source has been uploaded to the CADRE website 

(http://www.cadre-genomes.org.uk) and can be viewed through the Ensembl genome browser. 

To display the RNA-seq data, select “Aspergillus nidulans” from the CADRE homepage, 

then use the “Sample entry points” menu to navigate to the genome browser. The RNA-seq 

data can  then be added to the display by clicking “Configure this page”, then selecting 

“Caddick, RNA-seq, NO3” from the Functional genomics submenu.  

The availability of these data in this format provides a high-quality visual resource to aid the 

interrogation of gene structure and transcription in A. nidulans. It is hoped that these data will 

be used by other members of the A. nidulans research community to aid their research and 

further our understanding of the A. nidulans transcriptome.  

Further collaboration with CADRE is being undertaken to make all the RNA-seq data 

produced during this thesis available online. While aligned read data can be easily presented 

in a visual format, many members of the A. nidulans research community have expressed 

interest in utilising the raw read data from SOLiD sequencing. The sheer size of RNA-seq 

data files has proven to be a prohibitive factor in making these data publicly available. 

Therefore, while collaboration with CADRE is important to make RNA-seq data available for 

online visualisation as quickly as possible, the continued production of RNA-seq data and 
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desire to make these data fully available may mean that a dedicated website will be required 

in the long term. 

 

8.2. Improving the analysis of novel protein coding genes 

This thesis has identified a large number of putative novel protein coding genes from whole 

transcriptome RNA-seq. These could be further investigated using the results of work that is 

currently being undertaken to perform ribosomal profiling in A. nidulans. The strategy of 

ribosomal profiling is based on deep sequencing of ribosome-protected mRNA fragments, 

and enables genome-wide investigation of translated mRNA sequences with subcodon 

resolution (Ingolia et al., 2009; Ingolia, 2010). This approach would therefore provide direct 

evidence for which transcripts are translated and the region of the transcript that is coding. 

This would particularly useful for the confirmation of putative protein coding genes with 

non-canonical translation start sites. Ingolia et al., (2011) have shown that while a substantial 

number of intergenic ncRNAs in mammalian systems did not engage ribosomes, many 

putative intergenic ncRNAs contained short, successive segments that were translated at 

similar rates to classical protein coding sequences. The coding nature of these RNAs would 

generally not be detected by traditional methods which rely on in silico prediction. This work 

therefore has the potential to greatly expand our understanding of the A. nidulans proteome 

and the functional annotation of putative genes and transcripts (Weiss & Atkins, 2011). 

 

8.3. Improving the analysis of  non-coding and antisense transcripts 

Examples of ncRNAs including NATs with and without poly(A) tails have been observed in 

other fungi, suggesting functional classes with vary in RNA structure, stability and/or 
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subcellular localisation (Donaldson & Saville, 2012). Identification of these RNAs in A. 

nidulans could therefore be aided by the production of RNA-seq libraries using ribosomal 

depletion to enrich for mRNAs, rather than the poly(A) selection used for the libraries in this 

thesis. These libraries have already been produced, as well as additional libraries from RNA 

extracted from A. nidulans grown in a range of different conditions. Future transcriptome 

analysis will combine RNA-seq data from these libraries to provide the widest possible 

expression profile, producing a far greater depth of coverage and a more robust identification 

of ncRNAs and antisense transcripts on a global scale. 

 

8.4. Aspergillus nidulans RNA-seq in the future 

Aspergillus nidulans RNA-seq for this thesis was conducted on the ABI SOLiD platform. 

This presented numerous bioinformatic issues, primarily due to the colour space format of 

SOLiD data which was not compatible with many of the commonly used systems for RNA-

seq analysis. Combined with the poor reliability of the SOLiD system reported by users at the 

Liverpool Centre for Genomic Research, lack of support from ABI, and a general preference 

for Illumina sequencing within the Aspergillus community (e.g. Wang et al., 2010; Gibbons 

et al., 2012), this has resulted in a shift away from the SOLiD system. It is important to stress 

that this is currently a very dynamic field of study. Technology that is constantly evolving 

and improving, with each system having its own advantages and disadvantages, and 

techniques such as 5' specific RNA-seq continually being developed to provide greater 

accuracy and explore specific features. I therefore propose that future RNA-seq studies in A. 

nidulans may benefit from a combined strategy using data from alternative NGS systems and 

techniques to supplement current data.  
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Appendix 1. Solutions and media 

 

 1.1. Buffers and solutions for general molecular biology 

 

0.5 M EDTA (pH 8.0), per 1 litre: 

168.1 g EDTA (pH 8.0) 

 

1 x Tris EDTA (TE) buffer, per 1 litre; 

3.72 g EDTA, 12.11 g Tris-HCL (pH 7.5). Steralised by autoclaving. 

 

50 x Tris Acetate (TAE) buffer, per 1 litre; 

242 g Tris base, 57.1 ml glacial acid, 100 ml 0.5 M EDTA (pH 8.0) 

 

10 x gel loading buffer 

50 ml glycerol, 25 ml 1.0 M EDTA (pH 8.0), 100 mg bromophenol blue. 

 

Phenol: 

Pre-made aqua phenol [Q-Biogene] was used, to which 1/10 volumes of 1 M sodium acetate 

(pH 5.0) was added for use in RNA extraction. 
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 1.2. Aspergillus nidulans solutions and media 

 

Salts solutions, per 1 litre; 

KCL     26 g 

MgSO4 7H2O    26g 

Kh2PO4     76 g 

trace elements solution  50 ml 

sodium tetraborate   0.04 g 

cupric sulphate    0.4 g 

ferric orthophosphate   0.8 g 

manganese sulphate   0.8 g 

sodium molybdate   0.8 g  

zinc sulphate    8.0 g  

solution stored at 4°C 

 

 

Vitamin solution, per litre; 

p-aminobenzoic acid   0.4 g 

inositol    0.4 g 

nicotine acid    0.1 g 

calcium pantothenate   0.6 g 

pyridoxine    0.25 g 

choline chloride   1.4 g 

riboflavin    0.1 g 

putrecine    2.0 g 
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D-biotin    10 ml   

pyridoxine (calcium salt)  0.25 g 

solution stored at 4°C 

 

 

Trace elements solution, per litre; 

Sodium tetraborate   0.04 g 

Cupric sulphate  0.4 g 

Ferric orthophosphate  0.8g  

Manganese sulphate   0.8 g 

Sodium molybdate   0.8 g 

Zinc sulphate    8.0 g 

 

 

Complete medium (CM), per litre; 

Glucose    10 g 

Aspergillus salts solution  20 ml 

Vitamin solution   10 ml 

Yeast extract    1 g 

Peptone    2 g 

Casamino acids   1 g 

Adenine    75 mg 

Adjusted to pH 6.5. 
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Minimal media (MM), per 1 litre; 

Glucose    10 g 

Aspergillus salts solution  20 ml 

Adjusted to pH 6.5 

 

 

1.3. Sterilisation of media 

 

All media were autoclaved for 20 minutes at 15 psi and stored at 4°C. 

 

 

1.4. Solid media 

 

Where required, solid media was created by the addition of 2 % Agarose to MM or CM. 

 

 

Appendix 2. Software and data 

 

Appendix 2 is supplied as a DVD attached to this thesis. Files were produced on a Mac 

operating system, for best results in a Windows environment, it is recommended that text 

files be opened in wordpad. 

 

 

 


